WO2024032266A1 - 一种通信方法和装置 - Google Patents

一种通信方法和装置 Download PDF

Info

Publication number
WO2024032266A1
WO2024032266A1 PCT/CN2023/105157 CN2023105157W WO2024032266A1 WO 2024032266 A1 WO2024032266 A1 WO 2024032266A1 CN 2023105157 W CN2023105157 W CN 2023105157W WO 2024032266 A1 WO2024032266 A1 WO 2024032266A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency layer
terminal device
prs frequency
prs
indication information
Prior art date
Application number
PCT/CN2023/105157
Other languages
English (en)
French (fr)
Inventor
张力
黄甦
辛睿
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024032266A1 publication Critical patent/WO2024032266A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present application relates to the field of communication, and more specifically, to a communication method and device.
  • the R17 standard defines that outside the measurement gap (MG), such as within the positioning reference signal processing window (PPW), the terminal device can measure the positioning reference signal (PRS) based on Mode 2. ) frequency layer, this mode 2 is associated with the terminal equipment's ability to report to the LMF ⁇ N2, T2 ⁇ , where N2 is the terminal equipment's ability to measure the duration of the PRS frequency layer, and T2 is the terminal equipment's ability to measure the processing time of the PRS frequency layer. . T2 can only be located within the PPW length, which has a greater impact on the terminal equipment receiving data, but at the same time reduces the processing time of the terminal equipment measuring the PRS frequency layer.
  • the present application provides a communication method and device, so that when the number of PRS frequency layers is more than one, the terminal equipment can determine the total measurement time of measuring at least one PRS frequency layer based on Mode 2.
  • this application provides a communication method.
  • the execution subject of the method may be a terminal device or a chip applied in the terminal device.
  • the following description takes the execution subject being a terminal device as an example.
  • the method may include: the terminal equipment determines the time used to measure each of the Q PRS frequency layers using mode 2; the terminal equipment determines based on the maximum value of the time used in each of the Q PRS frequency layers The second measurement time, where Q is a positive integer.
  • the terminal device can determine the time taken to measure each of the Q PRS frequency layers using Mode 2, and determine based on the maximum value of the time taken for each of the Q PRS frequency layers. Second measurement time. Through this method, the total measurement time for the terminal equipment to determine to use Mode 2 to measure Q PRS frequency layers can be reduced.
  • the terminal equipment determines the second measurement time based on the maximum value of the time spent on each of the Q PRS frequency layers. It can be understood that the total time used by the terminal equipment to measure the Q PRS frequency layers does not exceed the second measurement time. measure time.
  • the method further includes: the terminal device determines the time used to measure each of the P PRS frequency layers using mode 1; the terminal device determines the time used by the terminal device according to the P PRS frequencies The sum of the times used by each PRS frequency layer in the layer determines the first measurement time, where P is a positive integer.
  • the terminal equipment determines the first measurement time based on the sum of the time taken by each PRS frequency layer among the PRS frequency layers. It can be understood that the total time used by the terminal equipment to measure the P PRS frequency layers does not exceed the first measurement time. time.
  • the method further includes: the terminal device determines a third measurement time based on the first measurement time and the second measurement time, and the third measurement time is to measure P+Q PRS The time taken by the frequency layer.
  • the terminal equipment determines the third measurement time based on the first measurement time and the second measurement time, which can be understood as the total time used by the terminal equipment to measure Q PRS frequency layers and the total time used by the terminal equipment to measure P PRS frequency layers. The sum of the total time shall not exceed the third measurement time.
  • the terminal device determines the third measurement time based on the first measurement time and the second measurement time, including: the terminal device determines the third measurement time based on the first measurement time, the second measurement time and The first margin determines the third measurement time, and the third measurement time is the sum of the first measurement time, the second measurement time and the first margin.
  • the time used to measure the second PRS frequency layer among the Q PRS frequency layers is determined based on the first time and/or the second time, and the first time is to measure the second PRS frequency layer.
  • the sampling time used by the second PRS frequency layer, the second time is the measurement time of the last sample point of the second PRS frequency layer.
  • the second time includes sampling time and processing time.
  • the first time is the duration of the PRS resource
  • the duration of the PRS resource is located within the first window
  • the length of the first window is the second PRS frequency layer of the second PRS frequency layer.
  • the difference between the length of the second measurement time window and T2 the starting position of the first window is the starting point of the length of the second measurement time window, where T2 is the processing time capability of the terminal device for measuring the second PRS frequency layer.
  • the first time is the duration of the PRS resource
  • the duration of the PRS resource is less than or equal to N2
  • the duration of the PRS resource is located in the first window
  • the first window The length of is the difference between the second measurement time window length of the second PRS frequency layer and T2.
  • the starting position of the first window is the starting point of the second measurement time window length, where N2 is the second PRS frequency measured by the terminal device.
  • the duration capability of the layer, T2 is the processing time capability of the terminal device measuring the second PRS frequency layer.
  • the first time is the minimum value between the duration of the PRS resource and N2
  • the duration of the PRS resource is located within the first window
  • the length of the first window is The difference between the second measurement time window length of the second PRS frequency layer and T2.
  • the starting position of the first window is the starting point of the second measurement time window length, where N2 is the duration for the terminal device to measure the second PRS frequency layer.
  • Time capability, T2 is the processing time capability of the second PRS frequency layer measured by the terminal equipment.
  • the second time is the second PRS frequency layer.
  • the length of the second measurement time window is the second PRS frequency layer.
  • the second time is the second measurement time window of the second PRS frequency layer. Periods are available.
  • the method further includes: the terminal device reports a second capability to the positioning management function LMF, and the second capability is associated with the second PRS frequency layer; the terminal device reports the second capability according to the second capability , determine the measurement mode of the second PRS frequency layer as mode 2.
  • the terminal device can determine the measurement mode of the second PRS frequency layer to be mode 2 based on the second capability reported to the LMF, so that the measurement behavior of the terminal device can be clarified.
  • the second capability is ⁇ N2, T2 ⁇ , where N2 is the terminal equipment's ability to measure the duration of the second PRS frequency layer, and T2 is the terminal equipment's ability to measure the second PRS frequency layer.
  • the processing time capability of the PRS frequency layer is ⁇ N2, T2 ⁇ , where N2 is the terminal equipment's ability to measure the duration of the second PRS frequency layer, and T2 is the terminal equipment's ability to measure the second PRS frequency layer.
  • the second capability includes ⁇ N, T ⁇ and ⁇ N2, T2 ⁇ , where N and N2 are the terminal equipment's ability to measure the duration of the second PRS frequency layer, T , T2 is the processing time capability of the terminal device to measure the second PRS frequency layer.
  • the terminal device determines the measurement mode of the second PRS frequency layer to be mode 2 based on the second capability, including: the terminal device receives the first indication information from the LMF, and An indication information indicates that the measurement mode of the second PRS frequency layer is mode 2.
  • the second capability includes ⁇ N, T ⁇ and ⁇ N2, T2 ⁇ , where N and N2 are the terminal equipment's ability to measure the duration of the second PRS frequency layer, T , T2 is the processing time capability of the terminal device to measure the second PRS frequency layer.
  • the terminal device determines the measurement mode of the second PRS frequency layer to be mode 2 based on the second capability, including: the terminal device receives the second indication information from the network device, The second indication information is used to indicate the second measurement time window length of the second PRS frequency layer; the terminal device determines that the measurement mode of the second PRS frequency layer is mode 2 according to the second measurement time window length being greater than or equal to the first threshold.
  • the method further includes: the terminal device reports a first capability to the positioning management function LMF, and the first capability is associated with the first PRS frequency layer; the terminal device reports the first capability according to the first capability , determine the measurement mode of the first PRS frequency layer as mode 1.
  • the terminal device can determine the measurement mode of the first PRS frequency layer to be mode 1 based on the first capability reported to the LMF, so that the measurement behavior of the terminal device can be clarified.
  • the first capability is ⁇ N, T ⁇ , where N is the duration capability of the terminal device to measure the first PRS frequency layer, and T is the terminal device to measure the duration of the first PRS frequency layer.
  • the processing time capability of the PRS frequency layer is ⁇ N, T ⁇ , where N is the duration capability of the terminal device to measure the first PRS frequency layer, and T is the terminal device to measure the duration of the first PRS frequency layer.
  • the first capability includes ⁇ N, T ⁇ and ⁇ N2, T2 ⁇ , where N and N2 are the terminal equipment's ability to measure the duration of the first PRS frequency layer, T , T2 is the processing time capability of the terminal device to measure the first PRS frequency layer.
  • the terminal device determines the measurement mode of the first PRS frequency layer as mode 1 based on the first capability, including: the terminal device receives the first indication information from the LMF, and An indication information indicates that the measurement mode of the first PRS frequency layer is mode 1.
  • the first capability includes ⁇ N, T ⁇ and ⁇ N2, T2 ⁇ , where N and N2 are the terminal equipment's ability to measure the duration of the first PRS frequency layer, T , T2 is the processing time capability of the terminal device to measure the first PRS frequency layer.
  • the terminal device determines the measurement mode of the first PRS frequency layer to be mode 1 based on the first capability, including: the terminal device receives the second indication information from the network device, The second indication information is used to indicate the first measurement time window length of the first PRS frequency layer; the terminal device determines that the measurement mode of the first PRS frequency layer is mode 1 based on the first measurement time window length being less than the first threshold.
  • the method further includes: the terminal device sends third indication information to the network device, and the third indication information indicates that the second measurement time window length of the second PRS frequency layer is greater than or Equal to the second threshold, or the third indication information is used to indicate the first recommended value, and the first recommended value is the time excluding the duration of the PRS resource within the second measurement time window length of the second PRS frequency layer.
  • the network device can determine the second measurement time window length of the second PRS frequency layer based on the third indication information, thereby enabling the network device to configure the second PRS frequency layer for the terminal device based on the low-latency related information.
  • the length of the second measurement time window enables the terminal device to use mode 2 to perform measurement according to the requirements of the terminal device.
  • the method further includes: the terminal device receives fourth indication information from the network device, the fourth indication information is used to indicate whether the second PPW is in an activated state, and the second PPW It is associated with the second PRS frequency layer among the Q PRS frequency layers; the terminal device determines the second measurement time window of the second PRS frequency layer according to the fourth indication information.
  • the second PRS frequency layer may be configured by the LMF for the terminal device, and the second measurement time window (such as the second PPW, or the second MG) may be configured by the network device for the terminal device.
  • the second measurement time window such as the second PPW, or the second MG
  • the terminal device can determine the second measurement time window of the second PRS frequency layer according to the fourth indication information, thereby clarifying the measurement behavior of the terminal device and ensuring consistent understanding among the terminal device, network device and LMF.
  • the terminal device determines the second measurement time window of the second PRS frequency layer according to the fourth indication information, including: the fourth indication information indicates that the second PPW is in an active state. , the terminal device determines that the second measurement time window is the second PPW, or the fourth indication information indicates that the second PPW is in an inactive state, and the terminal device determines that the second measurement time window is the second MG.
  • the method further includes: the terminal device receiving fourth indication information from the network device, the fourth indication information being used to indicate whether the first positioning reference signal processing window PPW is activated. state, the first PPW is associated with the first PRS frequency layer among the P PRS frequency layers; the terminal device determines the first measurement time window of the first PRS frequency layer according to the fourth indication information.
  • the first PRS frequency layer may be configured by the LMF for the terminal device, and the first measurement time window (such as the first PPW, or the first MG) may be configured by the network device for the terminal device.
  • the first measurement time window such as the first PPW, or the first MG
  • the terminal device can determine the first measurement time window of the first PRS frequency layer according to the fourth instruction information, thereby clarifying the measurement behavior of the terminal device and ensuring consistent understanding among the terminal device, network device and LMF.
  • the terminal device determines the first measurement time window of the first PRS frequency layer according to the fourth indication information, including: the fourth indication information indicates that the first PPW is in an active state. , the terminal device determines that the first measurement time window is the first PPW, or the fourth indication information indicates that the first PPW is in an inactive state, and the terminal device determines that the first measurement time window is the first measurement interval MG.
  • this application provides a communication method.
  • the execution subject of the method may be a terminal device or a chip applied in the terminal device.
  • the following description takes the execution subject being a terminal device as an example.
  • the method may include: the terminal device determines a first time, and the first time is a sampling time used to measure the PRS frequency layer in mode 2.
  • the PRS resource is sampled within the first time of the measurement time window of the PRS frequency layer.
  • the first time is the duration of the PRS resource
  • the duration of the PRS resource is located within the first window
  • the length of the first window is the measurement time window of the PRS frequency layer
  • the starting position of the first window is the starting point of the measurement time window length, where T2 is the processing time capability of the terminal device for measuring the PRS frequency layer.
  • the first time is the duration of the PRS resource
  • the duration of the PRS resource is less than or equal to N2
  • the duration of the PRS resource is within the first window
  • the first window The length of is the difference between the measurement time window length of the PRS frequency layer and T2.
  • the starting position of the first window is the starting point of the measurement time window length.
  • N2 is the duration capability of the terminal equipment to measure the PRS frequency layer
  • T2 is The terminal equipment measures the processing time capability of the PRS frequency layer.
  • the first time is the minimum value between the duration of the PRS resource and N2
  • the duration of the PRS resource is located within the first window
  • the length of the first window is The difference between the measurement time window length of the PRS frequency layer and T2.
  • the starting position of the first window is the starting point of the measurement time window length, where N2 is the terminal equipment’s ability to measure the duration of the PRS frequency layer, and T2 is the terminal equipment measurement The processing time capability of the PRS frequency layer.
  • this application provides a communication method.
  • the execution subject of the method may be a terminal device or a chip applied in the terminal device.
  • the following description takes the execution subject being a terminal device as an example.
  • the method may include: the terminal device reports capabilities to the positioning management function LMF, and the capabilities are associated with the positioning reference signal PRS frequency layer; the terminal device determines the measurement mode of the PRS frequency layer based on the capabilities.
  • the terminal device can determine the measurement mode of the PRS frequency layer as Mode 1 or Mode 2 based on the ability to report to the LMF, thereby clarifying the measurement behavior of the terminal device.
  • the capability includes at least one of the following: ⁇ N, T ⁇ , ⁇ N2, T2 ⁇ , where N and N2 are the duration of the terminal equipment measuring the PRS frequency layer. Capabilities, T and T2 are the processing time capabilities of the terminal equipment in measuring the PRS frequency layer.
  • the terminal device determines the measurement mode of the PRS frequency layer according to the capability, including: the capability is ⁇ N, T ⁇ , and the terminal device determines the measurement mode of the PRS frequency layer as mode 1; or, the capability is ⁇ N2, T2 ⁇ , and the terminal equipment determines that the measurement mode of the PRS frequency layer is mode 2.
  • the capabilities are ⁇ N, T ⁇ and ⁇ N2, T2 ⁇
  • the terminal device determines the measurement mode of the PRS frequency layer according to the capabilities, including: the terminal device receives data from the LMF
  • the first indication information is used to indicate that the measurement mode of the PRS frequency layer is mode 1 or mode 2; the terminal device determines that the measurement mode of the PRS frequency layer is mode 1 or mode 2 according to the first indication information.
  • the condition for the terminal device to correctly perform the measurement is that the length of the measurement time window configured by the network device is greater than or equal to the first threshold.
  • the terminal device can determine the measurement mode of the PRS frequency layer as mode 1 or mode 2 according to the first indication information, so that the measurement behavior of the terminal device can be clarified.
  • the capabilities are ⁇ N, T ⁇ and ⁇ N2, T2 ⁇
  • the terminal device determines the measurement mode of the PRS frequency layer based on the capabilities, including: the terminal device receives data from the network Second indication information of the device, the second indication information is used to indicate the measurement time window length of the PRS frequency layer; the terminal device determines that the measurement mode of the PRS frequency layer is mode 1 or mode 2 according to the second indication information.
  • the terminal device can determine the measurement mode of the PRS frequency layer as mode 1 or mode 2 according to the second indication information, so that the measurement behavior of the terminal device can be clarified.
  • the terminal device determines that the measurement mode of the PRS frequency layer is mode 1 or mode 2 according to the second indication information, including: the measurement time window length of the PRS frequency layer is greater than or is equal to the first threshold, the terminal device determines that the measurement mode of the PRS frequency layer is mode 2; or, the measurement time window length of the PRS frequency layer is less than the first threshold, the terminal device determines that the measurement mode of the PRS frequency layer is mode 1.
  • the method further includes: the terminal device sends third indication information to the network device, and the third indication information is used to indicate that the measurement time window length of the PRS frequency layer is greater than or equal to the third aspect.
  • the second threshold value, or the third indication information is used to indicate the first recommended value, and the first recommended value is the time within the measurement time window length of the PRS frequency layer excluding the duration of the PRS resource.
  • this application provides a communication method.
  • the execution subject of the method may be a terminal device or a chip applied in the terminal device.
  • the following description takes the execution subject being a terminal device as an example.
  • the method may include: the terminal device receives fourth indication information from the network device, the fourth indication information is used to indicate whether the positioning reference signal processing window PPW is in an active state, and the PPW is associated with the positioning reference signal PRS frequency layer; the terminal device according to the first Four indication information to determine the measurement time window of the PRS frequency layer.
  • the PRS frequency layer can be configured by the LMF for the terminal device, and the measurement time window (such as PPW or MG) can be configured by the network device for the terminal device.
  • the terminal equipment can determine the measurement time window of the PRS frequency layer according to the fourth instruction information, thereby clarifying the measurement behavior of the terminal equipment and ensuring consistent understanding between the terminal equipment, network equipment and LMF.
  • the terminal device determines the measurement time window of the PRS frequency layer according to the fourth indication information, including: the fourth indication information indicates that the PPW is in the active state, and the terminal device determines the PRS frequency The measurement time window of the layer is PPW; or, the fourth indication information indicates that PPW is in an inactive state, and the terminal device determines that the measurement time window of the PRS frequency layer is the measurement interval MG.
  • the PPW when the fourth indication information indicates that the PPW is in an inactive state, the PPW may not be associated with the PRS frequency layer, and the terminal device determines that the measurement time window of the PRS frequency layer is Measurement interval MG.
  • this application provides a communication method.
  • the execution subject of the method may be the first device or a chip applied in the first device.
  • the following description takes the execution subject being the first device as an example.
  • the method may include: the first device sending third indication information to the network device, the third indication information being used to indicate that the measurement time window length of the PRS frequency layer is greater than or equal to the second threshold, or the third indication information being used to indicate the first Recommended values, the first recommended value is the time within the measurement time window length of the PRS frequency layer excluding the duration of the PRS resource.
  • the network device can determine the measurement time window length of the PRS frequency layer based on the third instruction information, so that the network device can configure the measurement time window length of the PRS frequency layer for the terminal device based on the information related to low latency, and thus can
  • the terminal device is enabled to use mode 2 to perform measurement according to the requirements of the first device.
  • the first device may be a terminal device or a location management function LMF.
  • the present application provides a communication method.
  • the execution subject of the method may be a network device or a chip applied in the network device.
  • the following description takes the execution subject being a network device as an example.
  • the method may include: the network device receives third indication information from the first device, the third indication information is used to indicate that the measurement time window length of the PRS frequency layer is greater than or equal to the second threshold, or the third indication information is used to indicate that the length of the measurement time window of the PRS frequency layer is greater than or equal to the second threshold.
  • One recommended value is the time within the measurement time window length of the PRS frequency layer excluding the duration of the PRS resource; the network device determines the measurement time window length of the PRS frequency layer based on the third indication information.
  • the network device can determine the measurement time window length of the PRS frequency layer based on the third instruction information, so that the network device can configure the measurement time window length of the PRS frequency layer for the terminal device based on the information related to low latency, and thus can
  • the terminal device is enabled to use mode 2 to perform measurement according to the requirements of the first device.
  • the first device may be a terminal device or a location management function LMF.
  • the network device determines the measurement time window length of the PRS frequency layer according to the third indication information, including: the third indication information indicates that the measurement time window length of the PRS frequency layer is greater than or equal to the second threshold, and the network device determines that the measurement time window length of the PRS frequency layer is greater than or equal to the second threshold; or, the third indication information indicates the first recommended value, and the network device determines that the measurement time window length of the PRS frequency layer is the first The recommended value is the sum of the duration of the PRS resource.
  • the method further includes: the network device sends second indication information to the terminal device, where the second indication information is used to indicate the measurement time window length of the PRS frequency layer.
  • this application provides a communication method.
  • the execution subject of the method may be the positioning management function LMF, or it may be a chip applied in the LMF.
  • the following description takes the execution subject as LMF as an example.
  • the method may include: the positioning management function LMF receives the capability reported from the terminal device, the reported capabilities are ⁇ N, T ⁇ and ⁇ N2, T2 ⁇ , and the reported capability is associated with the positioning reference signal PRS frequency layer, where, N, N2 is the terminal equipment's ability to measure the duration of the PRS frequency layer, T and T2 are the terminal equipment's ability to measure the processing time of the PRS frequency layer; LMF sends the first indication information to the terminal equipment based on the reported capabilities, and the first indication information is used to indicate The measurement mode of the PRS frequency layer is mode 1 or mode 2.
  • the terminal device can determine the measurement mode of the PRS frequency layer as mode 1 or mode 2 according to the first indication information, so that the measurement behavior of the terminal device can be clarified.
  • An eighth aspect provides a communication device, which is used to perform the method in any of the possible implementation modes of the first to seventh aspects.
  • the device may include units and/or modules for performing the method in any possible implementation of the first to seventh aspects, such as a processing unit and/or a communication unit.
  • the device is a terminal device or a network device or a location management function LMF.
  • the communication unit may be a transceiver, or an input/output interface;
  • the processing unit may be at least one processor.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the apparatus is a chip, chip system or circuit for terminal equipment or network equipment or LMF.
  • the communication unit may be an input/output interface, interface circuit, output circuit, input circuit, pipe on the chip, chip system or circuit pins or related circuits, etc.; the processing unit may be at least one processor, processing circuit or logic circuit, etc.
  • a ninth aspect provides a communication device, which includes at least one processor for executing computer programs or instructions stored in a memory to perform the method in any of the possible implementations of the first to seventh aspects.
  • the device further includes a memory for storing computer programs or instructions.
  • the device further includes a communication interface, through which the processor reads the computer program or instructions stored in the memory.
  • the device is a terminal device or a network device or a location management function LMF.
  • the apparatus is a chip, chip system or circuit for terminal equipment or network equipment or LMF.
  • this application provides a processor for executing the methods provided in the above aspects.
  • processor output, reception, input and other operations can be understood as processor output, reception, input and other operations.
  • transmitting and receiving operations performed by the radio frequency circuit and the antenna, which is not limited in this application.
  • a computer-readable storage medium stores a program code for device execution.
  • the program code includes a program code for executing any of the possible implementations of the above-mentioned first to seventh aspects. Methods.
  • a computer program product containing instructions is provided.
  • the computer program product When the computer program product is run on a computer, it causes the computer to execute the method in any of the possible implementation modes of the above-mentioned first to seventh aspects.
  • the present application also provides a system, which system includes a terminal device, and the terminal device can be used to perform the steps performed by the terminal device in any of the methods of the first to fifth aspects.
  • system may further include a network device, which may be configured to perform the steps performed by the network device in the sixth aspect.
  • the system may further include a positioning management function LMF, which may be used to perform the steps performed by the LMF in the fifth or seventh aspect above.
  • LMF positioning management function
  • the system may also include other devices that interact with one or more of the terminal device, network device, and LMF in the solutions provided by the embodiments of this application, and so on.
  • Figure 1 shows a schematic diagram of a communication method 100 provided by an embodiment of the present application.
  • Figure 2 shows a schematic scenario diagram of a communication method provided by an embodiment of the present application.
  • Figure 3 shows a schematic scenario diagram of yet another communication method provided by an embodiment of the present application.
  • Figure 4 shows a schematic diagram of a communication method 400 provided by an embodiment of the present application.
  • Figure 5 shows a schematic diagram of a communication method 500 provided by an embodiment of the present application.
  • Figure 6 shows a schematic diagram of a communication method 600 provided by an embodiment of the present application.
  • Figure 7 shows a schematic block diagram of a communication device 700 provided by an embodiment of the present application.
  • Figure 8 shows a schematic block diagram of another communication device 800 provided by an embodiment of the present application.
  • FIG. 9 shows a schematic diagram of a chip system 900 provided by an embodiment of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: fifth generation (5th generation, 5G) or new radio (NR) systems, long term evolution (long term evolution, LTE) systems, LTE frequency Frequency division duplex (FDD) system, LTE time division duplex (TDD) system, etc.
  • the technical solution provided by this application can also be applied to future communication systems, such as the sixth generation mobile communication system.
  • the technical solution provided by this application can also be applied to device to device (D2D) communication, vehicle to everything (vehicle-to-everything, V2X) communication, machine to machine (machine) to machine (M2M) communication, machine type communication (MTC), and Internet of things (IoT) communication system or other communication systems.
  • D2D device to device
  • V2X vehicle to everything
  • machine to machine machine
  • M2M machine type communication
  • IoT Internet of things
  • the terminal device in the embodiment of the present application may be a device that provides voice/data to users, for example, a handheld device with a wireless connection function, a vehicle-mounted device, etc.
  • some examples of terminals are: mobile phones, tablets, laptops, PDAs, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, and smart grids Wireless terminals, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, cellular phones, cordless phones, session initiation protocols , SIP) telephone, wireless local loop (WLL) station, personal digital assistant (personal digital assistant, PDA), handheld device with wireless communication capabilities, computing device or other processing device connected to a wireless modem, which can Wearable devices, terminal devices in the 5G network or terminal devices in the future evolved public land mobile communication network (public land mobile network, PLMN), etc., are not limited in the embodiments
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized devices that can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, and those that only focus on a certain type of application function and need to cooperate with other devices such as smartphones. Use, such as various smart bracelets, smart jewelry, etc. for physical sign monitoring.
  • the terminal device may also be a terminal device in the IoT system.
  • IoT is an important part of the future development of information technology. Its main technical feature is to connect objects to the network through communication technology, thereby realizing human-machine Interconnection, an intelligent network that interconnects things.
  • the device used to implement the functions of the terminal device may be a terminal device, or may be a device capable of supporting the terminal device to implement the function, such as a chip system or a chip, and the device may be installed in the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the network device in the embodiment of the present application may be a device used to communicate with a terminal device, and the network device may be a global system for mobile communications (GSM) system or code division multiple access (CDMA)
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • the base station (base transceiver station, BTS) in the wideband code division multiple access (wideband code division multiple access, WCDMA) system can also be the base station (NodeB, NB) in the LTE system. It can also be the evolved base station (evoled) in the LTE system.
  • the network device can be a relay station, access point, vehicle-mounted device, wearable device, and 5G Network equipment in the network or network equipment in the future evolved PLMN network, one or a group (including multiple antenna panels) of antenna panels of the base station in the 5G system, or it can also be a network node that constitutes a gNB or transmission point, Such as baseband unit (BBU), distributed unit (distributed unit, DU), etc., which are not limited by the embodiments of this application.
  • BBU baseband unit
  • DU distributed unit
  • gNB may include centralized units (CUs) and DUs.
  • the gNB may also include an active antenna unit (AAU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB.
  • CU is responsible for processing non-real-time protocols and services, implementing radio resource control (RRC), and packet data convergence protocol (PDCP) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the radio link control (RLC) layer, media access control (MAC) layer and physical (physical, PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical layer
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network equipment in the access network (radio access network, RAN), or the CU can be divided into network equipment in the core network (core network, CN), which is not limited in this application.
  • the terminal device or network device includes a hardware layer, an operating system layer running on the hardware layer, and an operating system layer.
  • the application layer runs on the operating system layer.
  • This hardware layer includes hardware such as central processing unit (CPU), memory management unit (MMU) and memory (also called main memory).
  • the operating system can be any one or more computer operating systems that implement business processing through processes, such as Linux operating system, Unix operating system, Android operating system, iOS operating system or windows operating system, etc.
  • This application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the present application do not specifically limit the specific structure of the execution subject of the method provided by the embodiment of the present application, as long as the program that records the code of the method provided by the embodiment of the present application can be run to provide according to the embodiment of the present application.
  • the execution subject of the method provided by the embodiment of the present application can be a terminal device or a network device, or a functional module in the terminal device or network device that can call a program and execute the program.
  • the location management function is responsible for supporting different types of location services related to the terminal device, including positioning the terminal device and transmitting auxiliary data to the terminal device.
  • LMF may interact with network equipment, such as gNB, and terminal equipment for signal interaction.
  • LMF and gNB exchange information through new radio positioning protocol annex (NRRPa) messages, such as obtaining positioning reference signal (position reference signal, PRS), sounding reference signal (sounding reference signal, SRS). ) configuration information, cell timing, cell location information, etc.
  • NRRPa new radio positioning protocol annex
  • LMF and terminal equipment transmit terminal equipment capability information, auxiliary information, measurement information, etc. through LTE positioning protocol (LPP) messages.
  • LTP LTE positioning protocol
  • the RRS frequency layer may be a collection of PRS resource sets that have common parameters configured through a certain signaling, where the signaling may be NR-DL-PRS-Positioning Frequency Layer.
  • the modes mentioned in the embodiments of this application include mode 1 and mode 2.
  • the processing time of the terminal equipment when measuring the PRS frequency layer can be located within the measurement time window of the PRS frequency layer or outside the measurement time window of the PRS frequency layer.
  • the corresponding mode is mode 1; the terminal equipment measures the PRS frequency.
  • the processing time of the layer is within the measurement time window of the PRS frequency layer, and the corresponding mode at this time is mode 2.
  • the measurement time window may be a measurement gap (MG), a positioning reference signal processing window (PPW), or other time windows, which is not limited by this application.
  • the terminal device can determine the measurement time of the PRS frequency layer based on different modes.
  • the embodiment of this application does not specify the specific mode used by the terminal device when determining the measurement time of the PRS frequency layer within the measurement time window. limit.
  • the terminal equipment can use mode 1 to measure the measurement time of the PRS frequency layer, or it can use mode 2 to measure the measurement time of the PRS frequency layer; for another example, in the PPW, the terminal equipment can use mode 1 to measure the PRS frequency layer.
  • the measurement time can also be measured using Mode 2 to measure the measurement time of the PRS frequency layer.
  • the PRS frequency layer can be configured by the LMF for the terminal device
  • the PPW and MG can be configured by the network device for the terminal device.
  • the length of the measurement time window is the length of the PPW; when the measurement time window is MG, the length of the measurement time window is the length of the MG except for 0.5ms or 0.25ms before and after. length.
  • ⁇ N,T ⁇ is the ability of the terminal equipment to report to the LMF introduced in the R16 standard, where N is the terminal equipment's ability to measure the duration of the PRS frequency layer, T is the terminal equipment's ability to measure the processing time of the PRS frequency layer, ⁇ N, T ⁇ is associated with Mode 1 used by the terminal equipment when determining the measurement time of the PRS frequency layer. T can be located within the measurement time length or outside the measurement time window length. When T is outside the length of the measurement time window, it has less impact on the terminal equipment receiving data, but at the same time increases the processing time for the terminal equipment to measure the PRS frequency layer.
  • T2 ⁇ is the ability of the terminal equipment to report to the LMF introduced in the R17 standard, where N2 is the terminal equipment's ability to measure the duration of the PRS frequency layer, T2 is the terminal equipment's ability to measure the processing time of the PRS frequency layer, ⁇ N2, T2 ⁇ is associated with Mode 2 used by the terminal equipment when determining the measurement time of the PRS frequency layer. T2 is located within the length of the measurement time window, which has a greater impact on the terminal equipment receiving data, but at the same time reduces the processing time of the terminal equipment measuring the PRS frequency layer. Therefore, the measurement of the PRS frequency layer performed by the terminal equipment based on Mode 2 is a low-latency measurement.
  • this application provides a communication method that can enable the terminal device to determine the total measurement time of measuring at least one PRS frequency layer based on Mode 2. Through this method, the total measurement time for the terminal equipment to measure at least one PRS frequency layer using Mode 2 can be reduced.
  • Figure 1 shows a schematic diagram of a communication method 100 provided by an embodiment of the present application. As shown in Figure 1, the method 100 may include the following steps.
  • the terminal device determines the time used to measure each of the Q PRS frequency layers using mode 2.
  • Q is a positive integer.
  • the time used by the terminal device to measure the second PRS frequency layer among the Q PRS frequency layers may be determined based on the first time and/or the second time.
  • the second PRS frequency layer is one of the Q PRS frequency layers.
  • the first time is the sampling time used to measure the second PRS frequency layer.
  • the second time is the measurement time of measuring the last sample point of the second PRS frequency layer.
  • the time it takes for the terminal device to measure the second PRS frequency layer using Mode 2 satisfies formula (1):
  • T meas,i is the time used by the terminal equipment to measure the second PRS frequency layer
  • L available_PRS,i is the first time
  • T last,i is the second time
  • M is the measurement time of the second PRS frequency layer caused by other factors.
  • the amplification factor for example, in millimeter wave frequency measurement, the beam scanning factor when the terminal device uses multiple receiving beams for measurement, etc. This application does not limit the factors that cause the amplification of the second measurement time due to other factors.
  • N' is the capability of the number of PRS resources that the terminal equipment can measure in each time slot
  • N2 is the duration for the terminal equipment to measure the second PRS frequency layer.
  • N sample is the number of sample points for measuring the second PRS frequency layer
  • T effect i is the effective measurement period of the second PRS frequency layer
  • T window i is the period of the second measurement time window of the second PRS frequency layer
  • T2 Measure the processing time capability of the second PRS frequency layer for the terminal device
  • T available_PRS,i is the available period of the second PRS frequency layer
  • T available_PRS,i can be the least common multiple of T PRS,i and T window,i , T PRS ,i is the period of the second PRS frequency layer.
  • the terminal equipment can determine the time used to measure the second PRS frequency layer using mode 2 according to formula (1) and formula (2), or can also determine the time used to measure the second PRS frequency layer using mode 2 according to formula (1) and formula (2). The time used in other PRS frequency layers than the PRS frequency layer.
  • the terminal device determines the second measurement time based on the maximum value of the time spent in each of the Q PRS frequency layers.
  • T meas2 is the second measurement time
  • T uncertainty,i is the margin greater than or equal to zero.
  • T uncertainty,i is all measurement times corresponding to the Q PRS frequency layers from the starting moment of the second measurement time.
  • the distance between the first measurement time window in the window) and the first measurement time window of the i-th PRS frequency layer, T meas,i is the terminal equipment measuring the i-th PRS frequency layer among Q PRS frequency layers time taken.
  • the i-th PRS frequency layer is one of Q PRS frequency layers, that is, the i-th PRS frequency layer can be the second PRS frequency layer.
  • the terminal equipment can determine the frequency used to measure each of the Q PRS frequency layers using mode 2. time, and determine the second measurement time based on the maximum value of the time spent in each PRS frequency layer among the Q PRS frequency layers. Through this method, the total measurement time for the terminal equipment to measure at least one PRS frequency layer using Mode 2 can be reduced.
  • the terminal device may determine the first time in the following possible ways.
  • the first time is the duration of the PRS resource
  • the duration of the PRS resource is located within a first window
  • the length of the first window is the length of the second measurement time window of the second PRS frequency layer and T2.
  • the starting position of the first window is the starting point of the length of the second measurement time window.
  • T2 is the processing time capability length of the second PRS frequency layer measured by the terminal equipment.
  • the length of the first window is the difference between the second measurement time window length of the second PRS frequency layer and T2.
  • the duration of the PRS resource is located within the first window, which can be understood as the duration of the PRS resource.
  • the time may be all of the length of the first window or part of the length of the first window.
  • the second measurement time window may appear periodically, the second measurement time window within one cycle may be recorded as an instance of the second measurement time window, and the second measurement time window within multiple cycles may be recorded as the second measurement time window. 2. Multiple instances of measurement time windows. If there are multiple instances of the second measurement time window within a T available_PRS,i or T PRS,i , the first time is the duration of the PRS resource within T available_PRS,i or T PRS,i , and the duration of the PRS resource is located within a first window of multiple instances of the second measurement time window. That is to say, the first time is the duration of PRS resources within a T available_PRS,i or T PRS,i .
  • the PRS resources within the first window are considered.
  • the PRS resources within the first Hms within the second measurement time window are considered, where H is the difference between the length of the second measurement time window and T2.
  • the first time is the minimum value between the duration of the PRS resource and N2, the duration of the PRS resource is located in the first window, and the length of the first window is the second PRS frequency layer of the second PRS frequency layer.
  • the difference between the length of the second measurement time window and T2, the starting position of the first window is the starting point of the length of the second measurement time window.
  • the first time is the minimum value between the duration of the PRS resource and N2. It can be understood that the first time is the duration of the PRS resource, and the duration of the PRS resource is less than or equal to N2.
  • T2 is the processing time capability of the terminal device for measuring the second PRS frequency layer
  • N2 is the duration capability of the terminal device for measuring the second PRS frequency layer.
  • the length of the first window is the difference between the second measurement time window length of the second PRS frequency layer and T2.
  • the duration of the PRS resource is located within the first window, which can be understood as the duration of the PRS resource.
  • the time may be all of the length of the first window or part of the length of the first window.
  • the first time is the minimum value between the duration of the PRS resource and N2. For example, when the duration of the PRS resource is greater than N2, the first time is N2; for another example, when the duration of the PRS resource is less than N2, the first time is the duration of the PRS resource; for another example, when the duration of the PRS resource When equal to N2, the first time can be N2 or the duration of the PRS resource.
  • the length of the second measurement time window L can be divided into time period, where the length of the m-th time period is the sum of N2 and T2.
  • the first sub-time is the minimum value between the duration of the PRS resource in the m-th time period and N2.
  • the first time is the M first sub-times. of and.
  • T2 is the processing time capability of the terminal device for measuring the second PRS frequency layer
  • N2 is the duration capability of the terminal device for measuring the second PRS frequency layer.
  • the terminal device may determine the second time in the following possible ways.
  • the second time is the second measurement time window length of the second PRS frequency layer.
  • the second time is the second measurement time window length.
  • Another possible way is that when there is a PRS resource in the second PRS frequency layer that is not within the second measurement time window of the second PRS frequency layer , the second time is the available period of the second PRS frequency layer.
  • the second time is the available period of the second PRS frequency layer.
  • the terminal device may determine the time used to measure each of the P PRS frequency layers using Mode 1.
  • the terminal device determines the first measurement time based on the sum of the times used in each of the P PRS frequency layers, where P is a positive integer.
  • T meas1 is the first measurement time
  • T meas,i is the time used by the terminal device to measure the i-th PRS frequency layer among the P PRS frequency layers
  • T effect,i is the first PRS among the P PRS frequency layers.
  • the effective measurement period of the frequency layer is the first measurement time
  • the first PRS frequency layer is one of the P PRS frequency layers
  • the i-th PRS frequency layer is one of the P PRS frequency layers. That is, the i-th PRS frequency layer can be the first PRS frequency. layer.
  • the terminal device determines the third measurement time based on the first measurement time and the second measurement time.
  • the third measurement time is the time used to measure P+Q PRS frequency layers.
  • the terminal device determines the third measurement time based on the first measurement time, the second measurement time and the first margin, and the third measurement time is the sum of the first measurement time, the second measurement time and the first margin. .
  • the first margin may be the time used for conversion between different frequency layers, and the first margin may be a number greater than or equal to 0.
  • the first margin may be the time it takes for the first frequency layer to convert to the second frequency layer; for another example, the first margin may be the time it takes for the second frequency layer to convert to the first frequency layer; for another example, The first margin may be max(T effect,i ).
  • the measurement mode of the PRS frequency layer may be mode 1 or mode 2.
  • the terminal equipment determines whether the measurement mode of the PRS frequency layer is Mode 1 or Mode 2. For example, how the terminal device determines that the measurement mode of the first PRS frequency layer mentioned in method 100 is mode 1, and how the terminal device determines that the measurement mode of the second PRS frequency layer is mode 2, there is no relevant information in the existing solutions. illustrate.
  • this application provides a communication method. Through this method, the present application can enable the terminal device to determine whether the measurement mode of the PRS frequency layer is mode 1 or mode 2, thereby clarifying the measurement behavior of the terminal device.
  • FIG 4 shows a schematic diagram of yet another communication method 400 provided by an embodiment of the present application. As shown in Figure 4, method 400 may include the following steps.
  • the terminal device reports capabilities to the LMF, which capabilities are associated with the PRS frequency layer.
  • the LMF receives the capabilities reported from the terminal device.
  • the capability may include at least one of the following: ⁇ N, T ⁇ , ⁇ N2, T2 ⁇ .
  • N and N2 are the duration capabilities of the terminal equipment to measure the PRS frequency layer
  • T and T2 are the processing time capabilities of the terminal equipment to measure the PRS frequency layer.
  • the terminal device may report a second capability to the LMF, where the second capability is associated with a second PRS frequency layer, where the second PRS frequency layer is one of Q PRS frequency layers.
  • the terminal device may report a first capability to the LMF, where the first capability is associated with a first PRS frequency layer, where the first PRS frequency layer is one of P PRS frequency layers.
  • the ability of the terminal device to report to the LMF is associated with the PRS frequency layer. It can be understood that the terminal device reports the ability to the LMF for the bandwidth range (eg frequency band) where the PRS frequency layer is located. For example, the terminal device reports the first capability to the LMF for the bandwidth range of the first PRS frequency layer; for another example, the terminal device reports the second capability to the LMF for the bandwidth range of the second PRS frequency layer.
  • the terminal device determines the measurement mode of the PRS frequency layer based on the capability reported to the LMF.
  • the terminal device may determine that the measurement mode of the first PRS frequency layer is mode 1 according to the first capability reported to the LMF.
  • the terminal device may determine that the measurement mode of the second PRS frequency layer is mode 2 according to the second capability reported to the LMF.
  • the terminal device can determine the measurement mode of the PRS frequency layer as mode 1 based on the ability to report to the LMF. Or mode 2, so that the measurement behavior of the terminal device can be clarified.
  • the terminal device determines the measurement mode of the PRS frequency layer based on the ability to report to the LMF.
  • the following methods may be used.
  • Method #A When the capability reported by the terminal device to LMF is ⁇ N, T ⁇ , the terminal device determines that the measurement mode of the PRS frequency layer is mode 1; or, when the capability reported by the terminal device to LMF is ⁇ N2, T2 ⁇ , the terminal equipment determines that the measurement mode of the PRS frequency layer is mode 2.
  • the terminal device may determine that the measurement mode of the first PRS frequency layer is mode 1.
  • the terminal device may determine that the measurement mode of the second PRS frequency layer is mode 2.
  • Method #B The capabilities reported by the terminal device to the LMF are ⁇ N, T ⁇ and ⁇ N2, T2 ⁇ .
  • the LMF receives the capabilities reported from the terminal device, and the reported capabilities are ⁇ N, T ⁇ and ⁇ N2, T2 ⁇ . Based on the reported capability, the LMF sends first indication information to the terminal device, where the first indication information is used to indicate that the measurement mode of the PRS frequency layer is mode 1 or mode 2.
  • the terminal device receives the first indication information from the LMF, and the terminal device can determine that the measurement mode of the PRS frequency layer is mode 1 or mode 2 according to the first indication information.
  • the terminal device may receive the first indication information from the LMF.
  • the first indication information Indicates that the measurement mode of the first PRS frequency layer is mode 1.
  • the terminal device may receive first indication information from the LMF, the first indication information indicates The measurement mode of the second PRS frequency layer is mode 2.
  • Method #C When the capabilities reported by the terminal device to the LMF are ⁇ N, T ⁇ and ⁇ N2, T2 ⁇ , the terminal device receives the second indication information from the network device.
  • the second indication information is used to indicate the PRS frequency layer. Measure the length of the time window.
  • the terminal device may determine that the measurement mode of the PRS frequency layer is mode 1 or mode 2 according to the second indication information.
  • the terminal device determines that the measurement mode of the PRS frequency layer is mode 2; or, when the measurement time window length of the PRS frequency layer is less than the first threshold When , the terminal equipment determines that the measurement mode of the PRS frequency layer is mode 1.
  • the first threshold can be T2+X1, X1 is a number greater than or equal to 0, and X1 can be predefined by the protocol.
  • the protocol predefined X1 can be the length of a time slot; X1 can also be N2, or It may be other values, which are not limited by the embodiments of this application.
  • the terminal device may receive second indication information from the network device.
  • the second indication information Used to indicate the first measurement time window length of the first PRS frequency layer.
  • the terminal device determines that the measurement mode of the first PRS frequency layer is mode 1 based on the length of the first measurement time window being less than the first threshold.
  • the terminal device may receive second indication information from the network device.
  • the second indication information Used to indicate the second measurement time window length of the second PRS frequency layer.
  • the terminal device determines that the measurement mode of the second PRS frequency layer is mode 2 according to the length of the second measurement time window being greater than or equal to the first threshold.
  • the terminal device when the terminal device reports the first capability and the second capability to the LMF at the same time, the terminal device can determine the first PRS frequency layer according to one of the methods #A ⁇ Method #C or different combinations.
  • the measurement mode of is mode 1, and the measurement mode of the second PRS frequency layer is determined to be mode 2.
  • the terminal device may determine the first PRS according to method #A
  • the measurement mode of the frequency layer is Mode 1
  • the terminal device may determine that the measurement mode of the second PRS frequency layer is Mode 2 according to method #A.
  • the terminal device may #A, determine the measurement mode of the first PRS frequency layer to be mode 1, and the terminal device may determine the measurement mode of the second PRS frequency layer to be mode 2 according to method #B or method #C.
  • the terminal device may #B or method #C, determine the measurement mode of the first PRS frequency layer to be mode 1, and the terminal device may determine the measurement mode of the second PRS frequency layer to be mode 2 according to method #A.
  • the terminal equipment can determine the measurement mode of the first PRS frequency layer to be Mode 1 according to method #B or method #C, and the terminal equipment can determine the measurement mode of the first PRS frequency layer as mode 1 according to method # B or method #C, determine the measurement mode of the second PRS frequency layer as mode 2.
  • the network device can configure the measurement time window length of the PRS frequency layer for the terminal device.
  • the measurement time window length of the PRS frequency layer is smaller.
  • the network device configures the PRS frequency layer for the terminal device.
  • the terminal device may not be able to determine the measurement mode of the PRS frequency layer as mode 2.
  • the terminal device may be unable to perform low-latency measurement.
  • method #A even if the capability of the terminal device to report to the LMF is ⁇ N2, T2 ⁇ , when the measurement time window length of the PRS frequency layer configured by the network device for the terminal device is smaller, the terminal device It may also be impossible to measure correctly using Mode 2.
  • this application provides a communication method. Through this method, this application can enable the network device to configure the measurement time window length of the PRS frequency layer for the terminal device based on low-latency related information, and then enable the terminal device to use Mode 2 for measurement according to the needs of the LMF or the terminal device.
  • FIG. 5 shows a schematic diagram of yet another communication method 500 provided by an embodiment of the present application. As shown in Figure 5, method 500 may include the following steps.
  • the network device receives the third indication information from the first device.
  • the third indication information is used to indicate that when the measurement time window length of the PRS frequency layer is associated with Mode 2, the measurement time window length of the PRS frequency layer is greater than or equal to The second threshold, or the third indication information is used to indicate a first recommended value, which is a time within the measurement time window length of the PRS frequency layer excluding the duration of the PRS resource.
  • the terminal device sends third indication information to the network device, the third indication information is used to indicate that the second measurement time window length of the second PRS frequency layer is greater than or equal to the second threshold, or the third indication information
  • the third indication information is used to indicate the first recommended value, which is the time within the second measurement time window length of the second PRS frequency layer excluding the duration of the PRS resource.
  • the way for the network device to obtain the duration of the PRS resource can refer to the existing solution.
  • the LMF can send a MEASUREMENT PRECONFIGURATION REQUIRED message to the network device through NRPPa.
  • the message includes the relevant information about the duration of the PRS resource. information, so that the network device can obtain the duration of the PRS resource.
  • the first recommended value may be included in the NRPPa message.
  • the first device is a terminal device or LMF.
  • the second threshold can be T2+X2, X2 is a number greater than or equal to 0, and X2 can be predefined by the protocol, or it can be N2, or it can be other values.
  • X2 can be predefined by the protocol, or it can be N2, or it can be other values.
  • the same or different from the first threshold which is not limited in the embodiments of the present application.
  • the first recommended value may be predefined by the protocol or may be other values, which are not limited in the embodiments of the present application.
  • the second threshold may be sent to the network device by the same signaling device as the third indication information, or may be sent to the network device by different signaling from the same device as the third indication information, or may be sent to the network device by the same signaling device as the third indication information. Different signaling is sent to network devices by different devices.
  • the second threshold and the third indication information are sent by the same device to the network device through the same signaling.
  • the terminal device sends the second threshold and the third indication information to the network device through the first signaling; for another example, the LMF sends the second threshold and the third indication information to the network device through the second signaling.
  • the second threshold and the third indication information are sent to the network device through different signaling by the same device.
  • the terminal device sends the second threshold to the network device through the first signaling, and then sends the third indication information to the network device through the second signaling; for another example, the LMF sends the second threshold to the network through the third signaling.
  • the device then sends the third indication information and the third indication information to the network device through the fourth signaling.
  • the second threshold and the third indication information are sent by different devices to the network device through different signaling.
  • the end device sends the second threshold to the network device through the first signaling
  • the LMF sends the third indication information to the network device through the second signaling
  • the LMF sends the second threshold to the network device through the third signaling
  • the terminal device sends the third indication information to the network device through fourth signaling.
  • the network device determines the measurement time window length of the PRS frequency layer based on the third indication information.
  • One possible way is that when the third indication information indicates that the measurement time window length of the PRS frequency layer is associated with Mode 2, the network device determines that the measurement time window length of the PRS frequency layer is greater than or equal to the second threshold.
  • the network device may determine that the second measurement time window length of the second PRS frequency layer is greater than or equal to the second threshold.
  • the network device determines that the measurement time window length of the PRS frequency layer is the sum of the first recommended value and the duration of the PRS resource.
  • the network device may determine that the second measurement time window length of the second PRS frequency layer is the sum of the first recommended value and the duration of the PRS resource.
  • the network device can determine the measurement time window length of the PRS frequency layer based on the third instruction information, so that the network device can configure the measurement time window length of the PRS frequency layer for the terminal device based on the information related to low latency, and thus can Enable the terminal device to use mode 2 for measurement according to the requirements of the LMF or terminal device.
  • the network device sends second indication information to the terminal device, where the second indication information is used to indicate the measurement time window length of the PRS frequency layer.
  • the network device sends second indication information to the terminal device, the second indication information is used to indicate the first measurement time window length of the first PRS frequency layer, and the second indication information is used to indicate The second measurement time window length of the second PRS frequency layer.
  • the length of the second measurement time window may be determined by the network device based on the third indication information.
  • the measurement time window of the PRS frequency layer can be PPW or MG.
  • the terminal equipment determines whether the measurement time window of the PRS frequency layer is PPW or MG. For example, how does the terminal device determine whether the first measurement time window of the first PRS frequency layer mentioned in the method 100 is PPW or MG, and how does the terminal device determine whether the second measurement time window of the second PRS frequency layer is PPW or MG, There are no relevant instructions in the existing plan.
  • this application provides a communication method. Through this method, this application can enable the terminal device to determine whether the measurement time window of the PRS frequency layer is PPW or MG, thereby clarifying the measurement behavior of the terminal device and ensuring consistent understanding among the terminal device, network equipment and LMF.
  • Figure 6 shows a schematic diagram of yet another communication method 600 provided by an embodiment of the present application. As shown in Figure 6, method 600 may include the following steps.
  • the terminal device receives fourth indication information from the network device.
  • the fourth indication information is used to indicate whether the PPW is in an active state.
  • the PPW is associated with the PRS frequency layer.
  • the PRS frequency layer can be configured by the LMF for the terminal device, and the PPW and MG can be configured by the network device for the terminal device.
  • the terminal device receives fourth indication information from the network device, the fourth indication information is used to indicate whether the first PPW is in an activated state, and the first PPW is connected to the first of the P PRS frequency layers.
  • PRS frequency layer is associated.
  • the first PPW is associated with the first PRS frequency layer, which can be understood as the first PPW is configured in the first bandwidth part (BWP) of the first serving cell, the first BWP includes the first PRS frequency layer, and The subcarrier spacing of the first BWP and the first PRS frequency layer is the same, then the first PPW is associated with the first PRS frequency layer.
  • BWP bandwidth part
  • the terminal device receives fourth indication information from the network device, the fourth indication information is used to indicate whether the second PPW is in an activated state, and the second PPW is related to the second one of the Q PRS frequency layers. PRS frequency layer is associated.
  • the second PPW is associated with the second PRS frequency layer, which can be understood as, if the second PPW is configured in the second BWP of the second serving cell, the second BWP includes the second PRS frequency layer, and the second BWP is associated with the second BWP of the second serving cell. If the subcarrier spacing of the two PRS frequency layers is the same, the second PPW is associated with the second PRS frequency layer.
  • the terminal device determines the measurement time window of the PRS frequency layer according to the fourth instruction information.
  • the terminal device determines the first measurement time window of the first PRS frequency layer according to the fourth indication information.
  • the terminal device determines the second measurement time window of the second PRS frequency layer according to the fourth indication information.
  • the terminal equipment can determine the measurement time window of the PRS frequency layer according to the fourth instruction information, thereby clarifying the measurement behavior of the terminal equipment and ensuring consistent understanding between the terminal equipment, network equipment and LMF.
  • the terminal device determines the measurement time window of the PRS frequency layer according to the fourth indication information. There are two possible ways.
  • the terminal device determines that the measurement time window of the PRS frequency layer is PPW.
  • the terminal device determines that the first measurement time window of the first PRS frequency layer is the first PPW.
  • the terminal device determines the second measurement time window of the second PRS frequency layer to be the second PPW.
  • the terminal device determines that the measurement time window of the PRS frequency layer is the MG.
  • the terminal device determines that the first measurement time window of the first PRS frequency layer is the first MG.
  • the terminal device determines the second measurement time window of the second PRS frequency layer to be the second MG.
  • the PPW and the MG may exist at the same time.
  • the first measurement time window of the first PRS frequency layer is the first PPW
  • the second measurement time window of the second PRS frequency layer is the second MG and may coexist at the same time.
  • the terminal device determines that the measurement time window of the PRS frequency layer is the MG.
  • the terminal device does not measure the PRS frequency layer on an instance of the colliding PPW.
  • the PRS frequency layer associated with the PPW and the MG is different.
  • the period of the PPW configured by the network device is 80ms, and the starting position of the time domain is 0.
  • the period of the MG configured by the network device is 160ms, and the starting position of the time domain is 0. Then every 160ms there will be A PPW conflicts with the MG in the time domain. At this time, the terminal device does not measure the PRS frequency layer on an instance of the conflicting PPW.
  • the terminal device determines the time it takes to measure each of the Q PRS frequency layers using Mode 2 in the PPW, and determine the second measurement time based on the maximum value of the time used for each of the Q PRS frequency layers. , and the terminal device can also determine the time used to measure each of the P PRS frequency layers using mode 1 in the MG, and based on the sum of the time used for each of the P PRS frequency layers, Determine the first measurement time. Based on this, the terminal device may determine the third measurement time based on the first measurement time and the second measurement time.
  • the measurement time window of each PRS frequency layer in the Q PRS frequency layers is PPW, that is, the number of PPWs in the Q PRS frequency layers is Q, and the same PPW can exist in the Q PPWs. , or the Q PPWs may be different from each other;
  • the measurement time window of each PRS frequency layer in the P PRS frequency layers is MG, that is, the number of MGs in the P PRS frequency layers is P, and the There may be the same MG among the P MGs, or the P MGs may be different from each other.
  • the terminal device may determine the third measurement time based on the first measurement time and the second measurement time.
  • the measurement time window of each PRS frequency layer in the Q PRS frequency layers is PPW2, that is, the number of PPW2s in the Q PRS frequency layers is Q, and the same PPW can exist in the Q PPW2s. , or the Q PPW2s may be different from each other;
  • the measurement time window of each PRS frequency layer in the P PRS frequency layers is PPW1, that is, the number of PPW1s in the P PRS frequency layers is P, and the The same PPW may exist among the P PPW1s, or the P PPW1s may be different from each other.
  • the terminal device can determine that the measurement time window is PPW.
  • Mode 1 is used to measure the time taken by each PRS frequency layer in the M PRS frequency layers, and the measurement time 1 is determined based on the sum of the time taken by each PRS frequency layer in the M PRS frequency layers, and the terminal equipment also
  • the time used to measure each of the N PRS frequency layers using Mode 1 in the MG can be determined, and the measurement time 2 can be determined based on the sum of the times used for each of the N PRS frequency layers.
  • the terminal device can determine measurement time 3 based on the sum of measurement time 1 and measurement time 2.
  • the measurement time window of each PRS frequency layer in the M PRS frequency layers is PPW, that is, the number of PPWs in the M PRS frequency layers is M, and the same PPW can exist in the M PPWs. , or the M PPWs may be different from each other;
  • the measurement time window of each PRS frequency layer in the N PRS frequency layers is MG, that is, the number of MGs in the N PRS frequency layers is N, and the The same MG may exist among the N MGs, or the N MGs may be different from each other.
  • At least one (item) refers to one or more, and “plurality” refers to two or more.
  • “And/or” is used to describe the relationship between associated objects, indicating that there can be three relationships. For example, “A and/or B” can mean: only A exists, only B exists, and A and B exist simultaneously. , where A and B can be singular or plural. The character “/” generally indicates that the related objects are in an "or” relationship. “At least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • At least one of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c” ”, where a, b, c can be single or multiple.
  • each embodiment of the present application involves some information names, such as first instruction information, second instruction information, etc. It should be understood that the naming does not limit the protection scope of the embodiments of the present application.
  • the methods and operations implemented by the terminal device, network device, or LMF can also be implemented by components (such as chips or circuits) of the terminal device, network device, or LMF.
  • embodiments of the present application also provide corresponding devices, and the devices include modules for executing corresponding modules in each of the above method embodiments.
  • the module can be software, hardware, or a combination of software and hardware. It can be understood that the technical features described in the above method embodiments are also applicable to the following device embodiments.
  • network equipment, terminal equipment and LMF may include hardware structures and/or software modules to implement the above in the form of hardware structures, software modules, or hardware structures plus software modules.
  • Each function Whether one of the above functions is performed as a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • FIG. 7 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the device 700 includes a processing unit 720, which may be used to implement corresponding processing functions, such as determining the second measurement time.
  • the device 700 may also include a transceiver unit 710, which may be used to implement corresponding communication functions.
  • the transceiver unit 710 may also be called a communication interface or a communication unit.
  • the device 700 also includes a storage unit, which can be used to store instructions and/or data, and the processing unit 720 can read the instructions and/or data in the storage unit, so that the device implements each of the foregoing method embodiments. terminal equipment or network equipment in or LMF action.
  • the device 700 can be used to perform the actions performed by the terminal device, network device, or LMF in each of the above method embodiments.
  • the device 700 can be a terminal device or a component of the terminal device, or a network device or network device.
  • the component of the device may also be an LMF or a component of the LMF.
  • the transceiver unit 710 is used to perform operations related to the transceiver of the terminal device or the network device or the LMF in the above method embodiment.
  • the processing unit 720 is used to perform the above method implementation. In the example, operations related to processing of terminal equipment or network equipment or LMF.
  • the device 700 is used to perform the actions performed by the terminal device in each of the above method embodiments.
  • the processing unit 720 is used to determine the time used to measure each of the Q PRS frequency layers using mode 2; the processing unit 720 is also used to measure the time required for each of the Q PRS frequency layers according to The maximum value of the time spent in each PRS frequency layer determines the second measurement time, where Q is a positive integer.
  • the processing unit 720 is also used to determine the time used to measure each of the P PRS frequency layers using mode 1; the processing unit 720 is also used to measure each PRS of the P PRS frequency layers according to The sum of the times used by the frequency layer determines the first measurement time, where P is a positive integer.
  • the processing unit 720 is also configured to determine a third measurement time based on the first measurement time and the second measurement time, where the third measurement time is the time used to measure P+Q PRS frequency layers.
  • the processing unit 720 is further configured to determine a third measurement time based on the first measurement time, the second measurement time and the first margin, where the third measurement time is the first measurement time, the second measurement time and the first margin. Quantitative sum.
  • the time used to measure the second PRS frequency layer among the Q PRS frequency layers is determined based on the first time and/or the second time.
  • the first time is the sampling time used to measure the second PRS frequency layer
  • the second time It is the measurement time of the last sample point of the second PRS frequency layer.
  • the second time includes sampling time and processing time.
  • the first time is the duration of the PRS resource
  • the duration of the PRS resource is located within the first window
  • the length of the first window is the difference between the second measurement time window length of the second PRS frequency layer and T2
  • the starting position of the first window is the starting point of the length of the second measurement time window, where T2 is the processing time capability of the terminal device for measuring the second PRS frequency layer.
  • the first time is the duration of the PRS resource
  • the duration of the PRS resource is less than or equal to N2
  • the duration of the PRS resource is located within the first window
  • the length of the first window is the second measurement of the second PRS frequency layer.
  • the difference between the time window length and T2 the starting position of the first window is the starting point of the second measurement time window length, where N2 is the duration capability of the terminal equipment to measure the second PRS frequency layer, and T2 is the terminal equipment measuring the duration of the second PRS frequency layer. 2.
  • the processing time capability of the PRS frequency layer is the duration of the PRS resource.
  • the first time is the minimum value between the duration of the PRS resource and N2, the duration of the PRS resource is located within the first window, and the length of the first window is the length of the second measurement time window of the second PRS frequency layer.
  • the difference from T2, the starting position of the first window is the starting point of the second measurement time window length, where N2 is the duration capability of the terminal device to measure the second PRS frequency layer, and T2 is the terminal device measuring the second PRS frequency.
  • the processing time capability of the layer is the minimum value between the duration of the PRS resource and N2
  • the duration of the PRS resource is located within the first window
  • the length of the first window is the length of the second measurement time window of the second PRS frequency layer.
  • the difference from T2 is the starting point of the second measurement time window length
  • N2 is the duration capability of the terminal device to measure the second PRS frequency layer
  • T2 is the terminal device measuring the second PRS frequency.
  • the processing time capability of the layer is the minimum value between the duration of the PRS resource
  • the second time is the second measurement time window length of the second PRS frequency layer.
  • the second time is the available period of the second PRS frequency layer.
  • the transceiver unit 710 is configured to report the second capability to the positioning management function LMF, and the second capability is associated with the second PRS frequency layer; the processing unit 720 is configured to determine the second PRS frequency layer according to the second capability.
  • the measurement mode is mode 2.
  • the second capability is ⁇ N2, T2 ⁇ , where N2 is the duration capability of the terminal device to measure the second PRS frequency layer, and T2 is the processing time capability of the terminal device to measure the second PRS frequency layer.
  • the second capability includes ⁇ N, T ⁇ and ⁇ N2, T2 ⁇ , where N and N2 are the duration capabilities of the terminal equipment to measure the second PRS frequency layer, and T and T2 are the terminal equipment's ability to measure the second PRS frequency layer.
  • the processing time capability, transceiver unit 710 is used to receive first indication information from the LMF, where the first indication information indicates that the measurement mode of the second PRS frequency layer is mode 2.
  • the second capability includes ⁇ N, T ⁇ and ⁇ N2, T2 ⁇ , where N and N2 are the duration capabilities of the terminal equipment to measure the second PRS frequency layer, and T and T2 are the terminal equipment's ability to measure the second PRS frequency layer.
  • the transceiver unit 710 is used to receive second indication information from the network device, the second indication information is used to indicate the second measurement time window length of the second PRS frequency layer; the processing unit 720 is used to calculate the second measurement time window according to the second measurement time. If the time window length is greater than or equal to the first threshold, the measurement mode of the second PRS frequency layer is determined to be mode 2.
  • the transceiver unit 710 is configured to report the first capability to the positioning management function LMF, and the first capability is associated with the first PRS frequency layer; the processing unit 720 is configured to determine the first PRS frequency layer according to the first capability.
  • the measurement mode is mode 1.
  • the first capability is ⁇ N, T ⁇ , where N is the duration capability of the terminal device to measure the first PRS frequency layer, and T is the processing time capability of the terminal device to measure the first PRS frequency layer.
  • the first capability includes ⁇ N, T ⁇ and ⁇ N2, T2 ⁇ , where N and N2 are the duration capabilities of the terminal equipment to measure the first PRS frequency layer, and T and T2 are the terminal equipment's ability to measure the first PRS frequency layer.
  • the processing time capability, the transceiver unit 710 is used to receive first indication information from the LMF, where the first indication information indicates that the measurement mode of the first PRS frequency layer is mode 1.
  • the first capability includes ⁇ N, T ⁇ and ⁇ N2, T2 ⁇ , where N and N2 are the duration capabilities of the terminal equipment to measure the first PRS frequency layer, and T and T2 are the terminal equipment's ability to measure the first PRS frequency layer.
  • the transceiver unit 710 is used to receive the second indication information from the network device, the second indication information is used to indicate the first measurement time window length of the first PRS frequency layer; the processing unit 720 is used to measure according to the first If the time window length is less than the first threshold, the measurement mode of the first PRS frequency layer is determined to be mode 1.
  • the transceiver unit 710 is configured to send third indication information to the network device.
  • the third indication information indicates that the second measurement time window length of the second PRS frequency layer is greater than or equal to the second threshold, or the third indication information is In indicating the first recommended value, the first recommended value is a time within the second measurement time window length of the second PRS frequency layer excluding the duration of the PRS resource.
  • the transceiver unit 710 is configured to receive fourth indication information from the network device.
  • the fourth indication information is used to indicate whether the second PPW is in an active state, and the second PPW is connected to the second PRS frequency in the Q PRS frequency layers.
  • the layer is associated; the processing unit 720 is configured to determine the second measurement time window of the second PRS frequency layer according to the fourth indication information.
  • the second PRS frequency layer may be configured by the LMF for the terminal device, and the second measurement time window (such as the second PPW, or the second MG) may be configured by the network device for the terminal device.
  • the second measurement time window such as the second PPW, or the second MG
  • the fourth indication information indicates that the second PPW is in an activated state, and the processing unit 720 is used to determine the second measurement time window as the second PPW, or the fourth indication information indicates that the second PPW is in an inactive state, and the processing unit 720 720, used to determine the second measurement time window as the second MG.
  • the transceiver unit 710 is configured to receive fourth indication information from the network device.
  • the fourth indication information is used to indicate whether the first positioning reference signal processing window PPW is in an active state.
  • the first PPW and the P PRS frequency layers associated with the first PRS frequency layer; the processing unit 720 is configured to determine the first measurement time window of the first PRS frequency layer according to the fourth indication information.
  • the first PRS frequency layer may be configured by the LMF for the terminal device, and the first measurement time window (such as the first PPW, or the first MG) may be configured by the network device for the terminal device.
  • the first measurement time window such as the first PPW, or the first MG
  • the fourth indication information indicates that the first PPW is in an activated state, and the processing unit 720 is used to determine the first measurement time window as the first PPW, or the fourth indication information indicates that the first PPW is in an inactive state, and the processing unit 720 720, used to determine the first measurement time window as the first measurement interval MG.
  • the processing unit 720 is used to determine the first time, where the first time is the sampling time used to measure the PRS frequency layer in mode 2.
  • the first time is the duration of the PRS resource
  • the duration of the PRS resource is located within the first window
  • the length of the first window is the difference between the measurement time window length of the PRS frequency layer and T2
  • the length of the first window is The starting position is the starting point of the measurement time window length, where T2 is the processing time capability of the terminal device for measuring the PRS frequency layer.
  • the first time is the duration of the PRS resource
  • the duration of the PRS resource is less than or equal to N2
  • the duration of the PRS resource is located within the first window
  • the length of the first window is the measurement time window length of the PRS frequency layer
  • the difference between T2 and the starting position of the first window is the starting point of the measurement time window length
  • N2 is the duration capability of the terminal device to measure the PRS frequency layer
  • T2 is the processing time capability of the terminal device to measure the PRS frequency layer.
  • the first time is the minimum value between the duration of the PRS resource and N2, the duration of the PRS resource is located within the first window, and the length of the first window is between the length of the measurement time window of the PRS frequency layer and T2.
  • the starting position of the first window is the starting point of the measurement time window length, where N2 is the duration capability of the terminal device to measure the PRS frequency layer, and T2 is the processing time capability of the terminal device to measure the PRS frequency layer.
  • the transceiver unit 710 is used to report capabilities to the positioning management function LMF, and the capabilities are associated with the positioning reference signal PRS frequency layer; the processing unit 720 is used to determine the measurement mode of the PRS frequency layer based on the capabilities.
  • the capability includes at least one of the following: ⁇ N, T ⁇ , ⁇ N2, T2 ⁇ , where N and N2 are the duration capabilities of the terminal equipment to measure the PRS frequency layer, and T and T2 are the terminal equipment's ability to measure the PRS frequency layer. processing time capabilities.
  • the capability is ⁇ N, T ⁇ , and the processing unit 720 is used to determine that the measurement mode of the PRS frequency layer is mode 1; or, the capability is ⁇ N2, T2 ⁇ , and the processing unit 720 is used to determine the measurement mode of the PRS frequency layer.
  • the measurement mode is mode 2.
  • the capabilities are ⁇ N, T ⁇ and ⁇ N2, T2 ⁇
  • the transceiver unit 710 is configured to receive first indication information from the LMF.
  • the first indication information is used to indicate that the measurement mode of the PRS frequency layer is mode 1 or Mode 2;
  • the processing unit 720 is configured to determine the measurement mode of the PRS frequency layer as mode 1 or mode 2 according to the first indication information.
  • the capabilities are ⁇ N, T ⁇ and ⁇ N2, T2 ⁇
  • the transceiver unit 710 is configured to receive second indication information from the network device, where the second indication information is used to indicate the measurement time window length of the PRS frequency layer;
  • the processing unit 720 is configured to determine, according to the second indication information, that the measurement mode of the PRS frequency layer is mode 1 or mode 2.
  • the measurement time window length of the PRS frequency layer is greater than or equal to the first threshold, and the processing unit 720 is configured to determine that the measurement mode of the PRS frequency layer is mode 2; or, the measurement time window length of the PRS frequency layer is less than the first threshold. , the processing unit 720 is used to determine that the measurement mode of the PRS frequency layer is mode 1.
  • the transceiver unit 710 is configured to send third indication information to the network device.
  • the third indication information is used to indicate that the measurement time window length of the PRS frequency layer is greater than or equal to the second threshold, or the third indication information is used to indicate The first recommended value is the time within the measurement time window length of the PRS frequency layer excluding the duration of the PRS resource.
  • the transceiver unit 710 is used to receive the fourth indication information from the network device.
  • the fourth indication information is used to indicate whether the positioning reference signal processing window PPW is in an active state.
  • the PRS frequency layer can be configured by the LMF for the terminal device, and the measurement time window (such as PPW or MG) can be configured by the network device for the terminal device.
  • the fourth indication information indicates that PPW is in the activated state, and the processing unit 720 is configured to determine that the measurement time window of the PRS frequency layer is PPW; or the fourth indication information indicates that PPW is in the inactive state, and the processing unit 720 is configured to The measurement time window of the PRS frequency layer is determined as the measurement interval MG.
  • the transceiver unit 710 is configured to send third indication information to the network device.
  • the third indication information is used to indicate that the measurement time window length of the PRS frequency layer is greater than or equal to the second threshold, or a third indication.
  • the information is used to indicate the first recommended value, which is the time within the measurement time window length of the PRS frequency layer excluding the duration of the PRS resource.
  • the device 700 can implement steps or processes corresponding to the execution of the terminal device in the method embodiments according to the embodiments of the present application.
  • the device 700 can include a method for executing the execution of the terminal device in any one of the embodiments shown in Figures 1 to 6. method unit.
  • the device 700 is used to perform the actions performed by the network device in each of the above method embodiments.
  • the transceiver unit 710 is configured to receive third indication information from the first device.
  • the third indication information is used to indicate that the measurement time window length of the PRS frequency layer is greater than or equal to the second threshold, or, the third The indication information is used to indicate the first recommended value, which is the time within the measurement time window length of the PRS frequency layer excluding the duration of the PRS resource; the processing unit 720 is used to determine the PRS frequency according to the third indication information The length of the layer’s measurement time window.
  • the first device may be a terminal device or a location management function LMF.
  • the third indication information indicates that the measurement time window length of the PRS frequency layer is greater than or equal to the second threshold, and the processing unit 720 is configured to determine that the measurement time window length of the PRS frequency layer is greater than or equal to the second threshold; or, a third The indication information indicates the first recommended value, and the processing unit 720 is configured to determine the measurement time window length of the PRS frequency layer as the sum of the first recommended value and the duration of the PRS resource.
  • the transceiver unit 710 is configured to send second indication information to the terminal device, where the second indication information is used to indicate the measurement time window length of the PRS frequency layer.
  • the device 700 can implement steps or processes corresponding to the execution of the network device in the method embodiment according to the embodiment of the present application.
  • the device 700 can include a method for executing the execution of the network device in any one of the embodiments shown in Figures 1 to 6. method unit.
  • the device 700 is used to perform the actions performed by the LMF in each of the above method embodiments.
  • the transceiver unit 710 is configured to send third indication information to the network device.
  • the third indication information is used to indicate that the measurement time window length of the PRS frequency layer is greater than or equal to the second threshold, or the third indication information Used to indicate the first recommended value, which is the time within the measurement time window length of the PRS frequency layer excluding the duration of the PRS resource.
  • the transceiver unit 710 is used to receive the capabilities reported from the terminal device.
  • the reported capabilities are ⁇ N, T ⁇ and ⁇ N2, T2 ⁇ .
  • the reported capabilities are associated with the positioning reference signal PRS frequency layer.
  • N and N2 are the terminal equipment's ability to measure the duration of the PRS frequency layer
  • T and T2 are the terminal equipment's ability to measure the processing time of the PRS frequency layer
  • the transceiver unit 710 is used to report capability, sending first indication information to the terminal device, where the first indication information is used to indicate that the measurement mode of the PRS frequency layer is mode 1 or mode 2.
  • the device 700 can implement steps or processes corresponding to the LMF execution in the method embodiments according to the embodiments of the present application.
  • the apparatus 700 may include units for performing the LMF-executed method in any one of the embodiments shown in FIGS. 1 to 6 .
  • the device 700 here is embodied in the form of a functional unit.
  • the term "unit” as used herein may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor (such as a shared processor, a proprietary processor, or a group of processors) used to execute one or more software or firmware programs. processor, etc.) and memory, merged logic circuitry, and/or other suitable components to support the described functionality.
  • ASIC application specific integrated circuit
  • the apparatus 700 can be specifically a terminal device or a network device or an LMF in the above embodiments, and can be used to perform the above method embodiments in conjunction with the terminal device or network device or LMF. The corresponding processes and/or steps will not be repeated here to avoid repetition.
  • the device 700 of each of the above solutions has the function of implementing the corresponding steps performed by the terminal device, network device, or LMF in the above method.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions; for example, the transceiver unit can be replaced by a transceiver (for example, the sending unit in the transceiver unit can be replaced by a transmitter, and the receiving unit in the transceiver unit can be replaced by a receiving unit. (machine replacement), other units, such as processing units, etc., can be replaced by processors to respectively perform the sending and receiving operations and related processing operations in each method embodiment.
  • transceiver unit 710 may also be a transceiver circuit (for example, it may include a receiving circuit and a transmitting circuit), and the processing unit may be a processing circuit.
  • the device in Figure 7 can be the device in the aforementioned embodiment, or it can be a chip or a chip system, such as a system on chip (SoC).
  • the transceiver unit may be an input-output circuit or a communication interface; the processing unit may be a processor, microprocessor, or integrated circuit integrated on the chip. No limitation is made here.
  • an embodiment of the present application provides another communication device 800 .
  • the device 800 includes a processor 810 coupled to a memory 820 for storing computer programs or instructions and/or data.
  • the processor 810 is used for executing computer programs or instructions stored in the memory 820, or reading the memory 820.
  • the stored data is used to execute the methods in the above method embodiments.
  • processors 810 there are one or more processors 810 .
  • the memory 820 is integrated with the processor 810, or is provided separately.
  • the device 800 also includes a transceiver 830, which is used for receiving and/or transmitting signals.
  • the processor 810 is used to control the transceiver 830 to receive and/or transmit signals.
  • the device 800 is used to implement the operations performed by the terminal device or network device or LMF in each of the above method embodiments.
  • the processor 810 is used to execute computer programs or instructions stored in the memory 820 to implement related operations of the terminal device in each of the above method embodiments.
  • the method is executed by the terminal device in any one of the embodiments shown in FIGS. 1 to 6 .
  • processors mentioned in the embodiments of this application may be a central processing unit (CPU), or other general-purpose processor, digital signal processor (DSP), or application-specific integrated circuit (ASIC).
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the memory mentioned in the embodiments of the present application may be a volatile memory and/or a non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory.
  • ROM read-only memory
  • PROM programmable ROM
  • EPROM erasable programmable read-only memory
  • EPROM erasable PROM
  • EPROM erasable programmable read-only memory
  • Erase programmable read-only memory electrically EPROM, EEPROM
  • Volatile memory may be random access memory (RAM).
  • RAM can be used as an external cache.
  • RAM includes the following forms: static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM), Double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory machine access memory (synchlink DRAM, SLDRAM) and direct memory bus random access memory (direct rambus RAM, DR RAM).
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • memories described herein are intended to include, but are not limited to, these and any other suitable types of memories.
  • an embodiment of the present application provides a chip system 900.
  • the chip system 900 (or can also be called a processing system) includes a logic circuit 910 and an input/output interface 920.
  • the logic circuit 910 may be a processing circuit in the chip system 900 .
  • the logic circuit 910 can be coupled to the memory unit and call instructions in the memory unit, so that the chip system 900 can implement the methods and functions of various embodiments of the present application.
  • the input/output interface 920 can be an input/output circuit in the chip system 900, which outputs information processed by the chip system 900, or inputs data or signaling information to be processed into the chip system 900 for processing.
  • the chip system 900 is used to implement the operations performed by the terminal device or network device or LMF in each of the above method embodiments.
  • the logic circuit 910 is used to implement the processing-related operations performed by the terminal device in the above method embodiment, such as the processing-related operations performed by the terminal device in any of the embodiments shown in Figures 1 to 6; input/ The output interface 920 is used to implement the sending and/or receiving related operations performed by the terminal device in the above method embodiment, such as the sending and/or receiving performed by the terminal device in any of the embodiments shown in Figures 1 to 6 related operations.
  • Embodiments of the present application also provide a computer-readable storage medium on which are stored computer instructions for implementing the methods executed by the terminal device, network device, or LMF in each of the above method embodiments.
  • the computer when the computer program is executed by a computer, the computer can implement the method executed by the terminal device in each embodiment of the above method.
  • Embodiments of the present application also provide a computer program product that includes instructions that, when executed by a computer, implement the methods executed by terminal devices, network devices, or LMFs in each of the above method embodiments.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer may be a personal computer, a server, or a network device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the available media may be magnetic media (such as floppy disks, hard disks, magnetic tapes), optical media (such as DVDs), or semiconductor media (such as solid state disks (SSD)), etc.
  • the aforementioned available media include but Not limited to: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法和装置。该方法包括:终端设备确定采用模式2测量Q个PRS频率层中的每个PRS频率层所用的时间;终端设备根据Q个PRS频率层中的每个PRS频率层所用时间的最大值,确定第二测量时间,其中,Q为正整数。通过该方法,终端设备可以根据Q个PRS频率层中的每个PRS频率层所用时间的最大值确定第二测量时间,从而能够减少终端设备确定采用模式2测量Q个PRS频率层的总测量时间。

Description

一种通信方法和装置
本申请要求于2022年08月09日提交中国专利局、申请号为202210948292.6、申请名称为“一种通信方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,更具体地,涉及一种通信方法和装置。
背景技术
R17标准中定义了在测量间隔(measurement gap,MG)外,如在定位参考信号处理窗(positioning reference signal processing window,PPW)内,终端设备可以基于模式2测量定位参考信号(positioning reference signal,PRS)频率层,该模式2与终端设备向LMF上报的能力{N2,T2}相关联,其中,N2为终端设备测量PRS频率层的持续时间能力,T2为终端设备测量PRS频率层的处理时间能力。T2只能位于PPW长度内,对终端设备接收数据的影响较大,但同时减小了终端设备测量PRS频率层的处理时间。
现有技术中,当PRS频率层的个数不止一个时,终端设备如何确定基于模式2测量至少一个PRS频率层的总测量时间,目前并未有相关方案予以说明。
发明内容
本申请提供一种通信方法和装置,从而使得PRS频率层的个数不止一个时,终端设备可以确定基于模式2测量至少一个PRS频率层的总测量时间。
第一方面,本申请提供了一种通信方法,该方法的执行主体可以是终端设备,也可以是应用于终端设备中的芯片。下面以执行主体是终端设备为例进行描述。
该方法可以包括:终端设备确定采用模式2测量Q个PRS频率层中的每个PRS频率层所用的时间;终端设备根据Q个PRS频率层中的每个PRS频率层所用时间的最大值,确定第二测量时间,其中,Q为正整数。
基于上述技术方案,终端设备可以确定采用模式2测量Q个PRS频率层中的每个PRS频率层所用的时间,并根据Q个PRS频率层中的每个PRS频率层所用时间的最大值,确定第二测量时间。通过该方法,能够减少终端设备确定采用模式2测量Q个PRS频率层的总测量时间。
应理解,终端设备根据Q个PRS频率层中的每个PRS频率层所用时间的最大值,确定第二测量时间,可以理解为,终端设备测量Q个PRS频率层所用的总时间不超过第二测量时间。
结合第一方面,在第一方面的某些实现方式中,方法还包括:终端设备确定采用模式1测量P个PRS频率层中的每个PRS频率层所用的时间;终端设备根据P个PRS频率层中的每个PRS频率层所用时间的和,确定第一测量时间,其中,P为正整数。
应理解,终端设备根据P个PRS频率层中的每个PRS频率层所用时间的和,确定第一测量时间,可以理解为,终端设备测量P个PRS频率层所用的总时间不超过第一测量时间。
结合第一方面,在第一方面的某些实现方式中,方法还包括:终端设备根据第一测量时间和第二测量时间,确定第三测量时间,第三测量时间为测量P+Q个PRS频率层所用的时间。
应理解,终端设备根据第一测量时间和第二测量时间,确定第三测量时间,可以理解为,终端设备测量Q个PRS频率层所用的总时间,与终端设备测量P个PRS频率层所用的总时间的和,不超过第三测量时间。
结合第一方面,在第一方面的某些实现方式中,终端设备根据第一测量时间和第二测量时间,确定第三测量时间,包括:终端设备根据第一测量时间、第二测量时间和第一余量,确定第三测量时间,第三测量时间为第一测量时间、第二测量时间和第一余量的和。
结合第一方面,在第一方面的某些实现方式中,测量Q个PRS频率层中的第二PRS频率层所用的时间根据第一时间和/或第二时间确定,第一时间为测量第二PRS频率层所用的采样时间,第二时间为测量第二PRS频率层的最后一个样点的测量时间。
结合第一方面,在第一方面的某些实现方式中,第二时间包括采样时间和处理时间。
结合第一方面,在第一方面的某些实现方式中,第一时间为PRS资源的持续时间,PRS资源的持续时间位于第一窗口内,第一窗口的长度为第二PRS频率层的第二测量时间窗长度与T2之间的差,第一窗口的起始位置为第二测量时间窗长度的起点,其中,T2为终端设备测量第二PRS频率层的处理时间能力。
结合第一方面,在第一方面的某些实现方式中,第一时间为PRS资源的持续时间,PRS资源的持续时间小于或等于N2,PRS资源的持续时间位于第一窗口内,第一窗口的长度为第二PRS频率层的第二测量时间窗长度与T2之间的差,第一窗口的起始位置为第二测量时间窗长度的起点,其中,N2为终端设备测量第二PRS频率层的持续时间能力,T2为终端设备测量第二PRS频率层的处理时间能力。
结合第一方面,在第一方面的某些实现方式中,第一时间为PRS资源的持续时间与N2之间的最小值,PRS资源的持续时间位于第一窗口内,第一窗口的长度为第二PRS频率层的第二测量时间窗长度与T2之间的差,第一窗口的起始位置为第二测量时间窗长度的起点,其中,N2为终端设备测量第二PRS频率层的持续时间能力,T2为终端设备测量第二PRS频率层的处理时间能力。
结合第一方面,在第一方面的某些实现方式中,当第二PRS频率层的所有PRS资源在第二PRS频率层的第二测量时间窗内时,第二时间为第二PRS频率层的第二测量时间窗长度。
结合第一方面,在第一方面的某些实现方式中,当第二PRS频率层存在PRS资源不在第二PRS频率层的第二测量时间窗内时,第二时间为第二PRS频率层的可获得周期。
结合第一方面,在第一方面的某些实现方式中,方法还包括:终端设备向定位管理功能LMF上报第二能力,第二能力与第二PRS频率层相关联;终端设备根据第二能力,确定第二PRS频率层的测量模式为模式2。
基于上述技术方案,终端设备可以根据向LMF上报的第二能力,确定第二PRS频率层的测量模式为模式2,从而能够明确终端设备的测量行为。
结合第一方面,在第一方面的某些实现方式中,第二能力为{N2,T2},其中,N2为终端设备测量第二PRS频率层的持续时间能力,T2为终端设备测量第二PRS频率层的处理时间能力。
结合第一方面,在第一方面的某些实现方式中,第二能力包括{N,T}和{N2,T2},N、N2为终端设备测量第二PRS频率层的持续时间能力,T、T2为终端设备测量第二PRS频率层的处理时间能力,终端设备根据第二能力,确定第二PRS频率层的测量模式为模式2,包括:终端设备接收来自LMF的第一指示信息,第一指示信息指示第二PRS频率层的测量模式为模式2。
结合第一方面,在第一方面的某些实现方式中,第二能力包括{N,T}和{N2,T2},N、N2为终端设备测量第二PRS频率层的持续时间能力,T、T2为终端设备测量第二PRS频率层的处理时间能力,终端设备根据第二能力,确定第二PRS频率层的测量模式为模式2,包括:终端设备接收来自网络设备的第二指示信息,第二指示信息用于指示第二PRS频率层的第二测量时间窗长度;终端设备根据第二测量时间窗长度大于或等于第一阈值,确定第二PRS频率层的测量模式为模式2。
结合第一方面,在第一方面的某些实现方式中,方法还包括:终端设备向定位管理功能LMF上报第一能力,第一能力与第一PRS频率层相关联;终端设备根据第一能力,确定第一PRS频率层的测量模式为模式1。
基于上述技术方案,终端设备可以根据向LMF上报的第一能力,确定第一PRS频率层的测量模式为模式1,从而能够明确终端设备的测量行为。
结合第一方面,在第一方面的某些实现方式中,第一能力为{N,T},其中,N为终端设备测量第一PRS频率层的持续时间能力,T为终端设备测量第一PRS频率层的处理时间能力。
结合第一方面,在第一方面的某些实现方式中,第一能力包括{N,T}和{N2,T2},N、N2为终端设备测量第一PRS频率层的持续时间能力,T、T2为终端设备测量第一PRS频率层的处理时间能力,终端设备根据第一能力,确定第一PRS频率层的测量模式为模式1,包括:终端设备接收来自LMF的第一指示信息,第一指示信息指示第一PRS频率层的测量模式为模式1。
结合第一方面,在第一方面的某些实现方式中,第一能力包括{N,T}和{N2,T2},N、N2为终端设备测量第一PRS频率层的持续时间能力,T、T2为终端设备测量第一PRS频率层的处理时间能力,终端设备根据第一能力,确定第一PRS频率层的测量模式为模式1,包括:终端设备接收来自网络设备的第二指示信息,第二指示信息用于指示第一PRS频率层的第一测量时间窗长度;终端设备根据第一测量时间窗长度小于第一阈值,确定第一PRS频率层的测量模式为模式1。
结合第一方面,在第一方面的某些实现方式中,方法还包括:终端设备向网络设备发送第三指示信息,第三指示信息指示第二PRS频率层的第二测量时间窗长度大于或等于第二阈值,或者,第三指示信息用于指示第一建议值,第一建议值为第二PRS频率层的第二测量时间窗长度内除PRS资源的持续时间之外的时间。
基于上述技术方案,网络设备可以根据第三指示信息,确定第二PRS频率层的第二测量时间窗长度,从而使得网络设备能够根据低时延相关的信息为终端设备配置第二PRS频率层的第二测量时间窗长度,进而可以根据终端设备的需求使能终端设备使用模式2进行测量。
结合第一方面,在第一方面的某些实现方式中,方法还包括:终端设备接收来自网络设备的第四指示信息,第四指示信息用于指示第二PPW是否处于激活状态,第二PPW与Q个PRS频率层中的第二PRS频率层相关联;终端设备根据第四指示信息,确定第二PRS频率层的第二测量时间窗。
其中,第二PRS频率层可以是LMF为终端设备配置的,第二测量时间窗(如第二PPW,又如第二MG)可以是网络设备为终端设备配置的。
基于上述技术方案,终端设备可以根据第四指示信息,确定第二PRS频率层的第二测量时间窗,从而能够明确终端设备的测量行为,并确保终端设备、网络设备和LMF理解一致。
结合第一方面,在第一方面的某些实现方式中,终端设备根据第四指示信息,确定第二PRS频率层的第二测量时间窗,包括:第四指示信息指示第二PPW处于激活状态,终端设备确定第二测量时间窗为第二PPW,或者,第四指示信息指示第二PPW处于未激活状态,终端设备确定第二测量时间窗为第二MG。
结合第一方面,在第一方面的某些实现方式中,方法还包括:终端设备接收来自网络设备的第四指示信息,第四指示信息用于指示第一定位参考信号处理窗PPW是否处于激活状态,第一PPW与P个PRS频率层中的第一PRS频率层相关联;终端设备根据第四指示信息,确定第一PRS频率层的第一测量时间窗。
其中,第一PRS频率层可以是LMF为终端设备配置的,第一测量时间窗(如第一PPW,又如第一MG)可以是网络设备为终端设备配置的。
基于上述技术方案,终端设备可以根据第四指示信息,确定第一PRS频率层的第一测量时间窗,从而能够明确终端设备的测量行为,并确保终端设备、网络设备和LMF理解一致。
结合第一方面,在第一方面的某些实现方式中,终端设备根据第四指示信息,确定第一PRS频率层的第一测量时间窗,包括:第四指示信息指示第一PPW处于激活状态,终端设备确定第一测量时间窗为第一PPW,或者,第四指示信息指示第一PPW处于未激活状态,终端设备确定第一测量时间窗为第一测量间隔MG。
第二方面,本申请提供了一种通信方法,该方法的执行主体可以是终端设备,也可以是应用于终端设备中的芯片。下面以执行主体是终端设备为例进行描述。
该方法可以包括:终端设备确定第一时间,第一时间为采用模式2测量PRS频率层所用的采样时间。
也就是说,终端设备采用模式2测量PRS频率层时,在PRS频率层的测量时间窗的第一时间内对PRS资源进行采样。
基于上述技术方案,通过规定采用模式2测量PRS频率层所用的采样时间,可以在测量时间窗内预留足够的测量PRS频率层的处理时间,确保终端设备可以在测量时间窗内完成处理,进而降低测量时延。
结合第二方面,在第二方面的某些实现方式中,第一时间为PRS资源的持续时间,PRS资源的持续时间位于第一窗口内,第一窗口的长度为PRS频率层的测量时间窗长度与T2之间的差,第一窗口的起始位置为测量时间窗长度的起点,其中,T2为终端设备测量PRS频率层的处理时间能力。
结合第二方面,在第二方面的某些实现方式中,第一时间为PRS资源的持续时间,PRS资源的持续时间小于或等于N2,PRS资源的持续时间位于第一窗口内,第一窗口的长度为PRS频率层的测量时间窗长度与T2之间的差,第一窗口的起始位置为测量时间窗长度的起点,其中,N2为终端设备测量PRS频率层的持续时间能力,T2为终端设备测量PRS频率层的处理时间能力。
结合第二方面,在第二方面的某些实现方式中,第一时间为PRS资源的持续时间与N2之间的最小值,PRS资源的持续时间位于第一窗口内,第一窗口的长度为PRS频率层的测量时间窗长度与T2之间的差,第一窗口的起始位置为测量时间窗长度的起点,其中,N2为终端设备测量PRS频率层的持续时间能力,T2为终端设备测量PRS频率层的处理时间能力。
第三方面,本申请提供了一种通信方法,该方法的执行主体可以是终端设备,也可以是应用于终端设备中的芯片。下面以执行主体是终端设备为例进行描述。
该方法可以包括:终端设备向定位管理功能LMF上报能力,能力与定位参考信号PRS频率层相关联;终端设备根据能力,确定PRS频率层的测量模式。
基于上述技术方案,终端设备可以根据向LMF上报的能力,确定PRS频率层的测量模式为模式1或模式2,从而能够明确终端设备的测量行为。
结合第三方面,在第三方面的某些实现方式中,能力包括以下至少一项:{N,T}、{N2,T2},其中,N、N2为终端设备测量PRS频率层的持续时间能力,T、T2为终端设备测量PRS频率层的处理时间能力。
结合第三方面,在第三方面的某些实现方式中,终端设备根据能力,确定PRS频率层的测量模式,包括:能力为{N,T},终端设备确定PRS频率层的测量模式为模式1;或者,能力为{N2,T2},终端设备确定PRS频率层的测量模式为模式2。
结合第三方面,在第三方面的某些实现方式中,能力为{N,T}和{N2,T2},终端设备根据能力,确定PRS频率层的测量模式,包括:终端设备接收来自LMF的第一指示信息,第一指示信息用于指示PRS频率层的测量模式为模式1或模式2;终端设备根据第一指示信息,确定PRS频率层的测量模式为模式1或模式2。
应理解,当终端设备根据第一指示信息确定PRS频率层的测量模式为模式2时,终端设备正确执行测量的条件是网络设备配置的测量时间窗的长度大于或等于第一阈值。
基于上述技术方案,终端设备可以根据第一指示信息,确定PRS频率层的测量模式为模式1或模式2,从而能够明确终端设备的测量行为。
结合第三方面,在第三方面的某些实现方式中,能力为{N,T}和{N2,T2},终端设备根据能力,确定PRS频率层的测量模式,包括:终端设备接收来自网络设备的第二指示信息,第二指示信息用于指示PRS频率层的测量时间窗长度;终端设备根据第二指示信息,确定PRS频率层的测量模式为模式1或模式2。
基于上述技术方案,终端设备可以根据第二指示信息,确定PRS频率层的测量模式为模式1或模式2,从而能够明确终端设备的测量行为。
结合第三方面,在第三方面的某些实现方式中,终端设备根据第二指示信息,确定PRS频率层的测量模式为模式1或模式2,包括:PRS频率层的测量时间窗长度大于或等于第一阈值,终端设备确定PRS频率层的测量模式为模式2;或者,PRS频率层的测量时间窗长度小于第一阈值,终端设备确定PRS频率层的测量模式为模式1。
结合第三方面,在第三方面的某些实现方式中,方法还包括:终端设备向网络设备发送第三指示信息,第三指示信息用于指示PRS频率层的测量时间窗长度大于或等于第二阈值,或者,第三指示信息用于指示第一建议值,第一建议值为PRS频率层的测量时间窗长度内除PRS资源的持续时间之外的时间。
第四方面,本申请提供了一种通信方法,该方法的执行主体可以是终端设备,也可以是应用于终端设备中的芯片。下面以执行主体是终端设备为例进行描述。
该方法可以包括:终端设备接收来自网络设备的第四指示信息,第四指示信息用于指示定位参考信号处理窗PPW是否处于激活状态,PPW与定位参考信号PRS频率层相关联;终端设备根据第四指示信息,确定PRS频率层的测量时间窗。
其中,PRS频率层可以是LMF为终端设备配置的,测量时间窗(如PPW,又如MG)可以是网络设备为终端设备配置的。
基于上述技术方案,终端设备可以根据第四指示信息,确定PRS频率层的测量时间窗,从而能够明确终端设备的测量行为,并确保终端设备、网络设备和LMF理解一致。
结合第四方面,在第四方面的某些实现方式中,终端设备根据第四指示信息,确定PRS频率层的测量时间窗,包括:第四指示信息指示PPW处于激活状态,终端设备确定PRS频率层的测量时间窗为PPW;或者,第四指示信息指示PPW处于未激活状态,终端设备确定PRS频率层的测量时间窗为测量间隔MG。
结合第四方面,在第四方面的某些实现方式中,当第四指示信息指示PPW处于未激活状态时,PPW可以与PRS频率层不相关联,终端设备确定PRS频率层的测量时间窗为测量间隔MG。
第五方面,本申请提供了一种通信方法,该方法的执行主体可以是第一设备,也可以是应用于第一设备中的芯片。下面以执行主体是第一设备为例进行描述。
该方法可以包括:第一设备向网络设备发送第三指示信息,第三指示信息用于指示PRS频率层的测量时间窗长度大于或等于第二阈值,或者,第三指示信息用于指示第一建议值,第一建议值为PRS频率层的测量时间窗长度内除PRS资源的持续时间之外的时间。
基于上述技术方案,网络设备可以根据第三指示信息,确定PRS频率层的测量时间窗长度,使得网络设备能够根据低时延相关的信息为终端设备配置PRS频率层的测量时间窗长度,进而可以根据第一设备的需求使能终端设备使用模式2进行测量。
其中,第一设备可以是终端设备,也可以是定位管理功能LMF。
第六方面,本申请提供了一种通信方法,该方法的执行主体可以是网络设备,也可以是应用于网络设备中的芯片。下面以执行主体是网络设备为例进行描述。
该方法可以包括:网络设备接收来自第一设备的第三指示信息,第三指示信息用于指示PRS频率层的测量时间窗长度大于或等于第二阈值,或者,第三指示信息用于指示第一建议值,第一建议值为PRS频率层的测量时间窗长度内除PRS资源的持续时间之外的时间;网络设备根据第三指示信息,确定PRS频率层的测量时间窗长度。
基于上述技术方案,网络设备可以根据第三指示信息,确定PRS频率层的测量时间窗长度,使得网络设备能够根据低时延相关的信息为终端设备配置PRS频率层的测量时间窗长度,进而可以根据第一设备的需求使能终端设备使用模式2进行测量。
其中,第一设备可以是终端设备,也可以是定位管理功能LMF。
结合第六方面,在第六方面的某些实现方式中,网络设备根据第三指示信息,确定PRS频率层的测量时间窗长度,包括:第三指示信息指示PRS频率层的测量时间窗长度大于或等于第二阈值,网络设备确定PRS频率层的测量时间窗长度大于或等于第二阈值;或者,第三指示信息指示第一建议值,网络设备确定PRS频率层的测量时间窗长度为第一建议值与PRS资源的持续时间的和。
结合第六方面,在第六方面的某些实现方式中,方法还包括:网络设备向终端设备发送第二指示信息,第二指示信息用于指示PRS频率层的测量时间窗长度。
第七方面,本申请提供了一种通信方法,该方法的执行主体可以是定位管理功能LMF,也可以是应用于LMF中的芯片。下面以执行主体是LMF为例进行描述。
该方法可以包括:定位管理功能LMF接收来自终端设备上报的能力,上报的能力为{N,T}和{N2,T2},上报的能力与定位参考信号PRS频率层相关联,其中,N、N2为终端设备测量PRS频率层的持续时间能力,T、T2为终端设备测量PRS频率层的处理时间能力;LMF根据上报的能力,向终端设备发送第一指示信息,第一指示信息用于指示PRS频率层的测量模式为模式1或模式2。
基于上述技术方案,终端设备可以根据第一指示信息,确定PRS频率层的测量模式为模式1或模式2,从而能够明确终端设备的测量行为。
第八方面,提供一种通信装置,该装置用于执行上述第一方面至第七方面任一种可能实现方式中的方法。具体地,该装置可以包括用于执行第一方面至第七方面任一种可能实现方式中的方法的单元和/或模块,如处理单元和/或通信单元。
在一种实现方式中,该装置为终端设备或网络设备或定位管理功能LMF。当该装置为终端设备或 网络设备或LMF时,通信单元可以是收发器,或,输入/输出接口;处理单元可以是至少一个处理器。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该装置为用于终端设备或网络设备或LMF的芯片、芯片系统或电路。当该装置为用于终端设备或网络设备或LMF的芯片、芯片系统或电路时,通信单元可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理单元可以是至少一个处理器、处理电路或逻辑电路等。
第九方面,提供一种通信装置,该装置包括:至少一个处理器,用于执行存储器存储的计算机程序或指令,以执行上述第一方面至第七方面任一种可能实现方式中的方法。可选地,该装置还包括存储器,用于存储的计算机程序或指令。可选地,该装置还包括通信接口,处理器通过通信接口读取存储器存储的计算机程序或指令。
在一种实现方式中,该装置为终端设备或网络设备或定位管理功能LMF。
在另一种实现方式中,该装置为用于终端设备或网络设备或LMF的芯片、芯片系统或电路。
第十方面,本申请提供一种处理器,用于执行上述各方面提供的方法。
对于处理器所涉及的发送和获取/接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则可以理解为处理器输出和接收、输入等操作,也可以理解为由射频电路和天线所进行的发送和接收操作,本申请对此不做限定。
第十一方面,提供一种计算机可读存储介质,该计算机可读介质存储用于设备执行的程序代码,该程序代码包括用于执行上述第一方面至第七方面任一种可能实现方式中的方法。
第十二方面,提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第一方面至第七方面任一种可能实现方式中的方法。
第十三方面,本申请还提供一种系统,该系统包括终端设备,该终端设备可用于执行上述第一方面至第五方面的任一方法中由终端设备执行的步骤。
在一些可能的实现方式中,所述系统还可以包括网络设备,该网络设备可用于执行上述第六方面中由网络设备执行的步骤。
在一些可能的实现方式中,所述系统还可以包括定位管理功能LMF,该LMF可用于执行上述第五方面或第七方面中由LMF执行的步骤。
在一些可能的实现方式中,所述系统还可以包括本申请实施例提供的方案中与该终端设备、网络设备、LMF中的一项或多项进行交互的其他设备等等。
附图说明
图1示出了本申请实施例提供的一种通信方法100的示意图。
图2示出了本申请实施例提供的一种通信方法的场景示意图。
图3示出了本申请实施例提供的又一种通信方法的场景示意图。
图4示出了本申请实施例提供的一种通信方法400的示意图。
图5示出了本申请实施例提供的一种通信方法500的示意图。
图6示出了本申请实施例提供的一种通信方法600的示意图。
图7示出了本申请实施例提供的一种通信装置700的示意性框图。
图8示出了本申请实施例提供的另一种通信装置800的示意性框图。
图9示出了本申请实施例提供的一种芯片系统900的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)或新无线(new radio,NR)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统等。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统。本申请提供的技术方案还可以应用于设备到设备(device to device,D2D)通信,车到万物(vehicle-to-everything,V2X)通信,机器到机器(machine  to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及物联网(internet of things,IoT)通信系统或者其他通信系统。
本申请实施例中的终端设备可以是一种向用户提供语音/数据的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端设备还可以是IoT系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统或芯片,该装置可以被安装在终端设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通信(global system for mobile communications,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evoled NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及5G网络中的网络设备或者未来演进的PLMN网络中的网络设备,5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(baseband unit,BBU),或,分布式单元(distributed unit,DU)等,本申请实施例并不限定。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运 行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
定位管理功能(location management function,LMF)负责支持有关终端设备的不同类型的位置服务,包括对终端设备的定位和向终端设备传输辅助数据。LMF可能与网络设备,例如gNB,以及终端设备进行信号交互。例如,LMF与gNB之间通过新空口定位协议副本(new radio positioning protocol annex,NRPPa)消息进行信息交互,例如,获取定位参考信号(position reference signal,PRS)、探测参考信号(sounding reference signal,SRS)的配置信息、小区定时、小区位置信息等。又例如,LMF与终端设备之间通过LTE定位协议(LTE positioning protocol,LPP)消息进行终端设备能力信息传递、辅助信息传递、测量信息传递等。
为便于理解本申请实施例,对本申请中涉及到的术语做简单说明。
一、PRS频率层。
RRS频率层可以是PRS资源集的集合,该PRS资源集具有通过某一个信令配置的公共参数,其中,该信令可以是NR-DL-PRS-Positioning Frequency Layer。
二、模式。
本申请实施例中提及的模式包括模式1和模式2。其中,终端设备测量PRS频率层的处理时间既可以位于该PRS频率层的测量时间窗内,也可以位于该PRS频率层的测量时间窗外,此时对应的模式为模式1;终端设备测量PRS频率层的处理时间位于该PRS频率层的测量时间窗内,此时对应的模式为模式2。
三、测量时间窗。
测量时间窗可以是测量间隔(measurement gap,MG),也可以是定位参考信号处理窗(positioning reference signal processing window,PPW),也可以是其它时间窗,本申请对此不予限制。在测量时间窗内,终端设备可以基于不同的模式确定PRS频率层的测量时间,对于终端设备在测量时间窗内确定PRS频率层的测量时间时所采用的具体模式,本申请实施例并不予以限制。例如,在MG内,终端设备可以采用模式1测量PRS频率层的测量时间,也可以采用模式2测量PRS频率层的测量时间;再例如,在PPW内,终端设备可以采用模式1测量PRS频率层的测量时间,也可以采用模式2测量PRS频率层的测量时间。其中,PRS频率层可以是LMF为终端设备配置的,PPW和MG可以是网络设备为终端设备配置的。
在本申请实施例中,当测量时间窗为PPW时,该测量时间窗长度为PPW的长度;当测量时间窗为MG时,该测量时间窗长度为MG长度除前后0.5ms或0.25ms外的长度。
四、{N,T}。
{N,T}为R16标准中引入的终端设备向LMF上报的能力,其中,N为终端设备测量PRS频率层的持续时间能力,T为终端设备测量PRS频率层的处理时间能力,{N,T}与终端设备确定PRS频率层的测量时间时所采用的模式1相关联。T可以位于测量时间长度内,也可以位于测量时间窗长度外。当T位于测量时间窗长度外时,对终端设备接收数据的影响较小,但同时增加了终端设备测量PRS频率层的处理时间。
五、{N2,T2}。
{N2,T2}为R17标准中引入的终端设备向LMF上报的能力,其中,N2为终端设备测量PRS频率层的持续时间能力,T2为终端设备测量PRS频率层的处理时间能力,{N2,T2}与终端设备确定PRS频率层的测量时间时所采用的模式2相关联。T2位于测量时间窗长度内,对终端设备接收数据的影响较大,但同时减小了终端设备测量PRS频率层的处理时间。因此,终端设备基于模式2进行的PRS频率层的测量是一种低时延测量。
现有技术中,当PRS频率层的个数不止一个时,终端设备如何基于模式2测量至少一个PRS频率层的总测量时间,目前并未有相关方案予以说明。
鉴于上述技术问题,本申请提供了一种通信方法,可以使得终端设备确定基于模式2测量至少一个PRS频率层的总测量时间。通过该方法,能够减少终端设备采用模式2测量至少一个PRS频率层的总测量时间。
下面将结合附图详细说明本申请提供的各个实施例。
图1示出了本申请实施例提供的一种通信方法100的示意图。如图1所示,方法100可以包括如下步骤。
110,终端设备确定采用模式2测量Q个PRS频率层中的每个PRS频率层所用的时间。
其中,Q为正整数。
可选地,终端设备测量Q个PRS频率层中的第二PRS频率层所用的时间可以根据第一时间和/或第二时间确定。
其中,第二PRS频率层为Q个PRS频率层中的其中之一。
其中,第一时间为测量第二PRS频率层所用的采样时间。
其中,第二时间为测量第二PRS频率层的最后一个样点的测量时间。
示例性地,终端设备采用模式2测量第二PRS频率层所用的时间满足公式(1):
其中,
其中,Tmeas,i为终端设备测量第二PRS频率层所用的时间,Lavailable_PRS,i为第一时间,Tlast,i为第二时间,M为其它因素导致第二PRS频率层的测量时间的放大的因子,例如,在毫米波频率测量中,终端设备采用多个接收波束测量时的波束扫描因子等,本申请对其它因素导致第二测量时间放大的因子不做限定。为每个时隙内终端设备需要测量的PRS资源数的最大值,N'为每个时隙内终端设备可以测量的PRS资源数的能力,N2为终端设备测量第二PRS频率层的持续时间能力,Nsample为测量第二PRS频率层的样点数,Teffect,i为第二PRS频率层的有效测量周期,Twindow,i为第二PRS频率层的第二测量时间窗的周期,T2为终端设备测量第二PRS频率层的处理时间能力,Tavailable_PRS,i为第二PRS频率层的可获得周期,Tavailable_PRS,i可以是TPRS,i与Twindow,i的最小公倍数,TPRS,i为第二PRS频率层的周期。
应理解,终端设备可以根据公式(1)和公式(2)确定采用模式2测量第二PRS频率层所用的时间,也可以根据公式(1)和公式(2)确定采用模式2测量除第二PRS频率层外的其它PRS频率层所用的时间。
120,终端设备根据Q个PRS频率层中的每个PRS频率层所用时间的最大值,确定第二测量时间。
示例性地,终端设备确定第二测量时间满足公式(3):
Tmeas2=max(Tmeas,i++Tuncertainty,i)      (3)
其中,Tmeas2为第二测量时间,Tuncertainty,i为大于或等于零的余量,例如,Tuncertainty,i为从第二测量时间的起始时刻(即Q个PRS频率层对应的所有测量时间窗中的第一个测量时间窗)到第i个PRS频率层的第一个测量时间窗之间的距离,Tmeas,i为终端设备测量Q个PRS频率层中的第i个PRS频率层所用的时间。
其中,第i个PRS频率层为Q个PRS频率层中的其中之一,即第i个PRS频率层可以为第二PRS频率层。
基于上述技术方案,终端设备可以确定采用模式2测量Q个PRS频率层中的每个PRS频率层所用 的时间,并根据Q个PRS频率层中的每个PRS频率层所用时间的最大值,确定第二测量时间。通过该方法,可以减少终端设备采用模式2测量至少一个PRS频率层的总测量时间。
基于步骤110,终端设备确定第一时间可以有以下几种可能的方式。
一种可能的方式,第一时间为PRS资源的持续时间,该PRS资源的持续时间位于第一窗口内,该第一窗口的长度为第二PRS频率层的第二测量时间窗长度与T2之间的差,该第一窗口的起始位置为第二测量时间窗长度的起点。
其中,T2为终端设备测量第二PRS频率层的处理时间能力长度。
如图2所示,第一窗口的长度为第二PRS频率层的第二测量时间窗长度与T2之间的差,PRS资源的持续时间位于第一窗口内,可以理解为,PRS资源的持续时间可以是第一窗口的长度中的全部,也可以是第一窗口的长度中的部分。
应理解,第二测量时间窗可以是周期性出现的,一个周期内的第二测量时间窗可以记为第二测量时间窗的一个实例,多个周期内的第二测量时间窗可以记为第二测量时间窗的多个实例。如果一个Tavailable_PRS,i或者TPRS,i内有第二测量时间窗的多个实例,则第一时间为Tavailable_PRS,i或者TPRS,i内PRS资源的持续时间,该PRS资源的持续时间位于该第二测量时间窗的多个实例的第一窗口内。也就是说,第一时间是PRS资源在一个Tavailable_PRS,i或者TPRS,i内的持续时间,在计算第一时间时,仅考虑在第一窗口内的PRS资源,例如,在计算第一时间时,仅考虑第二测量时间窗内前Hms内的PRS资源,其中,H为第二测量时间窗长度与T2之间的差。
另一种可能的方式,第一时间为PRS资源的持续时间与N2之间的最小值,该PRS资源的持续时间位于第一窗口内,该第一窗口的长度为第二PRS频率层的第二测量时间窗长度与T2之间的差,该第一窗口的起始位置为第二测量时间窗长度的起点。
其中,第一时间为PRS资源的持续时间与N2之间的最小值,可以理解为,第一时间为PRS资源的持续时间,PRS资源的持续时间小于或等于N2。
其中,T2为终端设备测量第二PRS频率层的处理时间能力,N2为终端设备测量第二PRS频率层的持续时间能力。
如图2所示,第一窗口的长度为第二PRS频率层的第二测量时间窗长度与T2之间的差,PRS资源的持续时间位于第一窗口内,可以理解为,PRS资源的持续时间可以是第一窗口的长度中的全部,也可以是第一窗口的长度中的部分。此时,第一时间为PRS资源的持续时间与N2之间的最小值。例如,当PRS资源的持续时间大于N2时,第一时间为N2;再例如,当PRS资源的持续时间小于N2时,第一时间为PRS资源的持续时间;再例如,当PRS资源的持续时间等于N2时,第一时间为可以是N2,也可以是PRS资源的持续时间。
另一种可能的方式,如图3所示,假设将第二测量时间窗长度记为L,则第二测量时间窗长度L可以分为个时间段,其中,第m个时间段的长度为N2与T2的和。在第m个时间段内,第一子时间为第m个时间段内PRS资源的持续时间与N2之间的最小值,在第二测量时间窗内,第一时间为M个第一子时间的和。
其中,T2为终端设备测量第二PRS频率层的处理时间能力,N2为终端设备测量第二PRS频率层的持续时间能力。
基于上述技术方案,通过规定采用模式2测量第二PRS频率层所用的采样时间,可以在第二测量时间窗内预留足够的测量第二PRS频率层的处理时间,确保终端设备可以在第二测量时间窗内完成处理,进而降低测量时延。
基于步骤110,终端设备确定第二时间可以有以下几种可能的方式。
一种可能的方式,当第二PRS频率层的所有PRS资源在第二PRS频率层的第二测量时间窗内时,第二时间为第二PRS频率层的第二测量时间窗长度。
应理解,在第二PRS频率层所在的带宽范围内,可以有一个PRS资源,也可以有多个PRS资源,本申请实施例对此不予限制。
示例性地,假设在第二PRS频率层所在的带宽范围内有6个PRS资源,当该6个PRS资源均在第二测量时间窗内时,第二时间为第二测量时间窗长度。
另一种可能的方式,当第二PRS频率层存在PRS资源不在第二PRS频率层的第二测量时间窗内 时,第二时间为第二PRS频率层的可获得周期。
示例性地,假设在第二PRS频率层所在的带宽范围内有6个PRS资源,当有2个PRS资源不在第二测量时间窗内时,第二时间为第二PRS频率层的可获得周期。
可选地,终端设备可以确定采用模式1测量P个PRS频率层中的每个PRS频率层所用的时间。
关于终端设备采用模式1测量P个PRS频率层中的每个PRS频率层所用时间的计算公式,可参考公式(1)、公式(2)以及现有方案,在此不再进行赘述。
可选地,终端设备根据P个PRS频率层中的每个PRS频率层所用时间的和,确定第一测量时间,其中,P为正整数。
示例性地,终端设备确定第一测量时间满足公式(4):
Tmeas1=sum(Tmeas,i)+(P-1)*max(Teffect,i)      (4)
其中,Tmeas1为第一测量时间,Tmeas,i为终端设备测量P个PRS频率层中的第i个PRS频率层所用的时间,Teffect,i为P个PRS频率层中的第一PRS频率层的有效测量周期。
其中,第一PRS频率层为P个PRS频率层中的其中之一,第i个PRS频率层为P个PRS频率层中的其中之一,即第i个PRS频率层可以为第一PRS频率层。
可选地,终端设备根据第一测量时间和第二测量时间,确定第三测量时间。
其中,第三测量时间为测量P+Q个PRS频率层所用的时间。
示例性地,终端设备根据第一测量时间、第二测量时间和第一余量,确定第三测量时间,该第三测量时间为第一测量时间、第二测量时间和第一余量的和。
其中,第一余量可以是不同频率层之间进行转换时所用的时间,第一余量为大于或等于0的数。例如,第一余量可以是第一频率层转换为第二频率层时所用的时间;再例如,第一余量可以是第二频率层转换为第一频率层时所用的时间;再例如,第一余量可以是max(Teffect,i)。
现有技术中,PRS频率层的测量模式可以是模式1,也可以是模式2。然而,终端设备如何确定PRS频率层的测量模式为模式1还是模式2,目前并未有相关方案予以说明。例如,终端设备如何确定方法100中提及的第一PRS频率层的测量模式为模式1,以及,终端设备如何确定第二PRS频率层的测量模式为模式2,现有方案中并未有相关说明。
鉴于上述技术问题,本申请提供了一种通信方法。通过该方法,本申请可以使得终端设备确定PRS频率层的测量模式为模式1还是模式2,从而能够明确终端设备的测量行为。
图4示出了本申请实施例提供的又一种通信方法400的示意图。如图4所示,方法400可以包括如下步骤。
410,终端设备向LMF上报能力,该能力与PRS频率层相关联。
相应地,LMF接收来自终端设备上报的能力。
其中,该能力可以包括以下至少一项:{N,T}、{N2,T2}。
其中,N、N2为终端设备测量PRS频率层的持续时间能力,T、T2为终端设备测量PRS频率层的处理时间能力。
示例性地,基于方法100,终端设备可以向LMF上报第二能力,该第二能力与第二PRS频率层相关联,其中,第二PRS频率层为Q个PRS频率层中的其中之一。
示例性地,基于方法100,终端设备可以向LMF上报第一能力,该第一能力与第一PRS频率层相关联,其中,第一PRS频率层为P个PRS频率层中的其中之一。
终端设备向LMF上报的能力与PRS频率层相关联,可以理解为,终端设备为PRS频率层所在的带宽范围(例如频段)向LMF上报能力。例如,终端设备为第一PRS频率层所在的带宽范围向LMF上报第一能力;再例如,终端设备为第二PRS频率层所在的带宽范围向LMF上报第二能力。
420,终端设备根据向LMF上报的能力,确定PRS频率层的测量模式。
示例性地,基于方法100,终端设备可以根据向LMF上报的第一能力,确定第一PRS频率层的测量模式为模式1。
示例性地,终端设备可以根据向LMF上报的第二能力,确定第二PRS频率层的测量模式为模式2。
基于上述技术方案,终端设备可以根据向LMF上报的能力,确定PRS频率层的测量模式为模式1 还是模式2,从而能够明确终端设备的测量行为。
基于步骤420,终端设备根据向LMF上报的能力,确定PRS频率层的测量模式,可以有以下几种方式。
方式#A:当终端设备向LMF上报的能力为{N,T}时,终端设备确定PRS频率层的测量模式为模式1;或者,当终端设备向LMF上报的能力为{N2,T2}时,终端设备确定PRS频率层的测量模式为模式2。
示例性地,基于方法100,当终端设备向LMF上报的第一能力为{N,T}时,终端设备可以确定第一PRS频率层的测量模式为模式1。
示例性地,基于方法100,当终端设备向LMF上报的第二能力为{N2,T2}时,终端设备可以确定第二PRS频率层的测量模式为模式2。
方式#B:终端设备向LMF上报的能力为{N,T}和{N2,T2}。
相应地,LMF接收来自终端设备上报的能力,该上报的能力为{N,T}和{N2,T2}。LMF根据该上报的能力,向终端设备发送第一指示信息,该第一指示信息用于指示PRS频率层的测量模式为模式1或模式2。
相应地,终端设备接收来自LMF的第一指示信息,终端设备可以根据该第一指示信息,确定PRS频率层的测量模式为模式1或模式2。
示例性地,基于方法100,当终端设备向LMF上报的第一能力为{N,T}和{N2,T2},时,终端设备可以接收来自LMF的第一指示信息,该第一指示信息指示第一PRS频率层的测量模式为模式1。
示例性地,基于方法100,当终端设备向LMF上报的第二能力为{N,T}和{N2,T2}时,终端设备可以接收来自LMF的第一指示信息,该第一指示信息指示第二PRS频率层的测量模式为模式2。
方式#C:当终端设备向LMF上报的能力为{N,T}和{N2,T2}时,终端设备接收来自网络设备的第二指示信息,该第二指示信息用于指示PRS频率层的测量时间窗长度。终端设备可以根据第二指示信息,确定PRS频率层的测量模式为模式1或模式2。
举例来说,当PRS频率层的测量时间窗长度大于或等于第一阈值时,终端设备确定PRS频率层的测量模式为模式2;或者,当PRS频率层的测量时间窗长度小于该第一阈值时,终端设备确定PRS频率层的测量模式为模式1。
其中,该第一阈值可以是T2+X1,X1为大于等于0的数,该X1可以是协议预定义的,例如,协议预定义X1可以是一个时隙的长度;X1也可以是N2,也可以是其它值,本申请实施例对此不予限制。
示例性地,基于方法100,当终端设备向LMF上报的第一能力为{N,T}和{N2,T2}时,终端设备可以接收来自网络设备的第二指示信息,该第二指示信息用于指示第一PRS频率层的第一测量时间窗长度。终端设备根据第一测量时间窗长度小于第一阈值,确定该第一PRS频率层的测量模式为模式1。
示例性地,基于方法100,当终端设备向LMF上报的第二能力为{N,T}和{N2,T2}时,终端设备可以接收来自网络设备的第二指示信息,该第二指示信息用于指示第二PRS频率层的第二测量时间窗长度。终端设备根据第二测量时间窗长度大于或等于第一阈值,确定第二PRS频率层的测量模式为模式2。
应理解,基于方法100,当终端设备向LMF同时上报第一能力和第二能力时,终端设备可以根据方式#A~方式#C中的其中一种或者不同组合形式,确定第一PRS频率层的测量模式为模式1,以及,确定第二PRS频率层的测量模式为模式2。
例如,当终端设备向LMF上报的第一能力为{N,T},以及,终端设备向LMF上报的第二能力为{N2,T2}时,终端设备可以根据方式#A,确定第一PRS频率层的测量模式为模式1,以及,终端设备可以根据方式#A,确定第二PRS频率层的测量模式为模式2。
再例如,当终端设备向LMF上报的第一能力为{N,T},以及,终端设备向LMF上报的第二能力为{N,T}和{N2,T2}时,终端设备可以根据方式#A,确定第一PRS频率层的测量模式为模式1,以及,终端设备可以根据方式#B或方式#C,确定第二PRS频率层的测量模式为模式2。
再例如,当终端设备向LMF上报的第一能力为{N,T}和{N2,T2},以及,终端设备向LMF上报的第二能力为{N2,T2}时,终端设备可以根据方式#B或方式#C,确定第一PRS频率层的测量模式为模式1,以及,终端设备可以根据方式#A,确定第二PRS频率层的测量模式为模式2。
再例如,当终端设备向LMF上报的第一能力为{N,T}和{N2,T2},以及,终端设备向LMF上报的 第二能力为{N,T}和{N2,T2}时,终端设备可以根据方式#B或方式#C,确定第一PRS频率层的测量模式为模式1,以及,终端设备可以根据方式#B或方式#C,确定第二PRS频率层的测量模式为模式2。
现有技术中,网络设备可以为终端设备配置PRS频率层的测量时间窗长度,然而,当网络设备为终端设备配置的PRS频率层的测量时间窗长度较小,例如,网络设备为终端设备配置的PRS频率层的测量时间窗长度小于第一阈值时,终端设备可能无法将PRS频率层的测量模式确定为模式2。
因此,由于网络设备为终端设备配置的PRS频率层的测量时间窗长度不满足低时延测量的条件,可能会导致终端设备无法进行低时延测量。
示例性地,基于方法400,在方式#A中,即使终端设备向LMF上报的能力为{N2,T2},当网络设备为终端设备配置的PRS频率层的测量时间窗长度较小时,终端设备可能也无法正确的使用模式2进行测量。
示例性地,基于方法400,在方式#B中,当网络设备为终端设备配置的PRS频率层的测量时间窗长度较小时,即使LMF向终端设备发送的第一指示信息指示PRS频率层的测量模式为模式2,终端设备可能也无法正确的使用模式2进行测量。也就是说,当终端设备根据第一指示信息确定PRS频率层的测量模式为模式2时,终端设备正确执行测量的条件是网络设备为终端设备配置的测量时间窗的长度大于或等于第一阈值。
鉴于上述技术问题,本申请提供了一种通信方法。通过该方法,本申请可以使得网络设备能够根据低时延相关的信息为终端设备配置PRS频率层的测量时间窗长度,进而可以根据LMF或者终端设备的需求使能终端设备使用模式2进行测量。
图5示出了本申请实施例提供的又一种通信方法500的示意图。如图5所示,方法500可以包括如下步骤。
510,网络设备接收来自第一设备的第三指示信息,该第三指示信息用于指示PRS频率层的测量时间窗长度与模式2相关联时,该PRS频率层的测量时间窗长度大于或等于第二阈值,或者,该第三指示信息用于指示第一建议值,该第一建议值为该PRS频率层的测量时间窗长度内除PRS资源的持续时间之外的时间。
示例性地,基于方法100,终端设备向网络设备发送第三指示信息,该第三指示信息用于指示第二PRS频率层的第二测量时间窗长度大于或等于第二阈值,或者,该第三指示信息用于指示第一建议值,该第一建议值为第二PRS频率层的第二测量时间窗长度内除PRS资源的持续时间之外的时间。
其中,网络设备获得PRS资源的持续时间的方式可以参考现有方案,例如,LMF可以通过NRPPa向网络设备发送测量预配置请求(MEASUREMENT PRECONFIGURATION REQUIRED)消息,该消息中包括PRS资源的持续时间的相关信息,从而可以使得网络设备可以获得PRS资源的持续时间。可选地,第一建议值可以包含在该NRPPa消息中。
其中,第一设备为终端设备或LMF。
其中,该第二阈值可以是T2+X2,X2为大于或等于0的数,该X2可以是协议预定义的,也可以是N2,也可以是其它值,该第二阈值可以与第一阈值相同,也可以与第一阈值不同,本申请实施例对此不予限制。
其中,该第一建议值可以是协议预定义的,也可以是其它值,本申请实施例对此不予限制。
其中,该第二阈值可以与第三指示信息是同一设备同一信令发送至网络设备的,也可以与第三指示信息是同一设备不同信令发送至网络设备的,也可以与第三指示信息是不同设备不同信令发送至网络设备的。
一种可能的方式,第二阈值与第三指示信息是同一设备同一信令发送至网络设备的。例如,终端设备通过第一信令将第二阈值与第三指示信息发送至网络设备;再例如,LMF通过第二信令将第二阈值与第三指示信息发送至网络设备。
另一种可能的方式,第二阈值与第三指示信息是同一设备不同信令发送至网络设备的。例如,终端设备通过第一信令将第二阈值发送至网络设备,再通过第二信令将第三指示信息发送至网络设备;再例如,LMF通过第三信令将第二阈值发送至网络设备,再通过第四信令将第三指示信息与第三指示信息发送至网络设备。
另一种可能的方式,第二阈值与第三指示信息是不同设备不同信令发送至网络设备的。例如,终 端设备通过第一信令将第二阈值发送至网络设备,LMF通过第二信令将第三指示信息发送至网络设备;再例如,LMF通过第三信令将第二阈值发送至网络设备,终端设备通过第四信令将第三指示信息发送至网络设备。
520,网络设备根据第三指示信息,确定PRS频率层的测量时间窗长度。
一种可能的方式,当第三指示信息指示PRS频率层的测量时间窗长度与模式2相关联时,网络设备确定PRS频率层的测量时间窗长度大于或等于第二阈值。
示例性地,基于方法100,当第三指示信息指示第二PRS频率层的测量模式为模式2时,网络设备可以确定第二PRS频率层的第二测量时间窗长度大于或等于第二阈值。
另一种可能的方式,当第三指示信息指示第一建议值时,网络设备确定PRS频率层的测量时间窗长度为第一建议值与PRS资源的持续时间的和。
示例性地,基于方法100,当第三指示信息指示第一建议值时,网络设备可以确定第二PRS频率层的第二测量时间窗长度为第一建议值与PRS资源的持续时间的和。
基于上述技术方案,网络设备可以根据第三指示信息,确定PRS频率层的测量时间窗长度,使得网络设备能够根据低时延相关的信息为终端设备配置PRS频率层的测量时间窗长度,进而可以根据LMF或者终端设备的需求使能终端设备使用模式2进行测量。
可选地,网络设备向终端设备发送第二指示信息,该第二指示信息用于指示PRS频率层的测量时间窗长度。
示例性地,基于方法100,网络设备向终端设备发送第二指示信息,该第二指示信息用于指示第一PRS频率层的第一测量时间窗长度,以及,该第二指示信息用于指示第二PRS频率层的第二测量时间窗长度。其中,该第二测量时间窗长度可以是网络设备根据第三指示信息确定的。
关于终端设备根据第二指示信息,确定PRS频率层的测量模式为模式1或模式2的说明,可以参考方法400中的描述,在此不再进行赘述。
现有技术中,PRS频率层的测量时间窗可以是PPW,也可以是MG。然而,终端设备如何确定PRS频率层的测量时间窗为PPW还是MG,目前并未有相关方案予以说明。例如,终端设备如何确定方法100中提及的第一PRS频率层的第一测量时间窗为PPW还是MG,以及,终端设备如何确定第二PRS频率层的第二测量时间窗为PPW还是MG,现有方案中并未有相关说明。
鉴于上述技术问题,本申请提供了一种通信方法。通过该方法,本申请可以使得终端设备确定PRS频率层的测量时间窗为PPW还是MG,从而能够明确终端设备的测量行为,并确保终端设备、网络设备和LMF理解一致。
图6示出了本申请实施例提供的又一种通信方法600的示意图。如图6所示,方法600可以包括如下步骤。
610,终端设备接收来自网络设备的第四指示信息,该第四指示信息用于指示PPW是否处于激活状态,该PPW与PRS频率层相关联。
其中,PRS频率层可以是LMF为终端设备配置的,PPW和MG可以是网络设备为终端设备配置的。
示例性地,基于方法100,终端设备接收来自网络设备的第四指示信息,该第四指示信息用于指示第一PPW是否处于激活状态,该第一PPW与P个PRS频率层中的第一PRS频率层相关联。
其中,第一PPW与第一PRS频率层相关联,可以理解为,第一PPW配置在第一服务小区的第一部分带宽(bandwidth part,BWP)中,第一BWP包含第一PRS频率层,且第一BWP与第一PRS频率层的子载波间隔相同,则第一PPW与第一PRS频率层相关联。
示例性地,基于方法100,终端设备接收来自网络设备的第四指示信息,该第四指示信息用于指示第二PPW是否处于激活状态,该第二PPW与Q个PRS频率层中的第二PRS频率层相关联。
其中,第二PPW与第二PRS频率层相关联,可以理解为,如果第二PPW配置在第二服务小区的第二BWP中,第二BWP包含第二PRS频率层,且第二BWP与第二PRS频率层的子载波间隔相同,则第二PPW与第二PRS频率层相关联。
620,终端设备根据第四指示信息,确定PRS频率层的测量时间窗。
示例性地,基于方法100,终端设备根据第四指示信息,确定第一PRS频率层的第一测量时间窗。
示例性地,基于方法100,终端设备根据第四指示信息,确定第二PRS频率层的第二测量时间窗。
基于上述技术方案,终端设备可以根据第四指示信息,确定PRS频率层的测量时间窗,从而能够明确终端设备的测量行为,并确保终端设备、网络设备和LMF理解一致。
基于步骤620,终端设备根据第四指示信息,确定PRS频率层的测量时间窗,可以有以下两种可能的方式。
一种可能的方式,当第四指示信息指示PPW处于激活状态时,终端设备确定PRS频率层的测量时间窗为PPW。
示例性地,当第四指示信息指示第一PPW处于激活状态时,终端设备确定第一PRS频率层的第一测量时间窗为第一PPW。
示例性地,当第四指示信息指示第二PPW处于激活状态时,终端设备确定第二PRS频率层的第二测量时间窗为第二PPW。
另一种可能的方式,当第四指示信息指示PPW处于未激活状态时,终端设备确定PRS频率层的测量时间窗为MG。
示例性地,当第四指示信息指示第一PPW处于未激活状态时,终端设备确定第一PRS频率层的第一测量时间窗为第一MG。
示例性地,当第四指示信息指示第二PPW处于未激活状态时,终端设备确定第二PRS频率层的第二测量时间窗为第二MG。
应理解,当PPW与MG相关联的PRS频率层不同时,PPW与MG可以同时存在。例如,第一PRS频率层的第一测量时间窗为第一PPW,与第二PRS频率层的第二测量时间窗为第二MG可以同时存在。
可选地,当PRS频率层没有相关联的PPW时,终端设备确定PRS频率层的测量时间窗为MG。
可选地,当PPW和MG在时域上相冲突时,终端设备在冲突的PPW的一个实例上不测量PRS频率层。
其中,该PPW与该MG相关联的PRS频率层不同。
示例性地,网络设备配置的该PPW的周期为80ms,时域的起始位置为0,网络设备配置的该MG的周期为160ms,时域的起始位置为0,则每经过160ms会有1个PPW与MG存在时域上的冲突,此时终端设备在冲突的PPW的一个实例上不测量PRS频率层。
示例性地,基于方法100,假设Q个PRS频率层中的每个PRS频率层的测量时间窗为PPW,P个PRS频率层中的每个PRS频率层的测量时间窗为MG,则终端设备可以确定在PPW内采用模式2测量Q个PRS频率层中的每个PRS频率层所用的时间,并根据Q个PRS频率层中的每个PRS频率层所用时间的最大值,确定第二测量时间,以及,终端设备还可以确定在MG内采用模式1测量P个PRS频率层中的每个PRS频率层所用的时间,并根据P个PRS频率层中的每个PRS频率层所用时间的和,确定第一测量时间。基于此,终端设备可以根据第一测量时间和第二测量时间,确定第三测量时间。
应理解,Q个PRS频率层中的每个PRS频率层的测量时间窗为PPW,即,该Q个PRS频率层的PPW的个数有Q个,且该Q个PPW中可以存在相同的PPW,也可以是该Q个PPW互不相同;P个PRS频率层中的每个PRS频率层的测量时间窗为MG,即,该P个PRS频率层的MG的个数有P个,且该P个MG可以存在相同的MG,也可以是该P个MG互不相同。
示例性地,基于方法100,假设Q个PRS频率层中的每个PRS频率层的测量时间窗为PPW2,P个PRS频率层中的每个PRS频率层的测量时间窗为PPW1,则终端设备可以确定在PPW2内采用模式2测量Q个PRS频率层中的每个PRS频率层所用的时间,并根据Q个PRS频率层中的每个PRS频率层所用时间的最大值,确定第二测量时间,以及,终端设备还可以确定在PPW1内采用模式1测量P个PRS频率层中的每个PRS频率层所用的时间,并根据P个PRS频率层中的每个PRS频率层所用时间的和,确定第一测量时间。基于此,终端设备可以根据第一测量时间和第二测量时间,确定第三测量时间。
应理解,Q个PRS频率层中的每个PRS频率层的测量时间窗为PPW2,即,该Q个PRS频率层的PPW2的个数有Q个,且该Q个PPW2中可以存在相同的PPW,也可以是该Q个PPW2互不相同;P个PRS频率层中的每个PRS频率层的测量时间窗为PPW1,即,该P个PRS频率层的PPW1的个数有P个,且该P个PPW1中可以存在相同的PPW,也可以是该P个PPW1互不相同。
示例性地,假设M个PRS频率层中的每个PRS频率层的测量时间窗为PPW,N个PRS频率层中的每个PRS频率层的测量时间窗为MG,则终端设备可以确定在PPW内采用模式1测量M个PRS频率层中的每个PRS频率层所用的时间,并根据M个PRS频率层中的每个PRS频率层所用时间的和,确定测量时间1,以及,终端设备还可以确定在MG内采用模式1测量N个PRS频率层中的每个PRS频率层所用的时间,并根据N个PRS频率层中的每个PRS频率层所用时间的和,确定测量时间2。基于此,终端设备可以根据测量时间1和测量时间2的和,确定测量时间3。
应理解,M个PRS频率层中的每个PRS频率层的测量时间窗为PPW,即,该M个PRS频率层的PPW的个数有M个,且该M个PPW中可以存在相同的PPW,也可以是该M个PPW互不相同;N个PRS频率层中的每个PRS频率层的测量时间窗为MG,即,该N个PRS频率层的MG的个数有N个,且该N个MG中可以存在相同的MG,也可以是N个MG互不相同。
可以理解,本申请实施例中的图1至图6中的例子仅仅是为了便于本领域技术人员理解本申请实施例,并非要将本申请实施例限于例示的具体场景。本领域技术人员根据图1至图6的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本申请实施例的范围内。例如,图4中的“终端设备向LMF上报能力”均可替换为“终端设备向LMF发送终端设备的能力”。
还可以理解,本申请的各实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,也可以在某些场景下,与其他特征进行结合,不作限定。
还可以理解,本申请的各实施例中的方案可以进行合理的组合使用,并且实施例中出现的各个术语的解释或说明可以在各个实施例中互相参考或解释,对此不作限定。
还可以理解,在本申请的各实施例中的各种数字序号的大小并不意味着执行顺序的先后,仅为描述方便进行的区分,不应对本申请实施例的实施过程构成任何限定。
还可以理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
还可以理解,在本申请的各实施例中涉及到一些信息名称,如第一指示信息、第二指示信息等等,应理解,其命名不对本申请实施例的保护范围造成限定。
还可以理解,上述各个方法实施例中,由终端设备或网络设备或LMF实现的方法和操作,也可以由终端设备或网络设备或LMF的组成部件(例如芯片或者电路)来实现。
相应于上述各方法实施例给出的方法,本申请实施例还提供了相应的装置,所述装置包括用于执行上述各个方法实施例相应的模块。该模块可以是软件,也可以是硬件,或者是软件和硬件结合。可以理解的是,上述各方法实施例所描述的技术特征同样适用于以下装置实施例。
上述本申请提供的实施例中,分别从网络设备、终端设备、LMF、以及网络设备、终端设备以及LMF之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备、终端设备和LMF可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
以上,结合图1至图6详细说明了本申请实施例提供的通信方法。以下,结合图7至图9详细说明本申请实施例提供的通信装置。
图7是本申请实施例提供的一种通信装置的示意性框图。该装置700包括处理单元720,处理单元720可以用于实现相应的处理功能,如确定第二测量时间。
可选地,该装置700还可以包括收发单元710,收发单元710可以用于实现相应的通信功能。收发单元710还可以称为通信接口或通信单元。
可选地,该装置700还包括存储单元,该存储单元可以用于存储指令和/或数据,处理单元720可以读取存储单元中的指令和/或数据,以使得装置实现前述各个方法实施例中的终端设备或网络设备或 LMF的动作。
该装置700可以用于执行上文各个方法实施例中终端设备或网络设备或LMF所执行的动作,这时,该装置700可以为终端设备或者终端设备的组成部件,也可以为网络设备或网络设备的组成部件,也可以为LMF或LMF的组成部件,收发单元710用于执行上文方法实施例中终端设备或网络设备或LMF的收发相关的操作,处理单元720用于执行上文方法实施例中终端设备或网络设备或LMF的处理相关的操作。
作为一种设计,该装置700用于执行上文各个方法实施例中终端设备所执行的动作。
一种可能的实现方式,处理单元720,用于确定采用模式2测量Q个PRS频率层中的每个PRS频率层所用的时间;处理单元720,还用于根据Q个PRS频率层中的每个PRS频率层所用时间的最大值,确定第二测量时间,其中,Q为正整数。
可选地,处理单元720,还用于确定采用模式1测量P个PRS频率层中的每个PRS频率层所用的时间;处理单元720,还用于根据P个PRS频率层中的每个PRS频率层所用时间的和,确定第一测量时间,其中,P为正整数。
可选地,处理单元720,还用于根据第一测量时间和第二测量时间,确定第三测量时间,第三测量时间为测量P+Q个PRS频率层所用的时间。
可选地,处理单元720还用于根据第一测量时间、第二测量时间和第一余量,确定第三测量时间,第三测量时间为第一测量时间、第二测量时间和第一余量的和。
可选地,测量Q个PRS频率层中的第二PRS频率层所用的时间根据第一时间和/或第二时间确定,第一时间为测量第二PRS频率层所用的采样时间,第二时间为测量第二PRS频率层的最后一个样点的测量时间。
可选地,第二时间包括采样时间和处理时间。
可选地,第一时间为PRS资源的持续时间,PRS资源的持续时间位于第一窗口内,第一窗口的长度为第二PRS频率层的第二测量时间窗长度与T2之间的差,第一窗口的起始位置为第二测量时间窗长度的起点,其中,T2为终端设备测量第二PRS频率层的处理时间能力。
可选地,第一时间为PRS资源的持续时间,PRS资源的持续时间小于或等于N2,PRS资源的持续时间位于第一窗口内,第一窗口的长度为第二PRS频率层的第二测量时间窗长度与T2之间的差,第一窗口的起始位置为第二测量时间窗长度的起点,其中,N2为终端设备测量第二PRS频率层的持续时间能力,T2为终端设备测量第二PRS频率层的处理时间能力。
可选地,第一时间为PRS资源的持续时间与N2之间的最小值,PRS资源的持续时间位于第一窗口内,第一窗口的长度为第二PRS频率层的第二测量时间窗长度与T2之间的差,第一窗口的起始位置为第二测量时间窗长度的起点,其中,N2为终端设备测量第二PRS频率层的持续时间能力,T2为终端设备测量第二PRS频率层的处理时间能力。
可选地,当第二PRS频率层的所有PRS资源在第二PRS频率层的第二测量时间窗内时,第二时间为第二PRS频率层的第二测量时间窗长度。
可选地,当第二PRS频率层存在PRS资源不在第二PRS频率层的第二测量时间窗内时,第二时间为第二PRS频率层的可获得周期。
可选地,收发单元710,用于向定位管理功能LMF上报第二能力,第二能力与第二PRS频率层相关联;处理单元720,用于根据第二能力,确定第二PRS频率层的测量模式为模式2。
可选地,第二能力为{N2,T2},其中,N2为终端设备测量第二PRS频率层的持续时间能力,T2为终端设备测量第二PRS频率层的处理时间能力。
可选地,第二能力包括{N,T}和{N2,T2},N、N2为终端设备测量第二PRS频率层的持续时间能力,T、T2为终端设备测量第二PRS频率层的处理时间能力,收发单元710,用于接收来自LMF的第一指示信息,第一指示信息指示第二PRS频率层的测量模式为模式2。
可选地,第二能力包括{N,T}和{N2,T2},N、N2为终端设备测量第二PRS频率层的持续时间能力,T、T2为终端设备测量第二PRS频率层的处理时间能力,收发单元710,用于接收来自网络设备的第二指示信息,第二指示信息用于指示第二PRS频率层的第二测量时间窗长度;处理单元720,用于根据第二测量时间窗长度大于或等于第一阈值,确定第二PRS频率层的测量模式为模式2。
可选地,收发单元710,用于向定位管理功能LMF上报第一能力,第一能力与第一PRS频率层相关联;处理单元720,用于根据第一能力,确定第一PRS频率层的测量模式为模式1。
可选地,第一能力为{N,T},其中,N为终端设备测量第一PRS频率层的持续时间能力,T为终端设备测量第一PRS频率层的处理时间能力。
可选地,第一能力包括{N,T}和{N2,T2},N、N2为终端设备测量第一PRS频率层的持续时间能力,T、T2为终端设备测量第一PRS频率层的处理时间能力,收发单元710,用于接收来自LMF的第一指示信息,第一指示信息指示第一PRS频率层的测量模式为模式1。
可选地,第一能力包括{N,T}和{N2,T2},N、N2为终端设备测量第一PRS频率层的持续时间能力,T、T2为终端设备测量第一PRS频率层的处理时间能力,收发单元710,用于接收来自网络设备的第二指示信息,第二指示信息用于指示第一PRS频率层的第一测量时间窗长度;处理单元720,用于根据第一测量时间窗长度小于第一阈值,确定第一PRS频率层的测量模式为模式1。
可选地,收发单元710,用于向网络设备发送第三指示信息,第三指示信息指示第二PRS频率层的第二测量时间窗长度大于或等于第二阈值,或者,第三指示信息用于指示第一建议值,第一建议值为第二PRS频率层的第二测量时间窗长度内除PRS资源的持续时间之外的时间。
可选地,收发单元710,用于接收来自网络设备的第四指示信息,第四指示信息用于指示第二PPW是否处于激活状态,第二PPW与Q个PRS频率层中的第二PRS频率层相关联;处理单元720,用于根据第四指示信息,确定第二PRS频率层的第二测量时间窗。
其中,第二PRS频率层可以是LMF为终端设备配置的,第二测量时间窗(如第二PPW,又如第二MG)可以是网络设备为终端设备配置的。
可选地,第四指示信息指示第二PPW处于激活状态,处理单元720,用于确定第二测量时间窗为第二PPW,或者,第四指示信息指示第二PPW处于未激活状态,处理单元720,用于确定第二测量时间窗为第二MG。
可选地,收发单元710,用于接收来自网络设备的第四指示信息,第四指示信息用于指示第一定位参考信号处理窗PPW是否处于激活状态,第一PPW与P个PRS频率层中的第一PRS频率层相关联;处理单元720,用于根据第四指示信息,确定第一PRS频率层的第一测量时间窗。
其中,第一PRS频率层可以是LMF为终端设备配置的,第一测量时间窗(如第一PPW,又如第一MG)可以是网络设备为终端设备配置的。
可选地,第四指示信息指示第一PPW处于激活状态,处理单元720,用于确定第一测量时间窗为第一PPW,或者,第四指示信息指示第一PPW处于未激活状态,处理单元720,用于确定第一测量时间窗为第一测量间隔MG。
另一种可能的实现方式,处理单元720,用于确定第一时间,第一时间为采用模式2测量PRS频率层所用的采样时间。
可选地,第一时间为PRS资源的持续时间,PRS资源的持续时间位于第一窗口内,第一窗口的长度为PRS频率层的测量时间窗长度与T2之间的差,第一窗口的起始位置为测量时间窗长度的起点,其中,T2为终端设备测量PRS频率层的处理时间能力。
可选地,第一时间为PRS资源的持续时间,PRS资源的持续时间小于或等于N2,PRS资源的持续时间位于第一窗口内,第一窗口的长度为PRS频率层的测量时间窗长度与T2之间的差,第一窗口的起始位置为测量时间窗长度的起点,其中,N2为终端设备测量PRS频率层的持续时间能力,T2为终端设备测量PRS频率层的处理时间能力。
可选地,第一时间为PRS资源的持续时间与N2之间的最小值,PRS资源的持续时间位于第一窗口内,第一窗口的长度为PRS频率层的测量时间窗长度与T2之间的差,第一窗口的起始位置为测量时间窗长度的起点,其中,N2为终端设备测量PRS频率层的持续时间能力,T2为终端设备测量PRS频率层的处理时间能力。
另一种可能的实现方式,收发单元710,用于向定位管理功能LMF上报能力,能力与定位参考信号PRS频率层相关联;处理单元720,用于根据能力,确定PRS频率层的测量模式。
可选地,能力包括以下至少一项:{N,T}、{N2,T2},其中,N、N2为终端设备测量PRS频率层的持续时间能力,T、T2为终端设备测量PRS频率层的处理时间能力。
可选地,能力为{N,T},处理单元720,用于确定PRS频率层的测量模式为模式1;或者,能力为{N2,T2},处理单元720,用于确定PRS频率层的测量模式为模式2。
可选地,能力为{N,T}和{N2,T2},收发单元710,用于接收来自LMF的第一指示信息,第一指示信息用于指示PRS频率层的测量模式为模式1或模式2;处理单元720,用于根据第一指示信息,确定PRS频率层的测量模式为模式1或模式2。
可选地,能力为{N,T}和{N2,T2},收发单元710,用于接收来自网络设备的第二指示信息,第二指示信息用于指示PRS频率层的测量时间窗长度;处理单元720,用于根据第二指示信息,确定PRS频率层的测量模式为模式1或模式2。
可选地,PRS频率层的测量时间窗长度大于或等于第一阈值,处理单元720,用于确定PRS频率层的测量模式为模式2;或者,PRS频率层的测量时间窗长度小于第一阈值,处理单元720,用于确定PRS频率层的测量模式为模式1。
可选地,收发单元710,用于向网络设备发送第三指示信息,第三指示信息用于指示PRS频率层的测量时间窗长度大于或等于第二阈值,或者,第三指示信息用于指示第一建议值,第一建议值为PRS频率层的测量时间窗长度内除PRS资源的持续时间之外的时间。
另一种可能的实现方式,收发单元710,用于接收来自网络设备的第四指示信息,第四指示信息用于指示定位参考信号处理窗PPW是否处于激活状态,PPW与定位参考信号PRS频率层相关联;处理单元720,用于根据第四指示信息,确定PRS频率层的测量时间窗。
其中,PRS频率层可以是LMF为终端设备配置的,测量时间窗(如PPW,又如MG)可以是网络设备为终端设备配置的。
可选地,第四指示信息指示PPW处于激活状态,处理单元720,用于确定PRS频率层的测量时间窗为PPW;或者,第四指示信息指示PPW处于未激活状态,处理单元720,用于确定PRS频率层的测量时间窗为测量间隔MG。
另一种可能的实现方式,收发单元710,用于向网络设备发送第三指示信息,第三指示信息用于指示PRS频率层的测量时间窗长度大于或等于第二阈值,或者,第三指示信息用于指示第一建议值,第一建议值为PRS频率层的测量时间窗长度内除PRS资源的持续时间之外的时间。
该装置700可实现对应于根据本申请实施例的方法实施例中的终端设备执行的步骤或者流程,该装置700可以包括用于执行图1至图6中任意一个所示实施例中终端设备执行的方法的单元。
作为另一种设计,该装置700用于执行上文各个方法实施例中网络设备所执行的动作。
一种可能的实现方式,收发单元710,用于接收来自第一设备的第三指示信息,第三指示信息用于指示PRS频率层的测量时间窗长度大于或等于第二阈值,或者,第三指示信息用于指示第一建议值,第一建议值为PRS频率层的测量时间窗长度内除PRS资源的持续时间之外的时间;处理单元720,用于根据第三指示信息,确定PRS频率层的测量时间窗长度。
其中,第一设备可以是终端设备,也可以是定位管理功能LMF。
可选地,第三指示信息指示PRS频率层的测量时间窗长度大于或等于第二阈值,处理单元720,用于确定PRS频率层的测量时间窗长度大于或等于第二阈值;或者,第三指示信息指示第一建议值,处理单元720,用于确定PRS频率层的测量时间窗长度为第一建议值与PRS资源的持续时间的和。
可选地,收发单元710,用于向终端设备发送第二指示信息,第二指示信息用于指示PRS频率层的测量时间窗长度。
该装置700可实现对应于根据本申请实施例的方法实施例中的网络设备执行的步骤或者流程,该装置700可以包括用于执行图1至图6中任意一个所示实施例中网络设备执行的方法的单元。
作为另一种设计,该装置700用于执行上文各个方法实施例中LMF所执行的动作。
一种可能的实现方式,收发单元710,用于向网络设备发送第三指示信息,第三指示信息用于指示PRS频率层的测量时间窗长度大于或等于第二阈值,或者,第三指示信息用于指示第一建议值,第一建议值为PRS频率层的测量时间窗长度内除PRS资源的持续时间之外的时间。
另一种可能的实现方式,收发单元710,用于接收来自终端设备上报的能力,上报的能力为{N,T}和{N2,T2},上报的能力与定位参考信号PRS频率层相关联,其中,N、N2为终端设备测量PRS频率层的持续时间能力,T、T2为终端设备测量PRS频率层的处理时间能力;收发单元710,用于根据上报 的能力,向终端设备发送第一指示信息,第一指示信息用于指示PRS频率层的测量模式为模式1或模式2。
该装置700可实现对应于根据本申请实施例的方法实施例中的LMF执行的步骤或者流程。该装置700可以包括用于执行图1至图6中任意一个所示实施例中的LMF执行的方法的单元。
应理解,各单元执行上述相应步骤的具体过程在上述各方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,这里的装置700以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置700可以具体为上述实施例中的终端设备或网络设备或LMF,可以用于执行上述各方法实施例中与终端设备或网络设备或LMF对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述各个方案的装置700具有实现上述方法中终端设备或网络设备或LMF所执行的相应步骤的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如收发单元可以由收发机替代(例如,收发单元中的发送单元可以由发送机替代,收发单元中的接收单元可以由接收机替代),其它单元,如处理单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
此外,上述收发单元710还可以是收发电路(例如可以包括接收电路和发送电路),处理单元可以是处理电路。
需要指出的是,图7中的装置可以是前述实施例中的设备,也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。在此不做限定。
如图8所示,本申请实施例提供另一种通信装置800。该装置800包括处理器810,处理器810与存储器820耦合,存储器820用于存储计算机程序或指令和/或数据,处理器810用于执行存储器820存储的计算机程序或指令,或读取存储器820存储的数据,以执行上文各方法实施例中的方法。
可选地,处理器810为一个或多个。
可选地,存储器820为一个或多个。
可选地,该存储器820与该处理器810集成在一起,或者分离设置。
可选地,如图8所示,该装置800还包括收发器830,收发器830用于信号的接收和/或发送。例如,处理器810用于控制收发器830进行信号的接收和/或发送。
作为一种方案,该装置800用于实现上文各个方法实施例中由终端设备或网络设备或LMF执行的操作。
例如,处理器810用于执行存储器820存储的计算机程序或指令,以实现上文各个方法实施例中终端设备的相关操作。例如,图1至图6中任意一个所示实施例中的终端设备执行的方法。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。例如,RAM可以用作外部高速缓存。作为示例而非限定,RAM包括如下多种形式:静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随 机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
如图9,本申请实施例提供一种芯片系统900。该芯片系统900(或者也可以称为处理系统)包括逻辑电路910以及输入/输出接口(input/output interface)920。
其中,逻辑电路910可以为芯片系统900中的处理电路。逻辑电路910可以耦合连接存储单元,调用存储单元中的指令,使得芯片系统900可以实现本申请各实施例的方法和功能。输入/输出接口920,可以为芯片系统900中的输入输出电路,将芯片系统900处理好的信息输出,或将待处理的数据或信令信息输入芯片系统900进行处理。
作为一种方案,该芯片系统900用于实现上文各个方法实施例中由终端设备或网络设备或LMF执行的操作。
例如,逻辑电路910用于实现上文方法实施例中由终端设备执行的处理相关的操作,如图1至图6中任意一个所示实施例中的终端设备执行的处理相关的操作;输入/输出接口920用于实现上文方法实施例中由终端设备执行的发送和/或接收相关的操作,如图1至图6中任意一个所示实施例中的终端设备执行的发送和/或接收相关的操作。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述各方法实施例中由终端设备或网络设备或LMF执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法各实施例中由终端设备执行的方法。
本申请实施例还提供一种计算机程序产品,包含指令,该指令被计算机执行时以实现上述各方法实施例中由终端设备或网络设备或LMF执行的方法。
上述提供的任一种装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。此外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。例如,所述计算机可以是个人计算机,服务器,或者网络设备等。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD)等。例如,前述的可用介质包括但不限于:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (40)

  1. 一种通信方法,其特征在于,包括:
    终端设备确定采用模式2测量Q个PRS频率层中的每个PRS频率层所用的时间;
    所述终端设备根据所述Q个PRS频率层中的每个PRS频率层所用时间的最大值,确定第二测量时间,其中,Q为正整数。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    终端设备确定采用模式1测量P个PRS频率层中的每个PRS频率层所用的时间;
    所述终端设备根据所述P个PRS频率层中的每个PRS频率层所用时间的和,确定第一测量时间,其中,P为正整数。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述第一测量时间和所述第二测量时间,确定第三测量时间,所述第三测量时间为测量P+Q个PRS频率层所用的时间。
  4. 根据权利要求3所述的方法,其特征在于,所述终端设备根据所述第一测量时间和所述第二测量时间,确定所述第三测量时间,包括:
    所述终端设备根据所述第一测量时间、所述第二测量时间和第一余量,确定所述第三测量时间,所述第三测量时间为所述第一测量时间、所述第二测量时间和所述第一余量的和。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述测量Q个PRS频率层中的第二PRS频率层所用的时间根据第一时间和/或第二时间确定,所述第一时间为测量所述第二PRS频率层所用的采样时间,所述第二时间为测量所述第二PRS频率层的最后一个样点的测量时间。
  6. 根据权利要求5所述的方法,其特征在于,所述第一时间为PRS资源的持续时间,所述PRS资源的持续时间位于第一窗口内,所述第一窗口的长度为所述第二PRS频率层的第二测量时间窗长度与T2之间的差,所述第一窗口的起始位置为所述第二测量时间窗长度的起点,其中,所述T2为所述终端设备测量所述第二PRS频率层的处理时间能力。
  7. 根据权利要求5所述的方法,其特征在于,所述第一时间为PRS资源的持续时间,所述PRS资源的持续时间小于或等于N2,所述PRS资源的持续时间位于第一窗口内,所述第一窗口的长度为所述第二PRS频率层的第二测量时间窗长度与T2之间的差,所述第一窗口的起始位置为所述第二测量时间窗长度的起点,其中,所述N2为所述终端设备测量所述第二PRS频率层的持续时间能力,所述T2为所述终端设备测量所述第二PRS频率层的处理时间能力。
  8. 根据权利要求5至7中任一项所述的方法,其特征在于,当所述第二PRS频率层的所有PRS资源在所述第二PRS频率层的第二测量时间窗内时,所述第二时间为所述第二PRS频率层的第二测量时间窗长度。
  9. 根据权利要求5至7中任一项所述的方法,其特征在于,当所述第二PRS频率层存在PRS资源不在所述第二PRS频率层的第二测量时间窗内时,所述第二时间为所述第二PRS频率层的可获得周期。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备向定位管理功能LMF上报第二能力,所述第二能力与第二PRS频率层相关联;
    所述终端设备根据所述第二能力,确定所述第二PRS频率层的测量模式为模式2。
  11. 根据权利要求10所述的方法,其特征在于,所述第二能力为{N2,T2},其中,所述N2为所述终端设备测量所述第二PRS频率层的持续时间能力,所述T2为所述终端设备测量所述第二PRS频率层的处理时间能力。
  12. 根据权利要求10所述的方法,其特征在于,所述第二能力包括{N,T}和{N2,T2},所述N、所述N2为所述终端设备测量所述第二PRS频率层的持续时间能力,所述T、所述T2为所述终端设备测量所述第二PRS频率层的处理时间能力,
    所述终端设备根据所述第二能力,确定所述第二PRS频率层的测量模式为模式2,包括:
    所述终端设备接收来自所述LMF的第一指示信息,所述第一指示信息指示所述第二PRS频率层的测量模式为模式2。
  13. 根据权利要求10所述的方法,其特征在于,所述第二能力包括{N,T}和{N2,T2},所述N、所述N2为所述终端设备测量所述第二PRS频率层的持续时间能力,所述T、所述T2为所述终端设备测量所述第二PRS频率层的处理时间能力,
    所述终端设备根据所述第二能力,确定所述第二PRS频率层的测量模式为模式2,包括:
    所述终端设备接收来自网络设备的第二指示信息,所述第二指示信息用于指示所述第二PRS频率层的第二测量时间窗长度;
    所述终端设备根据所述第二测量时间窗长度大于或等于第一阈值,确定所述第二PRS频率层的测量模式为模式2。
  14. 根据权利要求2至4中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备向定位管理功能LMF上报第一能力,所述第一能力与第一PRS频率层相关联;
    所述终端设备根据所述第一能力,确定所述第一PRS频率层的测量模式为模式1。
  15. 根据权利要求14所述的方法,其特征在于,所述第一能力为{N,T},其中,所述N为所述终端设备测量所述第一PRS频率层的持续时间能力,所述T为所述终端设备测量所述第一PRS频率层的处理时间能力。
  16. 根据权利要求14所述的方法,其特征在于,所述第一能力包括{N,T}和{N2,T2},所述N、所述N2为所述终端设备测量所述第一PRS频率层的持续时间能力,所述T、所述T2为所述终端设备测量所述第一PRS频率层的处理时间能力,
    所述终端设备根据所述第一能力,确定所述第一PRS频率层的测量模式为模式1,包括:
    所述终端设备接收来自所述LMF的第一指示信息,所述第一指示信息指示所述第一PRS频率层的测量模式为模式1。
  17. 根据权利要求14所述的方法,其特征在于,所述第一能力包括{N,T}和{N2,T2},所述N、所述N2为所述终端设备测量所述第一PRS频率层的持续时间能力,所述T、所述T2为所述终端设备测量所述第一PRS频率层的处理时间能力,
    所述终端设备根据所述第一能力,确定所述第一PRS频率层的测量模式为模式1,包括:
    所述终端设备接收来自网络设备的第二指示信息,所述第二指示信息用于指示所述第一PRS频率层的第一测量时间窗长度;
    所述终端设备根据所述第一测量时间窗长度小于第一阈值,确定所述第一PRS频率层的测量模式为模式1。
  18. 根据权利要求1至17中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备向网络设备发送第三指示信息,所述第三指示信息指示所述第二PRS频率层的第二测量时间窗长度大于或等于第二阈值,或者,所述第三指示信息用于指示第一建议值,所述第一建议值为所述第二PRS频率层的第二测量时间窗长度内除PRS资源的持续时间之外的时间。
  19. 根据权利要求1至18中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自网络设备的第四指示信息,所述第四指示信息用于指示第二PPW是否处于激活状态,所述第二PPW与所述Q个PRS频率层中的第二PRS频率层相关联;
    所述终端设备根据所述第四指示信息,确定所述第二PRS频率层的第二测量时间窗。
  20. 根据权利要求19所述的方法,其特征在于,所述终端设备根据所述第四指示信息,确定所述第二PRS频率层的第二测量时间窗,包括:
    所述第四指示信息指示所述第二PPW处于激活状态,所述终端设备确定所述第二测量时间窗为所述第二PPW,或者,所述第四指示信息指示所述第二PPW处于未激活状态,所述终端设备确定所述第二测量时间窗为第二MG。
  21. 根据权利要求2至4、14至17中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自网络设备的第四指示信息,所述第四指示信息用于指示第一定位参考信号处理窗PPW是否处于激活状态,所述第一PPW与所述P个PRS频率层中的第一PRS频率层相关联;
    所述终端设备根据所述第四指示信息,确定所述第一PRS频率层的第一测量时间窗。
  22. 根据权利要求21所述的方法,其特征在于,所述终端设备根据所述第四指示信息,确定所述第一PRS频率层的第一测量时间窗,包括:
    所述第四指示信息指示所述第一PPW处于激活状态,所述终端设备确定所述第一测量时间窗为所述第一PPW,或者,所述第四指示信息指示所述第一PPW处于未激活状态,所述终端设备确定所述第一测量时间窗为第一测量间隔MG。
  23. 一种通信方法,其特征在于,包括:
    终端设备向定位管理功能LMF上报能力,所述能力与定位参考信号PRS频率层相关联;
    所述终端设备根据所述能力,确定所述PRS频率层的测量模式。
  24. 根据权利要求23所述的方法,其特征在于,所述能力包括以下至少一项:{N,T}、{N2,T2},其中,所述N、所述N2为所述终端设备测量所述PRS频率层的持续时间能力,所述T、所述T2为所述终端设备测量所述PRS频率层的处理时间能力。
  25. 根据权利要求24所述的方法,其特征在于,所述终端设备根据所述能力,确定所述PRS频率层的测量模式,包括:
    所述能力为所述{N,T},所述终端设备确定所述PRS频率层的测量模式为模式1;或者,
    所述能力为所述{N2,T2},所述终端设备确定所述PRS频率层的测量模式为模式2。
  26. 根据权利要求24所述的方法,其特征在于,所述能力为{N,T}和所述{N2,T2},
    所述终端设备根据所述能力,确定所述PRS频率层的测量模式,包括:
    所述终端设备接收来自所述LMF的第一指示信息,所述第一指示信息用于指示所述PRS频率层的测量模式为模式1或模式2;
    所述终端设备根据所述第一指示信息,确定所述PRS频率层的测量模式为模式1或模式2。
  27. 根据权利要求24所述的方法,其特征在于,所述能力为所述{N,T}和所述{N2,T2},所述终端设备根据所述能力,确定所述PRS频率层的测量模式,包括:
    所述终端设备接收来自网络设备的第二指示信息,所述第二指示信息用于指示所述PRS频率层的测量时间窗长度;
    所述终端设备根据所述第二指示信息,确定所述PRS频率层的测量模式为模式1或模式2。
  28. 根据权利要求27所述的方法,其特征在于,所述终端设备根据所述第二指示信息,确定所述PRS频率层的测量模式为模式1或模式2,包括:
    所述PRS频率层的测量时间窗长度大于或等于第一阈值,所述终端设备确定所述PRS频率层的测量模式为模式2;或者,
    所述PRS频率层的测量时间窗长度小于所述第一阈值,所述终端设备确定所述PRS频率层的测量模式为模式1。
  29. 根据权利要求23至28中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备向网络设备发送第三指示信息,所述第三指示信息用于指示所述PRS频率层的测量时间窗长度大于或等于第二阈值,或者,所述第三指示信息用于指示第一建议值,所述第一建议值为所述PRS频率层的测量时间窗长度内除PRS资源的持续时间之外的时间。
  30. 一种通信方法,其特征在于,包括:
    终端设备接收来自网络设备的第四指示信息,所述第四指示信息用于指示定位参考信号处理窗PPW是否处于激活状态,所述PPW与定位参考信号PRS频率层相关联;
    所述终端设备根据所述第四指示信息,确定所述PRS频率层的测量时间窗。
  31. 根据权利要求30所述的方法,其特征在于,所述终端设备根据所述第四指示信息,确定所述PRS频率层的测量时间窗,包括:
    所述第四指示信息指示所述PPW处于激活状态,所述终端设备确定所述PRS频率层的测量时间窗为所述PPW;或者,
    所述第四指示信息指示所述PPW处于未激活状态,所述终端设备确定所述PRS频率层的测量时间窗为测量间隔MG。
  32. 一种通信方法,其特征在于,包括:
    第一设备向网络设备发送第三指示信息,所述第三指示信息用于指示PRS频率层的测量时间窗长 度大于或等于第二阈值,或者,所述第三指示信息用于指示第一建议值,所述第一建议值为所述PRS频率层的测量时间窗长度内除PRS资源的持续时间之外的时间。
  33. 一种通信方法,其特征在于,包括:
    网络设备接收来自第一设备的第三指示信息,所述第三指示信息用于指示PRS频率层的测量时间窗长度大于或等于第二阈值,或者,所述第三指示信息用于指示第一建议值,所述第一建议值为所述PRS频率层的测量时间窗长度内除PRS资源的持续时间之外的时间;
    所述网络设备根据所述第三指示信息,确定所述PRS频率层的测量时间窗长度。
  34. 根据权利要求33所述的方法,其特征在于,所述网络设备根据所述第三指示信息,确定所述PRS频率层的测量时间窗长度,包括:
    所述第三指示信息指示所述PRS频率层的测量时间窗长度大于或等于第二阈值,所述网络设备确定所述PRS频率层的测量时间窗长度大于或等于所述第二阈值;或者,
    所述第三指示信息指示所述第一建议值,所述网络设备确定所述PRS频率层的测量时间窗长度为所述第一建议值与所述PRS资源的持续时间的和。
  35. 根据权利要求33或34所述的方法,其特征在于,所述方法还包括:
    所述网络设备向终端设备发送第二指示信息,所述第二指示信息用于指示所述PRS频率层的测量时间窗长度。
  36. 一种通信方法,其特征在于,包括:
    定位管理功能LMF接收来自终端设备上报的能力,所述上报的能力为{N,T}和{N2,T2},所述上报的能力与定位参考信号PRS频率层相关联,其中,所述N、所述N2为所述终端设备测量所述PRS频率层的持续时间能力,所述T、所述T2为所述终端设备测量所述PRS频率层的处理时间能力;
    所述LMF根据所述上报的能力,向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述PRS频率层的测量模式为模式1或模式2。
  37. 一种通信装置,其特征在于,包括:
    处理器,用于执行存储器中存储的计算机程序,以使得所述装置执行如权利要求1至22中任一项所述的方法,或者,以使得所述装置执行如权利要求23至29中任一项所述的方法,或者,以使得所述装置执行如权利要求30或31所述的方法,或者,以使得所述装置执行如权利要求32所述的方法,或者,以使得所述装置执行如权利要求33至35中任一项所述的方法,或者,以使得所述装置执行如权利要求36所述的方法。
  38. 根据权利要求37所述的装置,其特征在于,所述装置还包括所述存储器。
  39. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至22中任一项所述的方法,或者,使得所述计算机执行如权利要求23至29中任一项所述的方法,或者,使得所述计算机执行如权利要求30或31所述的方法,或者,使得所述计算机执行如权利要求32所述的方法,或者,使得所述计算机执行如权利要求33至35中任一项所述的方法,或者,使得所述计算机执行如权利要求36所述的方法。
  40. 一种计算机程序产品,其特征在于,所述计算机程序产品包括用于执行如权利要求1至22中任一项所述的方法的指令,或者,所述计算机程序产品包括用于执行如权利要求23至29中任一项所述的方法的指令,或者,所述计算机程序产品包括用于执行如权利要求30或31所述的方法的指令,或者,所述计算机程序产品包括用于执行如权利要求32所述的方法的指令,或者,所述计算机程序产品包括用于执行如权利要求33至35中任一项所述的方法的指令,或者,所述计算机程序产品包括用于执行如权利要求36所述的方法的指令。
PCT/CN2023/105157 2022-08-09 2023-06-30 一种通信方法和装置 WO2024032266A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210948292.6A CN117641372A (zh) 2022-08-09 2022-08-09 一种通信方法和装置
CN202210948292.6 2022-08-09

Publications (1)

Publication Number Publication Date
WO2024032266A1 true WO2024032266A1 (zh) 2024-02-15

Family

ID=89850677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/105157 WO2024032266A1 (zh) 2022-08-09 2023-06-30 一种通信方法和装置

Country Status (2)

Country Link
CN (1) CN117641372A (zh)
WO (1) WO2024032266A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113709656A (zh) * 2020-05-09 2021-11-26 华为技术有限公司 一种测量定位参考信号的方法以及相关装置
CN114374987A (zh) * 2020-10-15 2022-04-19 维沃移动通信有限公司 定位方法、终端及网络侧设备
CN114503742A (zh) * 2019-10-10 2022-05-13 高通股份有限公司 用于每频带能力报告的方法和装置以及与频带不可知定位信号的关系
CN114567928A (zh) * 2019-02-15 2022-05-31 成都华为技术有限公司 用于定位终端设备的方法和装置
WO2022126455A1 (zh) * 2020-12-16 2022-06-23 Oppo广东移动通信有限公司 测量参数的确定方法、终端设备、芯片和存储介质
CN114666890A (zh) * 2020-12-23 2022-06-24 维沃移动通信有限公司 Prs处理方法、装置及用户设备
WO2022147805A1 (zh) * 2021-01-08 2022-07-14 Oppo广东移动通信有限公司 定位测量的方法、终端设备及网络设备
CN114762402A (zh) * 2019-12-17 2022-07-15 华为技术有限公司 一种定位方法及装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114567928A (zh) * 2019-02-15 2022-05-31 成都华为技术有限公司 用于定位终端设备的方法和装置
CN114503742A (zh) * 2019-10-10 2022-05-13 高通股份有限公司 用于每频带能力报告的方法和装置以及与频带不可知定位信号的关系
CN114762402A (zh) * 2019-12-17 2022-07-15 华为技术有限公司 一种定位方法及装置
CN113709656A (zh) * 2020-05-09 2021-11-26 华为技术有限公司 一种测量定位参考信号的方法以及相关装置
CN114374987A (zh) * 2020-10-15 2022-04-19 维沃移动通信有限公司 定位方法、终端及网络侧设备
WO2022126455A1 (zh) * 2020-12-16 2022-06-23 Oppo广东移动通信有限公司 测量参数的确定方法、终端设备、芯片和存储介质
CN114666890A (zh) * 2020-12-23 2022-06-24 维沃移动通信有限公司 Prs处理方法、装置及用户设备
WO2022147805A1 (zh) * 2021-01-08 2022-07-14 Oppo广东移动通信有限公司 定位测量的方法、终端设备及网络设备

Also Published As

Publication number Publication date
CN117641372A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
WO2020029890A1 (zh) 接收参考信号的方法和通信设备
JP7150042B2 (ja) 信号伝送方法、ネットワーク装置及び端末装置
WO2020164142A1 (zh) 同步信号块信息处理方法、装置及通信装置
WO2020228630A1 (zh) 一种通信方法和通信装置
WO2022007623A1 (zh) 接入小区的方法和装置
WO2021258776A1 (zh) 通信方法及通信装置
WO2021196099A1 (zh) 终端定位方法及装置
WO2021184197A1 (zh) 无线通信方法和装置以及通信设备
WO2019238007A1 (zh) 检测波束的方法和装置
WO2022160265A1 (zh) 通信方法和通信装置
WO2023125223A1 (zh) 下行传输的方法及装置
WO2023125867A1 (zh) 信号传输的方法及装置
US20230083152A1 (en) Method for wireless communication and network device
US20230029283A1 (en) Communication method and communication apparatus
WO2021056587A1 (zh) 一种通信方法及装置
WO2021197233A1 (zh) 一种通信方法及设备
WO2021027907A1 (zh) 通信方法和通信装置
WO2021027660A1 (zh) 无线通信的方法和通信装置
WO2020151585A1 (zh) 数据传输的方法和装置
KR102298616B1 (ko) 비-트리거-기반 레인징을 위한 절전
WO2024032266A1 (zh) 一种通信方法和装置
US20220338044A1 (en) Method and apparatus for determining evaluation time for downlink transmission quality monitoring
WO2019085912A1 (zh) 通信终端及其通信方法、存储介质
WO2022028558A1 (zh) 通信的方法、通信装置及系统
WO2022160298A1 (zh) 时间同步方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851493

Country of ref document: EP

Kind code of ref document: A1