WO2024032201A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2024032201A1
WO2024032201A1 PCT/CN2023/103505 CN2023103505W WO2024032201A1 WO 2024032201 A1 WO2024032201 A1 WO 2024032201A1 CN 2023103505 W CN2023103505 W CN 2023103505W WO 2024032201 A1 WO2024032201 A1 WO 2024032201A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
channel
lbt
time slot
indication information
Prior art date
Application number
PCT/CN2023/103505
Other languages
English (en)
French (fr)
Inventor
齐鸿
苏宏家
卢磊
易凤
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024032201A1 publication Critical patent/WO2024032201A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communication, and in particular, to a communication method and device.
  • terminal equipment and terminal equipment can communicate directly through the near field communication (proximity communication 5, PC5) interface, so the The communication method can be called PC5 communication; from a link perspective, terminal equipment and terminal equipment can communicate directly through a sidelink (SL), so this communication method can be called SL communication.
  • 3GPP 3rd generation partnership project
  • the frequency bands used by communication equipment can be divided into licensed frequency bands and unlicensed frequency bands.
  • the authorized frequency band communication equipment uses spectrum resources based on the scheduling of the central node.
  • unlicensed frequency bands communication devices compete for channels through the listen before talk (LBT) mechanism.
  • LBT listen before talk
  • unlicensed spectrum resources can be shared between terminal devices.
  • This method can be called sidelink-unlicensed (SL-U) communication based on unlicensed spectrum.
  • SL-U sidelink-unlicensed
  • the terminal device after the terminal device competes for the channel through the LBT mechanism, it can obtain the channel occupancy time (COT). Furthermore, the terminal device can share the corresponding spectrum resources in the COT with other terminal devices, so that after receiving the COT sharing information, the other terminal devices can access the channel through the LBT at a designated time, thereby using the shared spectrum resources to send data.
  • COT channel occupancy time
  • terminal devices when a terminal device shares spectrum resources with multiple terminal devices in the above manner, when multiple terminal devices complete LBT in the same time slot, multiple terminal devices access the channel in the next time slot in which the LBT is completed. Terminal devices may block each other, causing some terminal devices to be unable to access the channel and use shared resources to send data, resulting in a waste of resources.
  • the present application provides a communication method and device, which can solve the problem of resource waste caused by the inability of terminal equipment sharing resources to access the channel.
  • a communication method is provided.
  • the method may be executed by a first terminal device, or may be executed by a component of the first terminal device, such as a processor, a chip, or a chip system of the first terminal device. It may also be executed by A logic module or software implementation that can realize all or part of the functions of the first terminal device.
  • the following description takes the method being executed by the first terminal device as an example.
  • the communication method includes: a first terminal device receiving first sidelink control information from at least one second terminal device, wherein the first sidelink control information is used to indicate a first time slot, and the first time slot is designated by Send sidelink information to at least one second terminal device.
  • the first terminal device determines that the first time slot is within the channel occupancy time COT.
  • the first terminal device sends first indication information to at least one second terminal device, and the first indication information indicates the first channel access type.
  • the first terminal device when sharing resources with the second terminal device, can instruct the second terminal device to use a specified type of channel access method, thereby ensuring that the second terminal device follows the specified type.
  • the channel access method is used to access the channel, which improves the utilization of resources.
  • the first indication information may be carried in the second sidelink control information or media access control MAC signaling.
  • the first indication information may be carried in the COT indication information.
  • the COT indication information is also used to indicate resource sharing information.
  • the first indication information is sent together with the resource sharing information, etc., which can reduce signaling overhead.
  • the first indication information may be a field in the COT indication information.
  • the COT indication information may be sidelink control information.
  • the first channel access type may be Type2A listen-before-talk LBT, Type2B LBT, or Type2C LBT. Any kind.
  • the first terminal device can select a Type 2 type of LBT based on the execution duration of different types of LBT and the application scenario, and indicate it to the second terminal device, which can improve the reliability of channel access.
  • the first indication information can be indicated through the first bit field, and different bit values in the first bit field are used to indicate any of the following first channel access types: Type2A LBT, Type2B LBT, Type2C LBT.
  • the first bit field is 1 bit or multiple bits.
  • a communication method is provided.
  • the method can be executed by a second terminal device, or by a component of the second terminal device, such as a processor, a chip, or a chip system of the second terminal device. It can also be executed by Logic module or software implementation that can realize all or part of the functions of the second terminal device.
  • the following description takes the method being executed by the second terminal device as an example.
  • the communication method includes: the second terminal device sends first sidelink control information to the first terminal device, wherein the first sidelink control information is used to indicate a first time slot, and the first time slot is used for the second time slot.
  • the terminal device sends sideline information.
  • the second terminal device accesses the channel according to the first channel access type, and the first channel access type is indicated by the first indication information or the first channel access type is preconfigured.
  • the second terminal device can use a preconfigured fixed channel access method, or according to the first indication information sent by the first terminal device.
  • the channel access type performs channel access, which ensures that the second terminal device can perform LBT access to the channel at the specified time according to the specified type of channel access method regardless of whether there is conflicting access, thereby avoiding terminals being shared resources. Because the equipment uses different channel access methods, the terminal equipment that has completed the channel access is unable to access the channel and cannot use the shared resources. This allows terminal equipment with high priority to transmit services on the reserved resources to be used smoothly. Sharing resources ensures the transmission quality of service (QoS) of high-priority services, improves resource utilization, and avoids waste of resources.
  • QoS transmission quality of service
  • the communication method provided by the embodiment of the present application further includes: the second terminal device receives the first indication from the first terminal device.
  • the first indication information may indicate the first channel access type.
  • the first indication information may be carried in the second sidelink control information or MAC signaling.
  • the first indication information may be carried in the COT indication information.
  • the COT indication information may be sidelink control information.
  • the first indication information may be a field in the COT indication information.
  • the first channel access type may be any one of Type2A listen-before-talk LBT, Type2B LBT, and Type2C LBT.
  • the first indication information can be indicated through the first bit field, and different bit values in the first bit field are used to indicate any of the following first channel access types: Type2A LBT, Type2B LBT, Type2C LBT.
  • the first bit field is 1 bit or multiple bits.
  • the first channel access type when the first channel access type is preconfigured, the first channel access type is configured for multiple terminal devices, and the second terminal device is one of the multiple terminal devices.
  • the plurality of terminal devices also include a third terminal device.
  • the third terminal device is a terminal that uses a preconfigured first channel access type to access the channel and sends sidelink information on the first resource.
  • the first resource is the resource indicated by the fourth terminal device to the third terminal device, the fourth terminal device and the first terminal device access the same channel, the first resource and the second resource of the first terminal device are the first time slot
  • the second resource is a non-overlapping frequency domain resource used by the second terminal device to send sidelink information.
  • a communication device in a third aspect, includes: a processing module and a transceiver module.
  • the transceiver module is used to receive first sidelink control information from at least one second terminal device, the first sidelink control information is used to indicate a first time slot, and the first time slot is used for at least one first time slot.
  • the second terminal device sends sidelink information.
  • a processing module configured to determine that the first time slot is within the channel occupancy time COT.
  • the transceiver module is also configured to send first indication information to at least one second terminal device, where the first indication information indicates the first channel access type.
  • the first indication information may be carried in the second sidelink control information or media access control MAC signaling.
  • the first indication information may be carried in the COT indication information.
  • the COT indication information is also used to indicate resource sharing information.
  • the COT indication information may be sidelink control information.
  • the first indication information may be a field in the COT indication information.
  • the first channel access type may be any one of Type2A listen-before-talk LBT, Type2B LBT, and Type2C LBT.
  • the first indication information can be indicated through the first bit field, and different bit values in the first bit field are used to indicate any of the following first channel access types: Type2A LBT, Type2B LBT, Type2C LBT.
  • the first bit field is 1 bit or multiple bits.
  • the transceiver module may include a receiving module and a sending module.
  • the sending module is used to implement the sending function of the communication device described in the third aspect
  • the receiving module is used to implement the receiving function of the communication device described in the third aspect.
  • the communication device described in the third aspect may further include a storage module that stores programs or instructions.
  • the processing module executes the program or instruction
  • the communication device described in the third aspect can perform the method described in the first aspect.
  • the communication device described in the third aspect may be a terminal device, or may be disposed on the terminal device.
  • the chip (system) or other components or components in may also be a device including terminal equipment, which is not limited in this application.
  • a fourth aspect provides a communication device.
  • the communication device includes: a processing module and a transceiver module.
  • the transceiver module is used to send first sidelink control information to the first terminal device, the first sidelink control information is used to indicate the first time slot, and the first time slot is used for the communication device to send sidelink information.
  • a processing module configured to access the channel according to a first channel access type, where the first channel access type is indicated by the first indication information or the first channel access type is preconfigured.
  • the transceiver module when the first channel access type is indicated by the first indication information, is also configured to receive the first indication information from the first terminal device, and the first indication information indicates the first Channel access type.
  • the first indication information may be carried in the second sidelink control information or media access control MAC signaling.
  • the first indication information may be carried in the COT indication information.
  • the COT indication information is also used to indicate resource sharing information.
  • the COT indication information may be sidelink control information.
  • the first indication information may be a field in the COT indication information.
  • the first channel access type is any one of Type2A listen-before-talk LBT, Type2B LBT, and Type2C LBT.
  • the first indication information can be indicated through the first bit field, and different bit values in the first bit field are used to indicate any of the following first channel access types: Type2A LBT, Type2B LBT, Type2C LBT.
  • the first bit field is 1 bit or multiple bits.
  • the first channel access type when the first channel access type is preconfigured, the first channel access type is configured for multiple terminal devices, and the communication device in the fourth aspect is a multiple terminal device. one of the.
  • the plurality of terminal devices also include a third terminal device.
  • the third terminal device is a terminal that uses a preconfigured first channel access type to access the channel and sends sidelink information on the first resource.
  • the first resource is the resource indicated by the fourth terminal device to the third terminal device, the fourth terminal device and the first terminal device access the same channel, the first resource and the second resource of the first terminal device are the first time slot
  • the second resource is a resource used by the communication device to send sidelink information.
  • the transceiver module may include a receiving module and a sending module.
  • the sending module is used to implement the sending function of the communication device described in the fourth aspect
  • the receiving module is used to implement the receiving function of the communication device described in the fourth aspect.
  • the communication device described in the fourth aspect may further include a storage module that stores programs or instructions.
  • the processing module executes the program or instruction, the communication device described in the fourth aspect can perform the method described in the second aspect.
  • the communication device described in the fourth aspect may be a terminal device, or may be disposed on the terminal device.
  • the chip (system) or other components or components in may also be a device including terminal equipment, which is not limited in this application.
  • a communication device in a fifth aspect, includes: a processor, the processor is coupled to a memory, and the processor is used to execute a computer program stored in the memory, so that the communication device described in the fifth aspect can execute any one of the first to second aspects. Possible implementations of the methods described.
  • the communication device described in the fifth aspect may further include a transceiver.
  • the transceiver can be a transceiver circuit or an interface circuit.
  • the transceiver can be used for the communication device described in the fifth aspect to communicate with other communication devices.
  • the communication device described in the fifth aspect may be the first terminal device in the first aspect or the second terminal device in the second aspect, or may be provided in the first terminal device or the second terminal device.
  • a sixth aspect provides a communication system.
  • the communication system includes a first terminal device and at least one second terminal device.
  • the first terminal device is used to perform the communication method described in the first aspect
  • the second terminal device is used to perform the communication method described in the second aspect.
  • a seventh aspect provides a communication system.
  • the communication system includes a first terminal device and at least a second terminal device.
  • the first terminal device is used to perform the communication method described in the first aspect
  • the second terminal device is used to perform the communication method described in the second aspect.
  • a computer-readable storage medium stores computer programs or instructions.
  • the computer program or instructions When the computer program or instructions are run on a computer, the computer is caused to perform the method described in any one of the possible implementations of the first aspect to the second aspect.
  • a ninth aspect provides a computer program product.
  • the computer program product includes: a computer program or instructions. When the computer program or instructions are run on a computer, the computer performs the method described in any one of the possible implementations of the first aspect to the second aspect.
  • a tenth aspect provides a communication method.
  • the method includes: the second terminal device sends first sidelink control information to the first terminal device, the first sidelink control information is used to indicate a first time slot, and the first time slot is the sending side of the second terminal device. time slot for line information.
  • the first terminal device determines that the first time slot is within the channel occupied COT, and sends first indication information to the second terminal device.
  • the first indication information indicates the first channel access type, and the second terminal device uses the first channel access type. access channel.
  • the eleventh aspect Provide a method of communication.
  • the method includes: a first terminal device receiving first sidelink control information from at least one second terminal device, wherein the first sidelink control information is used to indicate a first time slot, and the first time slot is used to At least one second terminal device sends sidelink information.
  • the first terminal device determines that the first time slot is within the channel occupancy time COT.
  • the first terminal device sends first indication information to at least one second terminal device, and the first indication information indicates the length of the first cyclic prefix extension CPE or instructs at least one second terminal device to send a CPE of the same length.
  • Figure 1 is a schematic structural diagram of a frame structure when the subcarrier spacing is 30 kHz provided by an embodiment of the present application;
  • Figure 2 is a schematic structural diagram of COT sharing in sidelink communication provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of CPE replication provided by an embodiment of the present application.
  • Figure 4 is a schematic structural diagram of resource interleaving when the subcarrier spacing is 15 kHz according to an embodiment of the present application
  • Figure 5 is a schematic structural diagram of a sub-channel provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of a scenario in which UEs are blocked when performing COT sharing according to an embodiment of the present application
  • Figure 7 is a schematic diagram of another scenario in which UEs are blocked when performing COT sharing according to an embodiment of the present application.
  • Figure 8 is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • Figure 9 is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • Figure 10 is a schematic flow chart of another communication method provided by an embodiment of the present application.
  • Figure 11 is a schematic diagram of a scenario in which the same UE shares resources with multiple UEs according to an embodiment of the present application
  • Figure 12 is a schematic flow chart of another communication method provided by an embodiment of the present application.
  • Figure 13 is a schematic diagram of a scenario in which different UEs share resources with different UEs according to the embodiment of the present application;
  • Figure 14 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 15 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • the air interface for direct communication between terminal devices is the PC5 interface, so this communication method can be called PC5 communication; from the perspective of the link, the air interface between terminal devices The direct communication link between them is SL, so this communication method can be called SL communication.
  • NR-U-based sidelink communication is an important evolution direction.
  • Communication equipment applied to the NR-U system can be called NR-U equipment, and the NR-U equipment can be a network equipment or a terminal equipment.
  • FIG. 1 shows a schematic structural diagram of a frame structure when the subcarrier spacing is 30 kilohertz (kHz).
  • the duration of a radio frame is 10 milliseconds (milliseconds, ms)
  • a radio frame includes 10 subframes (subframes)
  • one subframe includes 2 slots
  • 1 slot includes 14 orthogonal frequency division multiplexing (OFDM) symbols.
  • the duration of the OFDM symbol is related to the subcarrier spacing. .
  • the frame structure also has a mini-slot design.
  • the mini-slot is not a time slot including 14 symbols.
  • the symbols in the mini-slot The number is very flexible, and the value range of the number of symbols is ⁇ 2, 3, 4,..., 13 ⁇ .
  • terminal devices need to use spectrum resources in a competitive manner. For example, terminal devices compete for the channel through LBT.
  • LBT is a channel access rule based on random back-off. The terminal device needs to sense whether the channel is idle before accessing the channel. If it senses The channel can be occupied until the channel has been idle for a certain period of time. If the channel is perceived to be non-idle, the channel needs to wait until the channel becomes idle again before the channel can be occupied.
  • LBT channel access methods generally use energy detection (ED) and carrier sense (CS). For example, when energy detection is used to determine whether a channel is idle, when the detected energy exceeds the detection threshold, the detected channel is not idle or busy, and access to the channel is not allowed. When the detected energy is lower than the detection threshold, and continues for more than a period After a certain time, the channel is detected to be idle and access to the channel is allowed.
  • ED energy detection
  • CS carrier sense
  • Category 1 LBT Sent immediately after a short switching gap. Referred to as Cat1 LBT, it is used for NR-U equipment to send immediately after the conversion interval from receiving state to transmitting state in COT. The conversion interval cannot be greater than 16 microseconds (microsecond, us).
  • Category 2 LBT LBT without random backoff.
  • Cat2 LBT it is used by NR-U equipment to transmit without random backoff after detecting that the channel is idle for a certain period of time.
  • Category 3 LBT LBT with random backoff of a fixed-size contention window (CW).
  • Cat3 LBT it is used by NR-U equipment to generate a random number N based on a fixed-size competition window, and can send it after detecting that the channel is idle for a period of time determined by the random number N.
  • the size of the competition window is related to the minimum and maximum values of N.
  • Category 4 LBT LBT with random backoff with variable size contention window.
  • Cat4 LBT it is used by NR-U devices to generate a random number N based on a variable-sized competition window, and can send it after sensing that the channel is idle for a period of time determined by the random number N.
  • the size of the contention window is related to the minimum and maximum values of N, and the NR-U device can change the size of the contention window.
  • Type1 LBT The above Cat4 LBT can also be called Type1 LBT.
  • the NR-U device needs to perform random backoff before it can access the channel and send data.
  • Type1 LBT can be achieved through the following steps:
  • the NR-U device listens (listening can also be replaced by sensing) during a sensing slot duration (denoted as T sl ) with an extended duration (defer sensing, denoted as T d ) after the channel becomes idle. , and information can be sent immediately after the counter N reaches zero in steps 1-4 below. Otherwise, additional T d is required to continue listening, such as performing steps 1-5 and 1-6 below.
  • Step 1-6 If all T sl in another T d detect that the channel is idle, perform step 1-4, otherwise perform step 1-5.
  • CW min,p , CW max,p , and m p are determined based on the channel access priority p associated with NR-U equipment transmission, as shown in the following Tables 1 and 2, where, Table 1 shows the corresponding relationship between the channel access priority level and the contention window value, the number of listening slot periods, and the channel occupancy time during the downlink transmission process.
  • Table 2 shows the channel access priority level and the relationship between the channel access priority level and the contention window value during the uplink transmission process. The correspondence between the contention window value, the number of listening slot periods, and the channel occupation time.
  • step 1-1 The value of CW p in the above step 1-1 can be adjusted according to the following steps before step 1-1:
  • Step 0-2 For the feedback HARQ-ACK value corresponding to the data sent by the NR-U device in the reference subframe, if the proportion of NACK in the feedback value is greater than or equal to 80%, then each channel access priority
  • the reference subframe is the latest starting subframe used for transmission by the NR-U device on the channel.
  • Cat2 LBT includes the following three types of LBT:
  • Type2A LBT Cat2 LBT with 25us interval.
  • the NR-U device can access the channel and send data after sensing that the channel is idle for 25us.
  • Type2B LBT Cat2 LBT with 16us interval.
  • the NR-U device can access the channel and send data after sensing that the channel is idle for 16us.
  • Type2C LBT Cat1 LBT with up to 16us spacing.
  • the NR-U device does not need to listen to the channel. It can directly access the channel and send data after a conversion interval of up to 16us in the COT.
  • unlicensed spectrum resources can be shared between different terminal devices, and the shared terminal devices can use the shared spectrum resources to send and receive data.
  • the terminal device competes for the channel through LBT, it can obtain the COT, which is the time the terminal device is allowed to occupy the channel after successfully accessing the channel, and the terminal device can share the resources in the COT with other terminal devices.
  • other terminal devices can use the shared resources to send data.
  • terminal equipment that shares resources usually uses the above-mentioned Type1 LBT method to compete for the channel to obtain COT
  • terminal equipment that uses shared resources usually uses Type2A LBT or Type2B LBT or Type2C LBT method to access the channel.
  • FIG. 2 shows a schematic structural diagram of COT sharing in sidelink communication.
  • UE-A can compete for the channel through Type1 LBT and obtain the COT.
  • UE-A can share the resources in the COT with UE-B and UE-C.
  • UE-A can use the COT indication information is sent to UE-B and UE-C within the COT.
  • the COT indication information is used to indicate the shared resources.
  • UE-B and UE-C receive and parse the COT indication information.
  • the COT indication information at the specified time Access COT through Type2A or Type2B or Type2C to complete data transmission.
  • the terminal equipment in SL-U is limited by the design of the frame structure. After the terminal equipment completes the LBT, that is, after completing the entire process of channel listening, the time slot boundary needs to be considered. If the terminal equipment completes the end of the LBT The time point is not the starting position of a time slot, so the terminal device needs to be at the starting position of the next time slot after completing the LBT before it can send valid information.
  • CPE is used to ensure symbol-level synchronization.
  • CPE means further extending the cyclic prefix (CP) of the OFDM symbol to the previous symbol.
  • Symbol-level synchronization can also be understood as the NR-U device starting to send information at the starting position of an OFDM symbol.
  • FIG 3 shows a schematic structural diagram of CPE replication.
  • an OFDM symbol includes a CP and an OFDM data signal.
  • the CP is obtained by copying the tail section of the OFDM data signal and adding it to the head of the OFDM data signal. If the LBT end time point of the NR-U device is not the starting point of an OFDM symbol, the NR-U device cannot send a complete OFDM symbol signal. However, according to the LBT mechanism, the NR-U device needs to access the channel immediately after completing the LBT. Therefore, a part of the latter OFDM symbol is further filled into the previous incomplete OFDM as an extended CP, and then the channel is accessed and occupied. Among them, the expanded CP is CPE.
  • the terminal devices in SL-U share resources at the time slot granularity, the terminal devices sharing the resources can reserve the LBT in the previous time slot of the shared resources for the terminal devices using the shared resources.
  • OFDM symbols channel access is completed by sending CPE, so that information can be sent at the starting position of the next time slot after the time slot where LBT is completed.
  • the 3GPP NR-U system introduces the concept of interlaced resource block (RB), defining interlace m ⁇ 0,1,...,M-1 ⁇ to include multiple ⁇ m,M+m,2M+m ,3M+m,... ⁇ RBs. As shown in Figure 4, for 15kHz SCS, there are 10 interlace (interlace0 ⁇ interlace9) resources.
  • RB interlaced resource block
  • NR-U device 1 can use the resources on interlace 0 (interlace 0), including ⁇ RB0, RB10,..., RB90 ⁇
  • NR-U device 2 can use resources on interlace 1, including ⁇ RB1, RB11,..., RB91 ⁇ .
  • the terminal device can also share the time-frequency resources in the COT to other terminal devices according to the granularity of interlaced resource blocks (RBs).
  • RBs interlaced resource blocks
  • Mode 1 is a mode based on base station scheduling
  • Mode 2 is a user choice.
  • Resource model Since the terminal device in the SL-U has the ability to sense and select resources, Mode2 is usually used to implement resource selection. Therefore, the resource selection process of Mode2 is explained in the embodiment of this application. Illustratively, the process in which the terminal device triggers Mode2 to select resources in time slot a includes the following steps:
  • Step 2-1 The terminal device determines the resource selection window (RSW) [a+T 1 , a+T 2 ], T 2min ⁇ T 2 ⁇ packet delay budget (packet delay budget, PDB), where, The delay in processing resource selection and data transmission for the terminal device.
  • T 1 and T 2 depend on the implementation of the device and represent the left and right boundaries of the resource selection window. There is a one-to-one correspondence between the value of and the subcarrier spacing ⁇ SL used for transmission, as shown in Table 3 below.
  • Step 2-2 The terminal device determines the sensing window in, is the delay for the terminal device to process the sensing result, T 0 represents the left boundary of the sensing window, The value of also has a one-to-one correspondence with the subcarrier spacing ⁇ SL used for transmission, as shown in Table 3 above.
  • Step 2-3 The terminal equipment determines the threshold value of the reference signal received power (RSRP).
  • the threshold value of the RSRP is related to the priority of the data to be sent (prio TX ) and the received sidelink It is related to the priority (prio RX ) indicated by the sidelink control information (SCI), specifically the prio RX + (prio TX -1)*8 sequence number (index) in the RSRP threshold value set configured in the resource pool. ) corresponding to the RSRP threshold value.
  • SCI sidelink control information
  • Step 2-4 The terminal device initializes the available resource set SA.
  • A is all the time-frequency resource units in the resource selection box, and one time-frequency resource unit is a time slot and a sub-channel.
  • Step 2-5 When the time-frequency resource meets all the following conditions, exclude the time-frequency resource from S A :
  • the time slot is not sensed in the sensing window, that is, the time slot when the terminal device is in the sending state. Due to the limitation of the half-duplex transceiver, when the terminal device is in the sending state, it cannot receive, so it cannot Sense the sending time slot;
  • Condition 1-2 Assume that there is an SCI sent by other terminal equipment in this time slot.
  • the SCI indicates a periodic resource reservation.
  • This periodic resource reservation corresponds to all sub-channels in the time slot within the selection window.
  • the periodic resource reservation value used by this SCI includes the periodic reservation value configured for all resource pools.
  • Step 2-6 If the remaining time-frequency resources after S A is excluded are less than X% of the total resources in the resource selection window, and the value of X% is configured by the resource pool, re-execute the above step 2-4 to initialize the resource set. , the reinitialized S A is consistent with the previously initialized S A , and then perform the following steps 2-7.
  • Step 2-7 When the time-frequency resource meets all the following conditions, exclude the time-frequency resource from S A :
  • the PSSCH time-frequency resources also include periodic reserved time-frequency resources and time domain resource indicator value (time resource indicator value, TRVI) and frequency domain resource indicator value (frequency resource indicator value, FRVI) reserved time-frequency resources;
  • Condition 2-3 The time-frequency resources reserved by the received first-level SCI (including reservations for multiple consecutive periods, TRVI and FRVI reservations) are within the resource selection window.
  • Step 2-8 If the remaining time-frequency resources after S A is excluded are less than X% of the total resources of the resource selection window, the RSRP threshold value determined in the above step 2-3 can be increased, for example, by 3 decibels each time (decibel, dB), until it is satisfied that the remaining time-frequency resources after S A exclusion are greater than or equal to X% of the total resources of the resource selection window.
  • the terminal device can notify other terminal devices of the reserved resources through SCI, and the terminal device completes the LBT before using the reserved resources, thereby sending data on the designated time and frequency resources.
  • An SL resource pool includes several sub-channels in the frequency domain, and the unit in the time domain is an SL time slot.
  • One of the sub-channels consists of a set of multiple consecutive physical resource blocks (PRBs).
  • the multiple PRBs can represent the size of the sub-channel, and the specific value is configured by the higher layer into the resource pool.
  • the resource pool configured for sending information may be called a TX resource pool, and the resource pool configured for receiving information may be called an RX resource pool.
  • the terminal device can only send the physical sidelink control channel (PSCCH) or the physical sidelink shared channel (PSSCH) in one TX resource pool, but Information can be received in multiple RX resource pools.
  • PSCCH physical sidelink control channel
  • PSSCH physical sidelink shared channel
  • the terminal device can perform LBT on each 20MHz channel before sending SL data, and can perform channel access procedures on multi-channel transmission, a Transmissions can occur on multiple channels simultaneously.
  • a resource pool for the terminal device can contain at least one 20MHz bandwidth channel.
  • the resource pool of a terminal device can include multiple 20MHz bandwidth channels.
  • the protocol stipulates that terminal equipment cannot send data on the entire 20MHz bandwidth, but reserves a part of the frequency band resources as a guard bandwidth (guard band), only on part of the frequency domain resources except the guard bandwidth.
  • the above-mentioned part of the available frequency domain resources is called a resource block set (RB set). Therefore, when the position and size of the protection bandwidth are determined, the starting RB position, the ending RB position of the RB set, and the number of RBs in the RB set are also determined.
  • the protection bandwidth between the two RB sets can be used to transmit data and improve resource utilization.
  • a 20MHz channel corresponds to a resource block set (RB set).
  • the sub-channel size can be configured as 10, 12, 15, 20, 25, 50, 75 or 100 RBs, and the terminal device can be configured according to the (pre)configuration of the resource pool. Determine whether to use subchannels composed of continuous subchannels for data transmission or to use subchannels composed of staggered RBs for data transmission. For example, assuming that an interlace includes at least 10 RBs, if the subchannel size configured in the resource pool is 10 RBs, and the resource pool is configured to disable interlace transmission, the terminal device can determine a subchannel composed of 10 consecutive RBs for data transmission. Transmission; if the resource pool is configured to use interlace transmission, the terminal device can determine to use a sub-channel composed of 10 interleaved RBs for data transmission.
  • the RB set includes multiple sub-channels.
  • the sub-channel may be composed of continuous RBs, such as sub-channel 1 and sub-channel 2 shown in (a) of Figure 5 .
  • the sub-channel may also be an interlace composed of staggered distributed RBs, such as sub-channel 1 and sub-channel 2 shown in (b) of Figure 5, corresponding to interlace 1 and interlace 2 respectively.
  • the terminal device After the terminal device obtains the COT based on the above-mentioned Mode2 resource reservation and Type1 LBT channel access, and shares the resources in the COT with other terminal devices, when other terminal devices perform channel access, the terminal device and Terminal devices may block each other, causing some terminal devices to be unable to access the channel and use shared resources to send data, resulting in a waste of resources.
  • FIG. 6 shows a schematic diagram of a scenario in which UEs block each other when performing COT sharing.
  • UE1 performs channel access through Type1 LBT on time slot n-1 and obtains the COT.
  • the COT includes resources on time slot n to time slot n+2.
  • After UE1 accesses the channel Start sending information on time slot n, and determine that UE2 and UE3 have reserved resources on time slot n+1.
  • UE2's reserved resources are resources on interleave 0 of time slot n+1
  • UE3's reserved resources are time slots
  • For resources on interlace 1 of n+1, interlace 0 and interlace 1 do not overlap with each other in the frequency domain.
  • UE1 sends COT indication information to UE2 and UE3, shares the resources in time slot n+1 to UE2 and UE3, instructs UE2 and UE3 to use the resources in time slot n+1 to send information, and reserves time slot n
  • the last OFDM symbol (symbol #13) performs channel access for UE2 and UE3.
  • UE2 and UE3 detect that the channel is idle on time slot n, they immediately perform channel access.
  • both UE2 and UE3 use Type2 LBT, and the Type2 method is not limited. Different Type2 LBT channel access times are different. For example, UE2 uses Type2A LBT to access the channel, and UE3 uses Type2B LBT to access the channel. Enter the channel.
  • Type2B LBT Due to the short execution time of Type2B LBT, and after UE3 executes LBT, in order to prevent other terminal devices or devices of other systems from obtaining channel resources, it will send CPE to occupy the channel, which will cause the Type2A LBT executed by UE2 to fail, making UE2 unable to Access channels use shared resources. Similarly, for UE4 and UE5 that have reserved resources in time slot n+2, the same problem as UE2 and UE3 also exists.
  • Figure 7 shows another schematic diagram of a scenario in which UEs block each other when performing COT sharing.
  • the difference from the scenario shown in Figure 6 above is that Figure 6 shows the same UE sharing the resources in the COT to multiple UEs, while the scenario shown in Figure 7 shows different UEs sharing the resources in the COT to different UEs. .
  • UE2 and UE3 When UE2 and UE3 detect that the channel is idle on time slot n, they immediately perform channel access. Similar to the above, the Type2 method used by UE2 and UE3 that share resources is not limited, and UE2 and UE3 cannot know which channel the other party uses. Access mode, when UE2 and UE3 use different Type2 LBT access, for example, UE2 uses Type2A LBT to access the channel, and UE3 uses Type2B LBT to access the channel. After UE3 completes the LBT, it will send a CPE to occupy the channel, thus This will cause the Type2A LBT executed by UE2 to fail, making UE2 unable to access the channel and use shared resources.
  • Type2 LBT Type2A LBT
  • UE3 After UE3 completes the LBT, it will send a CPE to occupy the channel, thus This will cause the Type2A LBT executed by UE2 to fail, making UE2 unable to access the channel and use shared resources.
  • the difference from the scenario shown in (a) of FIG. 7 is that the time domain positions of resources shared by different UEs are different.
  • both UE0 and UE1 perform channel access through Type1 LBT on time slot n-1 and then access the same channel, obtaining different interleaved resources in the same COT.
  • UE0 uses Interleaving 0 in the COT
  • UE1 uses interleaving 1 in the COT
  • UE0 and UE1 send information on time slot n after accessing the channel.
  • UE1 shares interlace 1 on time slot n+1 with UE3, and shares time slot n+2 with UE4, while UE0 continues to use the resources on time slot n+1 to send information, and time slot n+2
  • the resources are shared with UE2.
  • UE1 will send COT indication information to UE3 and reserve the last OFDM symbol (symbol#13) in n for UE3 to perform channel access.
  • UE3 can use any Type 2 LBT for channel access.
  • UE0 and UE1 will also send COT indication information to UE2 and UE4 respectively, and reserve the last OFDM symbol (symbol#13) in n+1 for UE2 and UE4 to perform channel access.
  • UE2 and UE4 will If the channel is idle on slot n+1, channel access will be performed immediately.
  • Type2 method used by UE2 and UE4 that share resources is not limited, and UE2 may use Type2C LBT to directly send CPE within 16us, while UE4 Using Type2A LBT requires a period of channel listening before sending the CPE.
  • the CPE sent in advance by UE2 will block the Type2A channel access process performed by UE4, causing UE4's Type2A LBT to fail and making UE2 unable to access the channel. Share resource.
  • embodiments of the present application provide a communication method that can solve the problem of resource waste caused by the inability of terminal devices sharing resources to access the channel.
  • wireless fidelity (WiFi) system vehicle to everything (V2X) communication system
  • device-to-device (D2D) communication system Internet of Vehicles communication system
  • 4th generation generation (4G) mobile communication systems such as long term evolution (LTE) systems
  • WiMAX global interoperability for microwave access
  • 5th generation, 5G fifth generation
  • NR new radio
  • 6th generation (6th generation, 6G) mobile communication systems sixth generation (6th generation, 6G) mobile communication systems.
  • FIG. 8 is an architectural schematic diagram of a communication system provided by an embodiment of the present application.
  • the communication system includes: a first terminal device and at least one second terminal device.
  • the first terminal device communicates with the second terminal device through a side link
  • the second terminal device also communicates with the second terminal device through the side link.
  • Figure 8 exemplarily shows one first terminal device and two second terminal devices. This embodiment of the present application does not limit the number of first terminal devices and second terminal devices.
  • the provided communication method is explained by taking the first terminal device as a terminal device that shares resources and the second terminal device as a terminal device that uses shared resources of the first terminal device as an example.
  • first terminal device and the second terminal device may be within the same network coverage, or may be within different network coverage areas, or only one terminal device may be within the network coverage area, or the first terminal device and the second terminal device may be within the coverage range of the network. None are covered by the network.
  • the terminal device within the network coverage can select authorization resources for sidelink communication based on the base station scheduling mode (Mode1). or licensed frequency band, or unlicensed resources or unlicensed frequency bands for sidelink communication can be selected from the resource pool based on the user's autonomous resource selection mode (Mode 2), and neither the first terminal device nor the second terminal device
  • the first terminal device and the second terminal device can only select unlicensed resources or unlicensed frequency bands for sidelink communication from the resource pool based on the mode in which users independently select resources (Mode 2). .
  • the resources described in the embodiments of this application are time-frequency resources, and sidelink communication can use unlicensed frequency bands, licensed frequency bands and/or dedicated frequency bands.
  • the communication system also includes a third terminal device and a fourth terminal device (not shown in Figure 8).
  • the fourth terminal device is a terminal device that accesses the same channel as the first terminal device and obtains different resources in the same COT.
  • the third terminal device uses a preconfigured first channel access type to access the channel and uses
  • the shared resource of the fourth terminal device is a terminal device that sends sideline information.
  • the terminal device using the shared resources can use the preconfigured first channel access type to access the channel.
  • the above-mentioned terminal device is a terminal that is connected to the above-mentioned communication system and has a wireless transceiver function, or a chip or chip system that can be installed on the terminal.
  • the terminal equipment may also be referred to as a user device, access terminal, subscriber unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communications device, user agent or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver functions, a virtual reality (VR) terminal device, or an augmented reality (AR) terminal.
  • VR virtual reality
  • AR augmented reality
  • the terminal device of this application can also be a vehicle-mounted module, vehicle-mounted module, vehicle-mounted component, vehicle-mounted chip or vehicle-mounted unit built into the vehicle as one or more components or units.
  • the vehicle uses the built-in vehicle-mounted module, vehicle-mounted module, Vehicle-mounted components, vehicle-mounted chips or vehicle-mounted units can implement the communication method provided by this application.
  • the devices or functional nodes included in the communication system shown in FIG. 8 are only exemplary descriptions and do not limit the embodiments of the present application.
  • the communication system shown in Figure 8 may also include other network elements or devices or functional nodes that have interactive relationships with the devices or functional nodes illustrated in the figure, which are not specifically limited here.
  • FIG. 8 is only a simplified schematic diagram for ease of understanding.
  • the communication system may also include other network devices and/or other terminal devices, which are not shown in FIG. 8 .
  • FIG. 9 is a schematic flowchart of a communication method provided by an embodiment of the present application. This communication method can be applied to the communication system shown in Figure 8.
  • the communication method includes the following steps:
  • the second terminal device sends first sidelink control information to the first terminal device.
  • the first terminal device receives the first sidelink control information from the second terminal device.
  • the first sidelink control information is used to indicate a first time slot, and the first time slot is used for the second terminal device to send sidelink information.
  • the first time slot is a time slot for which the second terminal device has reserved resources, and the first time slot may be one or more time slots.
  • the process of resource reservation performed by the second terminal device may refer to the relevant descriptions in the above steps 2-1 to 2-8, which will not be described again here.
  • the first sidelink control information may also be used to indicate the priority of the second terminal device in transmitting data on the first time slot.
  • sidelink control information from multiple terminal devices may be received, where the sidelink control information of the multiple terminal devices First sidelink control information including one or more second terminal devices.
  • the reserved resources of the multiple second terminal devices on the first time slot do not overlap with each other, such as reserving different interleaved resources on the first time slot.
  • resource It can be understood that the reserved resource is a frequency domain resource on the first time slot.
  • the first terminal device determines that the first time slot is located in the COT.
  • the first terminal device After the first terminal device completes the Type1 LBT, it accesses the channel, obtains the COT for sending information on the channel, determines based on the COT that the first time slot is located within the COT, and the second terminal device at the first time The priority of transmitting data on the slot is higher than the priority of the first terminal device transmitting data on the first time slot, so that the first terminal device can share the resources on the first time slot with the second terminal device.
  • the COT obtained by the first terminal device may include all frequency domain resources in the COT, or may include part of the frequency domain resources in the COT.
  • the channel resources obtained in different scenarios are different. In this regard, the embodiment of the present application No specific restrictions are made.
  • the first terminal device determines to share the resource with the second terminal device, it can also reserve the last symbol on a time slot before the first time slot for the second terminal device to perform channel access, so as to facilitate The second terminal device can start sending information at the beginning of the first time slot.
  • the first terminal device sends COT indication information to the second terminal device.
  • the second terminal device receives the COT indication information from the first terminal device.
  • the COT indication information is used to indicate resource information shared to the second terminal device, such as indicating that the second terminal device can send information on the first time slot, and/or indicating sharing on the first time slot of the second terminal device.
  • Frequency domain resources the embodiments of this application do not limit this.
  • the COT indication information may be sidelink control information.
  • the COT indication information is sent before the second terminal device performs channel access.
  • the second terminal device may use different resources in the first time slot.
  • the COT indication information will be different.
  • the first terminal device in order to notify the second terminal device to perform channel access on the reserved symbols, the first terminal device will release the channel as idle at the starting position of the reserved symbols, so that the second terminal device can detect that the channel is idle and perform the channel access immediately. LBT.
  • the first terminal device sends the first instruction information to the second terminal device.
  • the second terminal device receives the first indication information from the first terminal device.
  • the first indication information may be used to instruct at least one second terminal device to access the channel using the first channel access type.
  • the first indication information may be used to indicate the first channel access type.
  • the first indication information may be used to instruct a second terminal device that sends information on the same time slot to access the channel using the first channel access type.
  • the first indication information may be used to instruct the second terminal device whose resources are shared to access the channel using the first channel access type.
  • the first channel access type may be any one of Type2A LBT, Type2B LBT, or Type2C LBT, which is not specifically limited in the embodiment of this application.
  • the same channel access type can be used to complete channel access according to the first indication information.
  • the first indication information is sent before the second terminal device performs channel access, and the first indication information sent to multiple second terminal devices indicates the same channel access type.
  • the first indication information may be carried in the second sidelink control information or media access control (media access control, MAC) signaling.
  • the first indication information may be carried in the second sidelink control information or MAC signaling in the form of a field, and the field may be an extension field.
  • the first indication information may be carried in the first-stage sidelink control information. , it can also be carried in the second stage sidelink control information.
  • the first indication information may be carried in the COT indication information in S903, and the COT indication information may be carried in the second sidelink control information or media access control MAC signaling. send. It can be understood that the first indication information is a field in the COT indication information.
  • the first indication information may be the COT indication information in the above-mentioned S903.
  • the COT indication information may also be used to indicate the first channel access type, and there is no need to perform S904.
  • the first indication information can be indicated through the first bit field, and different bit values in the first bit field are used to indicate any two of the following first channel access types: Type2A LBT, Type2B LBT, Type2C. LBT.
  • the first bit field may be 1 bit or multiple bits.
  • the first indication information is indicated by a 1-bit bit value
  • the different bit values of the 1-bit bit are respectively used to indicate any two of the following first channel access types: Type2A LBT, Type2B LBT, Type2C LBT .
  • Type2A LBT Type2A LBT
  • Type2B LBT Type2C LBT
  • “0” is used to indicate Type2A LBT
  • Type2B LBT Type2B LBT
  • “1” is used to indicate Type2C LBT.
  • the first indication information is indicated by the bit values of multiple bits, and the different bit values of the multiple bits are used to indicate the following three first channel access types: Type2A LBT, Type2B LBT, and Type2C LBT.
  • the first indication information is indicated by a 2-bit bit value, "00” is used to indicate Type2A LBT, "01” is used to indicate Type2B LBT, and “10” is used to indicate Type2C LBT.
  • the first indication information is indicated by a 3-bit bit value. "000” is used to indicate Type2A LBT, and "001" is used to indicate Type2B LBT. "010” is used to indicate Type2C LBT.
  • the embodiments of this application do not limit the access types corresponding to different bit values.
  • the first terminal device may indicate different access types for terminal devices that use different time slots to send sidelink information, but the first channel access type indicated by the terminal equipment that uses the same time slot to send sidelink information is the same. .
  • S904 is an optional step. For example, if the second terminal device performs channel access according to the preconfigured first channel access type or the first indication information is COT indication information, S904 may not be executed.
  • the second terminal device accesses the channel according to the first channel access type.
  • the first channel access type may be indicated by the first indication information or preconfigured.
  • the first channel access type is preconfigured, and the first channel access type can be configured for multiple terminal devices.
  • the multiple terminal devices can be understood as terminal devices that can use shared resources.
  • the second terminal A device is one of multiple terminal devices. In other words, for terminal devices that can use shared resources, the same first channel access type can be configured for multiple terminal devices in a configuration/preconfiguration manner in the resource pool.
  • the second terminal device may select the reserved channel access type according to the first channel access type indicated by the received first indication information. Channel access is performed on the symbol, and after channel access of the first channel access type is completed, the first CPE is sent to occupy the channel, thereby sending information on the first time slot.
  • the multiple second terminal devices all receive the first indication information, and after detecting that the channel is idle, LBTs of the same channel access type can be used at the same time to perform channel access on the reserved symbols. input, and simultaneously send CPEs of the same length to occupy the channel.
  • the second terminal device When the first channel access type is preconfigured, after obtaining the indication information that the shared resource can be used (such as COT indication information), the second terminal device performs idle detection on the channel, and uses The preconfigured first channel access type performs channel access on the reserved symbols, and after completing the channel access of the first channel access type, sends the CPE to occupy the channel, thereby sending information on the first time slot .
  • the above S904 may not be executed. That is to say, for multiple second terminal devices, the preconfigured channel access method is the same. Therefore, after detecting that the channel is idle, the preconfigured LBT of the same channel access type can also be used at the same time in the reserved Channel access is performed on the symbol, and CPEs of the same length are sent simultaneously to occupy the channel.
  • the multiple terminal devices also include a third terminal device.
  • the third terminal device is different from the second terminal device in that the third terminal device is in the fourth terminal.
  • the fourth terminal device and the first terminal device access the same channel, and the fourth terminal device and the first terminal device obtain different resources on the same COT. For example, the first terminal device and the fourth terminal device respectively obtain different resources on the same COT. Interleave resources.
  • the fourth terminal device shares the reserved resources of the third terminal device with the third terminal device.
  • the third terminal device will also use it after detecting that the channel is idle.
  • the preconfigured first channel access type performs channel access on the same reserved symbol, accesses the channel at the same time as the second terminal device, and sends information on different resources on the first time slot.
  • the embodiments of this application are illustrated by taking the interaction between a first terminal device and a second terminal as an example.
  • the first terminal device can interact with multiple second terminal devices, and each second terminal device interacts with the first terminal device.
  • the process of device interaction can refer to the embodiments of this application, and the embodiments of this application do not specifically limit this.
  • the second terminal device can use a preconfigured fixed channel access method, or a channel indicated by the first indication information sent by the first terminal device.
  • the access type performs channel access, which ensures that the second terminal device can perform LBT access to the channel at the specified time according to the specified type of channel access method regardless of whether there is conflicting access, thereby avoiding the terminal device being shared resources. Due to the use of different channel access methods, terminal devices that have completed channel access cannot access the channel and use shared resources. This allows terminal devices with high priority to transmit services on reserved resources to use shared resources smoothly. resources to ensure the QoS of high-priority services, improve resource utilization, and avoid resource waste.
  • the communication method provided by the embodiments of the present application will be described in detail below in conjunction with specific application scenarios.
  • the communication method provided by the embodiment of this application can be applied to the communication scenario shown in Figure 6.
  • the COT takes UE1 as the first terminal device, UE2 and UE3 as the second terminal devices, the COT includes time slot n to time slot n+2, and the first time slot is time slot n+1 as an example.
  • the SCI sent by UE2 is called SCI1
  • the SCI sent by UE3 is called SCI2.
  • the first indication information indicates the channel access type used by at least one second terminal device.
  • the first indication information may indicate the length of the CPE. Thereby, at least one second terminal device performs channel access. Detailed description is given below.
  • the first terminal device sends first indication information to at least one second terminal device.
  • the first indication information indicates the length of the first CPE of at least one second terminal device.
  • the length of the first CPE corresponds to the first channel access type.
  • the second terminal device determines and executes the first channel access type according to the length of the first CPE. In this manner, it can be understood that the length of the first CPE is the execution time of the first channel access type, or the length of the first CPE is used by the second terminal device to determine the execution time of the channel access.
  • the first indication information may directly indicate the length of the CPE, or the first indication information may be used to indicate an index value corresponding to the length of the CPE, and the index value has a corresponding relationship with the length of the CPE, such as different index values corresponding to Different CPE lengths
  • the CPE length can be a preset value, for example, the CPE length can be 71us, 55us, 46us, the lengths of three different CPEs correspond to different index values 0, 1, 2 respectively, or
  • the length of the CPE can be a fixed time length minus a corresponding preset time length. Different preset time lengths constitute different CPE lengths.
  • the fixed time length is 71us
  • the subtracted preset time length can be 16us, 25us, 34us
  • the difference between the fixed time length and three different preset time lengths corresponds to different index values 0, 1, and 2.
  • the corresponding relationship between the length of the CPE and the index value can be stored in the terminal device in the form of a table, and the first terminal device can select the corresponding length of the CPE from the table as the length of the first CPE according to the first channel access type, And the first indication information is used to indicate the index value corresponding to the first CPE, so that the second terminal device can further determine the length of the CPE according to the index value, and thus the channel access type can be determined. It can be understood that the corresponding relationship between the length of the CPE and the index value may be pre-configured in the terminal device.
  • T symbol represents the duration of one symbol (ie, fixed time length) when the subcarrier spacing is 15 kHz
  • ⁇ i represents the preset duration.
  • Default duration and duration The corresponding relationship of the index is shown in Table 4 below. Different values of the preset duration correspond to different lengths of CPE.
  • the first indication information may indicate the duration index of the CPE. Different duration indexes correspond to different ⁇ i , so that the duration of different CPEs can be calculated. This table can be preconfigured in the resource pool of the terminal device.
  • FIG. 10 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • the communication method includes the following steps:
  • UE2 sends SCI1 to UE1.
  • UE1 receives SCI1 from UE2.
  • UE1 performs Type1 LBT on time slot n-1, and before time slot n-1, UE1 can obtain the SCI of UE2, that is, SCI1, during the channel listening process. Used to indicate time slot n+1, which is used by UE2 to send information. In other words, UE2 has reserved resources on time slot n+1.
  • UE3 sends SCI2 to UE1.
  • UE1 receives SCI2 from UE3.
  • the SCI2 is used to indicate time slot n+1, and this time slot n+1 is used for UE3 to send data.
  • UE3 also has reserved resources on time slot n+1. It can be understood that the reserved resources of UE3 do not overlap with the reserved resources of UE2.
  • UE2 reserves interleaving 0 on time slot n+1, and UE3 reserves interleaving 1 on time slot n+1. Interleaving 0 and interleaving 1 are frequency domain resources that do not overlap with each other.
  • SCI1 also indicates the priority of UE2 in transmitting data on the reserved resources
  • SCI2 also indicates the priority of UE3 in transmitting data on the reserved resources.
  • UE1 can also obtain the SCI of other UEs during the channel listening process.
  • UE1 determines that time slot n+1 is located in the COT based on SCI1 and SCI2.
  • UE1 After UE1 detects that the channel is idle, it performs Type1 LBT in time slot n-1 to complete channel access, obtains the COT including time slot n to time slot n+2, and then sends information on time slot n. , and according to the information indicated by SCI1 and SCI2, it is determined that the time slot (time slot n+1) of the reserved resources of UE2 and UE3 is located within the obtained COT, and it is determined that the priority of UE2 in transmitting data on the reserved resources is higher than that of UE1 on the reserved resources. The priority of transmitting data. The priority of UE3 transmitting data on reserved resources is higher than the priority of UE1 transmitting data on reserved resources.
  • UE1 sends COT indication information to UE2.
  • UE2 receives the COT indication information from UE1.
  • COT indication information can be used to indicate that UE2 can send information on time slot n+1, and can indicate Resource information available on time slot n+1.
  • the COT indication information can be carried in SCI or MAC signaling and sent.
  • UE1 sends COT indication information to UE3.
  • UE3 receives the COT indication information from UE1.
  • the COT indication information in S1005 and S1006 is the same, which can also indicate that UE3 can send information on time slot n+1, and can indicate the shared resource information of different UEs through different fields.
  • UE1 is located in the COT when it is determined that time slot n+1 is located, and the priority of UE2 and UE3 to transmit data on the reserved resources is higher than that of UE1 transmitting on the reserved resources. After the priority of the data, UE2 and UE3 can be notified in the form of broadcast.
  • UE1 can also reserve the last symbol on time slot n, such as symbol 13 of time slot n as shown in Figure 11, for channel access by UE2 and UE3.
  • UE1 sends the first indication information to UE2.
  • UE2 receives the first indication information from UE1.
  • the first indication information is used to instruct the UE that sends information on the same time slot to use the first channel access type. It is worth noting that for UEs using resources on different time slots, the indicated channel access types may be different, but for UEs using resources on the same time slot, the indicated channel access types need to be the same. As shown in Figure 11, the UE that uses the resources in time slot n+1 to send information uses the first channel access type as Type2B LBT, and the UE that uses the resources in time slot n+2 to send information uses the first channel access type.
  • the input type is Type2A LBT.
  • the first indication information is used to indicate the length of the first CPE used by the UE after completing channel access.
  • UE2 may determine the first channel access type according to the length of the first CPE indicated by the first indication information, and different first channel access types correspond to different lengths of the first CPE.
  • the first channel access type can be any one of Type2A LBT, Type2B LBT, and Type2C LBT.
  • the first channel access The type is Type2B LBT.
  • UE1 sends the first indication information to UE2 before symbol 13 of time slot n, that is, before UE2 and UE3 perform channel access.
  • the first indication information can be carried in the COT indication information, and then carried in the SCI or MAC CE signaling for transmission. It can also be directly carried in the SCI or MAC CE signaling for transmission. The embodiments of this application do not limit this.
  • UE1 sends the first indication information to UE3.
  • UE3 receives the first indication information from UE1.
  • UE1 can notify UE2 and UE3 to use the first channel access type for channel access through the common SCI.
  • UE2 accesses the channel according to the first channel access type.
  • UE2 obtains the shared resource information and the first indication information, and listens to whether the channel is idle in time slot n. To ensure that UE2 starts sending information at the starting position of time slot n+1, UE1 will start sending information in time slot n The channel is released before the last symbol reserved on time slot n, so that after UE2 detects that the channel is idle, it can use the first channel access type (such as Type2B LBT) to perform channel access on the last symbol reserved on time slot n, and After executing the LBT, the CPE sends the CPE to occupy the channel, so that the shared resource (such as interleave 0) can be used to send information at the beginning of time slot n+1.
  • the first channel access type such as Type2B LBT
  • UE3 after UE3 detects that the channel is idle, it also uses the first channel access type (such as Type2B LBT) to perform channel access on the last symbol reserved in time slot n, and sends a CPE of the same length as UE2 occupies the channel at the same time and completes channel access, thereby ensuring that both UE2 and UE3 access the channel and use different interleaved resources to send information in time slot n+1.
  • the first channel access type such as Type2B LBT
  • the UE sharing the resources can instruct the UE being shared the resources to use the same Type 2 type of channel access method for channel access.
  • multiple UEs can perform LBT at the same time and send CPE to occupy the channel at the same time. This can avoid the LBT end time being different due to different channel access types, causing the UE that ends the LBT earlier to send CPE to occupy the channel and block other shared resources. The UE accesses the channel, thereby ensuring that shared resources will not be wasted due to LBT failure.
  • the communication method provided by the embodiment of the present application can also be applied to the communication scenario shown in (a) of Figure 7 .
  • COT includes time slot n and time slot n+1, and the first time slot is time slot n+ 1 is explained as an example.
  • FIG. 12 shows a schematic flowchart of yet another communication method provided by an embodiment of the present application.
  • the communication method includes the following steps:
  • UE2 sends SCI to UE0.
  • UE0 receives SCI1 from UE2.
  • UE0 performs Type1 LBT on time slot n-1 to obtain the interleave 0 resources in the COT, and during the channel listening process before time slot n-1, the SCI of UE2 can be obtained, that is, SCI1, the SCI1 is used to indicate the time slot n+1, the Time slot n+1 is used for UE2 to send information.
  • the SCI1 indicates the resource reservation information of UE2. For example, UE2 reserves the resources of interlace 0 on time slot n+1.
  • UE3 sends SCI2 to UE1.
  • UE1 receives SCI2 from UE3.
  • UE1 also performs Type1 LBT on time slot n-1, accesses the same channel as UE0, and obtains the interleave 1 resources in the COT.
  • UE1 is in the channel listening process before time slot n-1. , you can obtain the SCI of UE3, that is, SCI2.
  • the SCI2 is used to indicate time slot n+1. This time slot n+1 is used for UE3 to send information.
  • the SCI2 indicates the resource reservation information of UE3. For example, UE3 has reserved time slot n. +1 on staggered 1 resources.
  • UE0 and UE1 can also obtain the SCI of other UEs during the channel listening process.
  • UE0 can obtain SCI2 and UE1 can obtain SCI1.
  • UE0 accesses the channel after performing Type1 LBT on time slot n-1, and UE0 obtains the resources of interleave 0 in the COT, thereby sending information on interleave 0 of time slot n, and UE0 receives
  • the reservation resource information indicated by SCI1 determines whether there are reservation resources located within the obtained COT. If the COT includes time slot n to time slot n+1, and the reserved resource of UE2 is located in time slot n+1, UE0 can determine that the reserved resource of UE2 is within the COT, and the reserved resource is the interleave 0 resource of UE0.
  • UE0 will also determine the transmission priority information according to the instruction of SCI1.
  • the priority of UE2 to transmit data on the reserved resources is higher than the priority of UE0 to transmit data on the reserved resources, and reserve the last time slot n for UE2.
  • Symbols, such as symbol 13 of time slot n shown in Figure 13, are used for UE2 to perform channel access.
  • UE1 determines that time slot n+1 is located in the COT according to SCI2.
  • UE1 performs Type1 LBT on time slot n-1 and accesses the same channel as UE0, and obtains resources on different interlaces in the same COT. For example, UE1 obtains the resources of interlace 1 in the COT, so that at time Information is sent on interlace 1 of slot n, and UE1 can determine whether there are reserved resources located within the obtained COT based on the reservation resource information indicated by the received SCI2. If the COT includes time slot n to time slot n+1, and the reserved resources of UE3 are located in time slot n+1, then UE1 can determine that the reserved resources of UE3 are within the COT, and the reserved resources of UE3 are the resources of interlace 1 of UE1 .
  • UE1 will also determine the transmission priority information according to the instructions of SCI2.
  • the priority of UE3 in transmitting data on the reserved resources is higher than the priority of UE1 in transmitting data on the reserved resources, and the last time slot n is reserved for UE3.
  • Symbols, such as symbol 13 of time slot n shown in Figure 13, are used for UE3 to perform channel access. In other words, UE0 and UE1 reserve the same symbols in time slot n for UE2 and UE3 for channel access.
  • UE0 sends the first COT indication information to UE2.
  • UE2 receives the first COT indication information from UE0.
  • UE0 determines that the reserved resource of UE2 is interlace 0 on time slot n+1, and UE2 has a high priority for transmitting data, then UE0 determines to share interlace 0 on time slot n+1 with UE2, so that at time
  • the first COT indication information is sent to UE2 on slot n.
  • the first COT indication information can be used to instruct UE2 to send information using interleave 0 on slot n+1, so that UE2 can listen to whether the channel is idle on slot n.
  • UE1 sends the second COT indication information to UE3.
  • UE3 receives the second COT indication information from UE1.
  • the second COT indication information is used to instruct UE3 to send information using interlace 1 on time slot n+1.
  • S1006 please refer to the above-mentioned S1205, and will not be described again here.
  • UE2 accesses the channel according to the preconfigured first channel access type.
  • the preconfigured first channel access type can be any one of Type2A LBT, Type2B LBT, and Type2C LBT.
  • the preconfigured first channel access type such as Type2B LBT.
  • UE2 After UE2 receives the first COT indication information on time slot n, it detects that the channel is idle on the reserved symbols, and immediately performs channel operation according to the preconfigured first channel access type (such as Type2B LBT). Access, if the channel is idle at time t0, execute the first channel access type at time t1, and send the CPE to occupy the channel after the execution is completed, so that the resource of interleave 0 can be used to send at the starting position of time slot n+1 information.
  • the preconfigured first channel access type such as Type2B LBT
  • UE3 accesses the channel according to the preconfigured first channel access type.
  • UE3 after receiving the second COT indication information, UE3 also detects that the channel is idle at time t0, and executes the operation at time t1. After the channel access of the first channel access type is executed, the CPE occupied channel is sent simultaneously with UE2, so that the information can be sent using the resources of stagger 1 at the starting position of time slot n+1.
  • the UEs to be shared resources can be configured to use the same channel access in a pre-configured manner.
  • Input type can avoid that UEs whose resources are shared by different UEs cannot know which Type2 type of channel access method the other party uses for channel access, resulting in different LBT end times, causing the UE that ends LBT earlier to send CPE to occupy the channel. problem, it can ensure that the UEs with shared resources can perform LBT and send CPE to occupy the channel at the same time, thereby improving resource utilization.
  • the communication method provided by the embodiment of the present application can also be applied to the communication scenario shown in (b) of Figure 7.
  • the UE3 whose resources are shared UE2 and UE4 can also be pre-configured with the same channel access type to perform channel access.
  • the first channel access type pre-configured by UE3, UE2 and UE4 is Type2A LBT.
  • the resource sharing process between UE0 and UE1 can refer to the above-mentioned S1201-S1206, which will not be described again here.
  • the UEs whose resources are shared can also use the preconfigured same channel access type to access the channel, which can avoid LBT ending early.
  • the UE sends CPE to occupy the channel, blocking other UEs with shared resources from accessing the channel.
  • the methods and/or steps implemented by the first terminal device can also be implemented by components (such as processors, chips, chip systems, circuits, logic modules) that can be used in the first terminal device. , or software); the methods and/or steps implemented by the second terminal device can also be implemented by components (such as processors, chips, chip systems, circuits, logic modules, or software) that can be used in the second terminal device.
  • components such as processors, chips, chip systems, circuits, logic modules, or software
  • this application also provides a communication device, which is used to implement various methods in the above method embodiments.
  • the communication device may be the first terminal device in the above method embodiment, or a device including the first terminal device, or a component that can be used in the first terminal device, such as a chip or a chip system.
  • the communication device may be the second terminal device in the above method embodiment, or a device including the second terminal device, or a component that can be used in the second terminal device, such as a chip or a chip system,
  • the communication device includes corresponding hardware structures and/or software modules for performing each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving the hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each specific application, but such implementations should not be considered beyond the scope of this application.
  • Embodiments of the present application can divide the communication device into functional modules according to the above method embodiments.
  • functional modules can be divided into corresponding functional modules, or two or more functions can be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic and is only a logical function division. In actual implementation, there may be other division methods.
  • FIG. 14 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 1400 includes: a processing module 1401 and a transceiver module 1402.
  • the transceiver module 1402 is used to receive first sidelink control information from at least one second terminal device, the first sidelink control information is used to indicate the first time slot, and the first time slot is used for the second The terminal device sends information.
  • the processing module 1401 is used to determine that the first time slot is located in the COT.
  • the transceiver module 1402 is also configured to send first indication information to at least one second terminal device, where the first indication information is used to instruct at least one second terminal device to access the channel using the first channel access type.
  • the first indication information may be carried in the second sidelink control information or MAC signaling.
  • the first indication information may be carried in the COT indication information.
  • the first channel access type may be any one of Type2A LBT, Type2B LBT, and Type2C LBT.
  • the first indication information can be indicated through the first bit field, and different bit values in the first bit field are used to indicate any of the following first channel access types: Type2A LBT, Type2B LBT, Type2C LBT.
  • the first bit field is 1 bit or multiple bits.
  • the transceiver module 1402 is used to send the first sidelink control information to the first terminal device, the first sidelink control information is used to indicate the first time slot, and the first time slot is used for the communication device to send information.
  • the processing module 1401 is configured to access the channel according to a first channel access type, and the first channel access type is determined according to the first indication information or preconfiguration.
  • the transceiver module 1402 when the first channel access type is determined based on the first indication information, the transceiver module 1402 is also configured to receive the first indication information from the first terminal device, and the first indication information is used to Indicates the first channel access type.
  • the first indication information may be carried in the second sidelink control information or MAC signaling.
  • the first indication information may be carried in the COT indication information.
  • the first channel access type is any one of Type2A LBT, Type2B LBT, and Type2C LBT.
  • the first indication information can be indicated through the first bit field, and different bit values in the first bit field are used to indicate any of the following first channel access types: Type2A LBT, Type2B LBT, Type2C LBT.
  • the first bit field is 1 bit or multiple bits.
  • the first channel access type is determined based on preconfiguration
  • the first channel access type is configured for multiple terminal devices
  • the communication device is one of the multiple terminal devices.
  • the plurality of terminal devices also include a third terminal device.
  • the third terminal device uses a preconfigured first channel access type to access the channel and sends it on the first resource of the fourth terminal device.
  • Information terminal equipment, the fourth terminal equipment and the first terminal equipment access the same channel, the first resource and the second resource of the first terminal equipment are non-overlapping frequency domain resources on the first time slot, and the second resource is Resources for sending information to communication devices.
  • the communication device 1400 provided in this embodiment can execute the above communication method, the technical effects it can obtain can be referred to the above method embodiments, which will not be described again here.
  • the transceiver module 1402 may include a receiving module and a sending module (not shown in Figure 14). Among them, the transceiver module is used to implement the sending function and receiving function of the communication device 1400.
  • the communication device 1400 may also include a storage module (not shown in FIG. 14), which stores programs or instructions.
  • the processing module 1401 executes the program or instruction, the communication device 1400 can perform the function of the first terminal device in the communication method shown in Figure 9, or the function of UE1 in the communication method shown in Figure 10, or Figure 12
  • the function of UE0 in the communication method shown in FIG. 9 may be performed, or the function of the second terminal device in the communication method shown in FIG. 9, or the function of UE2 or UE3 in the communication method shown in FIG. 10, or the function of UE0 in the communication method shown in FIG. 12. Shown are the functions of UE2 in the communication method.
  • the processing module 1401 involved in the communication device 1400 can be implemented by a processor or a processor-related circuit component, and can be a processor or a processing unit;
  • the transceiver module 1402 can be implemented by a transceiver or a transceiver-related circuit component, and can be a transceiver. transmitter or transceiver unit.
  • FIG. 15 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • the communication device may be a first terminal device or a second terminal device, or may be a chip (system) or other component or component that can be disposed on the first terminal device or the second terminal device.
  • communication device 1500 may include processor 1501 .
  • the communication device 1500 may also include a memory 1502 and/or a transceiver 1503.
  • the processor 1501 is coupled to the memory 1502 and the transceiver 1503, for example, through a communication bus.
  • the processor 1501 is the control center of the communication device 1500, and may be one processor or multiple processing units.
  • the processor 1501 is one or more central processing units (CPUs), may also be an application specific integrated circuit (ASIC), or may be configured to implement one or more embodiments of the present application.
  • An integrated circuit such as one or more microprocessors (digital signal processor, DSP), or one or more field programmable gate arrays (field programmable gate array, FPGA).
  • the processor 1501 can perform various functions of the communication device 1500 by running or executing software programs stored in the memory 1502 and calling data stored in the memory 1502.
  • the processor 1501 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG. 15 .
  • the communication device 1500 may also include multiple processors, such as the processor 1501 and the processor 1504 shown in FIG. 15 .
  • processors can be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
  • a processor here may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the memory 1502 is used to store the software program for executing the solution of the present application, and is controlled by the processor 1501 for execution.
  • the memory 1502 is used to store the software program for executing the solution of the present application, and is controlled by the processor 1501 for execution.
  • the memory 1502 may be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (random access memory (RAM)) or a random access memory (RAM) that can store information and instructions.
  • ROM read-only memory
  • RAM random access memory
  • RAM random access memory
  • RAM random access memory
  • RAM random access memory
  • RAM random access memory
  • Other types of dynamic storage devices for instructions can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical discs Storage, optical disc storage (including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and any other media capable of being accessed by a computer, without limitation.
  • the memory 1502 may be integrated with the processor 1501, or may exist independently and be coupled to the processor 1501 through the interface circuit
  • Transceiver 1503 used for communication with other communication devices.
  • the communication device 1500 is a terminal device, and the transceiver 1503 can be used to communicate with a network device or with another terminal device.
  • the communication device 1500 is a network device, and the transceiver 1503 can be used to communicate with a terminal device or with another network device.
  • the transceiver 1503 may include a receiver and a transmitter (not shown separately in Figure 15). Among them, the receiver is used to implement the receiving function, and the transmitter is used to implement the sending function.
  • the transceiver 1503 can be integrated with the processor 1501, or can exist independently and be coupled to the processor 1501 through the interface circuit (not shown in Figure 15) of the communication device 1500. This is not the case in the embodiment of this application. Specific limitations.
  • the structure of the communication device 1500 shown in Figure 15 does not constitute a limitation on the communication device.
  • the actual communication device may include more or less components than shown in the figure, or some components may be combined, or Different component arrangements.
  • the technical effects of the communication device 1500 can be referred to the technical effects of the communication method described in the above method embodiments, which will not be described again here.
  • An embodiment of the present application provides a communication system.
  • the communication system includes a first terminal device and at least one second terminal device.
  • this application also provides a communication device, which includes a processor for implementing the method in any of the above method embodiments.
  • the communication device further includes a memory.
  • This memory is used to store necessary computer programs and data.
  • the computer program may include instructions, and the processor may call the instructions in the computer program stored in the memory to instruct the communication device to perform the method in any of the above method embodiments.
  • the memory may not be in the communication device.
  • the communication device further includes an interface circuit, which is a code/data reading and writing interface circuit.
  • the interface circuit is used to receive computer execution instructions (computer execution instructions are stored in the memory and may be directly read from memory, or possibly through other devices) and transferred to the processor.
  • the communication device further includes a communication interface, which is used to communicate with modules external to the communication device.
  • the communication device may be a chip or a chip system.
  • the communication device may be a chip.
  • the communication device may be a chip.
  • the structure may also include chips and other discrete devices, which is not specifically limited in the embodiments of the present application.
  • This application also provides a computer-readable storage medium on which a computer program or instructions are stored.
  • a computer program or instructions are stored.
  • the functions of any of the above method embodiments are realized.
  • This application also provides a computer program product, which implements the functions of any of the above method embodiments when executed by a computer.
  • At least one refers to one or more, and “plurality” refers to two or more.
  • At least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • at least one of a, b, or c can mean: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the systems, devices and methods described in this application can also be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separate, that is, they may be located in one place, or they may be distributed to multiple network units. Components shown as units may or may not be physical units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, or each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • computer program instructions When computer program instructions are loaded and executed on a computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or include one or more data storage devices such as servers and data centers that can be integrated with the medium.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, solid state disk (SSD)), etc.
  • the computer may include the aforementioned device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法及装置,能够解决被共享资源的终端设备无法接入信道导致资源浪费的问题,可应用于侧行链路系统中。该方法包括:第一终端设备接收来自至少一个第二终端设备的第一侧行链路控制信息,其中,第一侧行链路控制信息用于指示第一时隙,第一时隙用于至少一个第二终端设备发送侧行信息。在第一终端设备确定第一时隙位于信道占用时间内的情况下,第一终端设备可以向至少一个第二终端设备发送第一指示信息,其中,第一指示信息指示第一信道接入类型。

Description

通信方法及装置
本申请要求于2022年08月12日提交国家知识产权局、申请号为202210969867.2、申请名称为“通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种通信方法及装置。
背景技术
在第三代合作伙伴计划(3rd generation partnership project,3GPP)定义的无线网络通信中,从空口的角度,终端设备与终端设备可以直接通过近场通信(proximity communication 5,PC5)接口通信,因此该通信方式可以称为PC5通信;从链路的角度,终端设备与终端设备可以直接通过侧行链路(sidelink,SL)通信,因此该通信方式可以称为SL通信。
在无线通信系统中,通信设备使用的频段可以分为授权(Licensed)频段和非授权(Unlicensed)频段。在授权频段中,通信设备基于中心节点的调度使用频谱资源。在非授权频段中,通信设备通过先听后说(listen before talk,LBT)机制竞争信道。
目前,终端设备与终端设备之间可以共享非授权频谱资源,该方式可以称为基于非授权频谱的侧行链路(sidelink-unlicensed,SL-U)通信。例如,终端设备通过LBT机制竞争到信道后,可以获取到信道占用时间(channel occupancy time,COT)。进一步的,终端设备可以将COT内对应的频谱资源共享给其他终端设备,以便于其他终端设备在接收到COT共享信息后,在指定时间通过LBT接入信道,从而使用共享频谱资源发送数据。
然而,终端设备在按照上述方式共享频谱资源给多个终端设备时,当多个终端设备在同一时隙完成LBT时,多个终端设备在完成LBT的时隙下一个时隙接入信道,多个终端设备之间可能会互相阻塞,导致一部分终端设备无法接入信道使用共享资源发送数据,从而造成资源浪费。
发明内容
本申请提供一种通信方法及装置,能够解决被共享资源的终端设备无法接入信道导致资源浪费的问题。
第一方面,提供一种通信方法,该方法可以由第一终端设备执行,也可以由第一终端设备的部件,例如第一终端设备的处理器、芯片、或芯片系统等执行,还可以由能实现全部或部分第一终端设备功能的逻辑模块或软件实现。以下以该方法由第一终端设备执行为例进行说明。该通信方法包括:第一终端设备接收来自至少一个第二终端设备的第一侧行链路控制信息,其中,第一侧行链路控制信息用于指示第一时隙,第一时隙用于至少一个第二终端设备发送侧行信息。第一终端设备确定第一时隙位于信道占用时间COT内。第一终端设备向至少一个第二终端设备发送第一指示信息,第一指示信息指示第一信道接入类型。
基于第一方面所述的通信方法,第一终端设备在共享资源给第二终端设备时,可以向第二终端设备指示使用指定类型的信道接入方式,从而可以保证第二终端设备按照指定类型的信道接入方式接入信道,提高了资源的利用率。
一种可能的设计方案中,第一指示信息可以承载在第二侧行链路控制信息或媒体接入控制MAC信令中。
一种可能的设计方案中,第一指示信息可以承载在COT指示信息中。
一种可能的设计方案中,COT指示信息还用于指示资源共享信息。如此,第一指示信息与资源共享信息等一起发送,可以减少信令开销。
一种可能的设计方案中,第一指示信息可以为COT指示信息中的字段。
可选地,COT指示信息可以是侧行链路控制信息。
可选地,第一信道接入类型可以为Type2A先听后说LBT、Type2B LBT、Type2C LBT中的 任意一种。如此,第一终端设备可以根据不同类型的LBT的执行时长,结合应用场景等选择一种Type2类型的LBT,指示给第二终端设备,可以提高信道接入的可靠性。
一种可能的设计方案中,第一指示信息可以通过第一比特域指示,第一比特域的不同比特值分别用于指示如下任意一种第一信道接入类型:Type2A LBT、Type2B LBT、Type2C LBT。
一种可能的设计方案中,第一比特域为1比特或者多比特。
第二方面,提供一种通信方法,该方法可以由第二终端设备执行,也可以由第二终端设备的部件,例如第二终端设备的处理器、芯片、或芯片系统等执行,还可以由能实现全部或部分第二终端设备功能的逻辑模块或软件实现。以下以该方法由第二终端设备执行为例进行说明。该通信方法包括:第二终端设备向第一终端设备发送第一侧行链路控制信息,其中,第一侧行链路控制信息用于指示第一时隙,第一时隙用于第二终端设备发送侧行信息。第二终端设备根据第一信道接入类型接入信道,第一信道接入类型由第一指示信息指示或第一信道接入类型为预配置的。
基于第二方面所述的通信方法,对于被共享资源的第二终端设备,第二终端设备可以使用预配置的固定的信道接入方式,或者根据第一终端设备发送的第一指示信息指示的信道接入类型执行信道接入,这样可以保证第二终端设备无论是否存在冲突接入,均能按照指定类型的信道接入方式在指定时刻做LBT接入信道,从而可以避免被共享资源的终端设备由于使用不同的信道接入方式,导致后做完信道接入的终端设备无法接入信道,无法使用共享资源的问题,进而可以使得在预约资源上传输业务优先级高的终端设备可以顺利使用共享资源,保障高优先级业务的传输质量服务(quality of service,QoS),并且可以提高资源利用率,避免资源浪费。
一种可能的设计方案中,在第一信道接入类型由第一指示信息指示的情况下,本申请实施例提供的通信方法还包括:第二终端设备接收来自第一终端设备的第一指示信息,第一指示信息可以指示第一信道接入类型。
一种可能的设计方案中,第一指示信息可以承载在第二侧行链路控制信息或MAC信令中。
一种可能的设计方案中,第一指示信息可以承载在COT指示信息中。
可选地,COT指示信息可以是侧行链路控制信息。
一种可能的设计方案中,第一指示信息可以为COT指示信息中的字段。
可选地,第一信道接入类型可以为Type2A先听后说LBT、Type2B LBT、Type2C LBT中的任意一种。
一种可能的设计方案中,第一指示信息可以通过第一比特域指示,第一比特域的不同比特值分别用于指示如下任意一种第一信道接入类型:Type2A LBT、Type2B LBT、Type2C LBT。
一种可能的设计方案中,第一比特域为1比特或者多比特。
另一种可能的设计方案中,在第一信道接入类型为预配置的情况下,第一信道接入类型配置用于多个终端设备,第二终端设备为多个终端设备中的一个。
一种可能的设计方案中,多个终端设备还包括第三终端设备,第三终端设备为使用预配置的第一信道接入类型接入信道,并在第一资源上发送侧行信息的终端设备,第一资源为第四终端设备指示给第三终端设备的资源,第四终端设备与第一终端设备接入同一信道,第一资源与第一终端设备的第二资源为第一时隙上的不重叠的频域资源,第二资源为用于第二终端设备发送侧行信息的资源。
第三方面,提供一种通信装置。该通信装置包括:处理模块和收发模块。其中,收发模块,用于接收来自至少一个第二终端设备的第一侧行链路控制信息,第一侧行链路控制信息用于指示第一时隙,第一时隙用于至少一个第二终端设备发送侧行信息。处理模块,用于确定第一时隙位于信道占用时间COT内。收发模块,还用于向至少一个第二终端设备发送第一指示信息,第一指示信息指示第一信道接入类型。
一种可能的设计方案中,第一指示信息可以承载在第二侧行链路控制信息或媒体接入控制MAC信令中。
一种可能的设计方案中,第一指示信息可以承载在COT指示信息中。
一种可能的设计方案中,COT指示信息还用于指示资源共享信息。
可选地,COT指示信息可以是侧行链路控制信息。
一种可能的设计方案中,第一指示信息可以为COT指示信息中的字段。
可选地,第一信道接入类型可以为Type2A先听后说LBT、Type2B LBT、Type2C LBT中的任意一种。
一种可能的设计方案中,第一指示信息可以通过第一比特域指示,第一比特域的不同比特值分别用于指示如下任意一种第一信道接入类型:Type2A LBT、Type2B LBT、Type2C LBT。
一种可能的设计方案中,第一比特域为1比特或者多比特。
可选地,收发模块可以包括接收模块和发送模块。其中,发送模块用于实现第三方面所述的通信装置的发送功能,接收模块用于实现第三方面所述的通信装置的接收功能。
可选地,第三方面所述的通信装置还可以包括存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得第三方面所述的通信装置可以执行第一方面所述的方法。
需要说明的是,第三方面所述的通信装置可以是终端设备,也可以是可设置于终端设备
中的芯片(系统)或其他部件或组件,还可以是包含终端设备的装置,本申请对此不做限定。
其中,第三方面所述的通信装置的技术效果可以参考第一方面所述的方法的技术效果,此处不再赘述。
第四方面,提供一种通信装置。该通信装置包括:处理模块和收发模块。其中,收发模块,用于向第一终端设备发送第一侧行链路控制信息,第一侧行链路控制信息用于指示第一时隙,第一时隙用于通信装置发送侧行信息。处理模块,用于根据第一信道接入类型接入信道,第一信道接入类型由第一指示信息指示或第一信道接入类型为预配置的。
一种可能的设计方案中,在第一信道接入类型由第一指示信息指示的情况下,收发模块,还用于接收来自第一终端设备的第一指示信息,第一指示信息指示第一信道接入类型。
一种可能的设计方案中,第一指示信息可以承载在第二侧行链路控制信息或媒体接入控制MAC信令中。
一种可能的设计方案中,第一指示信息可以承载在COT指示信息中。
一种可能的设计方案中,COT指示信息还用于指示资源共享信息。
可选地,COT指示信息可以是侧行链路控制信息。
一种可能的设计方案中,第一指示信息可以为COT指示信息中的字段。
可选地,第一信道接入类型为Type2A先听后说LBT、Type2B LBT、Type2C LBT中的任意一种。
一种可能的设计方案中,第一指示信息可以通过第一比特域指示,第一比特域的不同比特值分别用于指示如下任意一种第一信道接入类型:Type2A LBT、Type2B LBT、Type2C LBT。
一种可能的设计方案中,第一比特域为1比特或者多比特。
另一种可能的设计方案中,在第一信道接入类型为预配置的情况下,第一信道接入类型配置用于多个终端设备,第四方面所述的通信装置为多个终端设备中的一个。
一种可能的设计方案中,多个终端设备还包括第三终端设备,第三终端设备为使用预配置的第一信道接入类型接入信道,并在第一资源上发送侧行信息的终端设备,第一资源为第四终端设备指示给第三终端设备的资源,第四终端设备与第一终端设备接入同一信道,第一资源与第一终端设备的第二资源为第一时隙上的不重叠的频域资源,第二资源为用于通信装置发送侧行信息的资源。
可选地,收发模块可以包括接收模块和发送模块。其中,发送模块用于实现第四方面所述的通信装置的发送功能,接收模块用于实现第四方面所述的通信装置的接收功能。
可选地,第四方面所述的通信装置还可以包括存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得第四方面所述的通信装置可以执行第二方面所述的方法。
需要说明的是,第四方面所述的通信装置可以是终端设备,也可以是可设置于终端设备
中的芯片(系统)或其他部件或组件,还可以是包含终端设备的装置,本申请对此不做限定。
其中,第四方面所述的通信装置的技术效果可以参考第二方面所述的方法的技术效果,此处 不再赘述。
第五方面,提供一种通信装置。该通信装置包括:处理器,该处理器与存储器耦合,该处理器用于执行存储器中存储的计算机程序,以使得第五方面所述的通信装置可以执行第一方面至第二方面中任意一种可能的实现方式所述的方法。
在一种可能的设计方案中,第五方面所述的通信装置还可以包括收发器。该收发器可以为收发电路或接口电路。该收发器可以用于第五方面所述的通信装置与其他通信装置通信。
在本申请中,第五方面所述的通信装置可以为第一方面中的第一终端设备或第二方面中的第二终端设备,或者可设置于该第一终端设备或第二终端设备中的芯片(系统)或其他部件或组件,或者包含该第一终端设备或第二终端设备的装置。
其中,第五方面所述的通信装置的技术效果可以参考第一方面所述的方法的技术效果,此处不再赘述。
第六方面,提供一种通信系统。该通信系统包括第一终端设备和至少一个第二终端设备。其中,第一终端设备用于执行上述第一方面所述的通信方法,第二终端设备用于执行上述第二方面所述的通信方法。
第七方面,提供一种通信系统。该通信系统包括第一终端设备和至少第二终端设备。其中,第一终端设备用于执行上述第一方面所述的通信方法,第二终端设备用于执行上述第二方面所述的通信方法。
第八方面,提供一种计算机可读存储介质。该计算机可读存储介质存储有计算机程序或指令,当该计算机程序或指令在计算机上运行时,使得该计算机执行第一方面至第二方面中任意一种可能的实现方式所述的方法。
第九方面,提供一种计算机程序产品。该计算机程序产品包括:计算机程序或指令,当该计算机程序或指令在计算机上运行时,使得该计算机执行第一方面至第二方面中任意一种可能的实现方式所述的方法。
第十方面,提供一种通信方法。该方法包括:第二终端设备向第一终端设备发送第一侧行链路控制信息,第一侧行链路控制信息用于指示第一时隙,第一时隙为第二终端设备发送侧行信息的时隙。第一终端设备确定第一时隙位于信道占用COT内,并向第二终端设备发送第一指示信息,第一指示信息指示第一信道接入类型,第二终端设备通过第一信道接入类型接入信道。
第十一方面。提供一种通信方法。该方法包括:第一终端设备接收来自至少一个第二终端设备的第一侧行链路控制信息,其中,第一侧行链路控制信息用于指示第一时隙,第一时隙用于至少一个第二终端设备发送侧行信息。第一终端设备确定第一时隙位于信道占用时间COT内。第一终端设备向至少一个第二终端设备发送第一指示信息,第一指示信息指示第一循环前缀拓展CPE的长度或指示至少一个第二终端设备发送相同长度的CPE。
附图说明
图1为本申请实施例提供的一种在子载波间隔为30kHz时的帧结构的结构示意图;
图2为本申请实施例提供的一种在侧行链路通信中进行COT共享的结构示意图;
图3为本申请实施例提供的一种CPE复制的结构示意图;
图4为本申请实施例提供的一种在子载波间隔为15kHz时的资源交错的结构示意图;
图5为本申请实施例提供的一种子信道的结构示意图;
图6为本申请实施例提供的一种UE在进行COT共享时发生相互阻塞的场景示意图;
图7为本申请实施例提供的另一种UE在进行COT共享时发生相互阻塞的场景示意图;
图8为本申请实施例提供的一种通信系统的架构示意图;
图9为本申请实施例提供的一种通信方法的流程示意图;
图10为本申请实施例提供的另一种通信方法的流程示意图;
图11为本申请实施例提供的同一UE共享资源给多个UE的场景示意图;
图12为本申请实施例提供的又一种通信方法的流程示意图;
图13为本申请实施例提供的不同UE共享资源给不同UE的场景示意图;
图14为本申请实施例提供的一种通信装置的结构示意图;
图15为本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
为便于理解,下面先对本申请实施例涉及的相关技术进行说明。
在3GPP定义的无线通信网络中,从空口的角度,终端设备与终端设备之间直接通信的空口为PC5接口,因此该通信方式可以称为PC5通信;从链路的角度,终端设备与终端设备之间直接通信的链路为SL,因此该通信方式可以称为SL通信。
在无线通信系统中,按照使用频段的不同,可以分为授权频段和非授权频段,非授权频段又可以称为非许可频段。随着5G业务爆发式的增长,现有授权频谱无法满足业务需求,为此,工作于非授权频段的5G空中接口(5th generation new radio in unlicensed spectrum,5G NR-U)技术开始应用,其中,基于NR-U的侧行链路通信是一个重要演进方向。对于应用于NR-U系统的通信设备,可以称为NR-U设备,该NR-U设备可以为网络设备,也可以为终端设备。
以下介绍对本申请涉及的技术术语。
(1)帧结构
示例性地,图1示出了一种在子载波间隔为30千赫兹(kilo hertz,kHz)时的帧结构的结构示意图。如图1所示,在无线传输所使用的子载波间隔为30kHz时,1个无线帧(radio frame)的持续时间为10毫秒(millisecond,ms),1个无线帧包括10个子帧(subframe),1个子帧包括2个时隙(slot),1个时隙包括14个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号(symbol),该OFDM符号的持续时间与子载波间隔有关。
值得说明的是,除了图1所示的无线帧结构之外,帧结构也存在微时隙(mini-slot)的设计,微时隙不是包括14个符号的时隙,微时隙中的符号数目非常灵活,其符号数目的取值范围为{2,3,4,…,13},具体结构描述可以参见相关现有描述,本申请实施例对此不再赘述。
(2)LBT机制
在非授权频段中,终端设备需要按照竞争的方式使用频谱资源。例如,终端设备通过LBT方式竞争信道,LBT作为一种基于随机退避(random back-off)的信道接入规则,终端设备在接入信道之前需要感知(sense)信道是否空闲(idle),如果感知到信道已经保持空闲一定时间则可以占用信道,如果感知到信道非空闲则需要等待信道恢复空闲后才可以占用信道。
目前,LBT信道接入方式一般采用能量检测(energy detection,ED)和载波检测(carrier sense,CS)。例如,在采用能量检测判断信道是否空闲时,当检测的能量超过检测门限时,则检测信道为非空闲或繁忙,不允许接入信道,当检测的能量低于检测门限时,且持续超过一段时间后,则检测信道为空闲,允许接入信道。NR-U设备使用如下四种类型的LBT:
一类LBT(Category1 LBT):在短暂的转换间隔(switching gap)后立即发送。简称Cat1 LBT,用于NR-U设备在COT中经过从接收状态到发送状态的转换间隔后立即进行发送,转换间隔的时间不能大于16微秒(microsecond,us)。
二类LBT(Category2 LBT):无随机退避的LBT。简称Cat2 LBT,用于NR-U设备在侦听到信道处于空闲状态并持续一段确定时间后,不进行随机退避就可以进行发送。
三类LBT(Category3 LBT):有固定大小竞争窗口(contention window,CW)的随机退避的LBT。简称Cat3 LBT,用于NR-U设备基于固定大小的竞争窗口产生随机数N,并在侦听到信道处于空闲状态且持续一段根据随机数N确定的时间后可以进行发送。其中,竞争窗口的大小与N的最小值与最大值有关。
四类LBT(Category4 LBT):有可变大小竞争窗口的随机退避的LBT。简称Cat4 LBT,用于NR-U设备基于可变大小的竞争窗口产生随机数N,并在侦听到信道处于空闲状态且持续一段根据随机数N确定的时间后可以进行发送。其中,竞争窗口的大小与N的最小值与最大值有关,该NR-U设备可以改变竞争窗口的大小。
上述Cat4 LBT也可以称为Type1 LBT,NR-U设备需要进行随机避退后才能接入信道并发送数据。Type1 LBT可以通过如下步骤实现:
步骤1-1、设置N=Ninit,其中,N、Ninit为正整数,N为计数值,Ninit为均匀分布在0和CWp之间的随机数,CWp为竞争窗口值,CWmin,p≤CWp≤CWmax,p
步骤1-2、NR-U设备选择递减计数器,即N=N-1;
步骤1-3、NR-U设备按照Tsl=9us的时间粒度侦听信道,若在Tsl时间粒度上侦听到信道空闲,则执行步骤1-4;若在Tsl时间粒度上侦听到信道繁忙,则执行步骤1-5;其中,Tsl为侦听时隙时段;
其中,NR-U设备在一段延长持续时间(defer sensing,记作Td)的感知时隙时段(sensing slot duration,记作Tsl)侦听(侦听也可以替换为感知)信道为空闲之后,并且在如下步骤1-4中的计数器N为零之后,可以立即发送信息。否则,需要额外的Td继续侦听,如执行下述步骤1-5和步骤1-6。
步骤1-4、若N=0,则NR-U设备停止回退;若N>0,则执行步骤1-2;步骤1-5、NR-U设备继续侦听信道,直至在另一个Td内的一个Tsl侦听到信道繁忙或侦听到另一个Td内所有Tsl都检测到信道空闲;其中,Td=Tf+mp×Tsl,Td为延长持续时间,Tf为持续时间16us,mp×Tsl为mp个连续的侦听时隙时段。
步骤1-6、若另一个内Td所有Tsl都检测到信道空闲,则执行步骤1-4,否则执行步骤1-5。
值得说明的是,上述CWmin,p、CWmax,p、mp是基于NR-U设备传输相关联的信道接入优先等级p确定的,如下述表1和表2所示,其中,表1示出了下行传输过程中信道接入优先等级与竞争窗口值、侦听时隙时段个数、信道占用时间之间的对应关系,表2示出了上行传输过程中信道接入优先等级与竞争窗口值、侦听时隙时段个数、信道占用时间之间的对应关系。
表1
表2
由表1和表2可知,信道接入过程是基于NR-U设备传输相关联的信道接入优先等级p执行的,且执行信道接入后获取的COT不超过Tmcot,p
对于上述步骤1-1中的CWp的取值,在该步骤1-1之前可以根据如下步骤进行调整:
步骤0-1、对于每个信道接入优先级等级p∈{1,2,3,4},设置CWp=CWmin,p
步骤0-2、对于NR-U设备在参考子帧中发送的数据所对应的反馈HARQ-ACK值,若NACK在反馈值中的比例大于或者等于80%,则将每个信道接入优先级等级p∈{1,2,3,4}所对应的CWp值增加到下一个较高的允许值,例如,对于p=1对应的CWp值从CWmin,p=3调整为7,继续做ACK/NACK判决,否则执行步骤0-1。其中,参考子帧是NR-U设备在信道上最近的用于传输的起始子帧。
对于上述Cat2 LBT则包括如下三种类型的LBT:
Type2A LBT:25us间隔的Cat2 LBT。NR-U设备在侦听到信道空闲25us后就可以接入信道并发送数据。
Type2B LBT:16us间隔的Cat2 LBT。NR-U设备在侦听到信道空闲16us后就可以接入信道并发送数据。
Type2C LBT:至多16us间隔的Cat1 LBT。NR-U设备不需要侦听信道,在COT内经过至多16us的转换间隔后可以直接接入信道并发送数据。
在SL-U中,非授权频谱资源可以在不同终端设备之间共享,被共享的终端设备可以使用共享的频谱资源进行数据的发送和接收。例如,终端设备通过LBT竞争到信道后,可以获取到COT,该COT为终端设备在成功接入信道后允许占用信道的时间,并且终端设备可以将COT内的资源共享给其他终端设备,相应地,其他终端设备可以使用被共享资源的发送数据。其中,共享资源的终端设备通常采用上述Type1 LBT的方式竞争信道获取COT,使用共享资源的终端设备通常采用Type2A LBT或Type2B LBT或Type2C LBT的方式接入信道。
示例性地,图2示出了一种在侧行链路通信中进行COT共享的结构示意图。如图2所示,UE-A可以通过Type1 LBT竞争到信道,获取到COT,UE-A可以将COT内的资源共享给UE-B和UE-C,如UE-A可以在自己实际使用的COT内向UE-B和UE-C发送COT指示信息,该COT指示信息用于指示被共享的资源,相应地,UE-B和UE-C接收并解析COT指示信息,根据COT指示信息在指定时间通过Type2A或Type2B或Type2C的方式接入COT,完成数据发送。
另外,SL-U中的终端设备由于受限于帧结构的设计,在终端设备完成LBT后,也就是完成了信道侦听的全部过程后,需要考虑时隙边界,如果终端设备完成LBT的结束时间点并不是一个时隙的起始位置,则终端设备需要在完成LBT的时隙的下一个时隙的起始位置,才可以发送有效信息。
(3)循环前缀拓展(cyclic prefix extension,CPE)
目前,在NR-U系统中,为了让尽量多的NR-U设备满足符号级别的同步,需要考虑LBT结束时间点可能不是某一个符号的起始位置。为此,采用CPE来保证符号级别的同步,CPE表示将OFDM符号的循环前缀(cyclic prefix,CP)进一步向前一个符号拓展。符号级别的同步也可以理解为,NR-U设备在一个OFDM符号(symbol)的起始位置开始发送信息。
图3示出了一种CPE复制的结构示意图。如图3所示,一个OFDM符号包括CP和OFDM数据信号,CP为将OFDM数据信号的尾部一段复制并添加到OFDM数据信号头部得到。若NR-U设备的LBT结束时间点并不是一个OFDM符号的起点,NR-U设备无法发送一个完整的OFDM符号的信号,然而根据LBT机制该NR-U设备完成LBT后需要立即接入信道,因此进一步地将后一OFDM符号的一部分作为拓展的CP填充到前一个不完整的OFDM内,进而接入并占用信道。其中,该拓展的CP即为CPE。
由此,由于SL-U中的终端设备在共享资源时,是以时隙为粒度共享,因此共享资源的终端设备可以为使用共享资源的终端设备在该共享资源的前一时隙预留完成LBT的OFDM符号,通过发送CPE完成信道接入,从而可以在完成LBT的时隙的下一个时隙的起始位置发送信息。
另外,目前对于使用的非授权频谱的占用信道带宽(occupied channel bandwidth,OCB)有法规要求,一般OCB至少为正常带宽的80%。例如,信道带宽为20兆赫兹(mega hertz,MHz),则至少需要占用16MHz的带宽才可以抢占该20MHz信道。因此,为保证OCB要求,3GPP NR-U系统引入交错RB(interlaced resource block)的概念,定义interlace m∈{0,1,…,M-1}包括多{m,M+m,2M+m,3M+m,…}个RB。如图4所示,对于15kHz SCS,有10个交错(interlace0~interlace9)资源,如NR-U设备1可以使用交错0(interlace 0)上的资源,包括{RB0,RB10,…,RB90},NR-U设备2可以使用交错1(interlace 1)上的资源,包括{RB1,RB11,…,RB91}。
因此,终端设备也可以按照交错(interlace)资源块(resource block,RB)的粒度将COT内的时频资源共享给其他终端设备。
(4)侧行链路的资源选择方式
终端设备在执行LBT之前需要进行资源选择,在侧行链路通信中,资源选择方式有模式一(Mode1)和模式二(Mode2)两种,Mode1是基于基站调度的模式,Mode2是用户自主选择资源的模式。由于SL-U中的终端设备具有感知和资源选择的能力,通常采用Mode2实现资源选择,从而本申请实施例中对Mode2的资源选择过程进行说明。示例性地,终端设备在时隙a触发Mode2进行资源选择的过程包括如下步骤:
步骤2-1、终端设备确定资源选择窗(resource selection window,RSW)[a+T1,a+T2], T2min≤T2≤包时延预算(packet delay budget,PDB),其中,为终端设备处理资源选择和数据发送的时延,T1、T2取决于设备的实现,表示资源选择窗的左右边界,的取值与传输使用的子载波间隔μSL存在一一对应的关系,如下述表3所示。
表3
步骤2-2、终端设备确定感知窗其中,为终端设备处理感知结果的时延,T0为表示感知窗的左边界,的取值也与传输使用的子载波间隔μSL存在一一对应的关系,如上述表3所示。
步骤2-3、终端设备确定参考信号接收功率(reference signal received power,RSRP)的门限值,该RSRP的门限值与待发送数据的优先级(prioTX)和接收到的侧行链路控制信息(sidelink control information,SCI)所指示的优先级(prioRX)有关,具体为资源池配置的RSRP的门限值集合中的第prioRX+(prioTX-1)*8个序号(index)对应的RSRP的门限值。
步骤2-4、终端设备初始化可用的资源集合SA为资源选择框中所有的时频资源单元,一个时频资源单元为一个时隙和一个子信道。
步骤2-5、当时频资源满足如下全部条件时,从SA中排除该时频资源:
条件1-1、感知窗中未感知到该时隙,即终端设备处于发送状态的时隙,由于受限于半双工的收发机,当终端设备处于发送状态时,则无法接收,故此不能感知该发送时隙;
条件1-2、假设该时隙有其他终端设备发送的SCI,该SCI指示周期资源预约,该周期资源预约所对应的在选择窗内的时隙上的全部子信道。该SCI所使用的周期资源预约值包括所有资源池配置的周期预约值。
步骤2-6、如果SA排除之后剩余的时频资源少于资源选择窗总资源的X%,X%的取值由资源池配置,则重新执行上述步骤2-4,对资源集合进行初始化,重新初始化的SA与之前初始化的SA一致,再执行下述步骤2-7。
步骤2-7、当时频资源满足如下全部条件时,从SA中排除该时频资源:
条件2-1、接收的第一级SCI译码成功;
条件2-2、该接收的第一级SCI所预约的用于传输物理层侧行链路共享信道(physical sidelink shared channel,PSSCH)时频资源所包括的PSSCH解调参考信号(de-modulation reference signal,DMRS)进行RSRP测量,其RSRP结果高于上述步骤2-3确定RSRP门限值,其中,PSSCH时频资源还包括周期预约的时频资源、时域资源指示值(time resource indicator value,TRVI)和频域资源指示值(frequency resource indicator value,FRVI)预约的时频资源;
条件2-3、该接收的第一级SCI所预约的时频资源(包括连续多个周期的预约、TRVI和FRVI的预约)在资源选择窗内。
步骤2-8、如果SA排除之后剩余的时频资源少于资源选择窗总资源的X%,则可以提升上述步骤2-3中所确定的RSRP的门限值,如每次提升3分贝(decibel,dB),直至满足SA排除之后剩余的时频资源大于或者等于资源选择窗总资源的X%。
基于上述步骤2-1至步骤2-8进行资源选择后,终端设备可以通过SCI将预约资源通知其他终端设备,并且该终端设备在使用预约资源之前完成LBT,从而在指定时频资源上发送数据。
(5)资源池
目前,对于SL通信,网络设备可以为终端设备(预)配置资源池,一个SL资源池,频域上包括若干子信道,时域的单位为SL时隙。其中一个子信道由一组连续的多个物理资源块(physical resource block,PRB)组成,该多个PRB可以表示子信道大小,由高层配置具体的取值到资源池上。
其中,配置为用于发送信息的资源池可以称为TX资源池,用于接收信息的资源池可以称为RX资源池。对于给定的时间,终端设备只能在一个TX资源池中发送物理侧行链路控制信道(physical sidelink control channel,PSCCH)或物理侧行链路共享信道(physical sidelink shared channel,PSSCH),但可以在多个RX资源池中接收信息。
对于频率范围1(frequency range 1,FR1)的非授权频谱资源,终端设备在发送SL数据之前,可以在每个20MHz的信道上执行LBT,并可以在多信道传输上执行信道接入过程,一个传输可以同时在多个信道上进行。为了避免一个20MHz LBT信道出现在不同的资源池中,可以通过为终端设备配置的一个资源池至少包含一个20MHz带宽的信道,一个终端设备的资源池可以包括多个20MHz带宽的信道。
为了避免不同信道之间的干扰,协议规定终端设备不能在整个20MHz带宽上发送数据,而是保留有一部分频带资源作为保护带宽(guard band),只在除保护带宽之外的部分频域资源上发送数据,上述可用的部分频域资源被称作资源块集合(RB集合)。因此,当保护带宽的位置和大小确定时,RB集合的起始RB位置、结束RB位置以及RB集合中的RB个数也随之确定。另外,当终端设备在连续多个20MHz信道上执行LBT操作并成功接入信道时,两个RB集合间的保护带宽可以用来传输数据,提高资源利用率。一个20MHz的信道对应一个的资源块集合(RB集合)。
在一种实施方式中,Rel-16中定义的,子信道大小可以配置为10、12、15、20、25、50、75或100个RB,终端设备可以根据资源池的(预)配置,确定使用连续组成的子信道进行数据传输,还是使用交错分布的RB组成的子信道进行数据传输。例如,假设一个interlace至少包括10个RB,如果资源池配置的子信道大小为10个RB,且资源池配置为禁用interlace传输时,终端设备可以确定由10个连续的RB组成的子信道进行数据传输;如果资源池配置为可以使用interlace传输时,终端设备可以确定使用10个交错分布的RB组成的子信道进行数据传输。
如图5所示,RB集合包括多个子信道。其中,子信道可以是连续RB组成的,如图5中的(a)示出的子信道1和子信道2。子信道还可以是交错分布的RB组成的interlace,如图5中的(b)示出的子信道1和子信道2,分别对应于interlace1和interlace2。
目前,终端设备在基于上述Mode2的资源预约以及Type1 LBT的信道接入后,获取到COT,并将COT内的资源共享给其他终端设备时,其他终端设备在执行信道接入时,终端设备与终端设备之间可能会相互堵塞,导致部分终端设备无法接入信道使用共享资源发送数据,从而造成资源浪费。
示例性地,图6示出了一种UE在进行COT共享时发生相互阻塞的场景示意图。如图6所示,UE1在时隙n-1上通过Type1 LBT的方式执行信道接入,并获取到COT,该COT包括时隙n至时隙n+2上的资源,UE1接入信道后在时隙n上开始发送信息,并确定UE2和UE3在时隙n+1上有预约资源,如UE2的预约资源为时隙n+1的交错0上的资源,UE3的预约资源为时隙n+1的交错1上的资源,交错0和交错1在频域上互不重叠。
之后,UE1向UE2和UE3发送COT指示信息,将时隙n+1上的资源共享给UE2和UE3,指示UE2和UE3使用时隙n+1上的资源发送信息,并预留时隙n中最后一个OFDM符号(symbol#13)给UE2和UE3执行信道接入,UE2和UE3在时隙n上检测到信道空闲则立即执行信道接入。然而,UE2和UE3均采用Type2类型的LBT,而采用的Type2的方式也无限定,不同Type2的LBT信道接入时长不同,如UE2采用Type2A LBT的方式接入信道,UE3采用Type2B LBT的方式接入信道,由于Type2B LBT的执行时间短,且UE3执行完LBT后为了防止其他终端设备或其他系统的设备获取信道资源,会发送CPE占用信道,从而会造成UE2执行的Type2A LBT失败,使得UE2无法接入信道使用共享资源。类似的,对于在时隙n+2上有预约资源的UE4和UE5,也存在与UE2和UE3相同的问题。
又例如,图7示出了另一种UE在进行COT共享时发生相互阻塞的场景示意图。与上述图6所示场景的不同之处在于,图6为同一UE将COT内的资源共享给多个UE,而图7所示的场景为不同UE将COT内的资源分别共享给不同的UE。
如图7中的(a)所示,UE0和UE1均在时隙n-1上通过Type1 LBT的方式执行信道接入后 接入同一信道中,获取到同一COT中不同交错资源,如UE0使用COT内的交错0,UE1使用COT内的交错1,UE0和UE1接入信道后在时隙n上发送信息,并分别向UE2和UE3发送COT指示信息,将时隙n+1上的资源分别共享给UE2和UE3,并预留时隙n中最后一个OFDM符号(symbol#13)给UE2和UE3执行信道接入。UE2和UE3在时隙n上检测到信道空闲则立即执行信道接入,与上述类似,被共享资源的UE2和UE3采用的Type2的方式无限定,且UE2和UE3无法获知对方使用哪一种信道接入方式,在UE2和UE3采用不同Type2的LBT接入时,如UE2采用Type2A LBT的方式接入信道,UE3采用Type2B LBT的方式接入信道,UE3执行完LBT后会发送CPE占用信道,从而会造成UE2执行的Type2A LBT失败,使得UE2无法接入信道使用共享资源。
又如图7中的(b)所示,与上述图7中的(a)示出的场景的不同之处在于,不同UE共享资源的时域位置不同。
如图7中的(b)所示,UE0和UE1均在时隙n-1上通过Type1 LBT的方式执行信道接入后接入同一信道中,获取到同一COT中不同交错资源,如UE0使用COT内的交错0,UE1使用COT内的交错1,UE0和UE1接入信道后在时隙n上发送信息。对于UE1,UE1将时隙n+1上的交错1共享给UE3,并且将时隙n+2共享给UE4,而UE0是继续用时隙n+1上的资源发送信息,将时隙n+2的资源共享给UE2。
对于UE3,UE1会向UE3发送COT指示信息,并预留n中最后一个OFDM符号(symbol#13)给UE3执行信道接入,UE3可以采用任意一种Type2的LBT进行信道接入。对于UE2和UE4,UE0和UE1也会分别向UE2和UE4发送COT指示信息,并预留n+1中最后一个OFDM符号(symbol#13)给UE2和UE4执行信道接入,UE2和UE4在时隙n+1上检测到信道空闲则立即执行信道接入,与上述类似,被共享资源的UE2和UE4采用的Type2的方式无限定,且UE2可能采用Type2C LBT在16us内直接发送CPE,而UE4则采用Type2A LBT需要做一段时间的信道侦听之后再发送CPE,那么UE2提前发送的CPE会阻塞掉UE4执行的Type2A信道接入过程,从而造成UE4的Type2A LBT失败,使得UE2无法接入信道使用共享资源。
由此,本申请实施例提供一种通信方法,可以解决被共享资源的终端设备无法接入信道导致资源浪费的问题。
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于支持侧行链路通信的系统,支持有网络覆盖和无网络覆盖的通信场景。例如无线保真(wireless fidelity,WiFi)系统,车到任意物体(vehicle to everything,V2X)通信系统、设备间(device-to-device,D2D)通信系统、车联网通信系统、第4代(4th generation,4G)移动通信系统,如长期演进(long term evolution,LTE)系统、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)移动通信系统,如新空口(new radio,NR)系统,以及未来的通信系统,如第六代(6th generation,6G)移动通信系统等。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例性地”、“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例中,“信息(information)”,“信号(signal)”,“消息(message)”,“信道(channel)”、“信令(singaling)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
示例性地,图8为本申请实施例提供的一种通信系统的架构示意图。如图8所示,该通信系统包括:第一终端设备和至少一个第二终端设备。其中,第一终端设备与第二终端设备通过侧行链路通信,第二终端设备与第二终端设备也通过侧行链路通信。图8示例性的示出了1个第一终端设备和2个第二终端设备,本申请实施例并不限定第一终端设备和第二终端设备的数量。
本申请实施例中,以第一终端设备为共享资源的终端设备,第二终端设备为使用第一终端设备的共享资源的终端设备为例,对提供的通信方法进行说明。
其中,第一终端设备和第二终端设备可以处于同一网络覆盖内,也可以处于不同网络覆盖范围内,还可以只有一个终端设备处于网络覆盖范围内,还可以第一终端设备和第二终端设备均不在网络覆盖范围内。
对于第一终端设备和第二终端设备至少其中一个处理网络覆盖范围内的场景中,处于网络覆盖范围内的终端设备既可以基于基站调度的模式(Mode1)选择用于侧行链路通信授权资源或授权频段,也可以基于用户自主选择资源的模式(Mode2)从资源池中选择用于侧行链路通信的非授权资源或非授权频段,而对于第一终端设备和第二终端设备均不再网络覆盖范围内的场景中,第一终端设备和第二终端设备只能基于用户自主选择资源的模式(Mode2)从资源池中选择用于侧行链路通信的非授权资源或非授权频段。
可以理解的是,本申请实施例中所述的资源为时频资源,侧行链路通信可以使用非授权频段、授权频段和/或专用频段。
可选地,该通信系统还包括第三终端设备和第四终端设备(图8中未示出)。其中,第四终端设备为与第一终端设备接入同一信道,并获取到同一COT中不同资源的终端设备,第三终端设备为使用预配置的第一信道接入类型接入信道,并使用第四终端设备的共享资源发送侧行信息的终端设备。换言之,对于不同终端设备将同一COT内的不同资源分别共享给不同的终端设备时,使用共享资源的终端设备可以采用预配置的第一信道接入类型接入信道。该方案的具体实现过程可以参见下述方法实施例,在此不予赘述。
上述终端设备为接入上述通信系统,且具有无线收发功能的终端或可设置于该终端的芯片或芯片系统。该终端设备也可以称为用户装置、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、车载终端、具有终端功能的RSU等。本申请的终端设备还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请提供的通信方法。
需要说明的是,本申请实施例提供的通信方法,可以适用于图8所示的第一终端设备与第二终端设备之间,具体实现可以参考下述方法实施例,此处不再赘述。
应理解,上述图8所示的通信系统中包括的设备或功能节点只是示例性的描述,并不对本申请实施例构成限定。事实上,图8所示的通信系统中还可以包含其他与图中示意的设备或功能节点具有交互关系的网元或设备或功能节点,这里不作具体限定。
应当指出的是,本申请实施例中的方案还可以应用于其他通信系统中,相应的名称也可以用其他通信系统中的对应功能的名称进行替代。
应理解,图8仅为便于理解而示例的简化示意图,该通信系统中还可以包括其他网络设备,和/或,其他终端设备,图8中未予以画出。
下面将结合图9-图13对本申请实施例提供的通信方法进行具体阐述。
示例性地,图9为本申请实施例提供的一种通信方法的流程示意图。该通信方法可以适用于图8所示的通信系统中。
如图9所示,该通信方法包括如下步骤:
S901、第二终端设备向第一终端设备发送第一侧行链路控制信息。相应的,第一终端设备接收来自第二终端设备的第一侧行链路控制信息。
其中,第一侧行链路控制信息用于指示第一时隙,该第一时隙用于第二终端设备发送侧行信息。该第一时隙为第二终端设备有预约资源的时隙,且第一时隙可以为1个或多个时隙。第二终端设备执行资源预约的过程可以参照上述步骤2-1至步骤2-8中的相关描述,此处不再赘述。另外,第一侧行链路控制信息还可以用于指示第二终端设备在第一时隙上传输数据的优先级。
示例性地,在第一终端设备执行Type1 LBT之前,如在信道侦听过程中,可以接收来自多个终端设备的侧行链路控制信息,其中,多个终端设备的侧行链路控制信息包括一个或多个第二终端设备的第一侧行链路控制信息。对于多个第二终端设备在第一时隙上有预约资源的情况,该多个第二终端设备在第一时隙上的预约资源互不重叠,如预约第一时隙上不同的交错的资源。可以理解的是,该预约资源为第一时隙上的频域资源。
S902、第一终端设备确定第一时隙位于COT内。
示例性地,第一终端设备执行完Type1 LBT后接入信道,获取在该信道上发送信息的COT,根据该COT确定第一时隙位于该COT内,以及第二终端设备在该第一时隙上传输数据的优先级高于第一终端设备在第一时隙上传输数据的优先级,从而第一终端设备可以将第一时隙上的资源共享给第二终端设备。
值得说明的是,第一终端设备获取的COT可以包括该COT内的所有频域资源,也可以包括该COT内的部分频域资源,不同场景下获取的信道资源不同,本申请实施例对此不做具体限定。
另外,第一终端设备在确定将资源共享给第二终端设备后,还可以预留第一时隙之前的一个时隙上的最后一个符号,用于第二终端设备执行信道接入,以便于第二终端设备能够在第一时隙的起始位置开始发送信息。
S903、第一终端设备向第二终端设备发送COT指示信息。相应的,第二终端设备接收来自第一终端设备的COT指示信息。
其中,COT指示信息用于指示共享给第二终端设备的资源信息,如指示第二终端设备能够在第一时隙上发送信息、和/或指示共享给第二终端设备的第一时隙上的频域资源,本申请实施例对此不做限定。
一种可能的设计方案中,COT指示信息可以为侧行链路控制信息。
可以理解的是,COT指示信息是在第二终端设备执行信道接入之前发送的,对于多个第二终端设备在第一时隙上有预约资源的情况下,根据不同第二终端设备在第一时隙上预约的资源不同,COT指示信息有所不同。并且,为了通知第二终端设备在预留的符号上执行信道接入,第一终端设备会在预留符号的起始位置释放信道为空闲,以便于第二终端设备侦听到信道空闲立即执行LBT。
S904、第一终端设备向第二终端设备发送第一指示信息。相应的,第二终端设备接收来自第一终端设备的第一指示信息。
其中,第一指示信息可以用于指示至少一个第二终端设备使用第一信道接入类型接入信道。换言之,第一指示信息可以用于指示第一信道接入类型。
一种可能的设计方案中,第一指示信息可以用于指示在相同时隙上发送信息的第二终端设备使用第一信道接入类型接入信道。另一种可能的设计方案中,第一指示信息可以用于指示被共享资源的第二终端设备使用第一信道接入类型接入信道。
该第一信道接入类型可以为Type2A LBT、Type2B LBT、或者Type2C LBT中的任意一种,本申请实施例对此不做具体限定。
可以理解的是,对于使用第一时隙发送信息的一个或多个第二终端设备,可以根据该第一指示信息,使用相同的信道接入类型完成信道接入。该第一指示信息是在第二终端设备执行信道接入之前发送的,并且向多个第二终端设备发送的第一指示信息指示的信道接入类型相同。
一种可能的设计方案中,第一指示信息可以承载在第二侧行链路控制信息或媒体接入控制 (media access control,MAC)信令中发送。如第一指示信息可以以字段的形式承载在第二侧行链路控制信息或MAC信令中,该字段可以为扩展字段。
在第二侧行链路控制信息可以包括第一阶段侧行链路控制信息和第二阶段侧行链路控制信息的情形下,第一指示信息可以承载在第一阶段侧行链路控制信息中,也可以承载在第二阶段侧行链路控制信息中。
另一种可能的设计方案中,第一指示信息可以承载在上述S903中的COT指示信息中,并将该COT指示信息承载在第二侧行链路控制信息或媒体接入控制MAC信令中发送。可以理解为,第一指示信息为COT指示信息中的字段。
再一种可能的设计方案中,第一指示信息可以为上述S903中的COT指示信息,此时COT指示信息还可以用于指示第一信道接入类型,无需再执行S904。
一种可能的设计方案中,第一指示信息可以通过第一比特域指示,第一比特域的不同比特值分别用于指示如下任意两种第一信道接入类型:Type2A LBT、Type2B LBT、Type2C LBT。其中,第一比特域可以为1比特或多比特。
示例性地,第一指示信息通过1个比特位的比特值指示,该1个比特位的不同比特值分别用于指示如下任意两种第一信道接入类型:Type2A LBT、Type2B LBT、Type2C LBT。例如,“0”用于指示Type2A LBT,“1”用于指示Type2B LBT。又例如,“0”用于指示Type2B LBT,“1”用于指示Type2C LBT。
又示例性地,第一指示信息通过多个比特位的比特值指示,多个比特位的不同比特值分别用于指示如下三种第一信道接入类型:Type2A LBT、Type2B LBT、Type2C LBT。例如,第一指示信息通过2比特位的比特值指示,“00”用于指示Type2A LBT,“01”用于指示Type2B LBT,“10”用于指示Type2C LBT。又例如,第一指示信息通过3比特位的比特值指示。“000”用于指示Type2A LBT,“001”用于指示Type2B LBT。“010”用于指示Type2C LBT。本申请实施例对不同比特值对应的接入类型不做限定。
值得说明的是,第一终端设备可以为使用不同时隙发送侧行信息的终端设备指示不同的接入类型,但使用同一时隙发送侧行信息的终端设备指示的第一信道接入类型相同。
可以理解的是,S904为可选步骤,如在第二终端设备根据预配置的第一信道接入类型执行信道接入或第一指示信息为COT指示信息的情况下,可以不执行S904。
S905、第二终端设备根据第一信道接入类型接入信道。
其中,第一信道接入类型可以是由第一指示信息指示或预配置的。示例性的,第一信道接入类型为预配置的,该第一信道接入类型可配置用于多个终端设备,该多个终端设备可以理解为可使用共享资源的终端设备,第二终端设备为多个终端设备中的一个。换言之,对于能够使用共享资源的终端设备,可以在资源池以配置/预配置的方式为多个终端设备配置相同的第一信道接入类型。
在第一信道接入类型是由第一指示信息指示的情况下,第二终端设备在侦听到信道空闲后,可以根据接收的第一指示信息指示的第一信道接入类型在预留的符号上执行信道接入,并在完成该第一信道接入类型的信道接入后,发送第一CPE占用信道,从而在第一时隙上发送信息。对于多个第二终端设备而言,多个第二终端设备均接收到第一指示信息,侦听到信道空闲后,可以同时使用相同信道接入类型的LBT在预留的符号上执行信道接入,并同时发送相同长度的CPE占用信道。
在第一信道接入类型为预配置的情况下,第二终端设备在获取到能够使用共享资源的指示信息(如COT指示信息)后,对信道进行空闲检测,在侦听到信道空闲之后使用预配置的第一信道接入类型在预留的符号上执行信道接入,并在完成该第一信道接入类型的信道接入后,发送CPE占用信道,从而在第一时隙上发送信息。可以理解的是,在此情况下,可以不执行上述S904。也就是说,对于多个第二终端设备而言,预配置的信道接入方式相同,因此在侦听到信道空闲之后,也可以同时使用预配置的相同信道接入类型的LBT在预留的符号上执行信道接入,并同时发送相同长度的CPE占用信道。
在第一信道接入类型配置用于多个终端设备的情况下,多个终端设备还包括第三终端设备,第三终端设备与第二终端设备不同的是,第三终端设备在第四终端设备获得的COT内有预约资源,且该预约资源也位于第一时隙上,可以理解的是,第三终端设备与第二终端设备在第一时隙上的预约资源频域上互不重叠。该第四终端设备与第一终端设备接入同一信道,且第四终端设备与第一终端设备获取同一COT上的不同资源,如第一终端设备和第四终端设备分别获取同一COT上的不同交错资源,对应的,第四终端设备将第三终端设备的预约资源共享给第三终端设备,具体过程可以参见上述S902中的相关描述,第三终端设备也会在侦听到信道空闲之后使用预配置的第一信道接入类型在预留的同一符号上执行信道接入,与第二终端设备同时接入信道,在第一时隙上不同的资源上发送信息。具体实现过程可以参见下述图11示出的方法实施例,此处不再赘述。
本申请实施例示例性的以第一终端设备与一个第二终端交互为例进行说明,当然,第一终端设备可以与多个第二终端设备进行交互,每个第二终端设备与第一终端设备交互的流程均可以参照本申请实施例,本申请实施例对此不作具体限定。
基于图9示出的通信方法,对于被共享资源的第二终端设备,第二终端设备可以使用预配置的固定的信道接入方式,或者根据第一终端设备发送的第一指示信息指示的信道接入类型执行信道接入,这样可以保证第二终端设备无论是否存在冲突接入,均能按照指定类型的信道接入方式在指定时刻做LBT接入信道,从而可以避免被共享资源的终端设备由于使用不同的信道接入方式,导致后做完信道接入的终端设备无法接入信道,无法使用共享资源的问题,进而可以使得在预约资源上传输业务优先级高的终端设备可以顺利使用共享资源,保障高优先级业务的QoS,并且可以提高资源利用率,避免资源浪费。
下面结合具体的应用场景对本申请实施例提供的通信方法进行详细说明。如本申请实施例提供的通信方法可以应用于图6示出的通信场景中。以UE1为第一终端设备,UE2和UE3为第二终端设备,COT包括时隙n至时隙n+2,第一时隙为时隙n+1为例进行说明。
为便于说明,将下述实施例中UE2发送的SCI称为SCI1,UE3发送的SCI称为SCI2。
需要说明的是,图9所示通信方法中,第一指示信息指示示至少一个第二终端设备使用的信道接入类型。在另一中通信方法中,第一指示信息可以指示CPE的长度。从而使得至少一个第二终端设备执行信道接入。以下作具体描述。
第一终端设备向至少一个第二终端设备发送第一指示信息,对应的,第一指示信息指示至少一个第二终端设备的第一CPE的长度。
在一种可选的方式中,第一CPE的长度对应第一信道接入类型。第二终端设备根据第一CPE的长度,确定第一信道接入类型执行。该方式下,可以理解为第一CPE的长度为第一信道接入类型的执行时间,或者,第一CPE的长度用于第二终端设备确定信道接入的执行时间。
可选地,第一指示信息可以直接指示CPE的长度,或者,第一指示信息可以用于指示CPE的长度对应的索引值,该索引值与CPE的长度有对应关系,如不同的索引值对应不同的CPE的长度,该CPE的长度可以为预设好的一个数值,如CPE的长度可以为71us、55us、46us,三个不同CPE的长度分别对应不同的索引值0、1、2,或者该CPE的长度可以是一个固定时间长度减去对应的一个预设时长,不同的预设时长构成不同的CPE的长度,如固定时间长度为71us,减去的预设时长可以为16us、25us、34us,固定时间长度与三种不同预设时长的差值对应不同的索引值0、1、2。
其中,CPE的长度与索引值的对应关系可以以表的形式存储在终端设备中,第一终端设备可以根据第一信道接入类型从表中选择对应的CPE的长度作为第一CPE的长度,并且第一指示信息用于指示该第一CPE对应的索引值,从而第二终端设备可以根据该索引值进一步确定CPE的长度,从而可以确定信道接入类型。可以理解的是,CPE的长度与索引值的对应关系可以为预配置在终端设备中。
示例性地,CPE的长度可以根据如下公式计算得到:Tcpe=Tsymboli。其中,Tsymbol表示子载波间隔为15kHz时对应的一个符号的时长(即固定时间长度),Δi表示预设时长。预设时长与时长 索引的对应关系如下表4所示,预设时长的取值不同,CPE的长度对应不同。
一种可能的设计方案中,第一指示信息可以指示CPE的时长索引。不同时长索引对应的Δi不同,从而可以计算出不同的CPE的时长,该表可以预配置在终端设备的资源池中。
另一种可能的设计方案中,第一指示信息可以直接指示CPE的长度,即Tcpe=Tsymboli,可以基于Δi配置多个CPE的长度,配置在终端设备中。
表4
示例性地,图10为本申请实施例提供的另一种通信方法的流程示意图。该通信方法包括如下步骤:
S1001、UE2向UE1发送SCI1。相应的,UE1接收来自UE2的SCI1。
示例性地,如图11所示,UE1在时隙n-1上执行Type1 LBT,而在时隙n-1之前,UE1进行信道侦听过程中,可以获取UE2的SCI,即SCI1,该SCI1用于指示时隙n+1,该时隙n+1用于UE2发送信息。换言之,UE2在时隙n+1上有预约资源。
S1002、UE3向UE1发送SCI2。相应的,UE1接收来自UE3的SCI2。
其中,S1002的具体实现过程可以参见上述S1001中的相关描述。该SCI2用于指示时隙n+1,该时隙n+1用于UE3发送数据。也就是说,UE3也在时隙n+1上有预约资源。可以理解的是,UE3的预约资源与UE2的预约资源不重叠。例如,UE2预约了时隙n+1上的交错0,UE3预约了时隙n+1上的交错1,交错0与交错1为互不重叠的频域资源。
可以理解的是,SCI1还指示有UE2在预约资源上传输数据的优先级,SCI2也还指示有UE3在预约资源上传输数据的优先级。
可以理解的是,UE1在信道侦听过程中,还可以获取其他UE的SCI。
值得说明的是,本申请实施例对S1001和S1002的执行先后顺序不做具体限定。
S1003、UE1根据SCI1和SCI2确定时隙n+1位于COT内。
示例性地,UE1在侦听到信道空闲后,在时隙n-1执行Type1 LBT完成信道接入,获取到包括时隙n至时隙n+2的COT,从而在时隙n上发送信息,并且根据SCI1和SCI2指示的信息确定UE2和UE3预约资源的时隙(时隙n+1)位于获取的COT内,以及确定UE2在预约资源上传输数据的优先级高于UE1在预约资源上传输数据的优先级,UE3在预约资源上传输数据的优先级高于UE1在预约资源上传输数据的优先级。
S1004、UE1向UE2发送COT指示信息。相应的,UE2接收来自UE1的COT指示信息。
示例性地,确定将时隙n-1上的预约资源共享给UE2,从而向UE2发送COT指示信息,该COT指示信息可以用于指示UE2可以在时隙n+1上发送信息,以及可以指示在时隙n+1上可使用的资源信息。该COT指示信息可以承载在SCI或MAC信令中发送。
S1005、UE1向UE3发送COT指示信息。相应的,UE3接收来自UE1的COT指示信息。
可以理解的是,S1005与S1006中的COT指示信息为同一个,其也可以指示UE3可以在时隙n+1上发送信息,可以通过不同字段指示不同UE的共享资源信息。换言之,UE1在确定时隙n+1位于COT内,以及UE2和UE3在预约资源上传输数据的优先级高于UE1在预约资源上传输 数据的优先级之后,可以以广播的形式通知UE2和UE3。
另外,在确定共享资源后,UE1还可以预留时隙n上的最后一个符号,如图11示出的时隙n的符号13,用于UE2和UE3做信道接入。
S1006、UE1向UE2发送第一指示信息。相应的,UE2接收来自UE1的第一指示信息。
其中,第一指示信息用于指示在相同时隙上发送信息的UE使用第一信道接入类型。值得说明的是,对于使用不同时隙上的资源的UE,指示的信道接入类型可以不同,但使用相同时隙上的资源的UE,指示的信道接入类型需要相同。如图11所示,在使用时隙n+1上的资源发送信息的UE使用第一信道接入类型为Type2B LBT,在使用时隙n+2上的资源发送信息的UE使用第一信道接入类型为Type2A LBT。
一种可能的设计方案中,第一指示信息用于指示UE完成信道接入后使用的第一CPE的长度。UE2可以根据第一指示信息指示的第一CPE的长度确定第一信道接入类型,不同的第一信道接入类型对应不同的第一CPE的长度。
对于使用共享资源发送信息的UE,通常采用Type2类型的LBT接入信道,因此,第一信道接入类型可以为Type2A LBT、Type2B LBT、Type2C LBT中的任意一种,如该第一信道接入类型为Type2B LBT。
示例性地,UE1在时隙n的符号13之前,即UE2和UE3做信道接入之前,向UE2发送第一指示信息。该第一指示信息可以承载在COT指示信息中,再承载在SCI或MAC CE信令中发送,还可以直接承载在SCI或MAC CE信令中发送,本申请实施例对此不做限定。
S1007、UE1向UE3发送第一指示信息。相应的,UE3接收来自UE1的第一指示信息。
其中,S1005的具体实现过程可以参见上述S1004,此处不再赘述。
可以理解的是,UE1可以通过公共SCI通知UE2和UE3使用第一信道接入类型做信道接入。
S1008、UE2根据第一信道接入类型接入信道。
示例性地,UE2获取到共享资源信息以及第一指示信息,在时隙n上侦听信道是否空闲,为保证UE2在时隙n+1的起始位置开始发送信息,UE1会在时隙n上预留的最后一个符号之前释放信道,从而UE2检测到信道空闲后,能够在时隙n上预留的最后一个符号上使用第一信道接入类型(如Type2B LBT)执行信道接入,并在执行完LBT发送CPE占用信道,从而能在时隙n+1的起始位置使用共享资源(如交错0)发送信息。
S1009、UE3根据第一信道接入类型接入信道。
如图11所示,UE3检测到信道空闲后,同时在时隙n上预留的最后一个符号上使用第一信道接入类型(如Type2B LBT)执行信道接入,发送相同长度的CPE,与UE2同时占用信道,完成信道接入,从而保证了UE2和UE3均接入信道,并在时隙n+1使用不同交错的资源发送信息。
可以理解的是,上述S1004和S1005同时执行,S1006和S1007同时执行,S1008和S1009同时执行。
基于图10示出的通信方法,在同一UE将相同时隙上的资源共享给多个UE时,共享资源的UE可以指示被共享资源的UE使用相同的Type2类型的信道接入方式进行信道接入,使得多个UE可以同时做LBT且同时发送CPE占用信道,可以避免由于信道接入类型不同导致LBT结束时刻不同,从而导致LBT结束较早的UE发送CPE占用信道,阻塞其他被共享资源的UE接入信道,进而可以保证共享资源不会因为LBT失败导致资源浪费。
本申请实施例提供的通信方法还可以应用于图7中的(a)示出的通信场景中。以UE0为第四终端设备、UE1为第一终端设备、UE2为第二终端设备、UE3为第三终端设备,COT包括时隙n和时隙n+1,第一时隙为时隙n+1为例进行说明。
示例性地,图12示出了本申请实施例提供的又一种通信方法的流程示意图。该通信方法包括如下步骤:
S1201、UE2向UE0发送SCI。相应的,UE0接收来自UE2的SCI1。
如图13所示,UE0在时隙n-1上执行Type1 LBT,获取得到COT内的交错0的资源,而在时隙n-1之前的信道侦听过程中,可以获取UE2的SCI,即SCI1,该SCI1用于指示时隙n+1,该 时隙n+1用于UE2发送信息,该SCI1指示了UE2的资源预约信息,如UE2预约了时隙n+1上的交错0的资源。
S1202、UE3向UE1发送SCI2。相应的,UE1接收来自UE3的SCI2。
如图13所示,UE1也在时隙n-1上执行Type1 LBT,与UE0接入同一信道,获取到COT内的交错1的资源,UE1在时隙n-1之前的信道侦听过程中,可以获取UE3的SCI,即SCI2,该SCI2用于指示时隙n+1,该时隙n+1用于UE3发送信息,该SCI2指示了UE3的资源预约信息,如UE3预约了时隙n+1上的交错1的资源。
可以理解的是,UE0和UE1在信道侦听过程中,也可以获取其他UE的SCI,如UE0可以获取SCI2,UE1可以获取SCI1。
S1203、UE0根据SCI1确定时隙n+1位于COT内。
如图13所示,UE0在时隙n-1上执行Type1 LBT后接入信道,并UE0获取到COT内的交错0的资源,从而在时隙n的交错0上发送信息,并且UE0根据接收的SCI1指示的预约资源信息确定是否有预约资源位于获取的COT内。如COT包括时隙n至时隙n+1,而UE2的预约资源位于时隙n+1上,则UE0可以确定UE2的预约资源在COT内,且预约资源为UE0的交错0的资源。
另外,UE0还会根据SCI1的指示传输优先级信息确定,UE2在预约资源上传输数据的优先级高于UE0在预约资源上传输数据的优先级,并且为UE2预留时隙n上的最后一个符号,如图13示出的时隙n的符号13,用于UE2做信道接入。
S1204、UE1根据SCI2确定时隙n+1位于COT内。
示例性地,UE1在时隙n-1上执行Type1 LBT后与UE0接入同一信道,并获取到同一COT内不同交错上的资源,如UE1获取到COT内的交错1的资源,从而在时隙n的交错1上发送信息,并且UE1可以根据接收的SCI2指示的预约资源信息确定是否有预约资源位于获取的COT内。如COT包括时隙n至时隙n+1,而UE3的预约资源位于时隙n+1上,则UE1可以确定UE3的预约资源在COT内,且UE3的预约资源为UE1的交错1的资源。
另外,UE1也会根据SCI2的指示传输优先级信息确定,UE3在预约资源上传输数据的优先级高于UE1在预约资源上传输数据的优先级,并且为UE3预留时隙n上的最后一个符号,如图13示出的时隙n的符号13,用于UE3做信道接入。换言之,UE0和UE1为UE2和UE3预留了时隙n上相同符号用于做信道接入。
S1205、UE0向UE2发送第一COT指示信息。相应的,UE2接收来自UE0的第一COT指示信息。
示例性地,UE0确定UE2的预约资源为时隙n+1上的交错0,且UE2传输数据的优先级高,则UE0确定将时隙n+1上的交错0共享给UE2,从而在时隙n上向UE2发送第一COT指示信息,该第一COT指示信息可以用于指示UE2使用时隙n+1上的交错0发送信息,以便于UE2在时隙n上侦听信道是否空闲。
S1206、UE1向UE3发送第二COT指示信息。相应的,UE3接收来自UE1的第二COT指示信息。
其中,第二COT指示信息用于指示UE3使用时隙n+1上的交错1发送信息。S1006的具体过程可以参考上述S1205,此处不再赘述。
S1207、UE2根据预配置的第一信道接入类型接入信道。
其中,预配置的第一信道接入类型可以为Type2A LBT、Type2B LBT、Type2C LBT中的任意一种。如图13所示,UE2在时隙n上接收到第一COT指示信息后,在预留符号上侦听到信道空闲,立刻根据预配置的第一信道接入类型(如Type2B LBT)执行信道接入,如在t0时刻侦听到信道空闲,在t1时刻执行第一信道接入类型,执行完成后发送CPE占用信道,从而可以在时隙n+1的起始位置利用交错0的资源发送信息。
S1208、UE3根据预配置的第一信道接入类型接入信道。
如图13所示,UE3收到第二COT指示信息后,也在t0时刻侦听到信道空闲,在t1时刻执行 第一信道接入类型的信道接入,执行完成后与UE2同时发送CPE占用信道,从而可以在时隙n+1的起始位置利用交错1的资源发送信息。
可以理解的是,上述S1207和S1208同时执行。
基于图12所示的通信方法,对于接入同一信道的不同UE将相同时隙上的资源共享给不同UE的情况下,被共享资源的UE可以采用预配置的方式,配置使用相同的信道接入类型,可以避免被不同UE共享资源的UE之间无法知道对方使用哪种Type2类型的信道接入方式做信道接入,从而导致LBT结束时刻不同,使得LBT结束较早的UE发送CPE占用信道的问题,可以保证被共享资源的UE能够同时做LBT且同时发送CPE占用信道,进而提高资源利用率。
可以理解的是,本申请实施例提供的通信方法也可以应用于图7中的(b)示出的通信场景下,在图7中的(b)示出通信场景下,被共享资源的UE3、UE2和UE4也可以预配置相同的信道接入类型执行信道接入,如UE3、UE2和UE4预配置的第一信道接入类型为Type2A LBT。UE0和UE1的资源共享过程可以参照上述S1201-S1206,此处不再赘述。
可以理解的是,对于同一UE将相同时隙上的资源共享给多个UE的场景下,被共享资源的UE也可以采用预配置的相同信道接入类型接入信道,可以避免LBT结束较早的UE发送CPE占用信道,阻塞其他被共享资源的UE接入信道的问题。
可以理解的是,以上各个实施例中,由第一终端设备实现的方法和/或步骤,也可以由可用于该第一终端设备的部件(例如处理器、芯片、芯片系统、电路、逻辑模块、或软件)实现;由第二终端设备实现的方法和/或步骤,也可以由可用于该第二终端设备的部件(例如处理器、芯片、芯片系统、电路、逻辑模块、或软件)实现上述主要对本申请提供的方案进行了介绍。
相应的,本申请还提供了通信装置,该通信装置用于实现上述方法实施例中的各种方法。该通信装置可以为上述方法实施例中的第一终端设备,或者包含第一终端设备的装置,或者为可用于第一终端设备的部件,例如芯片或芯片系统。或者,该通信装置可以为上述方法实施例中的第二终端设备,或者包含第二终端设备的装置,或者为可用于第二终端设备的部件,例如芯片或芯片系统,
可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
以通信装置为上述方法实施例中的第一终端设备或者第二终端设备为例,图14是本申请实施例提供的一种通信装置的结构示意图。如图14所示,通信装置1400包括:处理模块1401和收发模块1402。
以通信装置1400为上述方法实施例中的第一终端设备为例:
其中,收发模块1402,用于接收来自至少一个第二终端设备的第一侧行链路控制信息,第一侧行链路控制信息用于指示第一时隙,第一时隙用于第二终端设备发送信息。
处理模块1401,用于确定第一时隙位于COT内。
收发模块1402,还用于向至少一个第二终端设备发送第一指示信息,第一指示信息用于指示至少一个第二终端设备使用第一信道接入类型接入信道。
一种可能的设计方案中,第一指示信息可以承载在第二侧行链路控制信息或MAC信令中。
一种可能的设计方案中,第一指示信息可以承载在COT指示信息中。
可选地,第一信道接入类型可以为Type2A LBT、Type2B LBT、Type2C LBT中的任意一种信道接入类型。
一种可能的设计方案中,第一指示信息可以通过第一比特域指示,第一比特域的不同比特值分别用于指示如下任意一种第一信道接入类型:Type2A LBT、Type2B LBT、Type2C LBT。
一种可能的设计方案中,第一比特域为1比特或者多比特。
以通信装置为上述方法实施例中的第二终端设备为例:
其中,收发模块1402,用于向第一终端设备发送第一侧行链路控制信息,第一侧行链路控制信息用于指示第一时隙,第一时隙用于通信装置发送信息。
处理模块1401,用于根据第一信道接入类型接入信道,第一信道接入类型是根据第一指示信息或预配置确定的。
一种可能的设计方案中,在第一信道接入类型根据第一指示信息确定的情况下,收发模块1402,还用于接收来自第一终端设备的第一指示信息,第一指示信息用于指示第一信道接入类型。
一种可能的设计方案中,第一指示信息可以承载在第二侧行链路控制信息或MAC信令中。
一种可能的设计方案中,第一指示信息可以承载在COT指示信息中。
可选地,第一信道接入类型为Type2A LBT、Type2B LBT、Type2C LBT中的任意一种信道接入类型。
一种可能的设计方案中,第一指示信息可以通过第一比特域指示,第一比特域的不同比特值分别用于指示如下任意一种第一信道接入类型:Type2A LBT、Type2B LBT、Type2C LBT。
一种可能的设计方案中,第一比特域为1比特或者多比特。
另一种可能的设计方案中,在第一信道接入类型根据预配置确定的情况下,第一信道接入类型为配置用于多个终端设备,通信装置为多个终端设备中的一个。
一种可能的设计方案中,多个终端设备还包括第三终端设备,第三终端设备为使用预配置的第一信道接入类型接入信道,并在第四终端设备的第一资源上发送信息的终端设备,第四终端设备与第一终端设备接入同一信道,第一资源与第一终端设备的第二资源为第一时隙上的不重叠的频域资源,第二资源为用于通信装置发送信息的资源。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
由于本实施例提供的通信装置1400可执行上述通信方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
可选地,本申请实施例中,收发模块1402可以包括接收模块和发送模块(图14中未示出)。其中,收发模块用于实现通信装置1400的发送功能和接收功能。
可选地,通信装置1400还可以包括存储模块(图14中未示出),该存储模块存储有程序或指令。当处理模块1401执行该程序或指令时,使得通信装置1400可以执行图9所示出的通信方法中第一终端设备的功能、或图10所示出的通信方法中UE1的功能、或图12所示出的通信方法中UE0的功能,或者可以执行图9所示出的通信方法中第二终端设备的功能、或图10所示出的通信方法中UE2或UE3的功能、或图12所示出的通信方法中UE2的功能。
应理解,通信装置1400中涉及的处理模块1401可以由处理器或处理器相关电路组件实现,可以为处理器或处理单元;收发模块1402可以由收发器或收发器相关电路组件实现,可以为收发器或收发单元。
示例性地,图15为本申请实施例提供的另一通信装置的结构示意图。该通信装置可以是第一终端设备或第二终端设备,也可以是可设置于第一终端设备或第二终端设备的芯片(系统)或其他部件或组件。如图15所示,通信装置1500可以包括处理器1501。可选地,通信装置1500还可以包括存储器1502和/或收发器1503。其中,处理器1501与存储器1502和收发器1503耦合,如可以通过通信总线连接。
下面结合图15对通信装置1500的各个构成部件进行具体的介绍:
其中,处理器1501是通信装置1500的控制中心,可以是一个处理器,也可以是多个处理元 件的统称。例如,处理器1501是一个或多个中央处理器(central processing unit,CPU),也可以是特定集成电路(application specific integrated circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。
可选地,处理器1501可以通过运行或执行存储在存储器1502内的软件程序,以及调用存储在存储器1502内的数据,执行通信装置1500的各种功能。
在具体的实现中,作为一种实施例,处理器1501可以包括一个或多个CPU,例如图15中所示出的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置1500也可以包括多个处理器,例如图15中所示的处理器1501和处理器1504。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
其中,所述存储器1502用于存储执行本申请方案的软件程序,并由处理器1501来控制执行,具体实现方式可以参考上述方法实施例,此处不再赘述。
可选地,存储器1502可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器1502可以和处理器1501集成在一起,也可以独立存在,并通过通信装置1500的接口电路(图15中未示出)与处理器1501耦合,本申请实施例对此不作具体限定。
收发器1503,用于与其他通信装置之间的通信。例如,通信装置1500为终端设备,收发器1503可以用于与网络设备通信,或者与另一个终端设备通信。又例如,通信装置1500为网络设备,收发器1503可以用于与终端设备通信,或者与另一个网络设备通信。
可选地,收发器1503可以包括接收器和发送器(图15中未单独示出)。其中,接收器用于实现接收功能,发送器用于实现发送功能。
可选地,收发器1503可以和处理器1501集成在一起,也可以独立存在,并通过通信装置1500的接口电路(图15中未示出)与处理器1501耦合,本申请实施例对此不作具体限定。
需要说明的是,图15中示出的通信装置1500的结构并不构成对该通信装置的限定,实际的通信装置可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
此外,通信装置1500的技术效果可以参考上述方法实施例所述的通信方法的技术效果,此处不再赘述。
本申请实施例提供一种通信系统。该通信系统包括第一终端设备和至少一个第二终端设备。
在一些实施例中,本申请还提供一种通信装置,该通信装置包括处理器,用于实现上述任一方法实施例中的方法。
作为一种可能的实现方式,该通信装置还包括存储器。该存储器,用于保存必要的计算机程序和数据。该计算机程序可以包括指令,处理器可以调用存储器中存储的计算机程序中的指令以指令该通信装置执行上述任一方法实施例中的方法。当然,存储器也可以不在该通信装置中。
作为另一种可能的实现方式,该通信装置还包括接口电路,该接口电路为代码/数据读写接口电路,该接口电路用于接收计算机执行指令(计算机执行指令存储在存储器中,可能直接从存储器读取,或可能经过其他器件)并传输至该处理器。
作为又一种可能的实现方式,该通信装置还包括通信接口,该通信接口用于与该通信装置之外的模块通信。
可以理解的是,该通信装置可以是芯片或芯片系统,该通信装置是芯片系统时,可以由芯片 构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序或指令,该计算机程序或指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
本领域普通技术人员可以理解,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
可以理解,本申请中描述的系统、装置和方法也可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。作为单元显示的部件可以是或者也可以不是物理单元。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。本申请实施例中,计算机可以包括前面所述的装置。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本 申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (28)

  1. 一种通信方法,其特征在于,所述方法包括:
    第一终端设备接收来自至少一个第二终端设备的第一侧行链路控制信息,所述第一侧行链路控制信息用于指示第一时隙,所述第一时隙用于所述至少一个第二终端设备发送侧行信息;
    所述第一终端设备确定所述第一时隙位于信道占用时间COT内;
    所述第一终端设备向所述至少一个第二终端设备发送第一指示信息,所述第一指示信息指示第一信道接入类型。
  2. 根据权利要求1所述的方法,其特征在于,所述第一指示信息承载在第二侧行链路控制信息或媒体接入控制MAC信令中。
  3. 根据权利要求1所述的方法,其特征在于,所述第一指示信息承载在COT指示信息中。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述第一信道接入类型为Type2A先听后说LBT、Type2B LBT、Type2C LBT中的任意一种。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述第一指示信息通过第一比特域指示,所述第一比特域的不同比特值分别用于指示如下任意一种第一信道接入类型:Type2A LBT、Type2B LBT、Type2C LBT。
  6. 一种通信方法,其特征在于,所述方法包括:
    第二终端设备向第一终端设备发送第一侧行链路控制信息,所述第一侧行链路控制信息用于指示第一时隙,所述第一时隙用于所述第二终端设备发送侧行信息;
    所述第二终端设备根据第一信道接入类型接入信道,所述第一信道接入类型由第一指示信息指示或所述第一信道接入类型为预配置的。
  7. 根据权利要求6所述的方法,其特征在于,在所述第一信道接入类型由所述第一指示信息指示的情况下,所述方法还包括:
    所述第二终端设备接收来自所述第一终端设备的所述第一指示信息,所述第一指示信息指示所述第一信道接入类型。
  8. 根据权利要求6或7所述的方法,其特征在于,所述第一指示信息承载在第二侧行链路控制信息或媒体接入控制MAC信令中。
  9. 根据权利要求6或7所述的方法,其特征在于,所述第一指示信息承载在COT指示信息中。
  10. 根据权利要求6-9中任一项所述的方法,其特征在于,所述第一信道接入类型为Type2A先听后说LBT、Type2B LBT、Type2C LBT中的任意一种。
  11. 根据权利要求6-10中任一项所述的方法,其特征在于,所述第一指示信息通过第一比特域指示,所述第一比特域的不同比特值分别用于指示如下任意一种第一信道接入类型:Type2A LBT、Type2B LBT、Type2C LBT。
  12. 根据权利要求6所述的方法,其特征在于,在所述第一信道接入类型为预配置的情况下,所述第一信道接入类型配置用于多个终端设备,所述第二终端设备为所述多个终端设备中的一个。
  13. 根据权利要求12所述的方法,其特征在于,所述多个终端设备还包括第三终端设备,所述第三终端设备为使用预配置的所述第一信道接入类型接入信道,并在第一资源上发送侧行信息的终端设备,所述第一资源为第四终端设备指示给所述第三终端设备的资源,所述第四终端设备与所述第一终端设备接入同一信道,所述第一资源与所述第一终端设备的第二资源为所述第一时隙上的不重叠的频域资源,所述第二资源为用于所述第二终端设备发送侧行信息的资源。
  14. 一种通信装置,其特征在于,所述装置包括:处理模块和收发模块;其中,
    所述收发模块,用于接收来自至少一个第二终端设备的第一侧行链路控制信息,所述第一侧行链路控制信息用于指示第一时隙,所述第一时隙用于所述至少一个第二终端设备发送侧行信息;
    所述处理模块,用于确定所述第一时隙位于信道占用时间COT内;
    所述收发模块,还用于向所述至少一个第二终端设备发送第一指示信息,所述第一指示信息指示第一信道接入类型。
  15. 根据权利要求14所述的装置,其特征在于,所述第一指示信息承载在第二侧行链路控制 信息或媒体接入控制MAC信令中。
  16. 根据权利要求14所述的装置,其特征在于,所述第一指示信息承载在COT指示信息中。
  17. 根据权利要求14-16中任一项所述的装置,其特征在于,所述第一信道接入类型为Type2A先听后说LBT、Type2B LBT、Type2C LBT中的任意一种。
  18. 根据权利要求14-17中任一项所述的装置,其特征在于,所述第一指示信息通过第一比特域指示,所述第一比特域的不同比特值分别用于指示如下任意一种第一信道接入类型:Type2A LBT、Type2B LBT、Type2C LBT。
  19. 一种通信装置,其特征在于,所述装置包括:处理模块和收发模块;其中,
    所述收发模块,用于向第一终端设备发送第一侧行链路控制信息,所述第一侧行链路控制信息用于指示第一时隙,所述第一时隙用于所述通信装置发送侧行信息;
    所述处理模块,用于根据第一信道接入类型接入信道,所述第一信道接入类型由第一指示信息指示或所述第一信道接入类型为预配置的。
  20. 根据权利要求19所述的装置,其特征在于,在所述第一信道接入类型由所述第一指示信息指示的情况下,所述收发模块,还用于:
    接收来自所述第一终端设备的所述第一指示信息,所述第一指示信息指示所述第一信道接入类型。
  21. 根据权利要求19或20所述的装置,其特征在于,所述第一指示信息承载在第二侧行链路控制信息或媒体接入控制MAC信令中。
  22. 根据权利要求19或20所述的装置,其特征在于,所述第一指示信息承载在COT指示信息中。
  23. 根据权利要求19-22中任一项所述的装置,其特征在于,所述第一信道接入类型为Type2A先听后说LBT、Type2B LBT、Type2C LBT中的任意一种。
  24. 根据权利要求19-23中任一项所述的装置,其特征在于,所述第一指示信息通过第一比特域指示,所述第一比特域的不同比特值分别用于指示如下任意一种第一信道接入类型:Type2A LBT、Type2B LBT、Type2C LBT。
  25. 根据权利要求19所述的装置,其特征在于,在所述第一信道接入类型为预配置的情况下,所述第一信道接入类型配置用于多个终端设备,所述通信装置为所述多个终端设备中的一个。
  26. 根据权利要求25所述的装置,其特征在于,所述多个终端设备还包括第三终端设备,所述第三终端设备为使用预配置的所述第一信道接入类型接入信道,并在第一资源上发送侧行信息的终端设备,所述第一资源为第四终端设备指示给所述第三终端设备的资源,所述第四终端设备与所述第一终端设备接入同一信道,所述第一资源与所述第一终端设备的第二资源为所述第一时隙上的不重叠的频域资源,所述第二资源为用于所述通信装置发送侧行信息的资源。
  27. 一种通信系统,其特征在于,包括第一终端设备、第二终端设备、第三终端设备和第四终端设备;其中,
    所述第二终端设备向所述第一终端设备发送第一侧行链路控制信息,其中,所述第一侧行链路控制信息用于指示第一时隙,所述第一时隙用于所述第二终端设备发送侧行信息;
    所述第一终端设备接收来自所述第二终端设备的所述第一侧行链路控制信息,并且确定所述第一时隙位于信道占用时间COT内;
    所述第三终端设备向所述第四终端设备发送第三侧行链路控制信息,其中,所述第四终端设备与所述第一终端设备为接入同一信道的终端设备,所述第三侧行链路控制信息用于指示所述第一时隙,所述第一时隙用于所述第三终端设备发送侧行信息;
    所述第四终端设备接收来自所述第三终端设备的所述第三侧行链路控制信息,并且确定所述第一时隙位于所述COT内;
    所述第二终端设备根据预配置的第一信道接入类型接入信道;
    所述第三终端设备根据所述预配置的第一信道接入类型接入信道。
  28. 一种通信方法,其特征在于,该方法包括:第二终端设备,配置用于向第一终端设备发送第一侧行链路控制信息,所述第一侧行链路控制信息用于指示第一时隙,所述第一时隙为所述第二终端设备发送侧行信息的时隙,所述第一终端设备,配置用于确定第一时隙位于信道占用COT内,并向所述第二终端设备发送第一指示信息,所述第一指示信息指示第一信道接入类型,所述第二终端设备通过第一信道接入类型接入信道。
PCT/CN2023/103505 2022-08-12 2023-06-28 通信方法及装置 WO2024032201A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210969867.2 2022-08-12
CN202210969867.2A CN117676886A (zh) 2022-08-12 2022-08-12 通信方法及装置

Publications (1)

Publication Number Publication Date
WO2024032201A1 true WO2024032201A1 (zh) 2024-02-15

Family

ID=89850634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103505 WO2024032201A1 (zh) 2022-08-12 2023-06-28 通信方法及装置

Country Status (2)

Country Link
CN (1) CN117676886A (zh)
WO (1) WO2024032201A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210314933A1 (en) * 2019-01-10 2021-10-07 Fujitsu Limited Sidelink resource multiplexing and indication methods and apparatuses thereof
CN114830697A (zh) * 2020-01-03 2022-07-29 Oppo广东移动通信有限公司 无线通信的方法和终端设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210314933A1 (en) * 2019-01-10 2021-10-07 Fujitsu Limited Sidelink resource multiplexing and indication methods and apparatuses thereof
CN114830697A (zh) * 2020-01-03 2022-07-29 Oppo广东移动通信有限公司 无线通信的方法和终端设备

Also Published As

Publication number Publication date
CN117676886A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
RU2752846C2 (ru) Способ и устройство обработки информации восходящей линии связи
WO2020168946A1 (zh) 传输数据的方法和通信装置
KR102032884B1 (ko) 물리적 다운링크 제어 채널의 전송 방법 및 장치
EP3703455A1 (en) Method, terminal device and network device for data transmission
WO2024036671A1 (zh) 侧行通信的方法及装置
CN113490276B (zh) 发送和接收信息的方法及装置
CN116326155A (zh) 方法、通信设备和基础设施设备
US11134521B2 (en) System and method for UE random access over wide bandwidth with subset restriction
WO2024032201A1 (zh) 通信方法及装置
WO2017166249A1 (zh) 信息传输方法及装置
JP2024502053A (ja) 通信方法、通信装置および通信システム
CN110547038B (zh) 通信系统
WO2024032346A1 (zh) 资源集合确定方法、装置、通信设备及存储介质
WO2024016899A1 (zh) 一种通信方法及通信装置
WO2023165468A1 (zh) 一种资源确定方法及装置
WO2023207506A1 (zh) 共享资源分配方法及装置
WO2023207415A1 (zh) 数据发送方法、装置及系统
US11997699B2 (en) Sidelink communication method and apparatus
WO2023207723A1 (zh) 通信方法和通信装置
WO2024103843A1 (en) Systems and methods for device-to-device communications
WO2024061130A1 (zh) 通信方法和通信装置
WO2023207718A1 (zh) 一种资源选择的方法和装置
WO2024067476A1 (zh) 一种通信方法、装置、计算机可读存储介质和程序产品
WO2024032580A1 (zh) 测量方法、装置和系统
WO2024032231A1 (zh) 资源预留方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851428

Country of ref document: EP

Kind code of ref document: A1