WO2024032195A1 - 电池单体、电池和用电装置 - Google Patents

电池单体、电池和用电装置 Download PDF

Info

Publication number
WO2024032195A1
WO2024032195A1 PCT/CN2023/103415 CN2023103415W WO2024032195A1 WO 2024032195 A1 WO2024032195 A1 WO 2024032195A1 CN 2023103415 W CN2023103415 W CN 2023103415W WO 2024032195 A1 WO2024032195 A1 WO 2024032195A1
Authority
WO
WIPO (PCT)
Prior art keywords
deformation
assembly
electrode assembly
battery cell
layer
Prior art date
Application number
PCT/CN2023/103415
Other languages
English (en)
French (fr)
Inventor
赵利亚
王龙
刘会会
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2024032195A1 publication Critical patent/WO2024032195A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular to a battery cell, a battery and an electrical device.
  • Battery cells are widely used in electronic devices, such as mobile phones, laptops, battery cars, electric cars, electric airplanes, electric ships, electric toy cars, electric toy ships, electric toy airplanes, electric tools, etc.
  • the battery cells may include cadmium-nickel battery cells, nickel-hydrogen battery cells, lithium-ion battery cells, secondary alkaline zinc-manganese battery cells, etc.
  • the present application provides a battery cell, a battery and an electrical device, which can improve the structural stability of the battery cell.
  • a battery cell which includes a housing assembly, an electrode assembly, and a buffer assembly; the electrode assembly is disposed in the housing assembly, and there is a gap between the electrode assembly and the housing assembly; and The buffer component is arranged on the electrode component facing the shell component.
  • the buffer component includes a deformation zone.
  • the deformation zone includes a deformation layer and a support layer stacked along its own thickness direction.
  • the deformation layer is disposed between the support layer and the electrode assembly and is used to connect the support layer and the electrode assembly.
  • the deformation layer can The volume expansion occurs so that the buffer component fills the voids and serves to buffer the electrode assembly from forces as the electrode assembly expands.
  • the buffer component includes a deformation zone, and the deformation zone includes a support layer and a deformation layer.
  • the deformation layer can expand in volume, so that the overall structure of the buffer component fills the gap, so that There will be no shaking between the shell component and the electrode component; and during the charging and discharging process of the battery cell, the expanded electrode component will exert force on the buffer component because it is connected to the buffer component, and the buffer component can buffer the force. This reduces the risk of the expanded electrode assembly damaging the housing assembly and further improves the structural stability of the battery cell.
  • the buffer component is sandwiched between the housing component and the electrode component, and the buffer component is used to shrink and deform when the electrode component expands.
  • the buffer component is sandwiched between the housing component and the electrode component, the contact between the housing component and the electrode component is closer, the electrode component is less prone to positional deviation, and the structural stability of the battery cell is better. High; when the electrode assembly expands, the expanded electrode assembly will exert force on the buffer component, and the buffer component will buffer the force through its own shrinkage and deformation, thereby reducing the risk of damage to the shell component caused by the force, further improving Structural stability of secondary batteries.
  • the buffer component further includes a hollow area adjacent to the deformation area, and the hollow area runs through the buffer component along the thickness direction.
  • the deformation area of the buffer component will expand during the assembly and molding process of the battery cells.
  • the expansion can be carried out in the direction of the shell component, and on the other hand, the expansion can be carried out in the direction of the hollow area, so that Reduce the risk of the deformation zone extruding itself to form wrinkles, etc., thereby ensuring the reliability of the connection between the deformation zone and the electrode assembly.
  • the deformation zone is arranged around the hollow zone.
  • the deformation zone in the embodiment of the present application can expand in the direction of the hollow zone without substantially It will occupy the space outside the buffer component, which is beneficial to the design of the overall installation area of the buffer component.
  • the deformation zone continuously surrounds the outside of the hollow zone; or the deformation zone includes a plurality of deformation parts, and the plurality of deformation parts surround the outside of the hollow zone at intervals. In this way, the distribution form of the deformation zone can be flexibly set according to the structural form of the electrode assembly.
  • each hollow area there are multiple hollow areas, the plurality of hollow areas are spaced apart, and each hollow area is surrounded by a deformation area. Each deformation zone may expand toward its adjacent hollow zone.
  • the deformation zone can expand toward its adjacent hollow region, and some deformation regions may have two adjacent hollow regions, which can expand toward the two hollow regions respectively.
  • the hollow area is a continuous structure, and the deformation areas are discretely distributed in the hollow area.
  • the form of the deformation zone of this structural form is more flexible, and the deformation zone can be flexibly set according to process requirements.
  • the electrode assembly is a cylindrical structure, and the buffer assembly is disposed around at least part of the electrode assembly.
  • the buffer component is disposed on the outer periphery of the electrode component, so that the force acting on the electrode component can be buffered more evenly.
  • the electrode assembly is a cuboid structure.
  • the cuboid structure includes two first surfaces facing each other and a second surface connecting the two first surfaces.
  • the area of the first surface is greater than the area of the second surface; the buffer component is at least Set outside the first surface.
  • the embodiment of the present application disposes the buffer component at least outside the first surface, which can significantly buffer the expansion force generated by the electrode assembly, thereby significantly reducing the risk of the expanded electrode assembly damaging the housing assembly and ensuring that the battery cells structural stability.
  • the deformation layer includes multiple sub-layers stacked along the thickness direction; thereby improving the deformation ability of the deformation layer.
  • the multi-layer sub-layer includes a thermally deformable layer located between the support layer and a liquid-absorbent layer, and the liquid-absorbent layer is connected to the electrode assembly.
  • Thermal deformation layer can absorb heat When expansion occurs, the liquid-absorbing layer can absorb liquid and expand, and the thermal deformation layer and liquid-absorbing layer can maintain the expanded shape without external force, and are not prone to shrinkage and deformation, thereby ensuring that the electrode assembly and tightness between housing components.
  • the thickness of the buffer component is D ⁇ m, 1mm ⁇ D ⁇ 4mm.
  • the expansion ratio of the buffer component is higher, and the final thickness range after expansion is larger, making it more suitable for battery cells with low group margin.
  • the buffer component can shrink under force during the long-term cycle storage of the battery cells, buffer the expansion stress, and reduce the risk of the shell component bursting.
  • Figure 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • FIG. 2 is an exploded schematic diagram of a battery provided by some embodiments of the present application.
  • FIG 3 is a schematic structural diagram of the battery module shown in Figure 2;
  • Figure 4 is an exploded schematic diagram of a battery cell provided by some embodiments of the present application.
  • Figure 5 is a schematic structural diagram of the deformation zone of a battery cell provided by some embodiments of the present application.
  • Figure 6 is an exploded schematic diagram of a battery cell provided by other embodiments of the present application.
  • Figure 7 is an exploded schematic diagram of a battery cell provided by other embodiments of the present application.
  • Figure 8 is an exploded schematic diagram of a battery cell provided by other embodiments of the present application.
  • Figure 9 is an exploded schematic diagram of a battery cell provided by other embodiments of the present application.
  • Figure 10 is a schematic structural diagram of the deformation zone of a battery cell provided by other embodiments of the present application.
  • Electrode assembly 20. Shell assembly; 21. Housing; 211. Chapter One side; 212, second side; 22, end cap assembly; 23, end cap; 24, electrode terminal; 30, buffer assembly; 31, deformation zone; 311, deformation layer; 3111, thermal deformation layer; 3112, liquid absorption layer; 312, support layer; 32, hollow area.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can be a fixed connection
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • “Plural” appearing in this application means two or more (including two).
  • battery cells may include lithium ion secondary battery cells, lithium ion primary battery cells, lithium sulfur battery cells, lithium sodium ion battery cells, sodium ion battery cells or magnesium ion battery cells, etc.
  • the embodiments of the present application are not limited to this.
  • the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited to this.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, rectangular battery cells and soft-pack battery cells, and the embodiments of the present application are not limited to this.
  • the battery mentioned in the embodiments of this application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack.
  • Batteries generally include a box for packaging one or more battery cells. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly includes a positive electrode piece, a negative electrode piece and a separator. Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector; the positive electrode current collector includes a positive electrode current collecting part and a positive electrode tab protruding from the positive electrode current collecting part.
  • the positive electrode current collecting part Part of the positive electrode tab is coated with the positive electrode active material layer, and at least part of the positive electrode tab is not coated with the positive electrode active material layer.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material layer includes a positive electrode active material.
  • the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer, and the negative electrode active material layer is coated on the surface of the negative electrode current collector; the negative electrode current collector includes a negative electrode current collecting part and a negative electrode tab protruding from the negative electrode current collecting part, and the negative electrode current collecting part Part of the negative electrode tab is coated with the negative electrode active material layer, and at least part of the negative electrode tab is not coated with the negative electrode active material layer.
  • the negative electrode current collector may be made of copper, and the negative electrode active material layer may include a negative electrode active material.
  • the negative electrode active material may be carbon or silicon.
  • the material of the isolator can be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene), etc.
  • the electrode assembly may be wound
  • the structure may also be a laminated structure, and the embodiments of the present application are not limited to this.
  • the battery cell may further include a housing component, and the housing component has an accommodation cavity inside, which is a sealed space provided by the housing assembly for the electrode assembly and the electrolyte.
  • the inventor has improved the structure of the battery cell and proposed a battery cell.
  • the battery cell is provided with a buffer component between the casing component and the electrode component.
  • the buffer component can be connected to the electrode component.
  • the buffer component The component is used to expand during the process of assembling the finished product of the battery cell to fill the gap between the shell component and the electrode component and improve the overall structural stability of the battery cell; and during the normal cycle charge and discharge process of the battery cell, the expansion
  • the electrode assembly gives force to the buffer assembly, and the buffer assembly can shrink and deform, playing a buffering role and further improving the structural stability of the battery cell.
  • Electrical devices can be vehicles, cell phones, portable devices, laptops, ships, spacecraft, electric toys and power tools, etc.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles, etc.
  • spacecraft include aircraft, rockets, space shuttles, spaceships, etc.
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric ship toys and electric airplane toys, etc.
  • electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • Electric drills Electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • the following embodiments take the electrical device as a vehicle as an example.
  • FIG 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • the battery 2 is disposed inside the vehicle 1 , and the battery 2 can be disposed at the bottom, head, or tail of the vehicle 1 .
  • the battery 2 may be used to power the vehicle 1 , for example, the battery 2 may be used as an operating power source for the vehicle 1 .
  • the vehicle 1 may also include a controller 3 and a motor 4.
  • the controller 3 is used to control the battery 2 to provide power to the motor 4, for example, to meet the power requirements for starting, navigation and driving of the vehicle 1.
  • the battery 2 can not only be used as the operating power source of the vehicle 1, but also can be used as the driving power source of the vehicle 1, replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1.
  • FIG. 2 is an exploded schematic diagram of a battery provided by some embodiments of the present application.
  • the battery 2 includes a case 5 and a battery cell (not shown in FIG. 2 ), and the battery cell is accommodated in the case 5 .
  • the box 5 is used to accommodate battery cells, and the box 5 can be of various structures.
  • the box body 5 may include a first box body part 501 and a second box body part 502.
  • the first box body part 501 and the second box body part 502 cover each other.
  • the first box body part 501 and the second box body part 502 cover each other.
  • the two box portions 502 jointly define an accommodation space 503 for accommodating battery cells.
  • the second box part 502 may be a hollow structure with one end open, and the first box part 501 may be a plate-like structure.
  • the first box part 501 covers the open side of the second box part 502 to form a receiving space 503
  • the box 5; the first box part 501 and the second box part 502 can also be a hollow structure with one side open, and the open side of the first box part 501 is covered with the open side of the second box part 502 , to form the box 5 with the accommodation space 503 .
  • the first box part 501 and the second box part 502 can be in various shapes, such as cylinder, rectangular parallelepiped, etc.
  • a sealing member may also be provided between the first box part 501 and the second box part 502, such as sealant, sealing ring, etc. .
  • the first box part 501 can also be called an upper box cover, and the second box part 502 can also be called a lower box.
  • the battery 2 there may be one battery cell or a plurality of battery cells. If there are multiple battery cells, the multiple battery cells can be connected in series, in parallel, or in mixed connection. Mixed connection means that multiple battery cells are connected in series and in parallel. Multiple battery cells can be directly connected in series or parallel or mixed together, and then the whole composed of multiple battery cells can be accommodated in the box 5; of course, there can also be multiple batteries. The cells are first connected in series, parallel, or mixed to form the battery module 6 , and then multiple battery modules 6 are connected in series, parallel, or mixed to form a whole, and are accommodated in the box 5 .
  • FIG. 3 is a schematic structural diagram of the battery module shown in FIG. 2 .
  • the plurality of battery cells are first connected in series, parallel, or mixed to form the battery module 6 .
  • a plurality of battery modules 6 are connected in series, parallel, or mixed to form a whole, and are accommodated in the box.
  • the plurality of battery cells in the battery module 6 can be electrically connected through bus components to realize parallel, series or mixed connection of the multiple battery cells in the battery module 6 .
  • Figure 4 is an exploded schematic diagram of a battery cell provided by some embodiments of the present application.
  • the battery cell 7 provided by the embodiment of the present application includes an electrode assembly 10 and a housing assembly 20 .
  • the electrode assembly 10 is accommodated in the housing assembly 20 .
  • housing assembly 20 may also be used to contain an electrolyte, such as an electrolyte.
  • Housing assembly 20 may be constructed in a variety of forms.
  • the housing assembly 20 may include a housing 21 and an end cover assembly 22.
  • the housing 21 is a hollow structure with one side open, and the end cover assembly 22 covers the opening of the housing 21 and forms a sealed connection.
  • An accommodation cavity for accommodating the electrode assembly 10 and the electrolyte is formed.
  • the housing 21 can be in various shapes, such as cylinder, rectangular parallelepiped, etc.
  • the shape of the housing 21 can be determined according to the specific shape of the electrode assembly 10 . For example, if the electrode assembly 10 has a cylindrical structure, a cylindrical shell can be used; if the electrode assembly 10 has a rectangular parallelepiped structure, a rectangular parallelepiped shell can be used.
  • the end cap assembly 22 includes an end cap 23 that covers the opening of the housing 21 .
  • the end cap 23 can be of various structures.
  • the end cap 23 can be a plate-like structure, a hollow structure with one end open, etc.
  • the housing 21 has a rectangular parallelepiped structure
  • the end cover 23 has a plate-like structure
  • the end cover 23 covers the opening at the top of the housing 21 .
  • the end cap 23 can be made of insulating material (such as plastic) or conductive material (such as metal). When the end cap 23 is made of metal material, the end cap assembly 22 may also include an insulating piece located on the side of the end cap 23 facing the electrode assembly 10 to insulate the end cap 23 from the electrode assembly 10 .
  • end cap assembly 22 may also include electrode terminals 24 that The sub 24 is installed on the end cover 23. There are two electrode terminals 24 , and the two electrode terminals 24 are respectively defined as a positive electrode terminal and a negative electrode terminal. Both the positive electrode terminal and the negative electrode terminal are used to electrically connect with the electrode assembly 10 to output the electric energy generated by the electrode assembly 10 .
  • the housing assembly 20 can also be of other structures.
  • the housing assembly 20 includes a housing 21 and two end cover assemblies 22.
  • the housing 21 is a hollow structure with openings on opposite sides, and an end cover assembly 22. 22 corresponds to covering an opening of the housing 21 and forming a sealed connection to form a receiving cavity for receiving the electrode assembly 10 and the electrolyte.
  • one end cover assembly 22 may be provided with two electrode terminals 24 and the other end cover assembly 22 may not be provided with any electrode terminal 24, or each of the two end cover assemblies 22 may be provided with one electrode terminal 24.
  • the battery cell 7 there may be one electrode assembly 10 accommodated in the housing assembly 20 , or there may be a plurality of electrode assemblies 10 .
  • the electrode assembly 10 includes a positive electrode piece, a negative electrode piece and a separator.
  • the electrode assembly 10 may be a wound electrode assembly, a laminated electrode assembly, or other forms of electrode assembly.
  • the battery cell 7 includes a housing assembly 20, an electrode assembly 10 and a buffer assembly 30; the electrode assembly 10 is disposed in the housing assembly 20, between the electrode assembly 10 and the housing assembly 20 There is a gap between them; the buffer component 30 is disposed on the side of the electrode component 10 facing the housing component 20.
  • the buffer component 30 includes a deformation zone 31.
  • the deformation zone 31 includes a deformation layer 311 and a support layer 312 stacked along its own thickness direction X.
  • the deformation The layer 311 is disposed between the support layer 312 and the electrode assembly 10 and is used to connect the support layer 312 and the electrode assembly 10.
  • the deformation layer 311 can expand in volume to fill the gap and is used to buffer the electrode assembly 10 when the electrode assembly 10 expands. force.
  • the electrode assembly 10 may undergo volume expansion during the cycle of the battery cell 7; for example, the negative active material in the negative electrode sheet changes in volume, which will cause the overall structure of the electrode assembly 10 to change in volume.
  • the expanded electrode assembly 10 may squeeze the housing assembly 20 and cause damage to the housing assembly 20 .
  • a certain gap is left between the casing assembly 20 and the electrode assembly 10 to provide space for the volume expansion of the electrode assembly 10.
  • a buffer component 30 is provided in the gap.
  • the gap may be a space between the electrode assembly 10 and the housing 21 of the housing assembly 20 , that is, there is a gap between the housing 21 and the electrode assembly 10 .
  • the process of assembling the housing assembly 20 and the electrode assembly 10 into the finished battery cell 7 includes multiple processes, such as a high-temperature drying process and an electrolyte injection process.
  • the high-temperature drying process can be understood as evaporating the water in the housing component 20 to ensure that the housing component 20 meets the liquid injection standard; during this process, due to the high temperature, the buffer component 30 may thermally expand with the increase in temperature.
  • the gap between the housing assembly 20 and the electrode assembly 10 is initially filled.
  • the electrolyte is an important component that ensures the smooth migration of metal ions such as lithium ions between the positive electrode piece and the negative electrode piece. Therefore, the process of injecting the electrolyte is also essential. After the electrolyte is injected, the buffer component 30 may absorb liquid. Volume expansion is thereby generated to further fill the gap between the housing assembly 20 and the electrode assembly 10 .
  • the buffer component 30 may also only undergo thermal expansion, or may only undergo liquid absorption expansion; of course, other expansions may also occur to further fill the gaps.
  • the expanded buffer component 30 basically fills the gap completely, making the structure between the electrode component 10 and the housing component 20 closer, making the electrode component 10 less prone to shaking, thereby ensuring the structural stability of the battery cell 7 .
  • the expanded buffer component 30 can also only fill most of the gaps, leaving a slight gap between the buffer component 30 and the housing component 20.
  • the relative stability between the electrode assembly 10 and the housing component 20 is The stability is also significantly improved, and the gap can leave expansion space for subsequent expansion of the electrode assembly 10 .
  • the volume of the electrode assembly 10 may expand. Since the electrode assembly 10 is connected to the buffer assembly 30 , the expanded electrode assembly 10 will exert a certain force on the buffer assembly 30 .
  • the buffer component 30 fluid-injected buffer component 30
  • the buffer component 30 can utilize its own The deformation performance shrinks to buffer the force of the electrode assembly 10 and reduce the impact of the force of the electrode assembly 10 on the housing assembly 20 , thereby ensuring the risk of damage to the housing assembly 20 and improving the structural stability of the battery cell 7 .
  • the buffer component 30 can act under the force of the electrode assembly 10 at this time. Move downward toward the direction of the housing component 20, but due to the existence of the gap, the force will not directly act on the housing component 20. During the movement of the buffer component 30, most of the force can also be buffered, and the buffer component 30 can finally connect with the housing. The components 20 are in contact with each other, when However, a smaller gap may be maintained between the housing assembly 20 and the housing assembly 20 .
  • the buffer component 30 includes a deformation zone 31.
  • the deformation zone 31 is the core component of the buffer component 30 that undergoes volume expansion or contraction deformation. Through the deformation of the deformation zone 31, the structural stability of the battery cell 7 can be ensured and the battery cell 7 can be improved. Safety performance.
  • the deformation zone 31 is a laminated structure, which specifically includes a support layer 312 and a deformation layer 311.
  • the deformation layer 311 is connected to the electrode assembly 10 and is the main component to achieve deformation; the support layer 312 is connected to the deformation layer 311, and the support layer 312 is mainly used for deformation.
  • Layer 311 provides a mounting or forming base. In this application, deformation may be thermal deformation, liquid absorption deformation, or deformation under the action of external force, etc.
  • the buffer assembly 30 includes a deformation zone 31.
  • the deformation zone 31 includes a support layer 312 and a deformation layer 311.
  • the deformation layer 311 can expand in volume, so that the buffer assembly
  • the overall structure of 30 is filled in the gap so that there will be no shaking between the shell component 20 and the electrode component 10; and during the charging and discharging process of the battery cell 7, the expanded electrode component 10 will be connected to the buffer component 30, giving The buffer component 30 acts on the force, and the buffer component 30 can buffer the force, thereby reducing the risk of the expanded electrode assembly 10 damaging the housing component 20 and further improving the structural stability of the battery cell 7 .
  • the buffer assembly 30 is sandwiched between the housing assembly 20 and the electrode assembly 10 .
  • the buffer assembly 30 is used to shrink and deform when the electrode assembly 10 expands.
  • the support layer 312 is provided on the housing assembly 20 , and the deformation layer 311 is connected to the electrode assembly 10 . That is, the support layer 312 is provided on the housing 21 of the housing assembly 20 and the deformation layer 311 is connected to the electrode assembly 10 .
  • the buffer component 30 is sandwiched between the casing component 20 and the electrode component 10 , the contact between the casing component 20 and the electrode component 10 is closer, the electrode component 10 is less prone to positional deviation, and the structural stability of the battery cell 7 is improved. High; during the transportation or use of the battery cell 7, the reliability of the battery cell 7 can be ensured.
  • the electrode assembly 10 expands, the expanded electrode assembly 10 will exert a force on the buffer component 30 , and the buffer component 30 will buffer the force through its own contraction and deformation, thereby reducing the risk of damage to the housing component 20 caused by the force. , further further improve the structural stability of secondary batteries.
  • the buffer component 30 may only include the deformation area 31 and not the hollow area 32. Such an arrangement can enable the buffer component 30 to fully expand and fill the gap between the electrode assembly 10 and the housing assembly 20, ensuring that the electrode The structural stability of the assembly 10; and when the electrode assembly 10 expands, the force of the electrode assembly 10 can be fully buffered from multiple directions to further reduce the risk of damage to the housing assembly 20 caused by the electrode assembly 10.
  • Figure 6 is an exploded schematic diagram of a battery cell provided by other embodiments of the present application.
  • the buffer component 30 further includes a hollow area 32 adjacent to the deformation area 31 , and the hollow area 32 runs through the buffer component 30 along the thickness direction.
  • the hollow area 32 can be understood as a through hole opened in the buffer component 30. Since the through hole does not contain deformation material, it may not have a deformation function. Since the deformation area 31 of the buffer component 30 will expand during the assembly and molding process of the battery cell 7, on the one hand, the expansion can be carried out in the direction of the housing component 20, and on the other hand, the expansion can be carried out in the direction of the hollow area 32, thereby reducing the deformation. There is a risk that the area 31 squeezes itself to form wrinkles, etc., thereby ensuring the reliability of the connection between the deformation area 31 and the electrode assembly 10 .
  • the structure of the buffer assembly 30 can be flexibly set. Form, production requirements are achieved through the mutual cooperation of the deformation zone 31 and the hollow zone 32. There are many types of arrangements of the two, which will be described next.
  • the deformation zone 31 is arranged around the hollow zone 32 .
  • This structural form means that the hollow area 32 is distributed in the central area of the buffer component 30, the deformation area 31 is distributed in the peripheral area of the buffer component 30, and the outer peripheral area is arranged around the central area.
  • the deformation zone 31 expands, the deformation zone 31 can expand in the direction of the hollow zone 32 .
  • the expansion process is that the expansion component expands toward its central area. This ensures that the area occupied by the overall outer contour of the buffer component 30 does not If a major change occurs, the space outside the buffer component 30 will basically not be occupied, which is beneficial to the design of the overall installation area of the buffer component 30 .
  • the deformation zone 31 can be a continuous structure that continuously surrounds the hollow zone 32; this structure is conducive to the rapid assembly of the deformation zone 31 to the electrode assembly. 10 on.
  • the deformation zone 31 can also be in the form of discrete distribution, that is, the deformation zone 31 can include multiple deformation portions, and the multiple deformation portions can be spaced around the hollow area 32. This arrangement is conducive to the flexible arrangement of the deformation zone 31, and can be arranged according to the electrodes.
  • the structural form of the component 10 flexibly sets the distribution form of the deformation zone 31 .
  • the hollow region 32 may be a continuous structure.
  • the number of the hollow region 32 may also be regarded as one, and the deformation zone 31 is arranged around the hollow region 32 .
  • Figure 7 is an exploded schematic diagram of a battery cell provided by other embodiments of the present application.
  • the hollow areas 32 can also be provided with multiple hollow areas 32 spaced apart, and each hollow area 32 is surrounded by a deformation area 31 ; the deformation areas 31 can all be facing the adjacent hollow areas. Expansion occurs in the direction of zone 32.
  • Figure 8 is an exploded schematic diagram of a battery cell provided by other embodiments of the present application.
  • the buffer component 30 includes a deformation zone 31, a hollow zone 32, a deformation zone 31, a hollow zone 32, a deformation zone 31, etc. arranged in sequence.
  • the deformation zone 31 can expand in the direction of its adjacent hollow zone 32 , and some deformation zones 31 may have two adjacent hollow zones 32 , which can expand in the direction of the two hollow zones 32 respectively.
  • Figure 9 is an exploded schematic diagram of a battery cell provided by other embodiments of the present application.
  • the hollow area 32 is a continuous structure
  • the deformation area 31 is a discrete structure
  • the deformation areas 31 are discretely distributed in the hollow area 32; the form of the deformation area 31 in this structural form is more flexible.
  • the deformation zone 31 can be flexibly set according to process requirements.
  • the electrode assembly 10 has a variety of structural forms, such as a cylindrical structure or a rectangular parallelepiped structure.
  • buffer components 30 of different structures can be provided, which will be described in detail below.
  • the electrode assembly 10 is a cuboid structure.
  • the cuboid structure includes two first surfaces 211 facing each other and a second surface 212 connecting the two first surfaces 211 .
  • the area of the first surface 211 is larger than the second surface 212 area; the buffer component 30 is at least disposed outside the first surface 211.
  • the buffer component 30 is at least arranged outside the first surface 211 , can significantly buffer the expansion force generated by the electrode assembly 10, thereby significantly reducing the risk of the expanded electrode assembly 10 damaging the housing assembly 20, and ensuring the structural stability of the battery cell 7.
  • the buffer component 30 can also be disposed outside the second surface 212, which can further buffer the expansion force transmitted by the electrode assembly 10 through the second surface 212, further reducing the risk of damaging the housing component 20, and improving the performance of the battery cell 7. Structural stability.
  • the electrode assembly 10 is a cylindrical structure, and the buffer assembly 30 is disposed around at least part of the electrode assembly 10 .
  • the deformation layer 311 of the buffer component 30 is a continuous structure, the deformation layer 311 can be arranged around the entire periphery of the electrode assembly 10 , that is, it can be considered that the buffer component 30 is arranged around the outside of the entire structure of the electrode assembly 10 ; during the deformation of the buffer component 30
  • the layer 311 is a continuous structure, the deformation layer 311 can also only surround part of the periphery of the electrode assembly 10 , that is, the buffer component 30 can be considered to surround the part of the electrode assembly 10 .
  • the deformation layer 311 of the buffer component 30 is a discrete structure, the deformation layer 311 is arranged around the outside of the electrode component 10 and can be considered to surround part of the outer periphery of the electrode component 10 .
  • the buffer assembly 30 can be disposed at The outer periphery of the electrode assembly 10 can buffer the force acting on the electrode assembly 10 more evenly.
  • the thickness of the buffer component 30 is D ⁇ m, 1mm ⁇ D ⁇ 4mm.
  • the thickness of the buffer component 30 is related to the selected material on the one hand, and to the structural form of the buffer component 30 on the other hand.
  • the initial thickness of the buffer component 30 is small.
  • the expansion ratio of the buffer component 30 can be 5 to 10 times.
  • the thickness is between 1mm and 4mm, even between 2mm and 4mm, and further between 3mm and 4mm.
  • the expansion rate is higher, and the final thickness range after expansion is larger, which is more suitable for battery cells with low group margin.
  • the buffer component 30 can shrink under force during the long-term cycle storage of the battery cell 7, buffering the expansion stress and reducing the risk of the shell component 20 bursting.
  • group margin refers to the overall The body volume accounts for the percentage of the cell shell volume. (The ratio of the cross-sectional area of the electrode assembly 10 in the direction perpendicular to the height of the housing assembly 20 to the cross-sectional area of the housing assembly 20 in the opposite direction perpendicular to the height).
  • the material and structural form of the buffer component 30 have an important impact on the deformation capability, which will be described in detail below.
  • the support layer 312 may be polyethylene terephthalate (PET), polyimide, or polypropylene.
  • the deformation layer 311 has deformation ability, and may be in the form of a single-layer structure or a multi-layer structure.
  • the deformation layer 311 may be in the form of a single-layer structure, and may be made of polyacrylate, foamed microspheres, polyurethane, oriented polystyrene film, etc.
  • the deformation layer 311 may include multiple sub-layers stacked along the thickness direction. At least two of the multiple sub-layers are made of different materials and can expand under different conditions respectively; of course, the materials of the multiple sub-layers are also different. Can be the same.
  • Figure 10 is a schematic structural diagram of the deformation zone of a battery cell provided by other embodiments of the present application.
  • the multi-layer sub-layer includes a thermal deformation layer 3111 and a liquid absorption layer 3112.
  • the thermal deformation layer 3111 is located between the support layer 312 and the liquid absorption layer 3112.
  • the liquid absorption layer 3112 is connected to the electrode assembly.
  • Thermal deformation layer 3111 includes polyacrylate, polyurethane, foamed microspheres and other materials; the thermal deformation layer 3111 is compounded on the support layer 312 by coating, specifically including: polyacrylate, polyurethane, foamed microspheres and other materials. Dissolve in toluene, ethyl acetate and other solvents, then spray on the support layer 312, dry the solvent in an oven, and finally wind up and cut into required samples at the end of the coating machine.
  • the liquid-absorbing layer 3112 includes styrene-butadiene rubber, polyacrylic acid, and styrene-isoprene-styrene block copolymer.
  • the liquid-absorbing layer 3112 is compounded on the thermal deformation layer 3111 by coating (the coating method is as above) , and finally cut the expansion tape into a certain shape and fit it on the surface of the battery core.
  • the thermal deformation layer 3111 can absorb heat and expand, especially during the high-temperature drying process.
  • the liquid-absorbing layer 3112 can absorb liquid and expand. Especially during the electrolyte injection process, the liquid-absorbing layer 3112 can absorb the electrolyte and expand.
  • the expanded liquid-absorbing layer 3112 also has good adhesion to the electrode. Component bonding. Moreover, after expansion occurs in the thermal deformation layer 3111 and the liquid-absorbing layer 3112 without the action of external force, the expanded shape can be guaranteed. shape, which is not prone to shrinkage and deformation, thereby ensuring the tightness between the electrode assembly and the housing assembly. However, certain shrinkage may also occur under the action of external force.
  • the expanded electrode assembly 10 exerts a force, and at least one of the thermal deformation layer 3111 and the liquid-absorbing layer 3112 can shrink and deform to buffer the force.
  • the battery cell 7 includes a housing assembly 20, an electrode assembly 10 and a buffer assembly 30; the electrode assembly 10 is disposed in the housing assembly 20, and the electrode assembly 10 and the housing assembly There is a gap between 20; and the buffer component 30 is disposed on the side of the electrode component 10 facing the housing component 20.
  • the buffer component 30 includes a deformation zone 31, and the deformation zone 31 includes a deformation layer 311 and a support layer 312 stacked along its own thickness direction. , the deformation layer 311 is disposed between the support layer 312 and the electrode assembly 10 and is used to connect the support layer 312 and the electrode assembly 10 .
  • the deformation layer 311 can undergo volume expansion to fill the gap with the buffer assembly 30 and is used to expand the electrode assembly 10 when buffering the force of the electrode assembly 10.
  • the deformation layer 311 includes multiple sub-layers stacked along the thickness direction.
  • the multi-layer sub-layers include a thermal deformation layer 3111 and a liquid-absorbent layer 3112.
  • the thermal deformation layer 3111 is located between the support layer 312 and the liquid-absorbent layer 3112.
  • the liquid-absorbent layer 3112 Connected to the electrode assembly 10.
  • the housing assembly 20 and the electrode assembly 10 can provide a buffer space for the expansion of the electrode assembly 10 , reduce the risk of the expanded electrode assembly 10 damaging the housing assembly 20 , and improve the structural stability of the battery cell 7 .
  • the thermal deformation layer 3111 and the liquid-absorbing layer 3112 in the deformation layer 311 can expand in volume, so that the overall structure of the buffer assembly 30 is filled in the gap. This prevents the casing assembly 20 and the electrode assembly 10 from shaking; and during the charging and discharging process of the battery cell 7, the expanded electrode assembly 10 is connected to the buffer assembly 30 and will exert force on the buffer assembly 30.
  • the buffer assembly 30 can buffer the force to reduce the risk of the expanded electrode assembly 10 damaging the housing assembly 20 and further improve the structural stability of the battery cell 7 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

一种电池单体(7)、电池(2)以及用电装置,电池单体(7)包括外壳组件(20)、电极组件(10)和缓冲组件(30);电极组件(10)设置于外壳组件(20)中,电极组件(10)和外壳组件(20)之间具有空隙;以及缓冲组件(30)设置于电极组件(10)面向外壳组件(20)的一侧,缓冲组件(30)包括变形区(31),变形区(31)包括沿其自身厚度方向层叠设置的变形层(311)和支撑层(312),变形层(311)设置于支撑层(312)和电极组件(10)之间且用于连接支撑层(312)和电极组件(10),变形层(311)能够发生体积膨胀以使缓冲组件(30)填充于空隙,并用于在电极组件(10)膨胀时缓冲电极组件(10)的作用力。

Description

电池单体、电池和用电装置
相关申请的交叉引用
本申请要求享有于2022年08月12日提交的名称为“电池单体、电池和用电装置”的中国专利申请202222126348.8的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,特别是涉及一种电池单体、电池和用电装置。
背景技术
电池单体广泛用于电子设备,例如手机、笔记本电脑、电瓶车、电动汽车、电动飞机、电动轮船、电动玩具汽车、电动玩具轮船、电动玩具飞机和电动工具等等。电池单体可以包括镉镍电池单体、氢镍电池单体、锂离子电池单体和二次碱性锌锰电池单体等。
在电池技术的发展中,除了提高电池单体的性能外,其结构稳定性问题也是一个不可忽视的问题。如果电池单体的结构稳定性不能保证,那该电池单体的使用可靠性较差。因此,如何增强电池单体的结构稳定性,是电池技术中一个亟待解决的技术问题。
发明内容
本申请提供一种电池单体、电池以及用电装置,能够提高电池单体的结构稳定性。
第一方面,本申请实施例提出了一种电池单体,所述电池单体包括外壳组件、电极组件和缓冲组件;电极组件设置于外壳组件中,电极组件和外壳组件之间具有空隙;以及缓冲组件设置于电极组件面向外壳组件的 一侧,缓冲组件包括变形区,变形区包括沿其自身厚度方向层叠设置的变形层和支撑层,变形层设置于支撑层和电极组件之间且用于连接支撑层和电极组件,变形层能够发生体积膨胀以使缓冲组件填充于空隙,并用于在电极组件膨胀时缓冲电极组件的作用力。
由此,本申请实施例的外壳组件和电极组件之间具有空隙,该空隙能够为电极组件的膨胀提供缓冲空间,降低膨胀后的电极组件损坏外壳组件的风险,提高电池单体的结构稳定性。缓冲组件包括变形区,变形区包括支撑层和变形层,在外壳组件和电极组件装配为成品电池单体的过程中,变形层能够发生体积膨胀,使得缓冲组件的整体结构填充于空隙内,使得外壳组件和电极组件之间不会发生晃动;并且在电池单体充放电过程中,膨胀后的电极组件由于和缓冲组件连接,将给予作用力于缓冲组件,缓冲组件可以将作用力缓冲掉,以降低膨胀后的电极组件损坏外壳组件的风险,进一步提高电池单体的结构稳定性。
在一些实施方式中,缓冲组件夹设于外壳组件和电极组件之间,缓冲组件用于在电极组件膨胀时发生收缩变形。
由此,本申请实施例由于缓冲组件夹设于外壳组件和电极组件之间,外壳组件和电极组件之间的接触更为紧密,电极组件不易发生位置偏移,电池单体的结构稳定性更高;在电极组件发生膨胀时,膨胀后的电极组件将给予缓冲组件以作用力,缓冲组件通过自身的收缩变形,将作用力缓冲掉,从而降低作用力对外壳组件造成损坏的风险,进一步提高二次电池的结构稳定性。
在一些实施方式中,缓冲组件还包括与变形区相邻接的镂空区,镂空区沿厚度方向贯穿缓冲组件。
由此,本申请实施例由于缓冲组件的变形区在电池单体装配成型的过程中会发生膨胀,一方面膨胀可以朝向外壳组件的方向进行,另一方面膨胀可以朝向镂空区的方向进行,从而降低变形区挤压自身形成褶皱等的风险,从而能够保证变形区和电极组件的连接可靠性。
在一些实施方式中,变形区环绕设置于镂空区外。
由此,本申请实施例的变形区可以朝向镂空区的方向膨胀,基本不 会对缓冲组件外的空间进行侵占,有利于对缓冲组件整体的设置区域进行设计。
在一些实施方式中,变形区连续环绕于镂空区外;或变形区包括多个变形部,多个变形部间隔环绕于镂空区外。如此可以根据电极组件的结构形式灵活设置变形区的分布形式。
在一些实施方式中,镂空区设置为多个,多个镂空区间隔分布,各镂空区外均环绕设置有变形区。变形区均可以为朝向其相邻的镂空区的方向进行膨胀。
在一些实施方式中,镂空区设置为多个,变形区设置为多个,多个镂空区和多个变形区交替设置。变形区可以朝向与其相邻的镂空区进行膨胀,一些变形区可能具有两个相邻的镂空区,其可以朝向两个镂空区分别膨胀。
在一些实施方式中,镂空区为连续结构,变形区离散分布于镂空区中。该种结构形式的变形区的形式更为灵活,可以按照工艺需求灵活设置变形区。
在一些实施方式中,电极组件为圆柱体结构,缓冲组件环绕设置于电极组件的至少部分外。
由此,本申请实施例将缓冲组件设置于电极组件外周,从而能够更均匀地将电极组件上的作用力进行缓冲。
在一些实施方式中,电极组件为长方体结构,长方体结构包括彼此相对的两个第一面和连接两个第一面的第二面,第一面的面积大于第二面的面积;缓冲组件至少设置于第一面外。
由此,本申请实施例将缓冲组件至少设置于第一面外,可以显著将电极组件所产生的膨胀作用力进行缓冲,从而显著降低膨胀后的电极组件损坏外壳组件的风险,保证电池单体的结构稳定性。
在一些实施方式中,变形层包括沿厚度方向层叠设置的多层子层;由此提高变形层的变性能力。
在一些实施方式中,多层子层包括热变形层和吸液层,热变形层位于支撑层和吸液层之间,吸液层连接于电极组件。热变形层能够吸收热量 发生膨胀,吸液层能够吸收液体发生膨胀,且热变形层和吸液层中在无外力作用的情况下,发生膨胀后,能够保证膨胀后的形状,不易发生收缩变形,从而能够保证电极组件和外壳组件之间的紧密性。
在一些实施方式中,缓冲组件的厚度为Dμm,1mm≤D≤4mm。缓冲组件的膨胀倍率较高,最终膨胀后的厚度数值范围较大,更适用于低群裕度的电池单体。且缓冲组件能够在电池单体长期循环存储过程中受力收缩,缓冲膨胀应力,降低外壳组件胀破的风险。
附图说明
下面将参考附图来描述本申请示例性实施例的特征、优点和技术效果。
图1是本申请一些实施例提供的车辆的结构示意图;
图2是本申请一些实施例提供的电池的分解示意图;
图3是图2所示的电池模块的结构示意图;
图4是本申请一些实施例提供的电池单体的分解示意图;
图5是本申请一些实施例提供的电池单体的变形区结构示意图;
图6是本申请另一些实施例提供的电池单体的分解示意图;
图7是本申请另一些实施例提供的电池单体的分解示意图;
图8是本申请另一些实施例提供的电池单体的分解示意图;
图9是本申请另一些实施例提供的电池单体的分解示意图;
图10是本申请另一些实施例提供的电池单体的变形区结构示意图;
附图未必按照实际的比例绘制。
图中各附图标记:
X、厚度方向;1、车辆;2、电池;3、控制器;4、马达;5、箱体;
501、第一箱体部;502、第二箱体部;503、容纳空间;6、电池模块;7、电池单体;10、电极组件;20、外壳组件;21、壳体;211、第一面;212、第二面;22、端盖组件;23、端盖;24、电极端子;30、缓冲组件;31、变形区;311、变形层;3111、热变形层;3112、吸液层;312、支撑层;32、镂空区。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了 简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池单体、锂离子一次电池单体、锂硫电池单体、锂钠离子电池单体、钠离子电池单体或镁离子电池单体等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方体方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解质,电极组件包括正极极片、负极极片和隔离件。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面;正极集流体包括正极集流部和凸出于正极集流部的正极极耳,正极集流部涂覆有正极活性物质层,正极极耳的至少部分未涂覆正极活性物质层。以锂离子电池单体为例,正极集流体的材料可以为铝,正极活性物质层包括正极活性物质,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面;负极集流体包括负极集流部和凸出于负极集流部的负极极耳,负极集流部涂覆有负极活性物质层,负极极耳的至少部分未涂覆负极活性物质层。负极集流体的材料可以为铜,负极活性物质层包括负极活性物质,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离件的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。此外,电极组件可以是卷绕 式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池单体还可以包括外壳组件,外壳组件内部具有容纳腔,该容纳腔是外壳组件为电极组件和电解质提供的密闭空间。
发明人发现,随着电池单体的发展,对电池单体性能的要求逐步提高,例如要求电池单体的能量密度提高,但是随着能量密度的提高,电池单体在长期存储循环过程中会因为充放电使得负极极片膨胀,严重情况下可能会顶破外壳组件,造成安全事故;因此在设计电池单体时,一般在外壳组件和电极组件之间留有空隙,但是该空隙可能会使得电极组件在外壳组件内发生晃动,导致电池单体的结构不稳定,影响使用寿命。
鉴于此,发明人对电池单体的结构进行了改进,提出了一种电池单体,所述电池单体在外壳组件和电极组件之间设置缓冲组件,缓冲组件可连接于电极组件上,缓冲组件用于在电池单体装配成品的过程中发生膨胀,以填充外壳组件和电极组件之间的间隙,提高电池单体整体的结构稳定性;且在电池单体正常循环充放电过程中,膨胀的电极组件给予缓冲组件以作用力,缓冲组件能够发生收缩变形,起到缓冲作用,进一步提高电池单体的结构稳定性。
本申请实施例描述的技术方案适用于包含电池单体的电池以及使用电池的用电装置。
用电装置可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电装置不做特殊限制。
以下实施例为了方便说明,以用电装置为车辆为例进行说明。
图1是本申请一些实施例提供的车辆的结构示意图。如图1所示, 车辆1的内部设置有电池2,电池2可以设置在车辆1的底部或头部或尾部。电池2可以用于车辆1的供电,例如,电池2可以作为车辆1的操作电源。
车辆1还可以包括控制器3和马达4,控制器3用来控制电池2为马达4供电,例如,用于车辆1的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池2不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,代替或部分地代替燃油或天然气为车辆1提供驱动动力。
图2是本申请一些实施例提供的电池的分解示意图。如图2所示,电池2包括箱体5和电池单体(图2未示出),电池单体容纳于箱体5内。
箱体5用于容纳电池单体,箱体5可以是多种结构。在一些实施方式中,箱体5可以包括第一箱体部501和第二箱体部502,第一箱体部501与第二箱体部502相互盖合,第一箱体部501和第二箱体部502共同限定出用于容纳电池单体的容纳空间503。第二箱体部502可以是一端开口的空心结构,第一箱体部501为板状结构,第一箱体部501盖合于第二箱体部502的开口侧,以形成具有容纳空间503的箱体5;第一箱体部501和第二箱体部502也均可以是一侧开口的空心结构,第一箱体部501的开口侧盖合于第二箱体部502的开口侧,以形成具有容纳空间503的箱体5。当然,第一箱体部501和第二箱体部502可以是多种形状,比如,圆柱体、长方体等。
为提高第一箱体部501与第二箱体部502连接后的密封性,第一箱体部501与第二箱体部502之间也可以设置密封件,比如,密封胶、密封圈等。
假设第一箱体部501盖合于第二箱体部502的顶部,第一箱体部501亦可称之为上箱盖,第二箱体部502亦可称之为下箱体。
在电池2中,电池单体可以是一个,也可以是多个。若电池单体为多个,多个电池单体之间可串联或并联或混联,混联是指多个电池单体中既有串联又有并联。多个电池单体之间可直接串联或并联或混联在一起,再将多个电池单体构成的整体容纳于箱体5内;当然,也可以是多个电池 单体先串联或并联或混联组成电池模块6,多个电池模块6再串联或并联或混联形成一个整体,并容纳于箱体5内。
图3是图2所示的电池模块的结构示意图。如图3所示,在一些实施方式中,电池单体为多个,多个电池单体先串联或并联或混联组成电池模块6。多个电池模块6再串联或并联或混联形成一个整体,并容纳于箱体内。
电池模块6中的多个电池单体之间可通过汇流部件实现电连接,以实现电池模块6中的多个电池单体的并联或串联或混联。
图4是本申请一些实施例提供的电池单体的分解示意图。
如图4所示,本申请实施例提供的电池单体7包括电极组件10和外壳组件20,电极组件10容纳于外壳组件20内。
在一些实施方式中,外壳组件20还可用于容纳电解质,例如电解液。外壳组件20可以是多种结构形式。
在一些实施方式中,外壳组件20可以包括壳体21和端盖组件22,壳体21为一侧开口的空心结构,端盖组件22盖合于壳体21的开口处并形成密封连接,以形成用于容纳电极组件10和电解质的容纳腔。
壳体21可以是多种形状,比如,圆柱体、长方体等。壳体21的形状可根据电极组件10的具体形状来确定。比如,若电极组件10为圆柱体结构,则可选用为圆柱体壳体;若电极组件10为长方体结构,则可选用长方体壳体。
在一些实施方式中,端盖组件22包括端盖23,端盖23盖合于壳体21的开口处。端盖23可以是多种结构,比如,端盖23为板状结构、一端开口的空心结构等。示例性的,在图4中,壳体21为长方体结构,端盖23为板状结构,端盖23盖合于壳体21顶部的开口处。
端盖23可以由绝缘材料(例如塑胶)制成,也可以由导电材料(例如金属)制成。当端盖23由金属材料制成时,端盖组件22还可包括绝缘件,绝缘件位于端盖23面向电极组件10的一侧,以将端盖23和电极组件10绝缘隔开。
在一些实施方式中,端盖组件22还可以包括电极端子24,电极端 子24安装于端盖23上。电极端子24为两个,两个电极端子24分别定义为正极电极端子和负极电极端子,正极电极端子和负极电极端子均用于与电极组件10电连接,以输出电极组件10所产生的电能。
在另一些实施方式中,外壳组件20也可以是其他结构,比如,外壳组件20包括壳体21和两个端盖组件22,壳体21为相对的两侧开口的空心结构,一个端盖组件22对应盖合于壳体21的一个开口处并形成密封连接,以形成用于容纳电极组件10和电解质的容纳腔。在这种结构中,可以一个端盖组件22上设有两个电极端子24,而另一个端盖组件22上未设置电极端子24,也可以两个端盖组件22各设置一个电极端子24。
在电池单体7中,容纳于外壳组件20内的电极组件10可以是一个,也可以是多个。示例性的,在图4中,电极组件10为四个。
电极组件10包括正极极片、负极极片和隔离件。电极组件10可以是卷绕式电极组件、叠片式电极组件或其它形式的电极组件。
如图4和图5所示,在一些实施方式中,电池单体7包括外壳组件20、电极组件10和缓冲组件30;电极组件10设置于外壳组件20中,电极组件10和外壳组件20之间具有空隙;缓冲组件30设置于电极组件10面向外壳组件20的一侧,缓冲组件30包括变形区31,变形区31包括沿其自身厚度方向X层叠设置的变形层311和支撑层312,变形层311设置于支撑层312和电极组件10之间且用于连接支撑层312和电极组件10,变形层311能够发生体积膨胀以填充空隙,并用于在电极组件10膨胀时缓冲电极组件10的作用力。
鉴于在电池单体7循环过程中,电极组件10可能会发生体积膨胀;例如负极极片中的负极活性物质伴随着体积变化,如此将会导致电极组件10的整体结构发生体积变化。膨胀后的电极组件10将可能挤压外壳组件20造成外壳组件20的损坏。为了保证电池单体7整体的结构稳定性,外壳组件20和电极组件10之间留有一定的空隙,以为电极组件10的体积膨胀提供空间。为了进一步保证电池单体7的结构稳定性,在该空隙中设置有缓冲组件30。具体地,该空隙可以是电极组件10和外壳组件20的壳体21之间的空间,即壳体21和电极组件10之间具有空隙。
外壳组件20和电极组件10装配为成品电池单体7的过程包括多个工序,例如高温烘干工序和注入电解液工序等。
高温烘干工序可以理解为将外壳组件20内的水分蒸发,以保证外壳组件20内满足注液标准;在此工序中由于温度较高,缓冲组件30可能伴随着温度的升高发生热膨胀,以初步填充外壳组件20和电极组件10之间的空隙。电解液是保证金属离子例如锂离子在正极极片和负极极片之间顺利迁移的重要组成,因此,注入电解液工序的也是必不可少的,电解液注入后,缓冲组件30可能发生吸液由此产生体积膨胀,以进一步填充外壳组件20和电极组件10之间的空隙。当然,上述仅为示例性说明;缓冲组件30也可以仅发生热膨胀,或者仅发生吸液膨胀;当然也可以发生其他膨胀进一步填充空隙。膨胀后的缓冲组件30将空隙基本填充完全,使得电极组件10和外壳组件20之间的结构更为紧密,电极组件10不易发生晃动等现象,从而能够保证电池单体7的结构稳定性。当然,膨胀后的缓冲组件30也可以仅填充大部分空隙,在缓冲组件30和外壳组件20之间仍留有微小的间隙,在此情况下,电极组件10和外壳组件20之间的相对稳定性也得到了显著提高,并且间隙可以为后续的电极组件10膨胀留有膨胀空间。
在电池单体7发生循环充放电过程中,可能伴随着电极组件10的体积膨胀,电极组件10由于和缓冲组件30连接,膨胀后的电极组件10将给予缓冲组件30以一定的作用力。当膨胀后的缓冲组件30(注液后的缓冲组件30)将空隙基本填充完全时,即,缓冲组件30夹设于外壳组件20和电极组件10之间,此时缓冲组件30可以利用自身的变形性能发生收缩,以缓冲电极组件10的作用力,降低电极组件10的作用力对外壳组件20的影响,保证外壳组件20发生损坏的风险,提高电池单体7的结构稳定性。当膨胀后的缓冲组件30(注液后的缓冲组件30)仅填充大部分空隙,缓冲组件30和外壳组件20之间仍具有微小间隙时,此时缓冲组件30可以在电极组件10的作用力下朝向外壳组件20的方向移动,但是由于间隙的存在,作用力不会直接作用于外壳组件20,在缓冲组件30移动的过程中也可以缓冲掉大部分作用力,缓冲组件30最终可以与外壳组件20抵接,当 然也可以与外壳组件20之间保持有更微小的间隙。
缓冲组件30包括变形区31,变形区31即为缓冲组件30发生体积膨胀或收缩变形的核心部件,通过变形区31的变形,可以保证电池单体7的结构稳定性,提高电池单体7的安全性能。变形区31为层叠结构,其具体包括支撑层312和变形层311,变形层311与电极组件10连接,其为实现变形的主要部件;支撑层312与变形层311连接,支撑层312主要为变形层311提供安装基础或者成型基础。在本申请中,变形可为受热变形、吸液变形、或者在外力作用下的变形等等。
根据本申请实施例的电池单体7,外壳组件20和电极组件10之间具有空隙,该空隙能够为电极组件10的膨胀提供缓冲空间,降低膨胀后的电极组件10损坏外壳组件20的风险,提高电池单体7的结构稳定性。缓冲组件30包括变形区31,变形区31包括支撑层312和变形层311,在外壳组件20和电极组件10装配为成品电池单体7的过程中,变形层311能够发生体积膨胀,使得缓冲组件30的整体结构填充于空隙内,使得外壳组件20和电极组件10之间不会发生晃动;并且在电池单体7充放电过程中,膨胀后的电极组件10由于和缓冲组件30连接,将给予作用力于缓冲组件30,缓冲组件30可以将作用力缓冲掉,以降低膨胀后的电极组件10损坏外壳组件20的风险,进一步提高电池单体7的结构稳定性。
请继续参阅图4和图5,在一些实施方式中,缓冲组件30夹设于外壳组件20和电极组件10之间,缓冲组件30用于在电极组件10膨胀时发生收缩变形。具体地,支撑层312设置于外壳组件20上,变形层311连接于电极组件10。即,支撑层312设置于外壳组件20的壳体21上变形层311连接于电极组件10。
由于缓冲组件30夹设于外壳组件20和电极组件10之间,外壳组件20和电极组件10之间的接触更为紧密,电极组件10不易发生位置偏移,电池单体7的结构稳定性更高;在电池单体7的运输或使用过程中,能够保证电池单体7的使用可靠性。在电极组件10发生膨胀时,膨胀后的电极组件10将给予缓冲组件30以作用力,缓冲组件30通过自身的收缩变形,将作用力缓冲掉,从而降低作用力对外壳组件20造成损坏的风险,进一 步提高二次电池的结构稳定性。
在一些实施方式中,缓冲组件30也可以仅包括变形区31,并不包括镂空区32,如此设置可以使得缓冲组件30能够充分的在电极组件10和外壳组件20之间膨胀填充空隙,保证电极组件10的结构稳定性;并且在电极组件10发生膨胀时,能够从多个方向充分的缓冲电极组件10的作用力,以更进一步降低电极组件10对外壳组件20造成损伤的风险。
图6是本申请另一些实施例提供的电池单体的分解示意图。
如图6所示,在另一些实施方式中,缓冲组件30还包括与变形区31相邻接的镂空区32,镂空区32沿厚度方向贯穿缓冲组件30。镂空区32可以理解为在缓冲组件30上开设的通孔,由于通孔处未包含变形材料,其可以不具备变形功能。由于缓冲组件30的变形区31在电池单体7装配成型的过程中会发生膨胀,一方面膨胀可以朝向外壳组件20的方向进行,另一方面膨胀可以朝向镂空区32的方向进行,从而降低变形区31挤压自身形成褶皱等的风险,从而能够保证变形区31和电极组件10的连接可靠性。
在本申请中,由于缓冲组件30和电极组件10的相对面积,与缓冲组件30的膨胀率、缓冲组件30的吸液量等具有相关关系,为了满足生产要求,可以灵活设置缓冲组件30的结构形式,通过变形区31和镂空区32相互配合实现生产要求,二者的布置方式具有多种类型,接下来对其进行说明。
请继续参阅图6,作为一些示例,变形区31环绕设置于镂空区32外。此种结构形式意味着镂空区32分布于缓冲组件30的中心区域,变形区31分布于缓冲组件30的外周区域,外周区域环绕中心区域设置。在变形区31发生膨胀时,变形区31可以朝向镂空区32的方向膨胀,从整体上来看,膨胀过程为膨胀组件朝向其中心区域膨胀,如此可以保证缓冲组件30整体外部轮廓占据的面积不会发生较大的改变,基本不会对缓冲组件30外的空间进行侵占,有利于对缓冲组件30整体的设置区域进行设计。
作为变形区31的示例性说明,变形区31可以为连续结构,其连续环绕于镂空区32外;该种结构形式有利于变形区31快速装配至电极组件 10上。或者变形区31也可以为离散分布的形式,即变形区31可以包括多个变形部,多个变形部可以间隔环绕于镂空区32外,如此设置有利于变形区31的灵活设置,可以根据电极组件10的结构形式灵活设置变形区31的分布形式。
作为镂空区32的示例性说明,镂空区32可以为连续结构,在此情况下,镂空区32的数量也可看作是一个,变形区31环绕设置于镂空区32外。
图7是本申请另一些实施例提供的电池单体的分解示意图。
如图7所示,镂空区32也可以设置为多个,多个镂空区32间隔分布,且各镂空区32外均环绕设置有变形区31;变形区31均可以为朝向其相邻的镂空区32的方向进行膨胀。
图8是本申请另一些实施例提供的电池单体的分解示意图。
如图8所示,作为另一些示例,镂空区32设置为多个,变形区31设置为多个,多个镂空区32和多个变形区31交替设置;该种交替设置的结构形式可以理解为沿同一方向上,缓冲组件30包括依次设置的变形区31、镂空区32、变形区31、镂空区32、变形区31等。变形区31可以朝向与其相邻的镂空区32的方向上进行膨胀,一些变形区31可能具有两个相邻的镂空区32,其可以朝向两个镂空区32的方向上分别膨胀。
图9是本申请另一些实施例提供的电池单体的分解示意图。
如图9所示,作为再一些示例,镂空区32为连续结构,变形区31为离散结构,变形区31离散分布于镂空区32中;该种结构形式的变形区31的形式更为灵活,可以按照工艺需求灵活设置变形区31。
在本申请中,电极组件10具有多种结构形式,例如圆柱体结构形式或长方体结构形式等,根据电极组件10的结构形式的不同可以设置不同结构的缓冲组件30,接下来进行详细说明。
在一些实施方式中,电极组件10为长方体结构,长方体结构包括彼此相对的两个第一面211和连接两个第一面211的第二面212,第一面211的面积大于第二面212的面积;缓冲组件30至少设置于第一面211外。
由于第一面211的面积相对较大,第一面211和外壳组件20相对 的面积较多,如此通过第一面211向外壳组件20传递的膨胀作用力较多,对外壳组件20造成损坏的风险较大;故,本申请将缓冲组件30至少设置于第一面211外,可以显著将电极组件10所产生的膨胀作用力进行缓冲,从而显著降低膨胀后的电极组件10损坏外壳组件20的风险,保证电池单体7的结构稳定性。
进一步地,缓冲组件30还可以设置于第二面212外,可以进一步将电极组件10通过第二面212传递的膨胀作用力进行缓冲,进一步降低损坏外壳组件20的风险,提高电池单体7的结构稳定性。
在一些实施方式中,电极组件10为圆柱体结构,缓冲组件30环绕设置于电极组件10的至少部分外。在缓冲组件30的变形层311为连续结构时,变形层311可以环绕设置于电极组件10的整个外周,即可以认为缓冲组件30环绕设置于电极组件10的全部结构外侧;在缓冲组件30的变形层311为连续结构时,变形层311也可以仅环绕设置于电极组件10的部分外周,即可以认为缓冲组件30环绕设置于电极组件10的部分外。在缓冲组件30的变形层311为离散结构时,变形层311环绕设置于电极组件10外,可以认为是环绕电极组件10的部分外周。
由于圆柱体结构形式的电极组件10在发生膨胀时,其在电极组件10的不同径向上产生的作用力基本相同,故电极组件10的外周的作用力基本相同,故可以将缓冲组件30设置于电极组件10外周,从而能够更均匀地将电极组件10上的作用力进行缓冲。
在一些实施方式中,缓冲组件30的厚度为Dμm,1mm≤D≤4mm。
缓冲组件30的厚度一方面与所选取的材质有关系,另一方面与缓冲组件30的结构形式有关系。在缓冲组件30初始装配至外壳组件20中时,缓冲组件30的初始厚度较小,在经过高温烘干工序和注入电解液工序后,缓冲组件30膨胀倍率可以得到5~10倍,膨胀后的厚度为1mm~4mm,甚至在2mm~4mm之间,更进一步地在3mm~4mm之间,其膨胀倍率较高,最终膨胀后的厚度数值范围较大,更适用于低群裕度的电池单体7。且缓冲组件30能够在电池单体7长期循环存储过程中受力收缩,缓冲膨胀应力,降低外壳组件20胀破的风险。在本申请中,群裕度是指电芯组件整 体体积占电芯壳体体积的百分比。(电极组件10沿垂直于外壳组件20的高度方向的截面积,与外壳组件20沿垂直于高度反向的截面积的比值)。
在本申请中,缓冲组件30的材质和结构形式对变形能力具有重要影响,接下来对其进行具体说明。
作为支撑层312的示例,支撑层312可以为聚对苯二甲酸乙二酯(polyethylene terephthalate,PET)、聚酰亚胺、聚丙烯。
作为变形层311的示例,变形层311具有变形能力,其可以为单层结构形式,也可以为多层结构形式。变形层311可以为单层结构形式,其可以采用材质聚丙烯酸酯、发泡微球、聚氨酯、定向聚苯乙烯薄膜等。
或者,变形层311可以包括沿厚度方向层叠设置的多层子层,多层子层中的至少两层的材质相异,分别可以在不同条件下进行膨胀;当然,多层子层的材质也可以相同。
图10是本申请另一些实施例提供的电池单体的变形区结构示意图。如图10所示,具体地,多层子层包括热变形层3111和吸液层3112,热变形层3111位于支撑层312和吸液层3112之间,吸液层3112连接于电极组件。
热变形层3111包括聚丙烯酸酯、聚氨酯、发泡微球等材质;热变形层3111通过涂布的方式复合在支撑层312上,具体包括:将聚丙烯酸酯、聚氨酯、发泡微球等材质溶解于甲苯、乙酸乙酯等溶剂中,然后喷涂于支撑层312上面,通过烘箱将溶剂烘干,最后在涂布机尾收卷、分切成所需样品。
吸液层3112包括丁苯橡胶、聚丙烯酸、苯乙烯一异戊二烯一苯乙烯嵌段共聚物,吸液层3112通过涂布的方式复合在热变形层3111上,(涂布方式如上),最后将膨胀胶带裁切成一定形状贴合在电芯的表面。
热变形层3111能够吸收热量发生膨胀,尤其是在高温烘干工序过程中吸热膨胀。吸液层3112能够吸收液体发生膨胀,尤其是在注入电解液工序过程中吸液层3112能够吸收电解液发生膨胀,且膨胀后的吸液层3112也具有良好的粘接力,用于与电极组件粘接。且热变形层3111和吸液层3112中在无外力作用的情况下,发生膨胀后,能够保证膨胀后的形 状,不易发生收缩变形,从而能够保证电极组件和外壳组件之间的紧密性。但是在受到外力作用下,也可以发生一定的收缩,例如膨胀后的电极组件10给予作用力,热变形层3111和吸液层3112中的至少一者能够发生收缩变形,以缓冲作用力。
如图4和图10所示,作为本申请一具体实施例,电池单体7包括外壳组件20、电极组件10和缓冲组件30;电极组件10设置于外壳组件20中,电极组件10和外壳组件20之间具有空隙;以及缓冲组件30设置于电极组件10面向外壳组件20的一侧,缓冲组件30包括变形区31,变形区31包括沿其自身厚度方向层叠设置的变形层311和支撑层312,变形层311设置于支撑层312和电极组件10之间且用于连接支撑层312和电极组件10,变形层311能够发生体积膨胀以使缓冲组件30填充于空隙,并用于在电极组件10膨胀时缓冲电极组件10的作用力。变形层311包括沿厚度方向层叠设置的多层子层,多层子层包括热变形层3111和吸液层3112,热变形层3111位于支撑层312和吸液层3112之间,吸液层3112连接于电极组件10。
外壳组件20和电极组件10之间具有空隙,该空隙能够为电极组件10的膨胀提供缓冲空间,降低膨胀后的电极组件10损坏外壳组件20的风险,提高电池单体7的结构稳定性。在外壳组件20和电极组件10装配为成品电池单体7的过程中,变形层311中的热变形层3111和吸液层3112能够发生体积膨胀,使得缓冲组件30的整体结构填充于空隙内,使得外壳组件20和电极组件10之间不会发生晃动;并且在电池单体7充放电过程中,膨胀后的电极组件10由于和缓冲组件30连接,将给予作用力于缓冲组件30,缓冲组件30可以将作用力缓冲掉,以降低膨胀后的电极组件10损坏外壳组件20的风险,进一步提高电池单体7的结构稳定性。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件,尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (15)

  1. 一种电池单体,包括:
    外壳组件;
    电极组件,其设置于所述外壳组件中,所述电极组件和所述外壳组件之间具有空隙;以及
    缓冲组件,其设置于所述电极组件面向所述外壳组件的一侧,所述缓冲组件包括变形区,所述变形区包括沿其自身厚度方向层叠设置的变形层和支撑层,所述变形层设置于所述支撑层和所述电极组件之间且用于连接所述支撑层和所述电极组件,所述变形层能够发生体积膨胀以使所述缓冲组件填充于所述空隙,并用于在所述电极组件膨胀时缓冲所述电极组件的作用力。
  2. 根据权利要求1所述的电池单体,其中,所述缓冲组件夹设于所述外壳组件和所述电极组件之间,所述缓冲组件用于在所述电极组件膨胀时发生收缩变形。
  3. 根据权利要求1或2所述的电池单体,其中,所述缓冲组件还包括与所述变形区相邻接的镂空区,所述镂空区沿所述厚度方向贯穿所述缓冲组件。
  4. 根据权利要求3所述的电池单体,其中,所述变形区环绕设置于所述镂空区外。
  5. 根据权利要求4所述的电池单体,其中,
    所述变形区连续环绕于所述镂空区外;或
    所述变形区包括多个变形部,多个所述变形部间隔环绕于所述镂空区外。
  6. 根据权利要求4所述的电池单体,其中,所述镂空区设置为多个,多个所述镂空区间隔分布,各所述镂空区外均环绕设置有所述变形区。
  7. 根据权利要求3至6中任一项所述的电池单体,其中,
    所述镂空区设置为多个,所述变形区设置为多个,多个所述镂空区和多个所述变形区交替设置。
  8. 根据权利要求3至6中任一项所述的电池单体,其中,
    所述镂空区为连续结构,所述变形区离散分布于所述镂空区中。
  9. 根据权利要求1至8中任一项所述的电池单体,其中,所述电极组件为圆柱体结构,所述缓冲组件环绕设置于所述电极组件的至少部分外。
  10. 根据权利要求1至9中任一项所述的电池单体,其中,所述电极组件为长方体结构,所述长方体结构包括彼此相对的两个第一面和连接两个所述第一面的第二面,所述第一面的面积大于所述第二面的面积;
    所述缓冲组件至少设置于所述第一面外。
  11. 根据权利要求1至10中任一项所述的电池单体,其中,所述变形层包括沿所述厚度方向层叠设置的多层子层。
  12. 根据权利要求1至11中任一项所述的电池单体,其中,所述多层子层包括热变形层和吸液层,所述热变形层位于所述支撑层和所述吸液层之间,所述吸液层连接于所述电极组件。
  13. 根据权利要求1至12中任一项所述的电池单体,其中,所述缓冲组件的厚度为Dμm,1mm≤D≤4mm。
  14. 一种电池,包括如权利要求1至13中任一项所述的电池单体。
  15. 一种用电装置,包括如权利要求14所述的电池,所述电池用于提供电能。
PCT/CN2023/103415 2022-08-12 2023-06-28 电池单体、电池和用电装置 WO2024032195A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202222126348.8U CN218677233U (zh) 2022-08-12 2022-08-12 电池单体、电池和用电装置
CN202222126348.8 2022-08-12

Publications (1)

Publication Number Publication Date
WO2024032195A1 true WO2024032195A1 (zh) 2024-02-15

Family

ID=85555233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103415 WO2024032195A1 (zh) 2022-08-12 2023-06-28 电池单体、电池和用电装置

Country Status (2)

Country Link
CN (1) CN218677233U (zh)
WO (1) WO2024032195A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218677233U (zh) * 2022-08-12 2023-03-21 宁德时代新能源科技股份有限公司 电池单体、电池和用电装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1992393A (zh) * 2005-12-29 2007-07-04 三星Sdi株式会社 锂离子二次电池的电极组件以及使用其的锂离子二次电池
CN102549801A (zh) * 2010-10-04 2012-07-04 株式会社Lg化学 密封带和使用所述密封带的二次电池
JP2015210922A (ja) * 2014-04-25 2015-11-24 株式会社豊田自動織機 蓄電装置
KR20170138670A (ko) * 2016-06-08 2017-12-18 주식회사 엘지화학 리튬이차전지
CN218677233U (zh) * 2022-08-12 2023-03-21 宁德时代新能源科技股份有限公司 电池单体、电池和用电装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1992393A (zh) * 2005-12-29 2007-07-04 三星Sdi株式会社 锂离子二次电池的电极组件以及使用其的锂离子二次电池
CN102549801A (zh) * 2010-10-04 2012-07-04 株式会社Lg化学 密封带和使用所述密封带的二次电池
JP2015210922A (ja) * 2014-04-25 2015-11-24 株式会社豊田自動織機 蓄電装置
KR20170138670A (ko) * 2016-06-08 2017-12-18 주식회사 엘지화학 리튬이차전지
CN218677233U (zh) * 2022-08-12 2023-03-21 宁德时代新能源科技股份有限公司 电池单体、电池和用电装置

Also Published As

Publication number Publication date
CN218677233U (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
WO2023050969A1 (zh) 一种电池单体、电池及用电装置
WO2023174266A1 (zh) 壳体、电池单体、电池及用电设备
WO2024032195A1 (zh) 电池单体、电池和用电装置
WO2022199152A1 (zh) 电极组件、电池单体、电池以及用电设备
CN216120503U (zh) 电池单体、电池及用电装置
WO2024008054A1 (zh) 电池单体、电池及用电装置
WO2023168954A1 (zh) 电芯、电芯的制造方法、电池单体、电池及用电设备
CN217768702U (zh) 电池单体、电池以及用电装置
WO2023245924A1 (zh) 电池以及用电装置
WO2023236346A1 (zh) 电极组件、电池单体、电池及用电装置
WO2023236220A1 (zh) 电池单体、电池及用电设备
WO2023133748A1 (zh) 电池模块、电池、用电设备、制备电池的方法和设备
CN219350608U (zh) 极片、电极组件、电池单体、电池及用电设备
WO2024044951A1 (zh) 电池单体、电池及用电装置
WO2023173414A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023178600A1 (zh) 集流构件、电池单体、电池及用电设备
WO2023045490A1 (zh) 电极组件及制造方法和系统、电池单体、电池和用电装置
WO2024055311A1 (zh) 电池单体、电池及用电设备
WO2024044883A1 (zh) 电极组件、电池单体、电池及用电装置
WO2023245673A1 (zh) 电池单体、电池及用电装置
WO2024016158A1 (zh) 电池单体的端盖组件、电池单体、电池以及用电装置
WO2024021025A1 (zh) 极片、电极组件、电池单体、电池和用电设备
WO2024007130A1 (zh) 电池单体、电池以及用电装置
WO2024031353A1 (zh) 极片、电极组件、电池单体、电池及用电设备
WO2023220874A1 (zh) 端盖组件、电池单体、电池以及用电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851422

Country of ref document: EP

Kind code of ref document: A1