WO2024032164A1 - 通信方法与通信装置 - Google Patents

通信方法与通信装置 Download PDF

Info

Publication number
WO2024032164A1
WO2024032164A1 PCT/CN2023/102131 CN2023102131W WO2024032164A1 WO 2024032164 A1 WO2024032164 A1 WO 2024032164A1 CN 2023102131 W CN2023102131 W CN 2023102131W WO 2024032164 A1 WO2024032164 A1 WO 2024032164A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell measurement
terminal device
cell
period
network device
Prior art date
Application number
PCT/CN2023/102131
Other languages
English (en)
French (fr)
Inventor
肖心龙
魏璟鑫
沈众宜
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024032164A1 publication Critical patent/WO2024032164A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the present application relates to the field of communication technology, and more specifically, to a communication method and communication device.
  • the new radio (NR) communication system supports the expansion of the millimeter wave frequency band to above 52.6GHz.
  • the synchronization signal blocks supported by the NR communication system and the subcarrier spacing (SCS) of the physical broadcast channel are also expanded from 240KHz to 240KHz. 480KHz and 960KHz.
  • Extended SCS puts forward higher requirements on the hardware complexity of terminal equipment. For example, in the case where the 3rd generation partnership project (3GPP) protocol does not change the number of cells measured by the terminal device, the terminal device needs to measure the same number of cells in a shorter time, which makes the terminal device Both computing power and storage capacity need to be improved.
  • 3GPP 3rd generation partnership project
  • This application provides a communication method and communication device, which reports the cell measurement capability of the terminal device to the network device through the terminal device, and the network device determines the corresponding configuration information based on the cell measurement capability.
  • the configuration information is related to the cell measurement capability of the terminal device. Capabilities are matched to each other, so that problems related to mobility management of terminal devices can be avoided.
  • a first aspect provides a communication method, including: a terminal device sends indication information to a network device, the indication information is used to indicate that the terminal device supports cell measurement capabilities in the frequency range FR2-2, and the cell measurement capabilities are used for the terminal device.
  • Cell measurement The terminal device receives the configuration information sent by the network device. The configuration information is determined by the network device based on the instruction information. The configuration information is used to configure the cell measurement parameters of the terminal device.
  • the network device configures the terminal device with cell measurement parameters that match its cell measurement capability based on the cell measurement capability reported by the terminal device. In this way, the terminal device can avoid mobility management problems. Related questions. For example, slow cell discovery, delayed cell handover, etc.
  • the cell measurement capability includes a cell measurement cycle.
  • the network device can configure the cell measurement parameters for the terminal device that match its cell measurement cycle. In this way, the network device can be prevented from configuring an inappropriate cell measurement cycle for the terminal device. This can avoid the occurrence of mobility management-related problems caused by simply amplifying the cell measurement cycle of the terminal device.
  • the indication information includes at least one of the following: an amplification factor of the cell measurement period, adjusting the cell measurement period, or maintaining the cell measurement period.
  • the terminal device can report the amplification factor of the cell measurement cycle to the network device, or report to the network device whether the cell measurement cycle needs to be changed.
  • the network device can configure appropriate cell measurement parameters for the terminal device based on the above information, so , it can avoid problems related to mobility management of terminal devices.
  • the value of the amplification factor of the cell measurement period is K, and K is a positive number.
  • the above-mentioned cell measurement period may be agreed between the terminal device 120 and the network device 110 . That is, by only reporting an amplification factor from the terminal device 120, the network device 110 can determine whether to amplify or shorten the cell measurement cycle.
  • the cell measurement period when the terminal equipment 120 supports FR2-2 is consistent with the cell measurement period when the terminal equipment 120 supports FR2-1 or FR1.
  • the terminal equipment 120 only needs to report the amplification factor based on the cell measurement period.
  • the specific value is enough, and the network device 110 can determine whether to amplify or shorten the cell measurement cycle of the terminal device.
  • the terminal device 120 may also agree with the network device 110 on a reference cell measurement cycle before reporting the amplification factor of the cell measurement cycle, and subsequent amplification factors are designed based on the reference cell measurement cycle.
  • the reference cell measurement period of the terminal device 120 may be determined in a protocol-predefined manner. In this way, the terminal device 120 only needs to report the amplification factor.
  • adjusting the cell measurement period includes at least one of the following: enlarging the cell measurement period, or shortening the cell measurement period.
  • the terminal device can indicate to the network device that its cell measurement period can be enlarged or shortened, depending on the cell measurement capability of the terminal device, and the network device can configure appropriate cell measurement for the terminal device based on the cell measurement capability. parameters, in this way, it is possible to avoid problems related to mobility management of the terminal device.
  • the cell measurement period includes at least one of the following: a period of measuring the cell, or a period of searching the cell.
  • this application supports the terminal device reporting the cell measurement cycle to the network device, and also supports the terminal device reporting the cell search cycle to the network device, or both, which are not limited by the embodiments of this application.
  • the network device can configure appropriate cell measurement parameters for the terminal device based on the above information. In this way, mobility management related problems of the terminal device can be avoided.
  • the method further includes: the terminal device performs cell measurement according to the configuration information; the terminal device sends a measurement result to the network device, and the measurement result is measured by the terminal device according to the cell definite.
  • the terminal device can perform cell measurement according to the cell measurement parameters that match its own cell measurement capability. In this way, the terminal device will not cause mobility management-related problems.
  • the method further includes: the terminal device receives mobility management parameters sent by the network device, the mobility management parameters are determined by the network device based on the measurement results, and the mobile device The mobility management parameters are used to control the mobility management process of the terminal device.
  • the mobility management process of the terminal device includes at least one of the following: a cell selection process, or a cell reselection process.
  • a communication method including: a network device receives indication information sent by a terminal device, the indication information is used to indicate that the terminal device supports cell measurement capabilities in the frequency range FR2-2, and the cell measurement capabilities are used by the terminal Cell measurement of the device; the network device sends configuration information to the terminal device.
  • the configuration information is determined by the network device based on the instruction information.
  • the configuration information is used to configure the cell measurement parameters of the terminal device.
  • the cell measurement capability includes a cell measurement cycle.
  • the indication information includes at least one of the following: an amplification factor of the cell measurement period, adjusting the cell measurement period, or maintaining the cell measurement period.
  • the value of the amplification factor of the cell measurement period is K, and K is a positive number.
  • adjusting the cell measurement period includes at least one of the following: enlarging the cell measurement period, or shortening the cell measurement period.
  • the cell measurement period includes at least one of the following: a period of measuring a cell, or a period of searching a cell.
  • the method further includes: the network device receives a measurement result sent by the terminal device, the measurement result is determined by the terminal device performing cell measurement based on the configuration information; the network device performs cell measurement according to the configuration information; The measurement results determine mobility management parameters, which are used to control the mobility management process of the terminal device.
  • the method further includes: the network device sends the mobility management parameter to the terminal device.
  • the mobility management process of the terminal device includes at least one of the following: a cell selection process, or a cell reselection process.
  • a communication device including: a transceiver unit, configured to send indication information to a network device.
  • the indication information is used to indicate that the communication device supports cell measurement capabilities in the frequency range FR2-2.
  • the cell measurement capabilities are expressed in Cell testing of the communication device quantity;
  • the transceiver unit is also used to receive configuration information sent by the network device.
  • the configuration information is determined by the network device based on the indication information.
  • the configuration information is used to configure the cell measurement parameters of the communication device.
  • the cell measurement capability includes a cell measurement cycle.
  • the indication information includes at least one of the following: an amplification factor of the cell measurement period, adjusting the cell measurement period, or maintaining the cell measurement period.
  • the value of the amplification factor of the cell measurement period is K, and K is a positive number.
  • adjusting the cell measurement period includes at least one of the following: enlarging the cell measurement period, or shortening the cell measurement period.
  • the cell measurement period includes at least one of the following: a period of measuring a cell, or a period of searching a cell.
  • the communication device further includes: a processing unit, configured to perform cell measurement according to the configuration information; the transceiver unit, also configured to send the measurement results to the network device, the The measurement results are determined by the communication device based on the cell measurements.
  • the transceiver unit is also used to receive mobility management parameters sent by the network device, where the mobility management parameters are determined by the network device based on the measurement results. Mobility management parameters are used to control the mobility management process of the communication device.
  • the mobility management process of the communication device includes at least one of the following: a cell selection process, or a cell reselection process.
  • a communication device including: a transceiver unit, configured to receive indication information sent by a terminal device.
  • the indication information is used to indicate that the terminal device supports cell measurement capabilities in the frequency range FR2-2.
  • the cell measurement capabilities It is used for terminal equipment to perform cell measurement;
  • the transceiver unit is also used to send configuration information to the terminal equipment, the configuration information is determined by the communication device according to the instruction information, and the configuration information is used to configure the cell measurement parameters of the terminal equipment.
  • the cell measurement capability includes a cell measurement cycle.
  • the indication information includes at least one of the following: an amplification factor of the cell measurement period, adjusting the cell measurement period, or maintaining the cell measurement period.
  • the value of the amplification factor of the cell measurement period is K, and K is a positive number.
  • adjusting the cell measurement period includes at least one of the following: enlarging the cell measurement period, or shortening the cell measurement period.
  • the cell measurement period includes at least one of the following: a period of measuring a cell, or a period of searching a cell.
  • the transceiver unit is also used to receive a measurement result sent by the terminal device, where the measurement result is determined by the terminal device performing cell measurement based on the configuration information; the communication device It also includes: a processing unit, configured to determine mobility management parameters according to the measurement results, and the mobility management parameters are used to control the mobility management process of the terminal device.
  • the method further includes: the network device sends the mobility management parameter to the terminal device.
  • the mobility management process of the terminal device includes at least one of the following: a cell selection process, or a cell reselection process.
  • a communication device including a processor, the processor being coupled to a memory, and the processor being configured to execute a computer program or instructions, so that the communication device executes the first aspect and any possible implementation of the first aspect.
  • the device further includes a memory.
  • processor and the memory are integrated together, or the processor and the memory are provided separately.
  • the memory is external to the communication device.
  • the communication device further includes a communication interface, which is used for the communication device to communicate with other devices, such as sending or receiving data and/or signals.
  • the communication interface may be a transceiver, a circuit, a bus, a module, or other types of communication interfaces.
  • a communication device including a logic circuit and an input-output interface.
  • the input-output interface is used to output and/or input signals.
  • the logic circuit is used to perform the first aspect and any possible implementation of the first aspect. The method described in any one of them; or, perform the method described in any one of the second aspect and any possible implementation manner of the second aspect.
  • the input and output interface is used to send indication information to the network device, and the indication information is used to instruct the terminal device to support the cell measurement capability when the frequency range FR2-2 is used, and the cell measurement capability is used for cell measurement of the terminal device;
  • the input and output interface is also used to receive configuration information sent by the network device.
  • the configuration information is determined by the network device based on the instruction information.
  • the configuration information is used to configure cell measurement parameters of the terminal device.
  • the input and output interface is used to receive indication information sent by the terminal device.
  • the indication information is used to instruct the terminal device to support the cell measurement capability in the frequency range FR2-2.
  • the cell measurement capability is used for the cell of the terminal device. Measurement; the input and output interface is also used to send configuration information to the terminal device.
  • the configuration information is determined by the network device based on the instruction information.
  • the configuration information is used to configure the cell measurement parameters of the terminal device.
  • a computer-readable storage medium including a computer program or instructions.
  • the computer program or instructions When the computer program or instructions are run on a computer, the computer is caused to execute the first aspect and any possible implementation of the first aspect.
  • a computer program product which includes instructions that, when run on a computer, cause the computer to execute the method described in any one of the first aspect and any possible implementation of the first aspect. ; Or, causing the computer to execute the method described in any one of the second aspect and any possible implementation manner of the second aspect.
  • embodiments of the present application further provide a terminal device for executing the method in the above-mentioned first aspect and its various possible implementations.
  • embodiments of the present application further provide a network device for executing the method in the above-mentioned second aspect and its various possible implementations.
  • embodiments of the present application further provide a communication system, including the communication device provided by the above-mentioned third aspect and various possible implementations and the communication device provided by the above-mentioned fourth aspect and various possible implementations.
  • FIG. 1 is a schematic diagram of a communication system 100 applicable to the embodiment of the present application.
  • Figure 2 is an interactive flow chart of the communication method 200 according to the embodiment of the present application.
  • Figure 3 is an interactive flow chart of the communication method 300 according to the embodiment of the present application.
  • Figure 4 is a structural block diagram of the communication device 400 according to the embodiment of the present application.
  • Figure 5 is a structural block diagram of the communication device 500 according to the embodiment of the present application.
  • FIG. 6 is a structural block diagram of the communication device 600 according to the embodiment of the present application.
  • Figure 7 is a structural block diagram of the communication device 700 according to the embodiment of the present application.
  • Figure 8 is a structural block diagram of the communication device 800 according to the embodiment of the present application.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • 5G fifth generation
  • 5G fifth generation
  • 5G fifth generation
  • NR new radio
  • 6th generation, 6G sixth generation
  • Satellite communication systems include satellite base stations and terminal equipment. Satellite base stations provide communication services to terminal devices. Satellite base stations can also communicate with ground base stations. Satellites can serve as base stations and terminal equipment. Among them, satellites can refer to non-ground base stations or non-ground equipment such as UAVs, hot air balloons, low-orbit satellites, medium-orbit satellites, and high-orbit satellites.
  • the technical solutions of the embodiments of this application are applicable to both homogeneous and heterogeneous network scenarios. At the same time, there are no restrictions on transmission points. They can be between macro base stations and macro base stations, micro base stations and micro base stations, or macro base stations and micro base stations. Multi-point coordinated transmission is applicable to FDD/TDD systems.
  • the technical solutions of the embodiments of this application are not only applicable to low-frequency scenarios (sub 6G), but also to high-frequency scenarios (above 6GHz). Terahertz, optical communications, etc.
  • the technical solutions of the embodiments of this application can be applied not only to the communication between network equipment and terminals, but also to the communication between network equipment and network equipment, the communication between terminals, the Internet of Vehicles, the Internet of Things, the Industrial Internet, etc.
  • the technical solutions of the embodiments of this application can also be applied to scenarios where a terminal is connected to a single base station, where the base station to which the terminal is connected and the core network (core network, CN) to which the base station is connected are of the same standard.
  • core network core network
  • CN core network
  • the base station corresponds to 5G base station, and 5G base station is directly connected to 5G Core; or if CN is 6G Core, the base station is 6G base station, and 6G base station is directly connected to 6G Core.
  • the technical solution of the embodiment of the present application can also be applied to a dual connectivity (DC) scenario in which a terminal is connected to at least two base stations.
  • DC dual connectivity
  • the technical solutions of the embodiments of this application can also use macro and micro scenarios composed of different forms of base stations in the communication network.
  • the base stations can be satellites, aerial balloon stations, drone stations, etc.
  • the technical solutions of the embodiments of this application are also suitable for scenarios in which wide-coverage base stations and small-coverage base stations coexist.
  • Applicable scenarios include but are not limited to terrestrial cellular communication, NTN, satellite communication, and high altitude communication platform (high altitude platform).
  • station (HAPS) communication vehicle-to-everything (V2X), integrated access and backhaul (IAB), and reconfigurable intelligent surface (RIS) communication and other scenarios .
  • V2X vehicle-to-everything
  • IAB integrated access and backhaul
  • RIS reconfigurable intelligent surface
  • the terminal in the embodiment of this application may be a device with wireless transceiver function, which may specifically refer to user equipment (UE), access terminal, subscriber unit (subscriber unit), user station, or mobile station (mobile station). , remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent or user device.
  • UE user equipment
  • access terminal subscriber unit (subscriber unit)
  • subscriber unit subscriber unit
  • user station or mobile station (mobile station).
  • remote station remote terminal, mobile device, user terminal, wireless communication device, user agent or user device.
  • the terminal device may also be a satellite phone, a cellular phone, a smartphone, a wireless data card, a wireless modem, a machine type communications device, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (wireless local) loop, WLL) station, personal digital assistant (PDA), customer-premises equipment (CPE), intelligent point of sale (POS) machine, handheld device with wireless communication function, computing Equipment or other processing equipment connected to wireless modems, vehicle-mounted equipment, communication equipment carried on high-altitude aircraft, wearable devices, drones, robots, terminals in device-to-device (D2D) communication, V2X Terminals in virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, wireless terminals in industrial control (industrial control), wireless terminals in self-driving (self-driving), remote Wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, and smart home Wireless terminals or terminal equipment in communication networks evolved after 5
  • the device used to implement the functions of the terminal device in the embodiment of the present application may be a terminal device; it may also be a device that can support the terminal device to implement the function, such as a chip system.
  • the device can be installed in a terminal device or used in conjunction with the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the network device in the embodiment of the present application has a wireless transceiver function and is used to communicate with the terminal device.
  • the access network equipment can be a node in the radio access network (radio access network, RAN), and can also be called a base station or a RAN node. It can be an evolved base station (evolved Node B, eNB or eNodeB) in LTE; or a base station in a 5G network such as gNodeB (gNB) or a base station in a public land mobile network (public land mobile network, PLMN) evolved after 5G. Broadband network gateway (BNG), aggregation switch or 3rd generation partnership project (3GPP) access equipment, etc.
  • eNB evolved Node B
  • gNB gNodeB
  • PLMN public land mobile network
  • BNG Broadband network gateway
  • aggregation switch or 3rd generation partnership project (3GPP) access equipment etc.
  • the network equipment in the embodiment of the present application may also include various forms of base stations, such as: macro base stations, micro base stations (also called small stations), relay stations, transmission points (transmitting and receiving point, TRP), transmitting points , TP), mobile switching center and base station responsible for device-to-device (D2D), vehicle outreach (vehicle-to-everything, V2X), machine-to-machine (M2M) communications Functional equipment, etc., can also include centralized units (CU) and distributed units (DU) in cloud radio access network (cloud radio access network, C-RAN) systems, and NTN communication systems.
  • Network equipment is not specifically limited in the embodiments of this application.
  • the device used to implement the function of the network device in the embodiment of the present application may be a network device, or may be a device that can support the network device to implement the function, such as a chip system.
  • the device can be installed in a network device or used in conjunction with a network device.
  • the chip system in the embodiment of the present application may be composed of chips, or may include chips and other discrete devices.
  • FIG. 1 is a schematic diagram of a communication system 100 applicable to the embodiment of the present application.
  • communication system 100 includes network device 110 and terminal device 120.
  • the embodiment of the present application does not limit the number of terminal devices 120 and network devices 110 included in the communication system 100.
  • the communication system 100 shown in FIG. 1 is only understood as an example and does not limit the scope of protection required by this application.
  • the terminal device 120 in the embodiment of the present application can be any terminal device listed above, and the network device 110 can also be any network device listed above, which is not limited in the embodiment of the present application.
  • MMW electromagnetic waves with frequencies in the range of 30 to 300 GHz can be called MMW.
  • MMW is widely used in fields such as communications, radar, remote sensing and radio astronomy.
  • the frequency range of FR1 is 450MHz ⁇ 6GHz, and the frequency range of FR2 is 24.25GHz ⁇ 52.6GHz.
  • the 5G NR communication system supports the MMW frequency band that can be extended above 52.6GHz.
  • the MMW frequency band between 24.25GHz and 52.6GHz is called FR2-1
  • the MMW frequency band between 52.6GHz and 71GHz is called FR2-2. .
  • the SCS of the synchronization signal block and physical broadcast channel block (SSB) supported by 5G NR is also expanded from 240KHz to 480KHz and 960KHz accordingly.
  • Extended SCS puts forward higher requirements on the hardware complexity of terminal equipment. For example, in the case where the 3GPP protocol does not change the number of cell measurements of the terminal device (the number of cell measurements when the terminal device supports FR2-2 is the same as the number of cell measurements when the terminal device supports FR1-1 or FR2-1), the terminal The equipment needs to measure the same number of cells in a shorter time, which requires the computing power and storage capacity of the terminal equipment to be improved.
  • the SSB sampling rate when SCS is 480KHz is twice the SSB sampling rate when SCS is 240KHz
  • the SSB sampling rate when SCS is 960KHz is the corresponding SSB when SCS is 240KHz. Four times the sampling rate. Therefore, terminal devices need to store more data.
  • FR2-2 Since different terminal devices have different cell measurement capabilities, FR2-2 also has mobility management requirements. If the cell measurement period of the terminal device is simply amplified, this will cause mobility management-related problems, such as slow cell discovery. , cell switching delay, etc. For example, when the measurement cell cycle of the terminal equipment is doubled, for discontinuous reception (DRX) scenarios, the delay time may be more than 10s to 20s. For a terminal device with strong cell measurement capability, if the period of measuring the cell of the terminal device is increased, it will be unable to obtain real-time mobility measurement information. Therefore, the impact of the extended SCS on the hardware complexity of the terminal device cannot be reduced simply by amplifying the period of the terminal device's measurement cell.
  • DRX discontinuous reception
  • this application provides a communication method and communication device, which reports the cell measurement capability of the terminal device to the network device through the terminal device, and the network device determines the corresponding configuration information based on the cell measurement capability.
  • the configuration information is related to the terminal device.
  • the cell measurement capabilities of the devices are matched to each other, so that problems related to mobility management of the terminal device can be avoided.
  • Figure 2 is a schematic flow chart of the communication method 200 according to the embodiment of the present application.
  • the method flow in Figure 2 can be executed by the terminal device 120 and the network device 110, or by modules and/or devices (for example, chips or integrated circuits, etc.) with corresponding functions installed in the terminal device 120 and the network device 110,
  • the embodiments of this application are not limiting.
  • the following description takes the terminal device 120 and the network device 110 as examples.
  • the communication method 200 includes:
  • the terminal device 120 sends indication information A to the network device 110, which is used to indicate the cell measurement capability when the terminal device 120 supports FR2-2.
  • the network device 110 receives the indication information A sent by the terminal device 120, and determines the cell measurement capability when the terminal device 120 supports FR2-2 based on the indication information A.
  • the cell measurement capability when the terminal device 120 supports FR2-2 may be the same as the cell measurement capability when the terminal device 120 supports FR2-1, or may be different from the cell measurement capability when the terminal device 120 supports FR2-1.
  • the cell The measurement capability may be higher than the cell measurement capability when the terminal equipment supports FR2-1. This is because the frequency band of FR2-2 is higher than the frequency band of FR2-1, and the hardware complexity of the terminal device 120 when supporting FR2-2 may be higher than when supporting FR2-1.
  • the cell measurement capability when the terminal device 120 supports FR2-2 may be the same as the cell measurement capability when the terminal device 120 supports FR1, or may be different from the cell measurement capability when the terminal device 120 supports FR1. The embodiments of this application are not limiting.
  • the terminal device 120 Regardless of whether the cell measurement capability when the terminal device 120 supports FR2-2 is the same as the cell measurement capability when it supports FR2-1 or FR1, the terminal device 120 needs to let the network device 110 know the cell measurement capability when the terminal device 120 supports FR2-2. .
  • the terminal device 120 can report the indication information A to the network device 110, and the network device 110 can determine the cell measurement capability when the terminal device 120 supports FR2-2 based on the indication information A.
  • the above-mentioned cell measurement capability may also be called mobility measurement capability, which is not limited in this application.
  • mobility measurement capability which is not limited in this application.
  • the following description takes the cell measurement capability as an example.
  • the cell measurement capabilities of the terminal device 120 may include capabilities of the terminal device 120 in mobility management. This mobility management aspect may include at least one of: cell selection, cell reselection, cell measurement, or cell search, among others.
  • the network device 110 can determine the measurement capabilities of the terminal device 120 in cell selection, cell reselection, cell measurement or cell search through the indication information A.
  • the above-mentioned measurement capabilities related to mobility management may be regarded as one or more of the cell measurement capabilities of the terminal device 120 .
  • the cell measurement capability of the terminal device 120 includes a cell measurement period.
  • the terminal device 120 reports its cell measurement cycle to the network device 110, and the network device 110 can configure the cell measurement parameters for the terminal device 120 that match its cell measurement cycle. In this way, the network device 110 can avoid inappropriate configuration for the terminal device 120.
  • the cell measurement period of the terminal device 120 can be increased, thereby avoiding the occurrence of mobility management-related problems caused by simply amplifying the cell measurement period of the terminal device 120 .
  • the cell measurement capability of the terminal device 120 includes a cell measurement period and does not include other types of capabilities
  • the cell measurement capability of the terminal device 120 and the cell measurement period of the terminal device 120 may be equivalent concepts.
  • the cell measurement capability reported by the terminal device 120 to the network device 110 through the indication information A is equivalent to the cell measurement cycle of the terminal device 120 reported by the terminal device 120 to the network device 110 through the indication information A.
  • the cell measurement capability of the terminal device 120 may also include the number of cell measurements.
  • the terminal device 120 may report to the network device 110 the number of cells that the terminal device 120 can measure within a cell measurement period through indication information A.
  • the cell measurement cycle includes at least one of the following: a cell measurement cycle, or a cell search cycle.
  • the period of measuring a cell refers to the period when the terminal device 120 performs cell measurement. For example, the terminal device 120 performs cell measurement at time T1 and performs cell measurement again at time T2.
  • the interval time between time T1 and time T2 may be referred to as the period of measuring the cell of the terminal device 120 .
  • the cell search period refers to the period when the terminal device 120 performs cell search. For example, the terminal device 120 performs cell search at time T3 and performs cell search again at time T4.
  • the interval between time T3 and time T4 may be referred to as a cell-searching period of the terminal device 120 .
  • the period of cell measurement and/or the period of searching for cells by the terminal device 120 is related to the strength of the cell measurement capability of the terminal device 120 .
  • the cell search period can be longer.
  • the period of the measurement cell of the terminal device can be reduced by amplifying (can also be understood as relaxing or expanding or other similar expressions).
  • amplifying can also be understood as relaxing or expanding or other similar expressions.
  • Hardware complexity raises issues related to mobility management.
  • a terminal device with strong cell measurement capability it may not need to amplify the cell measurement period. Alternatively, it may even need to shorten the cell measurement period, so that the terminal device's cell measurement period is consistent with its cell measurement capability. match.
  • the network device 110 Since the network device 110 does not determine the cell measurement capability when the terminal device 120 supports FR2-2, it may configure an enlarged cell measurement period for the terminal device 120, which may cause mobility management-related problems. If the terminal device 120 reports to the network device 110 the cell measurement capability when the terminal device 120 supports FR2-2, the network device 110 can configure a cell measurement function for the terminal device 120 based on the cell measurement capability when the terminal device 120 supports FR2-2. Capabilities match the periodicity of the measurement cell.
  • the above content is described by taking the cycle of the terminal device 120 to measure a cell as an example, but it can also be applied to the cycle of the terminal device 120 to search for a cell.
  • the embodiment of the present application takes the cell measurement cycle as an example for description, and no longer distinguishes between the cell measurement cycle and the cell search cycle.
  • the network device 110 sends configuration information A to the terminal device 120 for configuring cell measurement parameters of the terminal device 120.
  • the terminal device 120 receives the configuration information A from the network device 110, and determines the cell measurement parameters configured by the network device 110 for the terminal device 120 based on the configuration information A.
  • the network device 110 may first receive the indication information A sent by the terminal device 120, and determine the cell measurement capability of the terminal device 120 based on the indication information A. Afterwards, the network device 110 configures the terminal device 120 with configuration information A that matches the cell measurement capability of the terminal device 120 . In this way, the cell measurement parameters configured by the network device 110 for the terminal device 120 can match the cell measurement capabilities of the terminal device 120 .
  • the cell measurement parameters may include at least one of the following:
  • Reporting configuration information refers to information related to cell measurement result reporting, which can be configured through reporting configuration (ReportConfig) in the protocol.
  • the network device 110 can configure one or more reporting configurations for the terminal device 120.
  • Each reporting configuration includes reporting indicators, reporting time and cycle, reporting format and other reporting-related information.
  • the terminal device 120 may perform cell measurement based on the value of the cell measurement cycle and the value of the trigger time issued by the network device 110, or report configuration information and the like.
  • the network device 110 can configure matching cell measurement parameters for the terminal device 120 based on the cell measurement capabilities. In this way, simple errors due to Increasing the cell measurement period of the terminal device 120 causes problems related to mobility management to arise.
  • the instruction information A includes at least one of the following:
  • the amplification factor of the cell measurement period adjust the cell measurement period, or maintain the cell measurement period.
  • the network device 110 may determine whether the cell measurement cycle needs to be amplified for the terminal device 120 based on the amplification factor of the cell measurement cycle.
  • the value of the amplification factor of the cell measurement period is K, and K can be a positive number, for example, 1 to N, where N is a positive integer greater than 1; it can also be a decimal, for example, 0.5.
  • the value of the amplification factor of the cell measurement cycle is a positive number less than 1, it indicates that the terminal device 120 can shorten the cell measurement cycle; when the value of the amplification factor of the cell measurement cycle is a positive number greater than 1, it indicates that the terminal device 120 can shorten the cell measurement cycle.
  • Device 120 can amplify the cell measurement period.
  • the amplification factor of the cell measurement period can also be called the scaling factor of the cell measurement period, and the two can be interchanged.
  • the value of the above-mentioned cell measurement period may be agreed between the terminal device 120 and the network device 110 . That is, by only reporting an amplification factor from the terminal device 120, the network device 110 can determine whether to amplify or shorten the cell measurement cycle.
  • the cell measurement period when the terminal equipment 120 supports FR2-2 is consistent with the cell measurement period when the terminal equipment 120 supports FR2-1 or FR1. Therefore, the terminal equipment 120 only needs to report the amplification factor based on the cell measurement period. Just take a specific value, and the network device 110 can determine whether to amplify or shorten the cell measurement cycle.
  • the terminal device 120 may also agree with the network device 110 on a reference cell measurement cycle before reporting the amplification factor of the cell measurement cycle, and subsequent amplification factors are designed based on the reference cell measurement cycle.
  • the reference cell measurement period of the terminal device 120 may be determined in a protocol-predefined manner. In this way, the terminal device 120 only needs to report the amplification factor.
  • the indication information A when the indication information A includes the amplification factor of the cell measurement cycle, it can be MeasRelaxFR2Extra information, and this information can be carried in radio resource control (radio resource control, RRC) signaling.
  • RRC radio resource control
  • the network device 110 may reconfigure the cell measurement period for the terminal device 120 based on the content indicated by the indication information A.
  • the value of the cell measurement period of the existing terminal equipment (which can be regarded as the reference cell measurement period) is regarded as m, and adjusting the cell measurement period can be regarded as adjusting the value of m.
  • the network device 110 can configure the cell measurement period of m1 for the terminal device 120. Among them, m1 is different from m.
  • the existing cell measurement cycle value is approximately 5 seconds.
  • the network device 110 may adjust the cell measurement cycle according to the instruction to adjust the cell measurement cycle reported by the terminal device 120 .
  • the value of the existing cell measurement period is adjusted to 4 seconds (which can be understood as shortening the cell measurement period), or to 10 seconds (which can be understood as amplifying the cell measurement period). measurement cycle).
  • the existing cell measurement cycle value is approximately 11.52 ms.
  • the network device 110 can adjust the cell measurement cycle according to the instruction to adjust the cell measurement cycle reported by the terminal device 120 .
  • the value of the existing cell measurement period is adjusted to 8 seconds (which can be understood as shortening the cell measurement period), or to 20 seconds (which can be understood as enlarging the cell measurement period).
  • the indication information A may include bit 0 or bit 1, where bit 1 may indicate adjusting the cell measurement period, and bit 0 may indicate maintaining the cell measurement period.
  • bit 1 may indicate maintaining the cell measurement period, and bit 0 may indicate adjusting the cell measurement period.
  • the terminal device 120 can report the amplification factor of the cell measurement cycle to the network device 110, or report to the network device 110 whether the cell measurement cycle needs to be changed.
  • the network device 110 can configure appropriate settings for the terminal device 120 based on the above information. Cell measurement parameters, in this way, can avoid mobility management-related problems for the terminal device 120.
  • One possible implementation manner is to adjust the cell measurement period, including at least one of the following: enlarging the cell measurement period, or shortening the cell measurement period.
  • the network device 110 can decide on its own whether to enlarge or shorten the cell measurement period.
  • the network device 110 may determine whether to amplify or shorten the cell measurement period based on historical communication parameters with the terminal device 120 .
  • the terminal device 120 may also report information to the network device 110 to assist the network device 110 in deciding whether to amplify or shorten the cell measurement cycle.
  • the terminal device 120 when the terminal device 120 indicates to the network device 110 that the cell measurement cycle needs to be adjusted, the terminal device 120 may further indicate whether to enlarge or shorten the cell measurement cycle.
  • the terminal device 120 can also report a specific amplification factor (which can be a positive number greater than 1); if the terminal device 120 instructs to shorten the cell measurement cycle, it can also report a specific amplification factor.
  • a specific amplification factor which can be a positive number greater than 1
  • Magnification factor can be a positive number less than 1).
  • the indication information A includes that when maintaining the cell measurement period, the network device 110 does not adjust the cell measurement period of the terminal device 120 (maintaining the reference cell measurement period unchanged).
  • the cell measurement period of the terminal device 120 may be consistent with the cell measurement period when the terminal device 120 supports FR2-1/FR1.
  • the network device 110 can determine whether it is necessary to adjust the cell measurement cycle for the terminal device 120 through any of the above.
  • the reference cell measurement period may be predefined through a protocol between the network device 110 and the terminal device 120 .
  • the network device 110 can determine whether it is necessary to adjust the cell measurement cycle for the terminal device 120 through any of the above.
  • the network device 110 can determine whether it is necessary to adjust the cell measurement cycle for the terminal device 120 based on any of the above items.
  • the network device 110 configures the terminal device 120 with cell measurement parameters that match its cell measurement capability based on the cell measurement capability reported by the terminal device 120. In this way, the terminal device can avoid 120 raises issues related to mobility management. For example, slow cell discovery, delayed cell handover, etc.
  • the indication information A may simultaneously indicate adjusting the cell measurement period and the amplification factor of the cell measurement period. In this way, the network device 110 determines that the cell measurement cycle needs to be adjusted for the terminal device 120 based on the former, and can determine a specific amplification factor based on the latter.
  • the cell measurement period indicated by the indication information A reported by the terminal device 120 to the network device 110 belongs to the set of cell measurement periods agreed between the network device 110 and the terminal device 120 .
  • the network device 110 and the terminal device 120 may agree on a set of cell measurement periods including multiple cell measurement periods.
  • the terminal device 120 can indicate the cell measurement period selected by the terminal device 120 to the network device 110 through the indication information A. In this way, the network device 110 can configure an appropriate cell measurement period for the terminal device 120 based on the indication information A.
  • the technical solution shown in Figure 2 can be applied to same-frequency measurement or inter-frequency measurement, which is not limited by the embodiments of this application.
  • the cell mentioned above may refer to a serving cell or a neighboring cell, and is not limited in the embodiment of this application.
  • Figure 3 is a schematic flow chart of the communication method 300 according to the embodiment of the present application.
  • the method flow in Figure 3 can be performed by the terminal device 120 and the network
  • the network device 110 is executed, or is executed by modules and/or devices (for example, chips or integrated circuits) with corresponding functions installed in the terminal device 120 and the network device 110, which are not limited by the embodiments of this application.
  • the following description takes the terminal device 120 and the network device 110 as examples.
  • the communication method 300 includes:
  • the terminal device 120 sends indication information A to the network device 110, which is used to indicate the cell measurement capability when the terminal device 120 supports FR2-2.
  • the network device 110 sends configuration information A to the terminal device 120 for configuring cell measurement parameters of the terminal device 120.
  • the terminal device 120 performs cell measurement according to the configuration information A.
  • the network device 110 configures the cell measurement parameters for the terminal device 120 that match its cell measurement capability according to the cell measurement capability reported by the terminal device 120 .
  • the terminal device 120 may perform cell measurement based on the cell measurement parameter.
  • the terminal device can perform cell measurement based on cell measurement parameters that match its own cell measurement capabilities. In this way, the terminal device will not cause mobility management-related problems.
  • the terminal device 120 sends the cell measurement result to the network device 110.
  • the network device 110 receives the cell measurement result sent from the terminal device 120 .
  • the terminal device 120 may report the determined cell measurement result to the network device 110 .
  • the manner in which the terminal device 120 reports the cell measurement results to the network device 110 may be determined based on the aforementioned reporting configuration information. For details, please refer to the content of the existing measurement results reported by the terminal device 120 to the network device 110. Embodiments of the present application No further details will be given.
  • the network device 110 determines mobility management parameters according to the measurement results.
  • the network device 110 may determine the mobility management parameters based on the cell measurement result.
  • the mobility management parameters can be used to control the mobility management process of the terminal device 120 .
  • the mobility management parameters include: trigger time (time to trigger).
  • the value of the trigger time is used to indicate the time that the cell measurement conditions must be continuously satisfied before the terminal device 120 reports the cell measurement results to the network device 110 .
  • the mobility management process of the terminal device may include at least one of the following:
  • the network device 110 sends the mobility management parameters to the terminal device 120.
  • the terminal device 120 receives the mobility management parameters sent from the network device 110 .
  • the terminal device 120 controls or manages the mobility management process of the terminal device 120 according to the mobility management parameters delivered by the network device 110 .
  • the mobility management process of the terminal device 120 according to the mobility management parameters delivered by the network device 110 .
  • the existing description on the mobility management process, etc. please refer to the existing description on the mobility management process, etc., and will not be described in detail in the embodiment of this application.
  • this application can enable the terminal device to perform cell measurement according to the cell measurement parameters determined by the network device based on the cell measurement capability reported by the terminal device, report the cell measurement results to the network device, and then complete the mobility management process of the terminal device. Control, in this way, can avoid the occurrence of mobility management-related problems caused by simply amplifying the cell measurement period of the terminal device.
  • both the terminal and the network device may include a hardware structure and/or a software module to implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether one of the above functions is performed as a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • FIG. 4 is a schematic block diagram of a communication device 400 according to an embodiment of the present application.
  • the communication device 400 includes a processor 410 and a communication interface 420.
  • the processor 410 and the communication interface 420 are connected to each other through a bus 430.
  • the communication device 400 shown in FIG. 4 may be a network device 110 or a terminal device 120.
  • the communication device 400 further includes a memory 440.
  • Memory 440 includes, but is not limited to, random access memory (RAM), read-only memory (ROM), erasable programmable read only memory (EPROM), or Portable read-only memory (compact disc read-only memory, CD-ROM), memory 440 is used for related instructions and data.
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read only memory
  • CD-ROM Compact disc read-only memory
  • the processor 410 may be one or more central processing units (CPUs). When the processor 410 is a CPU, the CPU may be a single-core CPU or a multi-core CPU.
  • the processor 410 in the communication device 400 is used to read the computer program or instructions stored in the memory 440, and exemplarily perform the following operations:
  • the communication device 400 When the communication device 400 is the terminal device 120, it will be responsible for executing the methods or steps related to the terminal device 120 in the foregoing method embodiments.
  • the processor 410 in the communication device 400 is used to read the program code stored in the memory 440, and exemplarily perform the following operations:
  • Configuration information A is sent to the terminal device 120, which is used to configure cell measurement parameters of the terminal device 120.
  • the communication device 400 When the communication device 400 is the network device 110, it will be responsible for executing the methods or steps related to the network device 110 in the foregoing method embodiments.
  • FIG. 5 is a schematic block diagram of a communication device 500 according to an embodiment of the present application.
  • the communication device 500 may be the network device 110 and the terminal device 120 in the above embodiment, or may be a chip or module in the network device 110 and the terminal device 120, used to implement the method involved in the above embodiment.
  • the communication device 500 includes a transceiver unit 510.
  • the transceiver unit 510 is introduced as an example below.
  • the transceiver unit 510 may include a sending unit and a receiving unit, respectively configured to implement the sending or receiving functions in the above method embodiments; and may further include a processing unit, used to implement functions other than sending or receiving.
  • the transceiver unit 510 is used to send an indication A to the network device 110, which is used to indicate the cell measurement capability when the terminal device 120 supports FR2-2; the transceiver unit 510 is also used to Receive configuration information A sent by the network device 110, which is used to configure cell measurement parameters of the terminal device 120.
  • the communication device 500 may also include a processing unit 520, which is configured to perform content involving processing, coordination and other steps of the terminal device 120.
  • the communication device 500 further includes a storage unit 530, which is used to store programs or codes for performing the aforementioned method.
  • the communication device 500 When the communication device 500 is the terminal device 120, it will be responsible for executing the methods or steps related to the terminal device 120 in the foregoing method embodiments.
  • the transceiver unit 510 is used to receive the indication information A sent by the terminal device 110, which is used to indicate the cell measurement capability when the terminal device 120 supports FR2-2; the transceiver unit 510 also Used to send configuration information A to the terminal device 120, which is used to configure cell measurement parameters of the terminal device 120.
  • the communication device 500 may also include a processing unit 520, which is configured to perform content involving processing, coordination and other steps of the network device 110.
  • the communication device 500 further includes a storage unit 530, which is used to store programs or codes for performing the aforementioned method.
  • the communication device 500 is the network device 110, it will be responsible for executing the methods or steps related to the network device 110 in the foregoing method embodiments.
  • the device embodiments shown in Figures 4 and 5 are used to implement the contents described in Figures 2 to 3 of the foregoing method embodiments. Therefore, the specific execution steps and methods of the devices shown in Figures 4 and 5 can be referred to the content described in the foregoing method embodiments.
  • the above-mentioned transceiving unit may include a sending unit and a receiving unit.
  • the sending unit is used to perform the sending action of the communication device
  • the receiving unit is used to perform the receiving action of the communication device.
  • the embodiment of the present application combines the sending unit and the receiving unit into one sending and receiving unit. A unified explanation is given here and will not be repeated in the following paragraphs.
  • Figure 6 is a schematic diagram of a communication device 600 according to an embodiment of the present application.
  • the communication device 600 can be used to implement the functions of the network device 110 or the terminal device 120 in the above method.
  • the communication device 600 may be a chip in the network device 110 or the terminal device 120 .
  • the communication device 600 includes: an input and output interface 620 and a processor 610.
  • the input/output interface 620 may be an input/output circuit.
  • the processor 610 can be a signal processor, a chip, or other integrated circuit that can implement the method of the present application. Among them, the input and output interface 620 is used for input or output of signals or data.
  • the input and output interface 620 is used to send the instruction A to the network device 110, which is used to instruct the terminal device 120 to support the cell measurement capability when FR2-2; the input and output interface 620 also Used to receive configuration information A sent by the network device 110, which is used to configure cell measurement parameters of the terminal device 120.
  • the input and output interface 620 is used to receive the indication information A sent by the terminal device 110, which is used to indicate the cell measurement capability when the terminal device 120 supports FR2-2; the input and output interface 620 is also used to send configuration information A to the terminal device 120, which is used to configure the cell measurement parameters of the terminal device 120.
  • the processor 610 is configured to execute some or all steps of any method provided by the embodiments of this application.
  • the processor 610 implements the functions implemented by the network device or the terminal device by executing instructions stored in the memory.
  • the communication device 600 further includes a memory.
  • processor and memory are integrated together.
  • the memory is external to the communication device 600 .
  • the processor 610 may be a logic circuit, and the processor 610 inputs/outputs messages or signaling through the input/output interface 620 .
  • the logic circuit may be a signal processor, a chip, or other integrated circuits that can implement the methods of the embodiments of the present application.
  • FIG. 6 The above description of the device in FIG. 6 is only an exemplary description.
  • the device can be used to perform the method described in the previous embodiment.
  • FIG. 7 is a schematic block diagram of a communication device 700 according to an embodiment of the present application.
  • the communication device 700 may be a network device 110 or a chip.
  • the communication device 700 can be used to perform operations performed by the network device 110 in the method embodiments shown in FIGS. 2 to 3 .
  • FIG. 7 shows a simplified schematic structural diagram of a base station.
  • the base station includes part 710, part 720 and part 730.
  • Part 710 is mainly used for baseband processing, controlling the base station, etc.
  • Part 710 is usually the control center of the base station, which can usually be called a processor, and is used to control the base station to perform processing operations on the network device side in the above method embodiments.
  • Part 720 is primarily used to store computer program code and data.
  • Part 730 is mainly used for the transmission and reception of RF signals and the conversion of RF signals and baseband signals; Part 730 can usually be called a transceiver module, a transceiver, a transceiver circuit, or a transceiver, etc.
  • the transceiver module of part 730 can also be called a transceiver or a transceiver, etc., which includes an antenna 733 and a radio frequency circuit (not shown in the figure), where the radio frequency circuit is mainly used for radio frequency processing.
  • the device used to implement the receiving function in part 730 can be regarded as a receiver, and the device used to implement the transmitting function can be regarded as a transmitter, that is, part 730 includes a receiver 732 and a transmitter 731 .
  • the receiver can also be called a receiving module, receiver, or receiving circuit, etc.
  • the transmitter can be called a transmitting module, transmitter, or transmitting circuit, etc.
  • Parts 710 and 720 may include one or more single boards, and each single board may include one or more processors and one or more memories.
  • the processor is used to read and execute programs in the memory to implement baseband processing functions and control the base station. If there are multiple boards, each board can be interconnected to enhance processing capabilities. As an optional implementation, multiple single boards may share one or more processors, or multiple single boards may share one or more memories, or multiple single boards may share one or more processors at the same time. device.
  • the transceiver module of part 730 is used to perform processes related to the transceiver performed by the network device 110 in the embodiments shown in FIG. 2 and FIG. 3 .
  • the processor of part 710 is used to perform processes related to the processing performed by the network device 110 in the embodiments shown in FIG. 2 and FIG. 3 .
  • the processor of part 710 is configured to perform processes related to the processing performed by the communication device in the embodiments shown in FIG. 2 and FIG. 3 .
  • the transceiver module of part 730 is used to perform processes related to the transceiver performed by the communication device in the embodiments shown in FIG. 2 and FIG. 3 .
  • FIG. 7 is only an example and not a limitation.
  • the network equipment including the processor, memory and transceiver mentioned above may be different. Relying on the structure shown in Figures 4 to 6.
  • the chip When the communication device 700 is a chip, the chip includes a transceiver, a memory, and a processor.
  • the transceiver may be an input-output circuit or a communication interface;
  • the processor may be a processor, a microprocessor, or an integrated circuit integrated on the chip.
  • the sending operation of the network device 110 in the above method embodiment can be understood as the output of the chip, and the receiving operation of the network device 110 in the above method embodiment can be understood as the input of the chip.
  • FIG 8 is a schematic block diagram of a communication device 800 according to an embodiment of the present application.
  • the communication device 800 may be the terminal device 120, a processor of the terminal device 120, or a chip.
  • the communication device 800 may be used to perform operations performed by the terminal device 120 or the communication device in the above method embodiments.
  • FIG. 8 shows a simplified structural schematic diagram of the terminal device 120.
  • the terminal device 120 includes a processor, a memory, and a transceiver.
  • the memory can store computer program code
  • the transceiver includes a transmitter 831, a receiver 832, a radio frequency circuit (not shown in the figure), an antenna 833, and an input and output device (not shown in the figure).
  • the processor is mainly used to process communication protocols and communication data, control the terminal device 120, execute software programs, process data of software programs, etc.
  • Memory is mainly used to store software programs and data.
  • Radio frequency circuits are mainly used for conversion of baseband signals and radio frequency signals and processing of radio frequency signals.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices For example, touch screens, display screens, keyboards, etc. are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal equipment may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and then sends the radio frequency signal out in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor.
  • the processor converts the baseband signal into data and processes the data.
  • processors and transceiver are shown in Figure 8.
  • processors and one or more memories may exist.
  • Memory can also be called storage media or storage devices.
  • the memory may be provided independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with transceiver functions can be regarded as the transceiver module of the terminal device 120
  • the processor with the processing function can be regarded as the processing module of the terminal device 120 .
  • the terminal device 120 includes a processor 810 , a memory 820 and a transceiver 830 .
  • the processor 810 may also be called a processing unit, a processing board, a processing module, a processing device, etc.
  • the transceiver 830 may also be called a transceiver unit, a transceiver, a transceiver device, etc.
  • the devices in the transceiver 830 used to implement the receiving function can be regarded as receiving modules, and the devices used in the transceiver 830 used to implement the transmitting function can be regarded as sending modules, that is, the transceiver 830 includes a receiver and a transmitter.
  • a transceiver may also be called a transceiver, a transceiver module, or a transceiver circuit.
  • the receiver may also be called a receiver, receiving module, or receiving circuit.
  • the transmitter may also be called a transmitter, transmitting module or transmitting circuit.
  • the processor 810 is used to perform processing actions on the terminal device 120 side in the embodiments shown in Figures 2 and 3
  • the transceiver 830 is used to perform the processing actions on the terminal device 120 side in the embodiments shown in Figures 2 and 3. sending and receiving actions.
  • the processor 810 is used to perform processing actions on the terminal device 120 side in the embodiments shown in Figures 2 and 3
  • the transceiver 830 is used to perform the processing actions on the terminal device 120 side in the embodiments shown in Figures 2 and 3. sending and receiving actions.
  • FIG. 8 is only an example and not a limitation.
  • the above-mentioned terminal device including a transceiver module and a processing module may not rely on the structure shown in FIGS. 4 to 6 .
  • the chip When communication device 800 is a chip, the chip includes a processor, memory, and transceivers.
  • the transceiver may be an input-output circuit or a communication interface;
  • the processor may be a processing module, a microprocessor, or an integrated circuit integrated on the chip.
  • the sending operation of the terminal device in the above method embodiment can be understood as the output of the chip, and the receiving operation of the terminal device in the above method embodiment can be understood as the input of the chip.
  • This application also provides a chip, including a processor, configured to call from a memory and run instructions stored in the memory, so that the communication device installed with the chip executes the methods in each of the above examples.
  • This application also provides another chip, including: an input interface, an output interface, and a processor.
  • the input interface, the output interface, and the processor are connected through an internal connection path.
  • the processor is used to execute the code in the memory. , when the code is executed, the processor is used to execute the methods in each of the above examples.
  • the chip also includes memory for storing computer program or code.
  • This application also provides a processor, coupled to a memory, and used to execute the methods and functions involving network equipment or terminal equipment in any of the above embodiments.
  • a computer program product containing instructions is provided.
  • the method of the aforementioned embodiment is implemented.
  • This application also provides a computer program.
  • the computer program is run in a computer, the methods of the aforementioned embodiments are implemented.
  • a computer-readable storage medium stores a computer program.
  • the computer program is executed by a computer, the method described in the previous embodiment is implemented.
  • plural means two or more than two.
  • At least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • at least one of a, b, or c can mean: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • words such as “first” and “second” are used to distinguish identical or similar items with basically the same functions and effects. Those skilled in the art can understand that words such as “first” and “second” do not limit the number and execution order, and words such as “first” and “second” do not limit the number and execution order.
  • words such as “exemplarily” or “for example” are used to represent examples, illustrations or explanations.
  • A/B can represent A or B; "and/or” in this application "It is just an association relationship that describes related objects. It means that there can be three relationships.
  • a and/or B can mean: A exists alone, A and B exist simultaneously, and B exists alone. Among them, A , B can be singular or plural.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be determined by the implementation process of the embodiments of the present application. constitute any limitation.
  • the size of the sequence numbers of each process does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be determined by the execution order of the embodiments of the present application.
  • the implementation process constitutes no limitation.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or integrated. to another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between the shown or discussed may be through some interfaces, devices or units.
  • the indirect coupling or communication connection of elements may be electrical, mechanical or other forms.
  • a unit described as a separate component may or may not be physically separate.
  • a component shown as a unit may or may not be a physical unit, that is, it may be located in one place, or it may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, or each unit can exist physically alone, or two or more units can be integrated into one unit.
  • Functions may be stored in a computer-readable storage medium when implemented in the form of software functional units and sold or used as independent products.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods of various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法与通信装置,该通信方法包括:终端设备向网络设备发送指示信息,该指示信息用于指示终端设备支持频率范围FR2-2时的小区测量能力,小区测量能力用于终端设备的小区测量;终端设备接收网络设备发送的配置信息,该配置信息是由网络设备根据该指示信息确定的,该配置信息用于配置终端设备的小区测量参数。通过终端设备向网络设备上报终端设备的小区测量能力,并由网络设备根据该小区测量能力来确定相应的配置信息,该配置信息与终端设备的小区测量能力相互匹配,如此,就可以避免终端设备产生移动性管理的相关问题。

Description

通信方法与通信装置
本申请要求于2022年8月08日提交中国国家知识产权局、申请号为202210943566.2、申请名称为“通信方法与通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,更具体地,涉及一种通信方法与通信装置。
背景技术
新空口(new radio,NR)通信系统支持毫米波频段扩展到52.6GHz以上,NR通信系统所支持的同步信号块与物理广播信道的子载波间隔(subcarrier spacing,SCS)相应地从240KHz也扩展到了480KHz以及960KHz。扩展的SCS对终端设备的硬件复杂度提出了更高的要求。例如,在第三代合作伙伴计划(3rd generation partnership project,3GPP)协议没有更改终端设备的小区测量数量的情况下,终端设备需要在更短的时间内测量相同数量的小区,这使得终端设备的计算能力以及存储能力均需要得到提升。
为了降低扩展的SCS对终端设备的硬件复杂度的影响,目前提出放大终端设备的测量周期,但这容易引起移动性管理的相关问题,比如,小区发现变慢,小区切换延迟等。
发明内容
本申请提供一种通信方法与通信装置,通过终端设备向网络设备上报终端设备的小区测量能力,并由网络设备根据该小区测量能力来确定相应的配置信息,该配置信息与终端设备的小区测量能力相互匹配,如此就可以避免终端设备产生移动性管理的相关问题。
第一方面,提供了一种通信方法,包括:终端设备向网络设备发送指示信息,指示信息用于指示终端设备支持频率范围FR2-2时的小区测量能力,该小区测量能力用于终端设备的小区测量;终端设备接收网络设备发送的配置信息,该配置信息是由网络设备根据该指示信息确定的,该配置信息用于配置终端设备的小区测量参数。
通过由终端设备向网络设备上报其小区测量能力,网络设备根据终端设备上报的小区测量能力为终端设备配置与其小区测量能力相匹配的小区测量参数,如此,就可以避免终端设备产生移动性管理的相关问题。例如,小区发现变慢、小区切换延迟,等等。
结合第一方面,在第一方面的某些实现方式中,该小区测量能力包括小区测量周期。
具体地,通过终端设备向网络设备上报其小区测量周期,网络设备可以为终端设备配置与其小区测量周期匹配的小区测量参数,如此,就可以避免网络设备为终端设备配置不合适的小区测量周期,从而能够避免因单纯地放大终端设备的小区测量周期而引起的移动性管理的相关问题的出现。
结合第一方面,在第一方面的某些实现方式中,该指示信息包括以下至少一项:该小区测量周期的放大倍数,调整小区测量周期,或者,保持小区测量周期。
具体来说,终端设备可以向网络设备上报小区测量周期的放大倍数,或者,向网络设备上报是否需要更改小区测量周期,网络设备可以根据上述的这些信息为终端设备配置合适的小区测量参数,如此,就能够避免终端设备产生移动性管理的相关问题。
结合第一方面,在第一方面的某些实现方式中,小区测量周期的放大倍数的取值为K,K为正数。
具体来说,K为正数时,其可以为整数,也可以为小数。例如,K=0.5时,其表示终端设备的小区测量周期可以缩短;当K=2时,其表示终端设备的小区测量周期可以放大。
可选地,上述所提及的小区测量周期可以为终端设备120与网络设备110之间约定的。即,终端设备120仅通过上报一个放大倍数,网络设备110就能够确定是放大还是缩短小区测量周期。
可选地,终端设备120支持FR2-2时的小区测量周期与终端设备120支持FR2-1或者FR1时的小区测量周期是一致的,终端设备120仅需上报基于该小区测量周期的放大倍数的具体取值即可,网络设备110就能够确定是放大还是缩短终端设备的小区测量周期。
可选地,终端设备120也可以在上报小区测量周期的放大倍数之前,先与网络设备110约定一个基准小区测量周期,后续的放大倍数是基于该基准小区测量周期而进行设计的。
可选地,可以通过协议预定义的方式确定终端设备120的基准小区测量周期。如此,终端设备120仅需通过上报放大倍数即可。
结合第一方面,在第一方面的某些实现方式中,调整小区测量周期,包括以下至少一项:放大小区测量周期,或者,缩短小区测量周期。
具体来说,终端设备可以向网络设备指示其小区测量周期可以放大,也可以缩短,这具体取决于终端设备的小区测量能力,网络设备可以根据终端设备的小区测量能力为其配置合适的小区测量参数,如此,就能够避免终端设备产生移动性管理的相关问题。
结合第一方面,在第一方面的某些实现方式中,小区测量周期包括以下至少一项:测量小区的周期,或者,搜索小区的周期。
具体地,本申请支持终端设备向网络设备上报测量小区的周期,也支持终端设备向网络设备上报搜索小区的周期,也可以二者均上报,本申请实施例不限定。网络设备可以根据上述的这些信息为终端设备配置合适的小区测量参数,如此,就能够避免终端设备产生移动性管理的相关问题。
结合第一方面,在第一方面的某些实现方式中,方法还包括:终端设备根据该配置信息进行小区测量;终端设备向网络设备发送测量结果,该测量结果是由终端设备根据该小区测量确定的。
终端设备可以根据与自身的小区测量能力匹配的小区测量参数进行小区测量,如此,不会导致终端设备产生移动性管理相关的问题。
结合第一方面,在第一方面的某些实现方式中,方法还包括:终端设备接收网络设备发送的移动性管理参数,该移动性管理参数是由网络设备根据该测量结果确定的,该移动性管理参数用于控制终端设备的移动性管理过程。
结合第一方面,在第一方面的某些实现方式中,终端设备的移动性管理过程,包括以下至少一项:小区选择过程,或者,小区重选过程。
第二方面,提供了一种通信方法,包括:网络设备接收终端设备发送的指示信息,该指示信息用于指示终端设备支持频率范围FR2-2时的小区测量能力,该小区测量能力用于终端设备的小区测量;网络设备向终端设备发送配置信息,该配置信息是网络设备根据该指示信息确定的,该配置信息用于配置终端设备的小区测量参数。
结合第二方面,在第二方面的某些实现方式中,该小区测量能力包括小区测量周期。
结合第二方面,在第二方面的某些实现方式中,该指示信息包括以下至少一项:小区测量周期的放大倍数,调整小区测量周期,或者,保持小区测量周期。
结合第二方面,在第二方面的某些实现方式中,小区测量周期的放大倍数的取值为K,K为正数。
结合第二方面,在第二方面的某些实现方式中,调整该小区测量周期,包括以下至少一项:放大小区测量周期,或者,缩短小区测量周期。
结合第二方面,在第二方面的某些实现方式中,小区测量周期包括以下至少一项:测量小区的周期,或者,搜索小区的周期。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:网络设备接收终端设备发送的测量结果,该测量结果是终端设备根据该配置信息进行小区测量确定的;网络设备根据该测量结果确定移动性管理参数,该移动性管理参数用于控制终端设备的移动性管理过程。
结合第二方面,在第二方面的某些实现方式中,方法还包括:网络设备向终端设备发送该移动性管理参数。
结合第二方面,在第二方面的某些实现方式中,终端设备的移动性管理过程,包括以下至少一项:小区选择过程,或者,小区重选过程。
第三方面,提供了一种通信装置,包括:收发单元,用于向网络设备发送指示信息,指示信息用于指示该通信装置支持频率范围FR2-2时的小区测量能力,该小区测量能力用于该通信装置的小区测 量;该收发单元,还用于接收网络设备发送的配置信息,该配置信息是由网络设备根据该指示信息确定的,该配置信息用于配置该通信装置的小区测量参数。
结合第三方面,在第三方面的某些实现方式中,小区测量能力包括小区测量周期。
结合第三方面,在第三方面的某些实现方式中,该指示信息包括以下至少一项:小区测量周期的放大倍数,调整小区测量周期,或者,保持小区测量周期。
结合第三方面,在第三方面的某些实现方式中,小区测量周期的放大倍数的取值为K,该K为正数。
结合第三方面,在第三方面的某些实现方式中,调整该小区测量周期,包括以下至少一项:放大小区测量周期,或者,缩短小区测量周期。
结合第三方面,在第三方面的某些实现方式中,小区测量周期包括以下至少一项:测量小区的周期,或者,搜索小区的周期。
结合第三方面,在第三方面的某些实现方式中,该通信装置还包括:处理单元,用于根据该配置信息进行小区测量;该收发单元,还用于向网络设备发送测量结果,该测量结果是由该通信装置根据该小区测量确定的。
结合第三方面,在第三方面的某些实现方式中,该收发单元,还用于接收网络设备发送的移动性管理参数,该移动性管理参数是由网络设备根据该测量结果确定的,该移动性管理参数用于控制该通信装置的移动性管理过程。
结合第三方面,在第三方面的某些实现方式中,该通信装置的移动性管理过程,包括以下至少一项:小区选择过程,或者,小区重选过程。
第四方面,提供了一种通信装置,包括:收发单元,用于接收终端设备发送的指示信息,该指示信息用于指示终端设备支持频率范围FR2-2时的小区测量能力,该小区测量能力用于终端设备进行小区测量;该收发单元,还用于向终端设备发送配置信息,该配置信息是由该通信装置根据该指示信息确定的,该配置信息用于配置终端设备的小区测量参数。
结合第四方面,在第四方面的某些实现方式中,小区测量能力包括小区测量周期。
结合第四方面,在第四方面的某些实现方式中,指示信息包括以下至少一项:小区测量周期的放大倍数,调整小区测量周期,或者,保持小区测量周期。
结合第四方面,在第四方面的某些实现方式中,小区测量周期的放大倍数的取值为K,K为正数。
结合第四方面,在第四方面的某些实现方式中,调整小区测量周期,包括以下至少一项:放大小区测量周期,或者,缩短小区测量周期。
结合第四方面,在第四方面的某些实现方式中,小区测量周期包括以下至少一项:测量小区的周期,或者,搜索小区的周期。
结合第四方面,在第四方面的某些实现方式中,该收发单元,还用于接收终端设备发送的测量结果,该测量结果是终端设备根据该配置信息进行小区测量确定的;该通信装置还包括:处理单元,用于根据该测量结果确定移动性管理参数,该移动性管理参数用于控制终端设备的移动性管理过程。
结合第四方面,在第四方面的某些实现方式中,方法还包括:网络设备向终端设备发送移动性管理参数。
结合第四方面,在第四方面的某些实现方式中,终端设备的移动性管理过程,包括以下至少一项:小区选择过程,或者,小区重选过程。
第五方面,提供了一种通信装置,包括处理器,该处理器与存储器耦合,该处理器用于执行计算机程序或指令,使得该通信装置执行第一方面以及第一方面的任一种可能实现方式中任一项所述的方法;或者,使得该通信装置执行第二方面以及第二方面的任一种可能实现方式中任一项所述的方法。
一种可能的实现中,该装置还包括存储器。
可选的,处理器和存储器集成在一起,或者处理器和存储器分开设置。
在另一种可能的实现中,存储器位于该通信装置之外。
一种可能的实现中,该通信装置还包括通信接口,该通信接口用于该通信装置与其他设备进行通信,例如数据和/或信号的发送或接收。
示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。
第六方面,提供了一种通信装置,包括逻辑电路和输入输出接口,输入输出接口用于输出和/或输入信号,逻辑电路用于执行第一方面以及第一方面的任一种可能实现方式中任一项所述的方法;或者,执行第二方面以及第二方面的任一种可能实现方式中任一项所述的方法。
一种可能的实现中,该输入输出接口用于向网络设备发送指示信息,指示信息用于指示终端设备支持频率范围FR2-2时的小区测量能力,小区测量能力用于终端设备的小区测量;该输入输出接口还用于接收网络设备发送的配置信息,该配置信息是由网络设备根据该指示信息确定的,该配置信息用于配置终端设备的小区测量参数。
一种可能的实现中,该输入输出接口用于接收终端设备发送的指示信息,该指示信息用于指示终端设备支持频率范围FR2-2时的小区测量能力,小区测量能力用于终端设备的小区测量;该输入输出接口还用于向终端设备发送配置信息,该配置信息是由网络设备根据该指示信息确定的,该配置信息用于配置终端设备的小区测量参数。
第七方面,提供了一种计算机可读存储介质,包括计算机程序或指令,当该计算机程序或该指令在计算机上运行时,使得该计算机执行第一方面以及第一方面的任一种可能实现方式中任一项所述的方法;或者,使得该计算机执行第二方面以及第二方面的任一种可能实现方式中任一项所述的方法。
第八方面,提供了一种计算机程序产品,包含指令,当该指令在计算机上运行时,使得该计算机执行第一方面以及第一方面的任一种可能实现方式中任一项所述的方法;或者,使得该计算机执行第二方面以及第二方面的任一种可能实现方式中任一项所述的方法。
第九方面,本申请实施例还提供一种终端设备,用于执行上述的第一方面及其各种可能的实现中的方法。
第十方面,本申请实施例还提供一种网络设备,用于执行上述的第二方面及其各种可能的实现中的方法。
第十一方面,本申请实施例还提供一种通信系统,包括上述的第三方面及各种可能的实现提供的通信装置和上述的第四方面及各种可能的实现提供的通信装置。
附图说明
图1是本申请实施例的适用通信系统100的示意图。
图2是本申请实施例的通信方法200的交互流程图。
图3是本申请实施例的通信方法300的交互流程图。
图4是本申请实施例的通信装置400的结构框图。
图5是本申请实施例的通信装置500的结构框图。
图6是本申请实施例的通信装置600的结构框图。
图7是本申请实施例的通信装置700的结构框图。
图8是本申请实施例的通信装置800的结构框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、第五代(5th generation,5G)系统或新空口(new radio,NR)、第六代(6th generation,6G)系统等5G之后演进的系统、星间通信和卫星通信等非陆地通信网络(non-terrestrial network,NTN)系统。卫星通信系统包括卫星基站以及终端设备。卫星基站为终端设备提供通信服务。卫星基站也可以与地面基站进行通信。卫星可作为基站,也可作为终端设备。其中,卫星可以是指无人机,热气球,低轨卫星,中轨卫星,高轨卫星等非地面基站或非地面设备等。
本申请实施例的技术方案对于同构网络与异构网络的场景均适用,同时对于传输点也无限制,可以是宏基站与宏基站、微基站与微基站和宏基站与微基站之间的多点协同传输,对FDD/TDD系统均适用。本申请实施例的技术方案不仅适用于低频场景(sub 6G),也适用于高频场景(6GHz以上), 太赫兹,光通信等。本申请实施例的技术方案不仅可以适用于网络设备和终端的通信,也可以适用于网络设备和网络设备的通信,终端和终端的通信,车联网,物联网,工业互联网等的通信。
本申请实施例的技术方案也可以应用于终端与单个基站连接的场景,其中,终端所连接的基站以及基站所连接的核心网络(core network,CN)为相同制式。比如CN为5G Core,基站对应的为5G基站,5G基站直接连接5G Core;或者CN为6G Core,基站为6G基站,6G基站直接连接6G Core。本申请实施例的技术方案也可以适用于终端与至少两个基站连接的双连接(dual connectivity,DC)场景。
本申请实施例的技术方案也可以使用通信网络中不同形态的基站组成的宏微场景,例如,基站可以是卫星、空中气球站、无人机站点等。本申请实施例的技术方案也适合于同时存在广覆盖基站和小覆盖基站的场景。
还可以理解的是,本申请实施例的技术方案还可以应用于5.5G、6G及以后的无线通信系统,适用场景包括但不限于地面蜂窝通信、NTN、卫星通信、高空通信平台(high altitude platform station,HAPS)通信、车辆外联(vehicle-to-everything,V2X)、接入回传一体化(integrated access and backhaul,IAB),以及可重构智能表面(reconfigurable intelligent surface,RIS)通信等场景。
本申请实施例中的终端可以是一种具有无线收发功能的设备,具体可以指用户设备(user equipment,UE)、接入终端、用户单元(subscriber unit)、用户站、移动台(mobile station)、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。终端设备还可以是卫星电话、蜂窝电话、智能手机、无线数据卡、无线调制解调器、机器类型通信设备、可以是无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、客户终端设备(customer-premises equipment,CPE)、智能销售点(point of sale,POS)机、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、高空飞机上搭载的通信设备、可穿戴设备、无人机、机器人、设备到设备通信(device-to-device,D2D)中的终端、V2X中的终端、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端或者5G之后演进的通信网络中的终端设备等,本申请实施例不作限制。
本申请实施例中用于实现终端设备的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片系统。该装置可以被安装在终端设备中或者和终端设备匹配使用。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
本申请实施例中的网络设备具有无线收发功能的设备,用于与终端设备进行通信。接入网设备可以为无线接入网(radio access network,RAN)中的节点,又可以称为基站,还可以称为RAN节点。可以是LTE中的演进型基站(evolved Node B,eNB或eNodeB);或者gNodeB(gNB)等5G网络中的基站或者5G之后演进的公共陆地移动网络(public land mobile network,PLMN)中的基站,宽带网络业务网关(broadband network gateway,BNG),汇聚交换机或者第三代合作伙伴项目(3rd generation partnership project,3GPP)接入设备等。
本申请实施例中的网络设备还可以包括各种形式的基站,例如:宏基站、微基站(也称为小站)、中继站、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心以及设备到设备(device-to-device,D2D)、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备等,还可以包括云接入网(cloud radio access network,C-RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)、NTN通信系统中的网络设备,本申请实施例不作具体限定。
本申请实施例中用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统。该装置可以被安装在网络设备中或者和网络设备匹配使用。本申请实施例中的芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
图1是本申请实施例的适用通信系统100的示意图。如图1所示,通信系统100包括网络设备110 与终端设备120。本申请实施例不限定通信系统100所包括的终端设备120与网络设备110的数量。另外,图1所示的通信系统100仅作为示例性理解,并不能限定本申请所要求的保护范围。
本申请实施例中的终端设备120可以是如上所列举的任意一个终端设备,网络设备110也可以是如上所列举的任意一个网络设备,本申请实施例不作限定。
为了更好地描述本申请实施例的技术方案,下文将对与本申请实施例揭示的技术方案相关的部分技术术语做简短的描述。
毫米波(millimeter wave,MMW):
一般而言,频率在30~300GHz范围内的电磁波都可以称为MMW。MMW在通信、雷达、遥感和射电天文等领域的应用十分广泛。
3GPP 38.101协议规定,5G NR主要使用两段频域:频率范围(frequency range,FR)1和FR2。FR1的频率范围是450MHz~6GHz,FR2的频率范围是24.25GHz~52.6GHz。
目前,5G NR通信系统支持MMW频段能够扩展到52.6GHz以上,并将MMW频段在24.25GHz~52.6GHz之间的称为FR2-1,MMW频段在52.6GHz~71GHz之间的称为FR2-2。
当MMW频段扩展到52.6GHz以上时,5G NR所支持的同步信号块与物理广播信道(synchronization signal and physical broadcast channel block,SSB)的SCS也相应地从240KHz扩展到了480KHz以及960KHz。扩展的SCS对终端设备的硬件复杂度提出了更高的要求。例如,在3GPP协议没有更改终端设备的小区测量数量的情况下(终端设备支持FR2-2时的小区测量的数量与终端设备支持FR1-1或者FR2-1时的小区测量的数量相同),终端设备需要在更短的时间内测量相同数量的小区,这使得终端设备的计算能力以及存储能力均需要得到提升。
例如,当SCS从240KHz扩展到480KHz以及960KHz时,SCS为480KHz时的SSB采样率是SCS为240KHz时的SSB采样率的两倍,SCS为960KHz时的SSB采样率是SCS为240KHz时对应的SSB采样率的四倍。因此,终端设备需要存储更多的数据。
由于SCS的增大,终端设备的硬件复杂度与小区测量的要求之间存在着矛盾。为了降低扩展的SCS对终端设备的硬件复杂度的影响,目前提出可以通过放大测量小区的周期的方式来减小对终端设备的硬件复杂度的影响。例如,对SCS分别为480kHz和960kHz时所对应的测量小区的周期分别乘以2和3,如此,可以通过增大测量小区的周期的方式来降低终端设备的硬件复杂度的影响。
由于不同的终端设备具备不同的小区测量能力,FR2-2同时也有移动性管理需求,如果单纯地放大终端设备的测量小区的周期,这会引起移动性管理的相关问题,比如:小区发现变慢,小区切换延迟等。例如,当终端设备的测量小区的周期增加一倍时,对于非连续接收(discontinuous reception,DRX)场景,可能导致延迟时间在10s~20s以上。对于小区测量能力强的终端设备而言,如果增加该终端设备的测量小区的周期,这会使其无法获取即时的移动性测量信息。因此,不能仅仅通过放大终端设备的测量小区的周期来降低扩展的SCS对终端设备的硬件复杂度的影响。
鉴于上述技术问题,本申请提供一种通信方法与通信装置,通过终端设备向网络设备上报终端设备的小区测量能力,并由网络设备根据该小区测量能力确定相应的配置信息,该配置信息与终端设备的小区测量能力相互匹配,如此就可以避免终端设备产生移动性管理的相关问题。
下文将结合附图对本申请实施例的通信方法与通信装置进行描述。
图2是本申请实施例的通信方法200的示意流程图。图2中的方法流程可以由终端设备120与网络设备110执行,或者由安装于终端设备120与网络设备110中的具有相应功能的模块和/或器件(例如,芯片或集成电路等)执行,本申请实施例不限定。下文以终端设备120与网络设备110为例进行说明。如图2所示,通信方法200包括:
S210、终端设备120向网络设备110发送指示信息A,其用于指示终端设备120支持FR2-2时的小区测量能力。
相应地,网络设备110接收终端设备120发送的指示信息A,并基于该指示信息A确定终端设备120支持FR2-2时的小区测量能力。
终端设备120支持FR2-2时的小区测量能力可以与终端设备120支持FR2-1时的小区测量能力相同,也可以与终端设备支持FR2-1时的小区测量能力不同。例如,终端设备120支持FR2-2时的小区 测量能力可能高于终端设备支持FR2-1时的小区测量能力。这是由于FR2-2的频段高于FR2-1的频段,终端设备120支持FR2-2时的硬件复杂度可能高于支持FR2-1时的硬件复杂度。终端设备120支持FR2-2时的小区测量能力可以与终端设备120支持FR1时的小区测量能力相同,也可以与终端设备支持FR1时的小区测量能力不同。本申请实施例不限定。
无论终端设备120支持FR2-2时的小区测量能力与其支持FR2-1或者FR1时的小区测量能力是否相同,终端设备120均需要让网络设备110知晓终端设备120支持FR2-2时的小区测量能力。
综上,终端设备120可以通过向网络设备110上报指示信息A,网络设备110可以基于指示信息A确定终端设备120支持FR2-2时的小区测量能力。
可选地,上述的小区测量能力也可以称为移动性测量能力,本申请对此不进行限定。为便于描述,下文以小区测量能力为例进行描述。
终端设备120的小区测量能力可以包括终端设备120在移动性管理方面的能力。该移动性管理方面可以包括以下至少一项:小区选择、小区重选、小区测量或者小区搜索,等等。网络设备110可以通过指示信息A确定终端设备120在小区选择、小区重选、小区测量或者小区搜索等方面的测量能力。
可选地,上述的移动性管理方面所涉及的测量能力均可以视为终端设备120的小区测量能力的一种或多种。
一个可能的实现方式,终端设备120的小区测量能力包括小区测量周期。
具体地,终端设备120向网络设备110上报其小区测量周期,网络设备110可以为终端设备120配置与其小区测量周期匹配的小区测量参数,如此,就可以避免网络设备110为终端设备120配置不合适的小区测量周期,从而能够避免因单纯地放大终端设备120的小区测量周期而引起的移动性管理的相关问题的出现。
当终端设备120的小区测量能力包括小区测量周期,且不包括其他类型的能力时,终端设备120的小区测量能力与终端设备120的小区测量周期可以是等同的概念。换句话说,终端设备120通过指示信息A向网络设备110上报的小区测量能力等同于终端设备120通过指示信息A向网络设备110上报终端设备120的小区测量周期。
一个可能的实现方式,终端设备120的小区测量能力还可以包括小区测量数量。例如,终端设备120可以通过指示信息A向网络设备110上报终端设备120可以在一个测量小区的周期内测量小区的数量。
一个可能的实现方式,小区测量周期包括以下至少一项:测量小区的周期,或者,搜索小区的周期。
测量小区的周期是指终端设备120进行小区测量时的周期。例如,终端设备120在时刻T1进行小区测量,在时刻T2再次进行小区测量。时刻T1与时刻T2之间的间隔时间可以称为终端设备120的测量小区的周期。搜索小区的周期是指终端设备120进行小区搜索时的周期。例如,终端设备120在时刻T3进行小区搜索,在时刻T4再次进行小区搜索。时刻T3与时刻T4之间的间隔时间可以称为终端设备120的搜索小区的周期。
可选地,终端设备120的测量小区的周期和/或搜索小区的周期与终端设备120的小区测量能力的强弱相关。例如,终端设备120的小区测量能力愈强,终端设备120的测量小区的周期和/或搜索小区的周期可以愈短;终端设备120的小区测量能力愈弱,终端设备120的测量小区的周期和/或搜索小区的周期可以愈长。
如前文所述,为了降低扩展的SCS对终端设备120的硬件复杂度的影响,目前提出可以通过放大(也可以理解为放松或者扩大等类似表述)终端设备的测量小区的周期来降低终端设备的硬件复杂度,但这会引起移动性管理的相关问题。对于小区测量能力强的终端设备而言,其可能并不需要放大测量小区的周期,可选地,甚至可能需要缩短测量小区的周期,从而使得该终端设备的测量小区的周期与其小区测量能力相匹配。
由于网络设备110并不确定终端设备120支持FR2-2时的小区测量能力,其可能会给终端设备120配置一个放大的测量小区的周期,这可能导致出现移动性管理相关的问题。若通过由终端设备120向网络设备110上报终端设备120支持FR2-2时的小区测量能力,网络设备110可以基于终端设备120支持FR2-2时的小区测量能力为终端设备120配置一个与其小区测量能力相匹配的测量小区的周期。
上述内容是以终端设备120的测量小区的周期为例进行描述,但也可以同样适用于终端设备120的搜索小区的周期。为便于描述,本申请实施例以小区测量周期为例进行描述,不再区分测量小区的周期与搜索小区的周期。
S220、网络设备110向终端设备120发送配置信息A,用于配置终端设备120的小区测量参数。
相应地,终端设备120接收来自网络设备110的配置信息A,并基于该配置信息A确定网络设备110为终端设备120配置的小区测量参数。
具体来说,网络设备110可以先接收终端设备120发送的指示信息A,并基于该指示信息A确定终端设备120的小区测量能力。之后,网络设备110为终端设备120配置与终端设备120的小区测量能力相匹配的配置信息A。如此,网络设备110为终端设备120配置的小区测量参数可以与终端设备120的小区测量能力相互匹配。
一个可能的实现方式,小区测量参数可以包括以下至少一项:
小区测量周期的取值,上报配置信息,或者,频点信息,测量对象,等等。
应理解,小区测量参数可以承载于RRC信令之中。上报配置信息是指小区测量结果上报相关的信息,在协议里可以通过上报配置(ReportConfig)进行配置。网络设备110可以为终端设备120配置一个或多个上报配置,每个上报配置包括上报指标,上报时间和周期,上报格式等与上报相关的信息。
具体地,终端设备120可以基于网络设备110下发的小区测量周期的取值、触发时间的取值,或者,上报配置信息等进行小区测量等等。
通过由终端设备120向网络设备110上报其在支持FR2-2时的小区测量能力,网络设备110可以根据该小区测量能力为终端设备120配置相互匹配的小区测量参数,如此,就可以避免因单纯增加终端设备120的小区测量周期而引起移动性管理的相关问题的出现。
一个可能的实现方式,指示信息A包括以下至少一项:
小区测量周期的放大倍数,调整小区测量周期,或者,保持小区测量周期。
示例性地,指示信息A包括小区测量周期的放大倍数时,网络设备110可以基于该小区测量周期的放大倍数确定是否需要为终端设备120放大小区测量周期。例如,小区测量周期的放大倍数的取值为K,K可以为正数,例如,1~N,N为大于1的正整数;也可以为小数,例如,0.5。当小区测量周期的放大倍数的取值为小于1的正数时,其表示终端设备120可以缩短小区测量周期;当小区测量周期的放大倍数的取值为大于1的正数时,其表示终端设备120可以放大小区测量周期。另外,小区测量周期的放大倍数也可称为小区测量周期的缩放因子,二者可以互换。
可选地,上述所提及的小区测量周期的取值可以为终端设备120与网络设备110之间约定的。即,终端设备120仅通过上报一个放大倍数,网络设备110就能够确定是放大还是缩短小区测量周期。譬如,终端设备120支持FR2-2时的小区测量周期与终端设备120支持FR2-1或者FR1时的小区测量周期是一致的,因此,终端设备120仅需上报基于该小区测量周期的放大倍数的具体取值即可,网络设备110就能够确定是放大还是缩短小区测量周期。
可选地,终端设备120也可以在上报小区测量周期的放大倍数之前,先与网络设备110约定一个基准小区测量周期,后续的放大倍数是基于该基准小区测量周期而进行设计的。
可选地,可以通过协议预定义的方式确定终端设备120的基准小区测量周期。如此,终端设备120仅需通过上报放大倍数即可。
可选地,指示信息A包括小区测量周期的放大倍数时,其可以为MeasRelaxFR2Extra信息,且该信息可以承载于无线资源控制(radio resource control,RRC)信令中。
示例性地,指示信息A用于指示为调整小区测量周期时,网络设备110可以基于该指示信息A所指示的内容为终端设备120重新配置小区测量周期。例如,将现有的终端设备的小区测量周期(可以视为基准小区测量周期)的取值视为m,调整小区测量周期,可以视为调整m的取值。譬如,网络设备110可以为终端设备120配置m1的小区测量周期。其中,m1不同于m。
示例性地,在DRX周期为160ms的场景中,现有的小区测量周期的取值大约为5秒,网络设备110可以根据终端设备120上报的调整小区测量周期的指示调整小区测量周期。例如,将现有的小区测量周期的取值调整为4秒(可以理解为缩短小区测量周期),或者,为10秒(可以理解为放大小区测 量周期)。在DRX周期为320ms的场景中,现有的小区测量周期的取值大约为11.52ms,网络设备110可以根据终端设备120上报的调整小区测量周期的指示调整小区测量周期。例如,将现有的小区测量周期的取值调整为8秒(可以理解为缩短小区测量周期),或者,为20秒(可以理解为放大小区测量周期)。
又示例性地,该指示信息A可以包括比特0或者比特1,其中,比特1可以指示调整小区测量周期,比特0可以指示保持小区测量周期。或者,比特1可以指示保持小区测量周期,比特0可以指示调整小区测量周期。
具体来说,终端设备120可以向网络设备110上报小区测量周期的放大倍数,或者,向网络设备110上报是否需要更改小区测量周期,网络设备110可以根据上述的这些信息为终端设备120配置合适的小区测量参数,如此,就能够避免终端设备120产生移动性管理的相关问题。
一个可能的实现方式,调整小区测量周期,包括以下至少一项:放大小区测量周期,或者,缩短小区测量周期。
具体描述可以参见放大倍数的描述,在此不再赘述。
可选地,当终端设备120仅上报需调整小区测量周期时,网络设备110可以自行决定放大还是缩短小区测量周期。
可选地,网络设备110可以基于与终端设备120的历史通信参数来确定放大还是缩短小区测量周期。
可选地,终端设备120在上报需调整小区测量周期时,还可以向网络设备110上报用于辅助网络设备110决定放大还是缩短小区测量周期的信息。
一个可能的实现方式,终端设备120向网络设备110指示需要调整小区测量周期时,终端设备120还可以进一步地指示是放大小区测量周期还是缩短小区测量周期。
可选地,若终端设备120指示放大小区测量周期时,其还可以上报具体的放大倍数(可以为大于1的正数);若终端设备120指示缩短小区测量周期时,其还可以上报具体的放大倍数(可以为小于1的正数)。
示例性地,指示信息A包括保持小区测量周期时,网络设备110不调整终端设备120的小区测量周期(维持基准小区测量周期不变)。
可选地,终端设备120的小区测量周期可以与终端设备120支持FR2-1/FR1时的小区测量周期一致。如此,网络设备110通过上述的任意一项就能够确定是否需要为终端设备120调整小区测量周期。
可选地,网络设备110与终端设备120之间可以通过协议预定义基准小区测量周期。如此,网络设备110通过上述的任意一项就能够确定是否需要为终端设备120调整小区测量周期。
综上,网络设备110可以基于上述的任意一项来确定是否需要为终端设备120调整小区测量周期。
通过由终端设备120向网络设备110上报其小区测量能力,网络设备110根据终端设备120上报的小区测量能力为终端设备120配置与其小区测量能力相匹配的小区测量参数,如此,就可以避免终端设备120产生移动性管理的相关问题。例如,小区发现变慢、小区切换延迟,等等。
一个可能的实现方式,指示信息A可以同时指示调整小区测量周期与小区测量周期的放大倍数。如此,网络设备110基于前者确定需要为终端设备120调整小区测量周期,基于后者可以确定具体的放大倍数。
一个可能的实现方式,终端设备120向网络设备110上报的指示信息A所指示的小区测量周期属于网络设备110与终端设备120之间约定的小区测量周期集合。
具体地,网络设备110与终端设备120之间可以约定包括多个小区测量周期在内的小区测量周期集合。终端设备120可以通过指示信息A向网络设备110指示终端设备120所选择的小区测量周期,如此,网络设备110可以基于该指示信息A为终端设备120配置合适的小区测量周期。
可选地,图2所示的技术方案可以应用于同频测量,也可以应用于异频测量,本申请实施例不限定。上文所述的小区可以指服务小区,也可以指邻区,本申请实施例也不限定。
下文将结合图3对本申请实施例的其他通信方法进行描述。
图3是本申请实施例的通信方法300的示意流程图。图3中的方法流程可以由终端设备120与网 络设备110执行,或者由安装于终端设备120与网络设备110中的具有相应功能的模块和/或器件(例如,芯片或集成电路等)执行,本申请实施例不限定。下文以终端设备120与网络设备110为例进行说明。如图3所示,通信方法300包括:
S310、终端设备120向网络设备110发送指示信息A,其用于指示终端设备120支持FR2-2时的小区测量能力。
具体内容可以参见S210的描述,在此不再赘述。
S320、网络设备110向终端设备120发送配置信息A,用于配置终端设备120的小区测量参数。
具体内容可以参见S220的描述,在此不再赘述。
S330、终端设备120根据配置信息A进行小区测量。
具体地,网络设备110根据终端设备120上报的小区测量能力为终端设备120配置了与其小区测量能力相匹配的小区测量参数。终端设备120可以基于该小区测量参数进行小区测量。
另外,终端设备可以根据与自身的小区测量能力匹配的小区测量参数进行小区测量,如此,不会导致终端设备产生移动性管理相关的问题。
S340、终端设备120向网络设备110发送小区测量结果。
相应地,网络设备110接收来自终端设备120发送的小区测量结果。
具体来说,终端设备120在完成小区测量之后,可以将其确定的小区测量结果上报给网络设备110。其中,终端设备120向网络设备110上报小区测量结果的方式可以是基于前述的上报配置信息进行确定的,具体可以参见现有的终端设备120向网络设备110上报测量结果的内容,本申请实施例不做赘述。
S350、网络设备110根据测量结果确定移动性管理参数。
具体地,网络设备110接收到终端设备120发送的小区测量结果后,可以根据该小区测量结果确定移动性管理参数。移动性管理参数能够用于控制终端设备120的移动性管理过程。
示例性地,移动性管理参数包括:触发时间(time to trigger)。
其中,触发时间的取值用于指示终端设备120向网络设备110上报小区测量结果前,小区测量条件必须连续满足的时间。
一个可能的实现方式,终端设备的移动性管理过程可以包括以下至少一项:
小区选择,或者,小区重选。
具体描述可见现有的小区选择与小区重选等过程的描述,本申请实施例不做赘述。
S360、网络设备110向终端设备120发送移动性管理参数。
相应地,终端设备120接收来自网络设备110发送的移动性管理参数。
具体地,终端设备120根据网络设备110下发的移动性管理参数来进行终端设备120的移动性管理过程的控制或者管理。具体的描述可见现有的关于移动性管理过程等的描述,本申请实施例不做赘述。
通过上述技术方案,本申请能够使得终端设备根据网络设备基于终端设备上报的小区测量能力确定的小区测量参数进行小区测量,并向网络设备上报小区测量结果,继而完成终端设备的移动性管理过程的控制,如此,可以避免因单纯放大终端设备的小区测量周期而导致的移动性管理的相关问题的出现。
以上描述了本申请实施例的方法实施例,下面对相应的装置实施例进行介绍。
为了实现上述本申请实施例提供的方法中的各功能,终端、网络设备均可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
图4是本申请实施例的通信装置400的示意性框图。通信装置400包括处理器410和通信接口420,处理器410和通信接口420通过总线430相互连接。图4所示的通信装置400可以是网络设备110,也可以是终端设备120。
可选地,通信装置400还包括存储器440。
存储器440包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM),存储器440用于相关指令及数据。
处理器410可以是一个或多个中央处理器(central processing unit,CPU),在处理器410是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
当通信装置400是终端设备120时,通信装置400中的处理器410用于读取存储器440中存储的计算机程序或指令,示例性地,执行以下操作:
向网络设备110发送指示A,其用于指示终端设备120支持FR2-2时的小区测量能力;
接收网络设备110发送的配置信息A,其用于配置终端设备120的小区测量参数。
上述所述内容仅作为示例性描述。通信装置400是终端设备120时,其将负责执行前述方法实施例中与终端设备120相关的方法或者步骤。
当通信装置400是网络设备110时,通信装置400中的处理器410用于读取存储器440中存储的程序代码,示例性地,执行以下操作:
接收终端设备110发送的指示信息A,其用于指示终端设备120支持FR2-2时的小区测量能力;
向终端设备120发送配置信息A,其用于配置终端设备120的小区测量参数。
上述所述内容仅作为示例性描述。通信装置400是网络设备110时,其将负责执行前述方法实施例中与网络设备110相关的方法或者步骤。
上述描述仅是示例性描述。具体内容可以参见上述方法实施例所示的内容。另外,图4中的各个操作的实现还可以对应参照图2至图3所示的方法实施例的相应描述。
图5是本申请实施例的通信装置500的示意性框图。通信装置500可以为上述实施例中的网络设备110与终端设备120,也可以为网络设备110与终端设备120中的芯片或模块,用于实现上述实施例涉及的方法。通信装置500包括收发单元510。下面对该收发单元510进行示例性地介绍。
收发单元510可以包括发送单元和接收单元,分别用于实现上述方法实施例中发送或接收的功能;还可以进一步包括处理单元,用于实现除发送或接收之外的功能。
当通信装置500是终端设备120时,示例性地,收发单元510用于向网络设备110发送指示A,其用于指示终端设备120支持FR2-2时的小区测量能力;收发单元510还用于接收网络设备110发送的配置信息A,其用于配置终端设备120的小区测量参数。
可选地,通信装置500还可以包括处理单元520,其用于执行终端设备120涉及处理、协调等步骤的内容。
可选地,通信装置500还包括存储单元530,其用于存储用于执行前述方法的程序或者代码。
上述所述内容仅作为示例性描述。通信装置500是终端设备120时,其将负责执行前述方法实施例中与终端设备120相关的方法或者步骤。
当通信装置500是网络设备110时,示例性地,收发单元510用于接收终端设备110发送的指示信息A,其用于指示终端设备120支持FR2-2时的小区测量能力;收发单元510还用于向终端设备120发送配置信息A,其用于配置终端设备120的小区测量参数。
可选地,通信装置500还可以包括处理单元520,其用于执行网络设备110涉及处理、协调等步骤的内容。
可选地,通信装置500还包括存储单元530,其用于存储用于执行前述方法的程序或者代码。
上述所述内容仅作为示例性描述。通信装置500是网络设备110时,其将负责执行前述方法实施例中与网络设备110相关的方法或者步骤。
另外,图5的各个操作的实现还可以对应参照上述实施例所示的方法相应描述,在此不再赘述。
图4和图5所示的装置实施例是用于实现前述方法实施例图2至图3所述的内容的。因此,图4和图5所示装置的具体执行步骤与方法可以参见前述方法实施例所述的内容。
应理解,上述的收发单元可以包括发送单元与接收单元。发送单元用于执行通信装置的发送动作,接收单元用于执行通信装置的接收动作。为便于描述,本申请实施例将发送单元与接收单元合为一个收发单元。在此做统一说明,后文不再赘述。
图6是本申请实施例的通信装置600的示意图。通信装置600可用于实现上述方法中网络设备110或者终端设备120的功能。通信装置600可以是网络设备110或者终端设备120中的芯片。
通信装置600包括:输入输出接口620和处理器610。输入输出接口620可以是输入输出电路。处理器610可以是信号处理器、芯片,或其他可以实现本申请方法的集成电路。其中,输入输出接口620用于信号或数据的输入或输出。
举例来说,当通信装置600是终端设备120时,输入输出接口620用于向网络设备110发送指示A,其用于指示终端设备120支持FR2-2时的小区测量能力;输入输出接口620还用于接收网络设备110发送的配置信息A,其用于配置终端设备120的小区测量参数。
举例来说,当通信装置600是网络设备110时,输入输出接口620用于接收终端设备110发送的指示信息A,其用于指示终端设备120支持FR2-2时的小区测量能力;输入输出接口620还用于向终端设备120发送配置信息A,其用于配置终端设备120的小区测量参数。其中,处理器610用于执行本申请实施例提供的任意一种方法的部分或全部步骤。
一种可能的实现中,处理器610通过执行存储器中存储的指令,以实现网络设备或终端设备实现的功能。
可选的,通信装置600还包括存储器。
可选的,处理器和存储器集成在一起。
可选的,存储器在通信装置600之外。
一种可能的实现中,处理器610可以为逻辑电路,处理器610通过输入输出接口620输入/输出消息或信令。其中,逻辑电路可以是信号处理器、芯片,或其他可以实现本申请实施例方法的集成电路。
上述对于图6的装置的描述仅是作为示例性描述,该装置能够用于执行前述实施例所述的方法,具体内容可以参见前述方法实施例的描述,在此不再赘述。
图7是本申请实施例的通信装置700的示意框图。通信装置700可以是网络设备110,也可以是芯片。该通信装置700可以用于执行上述图2至图3所示的方法实施例中由网络设110所执行的操作。
当通信装置700是网络设备110时,例如为基站。图7示出了一种简化的基站结构示意图。基站包括710部分、720部分以及730部分。710部分主要用于基带处理,对基站进行控制等;710部分通常是基站的控制中心,通常可以称为处理器,用于控制基站执行上述方法实施例中网络设备侧的处理操作。720部分主要用于存储计算机程序代码和数据。730部分主要用于射频信号的收发以及射频信号与基带信号的转换;730部分通常可以称为收发模块、收发机、收发电路、或者收发器等。730部分的收发模块,也可以称为收发机或收发器等,其包括天线733和射频电路(图中未示出),其中射频电路主要用于进行射频处理。可选地,可以将730部分中用于实现接收功能的器件视为接收机,将用于实现发送功能的器件视为发射机,即730部分包括接收机732和发射机731。接收机也可以称为接收模块、接收器、或接收电路等,发送机可以称为发射模块、发射器或者发射电路等。
710部分与720部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器。处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增强处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一种实现方式中,730部分的收发模块用于执行图2与图3所示实施例中由网络设备110执行的收发相关的过程。710部分的处理器用于执行图2与图3所示实施例中由网络设备110执行的处理相关的过程。
另一种实现方式中,710部分的处理器用于执行图2与图3所示实施例中由通信设备执行的处理相关的过程。
另一种实现方式中,730部分的收发模块用于执行图2与图3所示实施例中由通信设备执行的收发相关的过程。
应理解,图7仅为示例而非限定,上述所包括的处理器、存储器以及收发器的网络设备可以不依 赖于图4至图6所示的结构。
当通信装置700为芯片时,该芯片包括收发器、存储器和处理器。收发器可以是输入输出电路、通信接口;处理器为该芯片上集成的处理器、或者微处理器、或者集成电路。上述方法实施例中网络设备110的发送操作可以理解为芯片的输出,上述方法实施例中网络设备110的接收操作可以理解为芯片的输入。
图8是本申请实施例的通信装置800的示意框图。通信装置800可以是终端设备120、终端设备120的处理器、或芯片。通信装置800可以用于执行上述方法实施例中由终端设备120或通信设备所执行的操作。
当通信装置800是终端设备120时,图8示出了一种简化的终端设备120的结构示意图。如图8所示,终端设备120包括处理器、存储器、以及收发器。存储器可以存储计算机程序代码,收发器包括发射机831、接收机832、射频电路(图中未示出)、天线833以及输入输出装置(图中未示出)。
处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备120进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置。例如,触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
为便于说明,图8中仅示出了一个存储器、处理器和收发器,在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备120的收发模块,将具有处理功能的处理器视为终端设备120的处理模块。
如图8所示,终端设备120包括处理器810、存储器820和收发器830。处理器810也可以称为处理单元,处理单板,处理模块、处理装置等,收发器830也可以称为收发单元、收发机、收发装置等。
可选地,可以将收发器830中用于实现接收功能的器件视为接收模块,将收发器830中用于实现发送功能的器件视为发送模块,即收发器830包括接收器和发送器。收发器有时也可以称为收发机、收发模块、或收发电路等。接收器有时也可以称为接收机、接收模块、或接收电路等。发送器有时也可以称为发射机、发射模块或者发射电路等。
例如,在一种实现方式中,处理器810用于执行图2与图3所示的实施例中终端设备120侧的处理动作,收发器830用于执行图2与图3中终端设备120侧的收发动作。
例如,在一种实现方式中,处理器810用于执行图2与图3所示的实施例中终端设备120侧的处理动作,收发器830用于执行图2与图3中终端设备120侧的收发动作。
应理解,图8仅为示例而非限定,上述的包括收发模块和处理模块的终端设备可以不依赖于图4至图6所示的结构。
当通信装置800是芯片时,该芯片包括处理器、存储器和收发器。其中,收发器可以是输入输出电路或通信接口;处理器可以为该芯片上集成的处理模块或者微处理器或者集成电路。上述方法实施例中终端设备的发送操作可以理解为芯片的输出,上述方法实施例中终端设备的接收操作可以理解为芯片的输入。
本申请还提供了一种芯片,包括处理器,用于从存储器中调用并运行所述存储器中存储的指令,使得安装有所述芯片的通信设备执行上述各示例中的方法。
本申请还提供另一种芯片,包括:输入接口、输出接口、处理器,所述输入接口、输出接口以及所述处理器之间通过内部连接通路相连,所述处理器用于执行存储器中的代码,当所述代码被执行时,所述处理器用于执行上述各示例中的方法。可选地,该芯片还包括存储器,该存储器用于存储计算机 程序或者代码。
本申请还提供了一种处理器,用于与存储器耦合,用于执行上述各实施例中任一实施例中涉及网络设备或者终端设备的方法和功能。
在本申请的另一实施例中提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,前述实施例的方法得以实现。
本申请还提供一种计算机程序,当该计算机程序在计算机中被运行时,前述实施例的方法得以实现。
在本申请的另一实施例中提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序被计算机执行时实现前述实施例所述的方法。
在本申请实施例的描述中,除非另有说明,“多个”是指二个或多于二个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性地”或者“例如”等词用于表示作例子、例证或说明。
本申请实施例中被描述为“示例性地”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
在本申请实施例的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。
因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
可以理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。
因此,在整个说明书各个实施例未必指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
可以理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。
另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单 元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以二个或二个以上单元集成在一个单元中。
功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (41)

  1. 一种通信方法,其特征在于,包括:
    终端设备向网络设备发送指示信息,所述指示信息用于指示所述终端设备支持频率范围FR2-2时的小区测量能力,所述小区测量能力用于所述终端设备的小区测量;
    所述终端设备接收所述网络设备发送的配置信息,所述配置信息是由所述网络设备根据所述指示信息确定的,所述配置信息用于配置所述终端设备的小区测量参数。
  2. 根据权利要求1所述的方法,其特征在于,所述小区测量能力包括小区测量周期。
  3. 根据权利要求2所述的方法,其特征在于,所述指示信息包括以下至少一项:
    所述小区测量周期的放大倍数,调整所述小区测量周期,或者,保持所述小区测量周期。
  4. 根据权利要求3所述的方法,其特征在于,所述小区测量周期的放大倍数的取值为K,所述K为正数。
  5. 根据权利要求3或4所述的方法,其特征在于,所述调整所述小区测量周期,包括以下至少一项:
    放大所述小区测量周期,或者,缩短所述小区测量周期。
  6. 根据权利要求2至5中任一项所述的方法,其特征在于,所述小区测量周期包括以下至少一项:
    测量小区的周期,或者,搜索小区的周期。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述配置信息进行所述小区测量;
    所述终端设备向所述网络设备发送测量结果,所述测量结果是由所述终端设备根据所述小区测量确定的。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的移动性管理参数,所述移动性管理参数是由所述网络设备根据所述测量结果确定的,所述移动性管理参数用于控制所述终端设备的移动性管理过程。
  9. 根据权利要求8所述的方法,其特征在于,所述终端设备的移动性管理过程,包括以下至少一项:
    小区选择过程,或者,小区重选过程。
  10. 一种通信方法,其特征在于,包括:
    网络设备接收终端设备发送的指示信息,所述指示信息用于指示所述终端设备支持频率范围FR2-2时的小区测量能力,所述小区测量能力用于所述终端设备的小区测量;
    所述网络设备向所述终端设备发送配置信息,所述配置信息是所述网络设备根据所述指示信息确定的,所述配置信息用于配置所述终端设备的小区测量参数。
  11. 根据权利要求10所述的方法,其特征在于,所述小区测量能力包括小区测量周期。
  12. 根据权利要求11所述的方法,其特征在于,所述指示信息包括以下至少一项:
    所述小区测量周期的放大倍数,调整所述小区测量周期,或者,保持所述小区测量周期。
  13. 根据权利要求12所述的方法,其特征在于,所述小区测量周期的放大倍数的取值为K,所述K为正数。
  14. 根据权利要12或13所述的方法,其特征在于,所述调整所述小区测量周期,包括以下至少一项:
    放大所述小区测量周期,或者,缩短所述小区测量周期。
  15. 根据权利要求11至14中任一项所述的方法,其特征在于,所述小区测量周期包括以下至少一项:
    测量小区的周期,或者,搜索小区的周期。
  16. 根据权利要求10至15中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备发送的测量结果,所述测量结果是所述终端设备根据所述配置信息进行所述小区测量确定的;
    所述网络设备根据所述测量结果确定移动性管理参数,所述移动性管理参数用于控制所述终端设备的移动性管理过程。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送所述移动性管理参数。
  18. 根据权利要求17所述的方法,其特征在于,所述终端设备的移动性管理过程,包括以下至少一项:
    小区选择过程,或者,小区重选过程。
  19. 一种通信装置,其特征在于,包括:
    收发单元,用于向网络设备发送指示信息,所述指示信息用于指示所述通信装置支持频率范围FR2-2时的小区测量能力,所述小区测量能力用于所述通信装置的小区测量;
    所述收发单元,还用于接收所述网络设备发送的配置信息,所述配置信息是由所述网络设备根据所述指示信息确定的,所述配置信息用于配置所述通信装置的小区测量参数。
  20. 根据权利要求19所述的装置,其特征在于,所述小区测量能力包括小区测量周期。
  21. 根据权利要求20所述的装置,其特征在于,所述指示信息包括以下至少一项:
    所述小区测量周期的放大倍数,调整所述小区测量周期,或者,保持所述小区测量周期。
  22. 根据权利要求21所述的装置,其特征在于,所述小区测量周期的放大倍数的取值为K,所述K为正数。
  23. 根据权利要求21或22所述的装置,其特征在于,所述调整所述小区测量周期,包括以下至少一项:
    放大所述小区测量周期,或者,缩短所述小区测量周期。
  24. 根据权利要求20至23中任一项所述的装置,其特征在于,所述小区测量周期包括以下至少一项:
    测量小区的周期,或者,搜索小区的周期。
  25. 根据权利要求19至24中任一项所述的装置,其特征在于,所述通信装置还包括处理单元,所述处理单元,用于根据所述配置信息进行所述小区测量;
    所述收发单元,还用于向所述网络设备发送测量结果,所述测量结果是由所述通信装置根据所述小区测量确定的。
  26. 根据权利要求25所述的装置,其特征在于,所述收发单元,还用于:
    接收所述网络设备发送的移动性管理参数,所述移动性管理参数是由所述网络设备根据所述测量结果确定的,所述移动性管理参数用于控制所述通信装置的移动性管理过程。
  27. 根据权利要求26所述的装置,其特征在于,所述通信装置的移动性管理过程,包括以下至少一项:
    小区选择过程,或者,小区重选过程。
  28. 一种通信装置,其特征在于,包括:
    收发单元,用于接收终端设备发送的指示信息,所述指示信息用于指示所述终端设备支持频率范围FR2-2时的小区测量能力,所述小区测量能力用于所述终端设备的小区测量;
    所述收发单元,还用于向所述终端设备发送配置信息,所述配置信息是所述通信装置根据所述指示信息确定的,所述配置信息用于配置所述终端设备的小区测量参数。
  29. 根据权利要求28所述的装置,其特征在于,所述小区测量能力包括小区测量周期。
  30. 根据权利要求29所述的装置,其特征在于,所述指示信息包括以下至少一项:
    所述小区测量周期的放大倍数,调整所述小区测量周期,或者,保持所述小区测量周期。
  31. 根据权利要求30所述的装置,其特征在于,所述小区测量周期的放大倍数的取值为K,所述K为正数。
  32. 根据权利要求30或31所述的装置,其特征在于,所述调整所述小区测量周期,包括以下至少一项:
    放大所述小区测量周期,或者,缩短所述小区测量周期。
  33. 根据权利要求29至32中任一项所述的装置,其特征在于,所述小区测量周期包括以下至少 一项:
    测量小区的周期,或者,搜索小区的周期。
  34. 根据权利要求28至33中任一项所述的装置,其特征在于,所述收发单元,还用于:
    接收所述终端设备发送的测量结果,所述测量结果是所述终端设备根据所述配置信息进行所述小区测量确定的;
    所述通信装置还包括处理单元,所述处理单元,用于根据所述测量结果确定移动性管理参数,所述移动性管理参数用于控制所述终端设备的移动性管理过程。
  35. 根据权利要求34所述的装置,其特征在于,所述收发单元,还用于:
    向所述终端设备发送所述移动性管理参数。
  36. 根据权利要求35所述的装置,其特征在于,所述终端设备的移动性管理过程,包括以下至少一项:
    小区选择过程,或者,小区重选过程。
  37. 一种通信装置,其特征在于,包括通信接口和处理器,所述通信接口用于收发数据和/或信令,所述处理器用于执行计算机程序或指令,
    使得所述通信装置执行权利要求1-18中任一项所述的方法。
  38. 根据权利要求37所述的装置,其特征在于,还包括存储器,所述存储器用于存储所述计算机程序或指令。
  39. 一种计算机可读存储介质,其特征在于,包括:计算机程序或指令,当所述计算机程序或所述指令在计算机上运行时,使得权利要求1-18中任意一项所述的方法被执行。
  40. 一种计算机程序产品,其特征在于,包含指令,当所述指令在计算机上运行时,使得所述计算机执行权利要求1-18中任意一项所述的方法。
  41. 一种通信系统,其特征在于,包含如权利要求19-27任一项所述的通信装置和/或如权利要求28-36任一项所述的通信装置。
PCT/CN2023/102131 2022-08-08 2023-06-25 通信方法与通信装置 WO2024032164A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210943566.2 2022-08-08
CN202210943566.2A CN117580059A (zh) 2022-08-08 2022-08-08 通信方法与通信装置

Publications (1)

Publication Number Publication Date
WO2024032164A1 true WO2024032164A1 (zh) 2024-02-15

Family

ID=89850564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/102131 WO2024032164A1 (zh) 2022-08-08 2023-06-25 通信方法与通信装置

Country Status (2)

Country Link
CN (1) CN117580059A (zh)
WO (1) WO2024032164A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109309519A (zh) * 2017-07-28 2019-02-05 华为技术有限公司 一种通信方法及其装置
CN112584425A (zh) * 2019-09-30 2021-03-30 华为技术有限公司 一种测量能力上报的方法、系统及装置
CN112911654A (zh) * 2019-11-19 2021-06-04 华为技术有限公司 一种能力信息发送方法、接收方法及装置
US20210185722A1 (en) * 2020-02-13 2021-06-17 Intel Corporation Physical uplink shared channel (pusch) transmission scheduling for new radio (nr)
CN113170339A (zh) * 2019-03-27 2021-07-23 Oppo广东移动通信有限公司 一种测量间隔配置方法及装置、终端、网络设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109309519A (zh) * 2017-07-28 2019-02-05 华为技术有限公司 一种通信方法及其装置
CN113170339A (zh) * 2019-03-27 2021-07-23 Oppo广东移动通信有限公司 一种测量间隔配置方法及装置、终端、网络设备
CN112584425A (zh) * 2019-09-30 2021-03-30 华为技术有限公司 一种测量能力上报的方法、系统及装置
CN112911654A (zh) * 2019-11-19 2021-06-04 华为技术有限公司 一种能力信息发送方法、接收方法及装置
US20210185722A1 (en) * 2020-02-13 2021-06-17 Intel Corporation Physical uplink shared channel (pusch) transmission scheduling for new radio (nr)

Also Published As

Publication number Publication date
CN117580059A (zh) 2024-02-20

Similar Documents

Publication Publication Date Title
EP4131816A1 (en) Link processing method, multi-link device and computer-readable storage medium
CN107079329A (zh) 在紧密集成的WiFi/LTE中的上行链路流量控制方法
CN109479220A (zh) 路径切换方法和装置
WO2023125223A1 (zh) 下行传输的方法及装置
CN114982275A (zh) 通信方法及装置
WO2019020080A1 (zh) 一种通信方法及其装置
US20200367243A1 (en) Data Transmission Method, Terminal Device, and Network Device
WO2024032164A1 (zh) 通信方法与通信装置
US20220225180A1 (en) Communications method and apparatus
CN110351709A (zh) 通信方法和通信装置
CN115695566A (zh) 无线帧发送方法及装置、无线帧接收方法及装置
WO2024131674A1 (zh) 通信方法与通信装置
TWI809842B (zh) 非同時收發能力的指示方法、裝置及系統
US20230378980A1 (en) Communication circuit and terminal
WO2024119487A1 (zh) 电调设备的管理方法与通信装置
US20240172327A1 (en) Apparatus, base station apparatus, and method
WO2024061268A1 (zh) 资源的配置方法与通信装置
WO2024016942A1 (zh) 通信方法、装置、设备以及存储介质
WO2023280085A1 (zh) 频带范围上报的方法和通信装置
US20240206003A1 (en) Communication method and apparatus
WO2024067091A1 (zh) 缓存状态报告的上报方法与通信装置
WO2024021972A1 (zh) 定位资源的配置方法、通信装置以及通信系统
WO2024032744A1 (zh) 通信方法与通信装置
EP4304276A1 (en) Communication method, device and storage medium
WO2022133956A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851391

Country of ref document: EP

Kind code of ref document: A1