WO2024016942A1 - 通信方法、装置、设备以及存储介质 - Google Patents

通信方法、装置、设备以及存储介质 Download PDF

Info

Publication number
WO2024016942A1
WO2024016942A1 PCT/CN2023/102230 CN2023102230W WO2024016942A1 WO 2024016942 A1 WO2024016942 A1 WO 2024016942A1 CN 2023102230 W CN2023102230 W CN 2023102230W WO 2024016942 A1 WO2024016942 A1 WO 2024016942A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame structure
identifier
period
time unit
rtd
Prior art date
Application number
PCT/CN2023/102230
Other languages
English (en)
French (fr)
Inventor
孔垂丽
秦大力
陈莹
王俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024016942A1 publication Critical patent/WO2024016942A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams

Definitions

  • the present application relates to the field of communication technology, and in particular, to a communication method, device, equipment and storage medium.
  • TDD frequency division duplex
  • the communication method, device, equipment and storage medium provided by the embodiments of the present application can realize communication based on TDD in a communication system with a large RTD.
  • embodiments of the present application provide a communication method, including: a terminal device determines a first frame structure, the first frame structure includes at least one uplink time unit, at least one downlink time unit and at least one guard time unit, the at least The at least one guard time unit is spaced between an uplink time unit and the at least one downlink time unit.
  • the time difference between the period of the first frame structure and the round-trip delay RTD of the first beam is less than one time unit.
  • the first beam It is a beam used for communication between the network device and the terminal device; the terminal device and the network device use the first frame structure to communicate.
  • the period of the first frame structure used for communication between the network device and the terminal device is constrained, so that the first frame structure
  • the time difference between the period and the RTD of the first beam is less than one time unit, so that the network equipment and the terminal equipment can avoid uplink and downlink collisions when communicating using the first frame structure.
  • the method further includes: the terminal device receiving first configuration information sent by the network device, where the first configuration information includes a period of the first frame structure.
  • the method further includes: the terminal device determines the identity of the first beam; the terminal device determines the period of the first frame structure in the first correspondence according to the identity of the first beam; Wherein, the first correspondence relationship includes at least one beam identifier and a period of at least one frame structure, and the at least one beam identifier corresponds to the period of the at least one frame structure in a one-to-one correspondence.
  • the network device does not need to configure the period of the first frame structure, thus saving signaling overhead.
  • the method further includes: the terminal device determines the period of the first frame structure according to ephemeris and/or global navigation satellite system GNSS.
  • the network device does not need to configure the period of the first frame structure, thus saving signaling overhead.
  • the method further includes: the terminal device receiving second configuration information sent by the network device, where the second configuration information includes a frame structure identifier; and the terminal device in the second corresponding state according to the frame structure identifier.
  • the first frame structure is determined in a relationship; wherein the second correspondence relationship includes at least one frame structure identifier and at least one frame structure, and the at least one frame structure identifier corresponds to the at least one frame structure in a one-to-one relationship.
  • the communication method provided by this embodiment is different from signaling through system information block (SIB). It indicates the period of the first frame structure, the number of uplink time units, the number of downlink time units and other information, indicating the identity of the frame structure, which reduces signaling overhead.
  • SIB system information block
  • the method further includes: the terminal device determines the identity of the first beam; the terminal device determines a third correspondence relationship based on the identity of the first beam, where the third correspondence relationship includes at least one frame
  • the structure identifier has a one-to-one correspondence with at least one frame structure, and the at least one frame structure identifier corresponds to the at least one frame structure; the terminal device receives the third configuration information sent by the network device, and the third configuration information includes the frame structure identifier; the terminal device The device determines the first frame structure in the third correspondence relationship according to the frame structure identifier.
  • the signaling overhead is reduced.
  • the RTD is the RTD of a first ground point covered by the first beam, and the first ground point is the ground point closest to the network device among the ground points covered by the first beam. .
  • uplink and downlink conflicts are avoided during communication between the network device and the terminal device.
  • the RTD is related to the elevation angle of the first beam.
  • the elevation angle of the first beam is the angle between the ground plane where the first ground point covered by the first beam is located and the first connection line.
  • the line is a virtual connection line between the first ground point and the network device.
  • the period of the first frame structure is determined based on the RTD and the length of the time unit.
  • int is the rounding function
  • L s is the length of the time unit.
  • the period of the first frame structure should be an integer multiple of the time unit, the period of the first frame structure should be as close as possible to the RTD of the first beam, ensuring that there is no The problem of upstream and downstream collisions.
  • the number of guard time units is determined based on the differential RTD of the first beam.
  • the number of guard time units is the sum of the differential RTD and the uplink and downlink switching time.
  • the terminal device determining the first frame structure further includes: the terminal device determining the number of uplink time units and the number of downlink time units.
  • the structure of the first frame can be further determined.
  • embodiments of the present application provide a communication method, including: a network device sends frame structure configuration information to a terminal device.
  • the frame structure configuration information is used to configure a first frame structure.
  • the first frame structure includes at least one uplink time. unit, at least one downlink time unit and at least one guard time unit, the at least one guard time unit is spaced between the at least one uplink time unit and the at least one downlink time unit, the period of the first frame structure is consistent with the RTD of the first beam The time difference between them is less than one time unit, and the first beam is a beam used for communication between the network device and the terminal device; the network device and the terminal device use the first frame structure to communicate.
  • the frame structure configuration information includes a period of the first frame structure.
  • the method further includes: the network device determines the identity of the first beam; the network device determines the period of the first frame structure in the first correspondence relationship according to the identity of the first beam; wherein, The first correspondence relationship includes at least one beam identifier and a period of at least one frame structure, and the at least one beam identifier corresponds one-to-one to the period of the at least one frame structure.
  • the method further includes: the network device determines the period of the first frame structure based on ephemeris and/or global navigation satellite system GNSS.
  • the frame structure configuration information includes a frame structure identifier, and the frame structure identifier is used to determine the first frame structure in a second correspondence relationship.
  • the second correspondence relationship includes at least one frame structure identifier and At least one frame structure, the at least one frame structure identifier corresponds to the at least one frame structure one-to-one.
  • the frame structure configuration information includes a frame structure identifier
  • the frame structure identifier is used to determine the first frame structure in a third correspondence corresponding to the first beam
  • the third correspondence includes At least one frame structure identifier matches the At least one frame structure under a beam
  • the at least one frame structure identifier corresponds to the at least one frame structure one-to-one.
  • the RTD is related to the elevation angle of the first beam
  • the elevation angle of the first beam is the angle between the ground plane where the first ground point covered by the first beam is located and the first connection line.
  • the first connection line is a virtual connection line between the first ground point and the network device.
  • the period of the first frame structure is determined based on the RTD and the length of the time unit.
  • int is the rounding function
  • L s is the length of the time unit.
  • the number of guard time units is determined based on the differential RTD of the first beam.
  • the number of guard time units is the sum of the differential RTD and the uplink and downlink switching time.
  • the method further includes: the network device determines the number of uplink time units and the number of downlink time units.
  • embodiments of the present application provide a communication device, including: a processing unit configured to determine a first frame structure, where the first frame structure includes at least one uplink time unit, at least one downlink time unit, and at least one guard time unit. , the at least one guard time unit is spaced between the at least one uplink time unit and the at least one downlink time unit, the time difference between the period of the first frame structure and the round-trip delay RTD of the first beam is less than one time unit, the The first beam is a beam used for communication between the network device and the communication device; the transceiver unit is used to communicate with the network device using the first frame structure.
  • the transceiver device is further configured to receive first configuration information sent by the network device, where the first configuration information includes a period of the first frame structure.
  • the processing unit is also used to determine the identity of the first beam; the processing unit is also used to determine the period of the first frame structure in the first correspondence according to the identity of the first beam. ;
  • the first correspondence relationship includes at least one beam identifier and a period of at least one frame structure, and the at least one beam identifier corresponds one-to-one to the period of the at least one frame structure.
  • the processing unit is further configured to determine the period of the first frame structure based on ephemeris and/or global navigation satellite system GNSS.
  • the transceiver unit is further configured to receive second configuration information sent by the network device, where the second configuration information includes a frame structure identifier; and the processing unit is further configured to perform the second configuration according to the frame structure identifier.
  • the first frame structure is determined in the corresponding relationship; wherein the second corresponding relationship includes at least one frame structure identifier and at least one frame structure, and the at least one frame structure identifier corresponds one-to-one to the at least one frame structure.
  • the processing unit is further configured to determine an identifier of the first beam; the processing unit is further configured to determine a third correspondence relationship based on the identifier of the first beam, where the third correspondence relationship includes at least one
  • the frame structure identifier has a one-to-one correspondence with at least one frame structure, and the at least one frame structure identifier corresponds to the at least one frame structure
  • the transceiver unit is also used to receive third configuration information sent by the network device, where the third configuration information includes the frame structure identification
  • the processing unit is also configured to determine the first frame structure in the third corresponding relationship according to the frame structure identification.
  • the RTD is the RTD of a first ground point covered by the first beam, and the first ground point is the ground point closest to the network device among the ground points covered by the first beam. .
  • the RTD is related to the elevation angle of the first beam
  • the elevation angle of the first beam is the angle between the ground plane where the first ground point covered by the first beam is located and the first connection line.
  • the first connection line is a virtual connection line between the first ground point and the network device.
  • the period of the first frame structure is determined based on the RTD and the length of the time unit.
  • int is the rounding function
  • L s is the length of the time unit.
  • the number of guard time units is determined based on the differential RTD of the first beam.
  • the number of guard time units is the sum of the differential RTD and the uplink and downlink switching time.
  • the processing unit is specifically configured to determine the number of uplink time units and the number of downlink time units.
  • embodiments of the present application provide a communication device, including: a processing unit configured to determine a first frame structure, the frame structure configuration information being used to configure the first frame structure, and the first frame structure includes at least one uplink time unit, at least one downlink time unit and at least one guard time unit, the at least one guard time unit is spaced between the at least one uplink time unit and the at least one downlink time unit, the period of the first frame structure is consistent with the RTD of the first beam The time difference between them is less than one time unit, and the first beam is used for communication between the communication device and the terminal equipment; the transceiver unit is also used to communicate with the terminal equipment using the first frame structure; the transceiver unit , used to send frame structure configuration information to the terminal device.
  • the frame structure configuration information includes a period of the first frame structure.
  • the processing unit is also used to determine the identity of the first beam; the processing unit is also used to determine the period of the first frame structure in the first correspondence according to the identity of the first beam. ;
  • the first correspondence relationship includes at least one beam identifier and a period of at least one frame structure, and the at least one beam identifier corresponds one-to-one to the period of the at least one frame structure.
  • the processing unit is further configured to determine the period of the first frame structure based on ephemeris and/or global navigation satellite system GNSS.
  • the frame structure configuration information includes a frame structure identifier, and the frame structure identifier is used to determine the first frame structure in a second correspondence relationship.
  • the second correspondence relationship includes at least one frame structure identifier and At least one frame structure, the at least one frame structure identifier corresponds to the at least one frame structure one-to-one.
  • the frame structure configuration information includes a frame structure identifier, and the frame structure identifier is used to determine the first frame structure in a third correspondence corresponding to the first beam, and the third correspondence includes At least one frame structure identifier corresponds to at least one frame structure under the first beam, and the at least one frame structure identifier corresponds to the at least one frame structure in a one-to-one manner.
  • the RTD is related to the elevation angle of the first beam
  • the elevation angle of the first beam is the angle between the ground plane where the first ground point covered by the first beam is located and the first connection line.
  • the first connection line is a virtual connection line between the first ground point and the network device.
  • the period of the first frame structure is determined based on the RTD and the length of the time unit.
  • int is the rounding function
  • L s is the length of the time unit.
  • the number of guard time units is determined based on the differential RTD of the first beam.
  • the number of guard time units is the sum of the differential RTD and the uplink and downlink switching time.
  • the processing unit is also configured to determine the number of uplink time units and the number of downlink time units.
  • embodiments of the present application provide a communication device, including: a processor and a memory.
  • the memory is used to store a computer program.
  • the processor is used to call and run the computer program stored in the memory to perform the following steps: The second method or methods in each possible implementation.
  • embodiments of the present application provide a communication system, including a terminal device and a network device.
  • the terminal device is used to perform the method in the first aspect or various possible implementations.
  • the network device is used to perform the method in the second aspect. aspects or methods in each possible implementation.
  • embodiments of the present application provide a chip, including: a processor configured to call and run computer instructions from a memory, so that a device installed with the chip executes the first aspect, the second aspect, or each possible implementation. method within the method.
  • embodiments of the present application provide a computer-readable storage medium for storing computer program instructions.
  • the computer program causes the computer to execute the method in the first aspect, the second aspect, or each possible implementation manner.
  • embodiments of the present application provide a computer program product, including computer program instructions.
  • the computer program refers to The command causes the computer to execute the method in the first aspect, the second aspect or each possible implementation manner.
  • embodiments of the present application provide a device, including a logic circuit and an input-output interface, wherein the input-output interface is used to receive signals from other communication devices other than the device and transmit them to the logic circuit or from The signal of the logic circuit is sent to other communication devices outside the device, and the logic circuit is used to execute code instructions to implement the method in the first aspect, the second aspect or each possible implementation manner.
  • embodiments of the present application provide a terminal, including the device in the third aspect, the fourth aspect, or various possible implementations.
  • Figure 1 is a schematic diagram of a satellite communication system provided by an embodiment of the present application.
  • Figure 2a is a schematic diagram of a frame structure provided by an embodiment of the present application.
  • Figure 2b is a schematic diagram of time slot occupation of uplink communication and downlink communication provided by the embodiment of the present application;
  • Figure 3 is a schematic interaction flow chart of a communication method provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of a satellite beam provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of a satellite beam provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of a frame structure provided by an embodiment of the present application.
  • Figure 7 is a schematic diagram of time slot occupation for uplink communication and downlink communication provided by an embodiment of the present application.
  • Figure 8 is a schematic interaction flow chart of a communication method provided by an embodiment of the present application.
  • Figure 9 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • Figure 10 is another schematic block diagram of a communication device provided by an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced long term evolution
  • NR New Radio
  • evolution system of NR system LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed) on unlicensed spectrum spectrum, NR-U) system, non-terrestrial communication network (Non-Terrestrial Networks, NTN) system, universal mobile communication system (Universal Mobile Telecommunication System, UMTS), wireless local area network (Wireless Local Area Networks, WLAN), wireless fidelity ( Wireless Fidelity (WiFi), fifth-generation communication (5th-Generation, 5G) system or other communication system, or future communication system (
  • the terminal equipment involved in the embodiments of this application may also be called User Equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user Terminal, terminal, wireless communication equipment, user agent or user device, etc.
  • UE User Equipment
  • the terminal device can be a station (STATION, ST) in the WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, or a personal digital assistant.
  • PDA Personal Digital Assistant
  • handheld devices with wireless communication capabilities computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or in the future Terminal equipment in the evolved Public Land Mobile Network (PLMN) network, etc.
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as drones, airplanes, etc.) , balloons and satellites, etc.).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal device.
  • terminal equipment wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical, and wireless terminal equipment in smart grid , drones, wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home, etc.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized devices that can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, and those that only focus on a certain type of application function and need to cooperate with other devices such as smartphones.
  • Satellite communication has the characteristics of long communication distance, large coverage area, and flexible networking. It can provide services for both fixed terminals and various mobile terminals.
  • 3GPP 3rd Generation Partnership Project
  • 5G technical standards to study space-ground integrated communication technology, mainly integrating existing 5G standards and satellite communication technology to meet full global coverage.
  • research has been launched, and research has been conducted on the architecture of satellite and 5G integration.
  • FIG. 1 is a schematic diagram of a satellite communication system provided by an embodiment of the present application.
  • a ground mobile terminal communicates with a satellite through a 5G new air interface access network.
  • the 5G base station is deployed on the satellite and communicates with the satellite through a wireless link. Connected to the core network on the ground.
  • the network equipment involved in the technical solution of this application is the base station, and the terminal equipment is the terminal in the figure.
  • the various network elements and their interfaces in Figure 1 are described as follows:
  • the terminal is a mobile device that supports 5G new air interface, typically such as mobile phones, tablets (pads) and other mobile devices. It can access the satellite network through the air interface and initiate calls, Internet access and other services.
  • 5G new air interface typically such as mobile phones, tablets (pads) and other mobile devices. It can access the satellite network through the air interface and initiate calls, Internet access and other services.
  • the base station mainly provides wireless access services, dispatches wireless resources to access terminals, and provides reliable wireless transmission protocols and data encryption protocols.
  • the core network includes user access control, mobility management, session management, user security authentication, accounting and other services. It consists of multiple functional units, which can be divided into functional entities on the control plane and data plane.
  • the Access and Mobility Management Unit Authentication Management Function, AMF
  • AMF Access and Mobility Management Unit
  • UPF user plane function
  • Ground station responsible for forwarding signaling and business data between the satellite base station and the core network.
  • the new air interface is the wireless link between the terminal and the base station.
  • the Xn interface is the interface between the 5G base station and the 5G base station, and is mainly used for signaling interactions such as handovers.
  • the NG interface is the interface between the 5G base station and the 5G core network. It mainly interacts with NAS and other signaling of the core network, as well as user business data.
  • Bidirectional information transmission is often carried out between terminal equipment and network equipment through frequency division duplex (FDD) or time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • the terminal device can transmit data in the same time domain unit at the same time according to the downlink (DL) partial bandwidth (BWP) and uplink (UL) BWP configured by the network device.
  • BWP downlink partial bandwidth
  • UL uplink
  • BWP uplink
  • TDD transmission mode terminal equipment and network equipment reuse the same BWP, so both uplink transmission and downlink transmission cannot be performed on the same time domain resource.
  • terrestrial cellular systems tend to communicate based on TDD. The reasons include: 1. Uplink information and downlink information use the same frequency band, which can save half of the frequency band compared to FDD; 2.
  • Network equipment does not receive uplink information and downlink information when receiving It is necessary to use a transceiver isolator, which reduces the complexity of the equipment, and the receiving and transmitting links can share the medium/radio frequency module, which reduces the equipment cost.
  • the frame structure used by the NR system has a period of 10ms, and the number of time slots is determined by the subcarrier spacing (SCS). For example, when the SCS is 120kHz, the number of time slots is 80, see Figure 2a. Based on the pattern of the TDD frame structure, the frame structure of the NR system includes 80 time slots as shown in Figure 2a in one cycle.
  • the 80 time slots include multiple uplink time slots and multiple downlink time slots. and multiple guard slots.
  • the network equipment follows the downlink timing of the network equipment.
  • the time when the terminal device receives the downlink information sent by the network device is later than 14.5 time slots of the time when the downlink information is sent. That is, the downlink timing of the terminal device is 14.5 time slots later than the downlink timing of the network device, and the terminal device is 21 hours ahead of time.
  • Send uplink information in the corresponding uplink time slot so that the network device receives the uplink information sent by the terminal device in the corresponding uplink time slot.
  • the downlink information sent by the network equipment in time slots #60 ⁇ #67 falls into the uplink time slots of the terminal equipment's uplink timing (such as time slots #80 ⁇ 87), while the uplink timing time slots of the terminal equipment are #80 ⁇ 87 is used to transmit uplink information. Therefore, there are uplink and downlink collisions in time slots #60 to #67. It can be seen that the existing frame structure of the NR system cannot be applied to satellite communication systems.
  • embodiments of this application introduce communication that is suitable for long RTDs.
  • the frame structure of the scene (same as the first frame structure below).
  • the period of this frame structure is close to the RTD.
  • the time difference between the period of the frame structure and the RTD is less than one time unit, thereby avoiding the problem of uplink and downlink collisions and improving communication. system reliability.
  • Time unit For example, it can be a slot, a subframe, a symbol, or other time units defined in the future. It should be noted that the time unit is a unit of measurement in the time domain and is not necessarily the smallest time unit.
  • the time slot is the scheduling unit.
  • a time slot will be used as an example of a time unit to describe the method provided by the embodiment of the present application. It can be understood that the description of time slots in the following embodiments can also be replaced by other time units, such as subframes, symbols, etc. The embodiments of the present application do not limit this.
  • Frame or wireless frame the transmission unit of wireless communication.
  • Frame structure Also called wireless frame structure, it is a characteristic of the wireless communication physical layer that defines the time domain signal transmission structure. Network devices and terminal devices can communicate wirelessly through time domain resources constrained by the frame structure.
  • the time domain resources constrained by the frame structure may include uplink time units, downlink time units, guard time units, etc.
  • the network device can send downlink information to the terminal device in the downlink time unit, and the terminal device can send uplink information to the network device in the uplink time unit.
  • the downlink information sent by the network device reaches each terminal.
  • the time of terminal devices is different, and the guard time unit needs to be set to ensure that all terminal devices receive the downlink information sent by the network device, so that each terminal device can send uplink information at the same time in the upcoming uplink time unit, that is, uplink synchronization is achieved.
  • guard time units may be called guard interval (guard period, GP), guard time (guard period, GT), etc.
  • guard period GP
  • guard period guard period, GT
  • This application does not limit this.
  • the uplink time unit may be an uplink time slot U
  • the downlink time unit may be a downlink time slot D
  • the guard time unit may be a guard time slot. S.
  • Uplink and downlink switching time the time required for the terminal device to switch from the receiving state to the sending state, or the time required to switch from the sending state to the receiving state.
  • Table 1 shows the minimum time N Rx-Tx required for the terminal device to switch from the receiving state to the sending state, and the terminal device switching from the sending state to the frequency range (FR) 1 and FR2 respectively.
  • the minimum time N Tx-Rx required for the receive state for example, the time for a terminal device to switch from the receive state to the transmit state or from the transmit state to the receive state in frequency range (FR) 1 is not less than 25600Tc.
  • the first, second, third and various numerical numbers are only for convenience of description and are not used to limit the scope of the embodiments of the present application. For example, distinguish different frame structures, beams, configuration information, correspondence relationships or ground points, etc.
  • predefinition can be achieved by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • devices for example, including terminal devices and network devices.
  • Preconfiguration can be achieved by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in equipment (for example, including terminal equipment and network equipment). It can also be preconfigured through signaling, such as network equipment through This application can be implemented through signaling preconfiguration, etc. This application does not limit its specific implementation method.
  • the preset resources in the embodiment of this application may be predefined resources, or may be preconfigured resources, or the base station may indicate through radio resource control (RRC) and/or downlink control information (DCI) H.
  • RRC radio resource control
  • DCI downlink control information
  • the "protocol” involved in the embodiments of this application may refer to a standard protocol in the communication field, which may include, for example, LTE protocol, NR protocol, and related protocols applied in future communication systems. This application does not limit this.
  • “at least one” refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association of associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character "/" generally indicates that the related objects are in an "or” relationship.
  • the terminal device may be a terminal in the satellite communication system shown in FIG. 1
  • the network device may be a satellite in the communication system shown in FIG. 1 .
  • the terminal device shown in the embodiments below can also be replaced by components in the terminal device, such as a chip, a chip system, or other functional modules capable of calling and executing programs;
  • the network device shown in the embodiments below can also be replaced by a network device. Components in the device, such as chips, chip systems, or other functional modules that can call and execute programs.
  • FIG 3 is a schematic interaction flow chart of the communication method 100 provided by the embodiment of the present application. As shown in Figure 3, the method 100 may include S110 and S120. Each step in the method 100 is described below.
  • the terminal device determines a first frame structure.
  • the first frame structure includes at least one uplink time unit, at least one downlink time unit and at least one guard time unit. There is an interval between the at least one uplink time unit and the at least one downlink time unit.
  • the time difference between the at least one guard time unit, the period of the first frame structure and the RTD of the first beam is less than one time unit, and the first beam is a beam used for communication between the network device and the terminal device.
  • the network device uses the first frame structure to send downlink information to the terminal device.
  • the terminal device uses the first frame structure to receive the downlink information sent by the network device.
  • the terminal device uses the first frame structure to send uplink information to the network device.
  • the network device uses the first frame structure to receive the uplink information sent by the terminal device.
  • the above-mentioned S120-1 and S120-2 can be executed selectively; alternatively, the above-mentioned S120-1 and S120-2 can be executed separately.
  • the network device uses the first frame structure to send downlink information to the terminal device, and the terminal device The first frame structure is used to send uplink information to the network device.
  • the terminal device uses the first frame structure to receive downlink information sent by the network device, and in response to the received downlink information, the first frame structure is used to send uplink information to the network device. This application does not limit this.
  • Network equipment often implements communication coverage based on multiple beams, and each beam can cover one or more terminal devices.
  • the terminal device in the embodiment of the present application may be one of multiple terminal devices covered by the satellite's beam.
  • the first beam may be a beam used for downlink communication. As shown in Figure 4, the satellite sends downlink information to the terminal device through the first beam. However, this application is not limited to this.
  • the first beam may be a beam for uplink communication.
  • the terminal device generally deploys multiple antennas/antenna arrays to form the first beam for communication with the network device.
  • the RTD of the first beam may be the RTD of the first ground point covered by the first beam, see Figure 4.
  • the first ground point may be any ground point covered by the first beam.
  • the first ground point may be the ground point closest to the network device within the ground coverage area of the first beam.
  • the RTD of the first beam is the first The smallest RTD among the RTDs of all ground points in the beam (that is, RTD min ).
  • RTD min the first ground point can also be the ground point farthest from the network device in the ground coverage area of the first beam.
  • the RTD of the first beam is all the points in the first beam.
  • RTD of ground point The maximum RTD (that is, RTD max ), or the first ground point can be the ground point with the median distance from the network device among all ground points in the ground coverage area of the first beam.
  • RTD of the first beam is (RTD max +RTD min )/2.
  • the RTD of the first ground point is related to the satellite elevation angle of the first ground point.
  • the satellite elevation angle of the first ground point (also called the elevation angle of the first beam) is the ground plane where the first ground point is located and the first connection
  • the first connection line is a virtual connection line between the first ground point and the network device.
  • the period of the first frame structure in the embodiment of the present application should be as close as possible to the RTD of the first beam.
  • the period of the first frame structure should be an integer multiple of the time unit. Based on this, the period of the first frame structure should be as close as possible to the RTD of the first beam, which means the period between the period of the first frame structure and the RTD of the first beam.
  • the time difference is less than one time unit.
  • int is the rounding function
  • L s is the length of the time unit.
  • the length of the time unit may be related to the SCS.
  • the number of time slots included in the period of the first frame structure is the quotient of the RTD of the first beam divided by the length of the time slot; for another example, in the first
  • the RTD of the first beam is divided by the length of the time slot to obtain a non-integer number, and then the non-integer is rounded to obtain the number of time slots included in the period of the first frame structure.
  • the beams at different satellite elevation angles used by network equipment present the distribution diagram of the beams at the first satellite elevation angle, the second satellite elevation angle, and the third satellite elevation angle as shown in Figure 5 .
  • Beams at the same satellite elevation angle have the same RTD, that is, the period of the frame structure used for communication between network equipment and each terminal device covered by the beam at the same satellite elevation angle is the same.
  • the RTD of a beam with a larger satellite elevation angle is larger, and accordingly, the period of the frame structure is also larger. For example, the period of the frame structure corresponding to the beam at the first satellite elevation angle is greater than the period of the frame structure corresponding to the beam at the second satellite elevation angle.
  • the period of the frame structure corresponding to the beam at the second satellite elevation angle is greater than the period of the frame structure corresponding to the beam at the third satellite elevation angle.
  • this application does not limit the frame structure used for communication between the network device and each terminal device covered by the beam to be the same at the same satellite elevation angle.
  • Figure 6 shows several examples in which the period of the frame structure is the same but the time unit distribution of the frame structure is different.
  • time slots #0 to #8 are all downlink time slots D
  • time slots #9 to #10 are all protection time slots S
  • time slot #11 is uplink time slot U
  • Time slots #0 to #4 are all downlink time slots D
  • time slots #5 to #6 are all protection time slots S
  • time slots #7 to #11 are all uplink time slots U
  • time slots #0 is the downlink time slot D
  • time slots #1 to #2 are all protection time slots S
  • time slots #3 to #11 are all uplink time slots U.
  • the frame structure (including the above-mentioned first frame structure) may be related to communication services.
  • DL downlink
  • UL uplink
  • the frame structure example 3 in Figure 6 is used.
  • uplink and downlink load-balanced services or symmetric services
  • the frame structure in Figure 6 is used Example 2.
  • Time slots #0 to #1 are downlink time slots
  • time slot #2 is a protection time slot
  • time slot #2 is a protection time slot
  • Slot #3 is the uplink time slot
  • time slots #4 to #5 are downlink time slots
  • time slot #6 is the protection time slot
  • time slots #7 to #11 are the uplink time slots.
  • the embodiments of this application do not limit the number of uplink time units, the number of downlink time units, and the number of guard time units in the first frame structure, or in other words, the quantity ratio between uplink time units, downlink time units, and guard time units. Not limited.
  • the network device In order to ensure that there are no uplink and downlink conflicts between terminal devices communicating with the network device, the network device needs to wait for each terminal device to receive the downlink information before receiving the uplink information of each terminal device.
  • the number of guard time units can be It is determined based on the differential RTD of the first beam to obtain a guard interval that meets the time length while avoiding the impact of an excessively large guard interval on spectrum efficiency.
  • the number of guard time units is the sum of differential RTD and uplink and downlink switching time.
  • differential RTD It can also be expressed as the difference between the maximum RTD of the first beam (that is, RTD max ) and the minimum RTD (that is, RTD min ).
  • the maximum RTD of the first beam (that is, RTD max ) and the minimum RTD (that is, RTD min ) are used in the above implementation. It has been explained in the example and will not be repeated here.
  • the first frame structure is the above-mentioned frame structure example 2
  • the RTD of the first beam is 12 time slots
  • the guard interval is 2 time slots.
  • the network device sends downlink information in time slots #0 to #4 according to the downlink timing of the network device.
  • the terminal device receives the downlink information sent by the network device in time slots #0 to #4 according to the downlink timing of the terminal device.
  • the RTD sends uplink information in time slots #6 to #11 in advance; further, the network equipment sends downlink information in time slots #12 to #16 according to the downlink timing of the network equipment...As shown in Figure 7, the network equipment When communicating with the terminal device using the first frame structure, there is no uplink or downlink conflict.
  • the terminal device determines the first frame structure, including determining the period of the first frame structure and/or the number and/or distribution of each type of time unit in the first frame structure.
  • the terminal device determines the first frame structure, which may include but is not limited to the following possible examples:
  • Example 1 The network device sends first configuration information to the terminal device, where the first configuration information includes the period of the first frame structure.
  • the network device sends SIB signaling to the terminal device.
  • the uplink/downlink frame structure period parameter (DL-UL-TransmissionPeriodicity) in the TDD uplink/downlink pattern parameter (TDD-UL-DL-Pattern) indicates the first The period of the frame structure.
  • Example 1 only uses SIB signaling to carry the first configuration information as an example, and should not be understood as any limitation on this application.
  • the first configuration information can also be carried in any known or unknown (new) signaling.
  • the period of the first frame structure included in the first configuration information sent by the network device may be determined based on the above formula (1).
  • Example 2 The terminal device determines the identity of the first beam, and determines the period of the first frame structure in the first correspondence relationship based on the identity of the first beam.
  • the first correspondence relationship includes at least one beam identifier (such as beam identifiers 0 to N in Table 2) and at least one period of the frame structure (such as P 1 to P in Table 2 N ), the at least one beam identifier corresponds to the period of at least one frame structure in a one-to-one manner.
  • the terminal device may determine the period of the frame structure corresponding to the identity of the first beam in the first correspondence relationship as the period of the first frame structure.
  • the first corresponding relationship includes at least one beam identifier (such as 0 ⁇ N in Table 3) and at least one RTD (such as 4ms ⁇ 8ms in Table 3). At least one beam The identifier corresponds to at least one RTD.
  • the terminal device can determine the RTD corresponding to the identifier of the first beam from the first correspondence relationship, and the RTD is the RTD of the first beam, and then determine the period of the first frame structure based on the RTD of the first beam. For example, the terminal device uses The above equation (1) determines the period of the first frame structure based on the RTD.
  • the first correspondence relationship in the above-mentioned Example 2 may be predefined in the terminal device; or the first correspondence relationship may be preconfigured, for example, configured by signaling sent by the network device to the terminal device in advance; or the first correspondence relationship may be pre-configured.
  • the corresponding relationship may be defined by a protocol, which is not limited in this application.
  • the terminal device may determine the identity of the first beam based on a synchronization signal block (SSB).
  • SSB synchronization signal block
  • the SSB index in SSB can be used In determining the first beam from multiple beams of the network device, that is, the SSB index has a corresponding relationship with the identifier of the first beam.
  • Example 3 The terminal device determines the period of the first frame structure based on ephemeris and/or global navigation satellite system (GNSS). For example, the terminal device can calculate the RTD of the first beam based on ephemeris and/or GNSS, and then calculate the period of the first frame structure based on the RTD of the first beam based on the above formula (1).
  • GNSS global navigation satellite system
  • the above example one can realize direct indication of the period of the first frame structure, which facilitates the terminal device to obtain the period of the first frame structure.
  • the above examples two and three do not require the network device to configure the period of the first frame structure, saving signaling overhead. .
  • the number and/or distribution of each type of time unit (including uplink time unit, downlink time unit and guard time unit) in the first frame structure may be determined based on the communication service, as mentioned above, Communication services include but are not limited to DL-heavy services, UL-heavy services, symmetric services, etc.; the number and/or distribution of each type of time unit in the first frame structure can be predefined, for example, different frame structures are predefined. The number and/or distribution of each type of time unit corresponding to the period. After the terminal device determines the period of the first frame structure based on the above example one, two or three, the first frame structure is determined according to the rules predefined in the terminal device.
  • the number and/or distribution of each type of time unit in the first frame structure; alternatively, the number and/or distribution of each type of time unit in the first frame structure may be configured by the network device through signaling in advance. For example, the network device configures different settings to the terminal device in advance. The number and/or distribution of each type of time unit corresponding to the frame structure period. After the terminal device determines the period of the first frame structure based on the above example one, two or three, it determines the first frame structure period according to the rules predefined in the terminal device.
  • the number and/or distribution of each type of time unit in the frame structure; alternatively, the number and/or distribution of each type of time unit in the first frame structure may be configured by the network device through signaling, for example, the network device sends a SIB signal to the terminal device.
  • the TDD up/downlink pattern parameter (TDD-UL-DL-Pattern) in SIB signaling also include the number and/or distribution of each type of time unit in the first frame structure.
  • Example 4 The network device sends second configuration information to the terminal device.
  • the second configuration information includes a frame structure identifier, and the terminal device determines the first frame structure in the second correspondence relationship according to the frame structure identifier.
  • the second correspondence relationship includes at least one frame structure identifier and at least one frame structure.
  • At least one frame structure identifier corresponds to at least one frame structure.
  • the at least one frame structure is distributed in periodic and/or time units. There are differences in approach. Refer to Table 4 below. Frame structure identifiers 0 to 2 respectively correspond to the frame structures of different communication services (DL-heavy, symmetric, and UL-heavy) under period P 0 , and frame structure identifier 3 corresponds. Frame structure under period P 1 .
  • the network device can communicate with each terminal device based on multiple beams.
  • the multiple beams correspond to the periods of M frame structures.
  • the period of the i-th frame structure among the periods of the M frame structures corresponds to the Wi time unit distribution mode.
  • the second corresponding relationship at least includes frame structure, the frame structure, and the frame structure identifier corresponding to each frame structure.
  • the multiple beams shown in Figure 5 correspond to the periods of three frame structures, and the periods of each frame structure correspond to the time unit distribution modes in the three communication service scenarios shown in Figure 6, then the second correspondence relationship includes at least 9 frame structure and the frame structure identifiers corresponding to the nine frame structures.
  • Example 5 The terminal device determines the identity of the first beam, and determines a third correspondence relationship based on the identity of the first beam.
  • the third correspondence relationship includes at least one frame structure identifier and at least one frame structure, and the at least one frame structure identifier is consistent with at least one frame structure identifier.
  • a frame structure has a one-to-one correspondence; the network device sends third configuration information to the terminal device, the third configuration information includes a frame structure identifier, and the terminal device can determine the first one in the third correspondence relationship based on the frame structure identifier in the third configuration information. frame structure.
  • the predefinition, preconfiguration, or protocol defines at least one third correspondence, and each third correspondence The relationship corresponds to a beam (or beam identifier).
  • the third correspondence relationship corresponding to the first beam is as shown in Table 5 below:
  • the implementation manner in which the terminal device determines the identity of the first beam is similar to that in the above-mentioned example two, and will not be described again here.
  • both the second configuration information and the third configuration information may be frame format indicator (frameFormatIndicator) parameters in the TDD up/downlink pattern parameters (TDD-UL-DL-Pattern) in SIB signaling.
  • frame FormatIndicator frameFormatIndicator parameters in the TDD up/downlink pattern parameters (TDD-UL-DL-Pattern) in SIB signaling.
  • TDD-UL-DL-Pattern TDD up/downlink pattern parameters
  • SIB signaling SIB signaling.
  • the second configuration information and/or the third configuration information can also be carried in any known or unknown (new) signaling.
  • Example 4 reduces the signaling overhead compared to indicating the period of the first frame structure, the number of uplink time units, the number of downlink time units and other information through SIB signaling, indicating the identity of the frame structure. Furthermore, in Example 5 compared to Example 4, the value of the frame structure identifier is smaller, which further indicates that the signaling overhead of the third configuration information of the frame structure identifier is smaller than the signaling overhead of the second configuration information.
  • Figure 8 is a schematic flow chart of the communication method 200 provided by the embodiment of the present application. As shown in Figure 8, the method 200, before S110 shown in the above method 100, may also include:
  • the network device sends frame structure configuration information to the terminal device.
  • the frame structure configuration information can be used to configure the first frame structure.
  • the frame structure configuration information may include the first configuration information; in the above example four, the frame structure configuration information may include the second configuration information; in the above example five, the frame structure configuration information may include the third configuration information .
  • the frame structure configuration information may also include information indicating the time unit distribution mode of the first frame structure, such as indicating the number of uplink time units, the number of downlink time units, and the number of uplink time units. and at least one of the ratio of the number of downlink time units, the number of guard time units, the maximum RTD and minimum RTD of the first beam, etc., where the maximum RTD and minimum RTD of the first beam can be used to determine the first frame The number of guard time units in the structure.
  • the network device before the network device sends the frame structure configuration information to the terminal device, it also needs to determine the period and/or distribution of time units of the first frame structure. For example, the network device may determine the identity of the first beam used by itself to send downlink information, and determine the period of the first frame structure in the first correspondence based on the identity of the first beam; for another example, the network device may determine the period of the first frame structure based on the ephemeris and /or GNSS determines the period of the first frame structure; for another example, the network device may determine the distribution mode of the time units of the first frame structure according to the communication service.
  • the first corresponding relationship may be predefined in the network device or defined by the protocol, which is not limited in this application.
  • the period of the first frame structure used for communication between the network device and the terminal device is constrained, so that the period of the first frame structure is The time difference between the period and the RTD of the first beam is less than one time unit, so that the network equipment and the terminal equipment can avoid uplink and downlink collisions when communicating using the first frame structure.
  • the time difference between the period of the first frame structure and the RTD of the first beam is less than one time unit, thereby avoiding uplink and downlink collisions between the network equipment and the terminal equipment. In this case, there is no need to pass the uplink time unit and downlink time unit.
  • the guard interval between time units is used to avoid uplink and downlink collisions between network equipment and terminal equipment, reducing the number of guard time units and increasing spectrum efficiency.
  • Figure 9 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the device 300 may include: a processing unit 310 and a transceiver unit 320 .
  • the communication device 300 may correspond to the terminal device in the above method embodiment, for example, it may be a terminal device, or a component (such as a chip or chip system, etc.) configured in the terminal device.
  • the communication device 300 may correspond to the terminal device in the method shown in FIG. 3 or FIG. 8 according to the embodiment of the present application, and the communication device 300 may include a method for executing the method 100 in FIG. 3 and the method in FIG. 8 The unit of the method executed by the terminal device in 200. Moreover, each unit in the communication device 300 and the above-mentioned other operations and/or functions are respectively intended to implement the corresponding flow of the method in FIG. 3 or FIG. 8 .
  • the processing unit 310 may be used to determine a first frame structure, the first frame structure includes at least one uplink time unit, at least one downlink time unit and at least one guard time unit, the at least one uplink time unit is consistent with the at least one downlink time unit.
  • the at least one guard time unit is spaced between units, and the time difference between the period of the first frame structure and the round-trip delay RTD of the first beam is less than one time unit.
  • the first beam is for communication between the network equipment and the communication device.
  • the beam used; the transceiver unit 320 may be used to communicate with the network device using the first frame structure.
  • the communication device 300 may correspond to the network device in the above method embodiment, for example, it may be a network device, or a component (such as a chip or chip system, etc.) configured in the network device.
  • the communication device 300 may correspond to the network device in the method shown in FIG. 3 or FIG. 8 according to the embodiment of the present application, and the communication device 300 may include a method for executing the method 100 in FIG. 3 and the method in FIG. 8 The unit of the method performed by the network device in 200. Moreover, each unit in the communication device 300 and the above-mentioned other operations and/or functions are respectively intended to implement the corresponding flow of the method in FIG. 3 or FIG. 8 .
  • the processing unit 310 may be used to determine a first frame structure, the first frame structure includes at least one uplink time unit, at least one downlink time unit and at least one guard time unit, the at least one uplink time unit is consistent with the at least one downlink time unit.
  • the at least one guard time unit is spaced between units, and the time difference between the period of the first frame structure and the RTD of the first beam is less than one time unit.
  • the first beam is used for communication between the communication device and the terminal equipment. beam; the transceiver unit 320 can be used to send frame structure configuration information to the terminal device, and the frame structure configuration information is used to configure the first frame structure; the transceiver unit 320 is also used to communicate with the terminal device using the first frame structure .
  • the transceiver unit 310 in the communication device 300 can be implemented by a transceiver, for example, it can correspond to the transceiver 410 in the communication device 400 shown in FIG. 10 .
  • the processing unit 320 may be implemented by at least one processor, for example, may correspond to the processor 420 in the communication device 400 shown in FIG. 10 .
  • the transceiver unit 310 in the communication device 300 may be implemented by a transceiver.
  • it may correspond to the transceiver 410 in the communication device 400 shown in FIG. 10 .
  • the processing unit 320 may be implemented by at least one processor, for example, may correspond to the processor 420 in the communication device 400 shown in FIG. 10 .
  • the transceiver unit 310 in the communication device 300 can be implemented through an input/output interface, a circuit, etc.
  • the communication device 300 The processing unit 320 in can be implemented by a processor, microprocessor or integrated circuit integrated on the chip or chip system.
  • FIG. 10 is another schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 400 may include: a transceiver 410 , a processor 420 and a memory 430 .
  • the transceiver 410, the processor 420 and the memory 430 communicate with each other through an internal connection path.
  • the memory 430 is used to store instructions
  • the processor 420 is used to execute the instructions stored in the memory 430 to control the transceiver 410 to send signals and /or receive a signal.
  • the communication device 400 may correspond to the terminal device or network device in the above method embodiment, and may be used to perform various steps and/or processes performed by the terminal device or network device in the above method embodiment.
  • the memory 430 may include read-only memory and random access memory and provide instructions and data to the processor. A portion of the memory may also include non-volatile random access memory.
  • the memory 430 can be a separate device or integrated into the processor 420 .
  • the processor 420 may be configured to execute instructions stored in the memory 430, and when the processor 420 executes the instructions stored in the memory, the processor 420 is configured to execute each of the above method embodiments corresponding to the terminal device or network device. steps and/or processes.
  • the communication device 400 is the terminal device in the previous embodiment.
  • the communication device 400 is the network device in the previous embodiment.
  • the transceiver 410 may include a transmitter and a receiver.
  • the transceiver 410 may further include an antenna, and the number of antennas may be one or more.
  • the processor 420, the memory 430 and the transceiver 410 may be components integrated on different chips.
  • the processor 420 and the memory 430 can be integrated in the baseband chip, and the transceiver 410 can be integrated in the radio frequency chip.
  • the processor 420, the memory 430 and the transceiver 410 may also be devices integrated on the same chip. This application does not limit this.
  • the communication device 400 is a component configured in a terminal device, such as a chip, a chip system, etc.
  • the communication device 400 is a component configured in a network device, such as a chip, a chip system, etc.
  • the transceiver 420 may also be a communication interface, such as an input/output interface, a circuit, etc.
  • the transceiver 420, the processor 410 and the memory 430 can be integrated in the same chip, such as a baseband chip.
  • This application also provides a processing device, including at least one processor, the at least one processor being used to execute a computer program stored in the memory, so that the processing device executes the method performed by the terminal device or the network device in the above method embodiment.
  • An embodiment of the present application also provides a processing device, including a processor and an input and output interface.
  • the input and output interface is coupled to the processor.
  • the input and output interface is used to input and/or output information.
  • the information includes at least one of instructions and data.
  • the processor is used to execute a computer program, so that the processing device executes the method executed by the terminal device or the network device in the above method embodiment.
  • An embodiment of the present application also provides a processing device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the processing device executes the method executed by the terminal device or the network device in the above method embodiment.
  • Embodiments of the present application also provide a communication system, including a terminal device and a network device.
  • the terminal device is used to perform the method on the terminal device side in any of the above method embodiments.
  • the network device is used to perform any of the above method embodiments. Method on the network device side.
  • the processing device may be one or more chips.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or a system on chip (SoC), or It can be a central processing unit (CPU), a network processor (NP), a digital signal processing circuit (DSP), or a microcontroller unit , MCU), it can also be a programmable logic device (PLD) or other integrated chip.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processing unit
  • NP network processor
  • DSP digital signal processing circuit
  • MCU microcontroller unit
  • PLD programmable logic device
  • each step of the above method can be completed by instructions in the form of hardware integrated logic circuits or software in the processor.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor for execution, or can be executed by a combination of hardware and software modules in the processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capabilities.
  • each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memories.
  • the non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer program product.
  • the computer program product includes: computer program code.
  • the computer program code When the computer program code is run on a computer, the computer causes the computer to execute the terminal in the above method embodiment. A method performed by a device or network device.
  • the present application also provides a computer-readable storage medium.
  • the computer-readable storage medium stores program code.
  • the program code When the program code is run on a computer, it causes the computer to execute the above method embodiment.
  • the present application also provides a communication system, which may include the aforementioned terminal device and network device.
  • a component may be, but is not limited to, a process, a processor, an object, an executable file, a thread of execution, a program and/or a computer running on a processor.
  • applications running on the computing device and the computing device may be components.
  • One or more components can reside in a process and/or thread of execution and a component can be localized on one computer and/or distributed between 2 or more computers. Additionally, these components can execute from various computer-readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more data packets (eg, data from two components interacting with another component, a local system, a distributed system, and/or a network, such as the Internet, which interacts with other systems via signals) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component, a local system, a distributed system, and/or a network, such as the Internet, which interacts with other systems via signals
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the computer software product is stored in a storage medium and includes a number of instructions to enable a A computer device (which may be a personal computer, a server, or a network device, etc.) executes all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法、装置、设备以及存储介质。该方法包括:终端设备确定第一帧结构,该第一帧结构包括至少一个上行时间单元、至少一个下行时间单元和至少一个保护时间单元,该至少一个上行时间单元与该至少一个下行时间单元之间间隔该至少一个保护时间单元,该第一帧结构的周期与第一波束的RTD之间的时间差小于一个时间单元,该第一波束为网络设备与该终端设备之间通信所使用的波束,该终端设备与该网络设备采用该第一帧结构进行通信。避免网络设备与终端设备采用第一帧结构进行通信时上下行碰撞。

Description

通信方法、装置、设备以及存储介质
本申请要求于2022年07月20日提交中国专利局、申请号为202210857620.1、申请名称为“通信方法、装置、设备以及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法、装置、设备以及存储介质。
背景技术
目前,在一些往返时延(round trip delay,RTD)较大的通信系统中,如卫星通信系统中,为了避免RTD较大带来上下行干扰的问题,终端与卫星常采用频分双工(frequency division duplex,FDD)进行通信。然而,如何能够在卫星通信等RTD较大的通信系统中,实现基于TDD的通信,以利用时分双工(time division duplex,TDD)频谱利用率高、收发处理简单、灵活调度等优势,是当前亟待解决的问题。
发明内容
本申请实施例提供的一种通信方法、装置、设备以及存储介质,能够实现在RTD较大的通信系统中基于TDD进行通信。
第一方面,本申请实施例提供一种通信方法,包括:终端设备确定第一帧结构,该第一帧结构包括至少一个上行时间单元、至少一个下行时间单元和至少一个保护时间单元,该至少一个上行时间单元与该至少一个下行时间单元之间间隔该至少一个保护时间单元,该第一帧结构的周期与第一波束的往返时延RTD之间的时间差小于一个时间单元,该第一波束为网络设备与该终端设备之间通信所使用的波束;该终端设备与该网络设备采用该第一帧结构进行通信。
通过第一方面提供的通信方法,基于网络设备与终端设备之间通信所使用的第一波束的RTD,约束网络设备与终端设备之间通信采用的第一帧结构的周期,使第一帧结构的周期与第一波束的RTD之间的时间差小于一个时间单元,使得网络设备与终端设备采用第一帧结构进行通信时避免上下行碰撞。
在一种可能的实施方式中,该方法还包括:该终端设备接收该网络设备发送的第一配置信息,该第一配置信息包括该第一帧结构的周期。
通过该实施方式提供的通信方法,实现对第一帧结构的周期的直接指示,便于终端设备获取第一帧结构的周期。
在一种可能的实施方式中,该方法还包括:该终端设备确定该第一波束的标识;该终端设备根据该第一波束的标识在第一对应关系中确定该第一帧结构的周期;其中,该第一对应关系包括至少一个波束标识和至少一个帧结构的周期,该至少一个波束标识与该至少一个帧结构的周期一一对应。
通过该实施方式提供的通信方法,不需要网络设备配置第一帧结构的周期,节省了信令开销。
在一种可能的实施方式中,该方法还包括:该终端设备根据星历和/或全球导航卫星系统GNSS,确定该第一帧结构的周期。
通过该实施方式提供的通信方法,不需要网络设备配置第一帧结构的周期,节省了信令开销。
在一种可能的实施方式中,该方法还包括:该终端设备接收该网络设备发送的第二配置信息,该第二配置信息包括帧结构标识;该终端设备根据该帧结构标识在第二对应关系中确定该第一帧结构;其中,该第二对应关系包括至少一个帧结构标识与至少一个帧结构,该至少一个帧结构标识与该至少一个帧结构一一对应。
通过该实施方式提供的通信方法,相对于通过系统信息块(system information block,SIB)信令 指示第一帧结构的周期、上行时间单元的个数、下行时间单元的个数等信息,指示帧结构的标识,降低了信令开销。
在一种可能的实施方式中,该方法还包括:该终端设备确定该第一波束的标识;该终端设备根据该第一波束的标识确定第三对应关系,该第三对应关系包括至少一个帧结构标识与至少一个帧结构,该至少一个帧结构标识与该至少一个帧结构一一对应;该终端设备接收该网络设备发送的第三配置信息,该第三配置信息包括帧结构标识;该终端设备根据该帧结构标识在该第三对应关系中确定该第一帧结构。
通过该实施方式提供的通信方法,相对于通过SIB信令指示第一帧结构的周期、上行时间单元的个数、下行时间单元的个数等信息,指示帧结构的标识,降低了信令开销。
在一种可能的实施方式中,该RTD为该第一波束覆盖的第一地面点的RTD,该第一地面点为该第一波束覆盖的地面点中,与该网络设备距离最近的地面点。
通过该实施方式提供的通信方法,避免网络设备与终端设备之间通信时存在上下行冲突。
可选的,该RTD与该第一波束的仰角相关,该第一波束的仰角为第一波束覆盖的第一地面点所在的地平面与第一连接线之间的夹角,该第一连接线为该第一地面点与该网络设备之间的虚拟连接线。
在一种可能的实施方式中,该第一帧结构的周期基于该RTD和时间单元的长度确定。
通过该实施方式提供的通信方法,
在一种可能的实施方式中,该第一帧结构的周期P满足如下公式(1):
P=int(RTD/Ls)*Ls          (1)
其中,int为取整函数,Ls为时间单元的长度。
通过该实施方式提供的通信方法,在第一帧结构的周期应为时间单元的整数倍的情况下,使第一帧结构的周期应尽量接近于第一波束的RTD,确保通信系统中不存在上下行碰撞的问题。
在一种可能的实施方式中,该保护时间单元的个数基于该第一波束的差分RTD确定。
通过该实施方式提供的通信方法,
在一种可能的实施方式中,该保护时间单元的个数为该差分RTD与上下行切换时间之和。
通过该实施方式提供的通信方法,以得到满足时间长度的保护间隔,同时避免保护间隔过大对频谱效率的影响。
在一种可能的实施方式中,该终端设备确定第一帧结构,还包括:该终端设备确定该上行时间单元的个数和该下行时间单元的个数。
通过该实施方式提供的通信方法,实现对第一帧结构的的进一步确定。
第二方面,本申请实施例提供一种通信方法,包括:网络设备向终端设备发送帧结构配置信息,该帧结构配置信息用于配置第一帧结构,该第一帧结构包括至少一个上行时间单元、至少一个下行时间单元和至少一个保护时间单元,该至少一个上行时间单元与该至少一个下行时间单元之间间隔该至少一个保护时间单元,该第一帧结构的周期与第一波束的RTD之间的时间差小于一个时间单元,该第一波束为该网络设备与该终端设备之间通信所使用的波束;该网络设备与该终端设备采用该第一帧结构进行通信。
在一种可能的实施方式中,该帧结构配置信息包括该第一帧结构的周期。
在一种可能的实施方式中,还包括:该网络设备确定该第一波束的标识;该网络设备根据该第一波束的标识在第一对应关系中确定该第一帧结构的周期;其中,该第一对应关系包括至少一个波束标识和至少一个帧结构的周期,该至少一个波束标识与该至少一个帧结构的周期一一对应。
在一种可能的实施方式中,还包括:该网络设备根据星历和/或全球导航卫星系统GNSS,确定该第一帧结构的周期。
在一种可能的实施方式中,该帧结构配置信息包括帧结构标识,该帧结构标识用于在第二对应关系中确定该第一帧结构,该第二对应关系包括至少一个帧结构标识与至少一个帧结构,该至少一个帧结构标识与该至少一个帧结构一一对应。
在一种可能的实施方式中,该帧结构配置信息包括帧结构标识,该帧结构标识用于在该第一波束对应的第三对应关系中确定该第一帧结构,该第三对应关系包括至少一个帧结构标识与该第 一波束下的至少一个帧结构,该至少一个帧结构标识与该至少一个帧结构一一对应。
在一种可能的实施方式中,该RTD与该第一波束的仰角相关,该第一波束的仰角为第一波束覆盖的第一地面点所在的地平面与第一连接线之间的夹角,该第一连接线为该第一地面点与该网络设备之间的虚拟连接线。
在一种可能的实施方式中,该第一帧结构的周期基于该RTD和时间单元的长度确定。
在一种可能的实施方式中,该第一帧结构的周期P满足如下公式(1):
P=int(RTD/Ls)﹡Ls          (1)
其中,int为取整函数,Ls为时间单元的长度。
在一种可能的实施方式中,该保护时间单元的个数基于该第一波束的差分RTD确定。
在一种可能的实施方式中,该保护时间单元的个数为该差分RTD与上下行切换时间之和。
在一种可能的实施方式中,还包括:该网络设备确定该上行时间单元的个数和该下行时间单元的个数。
上述第二方面以及上述第二方面的各可能的实施方式所提供的通信方法,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第三方面,本申请实施例提供一种通信装置,包括:处理单元,用于确定第一帧结构,该第一帧结构包括至少一个上行时间单元、至少一个下行时间单元和至少一个保护时间单元,该至少一个上行时间单元与该至少一个下行时间单元之间间隔该至少一个保护时间单元,该第一帧结构的周期与第一波束的往返时延RTD之间的时间差小于一个时间单元,该第一波束为网络设备与该通信装置之间通信所使用的波束;收发单元,用于与该网络设备采用该第一帧结构进行通信。
在一种可能的实施方式中,该收发装置还用于接收该网络设备发送的第一配置信息,该第一配置信息包括该第一帧结构的周期。
在一种可能的实施方式中,该处理单元还用于确定该第一波束的标识;该处理单元还用于根据该第一波束的标识在第一对应关系中确定该第一帧结构的周期;其中,该第一对应关系包括至少一个波束标识和至少一个帧结构的周期,该至少一个波束标识与该至少一个帧结构的周期一一对应。
在一种可能的实施方式中,该处理单元还用于根据星历和/或全球导航卫星系统GNSS,确定该第一帧结构的周期。
在一种可能的实施方式中,该收发单元还用于接收该网络设备发送的第二配置信息,该第二配置信息包括帧结构标识;该处理单元还用于根据该帧结构标识在第二对应关系中确定该第一帧结构;其中,该第二对应关系包括至少一个帧结构标识与至少一个帧结构,该至少一个帧结构标识与该至少一个帧结构一一对应。
在一种可能的实施方式中,该处理单元还用于确定该第一波束的标识;该处理单元还用于根据该第一波束的标识确定第三对应关系,该第三对应关系包括至少一个帧结构标识与至少一个帧结构,该至少一个帧结构标识与该至少一个帧结构一一对应;该收发单元还用于接收该网络设备发送的第三配置信息,该第三配置信息包括帧结构标识;该处理单元还用于根据该帧结构标识在该第三对应关系中确定该第一帧结构。
在一种可能的实施方式中,该RTD为该第一波束覆盖的第一地面点的RTD,该第一地面点为该第一波束覆盖的地面点中,与该网络设备距离最近的地面点。
在一种可能的实施方式中,该RTD与该第一波束的仰角相关,该第一波束的仰角为第一波束覆盖的第一地面点所在的地平面与第一连接线之间的夹角,该第一连接线为该第一地面点与该网络设备之间的虚拟连接线。
在一种可能的实施方式中,该第一帧结构的周期基于该RTD和时间单元的长度确定。
在一种可能的实施方式中,该第一帧结构的周期P满足如下公式(1):
P=int(RTD/Ls)﹡Ls          (1)
其中,int为取整函数,Ls为时间单元的长度。
在一种可能的实施方式中,该保护时间单元的个数基于该第一波束的差分RTD确定。
在一种可能的实施方式中,该保护时间单元的个数为该差分RTD与上下行切换时间之和。
在一种可能的实施方式中,该处理单元具体用于确定该上行时间单元的个数和该下行时间单元的个数。
上述第三方面以及上述第三方面的各可能的实施方式所提供的通信装置,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第四方面,本申请实施例提供一种通信装置,包括:处理单元,用于确定第一帧结构,该帧结构配置信息用于配置第一帧结构,该第一帧结构包括至少一个上行时间单元、至少一个下行时间单元和至少一个保护时间单元,该至少一个上行时间单元与该至少一个下行时间单元之间间隔该至少一个保护时间单元,该第一帧结构的周期与第一波束的RTD之间的时间差小于一个时间单元,该第一波束为该通信装置与该终端设备之间通信所使用的波束;该收发单元还用于与该终端设备采用该第一帧结构进行通信;收发单元,用于向终端设备发送帧结构配置信息。
在一种可能的实施方式中,该帧结构配置信息包括该第一帧结构的周期。
在一种可能的实施方式中,该处理单元还用于确定该第一波束的标识;该处理单元还用于根据该第一波束的标识在第一对应关系中确定该第一帧结构的周期;其中,该第一对应关系包括至少一个波束标识和至少一个帧结构的周期,该至少一个波束标识与该至少一个帧结构的周期一一对应。
在一种可能的实施方式中,该处理单元还用于根据星历和/或全球导航卫星系统GNSS,确定该第一帧结构的周期。
在一种可能的实施方式中,该帧结构配置信息包括帧结构标识,该帧结构标识用于在第二对应关系中确定该第一帧结构,该第二对应关系包括至少一个帧结构标识与至少一个帧结构,该至少一个帧结构标识与该至少一个帧结构一一对应。
在一种可能的实施方式中,该帧结构配置信息包括帧结构标识,该帧结构标识用于在该第一波束对应的第三对应关系中确定该第一帧结构,该第三对应关系包括至少一个帧结构标识与该第一波束下的至少一个帧结构,该至少一个帧结构标识与该至少一个帧结构一一对应。
在一种可能的实施方式中,该RTD与该第一波束的仰角相关,该第一波束的仰角为第一波束覆盖的第一地面点所在的地平面与第一连接线之间的夹角,该第一连接线为该第一地面点与该网络设备之间的虚拟连接线。
在一种可能的实施方式中,该第一帧结构的周期基于该RTD和时间单元的长度确定。
在一种可能的实施方式中,该第一帧结构的周期P满足如下公式(1):
P=int(RTD/Ls)﹡Ls           (1)
其中,int为取整函数,Ls为时间单元的长度。
在一种可能的实施方式中,该保护时间单元的个数基于该第一波束的差分RTD确定。
在一种可能的实施方式中,该保护时间单元的个数为该差分RTD与上下行切换时间之和。
在一种可能的实施方式中,该处理单元还用于确定该上行时间单元的个数和该下行时间单元的个数。
上述第四方面以及上述第四方面的各可能的实施方式所提供的通信装置,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第五方面,本申请实施例提供一种通信装置,包括:处理器和存储器,该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行如第一方面、第二方法或各可能的实现方式中的方法。
第六方面,本申请实施例提供一种通信系统,包括终端设备和网络设备,该终端设备用于执行如第一方面或各可能的实现方式中的方法,该网络设备用于执行如第二方面或各可能的实现方式中的方法。
第七方面,本申请实施例提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机指令,使得安装有该芯片的设备执行如第一方面、第二方面或各可能的实现方式中的方法。
第八方面,本申请实施例提供一种计算机可读存储介质,用于存储计算机程序指令,该计算机程序使得计算机执行如第一方面、第二方面或各可能的实现方式中的方法。
第九方面,本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指 令使得计算机执行如第一方面、第二方面或各可能的实现方式中的方法。
第十方面,本申请实施例提供一种装置,包括逻辑电路和输入输出接口,其中,该输入输出接口用于接收来自该装置之外的其他通信装置的信号并传输至该逻辑电路或将来自该逻辑电路的信号发送给该装置之外的其他通信装置,该逻辑电路用于执行代码指令以实现如第一方面、第二方面或各可能的实现方式中的方法。
第十一方面,本申请实施例提供一种终端,包括如第三方面、第四方面或各可能的实现方式中的装置。
附图说明
图1为本申请实施例提供的一种卫星通信系统的示意图;
图2a为本申请实施例提供的一种帧结构示意图;
图2b为本申请实施例提供的一种上行通信和下行通信的时隙占用示意图;
图3是本申请实施例提供的一种通信方法的示意性交互流程图;
图4为本申请实施例提供的一种卫星波束示意图;
图5为本申请实施例提供的一种卫星波束示意图;
图6为本申请实施例提供的一种帧结构示意图;
图7为本申请实施例提供的一种上行通信和下行通信的时隙占用示意图;
图8为本申请实施例提供的一种通信方法的示意性交互流程图;
图9为本申请实施例提供的一种通信装置的示意性框图;
图10为本申请实施例提供的通信装置的另一示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请提供的通信方法可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新空口(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统、或者未来的通信系统(例如第六代通信系统)等。
本申请实施例中所涉及的终端设备,也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如无人机、飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终 端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(selfdriving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、无人机、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在一些重要领域,如空间通信、航空通信、海事通信等,卫星都发挥着无可替代的作用。卫星通信具备通信距离远、覆盖面积大、组网灵活等特点,其既可为固定终端,也可为各种移动终端提供服务。第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)标准组织已经发布了5G技术标准,研究天地融合通信技术,主要是融合现有的5G标准和卫星通信技术,满足在全球范围内的全覆盖。目前研究已经启动,并对卫星与5G融合的架构等做了研究。
图1为本申请实施例提供的一种卫星通信系统的示意图,如图1所示,地面移动终端通过5G新空口接入网络与卫星进行通信,5G基站部署在卫星上,并通过无线链路与地面的核心网相连。同时,在卫星之间存在无线链路,完成基站与基站之间的信令交互和用户数据传输。该场景中,涉及到本申请技术方案的网络设备为基站,终端设备则为图中的终端。图1中的各个网元以及他们的接口说明如下:
终端为支持5G新空口的移动设备,典型的比如手机,平板(pad)等移动设备。可以通过空口接入卫星网络并发起呼叫,上网等业务。
基站主要是提供无线接入服务,调度无线资源给接入终端,提供可靠的无线传输协议和数据加密协议等。
核心网包括用户接入控制,移动性管理,会话管理,用户安全认证,计费等业务。它有多个功能单元组成,可以分为控制面和数据面的功能实体。接入与移动管理单元(Authentication Management Function,AMF),负责用户接入管理,安全认证,还有移动性管理。用户面功能(user plane function,UPF)负责管理用户面数据的传输,流量统计等功能。
地面站:负责转发卫星基站和核心网之间的信令和业务数据。
新空口为终端和基站之间的无线链路。
Xn接口为5G基站和5G基站之间的接口,主要用于切换等信令交互。
NG接口为5G基站和5G核心网之间接口,主要交互核心网的NAS等信令,以及用户的业务数据。
终端设备与网络设备之间常通过频分双工(frequency division duplex,FDD)或时分双工(time division duplex,TDD)进行双向的信息传输。例如,FDD传输模式下,终端设备根据网络设备配置的下行链路(down link,DL)部分带宽(bandwidth part,BWP)和上行链路(up link,UL)BWP,可以在同一时域单元同时进行上行传输和下行传输;TDD传输模式下,终端设备和网络设备复用同一BWP,因此不能在同一时域资源上既进行上行传输又进行下行传输。一般地面蜂窝系统倾向于基于TDD进行通信,其原因包括:1.上行信息和下行信息采用同一频段,相对于FDD来说可以节省一半的频带;2.通过实现灵活的帧结构配置,以适应不同的通信业务场景,例如在下行负载重的场景,增加下行时隙数量的配置,在上行负载中的场景,增加上行时隙数量的配置等;3.网络设备在接收上行信息和下行信息时不需要使用收发隔离器,降低了设备复杂度,并且接收和发送链路可以共用中/射频模块,降低了设备成本。
然而,由于卫星通信系统中的往返时延(round trip delay,RTD)通常较大,为了避免RTD较大带来上下行干扰的问题,终端与卫星常采用FDD进行通信。因此,如何在卫星通信系统中实现基于TDD的通信是本申请所要解决的问题。
目前,NR系统采用的帧结构的周期为10ms,其中的时隙个数由子载波间隔(subcarrier spacing,SCS)确定,例如SCS为120kHz时,时隙个数为80个,参见图2a所示的基于TDD的帧结构的图案(pattern),NR系统的帧结构在一个周期内包括如图2a所示的80个时隙,该80个时隙中包括多个上行时隙、多个下行时隙和多个保护时隙。
当上述NR系统采用的帧结构应用于卫星通信系统时,以卫星通信系统中终端设备与网络设备之间的RTD为29个时隙为例,如图2b所示,网络设备按照网络设备下行定时发送下行信息,终端设备接收网络设备发送的下行信息的时间晚于下行信息发送时间的14.5个时隙,也即终端设备下行定时晚于网络设备下行定时14.5个时隙,终端设备提前21个时隙发送上行信息,以使网络设备在对应的上行时隙中接收终端设备发送的上行信息。参见图2b,网络设备在时隙#60~#67发送的下行信息,落入终端设备上行定时的上行时隙(如时隙#80~87),而终端设备上行定时的时隙#80~87用于传输上行信息,因此,时隙#60~#67存在上下行碰撞。可见,NR系统现有的帧结构无法应用于卫星通信系统。
针对RTD较长的通信场景,例如上述卫星通信系统的通信场景,为避免网络设备(例如卫星)和终端设备进行通信时存在上下行碰撞的问题,本申请实施例引入适用于RTD较长的通信场景的帧结构(同下文中的第一帧结构),该帧结构的周期与RTD接近,例如帧结构的周期与RTD之间的时间差小于一个时间单元,从而避免上下行碰撞的问题,提高通信系统的可靠性。
为便于理解本申请实施例,首先对本申请中涉及到的术语作简单说明。
1、时间单元:比如可以是时隙(slot)、子帧(sub frame)、符号(symbol)、或者其他未来定义的时间单元。需注意,时间单元是时域的一种计量单位,并不一定是最小的时间单元。
在NR中,时隙为调度单元。下文中将以时隙作为时间单元的一例来描述本申请实施例所提供的方法。可以理解的是,下文实施例中涉及时隙的描述也可以替换为其他的时间单元,如子帧、符号等。本申请实施例对此不作限定。
2、帧或无线帧(frame):无线通信的传输单位。
3、帧结构:也称作无线帧结构,是定义时域信号传输结构的无线通信物理层的特征。网络设备和终端设备之间可以通过帧结构约束的时域资源进行无线通信。
帧结构约束的时域资源上可以包括上行时间单元、下行时间单元、保护时间单元等。
可以理解的是,网络设备可以在下行时间单元向终端设备发送下行信息,终端设备可以在上行时间单元向网络设备发送上行信息,在下行传输切换至上行传输时,网络设备发送的下行信息到达各终端设备的时间不同,需要设置保护时间单元保证所有终端设备均收到了网络设备发送的下行信息,进而各终端设备才能在即将到来的上行时间单元同时发送上行信息,即实现上行同步。
其中,一个或者多个保护时间单元或者可以称为保护间隔(guard period,GP)、保护时间(guard period,GT)等,本申请对此不作限定。下文中以时隙作为时间单元的一例来描述本申请实施例所提供的方法时,上行时间单元可以为上行时隙U,下行时间单元可以为下行时隙D,保护时间单元可以为保护时隙S。
4、上下行切换时间:终端设备从接收状态切换到发送状态所需的时间,或者从发送状态切换到接收状态所需要的时间。如下表1作为一例示出了分别在频率范围(frequency range,FR)1和FR2下,终端设备从接收状态切换到发送状态所需的最小时间NRx-Tx,以及终端设备从发送状态切换到接收状态所需要的最小时间NTx-Rx,例如,终端设备在频率范围(frequency range,FR)1,从接收状态切换到发送状态或者从发送状态切换到接收状态的时间不小于25600Tc。
表1
为便于理解本申请实施例,做出如下几点说明。
第一,在下文示出的实施例中,第一、第二、第三以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的帧结构、波束、配置信息、对应关系或地面点等。
第二,“预定义”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,也可以通过信令预配置,比如网络设备通过信令预配置等方式来实现,本申请对于其具体的实现方式不做限定。
本申请实施例中预设资源可以是预定义的资源,或者可以是预配置的资源,或者基站通过无线资源控制(radio resource control,RRC)和/或下行控制信息(downlink control information,DCI)指示的资源。
第四,本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
第五,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
下面将结合附图对本申请实施例提供的通信方法进行说明。
应理解,下文仅为便于理解和说明,主要以终端设备和网络设备之间的交互为例对本申请实施例所提供的方法进行说明。该终端设备例如可以是图1所示的卫星通信系统中的终端,网络设备可以是图1所示的通信系统中的卫星。
但应理解,这不应对本申请提供的方法的执行主体构成任何限定。只要能够通过运行有本申请实施例提供的方法的代码的程序,以执行本申请实施例提供的方法,便可以作为本申请实施例提供的方法的执行主体。例如,下文实施例所示的终端设备也可以替换为终端设备中的部件,比如芯片、芯片系统或其他能够调用程序并执行程序的功能模块;下文实施例所示的网络设备也可以替换为网络设备中的部件,比如芯片、芯片系统或其他能够调用程序并执行程序的功能模块。
图3为本申请实施例提供的通信方法100的示意性交互流程图。如图3所示,该方法100可以包括S110和S120。下面对方法100中的各个步骤进行说明。
S110,终端设备确定第一帧结构,该第一帧结构包括至少一个上行时间单元、至少一个下行时间单元和至少一个保护时间单元,该至少一个上行时间单元与该至少一个下行时间单元之间间隔该至少一个保护时间单元,该第一帧结构的周期与第一波束的RTD之间的时间差小于一个时间单元,该第一波束为网络设备与该终端设备之间通信所使用的波束。
S120-1,网络设备采用第一帧结构向终端设备发送下行信息。相应的,终端设备采用第一帧结构接收网络设备发送的下行信息。
S120-2,终端设备采用第一帧结构向网络设备发送上行信息。相应的,网络设备采用第一帧结构接收终端设备发送的上行信息。
可选的,上述S120-1和S120-2可以择一执行;或者,上述S120-1和S120-2可以分别执行,例如,网络设备采用第一帧结构向终端设备发送下行信息,且终端设备采用第一帧结构向网络设备发送上行信息,又例如,终端设备采用第一帧结构接收网络设备发送的下行信息,并响应于接收的下行信息,采用第一帧结构向网络设备发送上行信息。本申请对此不作限定。
网络设备常基于多个波束实现通信覆盖,每个波束可以覆盖一个或多个终端设备。结合图4所示,本申请实施例中的终端设备可以是卫星的波束覆盖的多个终端设备中的一个。
第一波束可以是用于下行通信的波束,如图4所示,卫星通过第一波束向终端设备发送下行信息。但是,本申请并不对此进行限定,例如第一波束可以是上行通信的波束,此种情况下,终端设备一般部署有多天线/天线阵列,以形成第一波束与网络设备进行通信。
第一波束的RTD可以是第一波束覆盖的第一地面点的RTD,参见图4。第一地面点可以是第一波束覆盖的任意一个地面点,例如第一地面点可以是第一波束在地面覆盖区域内距离网络设备最近的地面点,相应的,第一波束的RTD为第一波束中所有地面点的RTD中最小的RTD(即RTDmin)。当然,本申请并不对此进行限定,例如,第一地面点还可以是第一波束在地面覆盖区域内距离网络设备最远的地面点,相应的,第一波束的RTD为第一波束中所有地面点的RTD中 最大的RTD(即RTDmax),或者,第一地面点可以是第一波束在地面覆盖区域内所有地面点中与网络设备的距离为中值的地面点,相应的,第一波束的RTD为(RTDmax+RTDmin)/2。
应理解,第一地面点的RTD与第一地面点的卫星仰角相关,该第一地面点的卫星仰角(也称作第一波束的仰角)为第一地面点所在的地平面与第一连接线之间的夹角,该第一连接线为第一地面点与网络设备之间的虚拟连接线。
为了确保通信系统中不存在上下行碰撞的问题,本申请实施例中的第一帧结构的周期应尽量接近于第一波束的RTD。一般来说第一帧结构的周期应为时间单元的整数倍,基于此,第一帧结构的周期尽量接近于第一波束的RTD是指第一帧结构的周期与第一波束的RTD之间的时间差小于一个时间单元。
示例性的,第一帧结构的周期P满足如下公式(1):
P=int(RTD/Ls)﹡Ls             (1)
其中,int为取整函数,Ls为时间单元的长度。其中取整函数int可以用于实现向上取整、向下取整或者四舍五入中的一种。举例而言,int函数实现为向上取整函数ceil时,假设RTD=5.2ms,Ls=1ms,则第一帧结构的周期P为6ms,假设RTD=5.2ms,Ls=0.25ms,则第一帧结构的周期P为5.25ms。
可以理解的是,时间单元的长度可以与SCS相关。
例如,在第一波束的RTD能够被时隙的长度整除时,第一帧结构的周期包括的时隙数为第一波束的RTD被时隙的长度整除后的商;又例如,在第一波束的RTD不能被时隙的长度整除时,第一波束的RTD除以时隙的长度得到非整数,再对非整数取整得到第一帧结构的周期包括的时隙数。
基于上述RTD与卫星仰角之间的关系,网络设备所采用的不同卫星仰角下的波束,呈现如图5所示的第一卫星仰角、第二卫星仰角、第三卫星仰角下,波束的分布图。在同一卫星仰角下的波束,其RTD相同,也即,网络设备与同一卫星仰角下的波束覆盖的各终端设备之间进行通信使用的帧结构的周期均相同。卫星仰角越大的波束RTD也越大,相应的,帧结构的周期也越大,例如第一卫星仰角下的波束对应的帧结构的周期大于第二卫星仰角下的波束对应的帧结构的周期,第二卫星仰角下的波束对应的帧结构的周期大于第三卫星仰角下的波束对应的帧结构的周期。但应理解,本申请并不限定同一卫星仰角下,网络设备与波束覆盖的各终端设备之间进行通信使用的帧结构相同。
图6给出了帧结构的周期相同,帧结构的时间单元分布方式不同的几种示例。帧结构示例1中,时隙#0~#8均为下行时隙D,时隙#9~#10均为保护时隙S,时隙#11为上行时隙U;帧结构示例2中,时隙#0~#4均为下行时隙D,时隙#5~#6均为保护时隙S,时隙#7~#11均为上行时隙U;帧结构示例3中,时隙#0为下行时隙D,时隙#1~#2均为保护时隙S,时隙#3~#11均为上行时隙U。
在一些实施例中,帧结构(包括上述第一帧结构)可以与通信业务相关,例如,在下行链路负载大(downlink,DL)-heavy的业务中,采用图6中的帧结构示例1,在上行链路负载大(uplink,UL)-heavy的业务中,采用图6中的帧结构示例3,在上下行负载均衡的业务(或者说对称业务)中,采用图6中的帧结构示例2。
图6仅为一种示例,本申请并不排除图6所示帧结构以外的各可能的帧结构,例如时隙#0~#1为下行时隙、时隙#2为保护时隙、时隙#3为上行时隙、时隙#4~#5为下行时隙、时隙#6为保护时隙、时隙#7~#11为上行时隙。
本申请实施例对第一帧结构中上行时间单元的数量、下行时间单元的数量、保护时间单元的数量不作限定,或者说对上行时间单元、下行时间单元、保护时间单元之间的数量配比不作限定。
为了确保与网络设备进行通信的各终端设备之间均不存在上下行冲突,网络设备需要等待各终端设备均接收到下行信息后,再接收各终端设备的上行信息,保护时间单元的个数可以基于第一波束的差分(differential)RTD确定,以得到满足时间长度的保护间隔,同时避免保护间隔过大对频谱效率的影响。
在一些实施例中,保护时间单元的个数为差分RTD与上下行切换时间之和。其中差分RTD 还可以表述为第一波束的最大RTD(即RTDmax)和最小的RTD(即RTDmin)之差,第一波束的最大RTD(即RTDmax)和最小的RTD(即RTDmin)在上述实施例中已经说明,此处不再赘述。
参见图7,以第一帧结构为上述帧结构示例2、第一波束的RTD为12个时隙、保护间隔为2个时隙为例。网络设备根据网络设备的下行定时,在时隙#0~#4发送下行信息,终端设备根据终端设备的下行定时在时隙#0~#4接收网络设备发送的下行信息,并根据终端设备的上行定时,提前RTD在时隙#6~#11发送上行信息;进一步地,网络设备根据网络设备的下行定时,在时隙#12~#16发送下行信息……结合图7所示,网络设备与终端设备使用第一帧结构进行通信时,不存在上下行冲突。
在上述S110中,终端设备确定第一帧结构,包括确定第一帧结构的周期和/或第一帧结构中各类型时间单元的数量和/或分布。
针对上述S110需要说明的是,终端设备确定第一帧结构可以包括但不限于以下几种可能的示例:
示例一,网络设备向终端设备发送第一配置信息,该第一配置信息包括第一帧结构的周期。例如网络设备向终端设备发送SIB信令,SIB信令中,TDD上/下行图案参数(TDD-UL-DL-Pattern)中的上/下行帧结构周期参数(DL-UL-TransmissionPeriodicity)指示第一帧结构的周期。
应理解,示例一仅以SIB信令承载第一配置信息为例,并不应理解为对本申请的任何限定。例如第一配置信息还可以承载于任意已知的或者未知(新增)的信令中。
还应理解,网络设备发送的第一配置信息所包括的第一帧结构的周期可以是基于上述公式(1)确定的。
示例二,终端设备确定第一波束的标识,并根据第一波束的标识在第一对应关系中确定第一帧结构的周期。
在一种实施例中,参见如下表2,第一对应关系包括至少一个波束标识(如表2中的波束标识0~N)和至少一个帧结构的周期(如表2中的P1~PN),该至少一个波束标识和至少一个帧结构的周期一一对应。终端设备可以将第一对应关系中与第一波束的标识对应的帧结构的周期确定为第一帧结构的周期。
表2
在另一种实施例中,参见如下表3,第一对应关系包括至少一个波束标识(如表3中的0~N)和至少一个RTD(如表3中的4ms~8ms),至少一个波束标识和至少一个RTD一一对应。终端设备可以从第一对应关系中确定与第一波束的标识对应的RTD,该RTD即为第一波束的RTD,进而根据该第一波束的RTD确定第一帧结构的周期,例如终端设备采用上述公式(1)根据该RTD确定第一帧结构的周期。
表3
应理解,上述示例二中的第一对应关系可以是终端设备中预定义的;或者第一对应关系可以是预配置的,例如网络设备预先向终端设备发送的信令进行配置的;或者第一对应关系可以是协议定义的,本申请对此不作限定。
在上述示例二中,终端设备确定第一波束的标识可以是基于同步信号块(synchronization signal block,SSB)确定的。例如,在SSB波束与信道状态信息参考信号(channel state information reference signal,CSI-RS),物理下行共享信道(physical downlinkshared channel,PDSCH)等采用的波束相同的场景下,SSB中的SSB索引可以用于从网络设备的多个波束中确定第一波束,也即SSB索引与第一波束的标识具有对应关系。
示例三,终端设备根据星历和/或全球导航卫星系统(global navigation satellite system,GNSS),确定第一帧结构的周期。例如,终端设备可以根据星历和/或GNSS推算得到第一波束的RTD,进而基于上述公式(1),根据该第一波束的RTD计算得到第一帧结构的周期。
上述示例一可以实现对第一帧结构的周期的直接指示,便于终端设备获取第一帧结构的周期,上述示例二和示例三不需要网络设备配置第一帧结构的周期,节省了信令开销。
在上述示例一至示例三中,第一帧结构中各类型时间单元(包括上行时间单元、下行时间单元和保护时间单元)的数量和/或分布可以是基于通信业务确定的,如前所述,通信业务包括但不限于DL-heavy的业务、UL-heavy的业务、对称业务等;第一帧结构中各类型时间单元的数量和/或分布可以是预定义的,例如预先定义有不同帧结构周期对应的各类型时间单元的数量和/或分布,当终端设备基于上述示例一、示例二或示例三确定第一帧结构的周期后,根据终端设备中预定义的规则,确定第一帧结构中各类型时间单元的数量和/或分布;或者,第一帧结构中各类型时间单元的数量和/或分布可以是网络设备预先通过信令配置的,例如网络设备预先向终端设备配置有不同帧结构周期对应的各类型时间单元的数量和/或分布,当终端设备基于上述示例一、示例二或示例三确定第一帧结构的周期后,根据终端设备中预定义的规则,确定第一帧结构中各类型时间单元的数量和/或分布;或者,第一帧结构中各类型时间单元的数量和/或分布可以是网络设备通过信令配置的,例如网络设备向终端设备发送SIB信令,SIB信令中TDD上/下行图案参数(TDD-UL-DL-Pattern)还包括第一帧结构中各类型时间单元的数量和/或分布。
示例四,网络设备向终端设备发送第二配置信息,该第二配置信息包括帧结构标识,终端设备根据帧结构标识在第二对应关系中确定第一帧结构。需要说明的是,第二对应关系包括至少一个帧结构标识和至少一个帧结构,至少一个帧结构标识与至少一个帧结构一一对应,该至少一个帧结构之间在周期和/或时间单元分布方式上存在差异。参见如下表4帧结构标识0~2分别对应周期P0下不同通信业务(DL-heavy、对称、UL-heavy)的帧结构,帧结构标识3对应。周期P1下的帧结构。
表4
例如,网络设备可以基于多个波束与各终端设备进行通信,多个波束对应M个帧结构的周期,M个帧结构的周期中第i个帧结构的周期与Wi个时间单元分布方式对应,那么第二对应关系至少包括个帧结构,该个帧结构,以及每个帧结构对应的帧结构标识。例如图5所示多个波束对应3个帧结构的周期,且每个帧结构的周期对应如图6所示的三种通信业务场景下的时间单元分布方式,则第二对应关系至少包括9个帧结构以及该9个帧结构根本对应的帧结构标识。
示例五,终端设备确定第一波束的标识,并根据第一波束的标识确定第三对应关系,该第三对应关系包括至少一个帧结构标识与至少一个帧结构,该至少一个帧结构标识与至少一个帧结构一一对应;网络设备向终端设备发送第三配置信息,该第三配置信息包括帧结构标识,终端设备可以根据第三配置信息中的帧结构标识在第三对应关系中确定第一帧结构。
在上述示例五中,预定义、预配置、或者协议定义了至少一个第三对应关系,每个第三对应 关系对应一个波束(或者说波束标识)。
以同一帧结构的周期包括图6所示的三种时间单元分布方式为例,第一波束对应的第三对应关系如下表5所示:
表5
上述示例五中,终端设备确定第一波束的标识的实现方式与上述示例二中的类似,此处不再赘述。
可选的,第二配置信息和第三配置信息均可以是SIB信令中TDD上/下行图案参数(TDD-UL-DL-Pattern)中的帧格式指示(frameFormatIndicator)参数。当然,本申请并不对此进行限定,例如第二配置信息和/或第三配置信息还可以承载于任意已知的或者未知(新增)的信令中。
上述示例四和示例五相对于通过SIB信令指示第一帧结构的周期、上行时间单元的个数、下行时间单元的个数等信息,指示帧结构的标识,降低了信令开销。进一步地,示例五相对于示例四,帧结构标识的值更小,进而指示帧结构标识的第三配置信息的信令开销比第二配置信息的信令开销更小。
图8为本申请实施例提供的通信方法200的示意性流程图。如图8所示,该方法200,在上述方法100所示的S110之前还可以包括:
S210,网络设备向终端设备发送帧结构配置信息。
需要说明的是,帧结构配置信息可以用于配置第一帧结构。在上述示例一中,帧结构配置信息可以包括第一配置信息;在上述示例四中,帧结构配置信息可以包括第二配置信息;在上述示例五中,帧结构配置信息可以包括第三配置信息。
在上述示例一至示例三中,帧结构配置信息还可以包括指示第一帧结构的时间单元分布方式的信息,例如指示上行时间单元的个数、下行时间单元的个数、上行时间单元的个数和下行时间单元的个数之比、保护时间单元的个数、第一波束的最大RTD和最小RTD等中的至少之一,其中第一波束的最大RTD和最小RTD可以用于确定第一帧结构中保护时间单元的个数。
在一些实施例中,网络设备向终端设备发送帧结构配置信息之前,还需要确定第一帧结构的周期和/或时间单元的分布方式。例如,网络设备可以确定自身发送下行信息所采用的第一波束的标识,并根据第一波束的标识在第一对应关系中确定第一帧结构的周期;又例如,网络设备可以根据星历和/或GNSS确定第一帧结构的周期;再例如,网络设备可以根据通信业务确定第一帧结构的时间单元的分布方式。
其中,第一对应关系可以是网络设备中预定义的或者协议定义的,本申请对此不作限定。
因此,本申请实施例中,基于网络设备与终端设备之间通信所使用的第一波束的RTD,约束网络设备与终端设备之间通信采用的第一帧结构的周期,使第一帧结构的周期与第一波束的RTD之间的时间差小于一个时间单元,使得网络设备与终端设备采用第一帧结构进行通信时避免上下行碰撞。
进一步地,第一帧结构的周期与第一波束的RTD之间的时间差小于一个时间单元,实现网络设备与终端设备之间避免上下行碰撞,此种情况下,不需要通过上行时间单元和下行时间单元之间的保护间隔,来避免网络设备与终端设备之间的上下行碰撞,减小了保护时间单元的个数,增加了频谱效率。
以上,结合图3至图8详细说明了本申请实施例提供的方法。以下,结合图9至图10详细说明本申请实施例提供的装置。
图9为本申请实施例提供的一种通信装置的示意性框图。如图9所示,该装置300可以包括:处理单元310和收发单元320。
可选地,该通信装置300可对应于上文方法实施例中的终端设备,例如,可以为终端设备,或者配置于终端设备中的部件(如,芯片或芯片系统等)。
应理解,该通信装置300可对应于根据本申请实施例的图3或图8所示的方法中的终端设备,通信装置300可以包括用于执行图3中的方法100、图8中的方法200中终端设备执行的方法的单元。并且,该通信装置300中的各单元和上述其他操作和/或功能分别为了实现图3或图8中的方法的相应流程。
其中,处理单元310可以用于确定第一帧结构,该第一帧结构包括至少一个上行时间单元、至少一个下行时间单元和至少一个保护时间单元,该至少一个上行时间单元与该至少一个下行时间单元之间间隔该至少一个保护时间单元,该第一帧结构的周期与第一波束的往返时延RTD之间的时间差小于一个时间单元,该第一波束为网络设备与该通信装置之间通信所使用的波束;该收发单元320可以用于与该网络设备采用该第一帧结构进行通信。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
可选地,该通信装置300可对应于上文方法实施例中的网络设备,例如,可以为网络设备,或者配置于网络设备中的部件(如,芯片或芯片系统等)。
应理解,该通信装置300可对应于根据本申请实施例的图3或图8所示的方法中的网络设备,通信装置300可以包括用于执行图3中的方法100、图8中的方法200中网络设备执行的方法的单元。并且,该通信装置300中的各单元和上述其他操作和/或功能分别为了实现图3或图8中的方法的相应流程。
其中,处理单元310可以用于确定第一帧结构,该第一帧结构包括至少一个上行时间单元、至少一个下行时间单元和至少一个保护时间单元,该至少一个上行时间单元与该至少一个下行时间单元之间间隔该至少一个保护时间单元,该第一帧结构的周期与第一波束的RTD之间的时间差小于一个时间单元,该第一波束为该通信装置与该终端设备之间通信所使用的波束;收发单元320可以用于向终端设备发送帧结构配置信息,该帧结构配置信息用于配置第一帧结构;该收发单元320还用于与该终端设备采用该第一帧结构进行通信。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该通信装置300为终端设备时,该通信装置300中的收发单元310可以通过收发器实现,例如可对应于图10中所示的通信装置400中的收发器410,该通信装置300中的处理单元320可通过至少一个处理器实现,例如可对应于图10中示出的通信装置400中的处理器420。
当该通信装置300为网络设备时,该通信装置300中的收发单元310可以通过收发器实现,例如可对应于图10中所示的通信装置400中的收发器410,该通信装置300中的处理单元320可通过至少一个处理器实现,例如可对应于图10中示出的通信装置400中的处理器420。
当该通信装置300为配置于通信设备(如终端设备或网络设备)中的芯片或芯片系统时,该通信装置300中的收发单元310可以通过输入/输出接口、电路等实现,该通信装置300中的处理单元320可以通过该芯片或芯片系统上集成的处理器、微处理器或集成电路等实现。
图10为本申请实施例提供的通信装置的另一示意性框图。如图10所示,该通信装置400可以包括:收发器410、处理器420和存储器430。其中,收发器410、处理器420和存储器430通过内部连接通路互相通信,该存储器430用于存储指令,该处理器420用于执行该存储器430存储的指令,以控制该收发器410发送信号和/或接收信号。
应理解,该通信装置400可以对应于上述方法实施例中的终端设备或网络设备,并且可以用于执行上述方法实施例中终端设备或网络设备执行的各个步骤和/或流程。可选地,该存储器430可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。存储器430可以是一个单独的器件,也可以集成在处理器420中。该处理器420可以用于执行存储器430中存储的指令,并且当该处理器420执行存储器中存储的指令时,该处理器420用于执行上述与终端设备或网络设备对应的方法实施例的各个步骤和/或流程。
可选地,该通信装置400是前文实施例中的终端设备。
可选地,该通信装置400是前文实施例中的网络设备。
其中,收发器410可以包括发射机和接收机。收发器410还可以进一步包括天线,天线的数量可以为一个或多个。该处理器420和存储器430与收发器410可以是集成在不同芯片上的器件。如,处理器420和存储器430可以集成在基带芯片中,收发器410可以集成在射频芯片中。该处理器420和存储器430与收发器410也可以是集成在同一个芯片上的器件。本申请对此不作限定。
可选地,该通信装置400是配置在终端设备中的部件,如芯片、芯片系统等。
可选地,该通信装置400是配置在网络设备中的部件,如芯片、芯片系统等。
其中,收发器420也可以是通信接口,如输入/输出接口、电路等。该收发器420与处理器410和存储器430都可以集成在同一个芯片中,如集成在基带芯片中。
本申请还提供了一种处理装置,包括至少一个处理器,该至少一个处理器用于执行存储器中存储的计算机程序,以使得该处理装置执行上述方法实施例中终端设备或网络设备执行的方法。
本申请实施例还提供了一种处理装置,包括处理器和输入输出接口。该输入输出接口与该处理器耦合。该输入输出接口用于输入和/或输出信息。该信息包括指令和数据中的至少一项。该处理器用于执行计算机程序,以使得该处理装置执行上述方法实施例中终端设备或网络设备执行的方法。
本申请实施例还提供了一种处理装置,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于从该存储器调用并运行该计算机程序,以使得该处理装置执行上述方法实施例中终端设备或网络设备执行的方法。
本申请实施例还提供了一种通信系统,包括终端设备和网络设备,该终端设备用于执行上述任一方法实施例中终端设备侧的方法,该网络设备用于执行上述任一方法实施例中网络设备侧的方法。
应理解,上述处理装置可以是一个或多个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM, EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行上述方法实施例中终端设备或网络设备执行的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行上述方法实施例中终端设备或网络设备执行的方法。
根据本申请实施例提供的方法,本申请还提供一种通信系统,该通信系统可以包括前述的终端设备和网络设备。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (40)

  1. 一种通信方法,其特征在于,包括:
    第一通信装置确定第一帧结构,所述第一帧结构包括至少一个上行时间单元、至少一个下行时间单元和至少一个保护时间单元,所述至少一个上行时间单元与所述至少一个下行时间单元之间间隔所述至少一个保护时间单元,所述第一帧结构的周期与第一波束的往返时延RTD之间的时间差小于一个时间单元,所述第一波束为网络设备与所述第一通信装置之间通信所使用的波束;
    所述第一通信装置与所述网络设备采用所述第一帧结构进行通信。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置接收所述网络设备发送的第一配置信息,所述第一配置信息包括所述第一帧结构的周期。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置确定所述第一波束的标识;
    所述第一通信装置根据所述第一波束的标识在第一对应关系中确定所述第一帧结构的周期;其中,
    所述第一对应关系包括至少一个波束标识和至少一个帧结构的周期,所述至少一个波束标识与所述至少一个帧结构的周期一一对应。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置根据星历和/或全球导航卫星系统GNSS,确定所述第一帧结构的周期。
  5. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置接收所述网络设备发送的第二配置信息,所述第二配置信息包括帧结构标识;
    所述第一通信装置根据所述帧结构标识在第二对应关系中确定所述第一帧结构;其中,
    所述第二对应关系包括至少一个帧结构标识与至少一个帧结构,所述至少一个帧结构标识与所述至少一个帧结构一一对应。
  6. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置确定所述第一波束的标识;
    所述第一通信装置根据所述第一波束的标识确定第三对应关系,所述第三对应关系包括至少一个帧结构标识与至少一个帧结构,所述至少一个帧结构标识与所述至少一个帧结构一一对应;
    所述第一通信装置接收所述网络设备发送的第三配置信息,所述第三配置信息包括帧结构标识;
    所述第一通信装置根据所述帧结构标识在所述第三对应关系中确定所述第一帧结构。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述RTD为所述第一波束覆盖的第一地面点的RTD,所述第一地面点为所述第一波束覆盖的地面点中,与所述网络设备距离最近的地面点。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,所述RTD与所述第一波束的仰角相关,所述第一波束的仰角为第一波束覆盖的第一地面点所在的地平面与第一连接线之间的夹角,所述第一连接线为所述第一地面点与所述网络设备之间的虚拟连接线。
  9. 根据权利要求1至8任一项所述的方法,其特征在于,所述第一帧结构的周期基于所述RTD和时间单元的长度确定。
  10. 根据权利要求9所述的方法,其特征在于,所述第一帧结构的周期P满足如下公式(1):
    P=int(RTD/Ls)﹡Ls      (1)
    其中,int为取整函数,Ls为时间单元的长度。
  11. 根据权利要求1至10任一项所述的方法,其特征在于,所述保护时间单元的个数基于所述第一波束的差分RTD确定。
  12. 根据权利要求11所述的方法,其特征在于,所述保护时间单元的个数为所述差分RTD与上下行切换时间之和。
  13. 根据权利要求1至12任一项所述的方法,其特征在于,所述第一通信装置确定第一帧结构,还包括:
    所述第一通信装置确定所述上行时间单元的个数和所述下行时间单元的个数。
  14. 一种通信方法,其特征在于,包括:
    第二通信装置发送帧结构配置信息,所述帧结构配置信息用于配置第一帧结构,所述第一帧结构包括至少一个上行时间单元、至少一个下行时间单元和至少一个保护时间单元,所述至少一个上行时间单元与所述至少一个下行时间单元之间间隔所述至少一个保护时间单元,所述第一帧结构的周期与第一波束的RTD之间的时间差小于一个时间单元,所述第一波束为所述第二通信装置与终端设备之间通信所使用的波束;
    所述第二通信装置与所述终端设备采用所述第一帧结构进行通信。
  15. 根据权利要求14所述的方法,其特征在于,所述帧结构配置信息包括所述第一帧结构的周期。
  16. 根据权利要求14或15所述的方法,其特征在于,还包括:
    所述第二通信装置确定所述第一波束的标识;
    所述第二通信装置根据所述第一波束的标识在第一对应关系中确定所述第一帧结构的周期;其中,
    所述第一对应关系包括至少一个波束标识和至少一个帧结构的周期,所述至少一个波束标识与所述至少一个帧结构的周期一一对应。
  17. 根据权利要求14或15所述的方法,其特征在于,还包括:
    所述第二通信装置根据星历和/或全球导航卫星系统GNSS,确定所述第一帧结构的周期。
  18. 根据权利要求14所述的方法,其特征在于,所述帧结构配置信息包括帧结构标识,所述帧结构标识用于在第二对应关系中确定所述第一帧结构,所述第二对应关系包括至少一个帧结构标识与至少一个帧结构,所述至少一个帧结构标识与所述至少一个帧结构一一对应。
  19. 根据权利要求14所述的方法,其特征在于,所述帧结构配置信息包括帧结构标识,所述帧结构标识用于在所述第一波束对应的第三对应关系中确定所述第一帧结构,所述第三对应关系包括至少一个帧结构标识与所述第一波束下的至少一个帧结构,所述至少一个帧结构标识与所述至少一个帧结构一一对应。
  20. 根据权利要求14至19任一项所述的方法,其特征在于,所述RTD与所述第一波束的仰角相关,所述第一波束的仰角为第一波束覆盖的第一地面点所在的地平面与第一连接线之间的夹角,所述第一连接线为所述第一地面点与所述第二通信装置之间的虚拟连接线。
  21. 根据权利要求14至20任一项所述的方法,其特征在于,所述第一帧结构的周期基于所述RTD和时间单元的长度确定。
  22. 根据权利要求21所述的方法,其特征在于,所述第一帧结构的周期P满足如下公式(1):
    P=int(RTD/Ls)﹡Ls       (1)
    其中,int为取整函数,Ls为时间单元的长度。
  23. 根据权利要求14至22任一项所述的方法,其特征在于,所述保护时间单元的个数基于所述第一波束的差分RTD确定。
  24. 根据权利要求23所述的方法,其特征在于,所述保护时间单元的个数为所述差分RTD与上下行切换时间之和。
  25. 根据权利要求14至24任一项所述的方法,其特征在于,还包括:
    所述第二通信装置确定所述上行时间单元的个数和所述下行时间单元的个数。
  26. 一种通信装置,其特征在于,包括:
    处理单元,用于确定第一帧结构,所述第一帧结构包括至少一个上行时间单元、至少一个下行时间单元和至少一个保护时间单元,所述至少一个上行时间单元与所述至少一个下行时间单元之间间隔所述至少一个保护时间单元,所述第一帧结构的周期与第一波束的往返时延RTD之间的时间差小于一个时间单元,所述第一波束为网络设备与所述通信装置之间通信所使用的波束;
    收发单元,用于与所述网络设备采用所述第一帧结构进行通信。
  27. 根据权利要求26所述的装置,其特征在于,所述收发单元还用于:
    接收所述网络设备发送的第一配置信息,所述第一配置信息包括所述第一帧结构的周期。
  28. 根据权利要求26所述的装置,其特征在于,所述处理单元还用于:
    确定所述第一波束的标识;
    根据所述第一波束的标识在第一对应关系中确定所述第一帧结构的周期;其中,
    所述第一对应关系包括至少一个波束标识和至少一个帧结构的周期,所述至少一个波束标识与所述至少一个帧结构的周期一一对应。
  29. 根据权利要求26所述的装置,其特征在于,所述处理单元还用于:
    根据星历和/或全球导航卫星系统GNSS,确定所述第一帧结构的周期。
  30. 根据权利要求26所述的装置,其特征在于,
    所述收发单元还用于接收所述网络设备发送的第二配置信息,所述第二配置信息包括帧结构标识;
    所述处理单元还用于根据所述帧结构标识在第二对应关系中确定所述第一帧结构;其中,
    所述第二对应关系包括至少一个帧结构标识与至少一个帧结构,所述至少一个帧结构标识与所述至少一个帧结构一一对应。
  31. 根据权利要求26所述的装置,其特征在于,
    所述处理单元还用于确定所述第一波束的标识;
    所述处理单元还用于根据所述第一波束的标识确定第三对应关系,所述第三对应关系包括至少一个帧结构标识与至少一个帧结构,所述至少一个帧结构标识与所述至少一个帧结构一一对应;
    所述收发单元还用于接收所述网络设备发送的第三配置信息,所述第三配置信息包括帧结构标识;
    所述处理单元还用于根据所述帧结构标识在所述第三对应关系中确定所述第一帧结构。
  32. 一种通信装置,其特征在于,包括:
    处理单元,用于确定第一帧结构,所述第一帧结构包括至少一个上行时间单元、至少一个下行时间单元和至少一个保护时间单元,所述至少一个上行时间单元与所述至少一个下行时间单元之间间隔所述至少一个保护时间单元,所述第一帧结构的周期与第一波束的RTD之间的时间差小于一个时间单元,所述第一波束为所述通信装置与终端设备之间通信所使用的波束
    收发单元,用于向终端设备发送帧结构配置信息,所述帧结构配置信息用于配置所述第一帧结构;
    所述收发单元还用于与所述终端设备采用所述第一帧结构进行通信。
  33. 根据权利要求32所述的装置,其特征在于,所述帧结构配置信息包括所述第一帧结构的周期。
  34. 根据权利要求32所述的装置,其特征在于,所述帧结构配置信息包括帧结构标识,所述帧结构标识用于在第二对应关系中确定所述第一帧结构,所述第二对应关系包括至少一个帧结构标识与至少一个帧结构,所述至少一个帧结构标识与所述至少一个帧结构一一对应。
  35. 根据权利要求32所述的装置,其特征在于,所述帧结构配置信息包括帧结构标识,所述帧结构标识用于在所述第一波束对应的第三对应关系中确定所述第一帧结构,所述第三对应关系包括至少一个帧结构标识与所述第一波束下的至少一个帧结构,所述至少一个帧结构标识与所述至少一个帧结构一一对应。
  36. 一种通信装置,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至25中任一项所述的方法。
  37. 一种通信系统,其特征在于,包括终端设备和网络设备,所述终端设备用于执行如权利要求1至13中任一项所述的方法,所述网络设备用于执行如权利要求13至25任一项所述的方法。
  38. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机指令,使得安装有所述芯片的设备执行如权利要求1至25中任一项所述的方法。
  39. 一种计算机可读存储介质,其特征在于,用于存储计算机程序指令,所述计算机程序使 得计算机执行如权利要求1至25中任一项所述的方法。
  40. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至25中任一项所述的方法。
PCT/CN2023/102230 2022-07-20 2023-06-25 通信方法、装置、设备以及存储介质 WO2024016942A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210857620.1A CN117499003A (zh) 2022-07-20 2022-07-20 通信方法、装置、设备以及存储介质
CN202210857620.1 2022-07-20

Publications (1)

Publication Number Publication Date
WO2024016942A1 true WO2024016942A1 (zh) 2024-01-25

Family

ID=89616983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/102230 WO2024016942A1 (zh) 2022-07-20 2023-06-25 通信方法、装置、设备以及存储介质

Country Status (2)

Country Link
CN (1) CN117499003A (zh)
WO (1) WO2024016942A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101803262A (zh) * 2007-09-14 2010-08-11 Lm爱立信电话有限公司 蜂窝通信系统中的副帧的改进使用
CN101895331A (zh) * 2010-05-21 2010-11-24 北京大学 卫星移动通信的时分双工通信方法
US20170005741A1 (en) * 2015-07-02 2017-01-05 Qualcomm Incorporated Method and apparatus for efficient data transmissions in half-duplex communication systems with large propagation delays
CN109286938A (zh) * 2017-07-19 2019-01-29 中兴通讯股份有限公司 一种传输信号的方法、基站及终端
CN110943772A (zh) * 2019-10-31 2020-03-31 西南电子技术研究所(中国电子科技集团公司第十研究所) 大跨度天基数据链的时分双工时隙调度方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101803262A (zh) * 2007-09-14 2010-08-11 Lm爱立信电话有限公司 蜂窝通信系统中的副帧的改进使用
CN101895331A (zh) * 2010-05-21 2010-11-24 北京大学 卫星移动通信的时分双工通信方法
US20170005741A1 (en) * 2015-07-02 2017-01-05 Qualcomm Incorporated Method and apparatus for efficient data transmissions in half-duplex communication systems with large propagation delays
CN109286938A (zh) * 2017-07-19 2019-01-29 中兴通讯股份有限公司 一种传输信号的方法、基站及终端
CN110943772A (zh) * 2019-10-31 2020-03-31 西南电子技术研究所(中国电子科技集团公司第十研究所) 大跨度天基数据链的时分双工时隙调度方法

Also Published As

Publication number Publication date
CN117499003A (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
US20210006967A1 (en) Method and device for relay transmission
WO2021043113A1 (zh) 一种通信方法及装置
WO2016101270A1 (zh) 非授权频谱的调度方法、用户设备及基站
US20230275717A1 (en) Technologies for nr coverage enhancement
WO2021088158A1 (zh) 无线通信方法、终端设备和网络设备
WO2020186532A1 (zh) 无线通信方法、终端设备和网络设备
US20200374887A1 (en) Channel transmission method and apparatus, and computer storage medium
KR102298616B1 (ko) 비-트리거-기반 레인징을 위한 절전
US20220394503A1 (en) Wireless communication method and device
WO2024016942A1 (zh) 通信方法、装置、设备以及存储介质
WO2022082511A1 (zh) 无线通信的方法及设备
WO2022198432A1 (zh) 无线通信的方法及设备
US11792831B2 (en) Method and device for signal transmission
WO2022151425A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022126640A1 (zh) 干扰规避方法和基站
WO2023206004A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024093430A1 (en) Data handling based on pdu set configuration
WO2022021293A1 (zh) 信道侦听的方法及设备
WO2022233011A1 (zh) 建立连接的方法和终端设备
WO2022120803A1 (zh) 一种通信方法和装置
WO2024098399A1 (zh) 无线感知的方法及设备
US20240040655A1 (en) Parameter configuration method, terminal device and network device
WO2024022488A1 (zh) 一种感知信号的处理方法、装置、芯片及模组设备
WO2022198433A1 (zh) 无线通信的方法及设备
WO2022027679A1 (zh) 无线通信方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842008

Country of ref document: EP

Kind code of ref document: A1