WO2022120803A1 - 一种通信方法和装置 - Google Patents

一种通信方法和装置 Download PDF

Info

Publication number
WO2022120803A1
WO2022120803A1 PCT/CN2020/135763 CN2020135763W WO2022120803A1 WO 2022120803 A1 WO2022120803 A1 WO 2022120803A1 CN 2020135763 W CN2020135763 W CN 2020135763W WO 2022120803 A1 WO2022120803 A1 WO 2022120803A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
base station
reference signal
resource unit
terminal device
Prior art date
Application number
PCT/CN2020/135763
Other languages
English (en)
French (fr)
Inventor
涂径玄
付霞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/135763 priority Critical patent/WO2022120803A1/zh
Priority to EP20964739.5A priority patent/EP4240091A4/en
Priority to CN202080106500.7A priority patent/CN116458101A/zh
Publication of WO2022120803A1 publication Critical patent/WO2022120803A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication method and apparatus.
  • the long-term evolution of Frequency Division Duplexing (FDD) and 5G New Radio (Long Term Evolution and 5G-New Radio, LNR) sharing technology is to realize Long Term Evolution (Long Term Evolution, LTE) and 5G on a spectrum resource
  • the new wireless (5G-New Radio, NR) spectrum sharing technology of two communication standards can realize the dynamic allocation of the frequency resources according to the respective requirements of LTE and NR. That is, the LTE cell and the NR cell can share resources on the same spectrum. This spectrum belongs to both the LTE cell and the NR cell. It can be considered as the overlapping area of the LTE standard spectrum and the NR standard spectrum, which can maximize the spectrum efficiency.
  • the prior art will adopt the LNR coordination avoidance technology: in the overlapping area of the LTE standard spectrum and the NR standard spectrum, when the LTE base station sends a reference signal, such as a channel state information reference signal (Channel State Information Reference Signal, CSI-RS)
  • CSI-RS Channel State Information Reference Signal
  • the NR base station will notify the REs of the LTE CSI-RS to the User Equipment (UE) of the NR system, so that the UEs of the NR system do not expect NR on these REs Data or demodulate data in the Physical Downlink Shared Channel (PDSCH).
  • UE User Equipment
  • the LTE CSI-RS RE pattern previously sent to the user needs to be reconfigured.
  • the LTE CSI-RS RE pattern previously sent to the user needs to be reconfigured.
  • there is an ambiguous period problem that is, some NR system UEs still use the LTE CSI-RS RE information before the change, and some NR system UEs will use the changed LTE CSI-RS RE information.
  • the new LTE CSI-RS pattern has taken effect in the LTE system
  • some UEs in the NR system still use the LTE CSI-RS RE pattern before the change to avoid it, so that the CSI-RS of the LTE system will The data transmission and reception of these NR system UEs causes interference. Therefore, how to reduce the LTE and NR spectrum conflicts in the ambiguity period during batch user reconfiguration when the reference signal pattern of any one of the systems changes in the dynamic spectrum sharing scenario of LTE and NR is an urgent problem to be solved.
  • an embodiment of the present application provides a communication method, so that the base station schedules the second carrier by avoiding the subframe where the reference signal corresponding to the first carrier is located, thereby reducing the amount of space occupied by the reference signal corresponding to the first carrier.
  • the interference problem occurs.
  • a first aspect provides a communication method, the method comprising: after a first base station acquires time-frequency domain location information of a resource unit that bears a reference signal on a first carrier, the first base station in a first subframe of a second carrier sending data to the terminal device, wherein the first subframe is any subframe other than the subframe in which the resource unit carrying the reference signal is located.
  • the first base station avoids the subframe where the reference signal corresponding to the first carrier is located, and schedules the second carrier, thereby reducing changes in the resource units occupied by the reference signal corresponding to the first carrier. , resulting in interference problems.
  • the first base station may obtain the time-frequency domain location information of the resource unit bearing the reference signal on the first carrier by receiving the first message sent by the second base station.
  • the second base station communicates with the terminal device through the first carrier.
  • the time-frequency domain location information of the resource unit carrying the reference signal on the first carrier obtained by the first base station may be determined by the first base station by itself.
  • the first base station when the first base station determines that the time-frequency domain location information of the resource unit that carries the reference signal on the first carrier is changed, the first base station will perform a change on the second carrier. Data is sent to the terminal device on any subframe other than the subframe in which the resource unit carrying the reference signal is located.
  • the communication method provided by the embodiment of the present application enables the first base station to not schedule the resource carrying the reference signal by not scheduling the resource unit carrying the reference signal if the time-frequency domain position of the resource unit on the first carrier changes during spectrum sharing. subframes of the unit to reduce the interference problem between the modified reference signal and the data on the second carrier.
  • the method further includes: the first base station, according to the time-frequency domain location information of the resource unit carrying the reference signal on the first carrier, corresponds to the second carrier After the resource unit is set to a zero-power resource unit, a second message including the time-frequency domain location information of the zero-power resource unit is sent to the terminal device, and the second message is used to instruct the terminal device not to receive on the zero-power resource unit data of the first base station.
  • the first base station by stopping the scheduling of the subframes carrying the reference signal, the first base station can reduce the number of problems caused by the change of the time-frequency position of the resource unit of the reference signal during the ambiguous period of batch reconfiguration of UEs. Interference problems in data reception.
  • the method further includes: receiving, by the first base station, a third message sent by the terminal device, where the third message indicates that the terminal device has completed zeroing of the reference signal Configuration of power resource units.
  • the first base station when the first base station sends data to the terminal device, the first base station will not send data to the terminal device in the zero-power resource unit. In other words, it is actually the first base station that sends data to the terminal device on the first resource unit of the second carrier. Any resource unit other than the resource unit of .
  • the reference signal includes a channel state information reference signal CSI-RS.
  • the communication method provided by the embodiment of the present application enables the first base station to stop scheduling the subframe on the second carrier corresponding to the resource unit carrying the reference signal on the first carrier when scheduling the second carrier during batch reassignment of users. , thereby reducing the problem of spectrum conflict between the first carrier and the second carrier when the resource unit occupied by the reference signal changes.
  • a communication device in a second aspect, includes: a processing unit and a transceiver unit.
  • the processing unit is configured to acquire time-frequency domain location information of the resource unit carrying the reference signal on the first carrier
  • the transceiver unit is configured to send data to the terminal on the first subframe of the second carrier, where the first subframe is any subframe other than the subframe in which the resource unit carrying the reference signal is located.
  • the transceiver unit is further configured to receive a first message sent by a second base station, where the first message includes a reference signal borne on the first carrier of the second base station The time-frequency domain location information of the resource unit.
  • the processing unit will acquire, from the first message, the time-frequency domain location information of the resource unit carrying the reference signal on the first carrier.
  • the second base station communicates with the terminal device through the first carrier.
  • the processing unit may determine the time-frequency domain location information of the resource unit carrying the reference signal on the first carrier by the processing unit by itself.
  • the processing unit when the processing unit determines that the time-frequency domain location information of the resource unit carrying the reference signal on the first carrier has changed, the processing unit schedules the second carrier when Stop scheduling the subframes that carry the resource elements of the reference signal.
  • the processing unit of the apparatus is further configured to, according to the time-frequency domain location information of the resource unit carrying the reference signal on the first carrier,
  • the resource units are set to zero power resource units.
  • the transceiver unit is further configured to send a second message including time-frequency domain location information of the zero-power resource unit to the terminal device, where the second message is used to instruct the terminal device not to receive the second carrier on the zero-power resource unit The data.
  • the transceiver unit of the apparatus is further configured to receive a third message sent by the terminal device, where the third message indicates that the terminal device has completed the configuration of the zero-power resource unit.
  • the reference signal includes a channel state information reference signal CSI-RS.
  • a communication device in a third aspect, includes a processor.
  • the processor is configured to support the communication device to perform the functions of the first aspect or the second aspect and various implementations thereof, and in a possible design, the communication device may further include a transceiver for supporting the communication The device receives or sends information.
  • the communication device may further include a memory for coupling with the processor and storing necessary program instructions and data in the communication device.
  • the communication device includes a memory and a processor, the memory is used for storing a computer program, and the processor is used for calling and running the computer program from the memory, so that the communication device executes the above-mentioned first aspect or the second aspect and the same. Any of the various communication methods in the various implementations.
  • a computer-readable storage medium is provided, and a computer program is stored in the computer-readable storage medium.
  • the computer program is executed, it is used to execute any possible implementation of the first aspect or the second aspect. method in method.
  • a communication apparatus for performing the method in any possible implementation manner of the first aspect or the second aspect.
  • a communication device including at least one processor and an interface circuit. It should be understood that the computer program involved in the present application is executed in the at least one processor, so that the communication apparatus executes the method in any possible implementation manner of the first aspect or the second aspect.
  • a computer program product is provided, the computer program product should execute the computer program code of the method in any possible implementation manner of the first aspect or the second aspect.
  • FIG. 1 is a schematic diagram of a communication system applicable to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a communication apparatus provided by an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of another communication apparatus provided by an embodiment of the present application.
  • the technical solutions of the embodiments of the present application are mainly applied to the LNR communication system in which the 5G NR system and the 4G LTE system share a spectrum, the LNR frequency division duplex (frequency division duplex, FDD) system, and the like.
  • the terminal device involved in the embodiments of this application may also be referred to as a terminal, which may be a device with a wireless transceiver function, which may be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it may also be deployed on water (such as ships, etc.); can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • a terminal device may be a user equipment (UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • the UE includes a handheld device, a vehicle-mounted device, a wearable device or a computing device with a wireless communication function.
  • the terminal device may also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices.
  • the UE may be a mobile phone, a tablet computer, or a computer with a wireless transceiver function.
  • the terminal device may also be a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control, a wireless terminal in unmanned driving, a wireless terminal in telemedicine, intelligent Wireless terminals in power grids, wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the device for realizing the function of the terminal may be a terminal; it may also be a device capable of supporting the terminal to realize the function, such as a chip system, and the device may be installed in the terminal.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the network device involved in the embodiments of the present application includes a base station (base station, BS), which may be a device deployed in a wireless access network and capable of wirelessly communicating with a terminal.
  • the base station may have various forms, such as a macro base station, a micro base station, a relay station, and an access point.
  • the base station involved in the embodiment of the present application may be a base station in 5G or a base station in LTE, where the base station in 5G may also be called a transmission reception point (transmission reception point, TRP) or gNB.
  • TRP transmission reception point
  • the apparatus for implementing the function of the network device may be a network device; it may also be an apparatus capable of supporting the network device to implement the function, such as a chip system, and the apparatus may be installed in the network device.
  • the device for implementing the functions of the network equipment is the network equipment, and the network equipment is a base station as an example to describe the technical solutions provided by the embodiments of the present application.
  • the first base station may be a 5G base station, and correspondingly, the second base station is a 4G base station.
  • the first base station may be a 4G base station
  • the second base station may be a 5G base station, which is not limited in this application.
  • the first carrier and the second carrier may belong to the same base station, or may belong to different base stations, that is, they are applicable to different communication scenarios, which is not limited in this application.
  • Zero-Power Resource Element (ZP-RE) or Muted Resource Element (MRE): A resource element that does not need to generate and map signals, and can be used for Physical Downlink Shared Channel (Physical Downlink Shared Channel, PDSCH) rate matching.
  • the ZP-RE can be a time-frequency resource located in the overlapping area of the LTE carrier and the NR carrier. On this time-frequency resource, the base station of the NR system does not transmit power or sets the transmit power to zero, and the UE of the NR does not receive signals at this location. Or set the received power to zero. However, the base station and the UE of the LTE system can communicate through the specific time-frequency resource.
  • ZP-REs can also be called empty REs for NR.
  • Reference signal pattern The two-dimensional distribution of the REs where the reference signal is located in the time-frequency domain.
  • Reconfiguration ambiguity period During batch reconfiguration of users, the UE and the base station, the LTE side and the NR side have inconsistent understandings of the REs that need to be avoided.
  • FIG. 1 shows a schematic diagram of a wireless communication system 100 according to an embodiment of the present application.
  • the communication system 100 may include two network devices, such as network devices 101 and 102 shown in FIG. 1 .
  • the communication system 100 may also include two terminal devices, such as the terminal devices 103 and 104 shown in FIG. 1 , wherein the terminal device 103 may establish with the 5G network device 101 through dual connectivity (DC) technology or multi-connection technology
  • the terminal device 104 can establish a wireless link with the 4G network device 102 through a dual connectivity (DC) technology or a multi-connection technology.
  • a wireless connection can be established between a terminal device and a network device, and between a terminal device and a terminal device, and wireless communication can be performed, and the sending device can indicate data scheduling information through control information, so that the receiving device can Control messages receive data correctly.
  • the network device 101 may also be a primary base station, and the network device 102 may be, for example, a secondary base station.
  • the network device 101 is the network device when the terminal device 103 initially accesses, and is responsible for the wireless resources between the terminal device 103 and the terminal device 103 .
  • RRC radio resource control
  • the network device 102 may be added during RRC reconfiguration to provide additional radio resources.
  • the network device 101 may also be a 4G network device, and the network device 102 may be a 5G network device, which is not limited in this application.
  • the 4G and 5G network devices may also be the same.
  • the network device may transmit or receive LTE carriers and may also transmit or receive NR carriers, which is not limited in this application.
  • the terminal device 103 is connected to the network device 101, that is, the terminal device and the network device work through the NR standard frequency spectrum
  • the terminal device 104 is connected to the network device 102, that is, the terminal device and the network device.
  • the terminal device may also be the same terminal device, that is, the terminal device may support both LTE and NR standards, which is not limited in this application.
  • the communication system 100 may include at least one network device, the NR side and the NR cell/carrier may belong to the same base station, and at the same time, the LTE side and the LTE cell/carrier, the NR side and the NR cell/carrier may be understood
  • the LTE side and the LTE cell/carrier may belong to different base stations respectively.
  • the base station can either transmit the carrier in the NR standard spectrum, or transmit the carrier in the LTE standard spectrum. Send carrier. Therefore, the first carrier and the second carrier in this application are not limited to be sent by two base stations or one base station, that is, this application does not make any limitation on this.
  • the following will take the frame structure in the LTE and NR systems as an example, and firstly introduce the physical frame in the air interface communication.
  • a physical frame generally refers to a protocol data unit of the data link layer.
  • a physical frame is composed of several parts that perform different functions.
  • the frame structure refers to a frame that can form different repetition periods according to different information transmitted.
  • TD-LTE In order to meet the requirements of uplink and downlink time conversion in time division multiplexing, TD-LTE has designed a special radio frame structure. In the TD-LTE time domain, there are two types of frame structures for simultaneous transmission in a periodic manner and the number of uplink and downlink subframes configured as standard.
  • the radio frame duration is 10ms and the half frame duration is 5ms. consisting of half-frames. Each half frame consists of 5 subframes with a duration of 1ms, and each subframe consists of 2 slots with a duration of 0.5ms. Each slot can be composed of 6 or 7 CP+OFDM according to the different durations of the cyclic prefix CP. Symbol composition.
  • the 5G frame adopts a layered structure, which consists of two parts: fixed architecture and flexible architecture.
  • the fixed architecture is the same as 4G, consisting of a radio frame with a duration of 10ms and a subframe with a duration of 1ms.
  • Each frame is divided into two fields, the first field includes subframes 0-4, and the second field includes subframes 5-9.
  • Each subframe consists of several time slots.
  • a system frame number (system frame number, SFN) may range from 0 to 1023, that is, a basic data transmission period is 1024 frames.
  • the subframe number ranges from 0 to 9, that is, the transmission period of some control information is 10 subframes.
  • the first carrier may be an LTE carrier, and the second carrier may be an NR carrier.
  • the first carrier may be an NR carrier, and the second carrier may be an LTE carrier.
  • scheduling a certain subframe by the base station may mean that the base station schedules uplink or downlink data in the subframe.
  • the fact that the base station does not schedule or stops scheduling a certain subframe may mean that the base station does not schedule uplink or downlink data in the subframe, but it is still possible to send reference signals and the like.
  • FIG. 2 is a schematic flowchart of a communication method 200 provided by an embodiment of the present application.
  • the base station acquires time-frequency domain location information of the resource unit that bears the reference signal on the first carrier.
  • the base station can communicate with the terminal through both the LTE carrier and the NR carrier.
  • the reference signal carried on the first carrier may be generated by the base station and serve one or more terminal devices.
  • the base station can determine by itself the time-frequency domain location information of the resource unit carrying the reference signal on the first carrier.
  • the base station sends data to the terminal on the first subframe of the second carrier, where the first subframe is any subframe except the subframe in which the resource unit bearing the reference signal is located.
  • the base station when the base station sends the second carrier to the terminal device, the base station stops the subframe where the resource element carrying the reference signal is located by obtaining the time-frequency domain location information of the resource element carrying the reference signal on the first carrier. Scheduling, sending data on other subframes.
  • the base station determines that the subframe in which the resource unit carrying the reference signal on the first carrier is located is subframe n.
  • the base station sends data on the second carrier, the base station avoids subframe n and sends the data carried on other subframes in the subframe n. data on the second carrier.
  • time-frequency domain location information of the resource unit carrying the reference signal on the first carrier that the base station obtains may also be obtained through the first message sent by other base stations, such as the schematic flowchart of the communication method 300 shown in FIG. 3 . .
  • the second base station sends the reference signal carried on the first carrier to the terminal device.
  • the second base station sends a first message to the first base station, where the first message includes the time-frequency domain location information of the resource unit carrying the reference signal on the first carrier sent by the second base station to the terminal device.
  • the first base station may be an LTE base station or an NR base station, or vice versa. This is not limited.
  • the two steps of S310 and S320 do not have a strict sequence, and the sequence of actions cannot be expressed according to the size of the numbers.
  • the second base station can also send the first base station to the first base station. After the time-frequency domain location information of the resource unit of the signal, the reference signal carried on the first carrier is sent to the terminal device.
  • the first base station After the first base station receives the first message sent by the second base station, the first base station performs, for example, step 220 of the method 200 shown in FIG.
  • the first base station when the first base station sends data to the terminal device, it will stop scheduling the subframe where the resource unit carrying the reference signal on the first carrier is located.
  • the first base station may send data in any other subframe.
  • the base station determines that the subframe where the resource unit carrying the reference signal on the first carrier is located is subframe n, and when the base station sends data on the second carrier, the base station avoids subframe n.
  • the first base station may send data carried on the second carrier in any other subframe.
  • the first message may be a cross-standard communication message or other messages used for communication between the first base station and the second base station, which is not limited in this application.
  • the base station since the base station stops scheduling the resource element subframes carrying the reference signal on the second carrier, the base station can perform interference-free avoidance for the RE where the reference signal is located when the base station transmits the second carrier , reducing the spectrum conflict between LTE and NR in spectrum sharing.
  • FIG. 4 is a schematic flowchart of another communication method 400 provided by an embodiment of the present application.
  • the method is described by taking non-co-site as an example.
  • the second base station sends the time-frequency domain location information of the resource unit carrying the reference signal on the first carrier to the first base station through the first message.
  • the first message includes time-frequency domain location information of the resource unit carrying the reference signal on the first carrier.
  • S420 The first base station sends data carried in the first subframe of the second carrier to the terminal device.
  • the first base station obtains the time-frequency domain location information of the resource unit carrying the reference signal on the first carrier through the first message.
  • the data carried on the second carrier is sent to the terminal device on the frame.
  • the first base station sets the corresponding resource unit on the second carrier as a zero-power resource unit according to the time-frequency location information of the received resource unit of the reference signal.
  • the first base station sends the zero-power resource unit location information to the terminal device through a second message.
  • the terminal device sends a third message to the first base station, where the third message indicates that the terminal device has completed the configuration of the zero-power resource unit.
  • the first base station sends data to the terminal device on the first resource unit of the second carrier.
  • the first resource unit is any resource unit other than the resource unit bearing the reference signal in the subframe where the resource unit bearing the reference signal is located.
  • the first base station may no longer stop scheduling the subframes of the resource unit bearing the reference signal on the first carrier , but use zero-power resource units to reduce the interference between the reference signal and the data.
  • this embodiment of the present application can be used in the process of initial establishment of the first base station.
  • the first base station receives the resource unit of the reference signal sent from the second base station for the first time.
  • the embodiment of the present application can be used when the first base station receives the first message from the second base station for the first time, and the first base station adopts the method of stopping scheduling the resource unit bearing the reference signal. subframes to reduce signal interference.
  • the embodiment of the present application can also be used in the batch reconfiguration process of terminal equipment.
  • the batch reconfiguration process of terminal equipment occurs after the time-frequency position of the resource unit of the reference signal of the second base station changes.
  • the first base station needs to determine that the time-frequency position of the resource unit of the reference signal of the second base station has changed, and then reset the zero-power resource unit according to the changed time-frequency position of the resource unit of the reference signal. Therefore, the first message may include the changed time-frequency location information of the resource unit of the reference signal of the second base station.
  • the method in the embodiment of the present application can be applied to the initial configuration of the zero-power resource unit by the base station, or the reconfiguration of the zero-power resource unit, which is not limited in the present application.
  • the method of the embodiment of the present application may be implemented in the overlapping area.
  • the first carrier and the second carrier In the overlapping area of the first carrier, the time-frequency position of the resource unit carrying the reference signal on the first carrier and the setting of the resource unit corresponding to the second carrier are actually the same time-frequency position.
  • the terminal device may not send the third message to the first base station.
  • the reference signal may be a channel state information reference signal (Channel State Information Reference Signal, CSI-RS).
  • CSI-RS Channel State Information Reference Signal
  • the reference signal may be other reference signals existing in the LTE system or the NR system, for example, may be other reference signals coexisting in the LTE system and the NR system. This application does not make any limitation on this.
  • the second message sent by the first base station to the terminal device may be high-level signaling, for example, may be radio resource control signaling (Radio Resource Control, RRC). ) or other signaling.
  • RRC Radio Resource Control
  • the communication method provided by the embodiment of the present application enables the first base station to stop scheduling the subframes of the resource units that carry the reference signals on the first carrier during batch reassignment of users, thereby reducing the time when the resource units occupied by the reference signals change.
  • FIG. 5 is a schematic block diagram of a communication apparatus provided by an embodiment of the present application.
  • the apparatus 500 may include a processing unit 510 and a transceiver unit 520 .
  • the processing unit 510 is configured to acquire time-frequency domain location information of the resource unit carrying the reference signal on the first carrier.
  • the transceiver unit 520 is configured to send data to the terminal on the first subframe of the second carrier, where the first subframe is a subframe other than the subframe where the resource unit carrying the reference signal is located.
  • the transceiver unit 520 may also be configured to receive a first message sent by the second base station, where the first message includes time-frequency domain location information of the resource unit carrying the reference signal on the first carrier of the second base station.
  • the processing unit 510 of the apparatus is specifically configured to acquire, according to the first message, the time-frequency domain location information of the resource unit carrying the reference signal on the first carrier.
  • the processing unit 510 determines that the time-frequency domain location information of the resource unit carrying the reference signal on the first carrier is changed, the processing unit stops scheduling the subframe where the resource unit carrying the reference signal is located.
  • the processing unit 510 of the apparatus described in this embodiment is further configured to set the corresponding resource unit on the second carrier to a zero-power resource unit according to the time-frequency domain location information of the resource unit that bears the reference signal on the first carrier.
  • the transceiver unit 520 is further configured to send a second message to the terminal device, where the second message includes the time-frequency domain location information of the zero-power resource unit, and instructs the terminal device not to receive data of the second carrier on the zero-power resource unit .
  • the second message sent by the transceiver unit to the terminal device may be high-level signaling, for example, may be radio resource control signaling (Radio Resource Control, RRC) or other signaling.
  • RRC Radio Resource Control
  • the transceiver unit 520 of the apparatus is further configured to receive a third message sent by the terminal device, where the third message indicates that the terminal device has completed the configuration of the zero-power resource unit.
  • the third message may be a response message sent by the terminal device.
  • the reference signal received in the transceiver unit 520 or the reference signal processed by the processing unit includes the channel state information reference signal CSI-RS.
  • FIG. 6 is a schematic diagram of a communication apparatus 60 provided by an embodiment of the present application.
  • the apparatus 60 may include a processor 61 (ie, an example of a processing unit) and a memory 62 .
  • the memory 62 is used for storing instructions
  • the processor 61 is used for executing the instructions stored in the memory 62, so that the apparatus 60 implements the steps performed by the network device in the method corresponding to FIG. 2 , FIG. 3 or FIG. 4 .
  • the device 60 may also include an input port 66 (ie, an example of a transceiver unit) and an output port 64 (ie, another example of a transceiver unit).
  • the processor 61, the memory 62, the input port 66 and the output port 64 can communicate with each other through an internal connection path to transmit control and/or data signals.
  • the memory 62 is used to store a computer program, and the processor 61 can be used to call and run the computer program from the memory 62 to control the input port 66 to receive signals, control the output port 64 to send signals, and complete the network device in the above method. step.
  • the memory 62 can be integrated in the processor 61 or can be provided separately from the processor 61 .
  • the input port 66 is a receiver
  • the output port 64 is a transmitter.
  • the receiver and the transmitter may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the input port 66 is an input interface
  • the output port 64 is an output interface
  • the functions of the input port 66 and the output port 64 can be considered to be implemented by a transceiver circuit or a dedicated chip for transceiver.
  • the processor 61 can be considered to be implemented by a dedicated processing chip, a processing circuit, a processor or a general-purpose chip.
  • a general-purpose computer may be used to implement the communication device provided by the embodiments of the present application.
  • the program codes that will implement the functions of the processor 61 , the input port 66 and the output port 64 are stored in the memory 62 , and the general-purpose processor implements the functions of the processor 61 , the input port 66 and the output port 64 by executing the codes in the memory 62 .
  • each unit or unit in the communication apparatus 60 may be used to perform each action or processing process performed by the network device in the above method, and here, in order to avoid redundant description, the detailed description thereof is omitted.
  • the present application also provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the instructions are executed on the computer, the computer is made to execute the network device in the above-mentioned methods as shown in FIG. 2 to FIG. 4 . the various steps performed.
  • the present application also provides a computer program product containing instructions, when the computer program product is run on a computer, the computer program product causes the computer to perform each step performed by the network device in the methods shown in FIG. 2 to FIG. 4 .
  • the processor may be a central processing unit (central processing unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), dedicated integrated Circuit (application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-only memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically programmable Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct rambus RAM Direct rambus RAM, DR RAM
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions or computer programs. When the computer instructions or computer programs are loaded or executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server or data center by wire (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that contains one or more sets of available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution, and the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法和装置,该方法包括:基站获取到第一载波上承载参考信号的资源单元的时频域位置信息后,在第二载波上选择除了承载参考信号的资源单元以外的任一子帧来发送数据。本申请实施例提供的通信方法,通过基站不调度第二载波的承载参考信号的资源单元的子帧,可以使基站发送的第二载波的数据可以无干扰的被终端设备接收。

Description

一种通信方法和装置 技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法和装置。
背景技术
频分双工(Frequency Division Duplexing,FDD)的长期演进与5G新无线(Long Term Evolution and 5G-New Radio,LNR)共享技术是在一段频谱资源上实现长期演进(Long Term Evolution,LTE)和5G新无线(5G-New Radio,NR)两种通信制式的频谱共享技术,该技术可以实现按LTE和NR的各自需求动态分配该频资源。即,LTE小区和NR小区可在同一段频谱上进行资源共享,该段频谱既属于LTE小区也属于NR小区,可以认为是LTE标准频谱和NR标准频谱的重叠区域,可以使频谱效率最大化。但是为了避免干扰,不允许在同一个资源单元(Resource Element,RE)上既发送NR数据,又发送LTE参考信号,当然的,同一个RE上也不允许既发送LTE数据,又发送NR参考信号。因此,现有技术会采取LNR的规避协调技术:在LTE标准频谱和NR标准频谱的重叠区域中,当LTE基站发送参考信号,例如信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)时,承载LTE参考信号的RE不调度NR的数据,NR基站会将LTE CSI-RS的RE通知给NR系统的用户设备(User Equipment,UE),以便于NR系统的UE不在这些RE上期待NR数据或解调物理下行共享信道(Physical Downlink Shared Channel,PDSCH)中的数据。
但当LTE CSI-RS图样发生变化时,需要对之前发送给用户的LTE CSI-RS RE图样进行重新配置。在对NR系统UE批量重配期间,存在模糊期问题,即:部分NR系统UE依然使用未变化前的LTE CSI-RS RE信息,部分NR系统UE会使用变化后的LTE CSI-RS RE信息。可见,在重配期间,虽然LTE系统已经生效了新的LTE CSI-RS图样,但是部分NR系统UE依然使用变化前的LTE CSI-RS RE图样进行规避,从而使得LTE系统的CSI-RS会对这些NR系统UE的数据收发产生干扰。因此,如何在LTE和NR频谱动态共享场景下,当其中任意一个系统的参考信号图样发生变化时,在批量用户重配期间,减少模糊期中存在的LTE和NR频谱冲突,是亟待解决的问题。
发明内容
有鉴于此,本申请实施例提供一种通信方法,使得基站通过避开第一载波对应的参考信号所在的子帧,对第二载波进行调度,从而减少与第一载波对应的参考信号占用的资源单元发生变化时,产生的干扰问题。
第一方面,提供了一种通信方法,该方法包括:第一基站获取第一载波上承载参考信号的资源单元的时频域位置信息后,该第一基站在第二载波的第一子帧上向终端设备发送数据,其中,该第一子帧为承载所述参考信号的资源单元所在的子帧之外的任一子帧。
本申请实施例提供的通信方法,通过第一基站避开第一载波对应的参考信号所在的子帧,对第二载波进行调度,从而减少与第一载波对应的参考信号占用的资源单元发生变化时,产生的干扰问题。
结合第一方面,在第一方面的某些实现方式中,第一基站可以通过接收第二基站发送的第一消息来获取第一载波上承载参考信号的资源单元的时频域位置信息。
应理解,在该实现方式中,第二基站通过该第一载波与终端设备进行通信。结合第一方面,在第一方面的某些实现方式中,第一基站获取第一载波上承载参考信号的资源单元的时频域位置信息可以是该第一基站自行确定的。
结合第一方面,在第一方面的某些实现方式中,第一基站确定该第一载波上承载参考信号的资源单元的时频域位置信息有变更时,该第一基站会在第二载波上承载参考信号的资源单元所在的子帧之外的任一子帧上向终端设备发送数据。
本申请实施例提供的通信方法,使第一基站在频谱共享时,若第一载波上承载参考信号的资源单元的时频域位置发生变化时,第一基站可以通过不调度承载参考信号的资源单元的子帧来减少变更的参考信号与第二载波上的数据之间的干扰问题。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该第一基站根据所述第一载波上承载参考信号的资源单元的时频域位置信息将第二载波上对应的资源单元设置为零功率资源单元后,向终端设备发送包括该零功率资源单元的时频域位置信息的第二消息,通过该第二消息指示该终端设备在该零功率资源单元上不接收该第一基站的数据。
本申请实施例提供的通信方法,通过停止调度承载参考信号的子帧,可以使得第一基站在批量重配UE的模糊期内减少由于该参考信号的资源单元的时频位置的变更带来的数据接收的干扰问题。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该第一基站接收该终端设备发送的第三消息,该第三消息指示该终端设备已经完成该参考信号的零功率资源单元的配置。
应理解,当该第一基站向终端设备发送数据时,第一基站不会在该零功率资源单元中向终端设备发送数据。换句话说,实际上是第一基站在其第二载波的第一资源单元上向终端设备发送数据,应理解,第一资源单元为承载参考信号的资源单元所在的子帧中,承载参考信号的资源单元之外的任一资源单元。
结合第一方面,在第一方面的某些实现方式中,该参考信号包括信道状态信息参考信号CSI-RS。
本申请实施例提供的通信方法,使得在批量重配用户期间,第一基站在调度第二载波时,通过停止调度第二载波上对应于第一载波上承载参考信号的资源单元所在的子帧,从而减少该参考信号占用的资源单元发生变化时产生的第一载波与第二载波的频谱冲突问题。
第二方面,提供了一种通信装置,该装置包括:处理单元和收发单元。该处理单元用于获取第一载波上承载参考信号的资源单元的时频域位置信息,该收发单元用于在第二载波的第一子帧上向终端发送数据,其中,该第一子帧为承载所述参考信号的资源单元所在的子帧之外的任一子帧。
结合第二方面,在第二方面的某些实现方式中,该收发单元还用于接收第二基站发送 的第一消息,该第一消息包括该第二基站的该第一载波上承载参考信号的资源单元的时频域位置信息。
应理解,当接收到该第一消息后,该处理单元会从该第一消息中获取到第一载波上承载参考信号的资源单元的时频域位置信息。
还应理解的是,在该实现方式中,第二基站通过该第一载波与终端设备进行通信。
结合第二方面,在第二方面的某些实现方式中,该处理单元获取第一载波上承载参考信号的资源单元的时频域位置信息可以是该处理单元自行确定的。
结合第二方面,在第二方面的某些实现方式中,该处理单元确定该第一载波上承载参考信号的资源单元的时频域位置信息有变更时,该处理单元在调度第二载波时停止调度承载该参考信号的资源单元的子帧。
结合第二方面,在第二方面的某些实现方式中,该装置的处理单元还用于根据所述第一载波上承载参考信号的资源单元的时频域位置信息将第二载波上对应的资源单元设置为零功率资源单元。该收发单元还用于向终端设备发送包括该零功率资源单元的时频域位置信息的第二消息,该第二消息用于指示该终端设备在该零功率资源单元上不接收该第二载波的数据。
结合第二方面,在第二方面的某些实现方式中,该装置的收发单元还用于接收终端设备发送的第三消息,该第三消息指示终端设备已经完成了零功率资源单元的配置。
结合第二方面,在第二方面的某些实现方式中,该参考信号包括信道状态信息参考信号CSI-RS。
第三方面,提供了一种通信装置,该通信装置的结构中包括处理器。该处理器被配置为支持该通信装置执行上述第一方面或第二方面及其各种实现方式中的功能,在一个可能的设计中,该通信装置还可以包括收发器,用于支持该通信装置接收或发送信息。
在一个可能的设计中,该通信装置还可以包括存储器,该存储器用于与处理器耦合,保存该通信装置中必要的程序指令和数据。
或者说,该通信装置包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该通信装置执行上述第一方面或第二方面中及其各种实现方式中的任一种通信方法。
第四方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当该计算机程序被执行时,用于执行第一方面或第二方面中的任意可能的实现方式中的方法。
第五方面,提供了一种通信装置用于执行第一方面或第二方面中的任意可能的实现方式中的方法。
第六方面,提供了一种通信装置,该通信装置包括至少一个处理器和接口电路。应理解,本申请涉及的计算机程序在该至少一个处理器中执行,以使得该通信装置执行第一方面或第二方面中的任意可能的实现方式中的方法。
第七方面,提供了一种计算机程序产品,该计算机程序产品应执行第一方面或第二方面中的任意可能的实现方式中的方法的计算机程序代码。
附图说明
图1是适用于本申请实施例的通信系统的示意图。
图2是本申请实施例提供的一种通信方法的示意性流程图。
图3是本申请实施例提供的另一种通信方法的示意性流程图。
图4是本申请实施例提供的另一种通信方法的示意性流程图。
图5是本申请实施例提供的一种通信装置的示意性框图。
图6是本申请实施例提供的另一种通信装置的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案主要应用于5G NR系统和4G LTE系统共享一段频谱的LNR通信系统、LNR频分双工(frequency division duplex,FDD)系统等。
本申请实施例中涉及到的终端设备还可以称为终端,可以是一种具有无线收发功能的设备,其可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端设备可以是用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。其中,UE包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备。示例性地,UE可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请实施例中,用于实现终端的功能的装置可以是终端;也可以是能够支持终端实现该功能的装置,例如芯片系统,该装置可以被安装在终端中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
本申请实施例涉及到的网络设备包括基站(base station,BS),可以是一种部署在无线接入网中能够和终端进行无线通信的设备。其中,基站可能有多种形式,比如宏基站、微基站、中继站和接入点等。示例性地,本申请实施例涉及到的基站可以是5G中的基站或LTE中的基站,其中,5G中的基站还可以称为发送接收点(transmission reception point,TRP)或gNB。本申请实施例中,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备,以网络设备是基站为例,描述本申请实施例提供的技术方案。
下面将结合附图详细说明本申请实施例。应理解,在下文示出的实施例中,第一、第二等仅为便于区分不同的对象,而不应对本申请构成任何限定。
同时,在本申请实施例当中,第一基站可以是5G基站,相应的,第二基站为4G基站。也可以第一基站为4G基站,第二基站为5G基站,本申请对此不做限定。
此外,在本申请实施例当中,第一载波和第二载波可以同属于一个基站,也可以属于不同基站,即适用于不同的通信场景,本申请并不限定。
为便于理解本申请实施例,下面首先对本申请中涉及的几个术语做简单介绍。
零功率资源单元(Zero-Power Resource Element,ZP-RE)或哑资源粒(Muted Resource Element,MRE):不需要产生并映射信号的资源单元,可以用于物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的速率匹配。换句话说,对于NR系统,发送LTE信号且不发送NR信号的RE位置可以设置为ZP-RE。ZP-RE可以是一块位于LTE载波和NR载波重叠区域的时频资源,在该时频资源上,NR系统的基站不发送功率或者将发送功率设置为零,NR的UE不在该位置上接收信号或者将接收功率设置为零。但是,LTE系统的基站和UE可以通过该特定的时频资源进行通信。ZP-RE对于NR来说也可以称为空RE。
参考信号图样:参考信号所在的RE在时频域上的二维分布。
重配模糊期:在批量重配用户期间,UE和基站、LTE侧和NR侧对于需要规避的RE理解不一致的时间段。
图1示出了本申请实施例的无线通信系统100的示意图。
如图所示,该通信系统100可以包括两个网络设备,例如图1中所示的网络设备101和102。该通信系统100还可以包括两个终端设备,例如图1中所示的终端设备103和104,其中终端设备103可以通过双连接(dual connectivity,DC)技术或者多连接技术与5G网络设备101建立无线链路,终端设备104可以通过双连接(dual connectivity,DC)技术或者多连接技术与4G网络设备102建立无线链路。
应理解,在本申请实施例中,终端设备与网络设备之间、终端设备与终端设备之间可以建立无线连接,进行无线通信,发送设备可以通过控制信息指示数据的调度信息,以便接收设备根据控制信息正确地接收数据。其中,网络设备101也可以为主基站,网络设备102例如可以为辅基站,在此情况下,网络设备101为终端设备103初始接入时的网络设备,负责与终端设备103之间的无线资源控制(radio resource control,RRC)通信,网络设备102可以是RRC重配置时添加的,用于提供额外的无线资源。或者网络设备101也可以为4G网络设备,网络设备102可以为5G网络设备,本申请不做限定。此外,在本申请实施例中,4G与5G网络设备也可以是同一个,在这种情况下该网络设备可以发送或接收LTE载波,同时也可以发送或接收NR载波,本申请不做限定。
应理解,在图1中,终端设备103与网络设备101连接,即该终端设备与网络设备之间通过NR标准频谱工作,终端设备104与网络设备102连接,即该终端设备与网络设备之间通过LTE标准频谱工作。此外,在本申请实施例中,终端设备也可以是同一个终端设备,即该终端设备可以支持LTE和NR两种制式,本申请对此不做任何限定。
此外,在本申请中,该通信系统100可以包括至少一个网络设备,NR侧和NR小区/载波可以属于同一个基站,同时,LTE侧和LTE小区/载波、NR侧和NR小区/载波可以理解为一个概念,LTE侧和LTE小区/载波、也可以分别属于不同的基站,当本申请用于一个基站的场景时,该基站既可以在NR标准频谱下发送载波,也可以在LTE标准频谱下发送载波。因此,本申请中的第一载波和第二载波并不限定是由两个基站或者一个基站发送,即本申请对此不做任何限定。
为了方便阐述,下面将以LTE和NR系统中的帧结构为例,首先介绍一下空口通信中的物理帧。
物理帧一般是指数据链路层的协议数据单元。物理帧由几个执行不同功能的部分组成,帧结构是指能够按照传送信息的不同,组成不同的重复周期的帧。为了满足时分复用中的上下行时间转换的要求,TD-LTE设计了专门的无线帧结构。在TD-LTE时域中,以周期方式同时传输、且标准配置上下行子帧数的帧结构有无线帧和半帧2种,无线帧时长10ms,半帧时长5ms,1个无线帧由2个半帧组成。每个半帧由时长1ms的5个子帧组成,每个子帧由时长0.5ms的2个时隙组成,每个时隙可以根据循环前缀CP的不同时长,分别由6个或7个CP+OFDM符号组成。
与4G固定帧结构相比,5G帧结构的最大特点是灵活多变。5G帧采用的是分层结构方式,由固定架构和灵活架构2部分组成。其中固定架构与4G一样,由时长为10ms的无线帧和时长为1ms的子帧组成。每个帧分2个半帧,第一个半帧包含子帧0~4,第二个半帧包含子帧5~9。每个子帧由若干个时隙组成。
在LTE系统或者NR系统中,系统帧序号(system frame number,SFN)的范围可以为0~1023,即基本的数据发送周期为1024个帧。而子帧号的范围为0~9,即部分控制信息的发送周期为10个子帧。
本申请实施例中,第一载波可以是LTE载波,第二载波可以是NR载波。或者,第一载波可以是NR载波,第二载波可以是LTE载波。
本申请实施例中,基站调度某一子帧可以指的是基站会在该子帧内调度上行或者下行数据。基站不调度或者停止调度某一子帧可以指的是基站不会在该子帧内调度上行或者下行数据,但仍然有可能发送参考信号等。
图2是本申请实施例提供的一种通信方法200的示意性流程图。
S210,基站获取第一载波上承载参考信号的资源单元的时频域位置信息。
具体地,当LTE小区与NR小区共基站时,即该基站既可以通过LTE载波也可以通过NR载波与终端进行通信。该第一载波上承载的参考信号可以由该基站产生并服务于一个或者多个终端设备。此时该基站可以自行确定第一载波上承载参考信号的资源单元的时频域位置信息。
S220,该基站在第二载波的第一子帧上向终端发送数据,其中,该第一子帧为除了承载所述参考信号的资源单元所在的子帧之外的任一子帧。
具体而言,当基站向终端设备发送第二载波时,基站通过获取的第一载波上承载参考信号的资源单元的时频域位置信息,将承载所述参考信号的资源单元所在的子帧停止调度,在其他子帧上发送数据。
例如,基站确定第一载波上承载参考信号的资源单元所在的子帧为子帧n,当基站在第二载波上发送数据时,基站会避开子帧n,在其他子帧上发送承载在第二载波上的数据。
应理解,基站获取第一载波上承载参考信号的资源单元的时频域位置信息也可以是通过其他基站发送的第一消息来获取的,例如图3所述的通信方法300的示意性流程图。
S310,第二基站向终端设备发送承载在第一载波上的参考信号。
S320,第二基站向第一基站发送第一消息,该第一消息包括该第二基站向终端设备发送的该第一载波上承载参考信号的资源单元的时频域位置信息。
具体地,当LTE小区与NR小区为非共站时,即存在LTE基站和NR基站共同部署的场景,此时,第一基站可以是LTE基站,也可以是NR基站,反之亦可,本申请对此并不限定。
需要说明的是,S310与S320这两个步骤并没有严格的先后顺序,不可按照数字的大小表示动作的先后,换句话说,第二基站也可以先向第一基站发送第一载波上承载参考信号的资源单元的时频域位置信息后再向终端设备发送第一载波上承载的参考信号。
当第一基站接收到第二基站发送的第一消息后,第一基站执行例如图2所示的方法200的步骤220,即该第一基站向终端设备发送承载在第二载波的第一子帧上的数据,其中,该第一子帧为除了承载所述参考信号的资源单元所在的子帧之外的任一子帧。
换句话说,该第一基站在向终端设备发送数据时,会停止调度第一载波上承载参考信号的资源单元的所在的子帧。该第一基站可以在其他任一子帧上发送数据。
例如,基站确定第一载波上承载参考信号的资源单元所在的子帧为子帧n,当基站在第二载波上发送数据时,基站会避开子帧n。该第一基站可以在其他任一子帧上发送承载在第二载波上的数据。
应注意,在本申请实施例中,第一消息可以是跨制式通信消息或者用于第一基站和第二基站进行通信的其他消息,本申请对此不做任何限定。
因此,通过本申请实施例提供的通信方法,由于基站停止调度第二载波上承载参考信号的资源单元子帧,可以使基站在发送第二载波时,针对参考信号所在的RE进行无干扰的避让,减少了在频谱共享中存在的LTE和NR频谱冲突问题。
图4是本申请实施例提供的另一种通信方法400的示意性流程图。
在本实施例中,以非共站为例介绍该方法。
S410,第二基站通过第一消息将第一载波上承载参考信号的资源单元的时频域位置信息发送给第一基站。
该第一消息中包括所述第一载波上承载参考信号的资源单元的时频域位置信息。
S420,第一基站向终端设备发送承载在第二载波的第一子帧的数据。
具体地,第一基站通过第一消息获取到第一载波上承载参考信号的资源单元的时频域位置信息,在除了承载该参考信号的资源单元的子帧以外的子帧,即第一子帧上向终端设备发送承载在第二载波上的数据。
S430,第一基站根据收到的参考信号的资源单元的时频位置信息将第二载波上对应的资源单元设置为零功率资源单元。
S440,第一基站通过第二消息将零功率资源单元位置信息发送给终端设备。
S450,终端设备向第一基站发送第三消息,该第三消息指示终端设备已经完成了零功率资源单元的配置。
S460,该第一基站在第二载波的第一资源单元上向所述终端设备发送数据。其中,该第一资源单元为承载参考信号的资源单元所在的子帧中,除了承载参考信号的资源单元之外的任一资源单元。
具体来说,当第一基站确定终端设备完成了零功率资源单元的配置后,第一基站在向终端设备发送数据时,可以不再停止调度第一载波上承载参考信号的资源单元的子帧,而是通过零功率资源单元来减少参考信号与数据的干扰。
应理解,本申请实施例可以用在第一基站初始建立的过程中,当第一基站处于初始建立的过程中时,第一基站第一次收到来自第二基站发送的参考信号的资源单元的时频位置信息,换句换说,本申请实施例可以用在第一基站首次接收到来自第二基站的第一消息的情况下,第一基站采用停止调度承载该参考信号的资源单元的子帧来减少信号干扰。
可选的,本申请实施例也可以用在终端设备批量重配置过程中,终端设备批量重配置的过程发生在第二基站的参考信号的资源单元的时频位置发生变化后,为了减少干扰,第一基站需要先确定第二基站的参考信号的资源单元的时频位置发生了变化,随后根据该变化后的参考信号的资源单元的时频位置,重新设置零功率资源单元。因此,第一消息可以包括变化后的第二基站的参考信号的资源单元的时频位置信息。
换句话说,本申请实施例的方法,可以应用于基站初始配置零功率资源单元时,也可以应用于重配置零功率资源单元时,本申请对此不做限定。
需要说明的是,当本申请实施例中的第一载波和第二载波具有重叠区域时,本申请实施例的方法可以是在重叠区域内实施的,此时,在第一载波和第二载波的重叠区域中,第一载波上承载参考信号的资源单元的时频域位置和第二载波对应的资源单元设置其实是同一个时频位置。
应理解,在本实施例当中,若终端设备完成了该零功率资源单元的配置,也可以不向第一基站发送第三消息。
可选的,在本申请实施例中,参考信号可以是信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)。或者该参考信号可以是存在于LTE系统或者NR系统中的其他参考信号,例如可以是并存于LTE系统和NR系统中的其他参考信号本申请对此不作任何限定。
此外,在本申请实施例中,第一基站发送给终端设备的第二消息,本申请也不做任何限定,可以是高层信令,例如,可以是无线资源控制信令(Radio Resource Control,RRC)或其他信令。
本申请实施例提供的通信方法,使得在批量重配用户期间,第一基站通过停止调度承载第一载波上的参考信号的资源单元的子帧,从而减少当参考信号占用的资源单元发生变化时产生的第一基站与第二基站的频谱冲突问题。
以上,结合图2至图4详细说明了本申请实施例提供的方法。以下,结合图5和图6详细说明本申请实施例提供的通信装置。
图5是本申请实施例提供的一种通信装置的示意性框图。如图5所示,该装置500可以包括处理单元510和收发单元520。
处理单元510用于获取第一载波上承载参考信号的资源单元的时频域位置信息。
收发单元520用于在第二载波的第一子帧上向终端发送数据,其中,该第一子帧为除了承载参考信号的资源单元所在的子帧之外的子帧。可选的,该收发单元520还可以用于接收第二基站发送的第一消息,该第一消息包括该第二基站的第一载波上承载参考信号的资源单元的时频域位置信息,此时,该装置的处理单元510具体用于根据该第一消息获取第一载波上承载参考信号的资源单元的时频域位置信息。
可选的,该处理单元510确定第一载波上承载参考信号的资源单元的时频域位置信息有变更时,该处理单元停止调度承载该参考信号的资源单元所在的子帧。
可选的,本实施例所述的装置的处理单元510还用于根据第一载波上承载参考信号的资源单元的时频域位置信息将第二载波上对应的资源单元设置为零功率资源单元。此时,收发单元520还用于向终端设备发送第二消息,该第二消息包括零功率资源单元的时频域位置信息,并指示终端设备在零功率资源单元上不接收第二载波的数据。
同样的,该收发单元发送给终端设备的第二消息,本申请也不做任何限定,可以是高层信令,例如,可以是无线资源控制信令(Radio Resource Control,RRC)或其他信令。
此外,该装置的收发单元520还用于接收该终端设备发送的第三消息,该第三消息表示该终端设备已经完成零功率资源单元的配置。
可选的,该第三消息可以是终端设备发送的响应消息。
可选的,收发单元520中接收的参考信号或处理单元处理的参考信号包括信道状态信息参考信号CSI-RS。
根据前述方法,图6为本申请实施例提供的通信装置60的示意图。
该装置60可以包括处理器61(即,处理单元的一例)和存储器62。该存储器62用于存储指令,该处理器61用于执行该存储器62存储的指令,以使该装置60实现如图2、图3或图4中对应的方法中网络设备执行的步骤。
进一步地,该装置60还可以包括输入口66(即,收发单元的一例)和输出口64(即,收发单元的另一例)。进一步地,该处理器61、存储器62、输入口66和输出口64可以通过内部连接通路互相通信,传递控制和/或数据信号。该存储器62用于存储计算机程序,该处理器61可以用于从该存储器62中调用并运行该计算机程序,以控制输入口66接收信号,控制输出口64发送信号,完成上述方法中网络设备的步骤。该存储器62可以集成在处理器61中,也可以与处理器61分开设置。
可选地,若该通信装置60为通信设备,该输入口66为接收器,该输出口64为发送器。其中,接收器和发送器可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
可选地,若该通信装置60为芯片或电路,该输入口66为输入接口,该输出口64为输出接口。
作为一种实现方式,输入口66和输出口64的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器61可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的通信设备。即将实现处理器61、输入口66和输出口64功能的程序代码存储在存储器62中,通用处理器通过执行存储器62中的代码来实现处理器61、输入口66和输出口64的功能。
其中,通信装置60中各单元或单元可以用于执行上述方法中网络设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
该装置60所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
本申请还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行上述如图2至图4所示的方法中网络设备执行的各个步骤。
本申请还提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行如图2至图4所示的方法中网络设备执行的各个步骤。
应理解,本申请实施例中,该处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-only memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(Random access memory,RAM)可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Souble data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本 申请的范围。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (19)

  1. 一种通信方法,其特征在于,包括:
    第一基站获取第一载波上承载参考信号的资源单元的时频域位置信息;
    所述第一基站在第二载波的第一子帧上向终端设备发送数据,其中,所述第一子帧为除了承载所述参考信号的资源单元所在的子帧之外的任一子帧。
  2. 根据权利要求1所述的方法,第二基站通过所述第一载波与所述终端设备进行通信,其特征在于,所述第一基站获取第一载波上承载参考信号的资源单元的时频域位置信息,包括:
    第一基站接收所述第二基站发送的第一消息,所述第一消息包括所述第一载波上承载参考信号的资源单元的时频域位置信息;
    所述第一基站根据所述第一消息获取所述第一载波上承载参考信号的资源单元的时频域位置信息。
  3. 根据权利要求1所述的方法,所述第一基站通过所述第一载波和所述第二载波与所述终端设备进行通信,其特征在于,所述第一基站获取所述第一载波上承载参考信号的资源单元的时频域位置信息,包括:
    所述第一基站自行确定所述第一载波上承载参考信号的资源单元的时频域位置信息。
  4. 根据权利要求1-3中任一所述的方法,其特征在于,所述第一基站在第二载波的第一子帧上向终端设备发送数据,包括:
    所述第一基站确定所述第一载波上承载参考信号的资源单元的时频域位置信息有变更;
    所述第一基站在第二载波的第一子帧上向终端设备发送数据。
  5. 根据权利要求1-4中任一所述的方法,其特征在于,所述方法还包括:
    所述第一基站根据所述第一载波上承载参考信号的资源单元的时频域位置信息将第二载波上对应的资源单元设置为零功率资源单元;
    所述第一基站向终端设备发送第二消息,所述第二消息包括所述零功率资源单元的时频域位置信息,所述第二消息用于指示所述终端设备在所述零功率资源单元上不接收所述第二载波的数据。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    所述第一基站接收所述终端设备发送的第三消息,所述第三消息指示所述终端设备已经完成所述零功率资源单元的配置;
    所述第一基站在所述第二载波的第一资源单元上向所述终端设备发送数据,其中,所述第一资源单元为承载所述参考信号的资源单元所在的子帧中,除了所述承载所述参考信号的资源单元之外的任一资源单元。
  7. 根据权利要求1-6中任一所述的方法,所述参考信号包括信道状态信息参考信号CSI-RS。
  8. 一种通信装置,其特征在于,包括:
    处理单元,所述处理单元用于获取第一载波上承载参考信号的资源单元的时频域位置 信息;
    收发单元,所述收发单元用于在第二载波的第一子帧上向终端设备发送数据,其中,所述第一子帧为除了承载所述参考信号的资源单元所在的子帧之外的任一子帧。
  9. 根据权利要求8所述的装置,第二基站通过所述第一载波与所述终端设备进行通信,其特征在于,
    所述收发单元,还用于接收所述第二基站发送的第一消息,所述第一消息包括所述第一载波上承载参考信号的资源单元的时频域位置信息;
    所述处理单元,具体用于根据所述第一消息获取所述第一载波上承载参考信号的资源单元的时频域位置信息。
  10. 根据权利要求8所述的装置,所述装置通过所述第一载波和所述第二载波与所述终端设备进行通信,其特征在于,所述处理单元获取所述第一载波上承载参考信号的资源单元的时频域位置信息,包括:
    所述处理单元自行确定所述第一载波上承载参考信号的资源单元的时频域位置信息。
  11. 根据权利要求8-10中任一所述的装置,其特征在于,
    所述处理单元,还用于确定所述第一载波上承载参考信号的资源单元的时频域位置信息有变更;
    所述处理单元在第二载波的第一子帧上向终端设备发送数据。
  12. 根据权利要求8-11中任一所述的装置,其特征在于,
    所述处理单元,还用于根据所述第一载波上承载参考信号的资源单元的时频域位置信息将第二载波上对应的资源单元设置为零功率资源单元;
    所述收发单元,还用于向终端设备发送第二消息,所述第二消息包括所述零功率资源单元的时频域位置信息,所述第二消息用于指示所述终端设备在所述零功率资源单元上不接收所述第二载波的数据。
  13. 根据权利要求12所述的装置,其特征在于,
    所述收发单元,还用于接收所述终端设备发送的第三消息,所述第三消息指示所述终端设备已经完成所述零功率资源单元的配置;
    所述装置在所述第二载波的第一资源单元上向所述终端设备发送数据,其中,所述第一资源单元为承载所述参考信号的资源单元所在的子帧中,除了所述承载所述参考信号的资源单元之外的任一资源单元。
  14. 根据权利要求8-13中任一所述的装置,所述参考信号包括信道状态信息参考信号CSI-RS。
  15. 一种通信装置,其特征在于,包括:
    存储器,所述存储器用于存储计算机程序;
    处理器,所述处理器用于执行所述存储器中存储的计算机程序,以使得所述设备执行如权利要求1至7中任一项所述的方法。
  16. 一种计算机可读介质,其特征在于,包括计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机执行如权利要求1至7中任一项所述的方法。
  17. 一种通信装置,其特征在于,所述通信装置用于执行如权利要求1至7任一项所述的方法。
  18. 一种通信装置,其特征在于,包括:至少一个处理器和接口电路,涉及的计算机程序在所述至少一个处理器中执行,以使得所述通信装置执行权利要求1至7中任一所述的方法。
  19. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行如权利要求1至7任一项所述的方法。
PCT/CN2020/135763 2020-12-11 2020-12-11 一种通信方法和装置 WO2022120803A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/135763 WO2022120803A1 (zh) 2020-12-11 2020-12-11 一种通信方法和装置
EP20964739.5A EP4240091A4 (en) 2020-12-11 2020-12-11 COMMUNICATION METHOD AND DEVICE
CN202080106500.7A CN116458101A (zh) 2020-12-11 2020-12-11 一种通信方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/135763 WO2022120803A1 (zh) 2020-12-11 2020-12-11 一种通信方法和装置

Publications (1)

Publication Number Publication Date
WO2022120803A1 true WO2022120803A1 (zh) 2022-06-16

Family

ID=81974157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135763 WO2022120803A1 (zh) 2020-12-11 2020-12-11 一种通信方法和装置

Country Status (3)

Country Link
EP (1) EP4240091A4 (zh)
CN (1) CN116458101A (zh)
WO (1) WO2022120803A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282283A (zh) * 2017-01-05 2018-07-13 华为技术有限公司 资源映射方法及用户设备
US10264581B1 (en) * 2016-12-09 2019-04-16 Sprint Spectrum L.P. Providing cellular service on partially-overlapping carriers
CN109997399A (zh) * 2016-09-29 2019-07-09 三星电子株式会社 用于在无线蜂窝通信系统中传输上行链路控制信号的方法和设备
CN110492982A (zh) * 2017-01-05 2019-11-22 华为技术有限公司 用于灵活的新无线电(nr)长期演进(lte)共存的信号指示

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021821A1 (ko) * 2016-07-26 2018-02-01 엘지전자 주식회사 무선 통신 시스템에서 단말의 상향링크 제어 정보 전송 방법 및 이를 지원하는 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109997399A (zh) * 2016-09-29 2019-07-09 三星电子株式会社 用于在无线蜂窝通信系统中传输上行链路控制信号的方法和设备
US10264581B1 (en) * 2016-12-09 2019-04-16 Sprint Spectrum L.P. Providing cellular service on partially-overlapping carriers
CN108282283A (zh) * 2017-01-05 2018-07-13 华为技术有限公司 资源映射方法及用户设备
CN110492982A (zh) * 2017-01-05 2019-11-22 华为技术有限公司 用于灵活的新无线电(nr)长期演进(lte)共存的信号指示

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On Coexistence between LTE and NR", 3GPP DRAFT; R1-1701131 ON LTE AND NR COEXISTENCE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, USA; 20170116 - 20170120, 16 January 2017 (2017-01-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051208645 *
ERICSSON: "Reserved resources supporting NR co-existence with LTE and NB-IoT", 3GPP DRAFT; R1-1710912, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Qingdao, China; 20170627 - 20170630, 26 June 2017 (2017-06-26), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051300113 *
VIVO: "Remaining issues on harmonic interference handling", 3GPP DRAFT; R1-1719803_REMAINING ISSUES ON HARMONIC INTERFERENCE HANDLING, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20171127 - 20171201, 18 November 2017 (2017-11-18), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051369545 *

Also Published As

Publication number Publication date
EP4240091A1 (en) 2023-09-06
EP4240091A4 (en) 2023-11-15
CN116458101A (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
CN110831020B (zh) 检测dci的方法、配置pdcch的方法和通信装置
US20230308141A1 (en) Communication Method, Device, and System
US20230179374A1 (en) Channel transmission method, terminal device, and network device
JP2020523949A (ja) 通信装置、方法及びコンピュータプログラム
US20220132613A1 (en) Communication method and apparatus
WO2021017611A1 (zh) 数据传输方法和装置
JP2024513090A (ja) 60GHzシナリオのためのTDRAの機能強化
CN114902592B (zh) 传输初始接入配置信息的方法和装置
RU2735414C1 (ru) Способ и устройство для беспроводной связи
US20220394503A1 (en) Wireless communication method and device
WO2022120803A1 (zh) 一种通信方法和装置
JP2022535499A (ja) ユーザーデバイス及びその無線通信方法
WO2022218063A1 (zh) 一种随机接入的方法、通信装置及通信系统
WO2022082511A1 (zh) 无线通信的方法及设备
WO2022027672A1 (zh) 通信方法和通信装置
WO2020093940A1 (zh) 波束训练的方法和装置
WO2023035144A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022109838A1 (zh) 无线通信的方法和装置
WO2024016942A1 (zh) 通信方法、装置、设备以及存储介质
WO2023197260A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022217443A1 (zh) 信道估计方法、终端设备、网络设备、芯片和存储介质
WO2023207776A1 (zh) 一种通信方法、装置、芯片及模组设备
WO2023024387A1 (zh) 一种通信方法及相关装置
WO2022027679A1 (zh) 无线通信方法、终端设备和网络设备
WO2023169570A1 (zh) 信道监听方法及相关产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964739

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080106500.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2020964739

Country of ref document: EP

Effective date: 20230530

NENP Non-entry into the national phase

Ref country code: DE