WO2024032078A1 - 电路控制方法、单元及装置 - Google Patents

电路控制方法、单元及装置 Download PDF

Info

Publication number
WO2024032078A1
WO2024032078A1 PCT/CN2023/095345 CN2023095345W WO2024032078A1 WO 2024032078 A1 WO2024032078 A1 WO 2024032078A1 CN 2023095345 W CN2023095345 W CN 2023095345W WO 2024032078 A1 WO2024032078 A1 WO 2024032078A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
control
boost circuit
control scheme
switching boost
Prior art date
Application number
PCT/CN2023/095345
Other languages
English (en)
French (fr)
Inventor
言超
Original Assignee
上海安世博能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海安世博能源科技有限公司 filed Critical 上海安世博能源科技有限公司
Publication of WO2024032078A1 publication Critical patent/WO2024032078A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0051Diode reverse recovery losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present application relates to the technical field of power semiconductor device control, and in particular to a circuit control method, unit and device.
  • power semiconductor devices play a key role in the power conversion process of the switching boost circuit, and are also the key to efficiency loss during the conversion process.
  • the losses of power semiconductor devices are mainly divided into two categories, conduction losses and switching losses. The magnitude of these two losses is closely related to the load size and the control method of the power semiconductor device. Different control methods of power semiconductor devices can produce completely different switching losses, and will also affect conduction losses to a certain extent and affect the power conversion efficiency of the switching boost circuit.
  • One purpose of this application is to provide a circuit control method that determines the control scheme of the power semiconductor device with the highest power conversion efficiency by collecting the input signal and output signal of the switching boost circuit in real time, and can adjust the power semiconductor in real time according to the input signal and the output signal.
  • the control scheme of the device improves the overall power conversion efficiency of the circuit.
  • Another object of the present application is to provide a circuit control unit.
  • Another object of the present application is to provide a power supply device.
  • Another object of the present application is to provide a computer device.
  • Another object of the present application is to provide a readable medium.
  • Another object of the present application is to provide a computer program product.
  • the present application discloses a circuit control method applied to a power supply device.
  • the power supply device includes a switching boost circuit.
  • the switching boost circuit includes at least one power semiconductor device.
  • the circuit control method include:
  • the control scheme with the highest power conversion efficiency is determined as the target control scheme from a plurality of control schemes to be selected, and the control scheme to be selected includes the switch A control scheme for the at least one power semiconductor device corresponding to each of the plurality of operating modes of the boost circuit;
  • the at least one power semiconductor device is controlled to be turned on and off according to the target control scheme.
  • control scheme with the highest power conversion efficiency is determined as the target control scheme from multiple control schemes to be selected based on the input signal, the output signal and the circuit information of the switching boost circuit, including:
  • the circuit loss includes inductor core loss, inductor winding loss, switch Tube turn-on loss, switch tube turn-off loss, switch tube on-state loss, rectifier diode on-state loss and rectifier diode switching loss;
  • the control scheme with the highest power conversion efficiency among multiple control schemes to be selected is determined as the target control scheme.
  • the multiple working modes include intermittent mode and/or continuous mode
  • the control scheme to be selected includes a control scheme for the at least one power semiconductor device corresponding to each of the operating modes in the intermittent mode and/or the continuous mode of the switching boost circuit;
  • the control scheme corresponding to the continuous mode for the at least one power semiconductor device includes a continuous conduction mode control scheme
  • the control scheme corresponding to the discontinuous mode for the at least one power semiconductor device includes an Nth valley discontinuous conduction mode control scheme, where N includes at least one positive integer greater than or equal to 1.
  • the method includes:
  • the plurality of control schemes to be selected include a continuous conduction mode control scheme and an Nth valley intermittent conduction mode control scheme.
  • the method includes:
  • the plurality of control schemes to be selected include the Mth valley discontinuous conduction mode control scheme, and the second preset power is less than the The first preset power, M, includes at least one positive integer greater than or equal to the preset value.
  • collecting the input signal and output signal of the switching boost circuit includes:
  • the input signal and output signal of the switching boost circuit are collected every one or more preset control periods.
  • the method includes: preforming corresponding relationships between different input signals and output signals and multiple control schemes.
  • the power supply device includes a switching boost circuit.
  • the switching boost circuit includes at least one power semiconductor device.
  • the circuit control unit includes:
  • a signal acquisition module used to collect the input signal and output signal of the switch boost circuit
  • a control adjustment module configured to determine the control scheme with the highest power conversion efficiency from a plurality of control schemes to be selected as the target control scheme based on the input signal, the output signal and the circuit information of the switching boost circuit, and the control scheme to be selected is
  • the control scheme includes a control scheme for the at least one power semiconductor device corresponding to each of the plurality of working modes of the switching boost circuit;
  • a switch control module is used to control the turn-on and turn-off of the at least one power semiconductor device according to the target control scheme.
  • This application also discloses a power supply device, which includes a switching boost circuit and a circuit control unit as described above.
  • This application also discloses a computer device, including a memory, a processor, and a computer program stored on the memory and executable on the processor,
  • the processor implements the above method when executing the program.
  • This application also discloses a computer-readable medium on which a computer program is stored
  • This program when executed by the processor, implements the method described above.
  • This application also discloses a computer program product, which includes a computer program that implements the above method when executed by a processor.
  • the control method of the switching boost circuit of the present application collects the input signal and the output signal of the switching boost circuit, and based on the input signal, the output signal and the circuit information of the switching boost circuit, selects from a plurality of control schemes to be selected.
  • the control scheme with the highest power conversion efficiency is determined to be the target control scheme, and the control scheme to be selected includes the control for the at least one power semiconductor device corresponding to each of the plurality of working modes of the switching boost circuit. plan. Then, the at least one power semiconductor device is controlled to be turned on and off according to the target control scheme.
  • this application can collect the input signal and output signal of the switching boost circuit in real time, and determine the target control scheme with the highest power conversion efficiency from multiple control schemes to be selected based on the input signal and output signal of the switching boost circuit. Then, the turn-on and turn-off of at least one power semiconductor device in the switching boost circuit is controlled according to the target control scheme. Therefore, the present application can control the power semiconductor device in the switching boost circuit corresponding to each of the multiple operating modes of the switching boost circuit according to changes in the input signal and output signal of the switching boost circuit.
  • Calculate the power conversion efficiency of the control scheme select the control scheme with the highest power conversion efficiency as the target control scheme, determine the optimal control scheme of the power semiconductor device in real time, reduce the conduction loss and switching loss of the power semiconductor device, and improve the overall switching efficiency.
  • the power conversion efficiency of the voltage circuit is
  • Figure 1 shows a flow chart of a specific embodiment of the control method for the power semiconductor device of the switching boost circuit of the present application
  • FIGS 2 to 5 show schematic diagrams of the switching boost circuit according to specific embodiments of the control method for the power semiconductor device of the switching boost circuit of the present application
  • Figure 6 shows a flow chart of a specific embodiment S200 of the control method for the switching boost circuit power semiconductor device of the present application
  • FIGS. 7 to 10 show schematic diagrams of the control scheme of a specific embodiment of the control method for the switching boost circuit power semiconductor device of the present application
  • Figure 11 shows a flow chart of a specific embodiment S000 of the control method for the power semiconductor device of the switching boost circuit of the present application
  • Figure 12 shows a structural diagram of a specific embodiment of the circuit control unit of the present application.
  • Figure 13 shows a schematic structural diagram of a computer device suitable for implementing embodiments of the present application.
  • this embodiment discloses a circuit control method.
  • the circuit control method is applied to a power supply device that includes a switching boost circuit, and the switching boost circuit includes at least one power semiconductor device.
  • the method includes:
  • S100 Collect the input signal and output signal of the switching boost circuit.
  • S200 Based on the input signal, output signal and circuit information of the switching boost circuit, determine the control scheme with the highest power conversion efficiency from multiple control schemes to be selected as the target control scheme.
  • the control scheme to be selected includes multiple switching boost circuits.
  • S300 Control the turn-on and turn-off of at least one power semiconductor device according to the target control scheme.
  • the control method of the switching boost circuit of the present application collects the input signal and the output signal of the switching boost circuit, and based on the input signal, the output signal and the circuit information of the switching boost circuit, selects from a plurality of control schemes to be selected.
  • the control scheme with the highest power conversion efficiency is determined to be the target control scheme, and the control scheme to be selected includes the control for the at least one power semiconductor device corresponding to each of the plurality of working modes of the switching boost circuit. plan. Then, the at least one power semiconductor device is controlled to be turned on and off according to the target control scheme.
  • this application can collect the input signal and output signal of the switching boost circuit in real time, and determine the target control scheme with the highest power conversion efficiency from multiple control schemes to be selected based on the input signal and output signal of the switching boost circuit. Then, the turn-on and turn-off of at least one power semiconductor device in the switching boost circuit is controlled according to the target control scheme. Therefore, the present application can provide a control scheme for the power semiconductor device in the switching boost circuit corresponding to each of the multiple operating modes of the switching boost circuit based on changes in the input signal and output signal of the switching boost circuit.
  • Calculate the power conversion efficiency select the control scheme with the highest power conversion efficiency as the target control scheme, determine the optimal control scheme for the power semiconductor device in real time, reduce the conduction loss and switching loss of the power semiconductor device, and improve the efficiency of the entire switching boost circuit. Electrical energy conversion efficiency.
  • the input signal and output signal of the switching boost circuit specifically include the input voltage, input current, output voltage and output current of the switching boost circuit.
  • the input current, input voltage, output current, output voltage and other electrical signals of the switching boost circuit can be collected through a collection circuit or collection device in the power supply device.
  • the four boost circuits shown in Figures 2 to 5 are typical switching boost circuits.
  • the circuit control method of this application can be applied to the boost circuits shown in Figures 2 to 5, and can also be applied to other multi-phase boost circuits, or to switching boost circuits with other structures. This is only an example. Specific description, this application does not limit this.
  • the input voltage and output voltage of the switching boost circuit in Figures 2 to 4 are U 1 and U 2 respectively
  • the input current and output current are I 1 and I 2 respectively
  • the inductor current on the input side is i L
  • the field effect The voltage between the drain D and the source S of the tube is V s
  • the threshold voltage of the field effect tube is V g .
  • the switching boost circuit in Figure 5 is a three-phase AC input boost circuit. Its input voltages are U 1 , U 2 and U 3 , its output voltage is U 4 , and its output current is I 4 .
  • the input voltage and input current input to the input end of the switching boost circuit need to be converted into electrical energy by the switching boost circuit to obtain the output voltage and output current at the output end.
  • the boost circuit can boost the input voltage at the input end to obtain a higher voltage. output voltage to provide a higher output voltage to the load connected to the output.
  • the output voltage and output current of the switching boost circuit are determined by the size of the load connected to its output end, while the input voltage at the input end of the switching boost circuit is in a stable state, which is determined by the output voltage, output current, input voltage and switch boost.
  • the circuit information of the circuit can obtain the voltage and current of each component in the switching boost circuit, and then the power conversion efficiency of the switching boost circuit can be determined.
  • the input voltage, output current and output voltage of the current switching boost circuit can be collected, and the power conversion efficiency of the entire switching boost circuit under different power semiconductor device control schemes can be determined based on the circuit information of the current switching boost circuit.
  • the circuit information of the switching boost circuit may include the circuit topology and the electrical parameters of all components in the circuit.
  • the electrical parameters include but are not limited to the resistance value of the resistor, the capacitance value of the capacitor, and the threshold voltage of the switching tube.
  • Power semiconductor devices in switching boost circuits usually include switching elements, such as field effect transistors, transistors, diodes, or other switching tube components. This is just an example.
  • the field effect transistor can be a junction field effect transistor (JFET) or an insulated gate field effect transistor (MOSFET). JFET and MOSFET can use P channel or N channel, and the MOSFET can be enhancement type. , can also be depletion type.
  • the S200 determines the control with the highest power conversion efficiency from multiple control schemes to be selected based on the input signal, the output signal and the circuit information of the switching boost circuit.
  • the plan is a target control plan specifically including:
  • Circuit losses include inductor core loss, inductor winding loss, switch tube turn-on loss, Switch tube turn-off loss, switch tube on-state loss, rectifier diode on-state loss and rectifier diode switching loss.
  • S220 Determine the power conversion efficiency of each control scheme based on the circuit loss and output signal of each control scheme to be selected.
  • S230 Determine the control scheme with the highest power conversion efficiency among multiple control schemes to be selected as the target control scheme.
  • the power conversion efficiency of the switching boost circuit under the different control schemes selected is determined, the control scheme with the highest power conversion efficiency is determined as the target control scheme, and the control of the turn-on and turn-off of the power semiconductor device in the switching boost circuit is adjusted in real time through the target control scheme.
  • Power devices in switching boost circuits usually include inductors, diodes, switching tubes and other devices. These power devices will cause energy loss when the switching boost circuit converts input current and input voltage into electrical energy. Therefore, the circuit loss of the switching boost circuit under each control scheme can be calculated, and then combined with the output voltage and output current of the switching boost circuit, the power conversion efficiency of the switching boost circuit can be obtained.
  • the existing switching boost circuit usually includes an inductor, a switch tube and a rectifier diode.
  • the circuit loss needs to consider the inductor core loss, the inductor winding loss, the switch tube turn-on loss, the switch tube turn-off loss, and the switch tube on-state loss. , rectifier diode conduction loss and rectifier diode switching loss.
  • the switching tube turn-on loss involved in this application includes at least one of the following: triode turn-on loss, field effect tube turn-on loss, or other switch tube turn-on losses;
  • the switch tube turn-off loss includes at least one of the following: triode turn-off loss , FET turn-off loss, or the turn-off loss of other switch tubes;
  • the switch tube on-state loss includes at least one of the following: triode on-state loss, field effect tube on-state loss, or other switch tube on-state losses .
  • eta is the power conversion efficiency
  • I 2 is the output current
  • U 2 is the output voltage
  • P core is the inductor core loss
  • P wd is the inductor winding loss
  • PM_on is the switch tube turn-on loss
  • PM_off is the switch tube turn-off Loss
  • P M_con is the switch tube conduction loss
  • PD_con is the rectifier diode conduction loss
  • PD_sw is the rectifier diode switching loss.
  • the circuit information of the switching boost circuit includes the electrical parameters of the power semiconductor devices and the circuit topology describing the connection relationship of each device in the circuit.
  • the output signal can be determined according to the load connected to the output end of the switching boost circuit.
  • the input signal and circuit topology can obtain the current and voltage information of each power semiconductor device, and then the corresponding loss can be obtained based on the electrical parameters and current and voltage information of each power semiconductor device.
  • the detailed calculation process of the losses of the inductor, diode and switch tube is common knowledge in the art. Those skilled in the art can calculate it based on the actual situation, and will not be described again here.
  • the calculation of the power conversion efficiency needs to determine the circuit loss based on the actual circuit information of the switching boost circuit, and then obtain the corresponding power conversion efficiency based on the circuit loss, output voltage and output current.
  • the actual circuit information of the switching boost circuit determines the specific calculation formula of the circuit loss, which is not limited in this application.
  • the multiple working modes include intermittent mode and/or continuous mode
  • the control scheme to be selected includes the intermittent mode and/or continuous mode of the switching boost circuit.
  • Each working mode corresponds to at least one Control scheme for power semiconductor devices.
  • the corresponding control scheme for the continuous mode for the at least one power semiconductor device includes a continuous conduction mode control scheme.
  • the corresponding control scheme for at least one power semiconductor device in the discontinuous mode includes an Nth valley discontinuous conduction mode control scheme, where N includes at least one positive integer greater than or equal to 1.
  • the switching circuit can operate in different operating modes, such as intermittent mode, continuous mode and boundary/boundary line mode.
  • intermittent mode and continuous mode control schemes optionally, select intermittent mode and continuous mode control schemes.
  • the continuous mode control scheme includes the continuous conduction mode (Continuous Conduction Mode, CCM) control scheme, that is, the inductor current continuous control scheme.
  • CCM Continuous Conduction Mode
  • Figure 7 shows the CCM control scheme of the boost DCDC switching boost circuit.
  • the control scheme of the discontinuous mode includes the Nth valley discontinuous conduction mode (Discontinuous Conduction Mode, DCM) control scheme, and N includes at least one positive integer greater than or equal to 1.
  • Figure 8 shows the first valley conduction DCM control scheme of the boost DCDC switching boost circuit, while realizing the resonance of the junction capacitance and input inductance of the switching tube (such as MOSFET) after DCM, and the V s voltage of the MOSFET When the resonance reaches the lowest point, the MOSFET is turned on again to achieve minimal turn-on loss.
  • Figure 9 and Figure 10 show the second valley conduction and third valley conduction DCM control scheme of the boost DCDC switching boost circuit. The MOSFET junction capacitance and input inductance resonate for the second and third times respectively. Similarly, when the Vs voltage of the MOSFET resonates to the lowest point, the MOSFET is turned on again.
  • the plurality of control schemes to be selected include a continuous conduction mode control scheme and an Nth valley intermittent conduction mode control scheme.
  • the Nth valley intermittent conduction mode control scheme includes: the first valley intermittent conduction mode control scheme, the second valley intermittent conduction mode control scheme, and the third valley intermittent conduction mode control scheme. scheme, or the third or higher valley discontinuous conduction mode control scheme.
  • the input voltage and current also increase accordingly, and the number of resonances of the DCM will decrease; when the real-time power becomes larger and larger, it can DCM half-resonance (that is, the first valley discontinuous conduction mode control scheme) or CCM control scheme can be used directly to optimize efficiency.
  • DCM half-resonance that is, the first valley discontinuous conduction mode control scheme
  • CCM control scheme can be used directly to optimize efficiency.
  • the power of the switching boost circuit when the power of the switching boost circuit is greater than or equal to the first preset power, the power of the switching boost circuit is relatively large, and the continuous conduction mode control scheme and the Nth The sub-valley discontinuous conduction mode control scheme is used as the control scheme to be selected.
  • the first preset power can be selected to be 50% of the maximum power of the switching boost circuit.
  • the maximum power of the switching boost circuit is 10kw
  • the first preset power can be set to 5kw.
  • the current power of the switching boost circuit can be determined based on the input signal and output signal of the switching boost circuit. If the current power of the switching boost circuit is greater than or equal to 5kw, the control scheme that can be selected includes the CCM control scheme and the Nth valley DCM control. plan.
  • the value of N can be set to narrow the selection range of optional control schemes, remove control schemes with low power conversion, and obtain more targeted optional control schemes, while ensuring the power conversion efficiency of the switching boost circuit. Reduce the amount of calculation and improve the efficiency of determining the control scheme of semiconductor power devices in real time. For example, when the power of the switching boost circuit is greater than or equal to the first preset power, N can be set to be less than or equal to 3 to determine a selectable control scheme range that is more consistent with the power of the current switching boost circuit.
  • the first preset power can be set to 5kw, and N is 3.
  • the current power of the switching boost circuit can be determined based on the input signal and output signal of the switching boost circuit. If the current power of the switching boost circuit is greater than 5kw, the control schemes that can be selected include CCM control scheme, first valley DCM control scheme, The second valley DCM control scheme and the third valley DCM control scheme.
  • the first preset power and the corresponding selectable control scheme can be determined according to actual conditions such as the input signal of the switching boost circuit and the load, which is not limited in this application.
  • the plurality of control schemes to be selected include the Mth valley intermittent conduction mode control scheme, and the second preset power is less than
  • the first preset power, M includes at least one positive integer greater than or equal to the preset value.
  • the power of the switching boost circuit when the power of the switching boost circuit is small, for example, when the input signal of the switching boost circuit is a sine wave, the input signal of the sine wave is input into the real-time power of the switching boost circuit at the zero crossing point. Relatively small, the DCM valley opening control scheme with multiple resonances will be used more often. Therefore, when the power of the switching boost circuit is less than or equal to the second preset power, the power conversion efficiency of the CCM control scheme is usually not high, and the CCM control scheme is no longer considered, only the control scheme in the intermittent mode is considered.
  • the second preset power can be selected to be 30% of the maximum power of the switching boost circuit.
  • the second preset power can be set to 3kw.
  • the current power of the switching boost circuit can be determined based on the input signal and output signal of the switching boost circuit. If the current power of the switching boost circuit is less than or equal to 3kw, the control scheme can be selected including the Mth valley DCM control scheme.
  • preset values can be set to narrow the selection range of optional control schemes, eliminate control schemes with low power conversion, and obtain more targeted optional control schemes, while ensuring the power conversion efficiency of the switching boost circuit. Reduce the amount of calculation and improve the efficiency of determining the control scheme of semiconductor power devices in real time. For example, when the power of the switching boost circuit is less than or equal to the second preset power, the preset value can be set to 3 to determine a selectable control scheme range that is more consistent with the power of the current switching boost circuit.
  • the second preset power can be set to 3kw and the preset value is 3.
  • the current power of the switching boost circuit can be determined based on the input signal and output signal of the switching boost circuit. If the current power of the switching boost circuit is less than or equal to 3kw, the control scheme can be selected including the Mth valley DCM control scheme, M includes At least one positive integer greater than or equal to 3, such as the third bottom DCM control plan, the fourth bottom DCM control plan, the fifth bottom DCM control plan, the sixth bottom DCM control plan, etc.
  • the second preset power and the corresponding selectable control scheme can be determined according to actual conditions such as the input signal and load of the switching boost circuit, and this application is not limited to this.
  • the plurality of control schemes to be selected may include the Xth valley discontinuous conduction mode control scheme.
  • X can be set to be greater than or equal to N and less than or equal to M.
  • the second preset power is 30% of the maximum power of the switching boost circuit
  • the first preset power is 70% of the maximum power of the switching boost circuit
  • N includes at least one greater than or equal to 1 and less than A positive integer of 3
  • M includes at least one positive integer greater than 4
  • X can choose 3 and 4 that is, the multiple control schemes to be selected can include the third valley discontinuous conduction mode control scheme and the fourth valley discontinuity Conduction mode control scheme.
  • those skilled in the art can select control schemes corresponding to different powers of the switching boost circuit according to actual conditions, and this application does not limit this.
  • S100 collects the input signal and output signal of the switching boost circuit, specifically including:
  • the input signal and output signal of the switching boost circuit are collected every one or more preset control periods.
  • control period for collecting the input signal and output signal of the switching boost circuit can be determined in advance.
  • the input signal and output signal can be collected every other control period and the control scheme of the semiconductor power device can be re-determined, or every multiple control periods. Collect input signals and output signals and re-determine the control scheme of semiconductor power devices in a timely manner
  • the control scheme of the power semiconductor device is adjusted according to the actual input signal of the switching boost circuit to optimize the continuous power conversion efficiency of the entire switching boost circuit.
  • the control scheme can be adjusted in a targeted manner to avoid the problem of high energy consumption caused by continuous adjustment.
  • the time interval of the control period may be less than, greater than, or equal to the switching period of the power semiconductor device. Those skilled in the art can set the control period according to actual needs, and this application does not limit this.
  • the method further includes step S000 of preforming corresponding relationships between different input signals and output signals and multiple control schemes.
  • the circuit information of the switching boost circuit when the circuit information of the switching boost circuit is given, for input signals and output signals with different input voltages, output voltages and output currents, it can be predetermined that each input signal and output signal will be different.
  • the power conversion efficiency of the switching boost circuit under the power semiconductor device control scheme is determined, and the control scheme with the highest power conversion efficiency is determined. Different input signals and output signals are corresponding to the corresponding control scheme with the highest power conversion efficiency to form different input signals and outputs. Correspondence between signals and multiple control schemes. Therefore, in practical applications, when the input signal and output signal of the switching boost circuit are collected in real time, the control scheme corresponding to the collected input signal and output signal can be found from the above correspondence relationship, that is, the target control scheme is obtained. In this optional implementation, by presetting the corresponding relationship between the input signal and the output signal and the control scheme, the response speed of real-time determination and adjustment of the power semiconductor device control scheme can be improved.
  • the output signal and the input voltage of the output voltage and output current under several typical load conditions can be correspondingly associated with the control scheme as two dimensions to form a lookup table.
  • the corresponding control scheme can be directly searched from the lookup table as the target control scheme to control the switching of the power semiconductor device.
  • the corresponding relationships between the determined different input signals and output signals and multiple control schemes can be further interpolated, and then fitted to obtain Correspondence curves of different input signals and output signals and control schemes.
  • the corresponding control scheme can be directly determined according to the corresponding relationship curve as the target control scheme to control the switching of the power semiconductor device.
  • S000 forms the corresponding relationship between different input signals and output signals and multiple control schemes specifically including:
  • S010 Collect different input signals and output signals of the switching boost circuit.
  • S020 Determine the power conversion efficiency of different input signals and output signals under multiple control schemes.
  • different input signals and output signals of the switching boost circuit during experiments or historical control processes can be collected to determine the different input signals and outputs.
  • the power conversion efficiency of the signal under multiple control schemes is determined, and the control scheme with the highest power conversion efficiency is determined as the target control scheme.
  • Different input signals and output signals are associated with the corresponding control scheme with the highest power conversion efficiency to form a corresponding relationship.
  • the input voltage and input current of the switching boost circuit under different control schemes during experiments or historical control processes can be collected , output voltage and output current.
  • the power conversion efficiency of the switching boost circuit is determined according to the input signal and the output signal of the switching boost circuit.
  • circuit losses of different input signals and output signals under multiple control schemes can also be determined first, and then based on the circuit losses and The power conversion efficiency is obtained from the output current and output voltage in the input signal and output signal.
  • circuit losses include inductor core loss, inductor winding loss, switch tube turn-on loss, switch tube turn-off loss, switch tube on-state loss, rectifier diode on-state loss and rectifier diode switch loss.
  • this embodiment also discloses a circuit control unit.
  • the circuit control unit includes a signal acquisition module 11 , a control adjustment module 12 and a switch control module 13 .
  • the signal acquisition module 11 is used to collect the input signal and output signal of the switching boost circuit.
  • the control adjustment module 12 is used to determine the control scheme with the highest power conversion efficiency from multiple control schemes to be selected as the target control scheme based on the input signal, the output signal and the circuit information of the switch boost circuit.
  • the control scheme to be selected includes the switch boost circuit.
  • the switch control module 13 is used to control the turn-on and turn-off of at least one power semiconductor device according to a target control scheme.
  • control adjustment module 12 is specifically configured to calculate the circuit loss of the switching boost circuit under multiple control schemes to be selected based on the input signal, output signal and circuit information of the switching boost circuit.
  • the circuit loss includes inductance. Iron core loss, inductor winding loss, switch tube turn-on loss, switch tube turn-off loss, switch tube on-state loss, rectifier diode on-state loss and rectifier diode switching loss are determined based on the circuit loss and output signal of each control scheme to be selected. For the power conversion efficiency of each control scheme, the control scheme with the highest power conversion efficiency among multiple control schemes to be selected is determined as the target control scheme.
  • the plurality of operating modes include intermittent mode and/or continuous mode.
  • the control scheme to be selected includes a control scheme for at least one power semiconductor device corresponding to each operating mode in the intermittent mode and/or the continuous mode of the switching boost circuit.
  • the control scheme corresponding to the continuous mode for at least one power semiconductor device includes a continuous conduction mode control scheme.
  • the control scheme corresponding to the discontinuous mode for at least one power semiconductor device includes an Nth valley discontinuous conduction mode control scheme, where N includes at least one positive integer greater than or equal to 1.
  • the plurality of control schemes to be selected include a continuous conduction mode control scheme and an Nth valley intermittent conduction mode control scheme.
  • the plurality of control schemes to be selected include the Mth valley intermittent conduction mode control scheme, and the second preset power is less than
  • the first preset power, M includes at least one positive integer greater than or equal to the preset value.
  • the signal collection module 11 is specifically configured to collect the input signal and the output signal of the switching boost circuit every one or more preset control periods.
  • control adjustment module 12 is further configured to preform corresponding relationships between different input signals and output signals and multiple control schemes.
  • control adjustment module 12 is specifically used to collect different input signals and output signals of the switching boost circuit; determine the power conversion efficiency of different input signals and output signals under multiple control schemes; convert different input signals into and output signals are respectively associated with the control scheme with the highest power conversion efficiency.
  • this embodiment also discloses a power supply device.
  • the power supply device includes a switching boost circuit and a circuit control unit as described in this embodiment.
  • a typical implementation device is a computer device.
  • the computer device may be a personal computer, a laptop computer, a cellular phone, a camera phone, a smart phone, a personal digital assistant, a media player, a navigation device, an email device, Game consoles, tablets, wearables, or a combination of any of these devices.
  • the computer device specifically includes a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • the processor executes the program, the method executed by the client as described above is implemented.
  • the processor executes the program, the method executed by the server as described above is implemented.
  • FIG. 13 a schematic structural diagram of a computer device 600 suitable for implementing embodiments of the present application is shown.
  • the computer device 600 includes a central processing unit (CPU) 601, which can be loaded into a random access memory according to a program stored in a read-only memory (ROM) 602 or from a storage portion 608
  • CPU central processing unit
  • ROM read-only memory
  • RAM random access memory
  • various programs and data required for the operation of the system 600 are also stored.
  • CPU601, ROM602, and RAM603 are connected to each other through bus 604.
  • An input/output (I/O) interface 605 is also connected to bus 604.
  • the following components are connected to the I/O interface 605: an input section 606 including a keyboard, a mouse, etc.; an output section 607 including a cathode ray tube (CRT), a liquid crystal feedback device (LCD), etc., speakers, etc.; and a storage section including a hard disk, etc. 608; and a communication section 609 including a network interface card such as a LAN card, modem, etc.
  • the communication section 609 performs communication processing via a network such as the Internet.
  • Driver 610 is also connected to I/O interface 605 as needed.
  • Removable media 611 such as magnetic disks, optical disks, magneto-optical disks, semiconductor memories, etc., are installed on the drive 610 as needed, so that computer programs read therefrom are installed as needed in the storage portion 608.
  • the process described above with reference to the flowchart may be implemented as a computer software program.
  • embodiments of the present application include a computer program product including a computer program tangibly embodied on a machine-readable medium, the computer program including program code for performing the method illustrated in the flowchart.
  • the computer program may be downloaded and installed from the network via communication portion 609, and/or installed from removable media 611.
  • Computer-readable media includes both persistent and non-volatile, removable and non-removable media that can be implemented by any method or technology for storage of information.
  • Information may be computer-readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), and read-only memory.
  • PRAM phase change memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • RAM random access memory
  • read-only memory read-only memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory or other memory technology
  • compact disc read-only memory CD-ROM
  • DVD digital versatile disc
  • Magnetic tape cassettes tape magnetic disk storage or other magnetic storage devices or any other non-transmission medium can be used to store information that can be accessed by a computing device.
  • computer-readable media does not include transitory media, such as modulated data signals and carrier waves.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.
  • embodiments of the present application may be provided as methods, systems or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • the application may be described in the general context of computer-executable instructions, such as program modules, being executed by a computer.
  • program modules include routines, programs, objects, components, data structures, etc. that perform specific tasks or implement specific abstract data types.
  • This application can also be practiced in distributed computing environments where In the environment, tasks are performed by remote processing devices connected through a communication network.
  • program modules may be located in both local and remote computer storage media including storage devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请提供了一种电路控制方法、单元及装置,所述方法应用于电源装置,所述电源装置包括开关升压电路,所述开关升压电路包括至少一个功率半导体器件,所述电路控制方法包括采集所述开关升压电路的输入信号和输出信号;根据所述输入信号、输出信号和所述开关升压电路的电路信息,从多个待选择控制方案中确定电能转换效率最高的控制方案为目标控制方案,所述待选择控制方案包括所述开关升压电路的多个工作模式中每个所述工作模式对应的针对所述至少一个功率半导体器件的控制方案;根据所述目标控制方案控制所述至少一个功率半导体器件的导通和关断。本申请可实时调整功率半导体器件的控制方案,提高电路整体的电能转换效率。

Description

电路控制方法、单元及装置
交叉参考相关引用
本申请要求2022年08月12日提交的申请号为202210968509.X的中国专利申请的优先权,上述申请参考并入本文。
技术领域
本申请涉及功率半导体器件控制技术领域,尤其涉及一种电路控制方法、单元及装置。
背景技术
目前,电力作为一种主要的能源载体,在使用过程中需要做交流转直流、直流转交流和高压转低压等等电力转换,因此,电能转换的效率也将很大程度上决定电力使用的效率。
其中,开关升压电路的电力转换过程中,功率半导体器件起到了关键作用,同时也是转换过程中效率损失的关键。功率半导体器件的损耗主要分为两类,导通损耗和开关损耗。这两种损耗的大小与负载大小和功率半导体器件的控制方式息息相关。不同的功率半导体器件的控制方式,可以产生截然不同的开关损耗,同时也会一定程度影响导通损耗,影响开关升压电路的电能转换效率。
发明内容
本申请的一个目的在于提供一种电路控制方法,通过实时采集开关升压电路的输入信号和输出信号确定电能转换效率最高的功率半导体器件的控制方案,可实时根据输入信号和输出信号调整功率半导体器件的控制方案,提高电路整体的电能转换效率。本申请的另一个目的在于提供一种电路控制单元。本申请的再一个目的在于提供一种电源装置。本申请的还一个目的在于提供一种计算机设备。本申请的还一个目的在于提供一种可读介质。本申请的还一个目的在于提供一种计算机程序产品。
为了达到以上目的,本申请一方面公开了一种电路控制方法,应用于电源装置,所述电源装置包括开关升压电路,所述开关升压电路包括至少一个功率半导体器件,所述电路控制方法包括:
采集所述开关升压电路的输入信号和输出信号;
根据所述输入信号、输出信号和所述开关升压电路的电路信息,从多个待选择控制方案中确定电能转换效率最高的控制方案为目标控制方案,所述待选择控制方案包括所述开关升压电路的多个工作模式中每个所述工作模式对应的针对所述至少一个功率半导体器件的控制方案;
根据所述目标控制方案控制所述至少一个功率半导体器件的导通和关断。
可选的,所述根据所述输入信号、输出信号和所述开关升压电路的电路信息从多个待选择控制方案中确定电能转换效率最高的控制方案为目标控制方案,包括:
根据所述开关升压电路的输入信号、输出信号和电路信息计算所述开关升压电路在多个待选择控制方案下的电路损耗,所述电路损耗包括电感铁芯损耗、电感绕组损耗、开关管开通损耗、开关管关断损耗、开关管通态损耗、整流二极管通态损耗和整流二极管开关损耗;
根据所述每个待选择控制方案的电路损耗和输出信号确定所述每个控制方案的电能转换效率;
确定多个待选择控制方案中电能转换效率最高的控制方案为目标控制方案。
可选的,所述多个工作模式包括断续模式和/或连续模式;
所述待选择控制方案包括所述开关升压电路的断续模式和/或连续模式中每个所述工作模式对应的针对所述至少一个功率半导体器件的控制方案;
所述连续模式对应的针对所述至少一个功率半导体器件的控制方案包括连续导通模式控制方案;
所述断续模式对应的针对所述至少一个功率半导体器件的控制方案包括第N次谷底断续导通模式控制方案,N包括至少一个大于或等于1的正整数。
可选的,所述方法包括:
在所述开关升压电路的功率大于或等于第一预设功率时,所述多个待选择控制方案包括连续导通模式控制方案和第N次谷底断续导通模式控制方案。
可选的,所述方法包括:
在所述开关升压电路的功率小于或等于第二预设功率时,所述多个待选择控制方案包括第M次谷底断续导通模式控制方案,所述第二预设功率小于所述第一预设功率,M包括至少一个大于或等于预设数值的正整数。
可选的,所述采集所述开关升压电路的输入信号和输出信号包括:
每隔一个或多个预设控制周期采集所述开关升压电路的输入信号和输出信号。
可选的,所述方法包括:预先形成不同输入信号和输出信号与多个控制方案的对应关系。
本申请还公开了一种电路控制单元,应用于电源装置,所述电源装置包括开关升压电路,所述开关升压电路包括至少一个功率半导体器件,所述电路控制单元包括:
信号采集模块,用于采集所述开关升压电路的输入信号和输出信号;
控制调整模块,用于根据所述输入信号、输出信号和所述开关升压电路的电路信息,从多个待选择控制方案中确定电能转换效率最高的控制方案为目标控制方案,所述待选择控制方案包括所述开关升压电路的多个工作模式中每个所述工作模式对应的针对所述至少一个功率半导体器件的控制方案;
开关控制模块,用于根据所述目标控制方案控制所述至少一个功率半导体器件的导通和关断。
本申请还公开了一种电源装置,包括开关升压电路和如上所述的电路控制单元。
本申请还公开了一种计算机设备,包括存储器、处理器以及存储在存储器上并可在处理器上运行的计算机程序,
所述处理器执行所述程序时实现如上所述方法。
本申请还公开了一种计算机可读介质,其上存储有计算机程序,
该程序被处理器执行时实现如上所述方法。
本申请还公开了一种计算机程序产品,所述计算机程序产品包括计算机程序,所述计算机程序被处理器执行时实现如上所述方法。
本申请开关升压电路的控制方法采集所述开关升压电路的输入信号和输出信号,根据所述输入信号、输出信号和所述开关升压电路的电路信息,从多个待选择控制方案中确定电能转换效率最高的控制方案为目标控制方案,所述待选择控制方案包括所述开关升压电路的多个工作模式中每个所述工作模式对应的针对所述至少一个功率半导体器件的控制方案。然后,根据所述目标控制方案控制所述至少一个功率半导体器件的导通和关断。从而,本申请可实时采集开关升压电路的输入信号和输出信号,根据开关升压电路的输入信号和输出信号从多个待选择的控制方案中确定电能转换效率最高的目标控制方案。然后,根据该目标控制方案控制开关升压电路中的至少一个功率半导体器件的导通和关断。由此,本申请可根据开关升压电路的输入信号和输出信号的变化,对开关升压电路的多个工作模式中每个工作模式对应的针对开关升压电路中功率半导体器件的控 制方案的电能转换效率进行计算,选择电能转换效率最高的控制方案作为目标控制方案,实时确定最优的功率半导体器件的控制方案,降低功率半导体器件的导通损耗和开关损耗,提高整个开关升压电路的电能转换效率。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出本申请开关升压电路功率半导体器件的控制方法具体实施例的流程图;
图2~图5示出本申请开关升压电路功率半导体器件的控制方法具体实施例开关升压电路的示意图;
图6示出本申请开关升压电路功率半导体器件的控制方法具体实施例S200的流程图;
图7~图10示出本申请开关升压电路功率半导体器件的控制方法具体实施例控制方案的示意图;
图11示出本申请开关升压电路功率半导体器件的控制方法具体实施例S000的流程图;
图12示出本申请电路控制单元具体实施例的结构图;
图13示出适于用来实现本申请实施例的计算机设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
根据本申请的一个方面,本实施例公开了一种电路控制方法。该电路控制方法应用于电源装置,所述电源装置包括开关升压电路,所述开关升压电路包括至少一个功率半导体器件。如图1所示,本实施例中,所述方法包括:
S100:采集开关升压电路的输入信号和输出信号。S200:根据输入信号、输出信号和开关升压电路的电路信息,从多个待选择控制方案中确定电能转换效率最高的控制方案为目标控制方案,待选择控制方案包括开关升压电路的多个工作模式中每个工作模式对应的针对至少一个功率半导体器件的控制方案。
S300:根据目标控制方案控制至少一个功率半导体器件的导通和关断。
本申请开关升压电路的控制方法采集所述开关升压电路的输入信号和输出信号,根据所述输入信号、输出信号和所述开关升压电路的电路信息,从多个待选择控制方案中确定电能转换效率最高的控制方案为目标控制方案,所述待选择控制方案包括所述开关升压电路的多个工作模式中每个所述工作模式对应的针对所述至少一个功率半导体器件的控制方案。然后,根据所述目标控制方案控制所述至少一个功率半导体器件的导通和关断。从而,本申请可实时采集开关升压电路的输入信号和输出信号,根据开关升压电路的输入信号和输出信号从多个待选择的控制方案中确定电能转换效率最高的目标控制方案。然后,根据该目标控制方案控制开关升压电路中的至少一个功率半导体器件的导通和关断。由此,本申请可根据开关升压电路的输入信号和输出信号的变化,对开关升压电路的多个工作模式中每个工作模式对应的针对开关升压电路中功率半导体器件的控制方案的电能转换效率进行计算,选择电能转换效率最高的控制方案作为目标控制方案,实时确定最优的功率半导体器件的控制方案,降低功率半导体器件的导通损耗和开关损耗,提高整个开关升压电路的电能转换效率。
可选的,所述开关升压电路的输入信号和输出信号具体包括所述开关升压电路的输入电压、输入电流、输出电压和输出电流。
具体地,可以通过电源装置中的采集电路或者是采集装置来采集开关升压电路的输入电流、输入电压、输出电流、输出电压等电信号。
如图2~图5所示,图2~图5中所示出的四个升压(boost)电路,是典型的开关升压电路。本申请的电路控制方法可应用于图2~图5示出的升压电路,还可以适用于其他的多相升压电路,或者是应用于其他结构的开关升压电路,在此仅作示例性说明,本申请对此并不作限定。其中,图2~图4的开关升压电路的输入电压和输出电压分别为U1和U2,输入电流和输出电流分别为I1和I2,输入侧的电感电流为iL,场效应管的漏极D和源极S之间的电压为Vs,场效应管的阈值电压为Vg。图5的开关升压电路是一种三相AC输入的boost电路,其输入电压为U1、U2和U3,输出电压为U4,输出电流为I4
开关升压电路输入端输入的输入电压和输入电流需要经过开关升压电路进行电能的转换得到输出端的输出电压和输出电流,例如,boost电路可对输入端的输入电压进行升压后得到电压更高的输出电压,以向输出端连接的负载提供电压更高的输出电压。
其中,开关升压电路的输出电压和输出电流由其输出端连接的负载的大小决定,而开关升压电路的输入端的输入电压为稳定状态,由输出电压、输出电流和输入电压以及开关升压电路的电路信息可得到开关升压电路中各元器件的电压和电流,进而可确定开关升压电路的电能转换效率。由此,可采集当前开关升压电路的输入电压、输出电流和输出电压,根据当前开关升压电路的电路信息确定不同功率半导体器件控制方案下整个开关升压电路的电能转换效率。
其中,开关升压电路的电路信息可包括电路拓扑结构以及电路中所有元器件的电气参数,电气参数包括但不限于电阻的电阻值,电容的电容值以及开关管的阈值电压等参数。开关升压电路中的功率半导体器件通常包括开关元件,例如场效应管、三极管和二极管等器件,或者是其他的开关管元器件,此处仅是举例说明。其中,场效应管可以为结型场效应管(JFET),也可以为绝缘栅型场效应管(MOSFET),JFET和MOSFET可以采用P沟道,也可以采用N沟道,MOSFET可以为增强型,也可以为耗尽型。
在可选的实施方式中,如图6所示,所述S200根据所述输入信号、输出信号和所述开关升压电路的电路信息从多个待选择控制方案中确定电能转换效率最高的控制方案为目标控制方案具体包括:
S210:根据开关升压电路的输入信号、输出信号和电路信息计算开关升压电路在多个待选择控制方案下的电路损耗,电路损耗包括电感铁芯损耗、电感绕组损耗、开关管开通损耗、开关管关断损耗、开关管通态损耗、整流二极管通态损耗和整流二极管开关损耗。
S220:根据每个待选择控制方案的电路损耗和输出信号确定每个控制方案的电能转换效率。
S230:确定多个待选择控制方案中电能转换效率最高的控制方案为目标控制方案。
具体的,可以理解的是,以图2中的boost直流转直流(DCDC)开关升压电路为例,若要保持开关升压电路的稳态运行,即输出电压和输出电流保持稳定,在既定的开关升压电路的电路拓扑和元器件参数下,场效应管、三极管等功率半导体器件的开关行为是有很多种可能性的,存在不同的导通和关断时间的可行控制方案。因此,需要实时采集并根据开关升压电路的输入信号和输出信号以及开关升压电路的电路信息确定待选 择的不同控制方案下开关升压电路的电能转换效率,确定电能转换效率最高的控制方案作为目标控制方案,通过目标控制方案实时调整开关升压电路中功率半导体器件的导通和关断的控制方案,减小功率半导体器件的损耗,实现开关升压电路的效率最优化。
开关升压电路中的功率器件通常包括电感、二极管和开关管等器件。这些功率器件在开关升压电路对输入电流和输入电压进行电能转换时,会造成能量损耗。从而,可计算开关升压电路在每个控制方案下的电路损耗,再结合开关升压电路的输出电压和输出电流即可得到开关升压电路的电能转换效率。
具体的,现有的开关升压电路通常包括电感、开关管和整流二极管,则电路损耗需考虑电感铁芯损耗、电感绕组损耗、开关管开通损耗、开关管关断损耗、开关管通态损耗、整流二极管通态损耗和整流二极管开关损耗。其中,本申请涉及的开关管开通损耗包括以下至少一种:三极管开通损耗、场效应管开通损耗,或者是其他开关管的开通损耗;开关管关断损耗包括以下至少一种:三极管关断损耗、场效应管关断损耗,或者是其他开关管的关断损耗;开关管通态损耗包括以下至少一种:三极管通态损耗、场效应管通态损耗,或者是其他开关管的通态损耗。在一个具体例子中,boost DCDC开关升压电路的电能转换效率可通过以下公式计算得到:
η=I2U2/(I2U2+Pcore+Pwd+PM_on+PM_off+PM_con+PD_con+PD_sw)
其中,η为电能转换效率,I2为输出电流,U2为输出电压,Pcore为电感铁芯损耗,Pwd为电感绕组损耗,PM_on为开关管开通损耗,PM_off为开关管关断损耗,PM_con为开关管通态损耗,PD_con为整流二极管通态损耗,PD_sw为整流二极管开关损耗。
需要说明的是,开关升压电路的电路信息中包括功率半导体器件的电气参数和描述电路中各器件的连接关系的电路拓扑结构,根据开关升压电路输出端连接的负载可确定输出信号,结合输入信号和电路拓扑结构可得到各功率半导体器件的电流和电压信息,进而根据各功率半导体器件的电气参数以及电流和电压信息可得到对应的损耗。其中,电感、二极管和开关管的损耗的详细计算过程为本领域的公知常识,本领域技术人员可根据实际情况计算得到,在此不再赘述。
当然,在其他实施方式中,电能转换效率的计算需要根据开关升压电路的实际电路信息确定电路损耗,然后根据电路损耗、输出电压和输出电流得到对应的电能转换效率,本领域技术人员可根据开关升压电路的实际电路信息确定电路损耗的具体计算公式,本申请对此并不作限定。
在可选的实施方式中,多个工作模式包括断续模式和/或连续模式,待选择控制方案包括开关升压电路的断续模式和/或连续模式中每个工作模式对应的针对至少一个功率半导体器件的控制方案。连续模式的对应的针对至少一个功率半导体器件的控制方案包括连续导通模式控制方案。断续模式的对应的针对至少一个功率半导体器件的控制方案包括第N次谷底断续导通模式控制方案,N包括至少一个大于或等于1的正整数。
具体的,可以理解的是,开关电路可工作于不同的工作模式,例如断续模式、连续模式和边界/边界线模式等工作模式。对于开关升压电路,可选的,选择断续模式和连续模式的控制方案。其中,连续模式的控制方案包括连续导通模式(Continuous Conduction Mode,CCM)控制方案,即电感电流连续控制方案。例如,图7示出了boost DCDC开关升压电路的CCM控制方案。断续模式的控制方案包括第N次谷底断续导通模式(Discontinuous Conduction Mode,DCM)控制方案,N包括至少一个大于或等于1的正整数。具体的,图8示出了boost DCDC开关升压电路的第一次谷底导通DCM控制方案,同时实现DCM之后的开关管(例如MOSFET)的结电容和输入电感的谐振,MOSFET的Vs电压谐振到最低点的时候,再次开通MOSFET,以实现最小的开通损耗。图9和图10示出了boost DCDC开关升压电路的第二次谷底导通和第三次谷底导通DCM控制方案,MOSFET结电容和输入电感分别发生第二次和第三次的谐振,同样在MOSFET的Vs电压谐振到最低点的时候,再次开通MOSFET。
在可选的实施方式中,在开关升压电路的功率大于或等于第一预设功率时,多个待选择控制方案包括连续导通模式控制方案和第N次谷底断续导通模式控制方案。
具体的,第N次谷底断续导通模式控制方案包括:第一次谷底断续导通模式控制方案、第二次谷底断续导通模式控制方案、第三次谷底断续导通模式控制方案,或者是第三次以上的谷底断续导通模式控制方案。
可以理解的是,通常谐振次数越多对应着负载越来越小的情形,原因是当负载越来越小时,电感电流的上升时间和下降时间都相应减小,如果谐振次数越少,意味着开关频率越高,单一的控制方案不利于效率的提升。例如,对于图5示出的三相AC输入的boost电路,输入侧的电压和电流实时值是随着时间在周期变化的。通常,正弦波输入电压和输入电流的电路拓扑,在电压相位比较小的时候,电流比较小,输入的实时功率比较小,会更多采用多次谐振的DCM谷底开通控制方案,当随着输入电压的相位增加,输入电压和电流也相应增加,DCM的谐振次数会减少;当实时功率越来越大的时候,可 能会采用DCM半次谐振(即第一次谷底断续导通模式控制方案)或直接采用CCM的控制方案,以实现效率的最优化。
由此,在该可选的实施方式中,当开关升压电路的功率大于或等于第一预设功率时,开关升压电路的功率较大,可考虑采用连续导通模式控制方案和第N次谷底断续导通模式控制方案作为待选择控制方案。
可选的,第一预设功率可选择开关升压电路的最大功率的50%。例如,在一个具体例子中,当开关升压电路的最大功率为10kw时,可设置第一预设功率为5kw。基于开关升压电路的输入信号和输出信号可确定开关升压电路的当前功率,若开关升压电路的当前功率大于或等于5kw,则可选择控制方案包括CCM控制方案和第N次谷底DCM控制方案。
可选的,当开关升压电路的功率大于或等于第一预设功率时,随着功率的增加,谐振次数会减少。从而,可设置N的数值,缩小可选择控制方案的选择范围,去除电能转换不高的控制方案,得到更有针对性的可选择控制方案,在保证开关升压电路的电能转换效率的基础上减少计算量,提高实时确定半导体功率器件的控制方案的效率。示例性的,当开关升压电路的功率大于或等于第一预设功率时,可设置N小于或等于3,以确定更符合当前开关升压电路的功率的可选择控制方案范围。例如,在一个具体例子中,当开关升压电路的最大功率为10kw时,可设置第一预设功率为5kw,N为3。基于开关升压电路的输入信号和输出信号可确定开关升压电路的当前功率,若开关升压电路的当前功率大于5kw,则可选择控制方案包括CCM控制方案、第一次谷底DCM控制方案、第二次谷底DCM控制方案和第三次谷底DCM控制方案。
当然,在其他实施方式中,可根据开关升压电路的输入信号和负载等实际情况确定第一预设功率及对应的可选择控制方案,本申请对此并不作限定。
在可选的实施方式中,在开关升压电路的功率小于或等于第二预设功率时,多个待选择控制方案包括第M次谷底断续导通模式控制方案,第二预设功率小于第一预设功率,M包括至少一个大于或等于预设数值的正整数。
具体的,可以理解的是,当开关升压电路的功率较小时,例如,当开关升压电路的输入信号为正弦波时,正弦波的输入信号在过零点时输入开关升压电路的实时功率比较小,会更多采用多次谐振的DCM谷底开通控制方案。由此,当开关升压电路的功率小于或等于第二预设功率时,CCM控制方案的电能转换效率通常不高,不再考虑CCM控制方案,仅考虑断续模式中的控制方案。
可选的,第二预设功率可选择开关升压电路的最大功率的30%。例如,在一个具体例子中,当开关升压电路的最大功率为10kw时,可设置第二预设功率为3kw。基于开关升压电路的输入信号和输出信号可确定开关升压电路的当前功率,若开关升压电路的当前功率小于或等于3kw,则可选择控制方案包括第M次谷底DCM控制方案。
可选的,当开关升压电路的功率小于或等于第二预设功率时,随着功率的减小,谐振次数会增加。从而,可设置预设数值,缩小可选择控制方案的选择范围,去除电能转换不高的控制方案,得到更有针对性的可选择控制方案,在保证开关升压电路的电能转换效率的基础上减少计算量,提高实时确定半导体功率器件的控制方案的效率。示例性的,当开关升压电路的功率小于或等于第二预设功率时,可设置预设数值为3,以确定更符合当前开关升压电路的功率的可选择控制方案范围。例如,在一个具体例子中,当开关升压电路的最大功率为10kw时,可设置第二预设功率为3kw,预设数值为3。基于开关升压电路的输入信号和输出信号可确定开关升压电路的当前功率,若开关升压电路的当前功率小于或等于3kw,则可选择控制方案包括第M次谷底DCM控制方案,M包括至少一个大于或等于3的正整数,例如第3次谷底DCM控制方案、第4次谷底DCM控制方案、第5次谷底DCM控制方案、第6次谷底DCM控制方案等。
当然,在其他实施方式中,可根据开关升压电路的输入信号和负载等实际情况确定第二预设功率及对应的可选择控制方案,本申请对此并不作限定。
在可选的实施方式中,当开关升压电路的功率大于第二预设功率且小于第一预设功率时,多个待选择控制方案可包括第X次谷底断续导通模式控制方案。可选的,当N小于M时,X可设置为大于或等于N且小于或等于M。例如,在一个具体例子中,第二预设功率为开关升压电路最大功率的30%,第一预设功率为开关升压电路最大功率的70%,N包括至少一个大于或等于1且小于3的正整数,M包括至少一个大于4的正整数,则X可选择3和4,即多个待选择控制方案可包括第三次谷底断续导通模式控制方案和第四次谷底断续导通模式控制方案。在其他实施方式中,本领域技术人员可根据实际情况选择开关升压电路的不同功率对应的控制方案,本申请对此并不作限定。
在可选的实施方式中,S100采集开关升压电路的输入信号和输出信号具体包括:
每隔一个或多个预设控制周期采集开关升压电路的输入信号和输出信号。
具体的,可预先确定开关升压电路输入信号和输出信号采集的控制周期,可每隔一个控制周期采集输入信号和输出信号并重新确定半导体功率器件的控制方案,也可每隔多个控制周期采集输入信号和输出信号并重新确定半导体功率器件的控制方案,以及时 根据开关升压电路的实际输入信号对功率半导体器件的控制方案进行调整,实现整个开关升压电路的持续电能转换效率的最优化。并且,通过设置控制周期定期调整功率半导体器件的控制方案,可以有针对性的调整控制方案,避免持续调整导致能耗高的问题。
其中,控制周期的时间间隔可小于、大于或者等于功率半导体器件的开关周期,本领域技术人员可根据实际需求设置该控制周期,本申请对此并不作限定。
在可选的实施方式中,方法进一步包括预先形成不同输入信号和输出信号与多个控制方案的对应关系的步骤S000。
具体的,可以理解的是,在开关升压电路的电路信息既定的情况下,对于不同输入电压、输出电压和输出电流的输入信号和输出信号,可以预先确定每种输入信号和输出信号时不同功率半导体器件控制方案下开关升压电路的电能转换效率,进而确定电能转换效率最高的控制方案,将不同输入信号和输出信号分别与对应的电能转换效率最高的控制方案对应形成不同输入信号和输出信号与多个控制方案之间的对应关系。从而,在实际应用时,当实时采集到开关升压电路的输入信号和输出信号时,可从上述对应关系中查找与采集的输入信号和输出信号对应的控制方案,即得到目标控制方案。在该可选的实施方式中,通过预设输入信号和输出信号与控制方案的对应关系可以提高功率半导体器件控制方案实时确定和调整的响应速度。
在一个或多个实施方式中,可以几个典型负载条件下的输出电压和输出电流的输出信号与输入电压作为两个维度与控制方案进行对应关联形成查找表。在实际应用中,根据采集得到的开关升压电路的输入电压、输出电压和输出电流可以直接从查找表中查找得到对应的控制方案作为目标控制方案对功率半导体器件进行开关控制。
在其他实施方式中,为了实现任意输入信号和输出信号下目标控制方案的确定,可进一步对确定的不同输入信号和输出信号与多个控制方案之间的对应关系进行插值处理,然后拟合得到不同输入信号和输出信号与控制方案的对应关系曲线。则在实际应用中,根据采集得到的开关升压电路的输入电压、输出电压和输出电流可以直接根据对应关系曲线确定对应的控制方案作为目标控制方案,对功率半导体器件进行开关控制。
在可选的实施方式中,如图11所示,S000形成不同输入信号和输出信号与多个控制方案的对应关系具体包括:
S010:采集开关升压电路的不同输入信号和输出信号。
S020:确定不同输入信号和输出信号在多个控制方案下的电能转换效率。
S030:将不同输入信号和输出信号分别与电能转换效率最高的控制方案对应关联。
具体的,在预先形成不同输入信号和输出信号与多个控制方案的对应关系的过程中,可采集实验或历史控制过程中开关升压电路的不同输入信号和输出信号,确定不同输入信号和输出信号在多个控制方案下的电能转换效率,进而确定电能转换效率最高的控制方案为目标控制方案,将不同输入信号和输出信号与对应的电能转换效率最高的控制方案对应关联形成对应关系。
在一个或多个实施方式中,确定不同输入信号和输出信号在多个控制方案下的电能转换效率时,可采集实验或历史控制过程中不同控制方案下开关升压电路的输入电压、输入电流、输出电压和输出电流。根据开关升压电路输入的信号和输出的信号确定开关升压电路的电能转换效率。
在其他实施方式中,确定不同输入信号和输出信号在多个控制方案下的电能转换效率时,也可先确定不同输入信号和输出信号在多个控制方案下的电路损耗,然后根据电路损耗和输入信号和输出信号中的输出电流和输出电压得到电能转换效率。例如,对于图2的Boost DCDC电路来说,电路损耗包括电感铁芯损耗、电感绕组损耗、开关管开通损耗、开关管关断损耗、开关管通态损耗、整流二极管通态损耗和整流二极管开关损耗。
基于相同原理,本实施例还公开了一种电路控制单元。如图12所示,本实施例中,电路控制单元包括信号采集模块11、控制调整模块12和开关控制模块13。
其中,信号采集模块11用于采集开关升压电路的输入信号和输出信号。
控制调整模块12用于根据输入信号、输出信号和开关升压电路的电路信息,从多个待选择控制方案中确定电能转换效率最高的控制方案为目标控制方案,待选择控制方案包括开关升压电路的多个工作模式中每个工作模式对应的针对至少一个功率半导体器件的控制方案。
开关控制模块13用于根据目标控制方案控制至少一个功率半导体器件的导通和关断。
在可选的实施方式中,控制调整模块12具体用于根据开关升压电路的输入信号、输出信号和电路信息计算开关升压电路在多个待选择控制方案下的电路损耗,电路损耗包括电感铁芯损耗、电感绕组损耗、开关管开通损耗、开关管关断损耗、开关管通态损耗、整流二极管通态损耗和整流二极管开关损耗,根据每个待选择控制方案的电路损耗和输出信号确定每个控制方案的电能转换效率,确定多个待选择控制方案中电能转换效率最高的控制方案为目标控制方案。
在可选的实施方式中,多个工作模式包括断续模式和/或连续模式。
待选择控制方案包括开关升压电路的断续模式和/或连续模式中每个工作模式对应的针对至少一个功率半导体器件的控制方案。
连续模式对应的针对至少一个功率半导体器件的控制方案包括连续导通模式控制方案。
断续模式对应的针对至少一个功率半导体器件的控制方案包括第N次谷底断续导通模式控制方案,N包括至少一个大于或等于1的正整数。
在可选的实施方式中,在开关升压电路的功率大于或等于第一预设功率时,多个待选择控制方案包括连续导通模式控制方案和第N次谷底断续导通模式控制方案。
在可选的实施方式中,在开关升压电路的功率小于或等于第二预设功率时,多个待选择控制方案包括第M次谷底断续导通模式控制方案,第二预设功率小于第一预设功率,M包括至少一个大于或等于预设数值的正整数。
在可选的实施方式中,信号采集模块11具体用于每隔一个或多个预设控制周期采集开关升压电路的输入信号和输出信号。
在可选的实施方式中,控制调整模块12进一步用于预先形成不同输入信号和输出信号与多个控制方案的对应关系。
在可选的实施方式中,控制调整模块12具体用于采集开关升压电路的不同输入信号和输出信号;确定不同输入信号和输出信号在多个控制方案下的电能转换效率;将不同输入信号和输出信号分别与电能转换效率最高的控制方案对应关联。
由于该单元解决问题的原理与以上方法类似,因此本单元的实施可以参见方法的实施,在此不再赘述。
基于相同原理,本实施例还公开了一种电源装置。本实施例中,电源装置包括开关升压电路和如本实施例所述的电路控制单元。
由于该装置解决问题的原理与以上方法类似,因此本装置的实施可以参见方法的实施,在此不再赘述。
上述实施例阐明的系统、装置、模块或单元,具体可以由计算机芯片或实体实现,或者由具有某种功能的计算机程序产品来实现。一种典型的实现设备为计算机设备,具体的,计算机设备例如可以为个人计算机、膝上型计算机、蜂窝电话、相机电话、智能电话、个人数字助理、媒体播放器、导航设备、电子邮件设备、游戏控制台、平板计算机、可穿戴设备或者这些设备中的任何设备的组合。
在一个典型的实例中计算机设备具体包括存储器、处理器以及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如上所述的由客户端执行的方法,或者,所述处理器执行所述程序时实现如上所述的由服务器执行的方法。
下面参考图13,其示出了适于用来实现本申请实施例的计算机设备600的结构示意图。
如图13所示,计算机设备600包括中央处理单元(CPU)601,其可以根据存储在只读存储器(ROM)602中的程序或者从存储部分608加载到随机访问存储器
(RAM))603中的程序而执行各种适当的工作和处理。在RAM603中,还存储有系统600操作所需的各种程序和数据。CPU601、ROM602、以及RAM603通过总线604彼此相连。输入/输出(I/O)接口605也连接至总线604。
以下部件连接至I/O接口605:包括键盘、鼠标等的输入部分606;包括诸如阴极射线管(CRT)、液晶反馈器(LCD)等以及扬声器等的输出部分607;包括硬盘等的存储部分608;以及包括诸如LAN卡,调制解调器等的网络接口卡的通信部分609。通信部分609经由诸如因特网的网络执行通信处理。驱动器610也根据需要连接至I/O接口605。可拆卸介质611,诸如磁盘、光盘、磁光盘、半导体存储器等等,根据需要安装在驱动器610上,以便于从其上读出的计算机程序根据需要被安装如存储部分608。
特别地,根据本申请的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本申请的实施例包括一种计算机程序产品,其包括有形地包含在机器可读介质上的计算机程序,所述计算机程序包括用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信部分609从网络上被下载和安装,和/或从可拆卸介质611被安装。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
为了描述的方便,描述以上装置时以功能分为各种单元分别描述。当然,在实施本申请时可以把各单元的功能在同一个或多个软件和/或硬件中实现。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本领域技术人员应明白,本申请的实施例可提供为方法、系统或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本申请,在这些分布式计算 环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (12)

  1. 一种电路控制方法,其特征在于,应用于电源装置,所述电源装置包括开关升压电路,所述开关升压电路包括至少一个功率半导体器件,所述电路控制方法包括:
    采集所述开关升压电路的输入信号和输出信号;
    根据所述输入信号、输出信号和所述开关升压电路的电路信息,从多个待选择控制方案中确定电能转换效率最高的控制方案为目标控制方案,所述待选择控制方案包括所述开关升压电路的多个工作模式中每个所述工作模式对应的针对所述至少一个功率半导体器件的控制方案;
    根据所述目标控制方案控制所述至少一个功率半导体器件的导通和关断。
  2. 根据权利要求1所述的电路控制方法,其特征在于,所述根据所述输入信号、输出信号和所述开关升压电路的电路信息从多个待选择控制方案中确定电能转换效率最高的控制方案为目标控制方案,包括:
    根据所述开关升压电路的输入信号、输出信号和电路信息计算所述开关升压电路在多个待选择控制方案下的电路损耗,所述电路损耗包括电感铁芯损耗、电感绕组损耗、开关管开通损耗、开关管关断损耗、开关管通态损耗、整流二极管通态损耗和整流二极管开关损耗;
    根据所述每个待选择控制方案的电路损耗和输出信号确定所述每个控制方案的电能转换效率;
    确定多个待选择控制方案中电能转换效率最高的控制方案为目标控制方案。
  3. 根据权利要求1-2任一项所述的电路控制方法,其特征在于,所述多个工作模式包括断续模式和/或连续模式;
    所述待选择控制方案包括所述开关升压电路的断续模式和/或连续模式中每个所述工作模式对应的针对所述至少一个功率半导体器件的控制方案;
    所述连续模式对应的针对所述至少一个功率半导体器件的控制方案包括连续导通模式控制方案;
    所述断续模式对应的针对所述至少一个功率半导体器件的控制方案包括第N次谷底断续导通模式控制方案,N包括至少一个大于或等于1的正整数。
  4. 根据权利要求3所述的电路控制方法,其特征在于,所述方法包括:
    在所述开关升压电路的功率大于或等于第一预设功率时,所述多个待选择控制方案包括连续导通模式控制方案和第N次谷底断续导通模式控制方案。
  5. 根据权利要求4所述的电路控制方法,其特征在于,所述方法包括:
    在所述开关升压电路的功率小于或等于第二预设功率时,所述多个待选择控制方案包括第M次谷底断续导通模式控制方案,所述第二预设功率小于所述第一预设功率,M包括至少一个大于或等于预设数值的正整数。
  6. 根据权利要求1所述的电路控制方法,其特征在于,所述采集所述开关升压电路的输入信号和输出信号包括:
    每隔一个或多个预设控制周期采集所述开关升压电路的输入信号和输出信号。
  7. 根据权利要求1所述的电路控制方法,其特征在于,所述方法包括:预先形成不同输入信号和输出信号与多个控制方案的对应关系。
  8. 一种电路控制单元,其特征在于,应用于电源装置,所述电源装置包括开关升压电路,所述开关升压电路包括至少一个功率半导体器件,所述电路控制单元包括:
    信号采集模块,用于采集所述开关升压电路的输入信号和输出信号;
    控制调整模块,用于根据所述输入信号、输出信号和所述开关升压电路的电路信息,从多个待选择控制方案中确定电能转换效率最高的控制方案为目标控制方案,所述待选择控制方案包括所述开关升压电路的多个工作模式中每个所述工作模式对应的针对所述至少一个功率半导体器件的控制方案;
    开关控制模块,用于根据所述目标控制方案控制所述至少一个功率半导体器件的导通和关断。
  9. 一种电源装置,其特征在于,包括开关升压电路和如权利要求8所述的电路控制单元。
  10. 一种计算机设备,包括存储器、处理器以及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,
    所述处理器执行所述程序时实现如权利要求1-7任一项所述方法。
  11. 一种计算机可读介质,其上存储有计算机程序,其特征在于,
    该程序被处理器执行时实现如权利要求1-7任一项所述方法。
  12. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,所述计算机程序被处理器执行时实现如权利要求1-7任一项所述方法。
PCT/CN2023/095345 2022-08-12 2023-05-19 电路控制方法、单元及装置 WO2024032078A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210968509.XA CN115333389A (zh) 2022-08-12 2022-08-12 电路控制方法、单元及装置
CN202210968509.X 2022-08-12

Publications (1)

Publication Number Publication Date
WO2024032078A1 true WO2024032078A1 (zh) 2024-02-15

Family

ID=83923867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/095345 WO2024032078A1 (zh) 2022-08-12 2023-05-19 电路控制方法、单元及装置

Country Status (2)

Country Link
CN (1) CN115333389A (zh)
WO (1) WO2024032078A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115333389A (zh) * 2022-08-12 2022-11-11 上海安世博能源科技有限公司 电路控制方法、单元及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104242658A (zh) * 2014-09-19 2014-12-24 无锡芯朋微电子股份有限公司 开关电源的谷底导通数字控制电路
CN107546973A (zh) * 2016-06-29 2018-01-05 南京理工大学 一种低输入电流谐波的断续模式pfc变换器
CN110086368A (zh) * 2019-03-29 2019-08-02 南京航空航天大学 一种基于断续电流模式的全桥逆变器的轻载效率优化方案
CN111404361A (zh) * 2020-04-29 2020-07-10 杭州必易微电子有限公司 开关模式供电电路及其控制方法和控制电路
WO2020237864A1 (zh) * 2019-05-31 2020-12-03 广东美的制冷设备有限公司 运行控制方法、电路、家电设备及计算机可读存储介质
CN115333389A (zh) * 2022-08-12 2022-11-11 上海安世博能源科技有限公司 电路控制方法、单元及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014008948A1 (en) * 2012-07-13 2014-01-16 Telefonaktiebolaget L M Ericsson (Publ) Switched mode power supply with improved light load efficiency
TWI542121B (zh) * 2013-01-08 2016-07-11 Dual - mode power supply switching control device
US9537400B2 (en) * 2014-08-29 2017-01-03 Infineon Technologies Austria Ag Switching converter with dead time between switching of switches
US20170346405A1 (en) * 2016-05-26 2017-11-30 Inno-Tech Co., Ltd. Dual-mode operation controller for flyback converter with primary-side regulation
CN112019027B (zh) * 2019-05-31 2021-11-19 广东美的制冷设备有限公司 驱动控制方法、装置、家电设备和计算机可读存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104242658A (zh) * 2014-09-19 2014-12-24 无锡芯朋微电子股份有限公司 开关电源的谷底导通数字控制电路
CN107546973A (zh) * 2016-06-29 2018-01-05 南京理工大学 一种低输入电流谐波的断续模式pfc变换器
CN110086368A (zh) * 2019-03-29 2019-08-02 南京航空航天大学 一种基于断续电流模式的全桥逆变器的轻载效率优化方案
WO2020237864A1 (zh) * 2019-05-31 2020-12-03 广东美的制冷设备有限公司 运行控制方法、电路、家电设备及计算机可读存储介质
CN111404361A (zh) * 2020-04-29 2020-07-10 杭州必易微电子有限公司 开关模式供电电路及其控制方法和控制电路
CN115333389A (zh) * 2022-08-12 2022-11-11 上海安世博能源科技有限公司 电路控制方法、单元及装置

Also Published As

Publication number Publication date
CN115333389A (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
WO2024032078A1 (zh) 电路控制方法、单元及装置
AU2016101962A4 (en) A Semi-Dual-Active-Bridge Converter System and Methods Thereof
JPWO2016125292A1 (ja) Dc−dcコンバータ、電力変換装置、発電システムおよびdc−dc変換方法
KR102600908B1 (ko) 컨버터 및 파워 어댑터
JP5006863B2 (ja) スイッチング電源装置
Tang et al. RL-ANN-based minimum-current-stress scheme for the dual-active-bridge converter with triple-phase-shift control
Zhang et al. Optimal triple-phase-shift controller design of isolated bidirectional DC-DC converter based on ant colony algorithm and BP neural network
Cittanti et al. Analysis and performance evaluation of a three-phase sparse neutral point clamped converter for industrial variable speed drives
Li et al. Asymmetric‐double‐sided modulation for fast load transition in a semi‐dual‐active‐bridge converter
AU2018396277B2 (en) Power factor correction circuit control method and device
Divakar et al. Genetic algorithm based tuning of nonfragile and robust PI controller for PSFB DC-DC converter
WO2023246512A1 (zh) 多电平直流变换器和飞跨电容的电压控制方法、控制装置
CN111030443B (zh) 图腾柱无桥pfc电路、控制方法、电子设备及介质
Xiao et al. Modulated predictive current control for a two‐level grid‐connected converter with over‐modulation capability
JP2013207950A (ja) スイッチング電源
CN114583957A (zh) 一种三电平变换器及其控制方法、控制装置
US20200235670A1 (en) Voltage regulating apparatus
CN110311564B (zh) Dcdc环流控制装置、控制方法、电子设备以及介质
CN111697831B (zh) 谐振变换器的控制系统及控制方法
CN105515365B (zh) 一种llc变换器数字软启动方法
JP2016131414A (ja) スイッチング電源
Lin et al. Analysis of series resonant converter with series–parallel connection
CN219227427U (zh) 降压装置、电机控制器、电机控制系统和电动汽车
CN115021603B (zh) 一种anpc电路及控制方法、装置、设备及介质
JP7269206B2 (ja) 電力変換器、電力変換器の制御方法、電力システム、電力システムの制御方法およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851308

Country of ref document: EP

Kind code of ref document: A1