WO2024032053A1 - 用于高硬脆材料激光超精密抛光的纳米微位移工作台 - Google Patents

用于高硬脆材料激光超精密抛光的纳米微位移工作台 Download PDF

Info

Publication number
WO2024032053A1
WO2024032053A1 PCT/CN2023/092785 CN2023092785W WO2024032053A1 WO 2024032053 A1 WO2024032053 A1 WO 2024032053A1 CN 2023092785 W CN2023092785 W CN 2023092785W WO 2024032053 A1 WO2024032053 A1 WO 2024032053A1
Authority
WO
WIPO (PCT)
Prior art keywords
base
platform
flexible hinge
position information
piezoelectric ceramic
Prior art date
Application number
PCT/CN2023/092785
Other languages
English (en)
French (fr)
Inventor
肖海兵
杨源达
周泳全
刘明俊
Original Assignee
深圳信息职业技术学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳信息职业技术学院 filed Critical 深圳信息职业技术学院
Publication of WO2024032053A1 publication Critical patent/WO2024032053A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/26Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
    • B23Q1/34Relative movement obtained by use of deformable elements, e.g. piezoelectric, magnetostrictive, elastic or thermally-dilatable elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present application belongs to the field of mechanical processing technology, and more specifically, relates to a nanometer micro-displacement workbench used for laser ultra-precision polishing of highly hard and brittle materials.
  • Laser is used to process metal materials. After the laser is irradiated on the metal surface, the protruding parts of the metal surface will melt. The melted metal liquid will fill the concave parts of the metal surface, thereby polishing the metal surface. Due to the melted The metal will be polished automatically, so the accuracy required to polish the metal with laser is low; however, for polishing of hard and brittle materials such as ceramics, the laser needs to be used to accurately remove the protruding parts of hard and brittle materials such as ceramics. , so polishing hard and brittle materials such as ceramics requires higher precision.
  • the position of the laser irradiation on the workpiece to be processed is usually controlled by controlling the laser emitter. Since there is a certain distance between the laser and the workpiece to be processed, this control method will have a large error, which is not suitable for hard and brittle ceramics and other materials. Material processing requires a more precise laser polishing equipment.
  • the purpose of the embodiments of the present application is to provide a nanometer micro-displacement workbench for laser ultra-precision polishing of highly hard and brittle materials, so as to solve the technical problem of insufficient accuracy of laser polishing equipment in the prior art.
  • nanometer micro-displacement workbench for laser ultra-precision polishing of highly hard and brittle materials, including:
  • a driving structure connected to the first base and the platform, the driving structure is used to drive the platform to move in the first direction, the second direction and the third direction relative to the first base. sports;
  • a flexible hinge disposed between the driving structure and the first base
  • a detection structure used to obtain position information of the platform relative to the first base
  • a control structure connected to the detection structure and the driving structure, for receiving the position information, and controlling the driving structure to drive the platform to move relative to the first base according to the position information;
  • first direction, the second direction and the third direction are perpendicular to each other.
  • the driving structure includes: a first piezoelectric ceramic driver, a second piezoelectric ceramic driver and a third piezoelectric ceramic driver;
  • the flexible hinge includes: a first flexible hinge, a second flexible hinge and a third flexible hinge;
  • the first piezoelectric ceramic driver is connected to the first flexible hinge and the platform, and is used to drive the platform to move in the first direction relative to the first flexible hinge;
  • the second piezoelectric ceramic driver is connected to the second flexible hinge and the platform, and is used to drive the platform to move in the second direction relative to the second flexible hinge;
  • the third piezoelectric ceramic driver is connected to the third flexible hinge and the platform, and is used to drive the platform to move in the third direction relative to the third flexible hinge.
  • the rigidity of the first flexible hinge in the first direction is much greater than the rigidity of the first flexible hinge in other directions except the first direction;
  • the rigidity of the second flexible hinge in the second direction is much greater than the rigidity of the second flexible hinge in other directions except the second direction;
  • the rigidity of the third flexible hinge in the third direction is much greater than the rigidity of the third flexible hinge in other directions except the third direction.
  • the detection structure includes:
  • a first capacitive sensor connected to the first base and the platform, used to obtain first position information of the platform relative to the first base in the first direction;
  • a second capacitive sensor connected to the first base and the platform, is used to obtain second position information of the platform in the second direction relative to the first base;
  • a third capacitive sensor is connected to the first base and the platform, and is used to obtain third position information of the platform in the third direction relative to the first base.
  • the control structure is connected to the first capacitive sensor and the first piezoelectric ceramic driver; the control structure is used to receive the first position information and control the first pressure according to the first position information.
  • An electroceramic driver drives the platform to move in a first direction relative to the first base;
  • the control structure is connected to the second capacitive sensor and the second piezoelectric ceramic driver; the control structure is used to receive the second position information and control the second pressure according to the second position information.
  • An electroceramic driver drives the platform to move in the second direction relative to the first base;
  • the control structure is connected to the third capacitive sensor and the third piezoelectric ceramic driver; the control structure is used to receive the third position information and control the third pressure sensor according to the third position information.
  • An electroceramic driver drives the platform to move in a third direction relative to the first base.
  • it also includes:
  • a first rotating component is connected to the first base and the second base, and is used to control the first base to rotate relative to the second base around the first direction.
  • the first rotating component includes:
  • a first drive motor installed on the second base
  • the first reducer is transmission connected to the output shaft of the first driving motor and the second base, and is used to rotate under the driving of the first driving motor and drive the second base to rotate.
  • it also includes:
  • a second rotating component is connected to the second base and the third base, and is used to control the second base to rotate in the second direction relative to the third base.
  • the second rotating component includes:
  • the second reducer is transmission connected to the output shaft of the second drive motor and the second base, and is used to rotate under the driving of the second drive motor and drive the second base to rotate.
  • it also includes:
  • a clamp is installed on the platform and used to clamp the workpiece to be processed.
  • the nanometer micro-displacement workbench for laser ultra-precision polishing of high hard and brittle materials includes: a platform, a first base, a driving structure, a flexible hinge, a detection structure and a control structure; the platform is used to carry the workpiece to be processed; the driving structure is connected to The first base and the platform, the driving structure is used to drive the platform to move in the first direction, the second direction and the third direction relative to the first base; the flexible hinge is disposed between the driving structure and the first base, using the flexible hinge
  • the driving structure can drive the platform to move within a certain distance range, so that the platform can move in three degrees of freedom; and the detection structure can be used to obtain the position information of the platform relative to the first base, and the control structure uses this position
  • the information control drive structure drives the movement of the platform to achieve the purpose of controlling the position of the platform relative to the first base.
  • the workpiece to be processed can be placed on the platform of the nano-micro-displacement workbench for laser ultra-precision polishing of highly hard and brittle materials, so that the workpiece to be processed can be positioned in a three-dimensional space Perform micro-displacement and cooperate with the laser adjustment structure in the laser polishing device to effectively improve the accuracy of laser polishing.
  • Figure 1 is a cross-sectional view from a first perspective of a nanometer micro-displacement worktable for laser ultra-precision polishing of highly hard and brittle materials provided by an embodiment of the present application;
  • Figure 2 is a cross-sectional view from a second perspective of a nanometer micro-displacement worktable used for laser ultra-precision polishing of highly hard and brittle materials provided by an embodiment of the present application.
  • Nano micro-displacement workbench for laser ultra-precision polishing of highly hard and brittle materials 110. Platform; 120. First base; 131. First piezoelectric ceramic driver; 132. Second piezoelectric ceramic driver; 133. The third piezoelectric ceramic actuator; 141. The first flexible hinge; 142. The second flexible hinge; 143. The third flexible hinge; 151. The first capacitive sensor; 152. The second capacitive sensor; 153. The third capacitive sensor; 160 , fixture.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • plurality means two or more than two, unless otherwise explicitly and specifically limited.
  • nanometer micro-displacement worktable and laser polishing equipment provided by the embodiments of the present application for laser ultra-precision polishing of highly hard and brittle materials will be described.
  • the nanometer micro-displacement workbench 100 for laser ultra-precision polishing of highly hard and brittle materials includes: a platform 110, a first base 120, a driving structure, a detection structure and a control structure.
  • the platform 110 is used to carry the workpiece to be processed.
  • the platform 110 may be provided with a through hole, and the through hole may be a connection hole connected to the workpiece to be processed.
  • the platform 110 can be used to provide support for the workpiece to be processed, so that the position of the workpiece to be processed and the platform 110 can be kept fixed.
  • the driving structure is connected to the first base 120 and the platform 110.
  • the driving structure is used to drive the platform 110 to move in the first direction, the second direction and the third direction relative to the first base 120, wherein the first direction , the second direction and the third direction are perpendicular to each other. That is, the driving structure can drive the platform 110 to move in three degrees of freedom relative to the first base 120, so that the platform 110 moves within a certain spatial range.
  • the flexible hinge is provided between the drive structure and the first base 120 .
  • a flexible hinge can maintain a high stiffness in a certain direction and a low stiffness in other directions.
  • the flexible hinge allows the platform 110 to move within a certain range relative to the first base 120 , thereby preventing the problem of limited movement range due to the rigid connection between the driving structure and the platform 110 .
  • the detection structure is used to obtain position information of the platform 110 relative to the first base 120 .
  • the detection structure can obtain the position information of the platform 110 relative to the first base 120 by obtaining the distance information of the platform 110 relative to the first base 120 in different directions.
  • the control structure is connected to the detection structure and the driving structure.
  • the control structure is used to receive position information and control the driving structure to drive the platform 110 to move relative to the first base 120 based on the position information.
  • the control structure can be connected to the detection structure and the driving structure in the form of electrical signals through wires, or can be connected to the detection structure and the driving structure in the form of wireless communication through radios to achieve signal transmission between different structures.
  • the control structure may be a control circuit or a microcontroller.
  • the nanometer micro-displacement workbench 100 for laser ultra-precision polishing of highly hard and brittle materials includes: a platform 110, a first base 120, a driving structure, a flexible hinge, a detection structure and a control structure; the platform 110 is used to carry the workpiece to be processed; The driving structure is connected to the first base 120 and the platform 110.
  • the driving structure is used to drive the platform 110 to move in the first direction, the second direction and the third direction relative to the first base 120;
  • the flexible hinge is provided between the driving structure and the first Between the bases 120, the flexible hinge can be used to enable the driving structure to drive the platform 110 to move within a certain distance range, so that the platform 110 can move in three degrees of freedom; and the detection structure can be used to obtain the relative position of the platform 110 to the third A position information of the base 120.
  • the control structure uses the position information to control the driving structure to drive the movement of the platform 110 to achieve the purpose of controlling the position of the platform 110 relative to the first base 120.
  • the workpiece to be processed can be placed on the platform 110 of the nanometer micro-displacement workbench 100 for laser ultra-precision polishing of highly hard and brittle materials, so that the workpiece to be processed can be processed in three dimensions.
  • Micro-displacement in space combined with the laser adjustment structure in the laser polishing device, effectively improves the accuracy of laser polishing.
  • the driving structure may include: a first piezoelectric ceramic driver 131 , a second piezoelectric ceramic driver 132 and a third piezoelectric ceramic driver 133 .
  • the flexible hinge may include: a first flexible hinge 141 , a second flexible hinge 142 and a third flexible hinge 143 .
  • the first piezoelectric ceramic driver 131 is connected between the first flexible hinge 141 and the platform 110 , and the first piezoelectric ceramic driver 131 is used to drive the platform 110 to move in the first direction relative to the first flexible hinge 141 .
  • the first piezoelectric ceramic driver 131 can be fixedly connected to the first flexible hinge 141, and the driving direction of the first piezoelectric ceramic driver 131 is the first direction, and the extending direction of the first flexible hinge 141 can also be the first direction. , so that the first piezoelectric ceramic driver 131 can accurately transmit the motion to the platform 110 along the first direction through the first flexible hinge 141 .
  • the controller is connected to the first piezoelectric ceramic driver 131 and is used to control the first piezoelectric ceramic driver 131 to drive the platform 110 to move in the first direction according to the position information after receiving the position information.
  • the second piezoelectric ceramic driver 132 is connected between the second flexible hinge 142 and the platform 110 , and the second piezoelectric ceramic driver 132 is used to drive the platform 110 to move in the second direction relative to the second flexible hinge 142 .
  • the second piezoelectric ceramic driver 132 can be fixedly connected to the second flexible hinge 142, and the driving direction of the second piezoelectric ceramic driver 132 is the second direction, and the extension direction of the second flexible hinge 142 can also be the second direction. , so that the second piezoelectric ceramic actuator 132 can accurately transmit the motion to the platform 110 in the second direction through the second flexible hinge 142 .
  • the controller is connected to the second piezoelectric ceramic driver 132 and is used to control the second piezoelectric ceramic driver 132 to drive the platform 110 to move in the second direction according to the position information after receiving the position information.
  • the third piezoelectric ceramic driver 133 is connected between the third flexible hinge 143 and the platform 110 , and the third piezoelectric ceramic driver 133 is used to drive the platform 110 to move in the third direction relative to the third flexible hinge 143 .
  • the third piezoelectric ceramic driver 133 can be fixedly connected to the third flexible hinge 143, and the driving direction of the third piezoelectric ceramic driver 133 is the third direction, and the extension direction of the third flexible hinge 143 can also be the third direction. , so that the third piezoelectric ceramic driver 133 can accurately transmit the motion to the platform 110 along the third direction through the third flexible hinge 143 .
  • the controller is connected to the third piezoelectric ceramic driver 133 and is used to control the third piezoelectric ceramic driver 133 to drive the platform 110 to move in the third direction according to the position information after receiving the position information.
  • the piezoelectric ceramic actuator has the characteristics of high driving accuracy, using three piezoelectric ceramic actuators to drive the platform 110 in three directions respectively can make the movement of the platform 110 relative to the first base 120 in three directions with high accuracy. accuracy.
  • the rigidity of the first flexible hinge 141 in the first direction is much greater than the rigidity of the first flexible hinge 141 in other directions except the first direction. Utilizing this property of the first flexible hinge 141, the driving accuracy of the first piezoelectric ceramic actuator 131 in the first direction can be higher, making it easier for the control structure to control the movement of the first piezoelectric ceramic actuator 131 in the first direction.
  • the rigidity of the second flexible hinge 142 in the second direction is much greater than the rigidity of the second flexible hinge 142 in other directions except the second direction. Utilizing this property of the second flexible hinge 142, the driving accuracy of the second piezoelectric ceramic actuator 132 in the second direction can be higher, making it easier for the control structure to control the movement of the second piezoelectric ceramic actuator 132 in the second direction.
  • the rigidity of the third flexible hinge 143 in the third direction is much greater than the rigidity of the third flexible hinge 143 in other directions except the third direction. Utilizing this property of the third flexible hinge 143, the driving accuracy of the third piezoelectric ceramic actuator 133 in the third direction can be higher, making it easier for the control structure to control the movement of the third piezoelectric ceramic actuator 133 in the third direction.
  • the detection structure includes: a first capacitive sensor 151, a second capacitive sensor 152, and a third capacitive sensor 153.
  • the first capacitive sensor 151 is connected between the first base 120 and the platform 110 .
  • the first capacitive sensor 151 is used to obtain position information of the platform 110 relative to the first base 120 in the first direction.
  • one metal piece of the first capacitive sensor 151 can be fixedly installed on the first base 120
  • another metal piece of the first capacitive sensor 151 can be fixedly installed on the platform 110
  • the two metal pieces are on the first base 120.
  • Arranged relatively in one direction by obtaining the voltage information in the first capacitive sensor 151, the position information of the two metal pieces in the first direction can be obtained, and then the position of the platform 110 in the first direction relative to the first base 120 can be obtained.
  • the upward position information is the first position information.
  • the control structure is connected to the first capacitive sensor 151.
  • the control structure is used to receive the first position information obtained by the first capacitive sensor 151, and control the first piezoelectric ceramic driver 131 to drive the platform 110 relative to the first base according to the first position information.
  • the seat 120 moves in the first direction.
  • the second capacitive sensor 152 is connected between the first base 120 and the platform 110 .
  • the second capacitive sensor 152 is used to obtain position information of the platform 110 relative to the first base 120 in the second direction.
  • one metal piece of the second capacitive sensor 152 can be fixedly installed on the first base 120
  • the other metal piece of the second capacitive sensor 152 can be fixedly installed on the platform 110
  • the two metal pieces are on the first base 120.
  • the two directions are arranged relative to each other.
  • the control structure is connected to the second capacitive sensor 152.
  • the control structure is used to receive the second position information obtained by the second capacitive sensor 152, and control the second piezoelectric ceramic driver 132 to drive the platform 110 relative to the first base according to the second position information.
  • the seat 120 moves in the second direction.
  • the third capacitive sensor 153 is connected between the first base 120 and the platform 110 .
  • the third capacitive sensor 153 is used to obtain the position information of the platform 110 in the third direction relative to the first base 120 .
  • one metal piece of the third capacitive sensor 153 can be fixedly installed on the first base 120
  • the other metal piece of the third capacitive sensor 153 can be fixedly installed on the platform 110
  • the two metal pieces are on the first base 120.
  • Arranged relatively in three directions by obtaining the voltage information in the third capacitive sensor 153, the position information of the two metal sheets in the third direction can be obtained, and then the position of the platform 110 relative to the first base 120 in the third direction can be obtained.
  • information, and the location information is the third location information.
  • the control structure is connected to the third capacitive sensor 153.
  • the control structure is used to receive the third position information obtained by the third capacitive sensor 153, and control the third piezoelectric ceramic driver 133 to drive the platform 110 relative to the first base according to the third position information.
  • the seat 120 moves in the third direction.
  • the capacitive sensor Since the capacitive sensor has the characteristic of high detection accuracy in detecting distance, the three capacitive sensors can be used to accurately obtain the positional relationship of the platform 110 relative to the first base 120 in three directions.
  • the nanometer micro-displacement workbench 100 for laser ultra-precision polishing of highly hard and brittle materials further includes: a second base and a first rotating component.
  • the first rotating component is connected between the first base 120 and the second base, and is used to control the first base 120 to rotate in the first direction relative to the second base. Utilizing the first rotating component, the first base 120 can be rotated, thereby allowing the platform 110 to rotate around the first direction, further improving the flexibility of controlling the position of the platform 110 so as to better cooperate with the laser for polishing. .
  • the first rotation component may include: a first drive motor and a first reducer.
  • the first driving motor is installed on the second base, is drivingly connected to the first reducer, and is used to drive the first reducer to rotate.
  • the first drive motor can be a stepper motor. Since the stepper motor has the characteristic of precise rotation angle control, the stepper motor can accurately drive the first reducer to rotate to a preset angle.
  • the first reducer is drivingly connected to the second base, and the first reducer is used to rotate driven by the first drive motor and drive the second base to rotate.
  • the first reducer can be used to increase the torque output by the first drive motor to facilitate driving the first base 120 to rotate.
  • the nanometer micro-displacement workbench 100 for laser ultra-precision polishing of highly hard and brittle materials further includes: a third base and a first rotating component.
  • the first rotating component is connected between the second base and the third base, and is used to control the second base to rotate in the second direction relative to the third base.
  • the first rotating component can be used to rotate the second base, thereby allowing the platform 110 to rotate around the second direction, further improving the flexibility of controlling the position of the platform 110 so as to better cooperate with the laser for polishing.
  • the first rotation component may include: a second drive motor and a second reducer.
  • the second drive motor is installed on the third base, and is drivingly connected to the second reducer.
  • the second drive motor is used to drive the second reducer to rotate.
  • the second drive motor can be a stepper motor. Since the stepper motor has the characteristic of precise rotation angle control, the stepper motor can accurately drive the second reducer to rotate to a preset angle.
  • the second reducer is drivingly connected to the third base, and the second reducer is used to rotate driven by the second drive motor and drive the third base to rotate.
  • the second reducer can be used to increase the torque output by the second drive motor to facilitate driving the second base to rotate.
  • the nanometer micro-displacement workbench 100 for laser ultra-precision polishing of highly hard and brittle materials further includes: a fixture.
  • the clamp 160 is installed on the platform 110 .
  • the clamp 160 can be installed in a through hole on the platform 110, and the clamp 160 can be fixedly installed on the platform 110 using the through hole.
  • the clamp 160 is used to clamp the workpiece to be processed to fix the position of the workpiece to be processed.
  • the piece to be processed can be ceramic.
  • Embodiments of the present application also provide a laser polishing equipment, which includes the above-mentioned nanometer micro-displacement worktable for laser ultra-precision polishing of highly hard and brittle materials and a laser control structure for controlling the laser angle and position.
  • a laser polishing equipment which includes the above-mentioned nanometer micro-displacement worktable for laser ultra-precision polishing of highly hard and brittle materials and a laser control structure for controlling the laser angle and position.
  • the use of the nano-micro-displacement worktable for laser ultra-precision polishing of high-hard and brittle materials and the laser control structure can effectively improve the position accuracy of laser irradiation on the workpiece to be processed, and effectively improve the polishing effect of laser polishing on hard and brittle materials.

Abstract

一种用于高硬脆材料激光超精密抛光的纳米微位移工作台(100),包括:平台(110);第一基座(120);驱动结构,连接于第一基座(120)和平台(110),驱动结构用于驱动平台(110)相对于第一基座(120)沿第一方向运动和沿第二方向运动和沿第三方向运动;柔性铰链,设置于驱动结构和第一基座(120)之间;检测结构,用于获取平台(110)相对于第一基座(120)的位置信息;控制结构,连接于检测结构和驱动结构,用于接收位置信息,并依据位置信息控制驱动结构驱动平台(110)相对于第一基座(120)运动;其中,第一方向、第二方向以及第三方向之间两两垂直。将待加工件放置于平台(110)上,可以对该待加工件在三维空间内进行微位移,配合激光抛光的装置中对激光调节的结构,可以有效提高激光抛光的精确度。

Description

用于高硬脆材料激光超精密抛光的纳米微位移工作台
本申请要求于2022年08月08日在中国专利局提交的、申请号为202222080771.9、发明名称为“用于高硬脆材料激光超精密抛光的纳米微位移工作台”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于机械加工技术领域,更具体地说,是涉及一种用于高硬脆材料激光超精密抛光的纳米微位移工作台。
背景技术
利用激光对金属材质进行加工,激光在金属表面照射之后,会使金属表面凸出的部分融化,融化之后的金属液体会填充于金属表面凹陷的部分,从而实现对金属表面的抛光,由于融化的金属会自动实现抛光,因此在利用激光对金属进行抛光所需要的精确度较低;但是对于陶瓷等硬脆材料进行抛光,则需要利用激光对陶瓷等硬脆材料中凸出的部分进行精确去除,因此对于陶瓷等硬脆材料进行抛光需要更高的精度。相关技术中通常是通过控制激光发射器来控制激光照射于待加工件的位置,由于激光和待加工件之间具有一定距离,因此这种控制方式会存在较大的误差,对陶瓷等硬脆材料进行加工需要一种精度更高的激光抛光设备。
技术问题
本申请实施例的目的在于提供一种用于高硬脆材料激光超精密抛光的纳米微位移工作台,以解决现有技术中存在的激光抛光设备的精度不足的技术问题。
技术解决方案
为实现上述目的,本申请采用的技术方案是:
提供一种用于高硬脆材料激光超精密抛光的纳米微位移工作台,包括:
平台;
第一基座;
驱动结构,连接于所述第一基座和所述平台,所述驱动结构用于驱动所述平台相对于所述第一基座沿第一方向运动和沿第二方向运动和沿第三方向运动;
柔性铰链,设置于所述驱动结构和所述第一基座之间;
检测结构,用于获取所述平台相对于所述第一基座的位置信息;
控制结构,连接于所述检测结构和所述驱动结构,用于接收所述位置信息,并依据所述位置信息控制所述驱动结构驱动所述平台相对于所述第一基座运动;
其中,所述第一方向、所述第二方向以及所述第三方向之间两两垂直。
在一个实施例中,
所述驱动结构包括:第一压电陶瓷驱动器、第二压电陶瓷驱动器以及第三压电陶瓷驱动器;
所述柔性铰链包括:第一柔性铰链、第二柔性铰链以及第三柔性铰链;
所述第一压电陶瓷驱动器连接于所述第一柔性铰链和所述平台,用于驱动所述平台相对于所述第一柔性铰链沿所述第一方向运动;
所述第二压电陶瓷驱动器连接于所述第二柔性铰链和所述平台,用于驱动所述平台相对于所述第二柔性铰链沿所述第二方向运动;
所述第三压电陶瓷驱动器连接于所述第三柔性铰链和所述平台,用于驱动所述平台相对于所述第三柔性铰链沿所述第三方向运动。
在一个实施例中,
所述第一柔性铰链在所述第一方向上的刚性远大于所述第一柔性铰链在除第一方向上的其他方向上的刚性;
所述第二柔性铰链在所述第二方向上的刚性远大于所述第二柔性铰链在除第二方向上的其他方向上的刚性;
所述第三柔性铰链在所述第三方向上的刚性远大于所述第三柔性铰链在除第三方向上的其他方向上的刚性。
在一个实施例中,所述检测结构包括:
第一电容传感器,连接于所述第一基座和所述平台,用于获取所述平台相对于所述第一基座在所述第一方向上的第一位置信息;
第二电容传感器,连接于所述第一基座和所述平台,用于获取所述平台相对于所述第一基座在所述第二方向上的第二位置信息;
第三电容传感器,连接于所述第一基座和所述平台,用于获取所述平台相对于所述第一基座在所述第三方向上的第三位置信息。
在一个实施例中,
所述控制结构连接于所述第一电容传感器和所述第一压电陶瓷驱动器;所述控制结构用于接收所述第一位置信息,并依据所述第一位置信息控制所述第一压电陶瓷驱动器驱动所述平台相对于所述第一基座沿第一方向运动;
所述控制结构连接于所述第二电容传感器和所述第二压电陶瓷驱动器;所述控制结构用于接收所述第二位置信息,并依据所述第二位置信息控制所述第二压电陶瓷驱动器驱动所述平台相对于所述第一基座沿第二方向运动;
所述控制结构连接于所述第三电容传感器和所述第三压电陶瓷驱动器;所述控制结构用于接收所述第三位置信息,并依据所述第三位置信息控制所述第三压电陶瓷驱动器驱动所述平台相对于所述第一基座沿第三方向运动。
在一个实施例中,还包括:
第二基座;
第一转动组件,连接于所述第一基座和所述第二基座,用于控制所述第一基座相对于所述第二基座绕所述第一方向转动。
在一个实施例中,所述第一转动组件包括:
第一驱动电机,安装于所述第二基座;
第一减速器,传动连接于所述第一驱动电机的输出轴和所述第二基座,用于在所述第一驱动电机的带动下转动并带动所述第二基座转动。
在一个实施例中,还包括:
第三基座;
第二转动组件,连接于所述第二基座和所述第三基座,用于控制所述第二基座相对于所述第三基座绕所述第二方向转动。
在一个实施例中,所述第二转动组件包括:
第二驱动电机,安装于所述第三基座;
第二减速器,传动连接于所述第二驱动电机的输出轴和所述第二基座,用于在所述第二驱动电机的带动下转动并带动所述第二基座转动。
在一个实施例中,还包括:
夹具,安装于所述平台,用于夹持于待加工件。
有益效果
本申请提供的用于高硬脆材料激光超精密抛光的纳米微位移工作台的有益效果在于:
该用于高硬脆材料激光超精密抛光的纳米微位移工作台包括:平台、第一基座、驱动结构、柔性铰链、检测结构以及控制结构;平台用于承载待加工件;驱动结构连接于第一基座和平台,驱动结构用于驱动平台相对于第一基座沿第一方向、第二方向以及第三方向运动;柔性铰链设置于驱动结构和第一基座之间,利用柔性铰链可以使驱动结构可以在一定的距离范围内驱动平台运动,使平台可以在三个自由度上均可以活动;并且利用检测结构可以获取平台相对于第一基座的位置信息,控制结构利用该位置信息控制驱动结构驱动平台运动,以达到控制平台相对于第一基座位置的目的。
在对待加工件进行激光抛光的过程中,可以将待加工件放置于该用于高硬脆材料激光超精密抛光的纳米微位移工作台的平台上,从而可以对该待加工件在三维空间内进行微位移,配合激光抛光的装置中对于激光调节的结构,从而有效提高激光抛光的精确度。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的用于高硬脆材料激光超精密抛光的纳米微位移工作台在第一视角下的剖面图;
图2为本申请实施例提供的用于高硬脆材料激光超精密抛光的纳米微位移工作台在第二视角下的剖面图。
其中,图中各附图标记:
100、用于高硬脆材料激光超精密抛光的纳米微位移工作台;110、平台;120、第一基座;131、第一压电陶瓷驱动器;132、第二压电陶瓷驱动器;133、第三压电陶瓷驱动器;141、第一柔性铰链;142、第二柔性铰链;143、第三柔性铰链;151、第一电容传感器;152、第二电容传感器;153、第三电容传感器;160、夹具。
本发明的实施方式
为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。
需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
现对本申请实施例提供的用于高硬脆材料激光超精密抛光的纳米微位移工作台及激光抛光设备进行说明。
如图1和图2所示,该用于高硬脆材料激光超精密抛光的纳米微位移工作台100包括:平台110、第一基座120、驱动结构、检测结构以及控制结构。
平台110用于承载待加工件,具体的,该平台110可以开设有通孔,该通孔可以为连接于待加工件的连接孔。利用该平台110,可以为待加工件提供支撑,使待加工件的位置和平台110之间保持固定。
驱动结构连接于第一基座120和平台110,驱动结构用于驱动平台110相对于第一基座120沿第一方向运动和沿第二方向运动和沿第三方向运动,其中,第一方向、第二方向以及第三方向两两垂直。即驱动结构可以驱动平台110相对于第一基座120在三个自由度上进行运动,使平台110在一定的空间范围内活动。
柔性铰链设置于驱动结构和第一基座120之间。具体的,柔性铰链为可以在一定的方向上保持较高的刚度,在其他的方向上保持较低的刚度。利用柔性铰链可以使平台110相对于第一基座120在一定的范围内活动,防止出现因为驱动结构和平台110之间刚性连接而产生的活动范围受限的问题。
检测结构用于获取平台110相对于第一基座120的位置信息。具体的,检测结构可以通过获取平台110相对于第一基座120在不同方向上的距离信息,来得到平台110相对于第一基座120的位置信息。
控制结构连接于检测结构和驱动结构,控制结构用于接收位置信息,并依据该位置信息控制驱动结构驱动平台110相对于第一基座120运动。具体的,控制结构可以通过导线以电信号的方式连接于检测结构和驱动结构,也可以通过无线电以无线通讯的方式连接于检测结构和驱动结构,以实现不同结构之间的信号传递。具体的,该控制结构可以为控制电路或单片机。
该用于高硬脆材料激光超精密抛光的纳米微位移工作台100包括:平台110、第一基座120、驱动结构、柔性铰链、检测结构以及控制结构;平台110用于承载待加工件;驱动结构连接于第一基座120和平台110,驱动结构用于驱动平台110相对于第一基座120沿第一方向、第二方向以及第三方向运动;柔性铰链设置于驱动结构和第一基座120之间,利用柔性铰链可以使驱动结构可以在一定的距离范围内驱动平台110运动,使平台110可以在三个自由度上均可以活动;并且利用检测结构可以获取平台110相对于第一基座120的位置信息,控制结构利用该位置信息控制驱动结构驱动平台110运动,以达到控制平台110相对于第一基座120位置的目的。
在对待加工件进行激光抛光的过程中,可以将待加工件放置于该用于高硬脆材料激光超精密抛光的纳米微位移工作台100的平台110上,从而可以对该待加工件在三维空间内进行微位移,配合激光抛光的装置中对于激光调节的结构,从而有效提高激光抛光的精确度。
在本申请的一些实施例中,该驱动结构可以包括:第一压电陶瓷驱动器131、第二压电陶瓷驱动器132以及第三压电陶瓷驱动器133。该柔性铰链可以包括:第一柔性铰链141、第二柔性铰链142以及第三柔性铰链143。
其中,第一压电陶瓷驱动器131连接于第一柔性铰链141和平台110之间,第一压电陶瓷驱动器131用于驱动平台110相对于第一柔性铰链141沿第一方向运动。具体的,第一压电陶瓷驱动器131可以固定连接于第一柔性铰链141,并且第一压电陶瓷驱动器131的驱动方向为第一方向,第一柔性铰链141的延伸方向也可以为第一方向,以使第一压电陶瓷驱动器131可以准确地将运动通过第一柔性铰链141沿第一方向传递至平台110上。控制器连接于第一压电陶瓷驱动器131,用于在接收到位置信息之后,根据该位置信息控制第一压电陶瓷驱动器131驱动平台110在第一方向上运动。
其中,第二压电陶瓷驱动器132连接于第二柔性铰链142和平台110之间,第二压电陶瓷驱动器132用于驱动平台110相对于第二柔性铰链142沿第二方向运动。具体的,第二压电陶瓷驱动器132可以固定连接于第二柔性铰链142,并且第二压电陶瓷驱动器132的驱动方向为第二方向,第二柔性铰链142的延伸方向也可以为第二方向,以使第二压电陶瓷驱动器132可以准确地将运动通过第二柔性铰链142沿第二方向传递至平台110上。控制器连接于第二压电陶瓷驱动器132,用于在接收到位置信息之后,根据该位置信息控制第二压电陶瓷驱动器132驱动平台110在第二方向上运动。
其中,第三压电陶瓷驱动器133连接于第三柔性铰链143和平台110之间,第三压电陶瓷驱动器133用于驱动平台110相对于第三柔性铰链143沿第三方向运动。具体的,第三压电陶瓷驱动器133可以固定连接于第三柔性铰链143,并且第三压电陶瓷驱动器133的驱动方向为第三方向,第三柔性铰链143的延伸方向也可以为第三方向,以使第三压电陶瓷驱动器133可以准确地将运动通过第三柔性铰链143沿第三方向传递至平台110上。控制器连接于第三压电陶瓷驱动器133,用于在接收到位置信息之后,根据该位置信息控制第三压电陶瓷驱动器133驱动平台110在第三方向上运动。
由于压电陶瓷驱动器具有驱动精度高的特点,利用三个压电陶瓷驱动器分别由三个方向驱动平台110,可以使平台110相对于第一基座120在三个方向上的运动均具有很高的精确度。
在本申请的一些实施例中,第一柔性铰链141在第一方向上的刚性远大于第一柔性铰链141在除第一方向上的其他方向上的刚性。利用第一柔性铰链141的该性质,可以使第一压电陶瓷驱动器131在第一方向上的驱动精度更高,使控制结构更容易控制第一压电陶瓷驱动器131在第一方向上运动。
在本申请的一些实施例中,第二柔性铰链142在第二方向上的刚性远大于第二柔性铰链142在除第二方向上的其他方向上的刚性。利用第二柔性铰链142的该性质,可以使第二压电陶瓷驱动器132在第二方向上的驱动精度更高,使控制结构更容易控制第二压电陶瓷驱动器132在第二方向上运动。
在本申请的一些实施例中,第三柔性铰链143在第三方向上的刚性远大于第三柔性铰链143在除第三方向上的其他方向上的刚性。利用第三柔性铰链143的该性质,可以使第三压电陶瓷驱动器133在第三方向上的驱动精度更高,使控制结构更容易控制第三压电陶瓷驱动器133在第三方向上运动。
在本申请的一些实施例中,检测结构包括:第一电容传感器151、第二电容传感器152以及第三电容传感器153。
第一电容传感器151连接与第一基座120和平台110之间,第一电容传感器151用于获取平台110相对于第一基座120在第一方向上的位置信息。具体的,第一电容传感器151中的一个金属片可以固定安装于第一基座120上,第一电容传感器151中的另一个金属片可以固定安装于平台110上,并且两个金属片在第一方向上相对设置,通过获取第一电容传感器151中的电压信息,即可获取两个金属片在第一方向上的位置信息,进而可以获取平台110相对于第一基座120在第一方向上的位置信息,该位置信息即为第一位置信息。控制结构连接于第一电容传感器151,控制结构用于接收第一电容传感器151获取的第一位置信息,并根据该第一位置信息控制第一压电陶瓷驱动器131驱动平台110相对于第一基座120沿第一方向运动。
第二电容传感器152连接与第一基座120和平台110之间,第二电容传感器152用于获取平台110相对于第一基座120在第二方向上的位置信息。具体的,第二电容传感器152中的一个金属片可以固定安装于第一基座120上,第二电容传感器152中的另一个金属片可以固定安装于平台110上,并且两个金属片在第二方向上相对设置,通过获取第二电容传感器152中的电压信息,即可获取两个金属片在第二方向上的位置信息,进而可以获取平台110相对于第一基座120在第二方向上的位置信息,该位置信息即为第二位置信息。控制结构连接于第二电容传感器152,控制结构用于接收第二电容传感器152获取的第二位置信息,并根据该第二位置信息控制第二压电陶瓷驱动器132驱动平台110相对于第一基座120沿第二方向运动。
第三电容传感器153连接与第一基座120和平台110之间,第三电容传感器153用于获取平台110相对于第一基座120在第三方向上的位置信息。具体的,第三电容传感器153中的一个金属片可以固定安装于第一基座120上,第三电容传感器153中的另一个金属片可以固定安装于平台110上,并且两个金属片在第三方向上相对设置,通过获取第三电容传感器153中的电压信息,即可获取两个金属片在第三方向上的位置信息,进而可以获取平台110相对于第一基座120在第三方向上的位置信息,该位置信息即为第三位置信息。控制结构连接于第三电容传感器153,控制结构用于接收第三电容传感器153获取的第三位置信息,并根据该第三位置信息控制第三压电陶瓷驱动器133驱动平台110相对于第一基座120沿第三方向运动。
由于电容传感器在检测距离的方面具有检测精度高的特点,因此利用三个电容传感器可以精确获取平台110相对于第一基座120在三个方向上的位置关系。
在本申请的一些实施例中,该用于高硬脆材料激光超精密抛光的纳米微位移工作台100还包括:第二基座和第一转动组件。
第一转动组件连接于第一基座120和第二基座之间,第一转动组件用于控制第一基座120相对于第二基座绕第一方向转动。利用第一转动组件,可以实现第一基座120的转动,进而可以使平台110绕第一方向转动,进一步提高对平台110所处位置的控制的灵活性,以便于更好地配合激光进行抛光。
在本申请的一些实施例中,第一转动组件可以包括:第一驱动电机和第一减速器。
第一驱动电机安装于第二基座,第一驱动电机传动连接于第一减速器,第一驱动电机用于驱动第一减速器转动。具体的,第一驱动电机可以为步进电机,由于步进电机具有转动角度控制精确的特点,利用步进电机可以准确地驱动第一减速器转动至预设的角度。
第一减速器传动连接于第二基座,第一减速器用于在第一驱动电机的带动下转动并驱动第二基座转动。利用第一减速器可以增加第一驱动电机输出的扭矩,便于驱动第一基座120转动。
在本申请的一些实施例中,该用于高硬脆材料激光超精密抛光的纳米微位移工作台100还包括:第三基座和第一转动组件。
第一转动组件连接于第二基座和第三基座之间,第一转动组件用于控制第二基座相对于第三基座绕第二方向转动。利用第一转动组件,可以实现第二基座的转动,进而可以使平台110绕第二方向转动,进一步提高对平台110所处位置的控制的灵活性,以便于更好地配合激光进行抛光。
在本申请的一些实施例中,第一转动组件可以包括:第二驱动电机和第二减速器。
第二驱动电机安装于第三基座,第二驱动电机传动连接于第二减速器,第二驱动电机用于驱动第二减速器转动。具体的,第二驱动电机可以为步进电机,由于步进电机具有转动角度控制精确的特点,利用步进电机可以准确地驱动第二减速器转动至预设的角度。
第二减速器传动连接于第三基座,第二减速器用于在第二驱动电机的带动下转动并驱动第三基座转动。利用第二减速器可以增加第二驱动电机输出的扭矩,便于驱动第二基座转动。
在本申请的一些实施例中,该用于高硬脆材料激光超精密抛光的纳米微位移工作台100还包括:夹具。
夹具160安装于平台110上。具体的,夹具160可以安装于平台110上的通孔内,利用该通孔,可以使夹具160固定安装于平台110上。该夹具160用于夹持于待加工件,以固定待加工件的位置。具体的,该待加工件可以为陶瓷。
本申请的实施例还提供了一种激光抛光设备,该激光抛光设备包括上述的用于高硬脆材料激光超精密抛光的纳米微位移工作台和用于控制激光角度和位置的激光控制结构,利用该用于高硬脆材料激光超精密抛光的纳米微位移工作台和激光控制结构共同配合,可以有效提高激光照射于待加工件的位置精度,有效提高激光抛光对于硬脆材料的抛光效果。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种用于高硬脆材料激光超精密抛光的纳米微位移工作台,其特征在于,包括:
    平台;
    第一基座;
    驱动结构,连接于所述第一基座和所述平台,所述驱动结构用于驱动所述平台相对于所述第一基座沿第一方向运动和沿第二方向运动和沿第三方向运动;
    柔性铰链,设置于所述驱动结构和所述第一基座之间;
    检测结构,用于获取所述平台相对于所述第一基座的位置信息;
    控制结构,连接于所述检测结构和所述驱动结构,用于接收所述位置信息,并依据所述位置信息控制所述驱动结构驱动所述平台相对于所述第一基座运动;
    其中,所述第一方向、所述第二方向以及所述第三方向之间两两垂直。
  2. 如权利要求1所述的用于高硬脆材料激光超精密抛光的纳米微位移工作台,其特征在于,
    所述驱动结构包括:第一压电陶瓷驱动器、第二压电陶瓷驱动器以及第三压电陶瓷驱动器;
    所述柔性铰链包括:第一柔性铰链、第二柔性铰链以及第三柔性铰链;
    所述第一压电陶瓷驱动器连接于所述第一柔性铰链和所述平台,用于驱动所述平台相对于所述第一柔性铰链沿所述第一方向运动;
    所述第二压电陶瓷驱动器连接于所述第二柔性铰链和所述平台,用于驱动所述平台相对于所述第二柔性铰链沿所述第二方向运动;
    所述第三压电陶瓷驱动器连接于所述第三柔性铰链和所述平台,用于驱动所述平台相对于所述第三柔性铰链沿所述第三方向运动。
  3. 如权利要求2所述的用于高硬脆材料激光超精密抛光的纳米微位移工作台,其特征在于,
    所述第一柔性铰链在所述第一方向上的刚性远大于所述第一柔性铰链在除第一方向上的其他方向上的刚性;
    所述第二柔性铰链在所述第二方向上的刚性远大于所述第二柔性铰链在除第二方向上的其他方向上的刚性;
    所述第三柔性铰链在所述第三方向上的刚性远大于所述第三柔性铰链在除第三方向上的其他方向上的刚性。
  4. 如权利要求3所述的用于高硬脆材料激光超精密抛光的纳米微位移工作台,其特征在于,所述检测结构包括:
    第一电容传感器,连接于所述第一基座和所述平台,用于获取所述平台相对于所述第一基座在所述第一方向上的第一位置信息;
    第二电容传感器,连接于所述第一基座和所述平台,用于获取所述平台相对于所述第一基座在所述第二方向上的第二位置信息;
    第三电容传感器,连接于所述第一基座和所述平台,用于获取所述平台相对于所述第一基座在所述第三方向上的第三位置信息。
  5. 如权利要求4所述的用于高硬脆材料激光超精密抛光的纳米微位移工作台,其特征在于,
    所述控制结构连接于所述第一电容传感器和所述第一压电陶瓷驱动器;所述控制结构用于接收所述第一位置信息,并依据所述第一位置信息控制所述第一压电陶瓷驱动器驱动所述平台相对于所述第一基座沿第一方向运动;
    所述控制结构连接于所述第二电容传感器和所述第二压电陶瓷驱动器;所述控制结构用于接收所述第二位置信息,并依据所述第二位置信息控制所述第二压电陶瓷驱动器驱动所述平台相对于所述第一基座沿第二方向运动;
    所述控制结构连接于所述第三电容传感器和所述第三压电陶瓷驱动器;所述控制结构用于接收所述第三位置信息,并依据所述第三位置信息控制所述第三压电陶瓷驱动器驱动所述平台相对于所述第一基座沿第三方向运动。
  6. 如权利要求1所述的用于高硬脆材料激光超精密抛光的纳米微位移工作台,其特征在于,还包括:
    第二基座;
    第一转动组件,连接于所述第一基座和所述第二基座,用于控制所述第一基座相对于所述第二基座绕所述第一方向转动。
  7. 如权利要求6所述的用于高硬脆材料激光超精密抛光的纳米微位移工作台,其特征在于,所述第一转动组件包括:
    第一驱动电机,安装于所述第二基座;
    第一减速器,传动连接于所述第一驱动电机的输出轴和所述第二基座,用于在所述第一驱动电机的带动下转动并带动所述第二基座转动。
  8. 如权利要求6所述的用于高硬脆材料激光超精密抛光的纳米微位移工作台,其特征在于,还包括:
    第三基座;
    第二转动组件,连接于所述第二基座和所述第三基座,用于控制所述第二基座相对于所述第三基座绕所述第二方向转动。
  9. 如权利要求8所述的用于高硬脆材料激光超精密抛光的纳米微位移工作台,其特征在于,所述第二转动组件包括:
    第二驱动电机,安装于所述第三基座;
    第二减速器,传动连接于所述第二驱动电机的输出轴和所述第二基座,用于在所述第二驱动电机的带动下转动并带动所述第二基座转动。
  10. 如权利要求1所述的用于高硬脆材料激光超精密抛光的纳米微位移工作台,其特征在于,还包括:
    夹具,安装于所述平台,用于夹持于待加工件。
PCT/CN2023/092785 2022-08-08 2023-05-08 用于高硬脆材料激光超精密抛光的纳米微位移工作台 WO2024032053A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202222080771.9U CN218836507U (zh) 2022-08-08 2022-08-08 用于高硬脆材料激光超精密抛光的纳米微位移工作台
CN202222080771.9 2022-08-08

Publications (1)

Publication Number Publication Date
WO2024032053A1 true WO2024032053A1 (zh) 2024-02-15

Family

ID=87291786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/092785 WO2024032053A1 (zh) 2022-08-08 2023-05-08 用于高硬脆材料激光超精密抛光的纳米微位移工作台

Country Status (2)

Country Link
CN (1) CN218836507U (zh)
WO (1) WO2024032053A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218836507U (zh) * 2022-08-08 2023-04-11 深圳信息职业技术学院 用于高硬脆材料激光超精密抛光的纳米微位移工作台

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030094887A (ko) * 2002-06-08 2003-12-18 정상화 초정밀 다축 위치제어장치
CN101157216A (zh) * 2007-09-22 2008-04-09 燕山大学 三自由度微操作机器人
CN102182899A (zh) * 2011-03-07 2011-09-14 中国矿业大学 大行程三平动正交解耦型精密微动平台及其控制方法
CN104440817A (zh) * 2014-12-04 2015-03-25 山东大学 一种空间三维微位移精密定位装置
CN105006255A (zh) * 2015-07-28 2015-10-28 昆明理工大学 一种三自由度微定位工作台
CN105252285A (zh) * 2015-11-17 2016-01-20 长春工业大学 一种压电驱动三维椭圆微进给运动平台
CN106082116A (zh) * 2016-08-24 2016-11-09 广东工业大学 微纳加工设备及其加工操作器
US20170001275A1 (en) * 2014-05-20 2017-01-05 Guangdong University Of Technology Stiffness-frequency adjustable xy micromotion stage based on stress stiffening
CN106312591A (zh) * 2016-11-09 2017-01-11 长春工业大学 一种三压电垂直驱动的三维椭圆微位移运动平台
CN206200568U (zh) * 2016-11-09 2017-05-31 长春工业大学 一种三压电垂直驱动的三维椭圆微位移运动平台
CN106736797A (zh) * 2017-03-09 2017-05-31 广东工业大学 一种数控超精密加工机床并联平动三维快速刀具伺服装置
US20210233800A1 (en) * 2020-07-09 2021-07-29 Guangdong University Of Technology Decoupled xy parallel micro-positioning stage
CN214671828U (zh) * 2021-05-13 2021-11-09 长春工业大学 一种基于粘滑惯性和磁悬浮驱动结合的宏微精密定位平台
CN113695992A (zh) * 2021-09-07 2021-11-26 长春工业大学 一种振动辅助辊式磁流变激光复合抛光装置
CN216146263U (zh) * 2021-05-13 2022-03-29 长春工业大学 一种基于尺蠖和磁悬浮驱动器结合的宏微精密定位平台
CN218836507U (zh) * 2022-08-08 2023-04-11 深圳信息职业技术学院 用于高硬脆材料激光超精密抛光的纳米微位移工作台

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030094887A (ko) * 2002-06-08 2003-12-18 정상화 초정밀 다축 위치제어장치
CN101157216A (zh) * 2007-09-22 2008-04-09 燕山大学 三自由度微操作机器人
CN102182899A (zh) * 2011-03-07 2011-09-14 中国矿业大学 大行程三平动正交解耦型精密微动平台及其控制方法
US20170001275A1 (en) * 2014-05-20 2017-01-05 Guangdong University Of Technology Stiffness-frequency adjustable xy micromotion stage based on stress stiffening
CN104440817A (zh) * 2014-12-04 2015-03-25 山东大学 一种空间三维微位移精密定位装置
CN105006255A (zh) * 2015-07-28 2015-10-28 昆明理工大学 一种三自由度微定位工作台
CN105252285A (zh) * 2015-11-17 2016-01-20 长春工业大学 一种压电驱动三维椭圆微进给运动平台
CN106082116A (zh) * 2016-08-24 2016-11-09 广东工业大学 微纳加工设备及其加工操作器
CN106312591A (zh) * 2016-11-09 2017-01-11 长春工业大学 一种三压电垂直驱动的三维椭圆微位移运动平台
CN206200568U (zh) * 2016-11-09 2017-05-31 长春工业大学 一种三压电垂直驱动的三维椭圆微位移运动平台
CN106736797A (zh) * 2017-03-09 2017-05-31 广东工业大学 一种数控超精密加工机床并联平动三维快速刀具伺服装置
US20210233800A1 (en) * 2020-07-09 2021-07-29 Guangdong University Of Technology Decoupled xy parallel micro-positioning stage
CN214671828U (zh) * 2021-05-13 2021-11-09 长春工业大学 一种基于粘滑惯性和磁悬浮驱动结合的宏微精密定位平台
CN216146263U (zh) * 2021-05-13 2022-03-29 长春工业大学 一种基于尺蠖和磁悬浮驱动器结合的宏微精密定位平台
CN113695992A (zh) * 2021-09-07 2021-11-26 长春工业大学 一种振动辅助辊式磁流变激光复合抛光装置
CN218836507U (zh) * 2022-08-08 2023-04-11 深圳信息职业技术学院 用于高硬脆材料激光超精密抛光的纳米微位移工作台

Also Published As

Publication number Publication date
CN218836507U (zh) 2023-04-11

Similar Documents

Publication Publication Date Title
WO2024032053A1 (zh) 用于高硬脆材料激光超精密抛光的纳米微位移工作台
JP4656334B2 (ja) アライメント装置
WO2007055339A1 (ja) 三次元位置決めテーブル
WO2009003348A1 (fr) Table de travail à micro-déplacement à six degrés de liberté
WO2019015367A1 (zh) 电机及具有此电机的云台和机械臂
CN107906329A (zh) 一种基于物联网的发射器定位机构
JP2014027270A (ja) 装着装置の装着ヘッドのキネマティック保持システム
CN113431308A (zh) 一种抹光机器人
JP3718395B2 (ja) ボンディング装置のボンディングヘッド
CN102070295B (zh) 硬质脆性板的穿孔加工方法和装置
CN212916361U (zh) 一种旋转机构和使用该旋转机构的机械手
JP2001144134A5 (ja) ボンディング装置のボンディングヘッド
JPWO2020161881A1 (ja) ラッピング治具、ラッピング装置およびラッピング方法
JP2007276081A (ja) 研磨装置および研磨方法
TWI335852B (zh)
JP4635998B2 (ja) ステージ装置
KR20000073352A (ko) 반도체장치
JP2007230079A (ja) 硬脆性無機材料加工方法及びその加工装置
JPS61182112A (ja) 精密変位駆動装置
JP6663805B2 (ja) 実装装置および実装方法
JP2009164252A (ja) 半導体ウエハ貼り合わせ装置
CN219738929U (zh) 一种用于柔性铰链的自由度切换装置
CN216968649U (zh) 弯折装置
JP2006237485A (ja) アライメント装置
CN114388407B (zh) 一种键合头装置及键合机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851283

Country of ref document: EP

Kind code of ref document: A1