WO2024031857A1 - 一种晶闸管电流源型变频器输出变压器的控制方法与系统 - Google Patents

一种晶闸管电流源型变频器输出变压器的控制方法与系统 Download PDF

Info

Publication number
WO2024031857A1
WO2024031857A1 PCT/CN2022/131679 CN2022131679W WO2024031857A1 WO 2024031857 A1 WO2024031857 A1 WO 2024031857A1 CN 2022131679 W CN2022131679 W CN 2022131679W WO 2024031857 A1 WO2024031857 A1 WO 2024031857A1
Authority
WO
WIPO (PCT)
Prior art keywords
sfc
voltage side
unit
resistance
output transformer
Prior art date
Application number
PCT/CN2022/131679
Other languages
English (en)
French (fr)
Inventor
王小红
杨合民
滕贤亮
胡静
简优宗
原晓琦
郭海山
霍峙昕
吴彦飞
张寅�
田安民
施胜丹
吉同军
王国雨
徐伟
邸卉芳
Original Assignee
国电南瑞科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国电南瑞科技股份有限公司 filed Critical 国电南瑞科技股份有限公司
Publication of WO2024031857A1 publication Critical patent/WO2024031857A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/25Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M5/257Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M5/2573Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with control circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/06Stations or aggregates of water-storage type, e.g. comprising a turbine and a pump
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/08Control of generator circuit during starting or stopping of driving means, e.g. for initiating excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/10Special adaptation of control arrangements for generators for water-driven turbines

Definitions

  • the invention relates to a control method and system for an output transformer of a thyristor current source type frequency converter, and belongs to the technical field of thyristor current source type frequency converters in power systems.
  • Pumped hydropower storage is the energy storage method with the most mature technology, the best economy, and the most conditions for large-scale development. It is a green, low-carbon, clean and flexible regulating power supply for the power system. It has the functions of peak regulation, frequency modulation, phase modulation, energy storage, Functions such as system backup and black start, as well as technical and economic advantages such as large capacity, multiple working conditions, fast speed, high reliability, and good economy, play an important role in ensuring the safety of large power grids, promoting the consumption of new energy, and improving the performance of the entire system. Basic function. Under the dual-carbon background, accelerating the development of pumped hydropower storage is an urgent requirement for building a new power system, an important support for ensuring the safe and stable operation of the power system, and an important guarantee for the large-scale development of renewable energy.
  • Thyristor current source frequency converter is the preferred starting equipment for pumped storage units under pumping conditions, and it mostly adopts a high-low-high voltage topology with input transformer and output transformer.
  • SFC Thyristor current source frequency converter
  • the output transformer In low frequency (less than 3 ⁇ 6Hz) output state, in order to prevent the output transformer from being saturated, the output transformer needs to be bypassed through a bypass knife gate, and the SFC bridge side valve group is directly connected to the unit; when the frequency increases (greater than 3 ⁇ 6Hz ), the bypass knife switch switches to the operation mode with output transformer, and the SFC changes from directly driving the unit to running through the output transformer. Every time the pumped storage unit is started, the bypass knife switch needs to be switched on and off.
  • the sporadic failure of the bypass knife has become an important factor affecting the startup success rate of the pumped storage unit.
  • SFC can start directly with a transformer, or reduce The number of switching bypass knife gates will greatly increase the success rate of starting the pumped storage unit.
  • the purpose of the present invention is to overcome the deficiencies in the prior art and provide a control method and system for the output transformer of a thyristor current source type frequency converter.
  • the present invention provides a control method for an output transformer of a thyristor current source type inverter, including:
  • the starting torque of the SFC during low-frequency operation is obtained, and the relationship between the starting torque and the maximum duration of the SFC is calculated;
  • the operating mode of the SFC output-side bypass knife gate is determined based on the maximum angle at which the SFC can drag the unit to rotate and the pre-obtained number of pulses on the bridge side and the number of pole pairs of the unit.
  • the resistance parameter R 2 of the SFC high-voltage side output circuit is the output transformer high-voltage side winding resistance R T1 , the generator stator resistance R G , the output loop cable or closed bus resistance R L , and the output circuit breaker contact resistance R DL and 2 times.
  • the relationship between the DC current on the high-voltage side of the output transformer and the maximum duration is calculated and obtained through the resistance of the SFC high-voltage side output circuit and the DC current with a set amplitude applied in advance on the SFC low-voltage side, including:
  • the high-voltage side voltage is:
  • U 2 is the high-voltage side voltage of the output transformer
  • N 1 and N 2 are the number of turns on the low-voltage side and high-voltage side of the output transformer
  • U 2N is the rated voltage of the high-voltage side of the output transformer
  • f N is the rated frequency of the output transformer
  • Formula (6) determines that the relationship between the transmission DC current I d2 on the high-voltage side of the output transformer and the maximum duration t m is inversely proportional and uniquely corresponding.
  • the starting torque of the SFC during low-frequency operation is obtained through the DC current on the high-voltage side of the transformer, and the relationship between the starting torque and the maximum duration of the SFC is calculated, including:
  • the average value of variable frequency drag torque is:
  • ⁇ m is the number of pole pairs of the unit
  • is the magnetic linkage of the unit
  • ⁇ 0 is the commutation redundancy angle
  • is the commutation overlap angle
  • Formula (9) determines that the starting torque T d of the frequency converter is inversely proportional to the maximum duration t m and has a unique correspondence.
  • the maximum angle that the SFC can drag the unit to rotate is calculated, including:
  • T d is the starting torque
  • T r is the resistance torque
  • is the rotation angular velocity
  • is the rotation angle
  • the unit starts from a stationary state.
  • the starting torque T d and the resistance torque T r are approximately unchanged during the entire dragging process.
  • the rotation acceleration ⁇ of the unit is a constant value. Based on formulas (10) and (11), it can be obtained:
  • ⁇ m is the maximum angle that SFC can drag the unit to rotate before the output becomes saturated.
  • the operation mode of the SFC output side bypass knife gate is determined based on the maximum angle at which the SFC can drag the unit to rotate and the pre-obtained number of pulses on the bridge side and the number of pole pairs of the unit, including:
  • the SFC system changes phase once, and the required rotation angle of the unit is:
  • the SFC starts in the mode without bypass switch and switches the bypass switch to the mode with output transformer; when ⁇ m ⁇ c , only the output transformer cannot be used in the first two commutation intervals. When saturation occurs, the non-bypass knife gate mode can be used to start;
  • the first camera change requires a rotation angle of ( ⁇ c - ⁇ 0 ) and a time of t 1 . Based on equation (12), it can be obtained:
  • the present invention provides a control system for an output transformer of a thyristor current source type inverter, including:
  • the first calculation unit is used to obtain the resistance of the high-voltage side winding of the output transformer, the resistance of the stator winding of the generator and the resistance of the line between them, and calculate and obtain the resistance of the high-voltage side output circuit of the thyristor current source type inverter SFC;
  • the second calculation unit is used to calculate and obtain the relationship between the DC current on the high-voltage side of the output transformer and the maximum duration through the resistance of the SFC high-voltage side output circuit and the DC current of a set amplitude applied in advance on the SFC low-voltage side;
  • the third calculation unit is used to obtain the starting torque of the SFC during low-frequency operation through the DC current on the high-voltage side of the transformer, and calculate and obtain the relationship between the starting torque of the SFC and the maximum duration;
  • the fourth calculation unit is used to obtain the starting torque and resistance torque parameters for starting the unit from a stationary state. Based on the torque drag formula, it calculates the SFC draggable unit within the set starting torque and its corresponding maximum duration. The maximum angle of rotation;
  • the operation mode determination unit is used to determine the operation mode of the bypass knife gate on the output side of the SFC based on the maximum angle at which the SFC can drag the unit to rotate and the pre-obtained number of pulses on the bridge side and the number of pole pairs of the unit.
  • the present invention provides a control device for an output transformer of a thyristor current source type frequency converter, including:
  • the first calculation module is used to obtain the resistance of the high-voltage side winding of the output transformer, the resistance of the stator winding of the generator and the resistance of the line between them, and calculate and obtain the resistance of the high-voltage side output circuit of the thyristor current source type inverter SFC;
  • the second calculation module is used to calculate and obtain the relationship between the DC current on the high-voltage side of the output transformer and the maximum duration through the resistance of the SFC high-voltage side output circuit and the DC current of a set amplitude applied in advance on the SFC low-voltage side;
  • the third calculation module is used to obtain the starting torque of the SFC during low-frequency operation through the DC current on the high-voltage side of the transformer, and calculate and obtain the relationship between the starting torque of the SFC and the maximum duration;
  • the fourth calculation module is used to obtain the starting torque and resistance torque parameters for starting the unit from a stationary state. Based on the torque drag formula, calculate the SFC draggable unit within the set starting torque and its corresponding maximum duration. The maximum angle of rotation;
  • the operation mode determination module is used to determine the operation mode of the bypass knife gate on the output side of the SFC based on the maximum angle at which the SFC can drag the unit to rotate and the pre-obtained number of pulses on the bridge side and the number of pole pairs of the unit.
  • the present invention provides a control device for an output transformer of a thyristor current source type inverter, including a processor and a storage medium;
  • the storage medium is used to store instructions
  • the processor is configured to operate according to the instructions to perform the steps of the method according to any one of the preceding items.
  • the present invention provides a computer-readable storage medium on which a computer program is stored, which implements the steps of any of the foregoing methods when executed by a processor.
  • the present invention determines the knife gate operation control method based on the frequency converter output loop resistance parameters, output transformer design parameters, unit resistance torque, etc., with higher reliability and stronger accuracy;
  • New stations can be based on this method and optimize the resistance parameters of the inverter output circuit and transformer design parameters to ensure that the inverter can be started directly with the output transformer to avoid the impact of bypass knife abnormality on the success rate of unit start-up. , improve the startup success rate;
  • the equipment can be started directly through the bypass knife switch to avoid continuous startup failures caused by the residual magnetism of the output transformer and improve the reliability of the startup.
  • Figure 1 is the main circuit diagram of the high-low-high 6-6 pulse topology thyristor current source converter circuit
  • Figure 2 is the DC current transmission equivalent diagram of the output transformer of the current source type inverter.
  • This embodiment introduces a control method for the output transformer of a thyristor current source type inverter, including:
  • the starting torque of the SFC during low-frequency operation is obtained, and the relationship between the starting torque and the maximum duration of the SFC is calculated;
  • the operating mode of the SFC output-side bypass knife gate is determined based on the maximum angle at which the SFC can drag the unit to rotate and the pre-obtained number of pulses on the bridge side and the number of pole pairs of the unit.
  • the resistance parameter R 2 of the SFC high-voltage side output circuit is the output transformer high-voltage side winding resistance R T1 , generator stator resistance R G , output circuit cable or closed bus resistance R L , and output circuit breaker (including knife switch, etc.) contact resistance R DL 2 times the sum. It can be determined directly through design parameters or obtained through actual measurement. For parts that change relatively greatly during operation, in order to ensure the reliability of startup, actual measurement and a certain margin are required.
  • U 2 is the high-voltage side voltage of the output transformer
  • N 1 and N 2 are the number of turns on the low-voltage side and high-voltage side of the output transformer.
  • t m is the maximum operating time when passing DC.
  • Formula (6) determines that the relationship between the transmission DC current I d2 on the high-voltage side of the output transformer and the maximum duration t m is inversely proportional and uniquely corresponding.
  • the average value of variable frequency drag torque is:
  • ⁇ m is the number of pole pairs of the unit
  • is the magnetic linkage of the unit
  • ⁇ 0 is the commutation redundancy angle
  • is the commutation overlap angle
  • Formula (9) determines that the starting torque T d of the frequency converter is inversely proportional to the maximum duration t m and has a unique correspondence.
  • T d is the starting torque
  • T r is the resistance torque
  • is the rotation angular velocity
  • is the rotation angle
  • the unit starts from a stationary state.
  • the starting torque T d and the resistance torque T r are approximately unchanged during the entire dragging process.
  • the rotation acceleration ⁇ of the unit is a constant value. Based on formulas (10) and (11), it can be obtained:
  • ⁇ m is the maximum angle that SFC can drag the unit to rotate before the output becomes saturated.
  • the SFC system changes phase once, and the required rotation angle of the unit is:
  • the first camera change requires a rotation angle of ( ⁇ c - ⁇ 0 ) and a time of t 1 . Based on equation (12), it can be obtained:
  • This invention uses the AC rated parameters of the transformer for DC current transmission, and based on this, determines the rotation angle that the frequency converter can drive the unit before the transformer is saturated, thereby determining whether it is necessary to use the bypass output transformer mode to start the unit. , greatly reducing the number of opening and closing of the bypass knife switch, effectively avoiding startup failure caused by abnormal bypass knife switch when the frequency converter starts the unit, and improving the success rate of unit startup.
  • the above is just an example of a single 6-pulse converter topology on the inverter side.
  • the inverter side is a 12-pulse, 18-pulse, 24-pulse, etc. converter topology
  • the logical AND is a single 6-pulse converter topology.
  • the topologies are completely similar, so the bypass switch control method when the inverter side is a 12-pulse, 18-pulse, 24-pulse and other variable current topology is also completely within the scope of the present invention.
  • This embodiment provides a control system for the output transformer of a thyristor current source type inverter, including:
  • the first calculation unit is used to obtain the resistance of the high-voltage side winding of the output transformer, the resistance of the stator winding of the generator and the resistance of the line between them, and calculate and obtain the resistance of the high-voltage side output circuit of the thyristor current source type inverter SFC;
  • the second calculation unit is used to calculate and obtain the relationship between the DC current on the high-voltage side of the output transformer and the maximum duration through the resistance of the SFC high-voltage side output circuit and the DC current of a set amplitude applied in advance on the SFC low-voltage side;
  • the third calculation unit is used to obtain the starting torque of the SFC during low-frequency operation through the DC current on the high-voltage side of the transformer, and calculate and obtain the relationship between the starting torque of the SFC and the maximum duration;
  • the fourth calculation unit is used to obtain the starting torque and resistance torque parameters for starting the unit from a stationary state. Based on the torque drag formula, it calculates the SFC draggable unit within the set starting torque and its corresponding maximum duration. The maximum angle of rotation;
  • the operation mode determination unit is used to determine the operation mode of the bypass knife gate on the output side of the SFC based on the maximum angle at which the SFC can drag the unit to rotate and the pre-obtained number of pulses on the bridge side and the number of pole pairs of the unit.
  • This embodiment provides a control device for an output transformer of a thyristor current source type inverter, including:
  • the first calculation module is used to obtain the resistance of the high-voltage side winding of the output transformer, the resistance of the stator winding of the generator and the resistance of the line between them, and calculate and obtain the resistance of the high-voltage side output circuit of the thyristor current source type inverter SFC;
  • the second calculation module is used to calculate and obtain the relationship between the DC current on the high-voltage side of the output transformer and the maximum duration through the resistance of the SFC high-voltage side output circuit and the DC current of a set amplitude applied in advance on the SFC low-voltage side;
  • the third calculation module is used to obtain the starting torque of the SFC during low-frequency operation through the DC current on the high-voltage side of the transformer, and calculate and obtain the relationship between the starting torque of the SFC and the maximum duration;
  • the fourth calculation module is used to obtain the starting torque and resistance torque parameters of the unit starting from a stationary state. Based on the torque drag formula, within the set starting torque and its corresponding maximum duration, calculate the SFC draggable unit The maximum angle of rotation;
  • the operation mode determination module is used to determine the operation mode of the bypass knife gate on the output side of the SFC based on the maximum angle at which the SFC can drag the unit to rotate, the number of pulses on the bridge side, and the number of pole pairs of the unit obtained in advance.
  • This embodiment provides a control device for an output transformer of a thyristor current source type inverter, including a processor and a storage medium;
  • the storage medium is used to store instructions
  • the processor is configured to operate according to the instructions to perform the steps of the method according to any one of Embodiment 1.
  • This embodiment provides a computer-readable storage medium on which a computer program is stored, which is characterized in that when the program is executed by a processor, the steps of any one of the methods described in Embodiment 1 are implemented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Motor And Converter Starters (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开了一种晶闸管电流源型变频器输出变压器的控制方法与系统,在确定变频器高压侧输出回路电阻的基础上,确定高压侧直流电流的输出幅值与最大持续时间的关系,进一步确定变频器启动力矩与最大持续时间的关系,最后计算出变频器带输出变压器直接运行时可拖动机组旋转的最大角度,确定变频器输出侧旁路刀闸的运行模式;本发明将变压器交流额定参数用在直流电流传变上,并在此基础上判断变频器在变压器饱和前可拖动机组的旋转角度,以此来判断是否需要采用旁路输出变压器的模式来启动机组,大大降低了旁路刀闸分合的次数,有效避免了变频器启动机组时因旁路刀闸异常造成的启机失败,提升了机组启动的成功率。

Description

一种晶闸管电流源型变频器输出变压器的控制方法与系统 技术领域
本发明涉及一种晶闸管电流源型变频器输出变压器的控制方法与系统,属于电力系统的晶闸管电流源型变频器技术领域。
背景技术
抽水蓄能是技术最成熟、经济性最优、最具大规模开发条件的储能方式,是电力系统绿色、低碳、清洁的灵活调节电源,具有调峰、调频、调相、储能、系统备用和黑启动等功能,以及容量大、工况多、速度快、可靠性高、经济性好等技术经济优势,在保障大电网安全、促进新能源消纳、提升全系统性能中发挥着基础作用。双碳背景下,加快发展抽水蓄能,是构建新型电力系统的迫切要求,是保障电力系统安全稳定运行的重要支撑,是可再生能源大规模发展的重要保障。
晶闸管电流源型变频器(SFC)是抽水蓄能机组抽水工况下的首选启动设备,且多采用带有输入变压器、输出变压器的高低高电压拓扑结构。低频(小于3~6Hz)输出状态下,为防止输出变压器饱和,需通过旁路刀闸将输出变压器旁路,SFC机桥侧阀组直接与机组连接;当频率升高后(大于3~6Hz),旁路刀闸切换至带输出变压器运行模式,SFC由直接拖动机组方式转为通过输出变压器拖动机组方式运行。抽蓄机组每次启机均需要旁路刀闸投切一次,旁路刀闸的偶发性故障已成为影响抽水蓄能机组启动成功率的一个重要因素,如SFC能直接带变压器启动,或者减少投切旁路刀闸的次数,将大大提升抽水蓄能机组启动的成功率。
发明内容
本发明的目的在于克服现有技术中的不足,提供一种晶闸管电流源型变频器输出变压器的控制方法与系统。
为达到上述目的,本发明是采用下述技术方案实现的:
第一方面,本发明提供了一种晶闸管电流源型变频器输出变压器的控制方法,包括:
获取输出变压器高压侧绕组电阻、发电机定子绕组电阻以及二者之间线路的电阻,计算获取晶闸管电流源型变频器SFC高压侧输出回路的电阻;
通过SFC高压侧输出回路的电阻,以及预先在SFC低压侧施加的设定幅值的直流电流,计算获取输出变压器高压侧直流电流与最大持续时间的关系;
通过变压器高压侧直流电流,获取SFC低频运行时的启动力矩,计算获取SFC启动力矩与最大持续时间的关系;
获取机组从静止状态下启机的启动力矩、阻力矩参数,基于力矩拖动公式,在设定启动力矩及其对应的最大持续时间内,计算出SFC可拖动机组旋转的最大角度;
根据所述SFC可拖动机组旋转的最大角度以及预先获取的机桥侧的脉冲数、机组的极对数,确定SFC输出侧旁路刀闸的运行模式。
进一步的,所述SFC高压侧输出回路的电阻参数R 2是输出变压器高压侧绕组电阻R T1、发电机定子电阻R G、输出回路电缆或封闭母线电阻R L、输出断路器接触电阻R DL之和的2倍。
进一步的,所述通过SFC高压侧输出回路的电阻,以及预先在SFC低压侧施加的设定幅值的直流电流,计算获取输出变压器高压侧直流电流与最大持续时间的关系,包括:
在输出变压器的低压侧输入电流I d1时,高压侧传变一定比值的I d2,此时高压侧电压为:
Figure PCTCN2022131679-appb-000001
其中:U 2为输出变压器高压侧电压;N 1、N 2是输出变压器低压侧、高压侧的匝数;
在输出变压器低压侧的施加直流电流I d1,变压器饱和前,高压侧的感应电势为:
Figure PCTCN2022131679-appb-000002
其中:
Figure PCTCN2022131679-appb-000003
是输出变压器可运行的最大磁通值,t m是通过直流时的最大运行时间;
因已将输出变压器高压侧绕组内阻等效至输出回路电阻R 2内,所以U 2=e 2,则:
Figure PCTCN2022131679-appb-000004
根据输出变压器设计:
Figure PCTCN2022131679-appb-000005
其中:U 2N是输出变压器高压侧额定电压,f N是输出变压器额定频率,由式(4)得:
Figure PCTCN2022131679-appb-000006
将式(5)代入式(3)得:
Figure PCTCN2022131679-appb-000007
公式(6)确定输出变压器高压侧传变直流电流I d2与最大持续时间的关系t m成反比,且唯一对应。
进一步的,所述通过变压器高压侧直流电流,获取SFC低频运行时的启动力矩,计算获取SFC启动力矩与最大持续时间的关系,包括:
根据SFC拖动力矩公式,变频拖动力矩的平均值为:
Figure PCTCN2022131679-appb-000008
其中:ρ m为机组极对数,Ψ为机组磁链,γ 0为换相冗余角、μ为换相重 叠角;
在低频阶段,SFC采用脉冲换相模式,此时
Figure PCTCN2022131679-appb-000009
则式(7)可简化为:
Figure PCTCN2022131679-appb-000010
其中:
Figure PCTCN2022131679-appb-000011
在机组启动初期,机组磁链通过励磁电流控制,恒定不变,所以k T为固定值,将式(8)代入式(6)得:
Figure PCTCN2022131679-appb-000012
公式(9)确定变频器启动力矩T d与最大持续时间t m成反比关系,且唯一对应。
进一步的,所述基于力矩拖动公式,在设定启动力矩及其对应的最大持续时间内,计算出SFC可拖动机组旋转的最大角度,包括:
根据力矩拖动原理:
Figure PCTCN2022131679-appb-000013
Figure PCTCN2022131679-appb-000014
其中:T d为启动力矩,T r为阻力矩,Ω为旋转角速度,θ为旋转角度;
机组从静止状态开始启动,整个拖动过程中启动力矩T d、阻力矩T r近似不变,机组旋转加速度Ω为恒定值,基于公式(10)、(11),可得:
Figure PCTCN2022131679-appb-000015
θ m为输出变饱和前SFC可拖动机组旋转的最大角度。
进一步的,所述根据所述SFC可拖动机组旋转的最大角度以及预先获取的机桥侧的脉冲数、机组的极对数,确定SFC输出侧旁路刀闸的运行模式,包括:
SFC系统换相一次,机组所需要旋转的角度为:
Figure PCTCN2022131679-appb-000016
式中p为机组的极对数;n为机桥侧的脉冲数;
当θ m≥θ c时,SFC采用无旁路刀闸模式启动,将旁路刀闸切换至带输出变压器模式;当θ mc时,只有输出变压器在前2个换相间隔均不能出现饱和时,才可以采用无旁路刀闸模式启动;
第一次换相机组需旋转角度为(θ c0),用时为t 1,基于式(12),可得:
Figure PCTCN2022131679-appb-000017
第二次换相时,机组共计旋转角度为(2θ c0),用时为t 2,基于式(12),可得:
Figure PCTCN2022131679-appb-000018
只有当t 1、(t 2-t 1)均小于t m时,SFC采用直接带输出变压器模式启动,否则需将输出变压器旁路后启动,即:
Figure PCTCN2022131679-appb-000019
将式(12)、(14)、(15)代入(16),得:
Figure PCTCN2022131679-appb-000020
第二方面,本发明提供一种晶闸管电流源型变频器输出变压器的控制系统,包括:
第一计算单元,用于获取输出变压器高压侧绕组电阻、发电机定子绕组电阻以及二者之间线路的电阻,计算获取晶闸管电流源型变频器SFC高压侧输出回路的电阻;
第二计算单元,用于通过SFC高压侧输出回路的电阻,以及预先在SFC低压侧施加的设定幅值的直流电流,计算获取输出变压器高压侧直流电流与最大持续时间的关系;
第三计算单元,用于通过变压器高压侧直流电流,获取SFC低频运行时的启动力矩,计算获取SFC启动力矩与最大持续时间的关系;
第四计算单元,用于获取机组从静止状态下启机的启动力矩、阻力矩参数,基于力矩拖动公式,在设定启动力矩及其对应的最大持续时间内,计算出SFC可拖动机组旋转的最大角度;
运行模式确定单元,用于根据所述SFC可拖动机组旋转的最大角度以及预先获取的机桥侧的脉冲数、机组的极对数,确定SFC输出侧旁路刀闸的运行模式。
第三方面,本发明提供一种晶闸管电流源型变频器输出变压器的控制装置,包括:
第一计算模块,用于获取输出变压器高压侧绕组电阻、发电机定子绕组电阻以及二者之间线路的电阻,计算获取晶闸管电流源型变频器SFC高压侧输出回路的电阻;
第二计算模块,用于通过SFC高压侧输出回路的电阻,以及预先在SFC低压侧施加的设定幅值的直流电流,计算获取输出变压器高压侧直流电流与最大持续时间的关系;
第三计算模块,用于通过变压器高压侧直流电流,获取SFC低频运行时的启动力矩,计算获取SFC启动力矩与最大持续时间的关系;
第四计算模块,用于获取机组从静止状态下启机的启动力矩、阻力矩参数,基于力矩拖动公式,在设定启动力矩及其对应的最大持续时间内,计算出SFC可拖动机组旋转的最大角度;
运行模式确定模块,用于根据所述SFC可拖动机组旋转的最大角度以及预 先获取的机桥侧的脉冲数、机组的极对数,确定SFC输出侧旁路刀闸的运行模式。
第四方面,本发明提供一种晶闸管电流源型变频器输出变压器的控制装置,包括处理器及存储介质;
所述存储介质用于存储指令;
所述处理器用于根据所述指令进行操作以执行根据前述任一项所述方法的步骤。
第五方面,本发明提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现前述任一项所述方法的步骤。
与现有技术相比,本发明所达到的有益效果:
(1)本发明是基于变频器输出回路电阻参数、输出变压器设计参数、机组阻力矩等确定刀闸运行控制方式,可靠性更高、准确性更强;
(2)新建站可基于此方法,通过对变频器输出回路的电阻参数、变压器设计参数的优化,确保变频器能直接带输出变压器启动,以避免旁路刀闸异常对机组启动成功率的影响,提高启机成功率;
(3)现有站可基于此方法,计算出直接带输出变压器启动的角度范围,有效减少旁路刀闸的分合次数,既可以提高旁路刀闸的寿命,也可以降低了因旁路刀闸分合异常而引起的启机失败风险;
(4)在直接带输出变压器启机异常时,设备可直接通过旁路刀闸来进行启机,避免输出变压器剩磁可能引起的连续启机失败,提高了启机的可靠性。
附图说明
图1是高低高6-6脉冲拓扑晶闸管电流源型变流电路的主回路图;
图2是电流源型变频器输出变压器直流电流传变等效图。
具体实施方式
下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
实施例1
本实施例介绍一种晶闸管电流源型变频器输出变压器的控制方法,包括:
获取输出变压器高压侧绕组电阻、发电机定子绕组电阻以及二者之间线路的电阻,计算获取晶闸管电流源型变频器SFC高压侧输出回路的电阻;
通过SFC高压侧输出回路的电阻,以及预先在SFC低压侧施加的设定幅值的直流电流,计算获取输出变压器高压侧直流电流与最大持续时间的关系;
通过变压器高压侧直流电流,获取SFC低频运行时的启动力矩,计算获取SFC启动力矩与最大持续时间的关系;
获取机组从静止状态下启机的启动力矩、阻力矩参数,基于力矩拖动公式,在设定启动力矩及其对应的最大持续时间内,计算出SFC可拖动机组旋转的最大角度;
根据所述SFC可拖动机组旋转的最大角度以及预先获取的机桥侧的脉冲数、机组的极对数,确定SFC输出侧旁路刀闸的运行模式。
本实施例提供的晶闸管电流源型变频器输出变压器的控制方法,其应用过程具体涉及如下步骤:
(1)确定SFC高压侧输出回路的电阻,包括输出变压器高压侧绕组电阻、发电机定子绕组电阻以及二者之间线路的电阻等参数。
SFC高压侧输出回路的电阻参数R 2是输出变压器高压侧绕组电阻R T1、发电 机定子电阻R G、输出回路电缆或封闭母线电阻R L、输出断路器(含刀闸等)接触电阻R DL之和的2倍。可通过设计参数直接确定,也可通过实际测量的方式获取,针对运行中变化相对较大的部分,为保障启机的可靠性,需要实际测量并取一定余度。
(2)根据输出变压器的设计参数,SFC高压侧输出回路电阻确定时,在低压侧施加一定幅值的直流电流时,可确定输出变压器高压侧传变相应变比直流电流的幅值与最大持续时间的关系。
结合图2,在输出变压器的低压侧输入电流I d1时,高压侧传变一定比值的I d2,此时高压侧电压为:
Figure PCTCN2022131679-appb-000021
其中:U 2为输出变压器高压侧电压;N 1、N 2是输出变压器低压侧、高压侧的匝数。
在输出变压器低压侧的施加直流电流I d1,变压器饱和前,高压侧的感应电势为:
Figure PCTCN2022131679-appb-000022
其中:
Figure PCTCN2022131679-appb-000023
是输出变压器可运行的最大磁通值,t m是通过直流时的最大运行时间。
因已将输出变压器高压侧绕组内阻等效至输出回路电阻R 2内,所以U 2=e 2,则:
Figure PCTCN2022131679-appb-000024
根据输出变压器设计:
Figure PCTCN2022131679-appb-000025
其中:U 2N是输出变压器高压侧额定电压,f N是输出变压器额定频率。由式(4)得:
Figure PCTCN2022131679-appb-000026
将式(5)代入式(3)得:
Figure PCTCN2022131679-appb-000027
公式(6)确定输出变压器高压侧传变直流电流I d2与最大持续时间的关系t m成反比,且唯一对应。
(3)SFC低频运行时,机组励磁电流幅值恒定,SFC启动力矩与输出变压器高压侧直流电流成正比,进一步可确定SFC启动力矩与最大持续时间的关系。
根据SFC拖动力矩公式,变频拖动力矩的平均值为:
Figure PCTCN2022131679-appb-000028
其中:ρ m为机组极对数,Ψ为机组磁链,γ 0为换相冗余角、μ为换相重叠角。
在低频阶段,SFC采用脉冲换相模式,此时
Figure PCTCN2022131679-appb-000029
则式(7)可简化为:
Figure PCTCN2022131679-appb-000030
其中:
Figure PCTCN2022131679-appb-000031
在机组启动初期,机组磁链通过励磁电流控制,恒定不变,所以k T为固定值。将式(8)代入式(6)得:
Figure PCTCN2022131679-appb-000032
公式(9)确定变频器启动力矩T d与最大持续时间t m成反比关系,且唯一对应。
(4)确定机组从静止状态下启机的启动力矩、阻力矩参数,基于力矩拖动 公式,在某一启动力矩对应的最大持续时间内,计算出SFC可拖动机组旋转的最大角度。
根据力矩拖动原理:
Figure PCTCN2022131679-appb-000033
Figure PCTCN2022131679-appb-000034
其中:T d为启动力矩,T r为阻力矩,Ω为旋转角速度,θ为旋转角度。
机组从静止状态开始启动,整个拖动过程中启动力矩T d、阻力矩T r近似不变,机组旋转加速度Ω为恒定值,基于公式(10)、(11),可得:
Figure PCTCN2022131679-appb-000035
θ m为输出变饱和前SFC可拖动机组旋转的最大角度。
(5)根据SFC可拖动机组旋转的最大角度、机桥侧的脉冲数、机组的极对数,确定SFC输出侧旁路刀闸的运行模式。
SFC系统换相一次,机组所需要旋转的角度为:
Figure PCTCN2022131679-appb-000036
式中p为机组的极对数;n为机桥侧的脉冲数,n=6、12……
当θ m≥θ c时,SFC可始终采用无旁路刀闸模式启动,即将旁路刀闸切换至带输出变压器模式,图1旁路刀闸的上触头位置;当θ mc时,否则需要根据转子在启动前换相间隔的初始位置θ 0(0≤θ 0≤θ c)来确定,只有输出变压器在前2个换相间隔均不能出现饱和时,才可以采用无旁路刀闸模式启动。
第一次换相机组需旋转角度为(θ c0),用时为t 1,基于式(12),可得:
Figure PCTCN2022131679-appb-000037
第二次换相时,机组共计旋转角度为(2θ c0),用时为t 2,基于式(12), 可得:
Figure PCTCN2022131679-appb-000038
只有当t 1、(t 2-t 1)均小于t m时,SFC方可采用直接带输出变压器模式启动,否则需将输出变压器旁路后启动,即:
Figure PCTCN2022131679-appb-000039
将式(12)、(14)、(15)代入(16),得:
Figure PCTCN2022131679-appb-000040
本发明将变压器交流额定参数用在直流电流传变上,并在此基础上判断变频器在变压器饱和前可拖动机组的旋转角度,以此来判断是否需要采用旁路输出变压器的模式来启动机组,大大降低了旁路刀闸分合的次数,有效避免了变频器启动机组时因旁路刀闸异常造成的启机失败,提升了机组启动的成功率。
以上所述仅是以逆变侧为单个6脉冲变流拓扑为例进行说明的,当逆变侧为12脉冲、18脉冲、24脉冲等变流拓扑时,其逻辑与为单个6脉冲变流拓扑完全类似,所以逆变侧为12脉冲、18脉冲、24脉冲等变流拓扑时的旁路刀闸控制方法也完全为本发明的保护范围。
实施例2
本实施例提供一种晶闸管电流源型变频器输出变压器的控制系统,包括:
第一计算单元,用于获取输出变压器高压侧绕组电阻、发电机定子绕组电阻以及二者之间线路的电阻,计算获取晶闸管电流源型变频器SFC高压侧输出回路的电阻;
第二计算单元,用于通过SFC高压侧输出回路的电阻,以及预先在SFC低 压侧施加的设定幅值的直流电流,计算获取输出变压器高压侧直流电流与最大持续时间的关系;
第三计算单元,用于通过变压器高压侧直流电流,获取SFC低频运行时的启动力矩,计算获取SFC启动力矩与最大持续时间的关系;
第四计算单元,用于获取机组从静止状态下启机的启动力矩、阻力矩参数,基于力矩拖动公式,在设定启动力矩及其对应的最大持续时间内,计算出SFC可拖动机组旋转的最大角度;
运行模式确定单元,用于根据所述SFC可拖动机组旋转的最大角度以及预先获取的机桥侧的脉冲数、机组的极对数,确定SFC输出侧旁路刀闸的运行模式。
实施例3
本实施例提供一种晶闸管电流源型变频器输出变压器的控制装置,包括:
第一计算模块,用于获取输出变压器高压侧绕组电阻、发电机定子绕组电阻以及二者之间线路的电阻,计算获取晶闸管电流源型变频器SFC高压侧输出回路的电阻;
第二计算模块,用于通过SFC高压侧输出回路的电阻,以及预先在SFC低压侧施加的设定幅值的直流电流,计算获取输出变压器高压侧直流电流与最大持续时间的关系;
第三计算模块,用于通过变压器高压侧直流电流,获取SFC低频运行时的启动力矩,计算获取SFC启动力矩与最大持续时间的关系;
第四计算模块,用于获取机组从静止状态下启机的启动力矩、阻力矩参数,基于力矩拖动公式,在设定启动力矩及其对应的最大持续时间内,计算出SFC 可拖动机组旋转的最大角度;
运行模式确定模块,用于根据所述SFC可拖动机组旋转的最大角度以及预先获取的机桥侧的脉冲数、机组的极对数,确定SFC输出侧旁路刀闸的运行模式。
实施例4
本实施例提供一种晶闸管电流源型变频器输出变压器的控制装置,包括处理器及存储介质;
所述存储介质用于存储指令;
所述处理器用于根据所述指令进行操作以执行根据实施例1中任一项所述方法的步骤。
实施例5
本实施例提供一种计算机可读存储介质,其上存储有计算机程序,其特征在于:该程序被处理器执行时实现实施例1中任一项所述方法的步骤。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (10)

  1. 一种晶闸管电流源型变频器输出变压器的控制方法,其特征在于,包括:
    获取输出变压器高压侧绕组电阻、发电机定子绕组电阻以及二者之间线路的电阻,计算获取晶闸管电流源型变频器SFC高压侧输出回路的电阻;
    通过SFC高压侧输出回路的电阻,以及预先在SFC低压侧施加的设定幅值的直流电流,计算获取输出变压器高压侧直流电流与最大持续时间的关系;
    通过变压器高压侧直流电流,获取SFC低频运行时的启动力矩,计算获取SFC启动力矩与最大持续时间的关系;
    获取机组从静止状态下启机的启动力矩、阻力矩参数,基于力矩拖动公式,在设定启动力矩及其对应的最大持续时间内,计算出SFC可拖动机组旋转的最大角度;
    根据所述SFC可拖动机组旋转的最大角度以及预先获取的机桥侧的脉冲数、机组的极对数,确定SFC输出侧旁路刀闸的运行模式。
  2. 根据权利要求1所述的晶闸管电流源型变频器输出变压器的控制方法,其特征在于,所述SFC高压侧输出回路的电阻参数R 2是输出变压器高压侧绕组电阻R T1、发电机定子电阻R G、输出回路电缆或封闭母线电阻R L、输出断路器接触电阻R DL之和的2倍。
  3. 根据权利要求2所述的晶闸管电流源型变频器输出变压器的控制方法,其特征在于,所述通过SFC高压侧输出回路的电阻,以及预先在SFC低压侧施加的设定幅值的直流电流,计算获取输出变压器高压侧直流电流与最大持续时间的关系,包括:
    在输出变压器的低压侧输入电流I d1时,高压侧传变一定比值的I d2,此时高压侧电压为:
    Figure PCTCN2022131679-appb-100001
    其中:U 2为输出变压器高压侧电压;N 1、N 2是输出变压器低压侧、高压侧的匝数;
    在输出变压器低压侧的施加直流电流I d1,变压器饱和前,高压侧的感应电势为:
    Figure PCTCN2022131679-appb-100002
    其中:
    Figure PCTCN2022131679-appb-100003
    是输出变压器可运行的最大磁通值,t m是通过直流时的最大运行时间;
    因已将输出变压器高压侧绕组内阻等效至输出回路电阻R 2内,所以U 2=e 2,则:
    Figure PCTCN2022131679-appb-100004
    根据输出变压器设计:
    Figure PCTCN2022131679-appb-100005
    其中:U 2N是输出变压器高压侧额定电压,f N是输出变压器额定频率,由式(4)得:
    Figure PCTCN2022131679-appb-100006
    将式(5)代入式(3)得:
    Figure PCTCN2022131679-appb-100007
    公式(6)确定输出变压器高压侧传变直流电流I d2与最大持续时间的关系t m成反比,且唯一对应。
  4. 根据权利要求3所述的晶闸管电流源型变频器输出变压器的控制方法,其特征在于,所述通过变压器高压侧直流电流,获取SFC低频运行时的启动力矩,计算获取SFC启动力矩与最大持续时间的关系,包括:
    根据SFC拖动力矩公式,变频拖动力矩的平均值为:
    Figure PCTCN2022131679-appb-100008
    其中:ρ m为机组极对数,Ψ为机组磁链,γ 0为换相冗余角、μ为换相重叠角;
    在低频阶段,SFC采用脉冲换相模式,此时
    Figure PCTCN2022131679-appb-100009
    则式(7)可简化为:
    Figure PCTCN2022131679-appb-100010
    其中:
    Figure PCTCN2022131679-appb-100011
    在机组启动初期,机组磁链通过励磁电流控制,恒定不变,所以k T为固定值,将式(8)代入式(6)得:
    Figure PCTCN2022131679-appb-100012
    公式(9)确定变频器启动力矩T d与最大持续时间t m成反比关系,且唯一对应。
  5. 根据权利要求4所述的晶闸管电流源型变频器输出变压器的控制方法,其特征在于,所述基于力矩拖动公式,在设定启动力矩及其对应的最大持续时间内,计算出SFC可拖动机组旋转的最大角度,包括:
    根据力矩拖动原理:
    Figure PCTCN2022131679-appb-100013
    Figure PCTCN2022131679-appb-100014
    其中:T d为启动力矩,T r为阻力矩,Ω为旋转角速度,θ为旋转角度;
    机组从静止状态开始启动,整个拖动过程中启动力矩T d、阻力矩T r近似不变,机组旋转加速度Ω为恒定值,基于公式(10)、(11),可得:
    Figure PCTCN2022131679-appb-100015
    θ m为输出变饱和前SFC可拖动机组旋转的最大角度。
  6. 根据权利要求5所述的晶闸管电流源型变频器输出变压器的控制方法,其特征在于,所述根据所述SFC可拖动机组旋转的最大角度以及预先获取的机桥侧的脉冲数、机组的极对数,确定SFC输出侧旁路刀闸的运行模式,包括:
    SFC系统换相一次,机组所需要旋转的角度为:
    Figure PCTCN2022131679-appb-100016
    式中p为机组的极对数;n为机桥侧的脉冲数;
    当θ m≥θ c时,SFC采用无旁路刀闸模式启动,将旁路刀闸切换至带输出变压器模式;当θ mc时,只有输出变压器在前2个换相间隔均不能出现饱和时,才可以采用无旁路刀闸模式启动;
    第一次换相机组需旋转角度为(θ c0),用时为t 1,基于式(12),可得:
    Figure PCTCN2022131679-appb-100017
    第二次换相时,机组共计旋转角度为(2θ c0),用时为t 2,基于式(12),可得:
    Figure PCTCN2022131679-appb-100018
    只有当t 1、(t 2-t 1)均小于t m时,SFC采用直接带输出变压器模式启动,否则需将输出变压器旁路后启动,即:
    Figure PCTCN2022131679-appb-100019
    将式(12)、(14)、(15)代入(16),得:
    Figure PCTCN2022131679-appb-100020
  7. 一种晶闸管电流源型变频器输出变压器的控制系统,其特征在于,包括:
    第一计算单元,用于获取输出变压器高压侧绕组电阻、发电机定子绕组电阻以及二者之间线路的电阻,计算获取晶闸管电流源型变频器SFC高压侧输出回路的电阻;
    第二计算单元,用于通过SFC高压侧输出回路的电阻,以及预先在SFC低压侧施加的设定幅值的直流电流,计算获取输出变压器高压侧直流电流与最大持续时间的关系;
    第三计算单元,用于通过变压器高压侧直流电流,获取SFC低频运行时的启动力矩,计算获取SFC启动力矩与最大持续时间的关系;
    第四计算单元,用于获取机组从静止状态下启机的启动力矩、阻力矩参数,基于力矩拖动公式,在设定启动力矩及其对应的最大持续时间内,计算出SFC可拖动机组旋转的最大角度;
    运行模式确定单元,用于根据所述SFC可拖动机组旋转的最大角度以及预先获取的机桥侧的脉冲数、机组的极对数,确定SFC输出侧旁路刀闸的运行模式。
  8. 一种晶闸管电流源型变频器输出变压器的控制装置,其特征在于,包括:
    第一计算模块,用于获取输出变压器高压侧绕组电阻、发电机定子绕组电阻以及二者之间线路的电阻,计算获取晶闸管电流源型变频器SFC高压侧输出回路的电阻;
    第二计算模块,用于通过SFC高压侧输出回路的电阻,以及预先在SFC低压侧施加的设定幅值的直流电流,计算获取输出变压器高压侧直流电流与最大持续时间的关系;
    第三计算模块,用于通过变压器高压侧直流电流,获取SFC低频运行时的启动力矩,计算获取SFC启动力矩与最大持续时间的关系;
    第四计算模块,用于获取机组从静止状态下启机的启动力矩、阻力矩参数,基于力矩拖动公式,在设定启动力矩及其对应的最大持续时间内,计算出SFC可拖动机组旋转的最大角度;
    运行模式确定模块,用于根据所述SFC可拖动机组旋转的最大角度以及预先获取的机桥侧的脉冲数、机组的极对数,确定SFC输出侧旁路刀闸的运行模 式。
  9. 一种晶闸管电流源型变频器输出变压器的控制装置,其特征在于:包括处理器及存储介质;
    所述存储介质用于存储指令;
    所述处理器用于根据所述指令进行操作以执行根据权利要求1~6任一项所述方法的步骤。
  10. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于:该程序被处理器执行时实现权利要求1~6任一项所述方法的步骤。
PCT/CN2022/131679 2022-08-10 2022-11-14 一种晶闸管电流源型变频器输出变压器的控制方法与系统 WO2024031857A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210958862.XA CN115313884A (zh) 2022-08-10 2022-08-10 一种晶闸管电流源型变频器输出变压器的控制方法与系统
CN202210958862.X 2022-08-10

Publications (1)

Publication Number Publication Date
WO2024031857A1 true WO2024031857A1 (zh) 2024-02-15

Family

ID=83859970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131679 WO2024031857A1 (zh) 2022-08-10 2022-11-14 一种晶闸管电流源型变频器输出变压器的控制方法与系统

Country Status (2)

Country Link
CN (1) CN115313884A (zh)
WO (1) WO2024031857A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115313884A (zh) * 2022-08-10 2022-11-08 国电南瑞科技股份有限公司 一种晶闸管电流源型变频器输出变压器的控制方法与系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101621271A (zh) * 2009-07-31 2010-01-06 国网电力科学研究院 抽水蓄能电站静止变频启动低速阶段启动控制方法
CN104155883A (zh) * 2014-06-12 2014-11-19 国家电网公司 一种抽水蓄能机组sfc的启动控制方法
WO2014209127A1 (en) * 2013-06-24 2014-12-31 Smartmotor As Method and system for starting electrical machines
CN112398379A (zh) * 2019-08-12 2021-02-23 南京南瑞继保电气有限公司 一种同步电机的启动系统及启动方法
CN115313884A (zh) * 2022-08-10 2022-11-08 国电南瑞科技股份有限公司 一种晶闸管电流源型变频器输出变压器的控制方法与系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101621271A (zh) * 2009-07-31 2010-01-06 国网电力科学研究院 抽水蓄能电站静止变频启动低速阶段启动控制方法
WO2014209127A1 (en) * 2013-06-24 2014-12-31 Smartmotor As Method and system for starting electrical machines
CN104155883A (zh) * 2014-06-12 2014-11-19 国家电网公司 一种抽水蓄能机组sfc的启动控制方法
CN112398379A (zh) * 2019-08-12 2021-02-23 南京南瑞继保电气有限公司 一种同步电机的启动系统及启动方法
CN115313884A (zh) * 2022-08-10 2022-11-08 国电南瑞科技股份有限公司 一种晶闸管电流源型变频器输出变压器的控制方法与系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WU WEI-LIANG, LIU XI-PING, HUANG CHAO-ZHI, YANG HE-MIN, HU JING: "Research on Static Frequency Start-up Control Technology for Large Pumped Storage Unit", WATER RESOURCES AND POWER., vol. 40, no. 6, 1 June 2022 (2022-06-01), XP093138112, DOI: 1000-7709(2022)06-0196-05 *

Also Published As

Publication number Publication date
CN115313884A (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
CN102403950B (zh) 一种电动汽车感应电机励磁电流给定装置
CN111347936B (zh) 一种车辆及其动力电池加热方法与装置
JP5470091B2 (ja) 風力発電システムおよびその制御方法
CN103326390B (zh) 双单片机飞轮储能系统控制器及控制方法
WO2024031857A1 (zh) 一种晶闸管电流源型变频器输出变压器的控制方法与系统
CN110797891B (zh) 一种双三相无刷直流电机的飞轮储能系统及其控制方法
CN109004883A (zh) 一种小电容电机驱动系统的母线电压低压区控制方法
CN102110990B (zh) 基于逆疏松矩阵变换器的风力发电系统及其方法
CN107231110B (zh) 一种大功率异步电动机前馈补偿抑制定子电流谐波方法
JP2023516513A (ja) 系統連系インバーターの継電器吸着制御方法及び制御装置
CN111769773B (zh) 无储能设备参与的变频器电压暂降耐受能力提升方法
CN110460291A (zh) 一种背靠背电流源型电机驱动系统直流母线电流纹波抑制方法
CN103281028B (zh) 基于双级矩阵变换器起动/发电系统的起动控制及死区补偿
CN109950934B (zh) 一种双馈风电机组主动耗能运行的控制方法
CN105720875B (zh) 一种基于z源和电压源变流器协同供电的开绕组永磁同步电机的控制方法
WO2022078521A1 (zh) 一种机车四象限变流器负载突变复合检测及控制方法
CN105871293B (zh) 一种低成本的双pwm功率变换器模型预测控制方法
CN105790658B (zh) 一种双绕组异步电机直流起动发电系统的控制方法
CN109347371A (zh) 一种基于电流预测的无刷直流电机换相转矩脉动抑制方法
CN111525828B (zh) 基于虚拟同步电机的双向隔离型谐振功率变换器控制方法
CN103545820B (zh) 提高双馈风电变流器功率器件在微风工况下可靠性的方法
CN116073435B (zh) 一种柴发联合燃机的黑启动系统及方法
JP2013118763A (ja) 発電システム及びその運転制御方法
CN105227042B (zh) 大功率高压变频器的失电跨越控制方法
CN203326615U (zh) 双单片机飞轮储能系统控制器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954796

Country of ref document: EP

Kind code of ref document: A1