WO2022078521A1 - 一种机车四象限变流器负载突变复合检测及控制方法 - Google Patents

一种机车四象限变流器负载突变复合检测及控制方法 Download PDF

Info

Publication number
WO2022078521A1
WO2022078521A1 PCT/CN2021/124396 CN2021124396W WO2022078521A1 WO 2022078521 A1 WO2022078521 A1 WO 2022078521A1 CN 2021124396 W CN2021124396 W CN 2021124396W WO 2022078521 A1 WO2022078521 A1 WO 2022078521A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
control
quadrant
controller
load
Prior art date
Application number
PCT/CN2021/124396
Other languages
English (en)
French (fr)
Inventor
王力
张巧娟
张瑞峰
于森林
詹哲军
Original Assignee
中车永济电机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车永济电机有限公司 filed Critical 中车永济电机有限公司
Publication of WO2022078521A1 publication Critical patent/WO2022078521A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection

Definitions

  • the present disclosure is based on a Chinese patent application with an application number of 202011111823.3 and an application date of October 16, 2020, and claims the priority of the Chinese patent application, the entire contents of which are hereby incorporated by reference into the present application.
  • the present disclosure relates to a load mutation control method of a four-quadrant converter of a locomotive, in particular to a composite detection and control method of a load mutation of a four-quadrant converter of a locomotive.
  • a four-quadrant converter is a converter in which energy can flow in both directions.
  • the energy can present AC/DC conversion characteristics, rectifying the AC power on the single-phase grid into a stable DC power for the back-end inverter. device use.
  • the energy can present a DC/AC conversion characteristic, inverting the back-end direct current into alternating current with a high power factor.
  • the train control system will immediately isolate the faulty motor, and the load motor will be put into operation again after the fault is eliminated.
  • One of the existing methods for load sudden change is to increase the capacitance value of the intermediate support capacitor to suppress the intermediate voltage fluctuation caused by the load sudden change.
  • the method increases the resistance value of the intermediate support capacitor by connecting the intermediate support capacitor in parallel in the intermediate circuit of the traction converter, thereby suppressing the intermediate voltage fluctuation caused by the sudden change of the load and reducing the intermediate voltage ripple.
  • the volume of the converter is increased and the cost is increased; on the other hand, the response speed of the system is slowed down.
  • the four-quadrant control method adopts a double closed-loop control strategy.
  • the voltage outer loop PI controller + current inner loop PR controller is used to ensure Stability of intermediate bus voltage.
  • the disadvantage of this method is that when the load mutation power is large, the robustness of the system is poor, the dynamic response speed is not fast, and the anti-interference ability is not strong, and the safe and stable operation of the train cannot be guaranteed.
  • the present disclosure provides a composite detection and control method of the load mutation of a four-quadrant converter of a locomotive.
  • the method realizes that the voltage outer loop is changed from the traditional PI controller to the sliding mode controller and cooperates with the chopper controller. On the one hand, it does not change the existing main circuit and does not require additional hardware circuit design.
  • the intermediate voltage jump variable can be quickly controlled to ensure the stability of the intermediate voltage and improve the robustness and anti-interference ability of the control system.
  • the chopper control combined with the four-quadrant control can ensure the stability of the intermediate voltage without causing the failure of the traction converter, thus ensuring the safe and stable operation of the train.
  • a composite detection and control method for a sudden change in the load of a four-quadrant converter of a locomotive comprising the following steps:
  • the voltage outer loop controller is a sliding mode controller, and the sliding mode controller outputs the current inner loop command current i * according to the input error;
  • a chopper is arranged on one side of the four-quadrant converter. U u , the chopper works.
  • the chopper resistor dissipates energy from the intermediate DC link, thereby reducing the DC bus voltage.
  • T OT is the chopper over-temperature protection time
  • RL is the load resistance value
  • i S is the DC side current of the four-quadrant rectifier
  • E amp is the peak value of the AC side voltage of the four-quadrant rectifier
  • C d is the DC bus capacitance
  • is the grid voltage phase angle
  • the sliding mode controller uses the direct variable U dc to control the degree of freedom variable, which is convenient to directly control the control quantity; according to the selection principle of the sliding mode surface, the sliding mode control surface of the variable U dc is defined as: Where: k is a constant;
  • the calculation process of the voltage value e of the secondary side of the transformer is as follows: collecting the grid voltage Us, performing coordinate system transformation calculation on the collected grid voltage Us, and obtaining synchronous rotation
  • the DC components Ed and Eq of the d and q axes in the coordinate system are then transformed and calculated to obtain the instantaneous value of the grid voltage U p , and then the effective value of the grid voltage U rms is calculated, the formula is as follows:
  • the modulation strategy of the modulation module adopts sinusoidal pulse width modulation SPWM, and at the same time, a single-stage frequency multiplication technology is added.
  • the present invention discloses a load mutation detection and control method for a four-quadrant converter of a locomotive, and the beneficial effects are as follows:
  • This method optimizes the original four-quadrant control algorithm.
  • the chopper control and the four-quadrant control cooperate to stabilize the bus voltage;
  • the four-quadrant control stabilizes the bus voltage;
  • the voltage outer loop is controlled by the traditional PI.
  • the controller is changed to a sliding mode controller, which can quickly control the intermediate voltage jump variable when a sudden change in the load is detected.
  • Fig. 1 is the flow chart of load mutation detection control.
  • Figure 2 is a four-quadrant software control block diagram.
  • Figure 3 is a block diagram of the voltage outer loop control.
  • Figure 4 is a block diagram of the current inner loop control.
  • FIG. 1 is a flow chart of the load mutation detection control. The specific steps of the load mutation detection control method are as follows:
  • the TCU After the main circuit breaker is closed, the TCU detects that the effective value of the network voltage U rms is 16.5KV-31KV. At the same time, after the working contactor is closed, the TCU main control sends the four-quadrant start command to the DSP board, and the four-quadrant converter executes the start command.
  • the chopper control has always cooperated with the four-quadrant control to adjust the bus voltage u dc .
  • the chopper is turned on and the chopper pulse is in the T on state;
  • U on is the chopper turn-on voltage threshold
  • U off is the chopper turn-off voltage threshold
  • the bus voltage u dc fluctuates violently. If the total opening time T of the chopper satisfies the following formula, the TCU will report the chopping over-temperature protection fault, the chopping control will be cut off, and the remaining bus will be controlled by the four-quadrant software.
  • voltage u dc the current bus voltage U dc will and the intermediate DC voltage given value
  • the error amount u dc_err is generated, and the error signal is transmitted to the voltage outer loop controller.
  • T OT is the chopper over-temperature protection time
  • the voltage outer loop controller changes the PI controller to the sliding mode controller.
  • the sliding mode control is essentially a kind of nonlinear control. In the dynamic process, the system changes purposefully and continuously according to the current state of the system, forcing the system to move according to the state trajectory of the predetermined "sliding mode". In the event of a sudden load change, although the traditional PI controller can finally satisfy the intermediate voltage stability, the response speed is slow and there is an overshoot. Therefore, the sliding mode controller is selected, and the hardware-in-the-loop simulation proves that the control system has better robustness and dynamic performance, which can ensure the stable operation of the locomotive when the load suddenly changes.
  • the specific design method is as follows:
  • R L is the load resistance value
  • i S is the DC side current of the four-quadrant rectifier
  • E amp is the peak value of the AC side voltage of the four-quadrant rectifier
  • I amp is the peak value of the AC side current of the four-quadrant rectifier
  • is the grid voltage phase angle
  • C d is the DC bus capacitance.
  • the sliding surface function is defined as:
  • c>0 is the parameter to be designed
  • the sliding mode controller adopts the direct variable u dc to control the degree of freedom variable, which is convenient to directly control the control quantity.
  • the sliding mode control surface of variable u dc is defined as:
  • k is a constant.
  • the reaching law generally has the following designs:
  • the controller includes an integral term, which on the one hand can weaken the chattering phenomenon, on the other hand can eliminate the steady-state error of the system and improve the control quality of the system.
  • the voltage value e of the secondary side of the transformer is obtained, and the formula is as follows:
  • kk is the transformation ratio of the primary and secondary sides of the transformer
  • the single-stage frequency doubling modulation technology means that in a carrier cycle, each bridge arm device switches once, but the AC side voltage of the rectifier bridge will generate two pulses, which are sampled and calculated twice in a carrier cycle.
  • the advantage is that the output pulse frequency is doubled, reducing the current ripple.
  • Figure 2 is a four-quadrant software control block diagram.
  • L and R represent the AC side filter inductance and its resistance, respectively, and C d is the DC bus capacitance.
  • e represents the voltage value of the secondary side of the transformer
  • i represents the current on the AC side of the converter (that is, the secondary winding of the transformer)
  • u dc is the voltage of the DC bus
  • u ab represents the terminal voltage of the secondary winding of the transformer obtained by chopping u dc by the switch tube (AC side voltage of the converter)
  • i s and i L represent the DC side current and the load side output current of the four-quadrant rectifier, respectively.
  • the control strategy consists of two control loops, an outer voltage loop and an inner current loop.
  • Figure 3 is a block diagram of the voltage outer loop control.
  • the controlled object of the voltage outer loop the bus voltage, which controls the bus voltage by controlling the current flowing into the capacitor.
  • Voltage outer loop control goal to stabilize the actual voltage on the intermediate capacitor on the DC side at the given command voltage
  • the converter DC bus capacitor voltage equation is:
  • the active power on the AC side is equal to the average power on the DC side, namely:
  • T represents the power frequency period
  • T i represents the closed-loop bandwidth of the current loop
  • Figure 4 is a block diagram of the current inner loop control.
  • the current inner loop is to complete the tracking of the given current of the voltage outer loop under the unity power factor, and control the AC side input current i of the four-quadrant converter by controlling the AC side voltage U ab of the rectifier bridge.
  • the current inner loop adopts PR control, and the transfer function is:
  • ⁇ c is the controller bandwidth
  • ⁇ 0 is the resonant frequency
  • K P , K R are the proportional resonant controller parameters
  • the controller in order to realize the tracking of the signal without static error, the controller must include the model of the signal.
  • the transfer function of the integral link of the PI controller is 1/s, and it can only track the first-order signal, while the sinusoidal signal of the current is two Therefore, the PR controller is selected, and the tracking without static error can be carried out.

Abstract

本公开涉及机车四象限变流器负载突变控制方法,具体为一种机车四象限变流器负载突变复合检测及控制方法。一种机车四象限变流器负载突变复合检测及控制方法,该方法通过四象限控制方法实现,电压外环由传统PI控制器改为滑模控制器并配合斩波控制器,一方面不改变现有主电路及不需要额外的硬件电路设计,另一方面在检测到负载突变时可以对中间电压跳变量进行快速控制,保证中间电压稳定,提高了控制系统的鲁棒性和抗干扰能力。在发生负载突变时,斩波器控制配合四象限控制能够保证中间电压稳定,不会造成牵引变流器故障发生,从而保障列车安全稳定运行。

Description

一种机车四象限变流器负载突变复合检测及控制方法
相关申请的交叉引用
本公开基于申请号为202011111823.3、申请日为2020年10月16日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本公开涉及机车四象限变流器负载突变控制方法,具体为一种机车四象限变流器负载突变复合检测及控制方法。
背景技术
四象限变流器即能量可双向流动的变流器,当车辆处于牵引的情况时,能量可以呈现AC/DC变流特性,将单相电网上的交流电整流为稳定的直流电供后端逆变器使用。当车辆处于制动的情况时,能量可以呈现DC/AC变流特性,将后端直流电逆变为高功率因数的交流电。在列车运行过程中,当逆变器报出故障或牵引电机出现故障后,列车控制系统会立即将故障电机隔离,故障消除后负载电机重新投入工作。大功率负载电机突投突切会引起直流母线电压剧烈波动,严重时会对牵引变流器器件造成损害,给列车安全稳定运行带来了严重影响。通过优化四象限控制算法,对负载突变引起的中间电压跳变量进行快速控制,从而保障列车安全稳定运行。
现有针对负载突变的方法之一是提高中间支撑电容电容值,抑制负载突变引起的中间电压波动。该方法在原有支撑电容基础上,通过在牵引变流器中间回路并联中间支撑电容,提高中间支撑电容阻值,从而抑制负载突变引起的中间电压波动,减小中间电压纹波。这种方法的缺点有两个,一方面增大了变流器体积提高了成本,另一方面使系统的响应速度变慢。
现有另一种针对负载突变的方法是通过牵引四象限控制方法实现,四象限控制方法采用双闭环控制策略,当负载突变时,通过电压外环PI控制器+电流内环PR控制器来保证中间母线电压的稳定。这种方法的缺点是负载突变功率较大时,系统鲁棒性较差,动态相应速度不快、抗干扰能力不强,不能保证列车安全稳定运行。
发明内容
有鉴于此,本公开为了解决现有机车四象限变流器负载突变检测控制方法存在的问题和缺陷,提供一种机车四象限变流器负载突变复合检测及控制方法,该方法通过四象限控制方法实现,电压外环由传统PI控制器改为滑模控制器并配合斩波控制器,一方面不改变现有主电路及不需要额外的硬件电路设计,另一方面在检测到负载突变时可以对中间电压跳变量进行快速控制,保证中间电压稳定,提高了控制系统的鲁棒性和抗干扰能力。在发生负载突变时,斩波器控制配合四象限控制能够保证中间电压稳定,不会造成牵引变流器故障发生,从而保障列车安全稳定运行。
本公开是采用如下的技术方案实现的:一种机车四象限变流器负载突变复合检测及控制方法,包括以下步骤:
(1)四象限变流器启动;
(2)若发生负载突切,负载电流i L减小,引起直流母线电压u dc上升,当前母线电压u dc会和中间直流电压给定值
Figure PCTCN2021124396-appb-000001
产生误差量u dc_err,将误差量传至电压外环控制器;
(3)若发生负载突投,负载电流i L增大,引起直流母线电压u dc下降,当前母线电压u dc会和中间直流电压给定值
Figure PCTCN2021124396-appb-000002
产生误差量u dc_err,将误差量传至电压外环控制器;
(4)电压外环控制器为滑模控制器,滑模控制器根据输入的误差量输出电流内环指令电流i *
(5)将步骤(4)得到的电流内环指令电流i *与变流器交流侧电流i作比较,将误差信号i _err送给电流内环PR控制器,电流内环PR控制器输出e *
(6)计算得到变压器次边电压值e;
a)(7)将电流内环PR控制器输出值e *与变压器次边电压值e作比较得到参考电压u*,将参考电压信号送至调制模块,调制模块产生PWM脉冲配置为控制四象限变流器IGBT开通关断,实现PWM整流;
b)(8)采集检测此时的中间直流电压值u dc,若此时u dc和中间直流电压给定值
Figure PCTCN2021124396-appb-000003
满足公式
Figure PCTCN2021124396-appb-000004
则表明负载突变值被四象限控制软件消除,系统稳定运行,否则返回步骤(4),重复步骤(4)~步骤(8)。
上述的一种机车四象限变流器负载突变复合检测及控制方法,在四象限变流器一侧设置斩波器,若发生负载突切,当检测到直流母线电压U dc大于斩波开通电压阈值U u,斩波器工作。斩波电阻消耗中间直流回路能量,进而降低直流母线电压。
上述的一种机车四象限变流器负载突变复合检测及控制方法,若突切负载功率过大,母线电压U dc波动剧烈,斩波器开通总时间T满足以下公式,则斩波器被控制切除,剩下由四象限控制方法控制母线电压U dc
T≥T OT
其中:T OT为斩波过温保护时间
上述的一种机车四象限变流器负载突变复合检测及控制方法,滑模控制器具体设计方法如下:
c)根据控制需求及被控对象写出四象限整流器的数学模型
Figure PCTCN2021124396-appb-000005
其中:R L为负载阻值,i S为四象限整流器直流侧电流,E amp表示四象限整流器交流侧电压的峰值,C d为直流母线电容,θ为电网电压相角;
b)滑模面的设计:由上式可以推出:
Figure PCTCN2021124396-appb-000006
定义电压外环 的状态变量:
Figure PCTCN2021124396-appb-000007
根据上式可知:
Figure PCTCN2021124396-appb-000008
定义:
Figure PCTCN2021124396-appb-000009
则上式可变为:
Figure PCTCN2021124396-appb-000010
定义滑模面函数为:x=cx 1+x 2,对上式求导,可得:
Figure PCTCN2021124396-appb-000011
根据状态方程,滑模控制器控制自由度变量采用直接变量U dc,方便直接控制控制量;依据滑模面的选取原则,定义变量U dc的滑模控制面为:
Figure PCTCN2021124396-appb-000012
Figure PCTCN2021124396-appb-000013
其中:k为常数;
C)趋近律的设计:为了保证U dc的稳定控制以及四象限控制系统有较好的动态性能,选择指数趋近律,表达式如下:
Figure PCTCN2021124396-appb-000014
D)控制器和滑模面的关系:控制器的表达式为:
Figure PCTCN2021124396-appb-000015
式中:c、ε、k为滑模控制器参数,均为正数,从而得到电流内环的指令电流为:
Figure PCTCN2021124396-appb-000016
上述的一种机车四象限变流器负载突变复合检测及控制方法,变压器次边电压值e的计算过程为:采集电网电压Us,对采集到的电网电压Us进行坐标系变换计算,得到同步旋转坐标系下d、q轴直流分量Ed和Eq,再经过变换计算得到网压瞬时值U p,再计算得到网压有效值U rms,公式如下:
U rms=U p*0.707106781,根据变压器变比,求得变压器次边电压值e,公式如下:e=U rms*kk,其中:kk为变压器原副边变比。
上述的一种机车四象限变流器负载突变复合检测及控制方法,调制模块调制策略采用正弦脉宽调制SPWM,同时增加单级倍频技术。
本公开一种机车四象限变流器负载突变检测控制方法,有益效果如下:
1.列车实际运行过程中,大功率负载电机突投突切会引起直流母线电压剧烈波动,严重时会对牵引变流器器件造成损害,影响列车稳定运行。针对这一工程实际问题,提出一种机车四象限变流器负载突变检测控制方法,该方法采用四象限控制软件实现,不改变现有主电路及不需要额外的硬件电路设计。
2.该方法通过优化原有四象限控制算法,在负载突切时,斩波器控制和四象限控制配合来稳定母线电压;负载突投时,四象限控制稳定母线电压;电压外环由传统PI控制器改为滑模控制器,在检测到负载突变时可以对中间电压跳变量进行快速控制。
3.该方法目前已在半实物仿真平台验证完成,结果表面电压外环采用滑模控制器提高了控制系统的鲁棒性和动态性能,在发生负载突变时,不会造成机车牵引变流器器件等损害,能够保障列车安全稳定运行。
附图说明
图1是负载突变检测控制流程图。
图2是四象限软件控制框图。
图3是电压外环控制框图。
图4是电流内环控制框图。
具体实施方式
下面结合附图和实施例对本公开做进一步的说明。
图1为负载突变检测控制流程图,负载突变检测控制方法的具体步骤如下:
(1)四象限启动
主断路器闭合后,TCU检测到网压有效值U rms在16.5KV-31KV,同时工作接触器闭合后,TCU主控下发给DSP板四象限启动指令,四象限变流器执行启动指令。
(2)若发生负载突切,负载电流i L减小,引起直流母线电压u dc上升,当检测到直流母线电压u dc大于斩波开通电压阈值u u,斩波器工作。
(3)斩波器工作
斩波器的工作原理:
斩波器控制一直与四象限控制配合来调节母线电压u dc,当满足以下公式时,斩波器开通,斩波脉冲处于T on状态;
d)u dc>U on    (1)
e)当满足以下公式时,斩波器关断,斩波脉冲处于T off状态;
f)u dc<U off    (2)
g)其中,U on为斩波器开通电压阈值,U off为斩波器关断电压阈值
若突切负载功率过大,母线电压u dc波动剧烈,若斩波器开通总时间T满足以下公式,则TCU报出斩波超温保护故障,斩波控制切除,剩下由四象限软件控制母线电压u dc,当前母线电压U dc会和中间直流电压给定值
Figure PCTCN2021124396-appb-000017
产生误差量u dc_err,将误差信号传至电压外环控制器。
T≥T OT
其中:T OT为斩波过温保护时间
(4)若发生负载突投,负载电流i L增大,引起直流母线电压u dc下降,当前母线电压u dc会和中间直流电压给定值
Figure PCTCN2021124396-appb-000018
产生误差量u dc_err,将误差信号传至电压外环控制器。
(5)电压外环滑模控制器设计
电压外环控制器将PI控制器改为滑模控制器,滑模控制本质上是非线性控制的一种,它的非线性表现为控制的不连续性,即系统的“结构”不固定,可以在动态过程中根据系统当前的状态有目的地不断变化,迫使系统按照预定“滑动模态”的状态轨迹运动。在发生负载突变时,传统PI控制器虽然最终能满足中间电压稳定,但响应速度慢,且存在超调量,因此选择滑模控制器,经过半实物仿真验证控制系统有较好的鲁棒性和动态性能,在发生负载突变时能保障机车稳定运行,具体设计方法如下:
a)根据控制需求及被控对象写出四象限整流器的数学模型
h)
Figure PCTCN2021124396-appb-000019
其中:R L为负载阻值,i S为四象限整流器直流侧电流,E amp表示四象限整流器交流侧电压的峰值,I amp表示四象限整流器交流侧电流的峰值,θ为电网电压相角,C d为直流母线电容。
b)滑模面的设计
由公式(7)可以推出:
i)
Figure PCTCN2021124396-appb-000020
定义电压外环的状态变量:
j)
Figure PCTCN2021124396-appb-000021
其中:
Figure PCTCN2021124396-appb-000022
为中间直流电压给定值,通常为一常量;u dc为实际直流母线电压,根据公式(9)可知:
k)
Figure PCTCN2021124396-appb-000023
定义:
Figure PCTCN2021124396-appb-000024
则公式(10)可变为:
l)
Figure PCTCN2021124396-appb-000025
定义滑模面函数为:
x=cx 1+x 2          (12)
其中:c>0为待设计参数
对公式(12)求导,可得:
m)
Figure PCTCN2021124396-appb-000026
根据四象限整流器的数学模型,滑模控制器控制自由度变量采用直接变量u dc,方便直接控制控制量。依据滑模面的选取原则,定义变量u dc的滑模控制面为:
n)
Figure PCTCN2021124396-appb-000027
o)
Figure PCTCN2021124396-appb-000028
其中:k为常数。
c)趋近律的设计
趋近律一般有如下几种设计:
p)
Figure PCTCN2021124396-appb-000029
q)其中:
Figure PCTCN2021124396-appb-000030
为了保证u dc的稳定控制以及四象限控制系统有较好的动态性能,此处选择指数趋近律,表达式如下:
r)
Figure PCTCN2021124396-appb-000031
d)控制器和滑模面的关系
由前面公式推出控制器的表达式为:
s)
Figure PCTCN2021124396-appb-000032
式中:c、ε、k为滑模控制器参数,均为正数
从而得到电流内环的指令电流为:
t)
Figure PCTCN2021124396-appb-000033
由上式可以看出,控制器包含积分项,一方面可以削弱抖振现象,另一方面也可以消除系统的稳态误差,提高系统的控制品质。
e)稳定性的验证
用Lyapenov函数来判断系统的稳定性,对于系统状态方程
Figure PCTCN2021124396-appb-000034
对于平衡点x,如果存在一个连续函数V满足
1)
Figure PCTCN2021124396-appb-000035
2)
Figure PCTCN2021124396-appb-000036
那么系统将在平衡点x=0处稳定,即
Figure PCTCN2021124396-appb-000037
令V(x,t)=x 2/2,满足条件1,对V进行求导得:
u)
Figure PCTCN2021124396-appb-000038
其中:ε>0,k>0
由上式推出条件2也满足,因此满足Lyapenov函数的条件,x最终会稳定在滑模面,即x=0,证明了所设计的滑模控制器稳定性。
(6)将步骤(5)得到的电流内环指令电流i *与变流器交流侧电流i作比较,将误差信号i _err送给电流内环PR控制器。
(7)计算得到变压器次边电压值e
采集电网电压Us,对采集到的电网电压Us进行坐标系变换计算,得到同步旋转坐标系下d、q轴直流分量E d和E q,再经过变换计算得到网压瞬时值U p,即网压的幅值;
计算得到网压有效值U rms,公式如下:
v)U rms=U p*0.707106781
根据变压器变比,求得变压器次边电压值e,公式如下:
w)e=U rms*kk
其中:kk为变压器原副边变比;
x)(8)将电流内环输出值e *与变压器次边电压值e作比较得到参考电压u*, 将参考电压信号送至调制模块,调制模块产生PWM脉冲配置为控制四象限变流器IGBT开通关断,实现PWM整流。调制策略采用正弦脉宽调制SPWM,同时增加了单级倍频技术。
y)单级倍频调制技术即在一个载波周期中,每个桥臂器件开关动作一次,但是整流桥交流侧电压会产生两个脉冲,在一个载波周期中采样并计算两次。优势是输出脉冲频率加倍,减小电流纹波。
(9)采集检测此时的中间直流电压值U dc,若此时U dc和中间直流电压给定值
Figure PCTCN2021124396-appb-000039
满足以下公式,则表明负载突变值被四象限控制软件消除,系统稳定运行,否则返回步骤(5),重复步骤(5)~步骤(8)。
z)
Figure PCTCN2021124396-appb-000040
图2是四象限软件控制框图。L和R分别表示交流侧滤波电感和它的电阻,C d为直流母线电容。e表示变压器次边电压值,i表示变流器交流侧(即变压器副边绕组)电流,u dc为直流母线电压,u ab表示由开关管对u dc斩波得到的变压器副边绕组端电压(变流器交流侧电压),i s和i L分别表示四象限整流器直流侧电流和负载侧输出电流。控制策略包含两个控制环,电压外环和电流内环。
图3是电压外环控制框图。
电压外环被控对象:母线电压,通过控制流入电容的电流,来控制母线电压。
电压外环控制目标:实现直流侧中间电容上的实际电压稳定在给定指令电压;
变流器直流母线电容电压方程为:
aa)
Figure PCTCN2021124396-appb-000041
忽略电感储能,根据能量守恒,在一个工频周期内,交流侧有功功率等于直流侧平均功率,即:
bb)
Figure PCTCN2021124396-appb-000042
其中:T表示工频周期,
假设直流母线电压基本不变,得到:
cc)
Figure PCTCN2021124396-appb-000043
将电流内环近似为惯性环节,得到:
dd)
Figure PCTCN2021124396-appb-000044
其中T i表示电流环的闭环带宽
由图3可知,电压外环的受控对象传递函数为:
ee)
Figure PCTCN2021124396-appb-000045
ff)将式(5)带入式(3)得到四象限整流器的数学模型
图4是电流内环控制框图。电流内环是实现单位功率因数下完成对电压外环给定电流的跟踪,通过控制整流桥交流侧电压U ab,来控制四象限变流器交流侧输入电流i。
电流内环采用PR控制,传递函数为:
gg)
Figure PCTCN2021124396-appb-000046
其中:ω c表示控制器带宽;ω 0表示谐振频率,K P,K R表示比例谐振控制器参数
根据内模原理,要实现对信号的无静差跟踪,控制器必须包含信号的模型,PI控制器积分环节的传函为1/s,只能跟踪一阶信号,而电流的正弦信号是二阶的,因此选用PR控制器,可以进行无静差跟踪。

Claims (6)

  1. 一种机车四象限变流器负载突变复合检测及控制方法,包括以下步骤:
    (1)四象限变流器启动;
    (2)若发生负载突切,负载电流i L减小,引起直流母线电压u dc上升,当前母线电压u dc会和中间直流电压给定值
    Figure PCTCN2021124396-appb-100001
    产生误差量u dc_err,将误差量传至电压外环控制器;
    (3)若发生负载突投,负载电流i L增大,引起直流母线电压u dc下降,当前母线电压u dc会和中间直流电压给定值
    Figure PCTCN2021124396-appb-100002
    产生误差量u dc_err,将误差量传至电压外环控制器;
    (4)电压外环控制器为滑模控制器,滑模控制器根据输入的误差量输出电流内环指令电流i *
    (5)将步骤(4)得到的电流内环指令电流i *与变流器交流侧电流i作比较,将误差信号i _err送给电流内环PR控制器,电流内环PR控制器输出e *
    (6)计算得到变压器次边电压值e;
    hh)(7)将电流内环PR控制器输出值e *与变压器次边电压值e作比较得到参考电压u*,将参考电压信号送至调制模块,调制模块产生PWM脉冲配置为控制四象限变流器IGBT开通关断,实现PWM整流;
    ii)(8)采集检测此时的中间直流电压值u dc,若此时u dc和中间直流电压给定值
    Figure PCTCN2021124396-appb-100003
    满足公式
    Figure PCTCN2021124396-appb-100004
    则表明负载突变值被消除,系统稳定运行,否则返回步骤(4),重复步骤(4)~步骤(8)。
  2. 根据权利要求1所述的一种机车四象限变流器负载突变复合检测及控制方法,其中:在四象限变流器一侧设置斩波器,若发生负载突切,当检测到直流母线电压u dc大于斩波开通电压阈值u u,斩波器工作。
  3. 根据权利要求2所述的一种机车四象限变流器负载突变复合检测及控制方法,其中:若突切负载功率过大,母线电压u dc波动剧烈,斩波器开通总 时间T满足公式T≥T OT,其中:T OT为斩波过温保护时间,则斩波器被控制切除,剩下由四象限方法控制母线电压u dc
  4. 根据权利要求1或2或3所述的一种机车四象限变流器负载突变复合检测及控制方法,其中:滑模控制器具体设计方法如下:
    a)根据控制需求及被控对象写出四象限整流器的数学模型
    Figure PCTCN2021124396-appb-100005
    其中:R L为负载阻值,i S为四象限整流器直流侧电流,E amp表示四象限整流器交流侧电压的峰值,C d为直流母线电容,θ为电网电压相角;
    b)滑模面的设计:由上式可以推出:
    Figure PCTCN2021124396-appb-100006
    定义电压外环的状态变量:
    Figure PCTCN2021124396-appb-100007
    根据上式可知:
    Figure PCTCN2021124396-appb-100008
    ;定义:
    Figure PCTCN2021124396-appb-100009
    则上式可变为:
    Figure PCTCN2021124396-appb-100010
    定义滑模面函数为:x=cx 1+x 2,对上式求导,可得:
    Figure PCTCN2021124396-appb-100011
    根据状态方程,滑模控制器控制自由度变量采用直接变量u dc,方便直接控制控制量;依据滑模面的选取原则,定义变量u dc的滑模控制面为:
    Figure PCTCN2021124396-appb-100012
    其中:k为常数;
    C)趋近律的设计:为了保证U dc的稳定控制以及四象限控制系统有较好的动态性能,选择指数趋近律,表达式如下:
    Figure PCTCN2021124396-appb-100013
    D)控制器和滑模面的关系:控制器的表达式为:
    Figure PCTCN2021124396-appb-100014
    式中:c、ε、k为滑模控制器参数,均为正数,从 而得到电流内环的指令电流为:
    Figure PCTCN2021124396-appb-100015
  5. 根据权利要求1或2或3所述的一种机车四象限变流器负载突变复合检测及控制方法,其中:变压器次边电压值e的计算过程为:采集电网电压Us,对采集到的电网电压Us进行坐标系变换计算,得到同步旋转坐标系下d、q轴直流分量E d和E q,再经过变换计算得到网压瞬时值U p,再计算得到网压有效值U rms,公式如下:U rms=U p*0.707106781,根据变压器变比,求得变压器次边电压值e,公式如下:e=U rms*kk,其中:kk为变压器原副边变比。
  6. 根据权利要求1或2或3所述的一种机车四象限变流器负载突变复合检测及控制方法,其中:调制模块调制策略采用正弦脉宽调制SPWM,同时增加单级倍频技术。
PCT/CN2021/124396 2020-10-16 2021-10-18 一种机车四象限变流器负载突变复合检测及控制方法 WO2022078521A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011111823.3 2020-10-16
CN202011111823.3A CN112290820A (zh) 2020-10-16 2020-10-16 一种机车四象限变流器负载突变复合检测及控制方法

Publications (1)

Publication Number Publication Date
WO2022078521A1 true WO2022078521A1 (zh) 2022-04-21

Family

ID=74496313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124396 WO2022078521A1 (zh) 2020-10-16 2021-10-18 一种机车四象限变流器负载突变复合检测及控制方法

Country Status (2)

Country Link
CN (1) CN112290820A (zh)
WO (1) WO2022078521A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112290820A (zh) * 2020-10-16 2021-01-29 中车永济电机有限公司 一种机车四象限变流器负载突变复合检测及控制方法
CN115333390A (zh) * 2022-08-16 2022-11-11 长沙航特电子科技有限公司 一种整流器的电流环控制方法、系统及可读存储介质

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005004697A1 (de) * 2005-02-02 2006-08-10 Vossloh Kiepe Gmbh Verfahren zur Ermittlung von Laststrom und Saugkreisstrom bei Vier-Quadrantenstellern
CN106549399A (zh) * 2016-12-10 2017-03-29 三峡大学 一种基于滑模pi复合控制算法的并联apf直流侧电压控制方法
CN106786647A (zh) * 2016-12-27 2017-05-31 三峡大学 一种三相四线制并联apf双闭环非线性复合控制方法
CN108155651A (zh) * 2017-12-28 2018-06-12 江苏大学 有源电力滤波器直流侧电压的改进滑模pi控制方法
CN108777549A (zh) * 2017-12-25 2018-11-09 三峡大学 一种基于三相Vienna整流器的滑模比例谐振控制方法
CN109217696A (zh) * 2017-07-04 2019-01-15 中车株洲电力机车研究所有限公司 一种单相变流器的直流电压闭环控制方法及系统
CN110112940A (zh) * 2019-06-14 2019-08-09 安徽工业大学 一种基于αβ坐标系下的PWM整流器自适应滑模QPIR控制方法
CN110514947A (zh) * 2019-07-22 2019-11-29 中车永济电机有限公司 一种机车牵引变流器网压中断检测及控制方法
CN110912136A (zh) * 2019-12-05 2020-03-24 中车大连电力牵引研发中心有限公司 动车组四象限整流控制方法
CN111162715A (zh) * 2018-11-08 2020-05-15 中车永济电机有限公司 一种电力机车用兆瓦级直驱永磁电传动系统
CN112242796A (zh) * 2020-09-27 2021-01-19 中车永济电机有限公司 机车牵引变流器网压波动复合检测控制装置及其控制方法
CN112290820A (zh) * 2020-10-16 2021-01-29 中车永济电机有限公司 一种机车四象限变流器负载突变复合检测及控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110474557B (zh) * 2019-08-21 2020-12-25 中车永济电机有限公司 一种直驱永磁电力机车四象限变流器控制策略和调制方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005004697A1 (de) * 2005-02-02 2006-08-10 Vossloh Kiepe Gmbh Verfahren zur Ermittlung von Laststrom und Saugkreisstrom bei Vier-Quadrantenstellern
CN106549399A (zh) * 2016-12-10 2017-03-29 三峡大学 一种基于滑模pi复合控制算法的并联apf直流侧电压控制方法
CN106786647A (zh) * 2016-12-27 2017-05-31 三峡大学 一种三相四线制并联apf双闭环非线性复合控制方法
CN109217696A (zh) * 2017-07-04 2019-01-15 中车株洲电力机车研究所有限公司 一种单相变流器的直流电压闭环控制方法及系统
CN108777549A (zh) * 2017-12-25 2018-11-09 三峡大学 一种基于三相Vienna整流器的滑模比例谐振控制方法
CN108155651A (zh) * 2017-12-28 2018-06-12 江苏大学 有源电力滤波器直流侧电压的改进滑模pi控制方法
CN111162715A (zh) * 2018-11-08 2020-05-15 中车永济电机有限公司 一种电力机车用兆瓦级直驱永磁电传动系统
CN110112940A (zh) * 2019-06-14 2019-08-09 安徽工业大学 一种基于αβ坐标系下的PWM整流器自适应滑模QPIR控制方法
CN110514947A (zh) * 2019-07-22 2019-11-29 中车永济电机有限公司 一种机车牵引变流器网压中断检测及控制方法
CN110912136A (zh) * 2019-12-05 2020-03-24 中车大连电力牵引研发中心有限公司 动车组四象限整流控制方法
CN112242796A (zh) * 2020-09-27 2021-01-19 中车永济电机有限公司 机车牵引变流器网压波动复合检测控制装置及其控制方法
CN112290820A (zh) * 2020-10-16 2021-01-29 中车永济电机有限公司 一种机车四象限变流器负载突变复合检测及控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MA HUI, YAN SHENGYANG; WANG SHUZHENG; WEI WEI: "Sliding-mode Proportional Resonant Control of Three-phase Vienna Rectifier", PROCEEDINGS OF THE CSU-EPSA, vol. 31, no. 3, 1 March 2019 (2019-03-01), pages 122 - 127,145, XP055921317, ISSN: 1003-8930, DOI: 10.19635/j.cnki.csu-epsa.000135 *

Also Published As

Publication number Publication date
CN112290820A (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
CN109412425B (zh) 一种带抑制直压波动的三电平-四象限变频器及控制方法
WO2022078521A1 (zh) 一种机车四象限变流器负载突变复合检测及控制方法
CN102916572B (zh) 抑制二次纹波电流并改善动态特性的控制方法及系统
CN103326611B (zh) 一种三相电压源型pwm变流器的预测直接功率控制方法
Liserre et al. An overview of three-phase voltage source active rectifiers interfacing the utility
TWI522767B (zh) 太陽光能發電系統
CN113629708B (zh) 混合直流输电系统受端电网故障下抑制受端换流器过压的控制方法
CN110233490A (zh) 避免连续换相失败的直流输电故障恢复控制方法及系统
CN103414207A (zh) 一种基于下垂控制的平滑切换方法
CN112600234B (zh) 一种改善柔性直流换流器等效阻抗的控制方法和装置
CN112242796A (zh) 机车牵引变流器网压波动复合检测控制装置及其控制方法
CN105576646A (zh) 基于附加有功信号的vsc-mtdc系统平衡控制系统及其方法
CN104682764A (zh) 一种应用于飞轮储能系统电网侧变流装置控制器
CN109494770A (zh) 一种三相负荷不平衡智能调节装置及方法
CN110514947B (zh) 一种机车牵引变流器网压中断检测及控制方法
CN109802397B (zh) 静止无功发生器的自适应pi双闭环控制方法
Cimini et al. Current sensorless solution for PFC boost converter operating both in DCM and CCM
CN107528495B (zh) 一种提高pwm逆变器抗冲击能力的控制方法及系统
CN104993759B (zh) 双馈风力发电机快速弱磁控制方法
CN104052314A (zh) 一种三相电压型pwm整流器直接功率控制方法
CN112713755B (zh) 一种双向晶闸管快速关断方法及系统
CN102969716A (zh) 船舶电网有源滤波控制方法
Qiu et al. High performance current source inverter fed induction motor drive with minimal harmonic distortion
CN102751727B (zh) 三相三线制并联有源滤波器的反馈线性化滑模控制方法
CN111082465A (zh) 一种直流潮流控制器、控制方法及直流输电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879562

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21879562

Country of ref document: EP

Kind code of ref document: A1