WO2024031505A1 - 信号接收方法、信号发送方法以及装置 - Google Patents

信号接收方法、信号发送方法以及装置 Download PDF

Info

Publication number
WO2024031505A1
WO2024031505A1 PCT/CN2022/111654 CN2022111654W WO2024031505A1 WO 2024031505 A1 WO2024031505 A1 WO 2024031505A1 CN 2022111654 W CN2022111654 W CN 2022111654W WO 2024031505 A1 WO2024031505 A1 WO 2024031505A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
transmission configuration
configuration indication
physical downlink
downlink control
Prior art date
Application number
PCT/CN2022/111654
Other languages
English (en)
French (fr)
Inventor
张健
赵帝
孙刚
王昕�
Original Assignee
富士通株式会社
张健
赵帝
孙刚
王昕�
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 张健, 赵帝, 孙刚, 王昕� filed Critical 富士通株式会社
Priority to PCT/CN2022/111654 priority Critical patent/WO2024031505A1/zh
Publication of WO2024031505A1 publication Critical patent/WO2024031505A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems

Definitions

  • the embodiments of this application relate to the field of communication technology.
  • unified TCI in Rel-17 is mainly designed for sTRP (single transmission and reception point) scenarios.
  • TRP multiple transmission and reception point
  • mTRP transmission includes mTRP transmission (sDCI mTRP) based on single DCI (single Downlink Control Information, sDCI) and mTRP transmission (mDCI mTRP) based on multiple DCI (multiple DCI, mDCI).
  • one DCI schedules the uplink and downlink transmission of two TRPs, which is more suitable for ideal situations where the backhaul between TRPs is ideal.
  • two TRPs use two DCIs to schedule the uplink and downlink transmission of their respective TRPs respectively, which is more suitable for situations where the backhaul between TRPs is not ideal.
  • PDCCH reception needs to be based on one TCI state and there are two TCI states within the action time of PDCCH reception;
  • PDCCH reception needs to be based on two TCI states and there is one TCI state within the action time of PDCCH reception;
  • PDCCH reception needs to be based on two TCI states and there are two TCI states within the action time of PDCCH reception.
  • embodiments of the present application provide a signal receiving method, a signal sending method and a device.
  • a signal receiving method including:
  • the terminal device receives DCI indicating one or two TCI states
  • the terminal equipment receives the PDCCH associated with one or two TCI states within the action time of the one or two TCI states.
  • a signal sending method includes:
  • the network device sends DCI indicating one or two TCI states
  • the network device sends the PDCCH associated with one or two TCI states within the action time of the one or two TCI states.
  • a signal receiving device includes:
  • a first receiving unit that receives DCI indicating one or two TCI states
  • the second receiving unit receives the PDCCH associated with one or two TCI states within the action time of the one or two TCI states.
  • a signal sending device configured in a network device, and the device includes:
  • a first sending unit that sends DCI indicating one or two TCI states
  • the second sending unit is configured to send the PDCCH associated with one or two TCI states within the action time of the one or two TCI states.
  • the terminal equipment receives the PDCCH associated with one or two TCI states within the action time of one or two TCI states indicated by the DCI. Therefore, it is possible to avoid when the terminal equipment is in two TCI states.
  • PDCCH Physical Downlink Control Channel
  • the terminal equipment receives the PDCCH associated with one or two TCI states within the action time of one or two TCI states indicated by the DCI. Therefore, it is possible to avoid when the terminal equipment is in two TCI states.
  • PDCCH within the action time of TCI state, or when receiving PDCCH repetition within the action time of one or two TCI states, undefined device behavior occurs, so as to avoid the resulting PDCCH reception failure.
  • Figure 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • Figure 2 is a schematic diagram of the action time of at least one DL TCI state indicated by DL DCI for unified TCI;
  • Figure 3 is a schematic diagram of a signal receiving method according to an embodiment of the present application.
  • Figure 4 is a schematic diagram of an example of a terminal device receiving a PDCCH
  • Figure 5 is a schematic diagram of another example of a terminal device receiving a PDCCH
  • Figure 6 is a schematic diagram of another example of a terminal device receiving PDCCH
  • Figure 7 is a schematic diagram of another example of a terminal device receiving a PDCCH
  • Figure 8 is a schematic diagram of another example of a terminal device receiving PDCCH
  • Figure 9 is a schematic diagram of an example of MAC CE
  • Figure 10 is a schematic diagram of an example of CORESET configuration
  • Figure 11 is a schematic diagram of a signal sending method according to an embodiment of the present application.
  • Figure 12 is a schematic diagram of a signal receiving device according to an embodiment of the present application.
  • Figure 13 is a schematic diagram of a signal sending device according to an embodiment of the present application.
  • Figure 14 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • Figure 15 is a schematic diagram of the structure of a network device according to an embodiment of the present application.
  • the terms “first”, “second”, etc. are used to distinguish different elements from the title, but do not indicate the spatial arrangement or temporal order of these elements, and these elements should not be used by these terms. restricted.
  • the term “and/or” includes any and all combinations of one or more of the associated listed terms.
  • the terms “comprises,” “includes,” “having” and the like refer to the presence of stated features, elements, elements or components but do not exclude the presence or addition of one or more other features, elements, elements or components.
  • the term “communication network” or “wireless communication network” may refer to a network that complies with any of the following communication standards, such as Long Term Evolution (LTE, Long Term Evolution), Long Term Evolution Enhanced (LTE-A, LTE- Advanced), Wideband Code Division Multiple Access (WCDMA, Wideband Code Division Multiple Access), High-speed Packet Access (HSPA, High-Speed Packet Access), 5G (5Generation) New Wireless (NR, New Radio), etc.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution Enhanced
  • WCDMA Wideband Code Division Multiple Access
  • High-speed Packet Access High-speed Packet Access
  • the communication between devices in the communication system can be carried out according to the communication protocol at any stage.
  • it can include but is not limited to the following communication protocols: 1G, 2G, 2.5G, 2.75G, 3G, 4G, 4.5G and 5G new wireless, etc. etc., and/or other communication protocols currently known or to be developed in the future.
  • Network device refers to a device in a communication system that connects a terminal device to a communication network and provides services to the terminal device.
  • Network equipment may include but is not limited to the following equipment: base station (BS, Base Station), access point (AP, Access Point), transmission and reception point (TRP, Transmission Reception Point), broadcast transmitter, mobile management entity (MME, Mobile Management Entity), gateway, server, wireless network controller (RNC, Radio Network Controller), base station controller (BSC, Base Station Controller), etc.
  • the base station may include but is not limited to: Node B (NodeB or NB), evolved Node B (eNodeB or eNB) and 5G base station (gNB), etc.
  • it may also include remote radio head (RRH, Remote Radio Head) , Remote Radio Unit (RRU, Remote Radio Unit), relay or low-power node (such as femeto, pico, etc.).
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • relay or low-power node such as femeto, pico, etc.
  • base station may include some or all of their functions, each of which may provide communications coverage to a specific geographic area.
  • the term "cell” may refer to a base station and/or its coverage area, depending on the context in which the term is used.
  • the term "user equipment” (UE, User Equipment) or “terminal equipment” (TE, Terminal Equipment or Terminal Device) refers to a device that accesses a communication network through a network device and receives network services.
  • Terminal equipment can be fixed or mobile, and can also be called mobile station (MS, Mobile Station), terminal, subscriber station (SS, Subscriber Station), access terminal (AT, Access Terminal), station, etc.
  • the terminal equipment may include but is not limited to the following equipment: cellular phone (Cellular Phone), personal digital assistant (PDA, Personal Digital Assistant), wireless modem, wireless communication equipment, handheld device, machine-type communication equipment, laptop computer, Cordless phones, smartphones, smart watches, digital cameras, and more.
  • cellular phone Cellular Phone
  • PDA Personal Digital Assistant
  • wireless modem wireless communication equipment
  • handheld device machine-type communication equipment
  • laptop computer Cordless phones
  • Cordless phones smartphones, smart watches, digital cameras, and more.
  • the terminal device can also be a machine or device for monitoring or measuring.
  • the terminal device can include but is not limited to: Machine Type Communication (MTC) terminals, Vehicle communication terminals, device-to-device (D2D, Device to Device) terminals, machine-to-machine (M2M, Machine to Machine) terminals, etc.
  • MTC Machine Type Communication
  • D2D Device to Device
  • M2M Machine to Machine
  • network side refers to one side of the network, which may be a certain base station or may include one or more network devices as above.
  • user side or “terminal side” or “terminal device side” refers to the side of the user or terminal, which may be a certain UE or may include one or more terminal devices as above.
  • device can refer to network equipment or terminal equipment.
  • FIG 1 is a schematic diagram of a communication system according to an embodiment of the present application, schematically illustrating the case of terminal equipment and network equipment as examples.
  • the communication system 100 may include a first TRP 101, a second TRP 102 and a terminal.
  • Device 103 the first TRP101 and the second TRP102 may be network devices.
  • Figure 1 only takes two TRPs (network devices) and one terminal device as an example for illustration, but the embodiment of the present application is not limited thereto.
  • existing services or services that may be implemented in the future can be transmitted between the first TRP 101, the second TRP 102, and the terminal device 103.
  • these services may include but are not limited to: enhanced mobile broadband (eMBB, enhanced Mobile Broadband), massive machine type communication (mMTC, massive Machine Type Communication) and high-reliability and low-latency communication (URLLC, Ultra-Reliable and Low -Latency Communication), etc.
  • eMBB enhanced mobile broadband
  • mMTC massive Machine Type Communication
  • URLLC Ultra-Reliable and Low -Latency Communication
  • the network device uses RRC signaling to configure M (M ⁇ 1) TCI states (TCI states) for the terminal device, and uses the MAC CE (Media Access Control Control Unit) ) activates N (1 ⁇ N ⁇ M) TCI states among M TCI states, and uses DCI to indicate L (1 ⁇ L ⁇ N) TCI states among N TCI states.
  • M M
  • M TCI states
  • MAC CE Media Access Control Control Unit
  • the TCI field of DCI format 1_1 or DCI format 1_2 indicates one or more TCI states.
  • DCI format 1_1 or DCI format 1_2 can schedule downlink data, which is called DCI format 1_1/1_2 with DL assignment, or it can not schedule downlink data, which is called DCI format 1_1/1_2without DL assignment.
  • a TCI state can include or correspond to one or two source reference signals (source RS, source Reference Signal).
  • the source reference signal can provide quasi co-location (QCL, Quasi Co-Location) information for downlink reception, which is called the downlink source reference signal.
  • the source reference signal can provide a reference for the uplink transmission spatial filter (UL TX spatial filter, uplink transmission spatial filter) and is called the uplink source reference signal.
  • the source reference signal can provide beam information for the destination channel/signal.
  • the beam used by the terminal device to receive the destination channel/signal is the same as the beam used to receive the downlink source reference signal.
  • the beam used by the terminal equipment to transmit the destination channel/signal is the same as the beam used to transmit the uplink source reference signal.
  • the beam used by the terminal equipment to transmit the destination channel/signal and the beam used to receive the downlink source reference signal have reciprocity, that is, the beams are the same but in opposite directions. Therefore, the indication or update of the TCI status actually includes the indication or update of the beam used by the terminal device.
  • the TCI state includes joint TCI state (joint DL/UL TCI state), downlink TCI state (DL only TCI state) and uplink TCI state (UL only TCI state).
  • the source reference signal included in the downlink TCI state is the downlink source reference signal
  • the source reference signal included in the uplink TCI state is the uplink source reference signal
  • the source reference signal included in the joint TCI state is both the downlink source reference signal and the uplink source reference signal.
  • the joint TCI state affects both the downlink beam (receive beam) and the uplink beam (transmit beam).
  • the downlink beam and the uplink beam use the same beam, but the beam directions are opposite, that is, there is reciprocity between the uplink and downlink beams.
  • the downlink TCI status only affects the downlink beam.
  • the uplink TCI status only affects the uplink beam.
  • the uplink beam is also called the uplink transmit spatial filter.
  • the TCI field may indicate the joint TCI state (joint DL/UL TCI state), or the TCI field may indicate the independent TCI state (separate DL/UL TCI state), that is, indicating the downlink TCI state and/or the uplink TCI state, indicating the joint TCI state or Indicating independent TCI status can be configured through RRC signaling.
  • a TCI field indicates a combined TCI status (equivalent to indicating both the downlink TCI status and the uplink TCI status), or indicates a downlink TCI status, or indicates an uplink TCI status, or indicates One downstream TCI state and one upstream TCI state.
  • FIG. 2 is a schematic diagram of the application time (Application time) of at least one DL TCI state indicated by DL DCI for unified TCI.
  • DL TCI state can be joint DL/UL TCI state or separate DL/UL TCI state.
  • the terminal device receives DL DCI 1 indicating at least one DL TCI state, wherein the DL TCI state indicated by DL DCI 1 is the same as the DL indicated by the previous DL DCI (such as DL DCI 0, not shown in the figure). TCI states are different (including the number of DL TCI states is different).
  • the terminal device sends an ACK (ACK 1) for DL DCI 1 to the network device.
  • DL DCI 1 can be a DCI format that schedules PDSCH, or a DCI format that does not schedule PDSCH (DCI format without DL assignment).
  • the first time slot to which DL TCI state indicated by DL DCI 1 is applied is the first time slot after Y symbols after the last symbol of ACK1, and the starting time of this time slot is recorded as t1.
  • DL DCI 2 is the first DL TCI state indicated after DL DCI 1.
  • the DL TCI state indicated by DL DCI 1 is different from the DL TCI state indicated by DL DCI 1.
  • time slot, the starting time of this time slot is recorded as t2.
  • the action time of DL TCI state indicated by DL DCI 1 (action time 1, application time 1) includes all time slots between t1 and t2.
  • the DL TCI state that takes effect within time 1 is indicated by DL DCI 1.
  • the action time (action time 2, application time 2) of the DL TCI state indicated by DL DCI 2 can be expressed as all time slots between t2 and t3, where t3 corresponds to the first application and DL DCI 2 indication.
  • the time slot of the DL TCI state is different from the DL TCI state.
  • the different DL TCI state is indicated by DL DCI 3 (not shown in the figure) located after DL DCI 2.
  • DL DCI 3 not shown in the figure
  • unified TCI only applies to sTRP scenarios. Considering the importance of mTRP, it is necessary to design a corresponding unified TCI mechanism for mTRP scenarios. 3GPP will standardize the unified TCI of mTRP in Rel-18. At present, mTRP's unified TCI has been identified as one of the Rel-18 project contents, and the standardization work of Rel-18 has not yet begun. Functionally speaking, mTRP's unified TCI needs to be able to indicate the TCI status of two TRPs to support mTRP PDSCH transmission, and also be able to indicate the TCI status of one TRP to support sTRP PDSCH transmission.
  • Rel-17 standardizes PDCCH repetition (PDCCH repetition) and SFN (Single Frequency Network, single frequency network) PDCCH.
  • two associated PDCCH candidates come from two CORESETs (control resource sets) and carry the same control information.
  • Each CORESET is configured with a DL TCI state.
  • Two PDCCH copies are sent using two DL TCI states of two CORESETs, for example, sent by two TRPs.
  • two TRPs send exactly the same PDCCH on the same time-frequency resource, including the DMRS of the same PDCCH, and the two PDCCHs come from one CORESET.
  • the CORESET is configured with two DL TCI states.
  • Two PDCCHs are sent using two DL TCI states of one CORESET.
  • PDCCH is associated with a TCI state (that is, the terminal device needs to receive PDCCH based on a TCI state), and there is a TCI state within a certain action time of unified TCI.
  • the terminal device will receive PDCCH under the following conditions:
  • Case 1 Terminal equipment: Receives PDCCH associated with a TCI state within the action time of a TCI state.
  • the unified TCI of mTRP needs to be standardized.
  • PDCCH is associated with one or two TCI states (for example, PDCCH repetition is associated with two TCI states, that is, the terminal device needs to receive PDCCH repetition based on two TCI states), and a certain action time memory of unified TCI In one or two TCI states (two TCI states are associated with two TRPs respectively).
  • the terminal device will receive PDCCH under the following conditions:
  • Case 1 The terminal device receives the PDCCH associated with a TCI state within the action time of a TCI state;
  • Case 2 The terminal equipment receives the PDCCH associated with one TCI state within the action time of two TCI states;
  • Case 3 The terminal device receives PDCCH associated with two TCI states within the action time of one TCI state;
  • Case 4 The terminal equipment receives the PDCCH associated with two TCI states within the action time of the two TCI states.
  • scenarios 2 to 4 are new scenarios for Rel-18. How the terminal equipment receives PDCCH in new scenarios 2 to 4 is a problem that needs to be solved. If this problem is not solved, there will be uncertainty in the behavior of the terminal equipment in receiving the PDCCH, which may lead to PDCCH reception failure.
  • embodiments of the present application provide a signal receiving method, a signal sending method and a device.
  • the embodiments of the present application will be described below with reference to the drawings and specific implementation modes.
  • TCI state refers to DL TCI state.
  • DL TCI state can be DL only TCI state or joint TCI state; for receiving PDCCH, "receive” is equivalent to “monitor” and “blind decode” and can be mutually exclusive.
  • the embodiment of the present application provides a signal receiving method, which is applied on the terminal device side.
  • Figure 3 is a schematic diagram of a signal receiving method according to an embodiment of the present application. As shown in Figure 3, the method includes:
  • the terminal device receives DCI, which indicates one or two TCI states;
  • the terminal equipment receives the PDCCH associated with one or two TCI states within the action time of the one or two TCI states.
  • the terminal device when the PDCCH uses unified TCI, if the terminal device receives the PDCCH within a certain action time, the terminal device should receive the PDCCH based on the TCI state within the action time.
  • the number of TCI states required to receive the PDCCH is inconsistent with the number of TCI states within the action time (cases 2 to 4 as mentioned above).
  • how to receive PDCCH based on TCI state is unclear and undefined, which will lead to undefined device behavior and thus PDCCH reception failure.
  • the terminal equipment receives part or all of the PDCCH based on part or all of the TCI states. Therefore, it is possible to avoid undefined device behavior when the terminal device receives PDCCH within the action time of two TCI states, or when it receives PDCCH repetition within the action time of one or two TCI states, thereby avoiding the resulting PDCCH reception failed.
  • PDCCH is non-PDCCH repetition or non-SFN PDCCH
  • PDCCH is not PDCCH repetition or SFN PDCCH
  • PDCCH is neither PDCCH repetition nor SFN PDCCH
  • PDCCH is sTRP PDCCH
  • the terminal equipment is not configured with PDCCH repetition or SFN PDCCH
  • the terminal equipment is neither configured with PDCCH repetition nor SFN PDCCH
  • the terminal device can receive the PDCCH based on the following embodiments.
  • the terminal device receives the PDCCH based on one of two TCI states.
  • the above-mentioned TCI state can be a predefined TCI state, or a TCI state configured for the CORESET where the PDCCH is located.
  • the terminal device receives the PDCCH based on one of the two TCI states.
  • PDSCH comes from TRP1 and TPR2, which is mTRP PDSCH
  • PDCCH comes from TRP1, which is sTRP PDCCH.
  • TRP1 and TPR2 which is mTRP PDSCH
  • TRP1 which is sTRP PDCCH.
  • mTRP PDSCH there are two TCI states within the action time, which are associated with two TRPs respectively.
  • sTRP PDCCH only one TCI state is required for PDCCH reception within the action time, and the terminal device determines one TCI state among the two TCI states.
  • the terminal device can determine a TCI state in a predefined way, for example, using a predefined (default) TCI state, which is the first or second TCI state; or, the terminal device can use a configured TCI state.
  • way to determine a TCI state for example, configure CORESET to use the first or second TCI state.
  • CORESET is used as the granularity for configuration. For each CORESET, configure it to use the first or second TCI state when there are two TCI states. It can also be configured at the granularity of search space set (search space set), that is, the above CORESET can be replaced by search space set.
  • the terminal equipment receives the PDCCH in the manner of receiving the SFN PDCCH based on two TCI states.
  • the terminal device receives the SFN PDCCH based on the above two TCI states. PDCCH.
  • the terminal equipment is not configured with PDCCH repetition or SFN PDCCH
  • the terminal equipment when the terminal equipment needs to receive PDCCH within the action time of two TCI states, the terminal equipment is considered to be switched to SFN PDCCH reception, thus, the terminal equipment can receive SFN PDCCH way to receive the PDCCH.
  • this switching is not explicitly configured by the network device, but is obtained implicitly, that is, based on changes in the number of TCI states.
  • the terminal equipment uses a predefined SFN PDCCH scheme when receiving the PDCCH in the manner of receiving the SFN PDCCH.
  • SFN PDCCH includes two schemes, sfnSchemeA and sfnSchemeB. Since the network equipment does not display the configuration of SFN PDCCH, the terminal equipment uses a predefined (default) scheme to receive SFN PDCCH, which is sfnSchemeA or sfnSchemeB.
  • PDCCH repetition For PDCCH repetition (PDCCH repetition), it requires two TCI states, corresponding to the associated (linked) two PDCCH candidates (PDCCH candidates, or PDCCH copies).
  • PDCCH candidates When two PDCCH candidates are within the action time of a TCI state, the terminal device does not know how to receive PDCCH based on a TCI state. Uncertainty in the receiving behavior of the terminal equipment may cause PDCCH reception failure.
  • the terminal device can receive PDCCH based on the following embodiment.
  • the terminal device receives two PDCCH copies in two CORESETs based on one TCI state.
  • the terminal equipment receives two PDCCHs in the two CORESETs associated with the two PDCCH copies based on one TCI state. copy.
  • PDSCH comes from a TRP (TPR1 or TPR2), so there is a TCI state within the action time.
  • TRP TPR1 or TPR2
  • the terminal device receives two PDCCH copies using one TCI state.
  • it is equivalent to two PDCCH copies coming from the same TRP. If the terminal equipment previously received two PDCCH copies from two TRPs, the PDCCH repetition equivalent to the previous two TRPs (mTRP) is switched to the current PDCCH repetition of one TRP (sTRP).
  • the terminal device receives a PDCCH copy in a CORESET based on a TCI state.
  • the terminal equipment is in one of the two CORESETs associated with the two PDCCH copies based on a TCI state. Receive a PDCCH copy.
  • the terminal device uses a TCI state to receive a PDCCH copy in a CORESET. It is equivalent to switching from PDCCH repetition to sTRP PDCCH (non-PDCCH repetition).
  • the terminal equipment only receives the PDCCH in one of the two CORESETs. From the perspective of the network equipment, the time-frequency resources of the other CORESET are released and can be used to send other channels or signals, improving resource utilization.
  • the above-mentioned one CORESET refers to one of the following:
  • the CORESET with the lower starting frequency among the above two CORESETs is the CORESET with the lower starting frequency among the above two CORESETs.
  • the terminal device receives a PDCCH copy in a CORESET based on a TCI state.
  • the CORESET is the one with the smaller ID among the two CORESETs, or the one with an earlier start time, or the one with a lower start frequency.
  • the above-mentioned CORESET can also be the one with a larger ID among the two CORESETs, or the one with a later start time, or the one with a higher start frequency.
  • PDCCH repetition For PDCCH repetition, it requires two TCI states, corresponding to the two associated (linked) PDCCH candidates.
  • the terminal device receives PDCCH repetition based on the two TCI states.
  • how the two CORESETs are associated with the two TCI states is undefined. More specifically, the terminal equipment does not know which CORESET to receive the PDCCH based on the first TCI state, and which CORESET to receive the PDCCH based on the second TCI state. Uncertainty in the receiving behavior of the terminal equipment may cause PDCCH reception failure.
  • the terminal device can receive the PDCCH based on the following embodiments.
  • the terminal device receives the first PDCCH copy in the first CORESET based on the first TCI state and the second PDCCH copy in the second CORESET based on the second TCI state.
  • the terminal equipment is based on one TCI state of the two TCI states (called the first TCI state)
  • One PDCCH copy is received in the first CORESET and another PDCCH copy is received in the second CORESET based on the other of the two TCI states (called the second TCI state).
  • the first CORESET is one of the following:
  • the second CORESET is one of the following:
  • the CORESET with the higher starting frequency among the two CORESETs is the CORESET with the higher starting frequency among the two CORESETs.
  • PDSCH comes from TRP1 and TPR2, and there are two TCI states within the action time, respectively associated with two TRPs.
  • the two PDCCH copies come from two TRPs, and the terminal device receives the PDCCH repetition based on the two TCI states within the action time.
  • Two PDCCH copies come from two CORESETs.
  • the terminal device can receive the first PDCCH copy in the CORESET with a smaller ID based on the first TCI state, and the second PDCCH copy in the CORESET with a larger ID based on the second TCI state. vice versa.
  • the ID is smaller or larger can be replaced by "the starting time is earlier or later", or it can be replaced by "the starting frequency is lower or higher”.
  • the first CORESET can also be the CORESET with a larger ID or a later start time or a higher start frequency among the two CORESETs.
  • the second CORESET can be two CORESETs. CORESET with smaller ID or earlier start time or lower start frequency.
  • the terminal device receives the first PDCCH copy in the first CORESET based on the first TCI state, and receives the second PDCCH copy in the second CORESET based on the second TCI state, where the first CORESET is configured to be associated with the first TCI state, and the second CORESET is configured to be associated with the second TCI state.
  • the terminal device receives one in the first CORESET based on the first TCI state of the two TCI states. a PDCCH copy, and receive another PDCCH copy in a second CORESET based on the second of the two TCI states.
  • the network device configures each CORESET with which TCI state the CORESET is associated with, so two CORESETs can be associated with two TCI states respectively, so that the terminal device can know in which CORESET it should receive a PDCCH copy based on a TCI state.
  • the terminal device receives two PDCCH copies in two CORESETs based on one TCI state, where the above-mentioned one TCI state is a predefined TCI state, or is a TCI configured for the CORESET where the PDCCH is located. state.
  • the terminal equipment is based on one of the two TCI states (such as a predefined TCI state, or a TCI state).
  • the TCI state of the CORESET configuration where the PDCCH is located receives the two PDCCH copies in the two CORESETs associated with the above two PDCCH copies.
  • PDSCH comes from TRP1 and TPR2, and there are two TCI states within the action time, which are associated with two TRPs respectively, that is, PDSCH is sent and received in mTRP mode.
  • PDCCH repetition is sent and received in sTRP mode, that is, two PDCCH copies come from the same TRP.
  • the terminal device receives the PDCCH repetition based on one of the two TCI states.
  • the terminal device can use the same method as for case 2 to determine one TCI state among the two TCI states, which will not be described again.
  • PDSCH can switch between mTRP and sTRP modes, PDCCH repetition always uses sTRP mode, which is beneficial to ensuring the robustness of the control channel.
  • the terminal device is activated by MAC CE for at least two TCI states.
  • the above DCI indicates two of the TCI states.
  • the first TCI state can be the smaller field ID or TCI state ID in the MAC CE.
  • TCI state, the second TCI state can be the TCI state with the larger field ID or TCI state ID in the MAC CE.
  • Figure 9 shows an example of MAC CE, which only shows the part related to TCI state.
  • a MAC CE field includes 8 bits, and the field ID is Oct 1, Oct 2,..., Oct N+X in Figure 9.
  • the first The first TCI state is the TCI state with the smaller field ID
  • the second TCI state is the TCI state with the larger field ID
  • the first TCI state is the TCI state with the smaller TCI state ID
  • the second TCI state is the TCI state with the smaller field ID. TCI state with larger state ID.
  • the first TCI state may also be a TCI state with a larger field ID or TCI state ID in the MAC CE
  • the corresponding second TCI state may be a field ID in the MAC CE or a TCI state with a larger TCI state ID.
  • TCI state with smaller TCI state ID may also be a TCI state with a larger field ID or TCI state ID in the MAC CE
  • a CORESET can be configured whether to use unified TCI. If the terminal device is configured with PDCCH repetition, whether the two associated CORESETs use unified TCI needs to meet certain restrictions.
  • both associated CORESETs use unified TCI, or neither uses unified TCI.
  • the two CORESETs used for PDCCH repetition are each configured to use unified TCI, but both CORESETs are either configured to use unified TCI, or both are configured not to use unified TCI.
  • only one CORESET is configured to use unified TCI.
  • the other CORESET is not explicitly configured, it is considered to have the same configuration as its associated CORESET.
  • the network device can also configure which method the terminal device uses to receive the PDCCH through CORESET configuration.
  • the network device may configure the CORESET for the terminal device, the first CORESET is configured to use the first method to receive the PDCCH, and the second CORESET is configured to use the second method to receive the PDCCH, where the first method and the second method are specific to the situation. Any method from 2 to 4.
  • the terminal device receives the PDCCH associated with one or two TCI states in the first CORESET or CORESET pair according to the configuration of the first CORESET or CORESET pair; according to the configuration of the second CORESET or CORESET pair, in the second CORESET or CORESET pair CORESET internally receives PDCCH associated with one or two TCI states.
  • a CORESET (or a CORESET pair) is not simply configured as one of "not using unified TCI" or "using unified TCI".
  • a CORESET is configured to use unified TCI to receive PDCCH, it is also configured at the same time. Which method among the above-mentioned cases 2 to 4 is used to receive the PDCCH.
  • a CORESET pair here refers to the two CORESETs associated with the two PDCCH copies in the PDCCH repetition.
  • FIG 10 is a schematic diagram of the configuration of CORESET.
  • a CORESET can be configured as any of the six results in Figure 10.
  • the terminal device can achieve dynamic switching between the first method and the second method by blindly detecting the PDCCH in the two CORESETs. This provides a higher degree of freedom for PDCCH transmission on the network device side.
  • the network device can dynamically select a PDCCH transmission method adapted to the current channel to send PDCCH.
  • Figure 10 is just an example, and this application does not limit this.
  • the first method and the second method can also be other combinations.
  • the terminal equipment receives part or all of the PDCCH based on part or all of the TCI states. Therefore, it is possible to avoid undefined device behavior when the terminal device receives PDCCH within the action time of two TCI states, or when it receives PDCCH repetition within the action time of one or two TCI states, thereby avoiding the resulting PDCCH reception failed.
  • Embodiments of the present application provide a signal sending method, which is applied to the network device side and is a process on the network device side corresponding to the method of the embodiment of the first aspect, where the same content as the embodiment of the first aspect will not be described again.
  • FIG 11 is a schematic diagram of a signal sending method according to an embodiment of the present application. As shown in Figure 14, the method includes:
  • the network device sends DCI, which indicates one or two TCI states;
  • the network device sends the PDCCH associated with one or two TCI states within the action time of the one or two TCI states.
  • the network device sends part or all of the PDCCH based on part or all of the TCI states.
  • undefined device behavior can be avoided when the network device sends PDCCH within the action time of two TCI states, or when PDCCH repetition is sent within the action time of one or two TCI states, thereby avoiding the resulting PDCCH transmission failed.
  • the PDCCH is a non-PDCCH repetition or a non-SFN PDCCH.
  • the PDCCH is within the action time of two TCI states.
  • the network device sends the PDCCH based on one of the two TCI states.
  • the above-mentioned TCI state may be a predefined TCI state, or a TCI state configured for the CORESET where the PDCCH is located.
  • the PDCCH is a non-PDCCH repetition or a non-SFN PDCCH.
  • the PDCCH is located within the action time of two TCI states.
  • the network device sends the PDCCH by sending an SFN PDCCH based on the two TCI states.
  • the network device may use the predefined SFN PDCCH scheme to send the PDCCH.
  • the PDCCH includes two PDCCH copies.
  • the network device sends these two PDCCH copies in two CORESETs associated with the two PDCCH copies based on a TCI state. PDCCH copy.
  • the PDCCH includes two PDCCH copies.
  • the network device performs one of the two CORESETs associated with the two PDCCH copies based on a TCI state. Send a PDCCH copy.
  • the above-mentioned CORESET may refer to one of the following:
  • the CORESET with the lower starting frequency among the above two CORESETs is the CORESET with the lower starting frequency among the above two CORESETs.
  • the PDCCH includes two PDCCH copies, and the two PDCCH copies are sent in the first CORESET based on the first TCI state of the two TCI states within the action time of the two TCI states.
  • One PDCCH copy and send another PDCCH copy in the second CORESET based on the second TCI state of the above two TCI states, where,
  • the first CORESET is one of the following:
  • the second CORESET is one of the following:
  • the CORESET with the higher starting frequency among the two CORESETs is the CORESET with the higher starting frequency among the two CORESETs.
  • the PDCCH includes two PDCCH copies, and the two PDCCH copies are sent in the first CORESET based on the first TCI state of the two TCI states within the action time of the two TCI states.
  • the first CORESET is configured to be associated with the first TCI state
  • the second CORESET is configured to be associated with the second TCI state.
  • the first TCI state is the TCI state with the smaller field ID or TCI state ID in the MAC CE; the second TCI state is the TCI state with the larger field ID or TCI state ID in the MAC CE.
  • the application is not limited to this.
  • the PDCCH includes two PDCCH copies.
  • the two PDCCH copies are within the action time of the two TCI states.
  • the network device is associated with the two PDCCH copies based on one TCI state of the two TCI states. These two PDCCH copies are sent in the two CORESETs.
  • the above-mentioned TCI state may be a predefined TCI state, or a TCI state configured for the CORESET where the PDCCH is located.
  • the two CORESETs associated with the two PDCCH copies use a unified TCI, or neither uses a unified TCI. It may be configured by a network device, such as the explicit configuration or implicit configuration mentioned in the embodiment of the first aspect.
  • the network device may also send PDCCH associated with one or two TCI states within the first CORESET or CORESET pair according to the configuration of the first CORESET or CORESET pair; according to the configuration of the second CORESET or CORESET pair , sending a PDCCH associated with one or two TCI states within the second CORESET or CORESET pair.
  • the network device may use the methods in the foregoing embodiments to send the PDCCH, the contents of which are incorporated here and will not be described again here.
  • the network device sends part or all of the PDCCH based on part or all of the TCI states.
  • undefined device behavior can be avoided when the network device sends PDCCH within the action time of two TCI states, or when PDCCH repetition is sent within the action time of one or two TCI states, thereby avoiding the resulting PDCCH transmission failed.
  • An embodiment of the present application provides a signal receiving device.
  • the device may be, for example, a terminal device, or may be some or some components or components configured in the terminal device, and the same content as the embodiments of the first to second aspects will not be described again.
  • Figure 12 is a schematic diagram of a signal receiving device according to an embodiment of the present application. As shown in Figure 12, the signal receiving device 1200 in the embodiment of the present application includes:
  • a first receiving unit 1201 that receives DCI indicating one or two TCI states
  • the second receiving unit 1202 receives the PDCCH associated with one or two TCI states within the action time of the one or two TCI states.
  • the PDCCH is a non-PDCCH repetition or a non-SFN PDCCH.
  • the PDCCH is within the action time of two TCI states.
  • the second receiving unit 1202 receives the PDCCH based on one of the two TCI states.
  • the above-mentioned TCI state is a predefined TCI state, or a TCI state configured for the CORESET where the above-mentioned PDCCH is located.
  • the PDCCH is a non-PDCCH repetition or a non-SFN PDCCH, and the PDCCH is within the action time of two TCI states. Based on the above two TCI states, the second receiving unit 1202 receives the PDCCH in a manner of receiving SFN PDCCH.
  • the second receiving unit 1202 may receive the PDCCH using a predefined SFN PDCCH scheme.
  • the PDCCH includes two PDCCH copies.
  • the two PDCCH copies are within the action time of one TCI state.
  • the second receiving unit 1202 is in the two CORESETs associated with the two PDCCH copies based on the above one TCI state. Receive two PDCCH copies.
  • the PDCCH includes two PDCCH copies.
  • the two PDCCH copies are within the action time of one TCI state.
  • the second receiving unit 1202 is in the two CORESETs associated with the two PDCCH copies based on the above one TCI state. Receive a PDCCH copy in a CORESET.
  • the above-mentioned CORESET may refer to one of the following:
  • the CORESET with the lower starting frequency among the above two CORESETs is the CORESET with the lower starting frequency among the above two CORESETs.
  • the PDCCH includes two PDCCH copies.
  • the two PDCCH copies are within the action time of the two TCI states.
  • the second receiving unit 1202 is based on one TCI state (the first TCI state) of the two TCI states. ) receives one PDCCH copy in the first CORESET and receives another PDCCH copy in the second CORESET based on the other of the above two TCI states (the second TCI state), where,
  • the first CORESET is one of the following:
  • the second CORESET is one of the following:
  • the CORESET with the higher starting frequency among the two CORESETs is the CORESET with the higher starting frequency among the two CORESETs.
  • the PDCCH includes two PDCCH copies, and the two PDCCH copies are within the action time of the two TCI states.
  • the second receiving unit 1202 performs the first CORESET based on the first TCI state of the two TCI states.
  • One PDCCH copy is received in
  • another PDCCH copy is received in the second CORESET based on the second TCI state of the above two TCI states, where,
  • the first CORESET is configured to be associated with the first TCI state
  • the second CORESET is configured to be associated with the second TCI state.
  • the first TCI state is the TCI state with the smaller field ID or TCI state ID in the MAC CE; the second TCI state is the TCI state with the larger field ID or TCI state ID in the MAC CE.
  • the application is not limited to this.
  • the PDCCH includes two PDCCH copies, and the two PDCCH copies are within the action time of the two TCI states.
  • the second receiving unit 1202 performs the two PDCCH copies based on one TCI state of the two TCI states. Two PDCCH copies are received in the two associated CORESETs.
  • the above-mentioned TCI state may be a predefined TCI state, or a TCI state configured for the CORESET where the PDCCH is located.
  • the two CORESETs associated with the two PDCCH copies use a unified TCI, or neither uses a unified TCI.
  • the second receiving unit 1202 receives the PDCCH associated with one or two TCI states within the first CORESET or CORESET pair according to the configuration of the first CORESET or CORESET pair; according to the configuration of the second CORESET or CORESET pair , receiving a PDCCH associated with one or two TCI states within a second CORESET or CORESET pair.
  • the second receiving unit 1202 may receive the PDCCH using the methods of the foregoing embodiments, which will not be described again here.
  • the signal receiving device 1200 may also include other components or modules.
  • the specific content of these components or modules please refer to related technologies.
  • FIG. 12 only illustrates the connection relationships or signal directions between various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connections can be used.
  • Each of the above components or modules can be implemented by hardware facilities such as a processor, a memory, a transmitter, a receiver, etc.; the implementation of this application is not limited to this.
  • the terminal equipment receives part or all of the PDCCH based on part or all of the TCI states. Therefore, it is possible to avoid undefined device behavior when the terminal device receives PDCCH within the action time of two TCI states, or when it receives PDCCH repetition within the action time of one or two TCI states, thereby avoiding the resulting PDCCH reception failed.
  • An embodiment of the present application provides a signal sending device.
  • the device may be, for example, a network device, or may be some or some parts or components configured on the network device.
  • the same content as the embodiments of the first to third aspects will not be described again.
  • Figure 13 is a schematic diagram of a signal sending device according to an embodiment of the present application. As shown in Figure 13, the signal sending device 1300 in the embodiment of the present application includes:
  • the first sending unit 1301 sends DCI indicating one or two TCI states
  • the second sending unit 1302 sends the PDCCH associated with one or two TCI states within the action time of the one or two TCI states.
  • the PDCCH is a non-PDCCH repetition or a non-SFN PDCCH.
  • the PDCCH is within the action time of two TCI states.
  • the second sending unit 1302 sends the PDCCH based on one of the two TCI states.
  • the above-mentioned TCI state is a predefined TCI state, or a TCI state configured for the CORESET where the PDCCH is located.
  • the PDCCH is a non-PDCCH repetition or a non-SFN PDCCH, and the PDCCH is within the action time of two TCI states. Based on the above two TCI states, the second sending unit 1302 sends the PDCCH by sending an SFN PDCCH.
  • the second sending unit 1302 uses the predefined SFN PDCCH scheme to send the PDCCH.
  • the PDCCH includes two PDCCH copies.
  • the two PDCCH copies are within the action time of a TCI state.
  • the second sending unit 1302 is based on the above-mentioned one TCI state in the two CORESETs associated with the two PDCCH copies. Send two copies of the PDCCH.
  • the PDCCH includes two PDCCH copies.
  • the two PDCCH copies are within the action time of a TCI state.
  • the second sending unit 1302 is based on the above-mentioned one TCI state in the two CORESETs associated with the two PDCCH copies. Send a copy of the PDCCH in a CORESET.
  • the above-mentioned CORESET may refer to one of the following:
  • the CORESET with the lower starting frequency among the above two CORESETs is the CORESET with the lower starting frequency among the above two CORESETs.
  • the PDCCH includes two PDCCH copies, and the two PDCCH copies are within the action time of the two TCI states.
  • the second sending unit 1302 is based on one TCI state (the first TCI state) of the two TCI states. ) sends one PDCCH copy in the first CORESET, and sends another PDCCH copy in the second CORESET based on the other TCI state (the second TCI state) of the above two TCI states, where,
  • the first CORESET is one of the following:
  • the second CORESET is one of the following:
  • the CORESET with the higher starting frequency among the two CORESETs is the CORESET with the higher starting frequency among the two CORESETs.
  • the PDCCH includes two PDCCH copies, and the two PDCCH copies are within the action time of the two TCI states.
  • the second sending unit 1302 performs the first CORESET based on the first TCI state of the two TCI states.
  • One PDCCH copy is sent in
  • another PDCCH copy is sent in the second CORESET based on the second TCI state of the above two TCI states, where,
  • a first CORESET is configured to be associated with the first TCI state
  • a second CORESET is configured to be associated with the second TCI state.
  • the first TCI state is the TCI state with the smaller field ID or TCI state ID in the MAC CE; the second TCI state is the TCI state with the larger field ID or TCI state ID in the MAC CE.
  • the application is not limited to this.
  • the PDCCH includes two PDCCH copies, and the two PDCCH copies are within the action time of the two TCI states.
  • the second sending unit 1302 is based on one of the two TCI states. These two PDCCH copies are sent in the two associated CORESETs.
  • a TCI state may be a predefined TCI state, or a TCI state configured for the CORESET where the PDCCH is located.
  • the two CORESETs associated with the two PDCCH copies may both use a unified TCI, or neither may use a unified TCI.
  • the second sending unit 1302 sends the PDCCH associated with one or two TCI states within the first CORESET or CORESET pair according to the configuration of the first CORESET or CORESET pair; according to the configuration of the second CORESET or CORESET pair , sending a PDCCH associated with one or two TCI states within the second CORESET or CORESET pair.
  • the second sending unit 1302 may send the PDCCH using the methods in the foregoing embodiments, which will not be described again here.
  • the signal transmitting device 1300 may also include other components or modules.
  • the specific contents of these components or modules please refer to related technologies.
  • FIG. 13 only illustrates the connection relationships or signal directions between various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connections can be used.
  • Each of the above components or modules can be implemented by hardware facilities such as a processor, a memory, a transmitter, a receiver, etc.; the implementation of this application is not limited to this.
  • the network device sends part or all of the PDCCH based on part or all of the TCI states.
  • undefined device behavior can be avoided when the network device sends PDCCH within the action time of two TCI states, or when PDCCH repetition is sent within the action time of one or two TCI states, thereby avoiding the resulting PDCCH transmission failed.
  • An embodiment of the present application also provides a communication system. Refer to FIG. 1 , and the same content as the embodiments of the first to fourth aspects will not be described again.
  • the communication system 100 may at least include a network device and a terminal device, wherein the network device may send a DCI indicating one or two TCI states.
  • the network device may also send a DCI indicating one or two TCI states.
  • the PDCCH associated with one or two TCI states is sent within the action time of the state; the terminal device receives the DCI, and receives the PDCCH associated with one or two TCI states within the action time of the one or two TCI states.
  • the embodiment of the present application also provides a terminal device, but the present application is not limited to this and may also be other devices.
  • Figure 14 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 1400 may include a processor 1410 and a memory 1420; the memory 1420 stores data and programs and is coupled to the processor 1410. It is worth noting that this figure is exemplary; other types of structures may also be used to supplement or replace this structure to implement telecommunications functions or other functions.
  • the processor 1410 may be configured to execute a program to implement the method as described in the embodiment of the first aspect.
  • the processor 1410 may be configured to perform the following control: receive DCI indicating one or two TCI states; receive data associated with one or two TCI states within the action time of the one or two TCI states. PDCCH.
  • the terminal device 1400 may also include: a communication module 1430, an input unit 1440, a display 1450, and a power supply 1460.
  • the functions of the above components are similar to those in the prior art, and will not be described again here. It is worth noting that the terminal device 1400 does not necessarily include all the components shown in Figure 14, and the above components are not required; in addition, the terminal device 1400 can also include components not shown in Figure 14, please refer to the current There is technology.
  • the embodiment of the present application also provides a network device, which may be a base station, for example, but the present application is not limited thereto and may also be other network devices.
  • a network device which may be a base station, for example, but the present application is not limited thereto and may also be other network devices.
  • Figure 15 is a schematic diagram of the structure of a network device according to an embodiment of the present application.
  • the network device 1500 may include a processor 1510 (eg, a central processing unit CPU) and a memory 1520 ; the memory 1520 is coupled to the processor 1510 .
  • the memory 1520 can store various data; in addition, it also stores an information processing program 1530, and the program 1530 is executed under the control of the processor 1510.
  • the processor 1510 may be configured to execute a program to implement the method as described in the embodiment of the second aspect.
  • the processor 1510 may be configured to perform the following control: send DCI indicating one or two TCI states; send a message associated with one or two TCI states within the action time of the one or two TCI states. PDCCH.
  • the network device 1500 may also include: a transceiver 1540, an antenna 1550, etc.; the functions of the above components are similar to those of the existing technology and will not be described again here. It is worth noting that the network device 1500 does not necessarily include all components shown in Figure 15; in addition, the network device 1500 may also include components not shown in Figure 15, and reference can be made to the existing technology.
  • An embodiment of the present application also provides a computer program, wherein when the program is executed in a terminal device, the program causes the terminal device to execute the method described in the embodiment of the first aspect.
  • An embodiment of the present application also provides a storage medium storing a computer program, wherein the computer program causes a terminal device to execute the method described in the embodiment of the first aspect.
  • An embodiment of the present application also provides a computer program, wherein when the program is executed in a network device, the program causes the network device to execute the method described in the embodiment of the second aspect.
  • An embodiment of the present application also provides a storage medium storing a computer program, wherein the computer program causes a network device to execute the method described in the embodiment of the second aspect.
  • the above devices and methods of this application can be implemented by hardware, or can be implemented by hardware combined with software.
  • the present application relates to a computer-readable program that, when executed by a logic component, enables the logic component to implement the apparatus or component described above, or enables the logic component to implement the various methods described above or steps.
  • This application also involves storage media used to store the above programs, such as hard disks, magnetic disks, optical disks, DVDs, flash memories, etc.
  • the methods/devices described in connection with the embodiments of the present application may be directly embodied as hardware, a software module executed by a processor, or a combination of both.
  • one or more of the functional block diagrams and/or one or more combinations of the functional block diagrams shown in the figure may correspond to each software module of the computer program flow, or may correspond to each hardware module.
  • These software modules can respectively correspond to the various steps shown in the figure.
  • These hardware modules can be implemented by solidifying these software modules using a field programmable gate array (FPGA), for example.
  • FPGA field programmable gate array
  • the software module may be located in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.
  • a storage medium may be coupled to the processor such that the processor can read information from the storage medium and write information to the storage medium; or the storage medium may be an integral part of the processor.
  • the processor and storage media may be located in an ASIC.
  • the software module can be stored in the memory of the mobile terminal or in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or the large-capacity flash memory device.
  • One or more of the functional blocks and/or one or more combinations of the functional blocks described in the accompanying drawings may be implemented as a general-purpose processor or a digital signal processor (DSP) for performing the functions described in this application. ), application specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, or any appropriate combination thereof.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • One or more of the functional blocks and/or one or more combinations of the functional blocks described in the accompanying drawings can also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, or multiple microprocessors. processor, one or more microprocessors combined with DSP communications, or any other such configuration.
  • a signal receiving method wherein the method includes:
  • the terminal device receives DCI indicating one or two TCI states
  • the terminal equipment receives the PDCCH associated with one or two TCI states within the action time of the one or two TCI states.
  • the terminal equipment receives the PDCCH associated with one or two TCI states within the first CORESET or CORESET pair according to the configuration of the first CORESET or CORESET pair;
  • the terminal equipment receives the PDCCH associated with one or two TCI states within the second CORESET or CORESET pair according to the configuration of the second CORESET or CORESET pair.
  • the TCI state is a predefined TCI state, or a TCI state configured for the CORESET where the PDCCH is located.
  • the CORESET with a lower starting frequency among the two CORESETs is the CORESET with a lower starting frequency among the two CORESETs.
  • the PDCCH includes two PDCCH copies
  • the two PDCCH copies are within the action time of two TCI states
  • the terminal equipment is based on the two TCIs.
  • a first of the TCI states receives one copy of the PDCCH in a first CORESET and a second copy of the PDCCH in a second CORESET based on a second of the two TCI states, where,
  • the first CORESET is one of the following:
  • the second CORESET is one of the following:
  • the CORESET with the higher starting frequency among the two CORESETs is the CORESET with the higher starting frequency among the two CORESETs.
  • the PDCCH includes two PDCCH copies
  • the two PDCCH copies are within the action time of two TCI states
  • the terminal equipment is based on the two TCIs.
  • a first of the TCI states receives one copy of the PDCCH in a first CORESET and a second copy of the PDCCH in a second CORESET based on a second of the two TCI states, where,
  • the first CORESET is configured to be associated with the first TCI state
  • the second CORESET is configured to be associated with the second TCI state.
  • the first TCI state is the TCI state with a smaller field ID or TCI state ID in the MAC CE;
  • the second TCI state is the TCI state with a larger field ID or TCI state ID in the MAC CE.
  • the one TCI state is a predefined TCI state, or a TCI state configured for the CORESET where the PDCCH is located.
  • a signal sending method wherein the method includes:
  • the network device sends DCI indicating one or two TCI states
  • the network device sends the PDCCH associated with one or two TCI states within the action time of the one or two TCI states.
  • the network device sends the PDCCH associated with one or two TCI states within the first CORESET or CORESET pair according to the configuration of the first CORESET or CORESET pair;
  • the network device sends the PDCCH associated with one or two TCI states within the second CORESET or CORESET pair according to the configuration of the second CORESET or CORESET pair.
  • the TCI state is a predefined TCI state, or a TCI state configured for the CORESET where the PDCCH is located.
  • the CORESET with a lower starting frequency among the two CORESETs is the CORESET with a lower starting frequency among the two CORESETs.
  • the first CORESET is one of the following:
  • the second CORESET is one of the following:
  • the CORESET with the higher starting frequency among the two CORESETs is the CORESET with the higher starting frequency among the two CORESETs.
  • the first CORESET is configured to be associated with the first TCI state
  • the second CORESET is configured to be associated with the second TCI state.
  • the first TCI state is the TCI state with a smaller field ID or TCI state ID in the MAC CE;
  • the second TCI state is the TCI state with a larger field ID or TCI state ID in the MAC CE.
  • the one TCI state is a predefined TCI state, or a TCI state configured for the CORESET where the PDCCH is located.
  • a terminal device comprising a memory and a processor, the memory stores a computer program, and the processor is configured to execute the computer program to implement the method as described in any one of appendices 1 to 15.
  • a network device comprising a memory and a processor, the memory stores a computer program, and the processor is configured to execute the computer program to implement the method as described in any one of appendices 16 to 30.
  • a communication system including network equipment and terminal equipment, wherein:
  • the network device is configured to send DCI, and send a PDCCH associated with one or two TCI states within the action time of one or two TCI states indicated by the DCI;
  • the terminal equipment is configured to receive the DCI and receive the PDCCH associated with one or two TCI states within the action time of one or two TCI states indicated by the DCI.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种信号接收方法、信号发送方法以及装置,所述信号接收方法包括:终端设备接收下行控制信息(DCI),所述DCI指示一个或两个传输配置指示(TCI)状态(TCI state);所述终端设备在所述一个或两个TCI状态的作用时间内接收与一个或两个TCI状态关联的物理下行控制信道(PDCCH)。由此,能够避免当终端设备在两个TCI state的作用时间内接收PDCCH,或者,在一个或两个TCI state的作用时间内接收PDCCH repetition时出现未定义的设备行为,从而避免由此导致的PDCCH接收失败。

Description

信号接收方法、信号发送方法以及装置 技术领域
本申请实施例涉及通信技术领域。
背景技术
3GPP标准化组织在版本17(release-17,Rel-17)的标准化过程中,对统一的(unified)传输配置指示(transmission configuration indication,TCI)进行了标准化相关的工作。其中,Rel-17中的unified TCI主要是针对sTRP(single transmission and reception point)场景进行设计的。
随着标准化工作的推进,多TRP(mTRP,multiple transmission and reception point)成为5G NR系统的重要场景,通过基于mTRP的传输,可以达到提高吞吐量和/或提高可靠性的目的。
在以往的标准化工作中,在Rel-16中,对基于mTRP的物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的传输进行了标准化;在Rel-17中,对基于mTRP的物理下行控制信道(Physical Downlink Control Channel,PDCCH)、物理上行共享信道(Physical Uplink Shared Channel,PUSCH)、物理上行控制信道(Physical Uplink Control Channel,PUCCH)传输进行了标准化。其中,mTRP传输包括基于单DCI(single Downlink Control Information,sDCI)的mTRP传输(sDCI mTRP)和基于多DCI(multiple DCI,mDCI)的mTRP传输(mDCI mTRP)。对于sDCI mTRP,一个DCI对两个TRP的上下行传输进行调度,更适用于TRP之间的回传(backhaul)比较理想的情况。对于mDCI mTRP,两个TRP使用两个DCI分别对各自TRP的上下行传输进行调度,更适用于TRP之间的回传不是很理想的情况。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的,不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
发明人发现,终端设备在mTRP中基于unified TCI接收PDCCH时,会遇到以下情 况:
PDCCH接收需要基于一个TCI state并且PDCCH接收所在的作用时间内存在两个TCI state;
PDCCH接收需要基于两个TCI state并且PDCCH接收所在的作用时间内存在一个TCI state;以及
PDCCH接收需要基于两个TCI state并且PDCCH接收所在的作用时间内存在两个TCI state。
在上述情况下,如何接收PDCCH是尚未解决的问题。如果不进行解决,会导致终端设备在遇到上述情况时发生PDCCH接收失败。
针对上述问题的至少之一,本申请实施例提供一种信号接收方法、信号发送方法以及装置。
根据本申请实施例的一个方面,提供一种信号接收方法,所述方法包括:
终端设备接收DCI,所述DCI指示一个或两个TCI状态;
所述终端设备在所述一个或两个TCI状态的作用时间内接收与一个或两个TCI状态关联的PDCCH。
根据本申请实施例的另一个方面,提供一种信号发送方法,所述方法包括:
网络设备发送DCI,所述DCI指示一个或两个TCI状态;
所述网络设备在所述一个或两个TCI状态的作用时间内发送与一个或两个TCI状态关联的PDCCH。
根据本申请实施例的另一个方面,提供一种信号接收装置,所述装置包括:
第一接收单元,其接收DCI,所述DCI指示一个或两个TCI状态;
第二接收单元,其在所述一个或两个TCI状态的作用时间内接收与一个或两个TCI状态关联的PDCCH。
根据本申请实施例的另一个方面,提供一种信号发送装置,配置于网络设备,所述装置包括:
第一发送单元,其发送DCI,所述DCI指示一个或两个TCI状态;
第二发送单元,其在所述一个或两个TCI状态的作用时间内发送与一个或两个TCI状态关联的PDCCH。
本申请实施例的有益效果之一在于:终端设备在DCI指示的一个或两个TCI状态的作用时间内接收与一个或两个TCI状态关联的PDCCH,由此,能够避免当终端设备 在两个TCI state的作用时间内接收PDCCH,或者,在一个或两个TCI state的作用时间内接收PDCCH repetition时出现未定义的设备行为,从而避免由此导致的PDCCH接收失败。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本申请的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本申请实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
图1是本申请实施例的通信系统的示意图;
图2是针对unified TCI,DL DCI指示的至少一个DL TCI state的作用时间的示意图;
图3是本申请实施例的信号接收方法的一示意图;
图4是终端设备接收PDCCH的一个示例的示意图;
图5是终端设备接收PDCCH的另一个示例的示意图;
图6是终端设备接收PDCCH的又一个示例的示意图;
图7是终端设备接收PDCCH的再一个示例的示意图;
图8是终端设备接收PDCCH的又一个示例的示意图;
图9是MAC CE的一个示例的示意图;
图10是CORESET配置的一个示例的示意图;
图11是本申请实施例的信号发送方法的一示意图;
图12是本申请实施例的信号接收装置的一示意图;
图13是本申请实施例的信号发送装置的一示意图;
图14是本申请实施例的终端设备的构成示意图;
图15是本申请实施例的网络设备的构成示意图。
具体实施方式
参照附图,通过下面的说明书,本申请的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本申请的特定实施方式,其表明了其中可以采用本申请的原则的部分实施方式,应了解的是,本申请不限于所描述的实施方式,相反,本申请包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本申请实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本申请实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)、5G(5Generation)新无线(NR,New Radio)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G、2G、2.5G、2.75G、3G、4G、4.5G以及5G新无线等等,和/或其他目前已知或未来将被开发的通信协议。
在本申请实施例中,术语“网络设备”例如是指通信系统中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
其中,基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或 eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femeto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本申请实施例中,术语“用户设备”(UE,User Equipment)或者“终端设备”(TE,Terminal Equipment或Terminal Device)例如是指通过网络设备接入通信网络并接收网络服务的设备。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
其中,终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
此外,术语“网络侧”或“网络设备侧”是指网络的一侧,可以是某一基站,也可以包括如上的一个或多个网络设备。术语“用户侧”或“终端侧”或“终端设备侧”是指用户或终端的一侧,可以是某一UE,也可以包括如上的一个或多个终端设备。本文在没有特别指出的情况下,“设备”可以指网络设备,也可以指终端设备。
以下通过示例对本申请实施例的场景进行说明,但本申请不限于此。
图1是本申请实施例的通信系统的示意图,示意性说明了以终端设备和网络设备为例的情况,如图1所示,通信系统100可以包括第一TRP 101、第二TRP 102和终端设备103。其中,第一TRP101和第二TRP102可以为网络设备。为简单起见,图1仅以两个TRP(网络设备)和一个终端设备为例进行说明,但本申请实施例不限于此。
在本申请实施例中,第一TRP101、第二TRP102和终端设备103之间可以进行现有的业务或者未来可实施的业务发送。例如,这些业务可以包括但不限于:增强的移动宽带(eMBB,enhanced Mobile Broadband)、大规模机器类型通信(mMTC,massive Machine Type Communication)和高可靠低时延通信(URLLC,Ultra-Reliable and  Low-Latency Communication),等等。
在Rel-17中,针对unified TCI,在sTRP的场景下,网络设备使用RRC信令为终端设备配置M(M≥1)个TCI状态(TCI state),使用MAC CE(媒体接入控制控制单元)在M个TCI状态中激活N(1≤N≤M)个TCI状态,使用DCI在N个TCI状态中指示L(1≤L≤N)个TCI状态。例如,DCI格式1_1或DCI格式1_2的TCI字段指示一个或多个TCI状态(TCI state)。DCI格式1_1或DCI格式1_2可以调度下行数据,称为DCI format 1_1/1_2 with DL assignment,也可以不调度下行数据,称为DCI format 1_1/1_2without DL assignment。
其中,一个TCI状态(简称TCI)可以包括或对应一个或两个源参考信号(source RS,source Reference Signal)。源参考信号可以为下行接收提供准共址(QCL,Quasi Co-Location)信息,称为下行源参考信号。源参考信号可以为上行发送空间滤波器(UL TX spatial filter,uplink transmission spatial filter)提供参考,称为上行源参考信号。
此外,源参考信号可以为目的信道/信号提供波束信息。例如,终端设备用于接收目的信道/信号的波束与用于接收下行源参考信号的波束相同。又例如,终端设备用于发送目的信道/信号的波束与用于发送上行源参考信号的波束相同。又例如,终端设备用于发送目的信道/信号的波束与用于接收下行源参考信号的波束具有互易性,即波束相同,但方向相反。因此,对TCI状态的指示或更新实际上也包括了对终端设备所用波束的指示或更新。
此外,TCI状态包括联合TCI状态(joint DL/UL TCI state)、下行TCI状态(DL only TCI state)和上行TCI状态(UL only TCI state)。下行TCI状态包含的源参考信号是下行源参考信号,上行TCI状态包含的源参考信号是上行源参考信号,联合TCI状态包含的源参考信号既是下行源参考信号,又是上行源参考信号。
联合TCI状态同时作用于下行波束(接收波束)和上行波束(发送波束)。换句话说,下行波束和上行波束使用的是同一个波束,但波束方向相反,即上下行波束之间存在互易性。下行TCI状态仅作用于下行波束。上行TCI状态仅作用于上行波束。上行波束也称为上行发送空间滤波器。
TCI字段可以指示联合TCI状态(joint DL/UL TCI state),或者TCI字段可以指示独立TCI状态(separate DL/UL TCI state),即指示下行TCI状态和/或上行TCI状态,指示联合TCI状态或指示独立TCI状态可以通过RRC信令进行配置。对于Rel-17的unified TCI,一个TCI字段指示一个联合TCI状态(相当于既指示了下行TCI状态,又 指示了上行TCI状态),或者指示一个下行TCI状态,或者指示一个上行TCI状态,或者指示一个下行TCI状态和一个上行TCI状态。
图2是针对unified TCI,DL DCI指示的至少一个DL TCI state的作用时间(Application time)的示意图。其中,DL TCI state可以是joint DL/UL TCI state,也可以是separate DL/UL TCI state。
如图2所示,终端设备接收指示了至少一个DL TCI state的DL DCI 1,其中,DL DCI 1指示的DL TCI state与之前DL DCI(例如DL DCI 0,图中未示出)指示的DL TCI state不同(包括DL TCI state的个数不同)。终端设备向网络设备发送针对DL DCI 1的ACK(ACK 1),DL DCI 1可以是调度PDSCH的DCI format,也可以是不调度PDSCH的DCI format(DCI format without DL assignment)。第一个应用DL DCI 1指示的DL TCI state的时隙是ACK1的最后一个符号之后的Y个符号后的第一个时隙,该时隙的起始时刻记为t1。假设DL DCI 2是DL DCI 1之后的第一个指示的DL TCI state与DL DCI 1指示的DL TCI state不同的DL DCI,按照同样的方法可以确定第一个应用DL DCI 2指示的DL TCI state的时隙,该时隙的起始时刻记为t2。DL DCI 1指示的DL TCI state的作用时间(作用时间1,application time 1)包括t1到t2之间的所有时隙。换句话说,作用时间1内生效的DL TCI state由DL DCI 1指示。同理,可以将DL DCI 2指示的DL TCI state的作用时间(作用时间2,application time 2)表示为t2到t3之间的所有时隙,其中,t3对应第一个应用与DL DCI 2指示的DL TCI state不同的DL TCI state的时隙,该不同的DL TCI state由位于DL DCI 2之后的DL DCI 3(图中未示出)指示。为避免下行HARQ出现out-of-order情况,对于位于DL DCI 1之后的DL DCI 2,其关联的ACK 2位于ACK 1之后,而不能位于ACK 1之前。
发明人注意到,在Rel-17中,unified TCI仅适用于sTRP场景。考虑到mTRP的重要性,有必要为mTRP场景设计相应的unified TCI机制。3GPP将在Rel-18对mTRP的unified TCI进行标准化。目前,mTRP的unified TCI已经被确定为Rel-18的立项内容之一,Rel-18的标准化工作尚未开始。从功能上讲,mTRP的unified TCI需要既能够对两个TRP的TCI状态进行指示,从而支持mTRP PDSCH发送,也能够对一个TRP的TCI状态进行指示,从而支持sTRP PDSCH发送。
另外,Rel-17对PDCCH repetition(PDCCH重复)和SFN(Single Frequency Network,单频网络)PDCCH进行了标准化。
对于PDCCH repetition,两个关联的PDCCH candidate来自两个CORESET(控制资 源集合),承载相同的控制信息。每个CORESET被配置一个DL TCI state。两个PDCCH副本使用两个CORESET的两个DL TCI state进行发送,例如,由两个TRP发送。
对于SFN PDCCH,两个TRP在相同的时频资源上发送完全相同的PDCCH,包括相同PDCCH的DMRS,这两个PDCCH来自一个CORESET。该CORESET被配置两个DL TCI state。两个PDCCH使用一个CORESET的两个DL TCI state进行发送。
在Rel-17中,仅对sTRP的unified TCI进行了标准化,由于PDCCH repetition和SFN PDCCH可以应用于mTRP场景,属于mTRP PDCCH,所以Rel-17的PDCCH repetition和SFN PDCCH都不使用unified TCI。
在Rel-17中,对于sTRP的unified TCI,PDCCH与一个TCI state关联(即终端设备需要基于一个TCI state接收PDCCH),并且unified TCI的某一作用时间内存在一个TCI state。终端设备将在以下情况下接收PDCCH:
情况1:终端设备:在一个TCI state的作用时间内接收与一个TCI state关联的PDCCH。
在Rel-18中,需要对mTRP的unified TCI进行标准化。对于mTRP的unified TCI,PDCCH与一个或两个TCI state关联(例如,PDCCH repetition与两个TCI state关联,即终端设备需要基于两个TCI state接收PDCCH repetition),并且unified TCI的某一作用时间内存在一个或两个TCI state(两个TCI state分别与两个TRP关联)。终端设备将在以下情况下接收PDCCH:
情况1:终端设备在一个TCI state的作用时间内接收与一个TCI state关联的PDCCH;
情况2:终端设备在两个TCI state的作用时间内接收与一个TCI state关联的PDCCH;
情况3:终端设备在一个TCI state的作用时间内接收与两个TCI state关联的PDCCH;
情况4:终端设备在两个TCI state的作用时间内接收与两个TCI state关联的PDCCH。
也即,相比于Rel-17 sTRP的unified TCI,情况2~4是Rel-18新出现的场景。终端设备在新场景2~4下如何接收PDCCH是需要解决的问题。如果不进行解决,终端设备接收PDCCH的行为将存在不确定性,会导致PDCCH接收失败。
针对上述问题的至少之一,本申请实施例提供一种信号接收方法、信号发送方法以及装置。下面结合附图和具体实施方式对本申请实施例进行说明。
在以下的说明中,如无特别说明,TCI state指DL TCI state。DL TCI state可以是DL only TCI state,也可以是joint TCI state;对于接收PDCCH,其中的“接收(receive)”与“监听(monitor)”、“盲检(blind decode)”等价,可以互相替换;“基于TCI state接收PDCCH”与“使用TCI state接收PDCCH”等价,可以互相替换;“使用unified TCI” 与“服从(follow)unified TCI”等价,可以互相替换;“接收PDCCH repetition”、“监听关联(linked)的两个PDCCH candidate”、“接收两个PDCCH副本”彼此等价,可以互相替换;对于PDCCH repetition,“关联(linked)的两个PDCCH candidate”与“两个PDCCH副本”等价,可以互相替换;CORESET可以被替换为search space set;“配置”可以是通过RRC信令配置,也可以是通过MAC CE配置;“与一个TCI state关联的PDCCH”与“sTRP PDCCH”或“PDCCH”等价,可以互相替换;“与两个TCI state关联的PDCCH”与“PDCCH repetition”等价,可以互相替换。此外,本申请实施例适用于sDCI mTRP场景,也适用于mDCI mTRP场景。
第一方面的实施例
本申请实施例提供一种信号接收方法,应用在终端设备侧。
图3是本申请实施例的信号接收方法的一示意图,如图3所示,该方法包括:
301,终端设备接收DCI,所述DCI指示一个或两个TCI状态;
302,所述终端设备在所述一个或两个TCI状态的作用时间内接收与一个或两个TCI状态关联的PDCCH。
值得注意的是,以上附图3仅对本申请实施例进行了示意性说明,以终端设备为例,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作,此外,还可以调整上述操作的对象。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图3的记载。
在本申请实施例中,在PDCCH使用unified TCI的情况下,如果终端设备在某一作用时间内接收PDCCH,那么终端设备应该基于该作用时间内的TCI state接收PDCCH。然而,有可能出现接收PDCCH所需的TCI state个数与作用时间内的TCI state个数不一致的情况(如前所述的情况2~情况4)。在这种情况下,如何基于TCI state接收PDCCH是不清楚的、未经定义的,这会导致未定义的设备行为,从而导致PDCCH接收失败。
根据本申请实施例,针对PDCCH类型(PDCCH或PDCCH repetition)和作用时间内的TCI state个数(一个或两个)的不同组合,终端设备基于部分或全部TCI state对部分或全部PDCCH进行接收。由此,能够避免当终端设备在两个TCI state的作用时间内接收PDCCH,或者,在一个或两个TCI state的作用时间内接收PDCCH repetition时出现未定义的设备行为,从而避免由此导致的PDCCH接收失败。
下面分别以情况2~情况4为例对本申请实施例的方法进行说明。
以情况2为例:
对于普通PDCCH(即,非PDCCH repetition或非SFN PDCCH),基于一个TCI state接收PDCCH即可。当该PDCCH位于两个TCI state的作用时间内时,终端设备不清楚如何基于两个TCI state接收PDCCH。终端设备接收行为的不确定性可能导致PDCCH接收失败。“PDCCH为非PDCCH repetition或非SFN PDCCH”、“PDCCH不是PDCCH repetition或SFN PDCCH”、“PDCCH既不是PDCCH repetition也不是SFN PDCCH”、“PDCCH为sTRP PDCCH”、“终端设备没有被配置PDCCH repetition或SFN PDCCH”、“终端设备既没有被配置PDCCH repetition又没有被配置SFN PDCCH”等价,可以互相替换。
针对上述问题,如果终端设备没有被配置PDCCH repetition或SFN PDCCH,当PDCCH在两个TCI state的作用时间内时,终端设备可以基于以下实施例接收PDCCH。
在一些实施例中,终端设备基于两个TCI state中的一个TCI state接收PDCCH。其中,上述一个TCI state可以是预定义的一个TCI state,或者,是为PDCCH所在的CORESET配置的一个TCI state。
也即,在上述实施例中,如果PDCCH为非PDCCH repetition或非SFN PDCCH,并且PDCCH位于两个TCI状态的作用时间内,则终端设备基于上述两个TCI状态中的一个TCI状态接收该PDCCH。
例如,如图4所示,PDSCH来自TRP1和TPR2,即mTRP PDSCH,PDCCH来自TRP1,即sTRP PDCCH。对于mTRP PDSCH,作用时间内存在两个TCI state,分别与两个TRP关联。对于sTRP PDCCH,在该作用时间内的PDCCH接收只需要一个TCI state,终端设备在两个TCI state中确定一个TCI state。
其中,终端设备可以通过预定义的方式确定一个TCI state,例如,使用一个预定义(默认)的TCI state,该TCI state是第一个或第二个TCI state;或者,终端设备可以通过配置的方式确定一个TCI state,例如,为CORESET配置其使用第一个或第二个TCI state。这里以CORESET为粒度进行配置,对于每个CORESET,配置其在存在两个TCI state的情况下使用第一个或第二个TCI state。也可以以搜索空间集合(search space set)为粒度进行配置,即,可以将上述CORESET替换为search space set。
在另一些实施例中,终端设备基于两个TCI state,以接收SFN PDCCH的方式接收PDCCH。
也即,在上述实施例中,如果PDCCH为非PDCCH repetition或非SFN PDCCH, 并且PDCCH位于两个TCI状态的作用时间内,则终端设备基于上述两个TCI状态,以接收SFN PDCCH的方式接收该PDCCH。
例如,尽管终端设备没有被配置PDCCH repetition或SFN PDCCH,当终端设备需要在两个TCI state的作用时间内接收PDCCH时,终端设备认为被切换为SFN PDCCH接收,由此,终端设备以接收SFN PDCCH的方式接收该PDCCH。需要说明的是,这种切换并不是网络设备显式配置的,而是通过隐式方式获得的,即基于TCI state个数的变化。
在上述实施例中,在一些实施方式中,终端设备在以接收SFN PDCCH的方式接收PDCCH时,使用预定义的SFN PDCCH方案(scheme)。
例如,SFN PDCCH包括sfnSchemeA和sfnSchemeB两种方案,由于网络设备没有对SFN PDCCH进行显示配置,终端设备使用一种预定义(默认)的方案进行SFN PDCCH接收,该方案为sfnSchemeA或sfnSchemeB。
以情况3为例:
对于PDCCH repetition(PDCCH重复),其需要两个TCI state,分别对应关联的(linked)两个PDCCH candidate(PDCCH候选,或PDCCH副本)。当两个PDCCH candidate位于一个TCI state的作用时间内时,终端设备不清楚如何基于一个TCI state接收PDCCH。终端设备接收行为的不确定性可能导致PDCCH接收失败。
针对上述问题,如果终端设备被配置PDCCH repetition,当两个PDCCH副本在一个TCI state的作用时间内时,终端设备可以基于以下实施例接收PDCCH。
在一些实施例中,终端设备基于一个TCI state在两个CORESET中接收两个PDCCH副本。
也即,如果PDCCH包括两个PDCCH副本,并且该两个PDCCH副本在一个TCI状态的作用时间内,则终端设备基于一个TCI状态在该两个PDCCH副本所关联的两个CORESET中接收两个PDCCH副本。
例如,如图5所示,PDSCH来自一个TRP(TPR1或TPR2),因此作用时间内存在一个TCI state。对于被配置了PDCCH repetition的终端设备,尽管其期望基于两个TCI state接收两个PDCCH副本,但是在作用时间内可用的TCI state只有一个。在这种情况下,终端设备使用一个TCI state接收两个PDCCH副本。如图5所示,相当于两个PDCCH副本来自同一个TRP。如果终端设备之前接收来自两个TRP的两个PDCCH副本,相当于之前的两个TRP(mTRP)的PDCCH repetition切换成了现在的一个TRP(sTRP)的 PDCCH repetition。
在另外一些实施例中,终端设备基于一个TCI state在一个CORESET中接收一个PDCCH副本。
也即,如果PDCCH包括两个PDCCH副本,并且该两个PDCCH副本在一个TCI状态的作用时间内,则终端设备基于一个TCI状态在该两个PDCCH副本所关联的两个CORESET中的一个CORESET中接收一个PDCCH副本。
例如,如图6所示,终端设备使用一个TCI state在一个CORESET中接收一个PDCCH副本。相当于由PDCCH repetition切换到了sTRP PDCCH(非PDCCH repetition)。终端设备只在两个CORESET中的一个CORESET内接收PDCCH,从网络设备角度,另一个CORESET的时频资源被释放出来,可用于发送其他信道或信号,提高了资源利用率。
在上述实施例中,在一些实施方式中,上述一个CORESET是指以下之一:
上述两个CORESET中ID较小的CORESET;
上述两个CORESET中起始时间较早的CORESET;
上述两个CORESET中起始频率较低的CORESET。
例如,终端设备基于一个TCI state在一个CORESET中接收一个PDCCH副本,该一个CORESET是两个CORESET中ID较小的,或者,起始时间较早的,或者,起始频率较低的CORESET。不失一般性,上述一个CORESET也可以是两个CORESET中ID较大的,或者,起始时间较晚的,或者,起始频率较高的CORESET。
以情况4为例:
对于PDCCH repetition,其需要两个TCI state,分别对应关联的(linked)两个PDCCH candidate。当两个PDCCH candidate位于两个TCI state的作用时间内时,终端设备基于两个TCI state接收PDCCH repetition。然而,两个CORESET如何与两个TCI state关联未被定义。更具体地,终端设备不清楚基于第一个TCI state在哪一个CORESET内接收PDCCH,以及基于第二个TCI state在哪一个CORESET内接收PDCCH。终端设备接收行为的不确定性可能导致PDCCH接收失败。
针对上述问题,如果终端设备被配置PDCCH repetition,当两个PDCCH副本在两个TCI state的作用时间内时,终端设备可以基于以下实施例接收PDCCH。
在一些实施例中,终端设备基于第一个TCI state在第一CORESET中接收第一个PDCCH副本,基于第二个TCI state在第二CORESET中接收第二个PDCCH副本。
也即,如果PDCCH包括两个PDCCH副本,并且该两个PDCCH副本在两个TCI状态的作用时间内,则终端设备基于该两个TCI状态中的一个TCI状态(称为第一个TCI状态)在第一CORESET中接收一个PDCCH副本,并基于该两个TCI状态中的另一个TCI状态(称为第二个TCI状态)在第二CORESET中接收另一个PDCCH副本。
其中,
第一CORESET是以下之一:
两个CORESET中ID较小的CORESET;
两个CORESET中起始时间较早的CORESET;
两个CORESET中起始频率较低的CORESET;
第二CORESET是以下之一:
两个CORESET中ID较大的CORESET;
两个CORESET中起始时间较晚的CORESET;
两个CORESET中起始频率较高的CORESET。
例如,如图7所示,PDSCH来自TRP1和TPR2,作用时间内存在两个TCI state,分别与两个TRP关联。对于该作用时间内的PDCCH repetition,两个PDCCH副本来自两个TRP,终端设备基于作用时间内的两个TCI state接收PDCCH repetition。两个PDCCH副本来自两个CORESET。终端设备可以基于第一个TCI state在ID较小的CORESET中接收第一个PDCCH副本,基于第二个TCI state在ID较大的CORESET中接收第二个PDCCH副本。反之亦然。同理,“ID较小或较大”可以被替换为“起始时间较早或较晚”,或者,可以被替换为“起始频率较低或较高”。
以上只是举例说明,在另一些实施方式中,第一CORESET也可以是两个CORESET中ID较大或起始时间较晚或起始频率较高的CORESET,相应的,第二CORESET是两个CORESET中ID较小或起始时间较早或起始频率较低的CORESET。
在又一些实施例中,终端设备基于第一个TCI state在第一CORESET中接收第一个PDCCH副本,基于第二个TCI state在第二CORESET中接收第二个PDCCH副本,其中,第一CORESET被配置与第一个TCI state关联,第二CORESET被配置与第二个TCI state关联。
也即,如果PDCCH包括两个PDCCH副本,并且该两个PDCCH副本在两个TCI状态的作用时间内,则终端设备基于上述两个TCI状态中的第一个TCI状态在第一CORESET中接收一个PDCCH副本,并基于所述两个TCI状态中的第二个TCI状态在 第二CORESET中接收另一个PDCCH副本。
例如,网络设备为每个CORESET配置该CORESET与哪一个TCI state关联,因此两个CORESET能够分别关联两个TCI state,从而终端设备能够知晓基于一个TCI state应该在哪一个CORESET中接收PDCCH副本。
在又一些实施例中,终端设备基于一个TCI state在两个CORESET中接收两个PDCCH副本,其中,上述一个TCI state是预定义的一个TCI state,或者,是为PDCCH所在的CORESET配置的一个TCI state。
也即,如果PDCCH包括两个PDCCH副本,这两个PDCCH副本在两个TCI状态的作用时间内,则终端设备基于这两个TCI状态中的一个TCI状态(例如预定义的TCI state,或者为PDCCH所在的CORESET配置的TCI state)在上述两个PDCCH副本所关联的两个CORESET中接收这两个PDCCH副本。
例如,如图8所示,PDSCH来自TRP1和TPR2,作用时间内存在两个TCI state,分别与两个TRP关联,即PDSCH以mTRP方式发送和接收。然而,PDCCH repetition以sTRP方式发送和接收,即两个PDCCH副本来自同一个TRP。终端设备基于两个TCI state中的一个TCI state接收PDCCH repetition。终端设备可以使用与针对情况2相同的方式,在两个TCI state中确定一个TCI state,不再赘述。尽管PDSCH可以在mTRP和sTRP方式间切换,但PDCCH repetition始终使用sTRP方式,有利于保证控制信道的鲁棒性。
在前述各实施例中,终端设备被MAC CE激活了至少两个TCI state,上述DCI指示了其中的两个TCI state,第一个TCI state可以是MAC CE中字段ID或TCI状态ID较小的TCI state,第二个TCI state可以是MAC CE中字段ID或TCI状态ID较大的TCI state。
例如,图9给出一种MAC CE示例,仅示出了TCI state相关的部分,一个MAC CE字段包括8比特,字段ID如图9中的Oct 1,Oct 2,……,Oct N+X所示,TCI状态ID如图9中的TCI state ID 1,TCI state ID 2,……,TCI state ID M所示。如果DCI指示两个TCI state,其指示的是图9中Oct N到Oct N+X(也即TCI state ID 1到TCI state ID M,M=X+1)中的两个TCI state,第一个TCI state是字段ID较小的TCI state,第二个TCI state是字段ID较大的TCI state,或者,第一个TCI state是TCI state ID较小的TCI state,第二个TCI state是TCI state ID较大的TCI state。
上述实施例只是举例说明,本申请不限于此,第一个TCI state也可以是MAC CE 中字段ID或TCI状态ID较大的TCI state,相应的第二个TCI state是MAC CE中字段ID或TCI状态ID较小的TCI state。
在前述各实施例中,一个CORESET可以被配置是否使用unified TCI。如果终端设备被配置了PDCCH repetition,所关联的两个CORESET是否使用unified TCI需要满足一定限制条件。
在一些实施方式中,如果终端设备被配置了PDCCH repetition,所关联的两个CORESET都使用unified TCI,或者,都不使用unified TCI。
例如,用于PDCCH repetition的两个CORESET各自被配置是否使用unified TCI,但是两个CORESET或者都被配置为使用unified TCI,或者,都被配置为不使用unified TCI。
再例如,在用于PDCCH repetition的两个CORESET中,只有一个CORESET被配置是否使用unified TCI,另一个CORESET虽然没有被显式配置,但被认为与其关联的CORESET的配置相同。
在前述各实施例中,网络设备还可以通过CORESET配置来配置终端设备使用哪种方法接收PDCCH。例如,网络设备可以在为终端设备配置的CORESET中,第一CORESET被配置使用第一方法接收PDCCH,第二CORESET被配置使用第二方法接收PDCCH,其中,第一方法、第二方法是针对情况2~情况4中的任何一种方法。
也即,终端设备根据第一CORESET或CORESET对的配置,在第一CORESET或CORESET对内接收与一个或两个TCI状态关联的PDCCH;根据第二CORESET或CORESET对的配置,在第二CORESET或CORESET对内接收与一个或两个TCI状态关联的PDCCH。
例如,一个CORESET(或一个CORESET对)并不是单纯被配置为“不使用unified TCI”和“使用unified TCI”中的一种,在一个CORESET被配置为使用unified TCI接收PDCCH时,同时也被配置使用针对上述情况2~情况4中的哪一种方法接收PDCCH。这里一个CORESET对指的是与PDCCH repetition中的两个PDCCH副本关联的两个CORESET。
图10是CORESET的配置的一示意图,如图10所示,一个CORESET可以被配置为图10中六种结果中的任何一种。假设第一CORESET被配置使用第一方法,第二CORESET被配置使用第二方法,则终端设备通过在两个CORESET内盲检PDCCH,可以实现在第一方法和第二方法间的动态切换。这为网络设备侧的PDCCH发送提供了更 高的自由度,网络设备可以动态选择适应当前信道的PDCCH发送方法来发送PDCCH。
图10只是举例说明,本申请对此不做限制,第一方法和第二方法还可以是其他组合。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
由上述实施例可知,针对PDCCH类型(PDCCH或PDCCH repetition)和作用时间内的TCI state个数(一个或两个)的不同组合,终端设备基于部分或全部TCI state对部分或全部PDCCH进行接收。由此,能够避免当终端设备在两个TCI state的作用时间内接收PDCCH,或者,在一个或两个TCI state的作用时间内接收PDCCH repetition时出现未定义的设备行为,从而避免由此导致的PDCCH接收失败。
第二方面的实施例
本申请实施例提供一种信号发送方法,应用于网络设备侧,是与第一方面的实施例的方法对应的网络设备侧的处理,其中与第一方面的实施例相同的内容不再赘述。
图11是本申请实施例的信号发送方法的一示意图,如图14所示,该方法包括:
1101,网络设备发送DCI,所述DCI指示一个或两个TCI状态;
1102,所述网络设备在所述一个或两个TCI状态的作用时间内发送与一个或两个TCI状态关联的PDCCH。
值得注意的是,以上附图11仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图11的记载。
在本申请实施例中,在PDCCH使用unified TCI的情况下,如果网络设备在某一作用时间内发送PDCCH,那么网络设备应该基于该作用时间内的TCI state发送PDCCH。然而,有可能出现发送PDCCH所需的TCI state个数与作用时间内的TCI state个数不一致的情况(如前所述的情况2~情况4)。在这种情况下,如何基于TCI state发送PDCCH是不清楚的、未经定义的,这会导致未定义的设备行为,从而导致PDCCH发送失败。
根据本申请实施例,针对PDCCH类型(PDCCH或PDCCH repetition)和作用时间内的TCI state个数(一个或两个)的不同组合,网络设备基于部分或全部TCI state对 部分或全部PDCCH进行发送。由此,能够避免当网络设备在两个TCI state的作用时间内发送PDCCH,或者,在一个或两个TCI state的作用时间内发送PDCCH repetition时出现未定义的设备行为,从而避免由此导致的PDCCH发送失败。
在一些实施例中,PDCCH为非PDCCH repetition或非SFN PDCCH,该PDCCH位于两个TCI状态的作用时间内,网络设备基于上述两个TCI状态中的一个TCI状态发送该PDCCH。
在上述实施例中,上述一个TCI状态可以是预定义的一个TCI状态,或者是为该PDCCH所在的CORESET配置的一个TCI状态。
在另一些实施例中,PDCCH为非PDCCH repetition或非SFN PDCCH,该PDCCH位于两个TCI状态的作用时间内,网络设备基于所述两个TCI状态,以发送SFN PDCCH的方式发送该PDCCH。
在上述实施例中,网络设备可以使用预定义的SFN PDCCH方案发送该PDCCH。
在又一些实施例中,PDCCH包括两个PDCCH副本,该两个PDCCH副本在一个TCI状态的作用时间内,网络设备基于一个TCI状态在这两个PDCCH副本所关联的两个CORESET中发送这两个PDCCH副本。
在又一些实施例中,PDCCH包括两个PDCCH副本,该两个PDCCH副本在一个TCI状态的作用时间内,网络设备基于一个TCI状态在这两个PDCCH副本所关联的两个CORESET中的一个CORESET中发送一个PDCCH副本。
在上述实施例中,上述一个CORESET可以是指以下之一:
上述两个CORESET中ID较小的CORESET;
上述两个CORESET中起始时间较早的CORESET;
上述两个CORESET中起始频率较低的CORESET。
在又一些实施例中,PDCCH包括两个PDCCH副本,该两个PDCCH副本在两个TCI状态的作用时间内,网络设备基于上述两个TCI状态中的第一个TCI状态在第一CORESET中发送一个PDCCH副本,并基于上述两个TCI状态中的第二个TCI状态在第二CORESET中发送另一个PDCCH副本,其中,
第一CORESET是以下之一:
两个CORESET中ID较小的CORESET;
两个CORESET中起始时间较早的CORESET;
两个CORESET中起始频率较低的CORESET;
第二CORESET是以下之一:
两个CORESET中ID较大的CORESET;
两个CORESET中起始时间较晚的CORESET;
两个CORESET中起始频率较高的CORESET。
在又一些实施例中,PDCCH包括两个PDCCH副本,该两个PDCCH副本在两个TCI状态的作用时间内,网络设备基于这两个TCI状态中的第一个TCI状态在第一CORESET中发送一个PDCCH副本,并基于这两个TCI状态中的第二个TCI状态在第二CORESET中发送另一个PDCCH副本,其中,
第一CORESET被配置与第一个TCI状态关联;
第二CORESET被配置与第二个TCI状态关联。
在前述各实施例中,第一个TCI状态是MAC CE中字段ID或TCI状态ID较小的TCI状态;第二个TCI状态是MAC CE中字段ID或TCI状态ID较大的TCI状态。本申请不限于此。
在又一些实施例中,PDCCH包括两个PDCCH副本,该两个PDCCH副本在两个TCI状态的作用时间内,网络设备基于这两个TCI状态中的一个TCI状态在这两个PDCCH副本所关联的两个CORESET中发送这两个PDCCH副本。
在上述实施例中,上述一个TCI状态可以是预定义的TCI状态,或者是为PDCCH所在的CORESET配置的一个TCI状态。
在前述各实施例中,上述两个PDCCH副本所关联两个CORESET都使用统一的TCI,或者都不使用统一的TCI。可以由网络设备配置,例如第一方面的实施例中提到的显式配置或者隐式配置。
在本申请实施例中,网络设备还可以根据第一CORESET或CORESET对的配置,在第一CORESET或CORESET对内发送与一个或两个TCI状态关联的PDCCH;根据第二CORESET或CORESET对的配置,在第二CORESET或CORESET对内发送与一个或两个TCI状态关联的PDCCH。具体的,网络设备可以采用前述各实施例的方法发送PDCCH,其内容被合并于此,此处不再赘述。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
由上述实施例可知,针对PDCCH类型(PDCCH或PDCCH repetition)和作用时间 内的TCI state个数(一个或两个)的不同组合,网络设备基于部分或全部TCI state对部分或全部PDCCH进行发送。由此,能够避免当网络设备在两个TCI state的作用时间内发送PDCCH,或者,在一个或两个TCI state的作用时间内发送PDCCH repetition时出现未定义的设备行为,从而避免由此导致的PDCCH发送失败。
第三方面的实施例
本申请实施例提供一种信号接收装置。该装置例如可以是终端设备,也可以是配置于终端设备的某个或某些部件或者组件,与第一至第二方面的实施例相同的内容不再赘述。
图12是本申请实施例的信号接收装置的一示意图。如图12所示,本申请实施例的信号接收装置1200包括:
第一接收单元1201,其接收DCI,所述DCI指示一个或两个TCI状态;以及
第二接收单元1202,其在所述一个或两个TCI状态的作用时间内接收与一个或两个TCI状态关联的PDCCH。
在一些实施例中,PDCCH为非PDCCH repetition或非SFN PDCCH,该PDCCH位于两个TCI状态的作用时间内,第二接收单元1202基于上述两个TCI状态中的一个TCI状态接收该PDCCH。
在上述实施例中,上述一个TCI状态是预定义的一个TCI状态,或者是为上述PDCCH所在的CORESET配置的一个TCI状态。
在一些实施例中,PDCCH为非PDCCH repetition或非SFN PDCCH,该PDCCH位于两个TCI状态的作用时间内,第二接收单元1202基于上述两个TCI状态,以接收SFN PDCCH的方式接收该PDCCH。
在上述实施例中,第二接收单元1202可以使用预定义的SFN PDCCH方案接收该PDCCH。
在一些实施例中,PDCCH包括两个PDCCH副本,该两个PDCCH副本在一个TCI状态的作用时间内,第二接收单元1202基于上述一个TCI状态在上述两个PDCCH副本所关联的两个CORESET中接收两个PDCCH副本。
在一些实施例中,PDCCH包括两个PDCCH副本,该两个PDCCH副本在一个TCI状态的作用时间内,第二接收单元1202基于上述一个TCI状态在上述两个PDCCH副本所关联的两个CORESET中的一个CORESET中接收一个PDCCH副本。
在上述实施例中,上述一个CORESET可以是指以下之一:
上述两个CORESET中ID较小的CORESET;
上述两个CORESET中起始时间较早的CORESET;
上述两个CORESET中起始频率较低的CORESET。
在一些实施例中,PDCCH包括两个PDCCH副本,该两个PDCCH副本在两个TCI状态的作用时间内,第二接收单元1202基于上述两个TCI状态中的一个TCI状态(第一个TCI状态)在第一CORESET中接收一个PDCCH副本,并基于上述两个TCI状态中的另一个TCI状态(第二个TCI状态)在第二CORESET中接收另一个PDCCH副本,其中,
第一CORESET是以下之一:
两个CORESET中ID较小的CORESET;
两个CORESET中起始时间较早的CORESET;
两个CORESET中起始频率较低的CORESET;
第二CORESET是以下之一:
两个CORESET中ID较大的CORESET;
两个CORESET中起始时间较晚的CORESET;
两个CORESET中起始频率较高的CORESET。
在一些实施例中,PDCCH包括两个PDCCH副本,该两个PDCCH副本在两个TCI状态的作用时间内,第二接收单元1202基于上述两个TCI状态中的第一个TCI状态在第一CORESET中接收一个PDCCH副本,并基于上述两个TCI状态中的第二个TCI状态在第二CORESET中接收另一个PDCCH副本,其中,
第一CORESET被配置与第一个TCI状态关联;
第二CORESET被配置与第二个TCI状态关联。
在前述各实施例中,第一个TCI状态是MAC CE中字段ID或TCI状态ID较小的TCI状态;第二个TCI状态是MAC CE中字段ID或TCI状态ID较大的TCI状态。本申请不限于此。
在一些实施例中,PDCCH包括两个PDCCH副本,该两个PDCCH副本在两个TCI状态的作用时间内,第二接收单元1202基于上述两个TCI状态中的一个TCI状态在该两个PDCCH副本所关联的两个CORESET中接收两个PDCCH副本。
在上述实施例中,上述一个TCI状态可以是预定义的TCI状态,或者是为PDCCH 所在的CORESET配置的一个TCI状态。
在前述各实施例中,上述两个PDCCH副本所关联两个CORESET都使用统一的TCI,或者都不使用统一的TCI。
在一些实施例中,第二接收单元1202根据第一CORESET或CORESET对的配置,在第一CORESET或CORESET对内接收与一个或两个TCI状态关联的PDCCH;根据第二CORESET或CORESET对的配置,在第二CORESET或CORESET对内接收与一个或两个TCI状态关联的PDCCH。具体的,第二接收单元1202可以采用前述各实施例的方法接收PDCCH,此处不再赘述。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。信号接收装置1200还可以包括其他部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图12中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
由上述实施例可知,针对PDCCH类型(PDCCH或PDCCH repetition)和作用时间内的TCI state个数(一个或两个)的不同组合,终端设备基于部分或全部TCI state对部分或全部PDCCH进行接收。由此,能够避免当终端设备在两个TCI state的作用时间内接收PDCCH,或者,在一个或两个TCI state的作用时间内接收PDCCH repetition时出现未定义的设备行为,从而避免由此导致的PDCCH接收失败。
第四方面的实施例
本申请实施例提供一种信号发送装置。该装置例如可以是网络设备,也可以是配置于网络设备的某个或某些部件或者组件,与第一至三方面的实施例相同的内容不再赘述。
图13是本申请实施例的信号发送装置的一示意图。如图13所示,本申请实施例的信号发送装置1300包括:
第一发送单元1301,其发送DCI,所述DCI指示一个或两个TCI状态;以及
第二发送单元1302,其在所述一个或两个TCI状态的作用时间内发送与一个或两个TCI状态关联的PDCCH。
在一些实施例中,PDCCH为非PDCCH repetition或非SFN PDCCH,该PDCCH位于两个TCI状态的作用时间内,第二发送单元1302基于该两个TCI状态中的一个TCI状态发送该PDCCH。
在上述实施例中,上述一个TCI状态是预定义的一个TCI状态,或者是为PDCCH所在的CORESET配置的一个TCI状态。
在一些实施例中,PDCCH为非PDCCH repetition或非SFN PDCCH,该PDCCH位于两个TCI状态的作用时间内,第二发送单元1302基于上述两个TCI状态,以发送SFN PDCCH的方式发送该PDCCH。
在上述实施例中,第二发送单元1302使用预定义的SFN PDCCH方案发送该PDCCH。
在一些实施例中,PDCCH包括两个PDCCH副本,该两个PDCCH副本在一个TCI状态的作用时间内,第二发送单元1302基于上述一个TCI状态在该两个PDCCH副本所关联的两个CORESET中发送两个PDCCH副本。
在一些实施例中,PDCCH包括两个PDCCH副本,该两个PDCCH副本在一个TCI状态的作用时间内,第二发送单元1302基于上述一个TCI状态在该两个PDCCH副本所关联的两个CORESET中的一个CORESET中发送一个PDCCH副本。
在上述实施例中,上述一个CORESET可以是指以下之一:
上述两个CORESET中ID较小的CORESET;
上述两个CORESET中起始时间较早的CORESET;
上述两个CORESET中起始频率较低的CORESET。
在一些实施例中,PDCCH包括两个PDCCH副本,该两个PDCCH副本在两个TCI状态的作用时间内,第二发送单元1302基于上述两个TCI状态中的一个TCI状态(第一个TCI状态)在第一CORESET中发送一个PDCCH副本,并基于上述两个TCI状态中的另一个TCI状态(第二个TCI状态)在第二CORESET中发送另一个PDCCH副本,其中,
第一CORESET是以下之一:
两个CORESET中ID较小的CORESET;
两个CORESET中起始时间较早的CORESET;
两个CORESET中起始频率较低的CORESET;
第二CORESET是以下之一:
两个CORESET中ID较大的CORESET;
两个CORESET中起始时间较晚的CORESET;
两个CORESET中起始频率较高的CORESET。
在一些实施例中,PDCCH包括两个PDCCH副本,该两个PDCCH副本在两个TCI状态的作用时间内,第二发送单元1302基于上述两个TCI状态中的第一个TCI状态在第一CORESET中发送一个PDCCH副本,并基于上述两个TCI状态中的第二个TCI状态在第二CORESET中发送另一个PDCCH副本,其中,
第一CORESET被配置与所述第一个TCI状态关联;
第二CORESET被配置与所述第二个TCI状态关联。
在前述各实施例中,第一个TCI状态是MAC CE中字段ID或TCI状态ID较小的TCI状态;第二个TCI状态是MAC CE中字段ID或TCI状态ID较大的TCI状态。本申请不限于此。
在一些实施例中,PDCCH包括两个PDCCH副本,该两个PDCCH副本在两个TCI状态的作用时间内,第二发送单元1302基于上述两个TCI状态中的一个TCI状态在两个PDCCH副本所关联的两个CORESET中发送这两个PDCCH副本。
在上述实施例中,一个TCI状态可以是预定义的TCI状态,或者是为PDCCH所在的CORESET配置的一个TCI状态。
在前述各实施例中,上述两个PDCCH副本所关联两个CORESET可以都使用统一的TCI,或者都不使用统一的TCI。
在一些实施例中,第二发送单元1302根据第一CORESET或CORESET对的配置,在第一CORESET或CORESET对内发送与一个或两个TCI状态关联的PDCCH;根据第二CORESET或CORESET对的配置,在第二CORESET或CORESET对内发送与一个或两个TCI状态关联的PDCCH。具体的,第二发送单元1302可以采用前述各实施例的方法发送PDCCH,此处不再赘述。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。信号发送装置1300还可以包括其他部件或者模块,关于这些部件或者模块的具 体内容,可以参考相关技术。
此外,为了简单起见,图13中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
由上述实施例可知,针对PDCCH类型(PDCCH或PDCCH repetition)和作用时间内的TCI state个数(一个或两个)的不同组合,网络设备基于部分或全部TCI state对部分或全部PDCCH进行发送。由此,能够避免当网络设备在两个TCI state的作用时间内发送PDCCH,或者,在一个或两个TCI state的作用时间内发送PDCCH repetition时出现未定义的设备行为,从而避免由此导致的PDCCH发送失败。
第五方面的实施例
本申请实施例还提供一种通信系统,可以参考图1,与第一方面至第四方面的实施例相同的内容不再赘述。
在一些实施例中,通信系统100至少可以包括网络设备和终端设备,其中,网络设备可以发送DCI,该DCI指示一个或两个TCI状态,此外,该网络设备还可以在上述一个或两个TCI状态的作用时间内发送与一个或两个TCI状态关联的PDCCH;终端设备接收该DCI,并且在上述一个或两个TCI状态的作用时间内接收与一个或两个TCI状态关联的PDCCH。
关于网络设备和终端设备的内容已经在第一至第四方面的实施例中做了详细说明,其内容被合并于此,此处不再赘述。
本申请实施例还提供一种终端设备,但本申请不限于此,还可以是其他的设备。
图14是本申请实施例的终端设备的示意图。如图14所示,该终端设备1400可以包括处理器1410和存储器1420;存储器1420存储有数据和程序,并耦合到处理器1410。值得注意的是,该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。
例如,处理器1410可以被配置为执行程序而实现如第一方面的实施例所述的方法。例如处理器1410可以被配置为进行如下的控制:接收DCI,所述DCI指示一个或两个TCI状态;在所述一个或两个TCI状态的作用时间内接收与一个或两个TCI状态关联的PDCCH。
如图14所示,该终端设备1400还可以包括:通信模块1430、输入单元1440、显示器1450、电源1460。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,终端设备1400也并不是必须要包括图14中所示的所有部件,上述部件并不是必需的;此外,终端设备1400还可以包括图14中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种网络设备,例如可以是基站,但本申请不限于此,还可以是其他的网络设备。
图15是本申请实施例的网络设备的构成示意图。如图15所示,网络设备1500可以包括:处理器1510(例如中央处理器CPU)和存储器1520;存储器1520耦合到处理器1510。其中该存储器1520可存储各种数据;此外还存储信息处理的程序1530,并且在处理器1510的控制下执行该程序1530。
例如,处理器1510可以被配置为执行程序而实现如第二方面的实施例所述的方法。例如处理器1510可以被配置为进行如下的控制:发送DCI,所述DCI指示一个或两个TCI状态;在所述一个或两个TCI状态的作用时间内发送与一个或两个TCI状态关联的PDCCH。
此外,如图15所示,网络设备1500还可以包括:收发机1540和天线1550等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络设备1500也并不是必须要包括图15中所示的所有部件;此外,网络设备1500还可以包括图15中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种计算机程序,其中当在终端设备中执行所述程序时,所述程序使得所述终端设备执行第一方面的实施例所述的方法。
本申请实施例还提供一种存储有计算机程序的存储介质,其中所述计算机程序使得终端设备执行第一方面的实施例所述的方法。
本申请实施例还提供一种计算机程序,其中当在网络设备中执行所述程序时,所述程序使得所述网络设备执行第二方面的实施例所述的方法。
本申请实施例还提供一种存储有计算机程序的存储介质,其中所述计算机程序使得网络设备执行第二方面的实施例所述的方法。
本申请以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本申请涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本申请还涉 及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本申请实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图中所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本申请进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本申请保护范围的限制。本领域技术人员可以根据本申请的精神和原理对本申请做出各种变型和修改,这些变型和修改也在本申请的范围内。
关于包括以上实施例的实施方式,还公开下述的附记:
1.一种信号接收方法,其中,所述方法包括:
终端设备接收DCI,所述DCI指示一个或两个TCI状态;
所述终端设备在所述一个或两个TCI状态的作用时间内接收与一个或两个TCI状态关联的PDCCH。
2.根据附记1所述的方法,其中,所述方法包括:
所述终端设备根据第一CORESET或CORESET对的配置,在所述第一CORESET或CORESET对内接收与一个或两个TCI状态关联的PDCCH;
所述终端设备根据第二CORESET或CORESET对的配置,在所述第二CORESET或CORESET对内接收与一个或两个TCI状态关联的PDCCH。
3.根据附记1或2所述的方法,其中,所述PDCCH为非PDCCH repetition或非SFN PDCCH,所述PDCCH位于两个TCI状态的作用时间内,所述终端设备基于所述两个TCI状态中的一个TCI状态接收所述PDCCH。
4.根据附记3所述的方法,其中,
所述一个TCI状态是预定义的一个TCI状态,或者是为所述PDCCH所在的CORESET配置的一个TCI状态。
5.根据附记1或2所述的方法,其中,所述PDCCH为非PDCCH repetition或非SFN PDCCH,所述PDCCH位于两个TCI状态的作用时间内,所述终端设备基于所述两个TCI状态,以接收SFN PDCCH的方式接收所述PDCCH。
6.根据附记5所述的方法,其中,所述终端设备使用预定义的SFN PDCCH方案接收所述PDCCH。
7.根据附记1或2所述的方法,其中,所述PDCCH包括两个PDCCH副本,所述两个PDCCH副本在一个TCI状态的作用时间内,所述终端设备基于所述一个TCI状态在所述两个PDCCH副本所关联的两个CORESET中接收两个PDCCH副本。
8.根据附记1或2所述的方法,其中,所述PDCCH包括两个PDCCH副本,所述两个PDCCH副本在一个TCI状态的作用时间内,所述终端设备基于所述一个TCI状态在所述两个PDCCH副本所关联的两个CORESET中的一个CORESET中接收一个PDCCH副本。
9.根据附记8所述的方法,其中,所述一个CORESET是指以下之一:
所述两个CORESET中ID较小的CORESET;
所述两个CORESET中起始时间较早的CORESET;
所述两个CORESET中起始频率较低的CORESET。
10.根据附记1或2所述的方法,其中,所述PDCCH包括两个PDCCH副本,所述两个PDCCH副本在两个TCI状态的作用时间内,所述终端设备基于所述两个TCI状态中的第一个TCI状态在第一CORESET中接收一个所述PDCCH副本,并基于所述两个TCI状态中的第二个TCI状态在第二CORESET中接收另一个所述PDCCH副本,其中,
所述第一CORESET是以下之一:
两个CORESET中ID较小的CORESET;
两个CORESET中起始时间较早的CORESET;
两个CORESET中起始频率较低的CORESET;
所述第二CORESET是以下之一:
两个CORESET中ID较大的CORESET;
两个CORESET中起始时间较晚的CORESET;
两个CORESET中起始频率较高的CORESET。
11.根据附记1或2所述的方法,其中,所述PDCCH包括两个PDCCH副本,所述两个PDCCH副本在两个TCI状态的作用时间内,所述终端设备基于所述两个TCI状态中的第一个TCI状态在第一CORESET中接收一个所述PDCCH副本,并基于所述两个TCI状态中的第二个TCI状态在第二CORESET中接收另一个所述PDCCH副本,其中,
所述第一CORESET被配置与所述第一个TCI状态关联;
所述第二CORESET被配置与所述第二个TCI状态关联。
12.根据附记10或11所述的方法,其中,
所述第一个TCI状态是MAC CE中字段ID或TCI状态ID较小的TCI状态;
所述第二个TCI状态是MAC CE中字段ID或TCI状态ID较大的TCI状态。
13.根据附记1或2所述的方法,其中,所述PDCCH包括两个PDCCH副本,所述两个PDCCH副本在两个TCI状态的作用时间内,所述终端设备基于所述两个TCI状态中的一个TCI状态在所述两个PDCCH副本所关联的两个CORESET中接收所述两个PDCCH副本。
14.根据附记13所述的方法,其中,
所述一个TCI状态是预定义的TCI状态,或者是为所述PDCCH所在的CORESET配置的一个TCI状态。
15.根据附记1或2所述的方法,其中,所述PDCCH包括两个PDCCH副本,所述两个PDCCH副本所关联两个CORESET都使用统一的TCI,或者都不使用统一的TCI。
16.一种信号发送方法,其中,所述方法包括:
网络设备发送DCI,所述DCI指示一个或两个TCI状态;
所述网络设备在所述一个或两个TCI状态的作用时间内发送与一个或两个TCI状态关联的PDCCH。
17.根据附记16所述的方法,其中,所述方法包括:
所述网络设备根据第一CORESET或CORESET对的配置,在所述第一CORESET或CORESET对内发送与一个或两个TCI状态关联的PDCCH;
所述网络设备根据第二CORESET或CORESET对的配置,在所述第二CORESET或CORESET对内发送与一个或两个TCI状态关联的PDCCH。
18.根据附记16或17所述的方法,其中,所述PDCCH为非PDCCH repetition或非SFN PDCCH,所述PDCCH位于两个TCI状态的作用时间内,所述网络设备基于所述两个TCI状态中的一个TCI状态发送所述PDCCH。
19.根据附记18所述的方法,其中,
所述一个TCI状态是预定义的一个TCI状态,或者是为所述PDCCH所在的CORESET配置的一个TCI状态。
20.根据附记16或17所述的方法,其中,所述PDCCH为非PDCCH repetition或非SFN PDCCH,所述PDCCH位于两个TCI状态的作用时间内,所述网络设备基于所述两个TCI状态,以发送SFN PDCCH的方式发送所述PDCCH。
21.根据附记20所述的方法,其中,所述网络设备使用预定义的SFN PDCCH方案发送所述PDCCH。
22.根据附记16或17所述的方法,其中,所述PDCCH包括两个PDCCH副本,所述两个PDCCH副本在一个TCI状态的作用时间内,所述网络设备基于所述一个TCI状态在所述两个PDCCH副本所关联的两个CORESET中发送两个PDCCH副本。
23.根据附记16或17所述的方法,其中,所述PDCCH包括两个PDCCH副本,所述两个PDCCH副本在一个TCI状态的作用时间内,所述网络设备基于所述一个TCI状态在所述两个PDCCH副本所关联的两个CORESET中的一个CORESET中发送一个PDCCH副本。
24.根据附记23所述的方法,其中,所述一个CORESET是指以下之一:
所述两个CORESET中ID较小的CORESET;
所述两个CORESET中起始时间较早的CORESET;
所述两个CORESET中起始频率较低的CORESET。
25.根据附记16或17所述的方法,其中,所述PDCCH包括两个PDCCH副本,所述两个PDCCH副本在两个TCI状态的作用时间内,所述网络设备基于所述两个TCI状态中的第一个TCI状态在第一CORESET中发送一个所述PDCCH副本,并基于所述两 个TCI状态中的第二个TCI状态在第二CORESET中发送另一个所述PDCCH副本,其中,
所述第一CORESET是以下之一:
两个CORESET中ID较小的CORESET;
两个CORESET中起始时间较早的CORESET;
两个CORESET中起始频率较低的CORESET;
所述第二CORESET是以下之一:
两个CORESET中ID较大的CORESET;
两个CORESET中起始时间较晚的CORESET;
两个CORESET中起始频率较高的CORESET。
26.根据附记16或17所述的方法,其中,所述PDCCH包括两个PDCCH副本,所述两个PDCCH副本在两个TCI状态的作用时间内,所述网络设备基于所述两个TCI状态中的第一个TCI状态在第一CORESET中发送一个所述PDCCH副本,并基于所述两个TCI状态中的第二个TCI状态在第二CORESET中发送另一个所述PDCCH副本,其中,
所述第一CORESET被配置与所述第一个TCI状态关联;
所述第二CORESET被配置与所述第二个TCI状态关联。
27.根据附记25或26所述的方法,其中,
所述第一个TCI状态是MAC CE中字段ID或TCI状态ID较小的TCI状态;
所述第二个TCI状态是MAC CE中字段ID或TCI状态ID较大的TCI状态。
28.根据附记16或17所述的方法,其中,所述PDCCH包括两个PDCCH副本,所述两个PDCCH副本在两个TCI状态的作用时间内,所述网络设备基于所述两个TCI状态中的一个TCI状态在所述两个PDCCH副本所关联的两个CORESET中发送所述两个PDCCH副本。
29.根据附记28所述的方法,其中,
所述一个TCI状态是预定义的TCI状态,或者是为所述PDCCH所在的CORESET配置的一个TCI状态。
30.根据附记16或17所述的方法,其中,所述PDCCH包括两个PDCCH副本,所述两个PDCCH副本所关联两个CORESET都使用统一的TCI,或者都不使用统一的TCI。
31.一种终端设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记1至15任一项所述的方法。
32.一种网络设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记16至30任一项所述的方法。
33.一种通信系统,包括网络设备和终端设备,其中:
所述网络设备被配置为发送DCI,在所述DCI指示的一个或两个TCI状态的作用时间内发送与一个或两个TCI状态关联的PDCCH;
所述终端设备被配置为接收所述DCI,在所述DCI指示的一个或两个TCI状态的作用时间内接收与一个或两个TCI状态关联的PDCCH。

Claims (20)

  1. 一种信号接收装置,配置于终端设备,其中,所述装置包括:
    第一接收单元,其接收下行控制信息,所述下行控制信息指示一个或两个传输配置指示状态;
    第二接收单元,其在所述一个或两个传输配置指示状态的作用时间内接收与一个或两个传输配置指示状态关联的物理下行控制信道。
  2. 根据权利要求1所述的装置,其中,所述物理下行控制信道为非PDCCH repetition或非SFN PDCCH,所述物理下行控制信道位于两个传输配置指示状态的作用时间内,所述第二接收单元基于所述两个传输配置指示状态中的一个传输配置指示状态接收所述物理下行控制信道。
  3. 根据权利要求2所述的装置,其中,
    所述一个传输配置指示状态是预定义的一个传输配置指示状态,或者是为所述物理下行控制信道所在的控制资源集合配置的一个传输配置指示状态。
  4. 根据权利要求1所述的装置,其中,所述物理下行控制信道包括两个物理下行控制信道副本,所述两个物理下行控制信道副本在一个传输配置指示状态的作用时间内,所述第二接收单元基于所述一个传输配置指示状态在所述两个物理下行控制信道副本所关联的两个控制资源集合中接收两个物理下行控制信道副本。
  5. 根据权利要求1所述的装置,其中,所述物理下行控制信道包括两个物理下行控制信道副本,所述两个物理下行控制信道副本在两个传输配置指示状态的作用时间内,所述第二接收单元基于所述两个传输配置指示状态中的第一个传输配置指示状态在第一控制资源集合中接收一个所述物理下行控制信道副本,并基于所述两个传输配置指示状态中的第二个传输配置指示状态在第二控制资源集合中接收另一个所述物理下行控制信道副本,其中,
    所述第一控制资源集合是以下之一:
    两个控制资源集合中ID较小的控制资源集合;
    两个控制资源集合中起始时间较早的控制资源集合;
    两个控制资源集合中起始频率较低的控制资源集合;
    所述第二控制资源集合是以下之一:
    两个控制资源集合中ID较大的控制资源集合;
    两个控制资源集合中起始时间较晚的控制资源集合;
    两个控制资源集合中起始频率较高的控制资源集合。
  6. 根据权利要求5所述的装置,其中,
    所述第一个传输配置指示状态是媒体接入控制控制单元中字段ID或传输配置指示状态ID较小的传输配置指示状态;
    所述第二个传输配置指示状态是媒体接入控制控制单元中字段ID或传输配置指示状态ID较大的传输配置指示状态。
  7. 根据权利要求1所述的装置,其中,所述物理下行控制信道包括两个物理下行控制信道副本,所述两个物理下行控制信道副本所关联两个控制资源集合都使用统一的传输配置指示,或者都不使用统一的传输配置指示。
  8. 根据权利要求1所述的装置,其中,所述物理下行控制信道包括两个物理下行控制信道副本,所述两个物理下行控制信道副本在两个传输配置指示状态的作用时间内,所述第二接收单元基于所述两个传输配置指示状态中的第一个传输配置指示状态在第一控制资源集合中接收一个所述物理下行控制信道副本,并基于所述两个传输配置指示状态中的第二个传输配置指示状态在第二控制资源集合中接收另一个所述物理下行控制信道副本,其中,
    所述第一控制资源集合被配置与所述第一个传输配置指示状态关联;
    所述第二控制资源集合被配置与所述第二个传输配置指示状态关联。
  9. 根据权利要求8所述的装置,其中,
    所述第一个传输配置指示状态是媒体接入控制控制单元中字段ID或传输配置指示状态ID较小的传输配置指示状态;
    所述第二个传输配置指示状态是媒体接入控制控制单元中字段ID或传输配置指示状态ID较大的传输配置指示状态。
  10. 根据权利要求1所述的装置,其中,
    所述第二接收单元根据第一控制资源集合或控制资源集合对的配置,在所述第一控制资源集合或控制资源集合对内接收与一个或两个传输配置指示状态关联的物理下行控制信道;
    所述第二接收单元根据第二控制资源集合或控制资源集合对的配置,在所述第二控制资源集合或控制资源集合对内接收与一个或两个传输配置指示状态关联的物理下行控制信道。
  11. 一种信号发送装置,配置于网络设备,其中,所述装置包括:
    第一发送单元,其发送下行控制信息,所述下行控制信息指示一个或两个传输配置指示状态;
    第二发送单元,其在所述一个或两个传输配置指示状态的作用时间内发送与一个或两个传输配置指示状态关联的物理下行控制信道。
  12. 根据权利要求11所述的装置,其中,所述物理下行控制信道为非PDCCH repetition或非SFN PDCCH,所述物理下行控制信道位于两个传输配置指示状态的作用时间内,所述第二发送单元基于所述两个传输配置指示状态中的一个传输配置指示状态发送所述物理下行控制信道。
  13. 根据权利要求12所述的装置,其中,
    所述一个传输配置指示状态是预定义的一个传输配置指示状态,或者是为所述物理下行控制信道所在的控制资源集合配置的一个传输配置指示状态。
  14. 根据权利要求11所述的装置,其中,所述物理下行控制信道包括两个物理下行控制信道副本,所述两个物理下行控制信道副本在一个传输配置指示状态的作用时间内,所述第二发送单元基于所述一个传输配置指示状态在所述两个物理下行控制信道副本所关联的两个控制资源集合中发送两个物理下行控制信道副本。
  15. 根据权利要求11所述的装置,其中,所述物理下行控制信道包括两个物理下行控制信道副本,所述两个物理下行控制信道副本在两个传输配置指示状态的作用时间内,所述第二发送单元基于所述两个传输配置指示状态中的第一个传输配置指示状态在第一控制资源集合中发送一个所述物理下行控制信道副本,并基于所述两个传输配置指示状态中的第二个传输配置指示状态在第二控制资源集合中发送另一个所述物理下行控制信道副本,其中,
    所述第一控制资源集合是以下之一:
    两个控制资源集合中ID较小的控制资源集合;
    两个控制资源集合中起始时间较早的控制资源集合;
    两个控制资源集合中起始频率较低的控制资源集合;
    所述第二控制资源集合是以下之一:
    两个控制资源集合中ID较大的控制资源集合;
    两个控制资源集合中起始时间较晚的控制资源集合;
    两个控制资源集合中起始频率较高的控制资源集合。
  16. 根据权利要求15所述的装置,其中,
    所述第一个传输配置指示状态是媒体接入控制控制单元中字段ID或传输配置指示状态ID较小的传输配置指示状态;
    所述第二个传输配置指示状态是媒体接入控制控制单元中字段ID或传输配置指示状态ID较大的传输配置指示状态。
  17. 根据权利要求11所述的装置,其中,所述物理下行控制信道包括两个物理下行控制信道副本,所述两个物理下行控制信道副本所关联两个控制资源集合都使用统一的传输配置指示,或者都不使用统一的传输配置指示。
  18. 根据权利要求11所述的装置,其中,所述物理下行控制信道包括两个物理下行控制信道副本,所述两个物理下行控制信道副本在两个传输配置指示状态的作用时间内,所述第二发送单元基于所述两个传输配置指示状态中的第一个传输配置指示状态在第一控制资源集合中发送一个所述物理下行控制信道副本,并基于所述两个传输配置指示状态中的第二个传输配置指示状态在第二控制资源集合中发送另一个所述物理下行控制信道副本,其中,
    所述第一控制资源集合被配置与所述第一个传输配置指示状态关联;
    所述第二控制资源集合被配置与所述第二个传输配置指示状态关联。
  19. 根据权利要求11所述的装置,其中,
    所述第二发送单元根据第一控制资源集合或控制资源集合对的配置,在所述第一控制资源集合或控制资源集合对内发送与一个或两个传输配置指示状态关联的物理下行控制信道;
    所述第二发送单元根据第二控制资源集合或控制资源集合对的配置,在所述第二控制资源集合或控制资源集合对内发送与一个或两个传输配置指示状态关联的物理下行控制信道。
  20. 一种通信系统,包括网络设备和终端设备,其中:
    所述网络设备被配置为发送下行控制信息,在所述下行控制信息指示的一个或两个传输配置指示状态的作用时间内发送与一个或两个传输配置指示状态关联的物理下行控制信道;
    所述终端设备被配置为接收所述下行控制信息,在所述下行控制信息指示的一个或两个传输配置指示状态的作用时间内接收与一个或两个传输配置指示状态关联的物理下行控制信道。
PCT/CN2022/111654 2022-08-11 2022-08-11 信号接收方法、信号发送方法以及装置 WO2024031505A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/111654 WO2024031505A1 (zh) 2022-08-11 2022-08-11 信号接收方法、信号发送方法以及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/111654 WO2024031505A1 (zh) 2022-08-11 2022-08-11 信号接收方法、信号发送方法以及装置

Publications (1)

Publication Number Publication Date
WO2024031505A1 true WO2024031505A1 (zh) 2024-02-15

Family

ID=89850311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111654 WO2024031505A1 (zh) 2022-08-11 2022-08-11 信号接收方法、信号发送方法以及装置

Country Status (1)

Country Link
WO (1) WO2024031505A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111106907A (zh) * 2018-10-26 2020-05-05 维沃移动通信有限公司 传输配置指示tci状态的指示方法及终端
US20200337058A1 (en) * 2018-02-12 2020-10-22 Fujitsu Limited Methods and Apparatuses for Receiving and Transmitting Configuration Information and Communication System
CN113260058A (zh) * 2020-02-13 2021-08-13 维沃移动通信有限公司 下行控制信息传输方法、终端设备和网络设备
WO2022151299A1 (zh) * 2021-01-14 2022-07-21 富士通株式会社 指示信息的上报和接收方法以及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200337058A1 (en) * 2018-02-12 2020-10-22 Fujitsu Limited Methods and Apparatuses for Receiving and Transmitting Configuration Information and Communication System
CN111106907A (zh) * 2018-10-26 2020-05-05 维沃移动通信有限公司 传输配置指示tci状态的指示方法及终端
CN113260058A (zh) * 2020-02-13 2021-08-13 维沃移动通信有限公司 下行控制信息传输方法、终端设备和网络设备
WO2022151299A1 (zh) * 2021-01-14 2022-07-21 富士通株式会社 指示信息的上报和接收方法以及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Target cell optional PBCH repetition status indication", 3GPP DRAFT; R2-1709289_36331_CR3037_(REL-14)-FEMTC_PBCH_REPETITION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Berlin, Germany; 20170821 - 20170825, 20 August 2017 (2017-08-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051319052 *

Similar Documents

Publication Publication Date Title
US10893519B2 (en) Methods and devices for downlink control channel transmission and detection in a wireless communication system
CN111869152B (zh) 波束指示方法、装置和系统
WO2021026917A1 (zh) 信号发送方法、装置和系统
WO2020191740A1 (zh) 信号接收或发送方法、装置和系统
WO2018228502A1 (zh) 传输控制信息的方法和设备
WO2018120064A1 (zh) 抑制干扰信息的传输装置、方法以及通信系统
WO2020051890A1 (zh) 评估无线链路质量的方法、参数配置方法、装置和系统
WO2021087922A1 (zh) 无线通信方法、装置和系统
WO2021031301A1 (zh) 信号发送和接收方法以及装置
WO2020220342A1 (zh) 参考信号的发送方法、装置和通信系统
WO2022027518A1 (zh) 上行数据的发送方法、装置和系统
WO2018120107A1 (zh) 通信方法、网络设备和终端设备
US11671969B2 (en) Corresponding configuration for simultaneous physical uplink control channel PUCCH and physical uplink shared channel PUSCH transmission
WO2024031505A1 (zh) 信号接收方法、信号发送方法以及装置
WO2022027509A1 (zh) 上行数据的发送方法、装置和系统
WO2021226972A1 (zh) 边链路反馈信息的发送和接收方法以及装置
WO2023206302A1 (zh) 信号发送、信号接收装置以及方法
WO2024026858A1 (zh) 上行数据发送、上行数据接收装置以及方法
WO2023206293A1 (zh) 信号发送和接收装置以及方法
WO2022205408A1 (zh) 上行数据的发送方法、装置和系统
WO2022077309A1 (zh) 无线通信方法、装置和系统
WO2024031547A1 (zh) 非周期参考信号的接收和发送方法以及装置
WO2023010472A1 (zh) 半持续信道状态信息的上报方法、装置和系统
WO2023077355A1 (zh) 反馈信息的生成方法、装置和系统
WO2024031696A1 (zh) 信道状态信息的上报方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954475

Country of ref document: EP

Kind code of ref document: A1