WO2023206293A1 - 信号发送和接收装置以及方法 - Google Patents

信号发送和接收装置以及方法 Download PDF

Info

Publication number
WO2023206293A1
WO2023206293A1 PCT/CN2022/090082 CN2022090082W WO2023206293A1 WO 2023206293 A1 WO2023206293 A1 WO 2023206293A1 CN 2022090082 W CN2022090082 W CN 2022090082W WO 2023206293 A1 WO2023206293 A1 WO 2023206293A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
transmission
uplink transmission
joint
configuration indication
Prior art date
Application number
PCT/CN2022/090082
Other languages
English (en)
French (fr)
Inventor
张健
孙刚
Original Assignee
富士通株式会社
张健
孙刚
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 张健, 孙刚 filed Critical 富士通株式会社
Priority to PCT/CN2022/090082 priority Critical patent/WO2023206293A1/zh
Publication of WO2023206293A1 publication Critical patent/WO2023206293A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of this application relate to the field of communication technology.
  • unified TCI in Rel-17 is mainly designed for sTRP (single transmission and reception point) scenarios.
  • TRP multiple transmission and reception point
  • mTRP transmission includes mTRP transmission based on single DCI (single Downlink Control Information, sDCI) and mTRP transmission based on multiple DCI (multiple DCI, mDCI).
  • the network device uses Radio Resource Control (RRC) signaling to configure M (M ⁇ 1) TCI states (TCI states) for the terminal device, using medium access
  • RRC Radio Resource Control
  • M ⁇ 1 TCI states TCI states
  • MAC control element
  • CE activates N (1 ⁇ N ⁇ M) TCI states in M TCI states, and uses the downlink control information (DCI) to indicate L (1 ⁇ L ⁇ N) in N TCI states.
  • TCI status Radio Resource Control
  • a TCI state can include or correspond to one or two source reference signals (source RS, source Reference Signal).
  • the source reference signal can provide quasi co-location (QCL, Quasi Co-Location) information for downlink reception, and is called the downlink source reference signal.
  • the source reference signal can provide a reference for the uplink transmission spatial filter (UL TX spatial filter, uplink transmission spatial filter) and is called the uplink source reference signal.
  • the source reference signal can provide beam information for the destination channel/signal.
  • the beam used by the terminal device to receive the destination channel/signal is the same as the beam used to receive the downlink source reference signal.
  • the beam used by the terminal equipment to transmit the destination channel/signal is the same as the beam used to transmit the uplink source reference signal.
  • the beam used by the terminal equipment to transmit the destination channel/signal has reciprocity with the beam used to receive the downlink source reference signal, that is, beams with opposite directions are used.
  • TCI status includes joint TCI status, downlink TCI status and uplink TCI status.
  • the source reference signal included in the downlink TCI state is the downlink source reference signal
  • the source reference signal included in the uplink TCI state is the uplink source reference signal
  • the source reference signal included in the joint TCI state is both the downlink source reference signal and the uplink source reference signal.
  • the joint TCI state affects both the downlink beam (receive beam) and the uplink beam (transmit beam). In other words, the downlink beam and the uplink beam use the same beam, but the beam directions are opposite, that is, there is reciprocity between the uplink and downlink beams.
  • the downlink TCI status only affects the downlink beam.
  • the uplink TCI status only affects the uplink beam.
  • the uplink beam is also called the uplink transmit spatial filter.
  • the TCI field may indicate joint TCI status (joint DL/UL TCI), or the TCI field may indicate independent TCI status (separate DL/UL TCI), that is, indicating the downlink TCI status and/or the uplink TCI status. Whether the TCI field indicates the joint TCI state or the independent TCI state is configured by RRC signaling.
  • one TCI field indicates a combined TCI state.
  • one TCI field indicates a downlink TCI state, or indicates an uplink TCI state, or indicates a downlink TCI state and An upstream TCI status.
  • the end device can be indicated two upstream TCI states or a combined TCI state.
  • it can use two panels to transmit simultaneously based on two uplink TCI states or a combined TCI state.
  • the terminal device performs simultaneous multi-panel transmission.
  • the terminal device Taking into account factors such as mobility, channel state changes, and channel blockage, if the terminal device always performs simultaneous multi-panel uplink transmission within the action time of the two TCI states, it may not be able to adapt to the above rapid changes and be unable to transmit. Provide throughput or reliability guarantee, or may cause additional interference to other devices due to unnecessary multi-panel transmission. To solve the above problems, a more ideal way is for terminal equipment to have greater freedom to flexibly switch between multiple uplink transmission solutions.
  • embodiments of the present application provide a signal sending and receiving device and method.
  • a signal sending method including:
  • the terminal device receives transmission configuration indication (TCI) status indication information, the TCI status indication information indicating a first uplink or combined TCI status and a second uplink or combined TCI status;
  • TCI transmission configuration indication
  • the terminal device receives downlink control information (DCI); and
  • the terminal device performs uplink transmission based on the first uplink or joint TCI state and/or the second uplink or joint TCI state according to the uplink transmission scheme indicated by the downlink control information.
  • a signal receiving method including:
  • the network device sends transmission configuration indication (TCI) status indication information, where the TCI status indication information indicates a first uplink or combined TCI status and a second uplink or combined TCI status;
  • TCI transmission configuration indication
  • the network device sends downlink control information (DCI); and
  • the network device receives uplink transmission; wherein, the terminal device performs the said uplink transmission based on the first uplink or joint TCI state and/or the second uplink or joint TCI state according to the uplink transmission scheme indicated by the downlink control information. Uplink transmission.
  • a signal sending device including:
  • a first receiving unit that receives transmission configuration indication (TCI) status indication information, the TCI status indication information indicating a first uplink or combined TCI status and a second uplink or combined TCI status;
  • TCI transmission configuration indication
  • DCI downlink control information
  • a sending unit that performs uplink transmission based on the first uplink or joint TCI state and/or the second uplink or joint TCI state according to the uplink transmission scheme indicated by the downlink control information.
  • a signal receiving device including:
  • a first sending unit that sends transmission configuration indication (TCI) status indication information, where the TCI status indication information indicates a first uplink or combined TCI status and a second uplink or combined TCI status;
  • TCI transmission configuration indication
  • DCI downlink control information
  • a receiving unit that receives uplink transmission; wherein the terminal device performs the above-mentioned uplink or joint TCI state based on the first uplink or joint TCI state and/or the second uplink or joint TCI state according to the uplink transmission scheme indicated by the downlink control information.
  • Uplink transmission
  • a communication system including:
  • a network device that sends transmission configuration indication (TCI) status indication information indicating a first uplink or combined TCI status and a second uplink or combined TCI status; sends downlink control information (DCI) and receives uplink transmission;
  • TCI transmission configuration indication
  • DCI downlink control information
  • Terminal equipment which receives the transmission configuration indication (TCI) status indication information; receives the downlink control information (DCI); and according to the uplink transmission scheme indicated by the downlink control information, based on the first uplink or joint TCI status And/or the second uplink or combined TCI state is used to perform the uplink transmission.
  • TCI transmission configuration indication
  • DCI downlink control information
  • the terminal device performs uplink transmission based on the first uplink or joint TCI state and/or the second uplink or joint TCI state according to the uplink transmission scheme indicated by the downlink control information (DCI).
  • the terminal equipment can switch between at least one multi-panel uplink transmission scheme and/or at least one single-panel uplink transmission scheme, thereby obtaining more robust uplink transmission performance, thereby improving uplink transmission throughput or reliability.
  • Figure 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • Figure 2 is a schematic diagram of a signal sending method according to an embodiment of the present application.
  • Figure 3 is an example diagram of the uplink transmission scheme according to the embodiment of the present application.
  • Figure 4 is another example diagram of the uplink transmission scheme according to the embodiment of the present application.
  • Figure 5 is another example diagram of the uplink transmission scheme according to the embodiment of the present application.
  • Figure 6 is an example diagram of the association between power control parameters and uplink TCI status or joint TCI status in an embodiment of the present application
  • Figure 7 is an example diagram of the relationship between power control parameters and SRI according to the embodiment of the present application.
  • Figure 8 is a schematic diagram of the MAC CE according to the embodiment of the present application.
  • Figure 9 is another schematic diagram of the MAC CE according to the embodiment of the present application.
  • Figure 10 is another schematic diagram of the MAC CE according to the embodiment of the present application.
  • Figure 11 is a schematic diagram of a signal receiving method according to an embodiment of the present application.
  • Figure 12 is a schematic diagram of a signal sending device according to an embodiment of the present application.
  • Figure 13 is a schematic diagram of a signal receiving device according to an embodiment of the present application.
  • Figure 14 is a schematic diagram of the structure of a network device according to an embodiment of the present application.
  • Figure 15 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • the terms “first”, “second”, etc. are used to distinguish different elements from the title, but do not indicate the spatial arrangement or temporal order of these elements, and these elements should not be used by these terms. restricted.
  • the term “and/or” includes any and all combinations of one or more of the associated listed terms.
  • the terms “comprises,” “includes,” “having” and the like refer to the presence of stated features, elements, elements or components but do not exclude the presence or addition of one or more other features, elements, elements or components.
  • the term “communication network” or “wireless communication network” may refer to a network that complies with any of the following communication standards, such as Long Term Evolution (LTE, Long Term Evolution), Long Term Evolution Enhanced (LTE-A, LTE- Advanced), Wideband Code Division Multiple Access (WCDMA, Wideband Code Division Multiple Access), High-Speed Packet Access (HSPA, High-Speed Packet Access), etc.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution Enhanced
  • LTE-A Long Term Evolution Enhanced
  • WCDMA Wideband Code Division Multiple Access
  • High-Speed Packet Access High-Speed Packet Access
  • communication between devices in the communication system can be carried out according to any stage of communication protocols, which may include but are not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G and 5G. , New Wireless (NR, New Radio), etc., and/or other communication protocols currently known or to be developed in the future.
  • Network device refers to a device in a communication system that connects a terminal device to a communication network and provides services to the terminal device.
  • Network equipment may include but is not limited to the following equipment: base station (BS, Base Station), access point (AP, Access Point), transmission and reception point (TRP, Transmission Reception Point), broadcast transmitter, mobile management entity (MME, Mobile Management Entity), gateway, server, wireless network controller (RNC, Radio Network Controller), base station controller (BSC, Base Station Controller), etc.
  • the base station may include but is not limited to: Node B (NodeB or NB), evolved Node B (eNodeB or eNB) and 5G base station (gNB), etc.
  • it may also include remote radio head (RRH, Remote Radio Head) , Remote Radio Unit (RRU, Remote Radio Unit), relay or low-power node (such as femeto, pico, etc.).
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • relay or low-power node such as femeto, pico, etc.
  • base station may include some or all of their functions, each of which may provide communications coverage to a specific geographic area.
  • the term "cell” may refer to a base station and/or its coverage area, depending on the context in which the term is used.
  • the term "user equipment” (UE, User Equipment) or “terminal equipment” (TE, Terminal Equipment or Terminal Device) refers to a device that accesses a communication network through a network device and receives network services.
  • Terminal equipment can be fixed or mobile, and can also be called mobile station (MS, Mobile Station), terminal, subscriber station (SS, Subscriber Station), access terminal (AT, Access Terminal), station, etc.
  • the terminal equipment may include but is not limited to the following equipment: cellular phone (Cellular Phone), personal digital assistant (PDA, Personal Digital Assistant), wireless modem, wireless communication equipment, handheld device, machine-type communication equipment, laptop computer, Cordless phones, smartphones, smart watches, digital cameras, and more.
  • cellular phone Cellular Phone
  • PDA Personal Digital Assistant
  • wireless modem wireless communication equipment
  • handheld device machine-type communication equipment
  • laptop computer Cordless phones
  • Cordless phones smartphones, smart watches, digital cameras, and more.
  • the terminal device can also be a machine or device for monitoring or measuring.
  • the terminal device can include but is not limited to: Machine Type Communication (MTC) terminals, Vehicle communication terminals, device-to-device (D2D, Device to Device) terminals, machine-to-machine (M2M, Machine to Machine) terminals, etc.
  • MTC Machine Type Communication
  • D2D Device to Device
  • M2M Machine to Machine
  • network side refers to one side of the network, which may be a certain base station or may include one or more network devices as above.
  • user side or “terminal side” or “terminal device side” refers to the side of the user or terminal, which may be a certain UE or may include one or more terminal devices as above.
  • device can refer to network equipment or terminal equipment.
  • FIG 1 is a schematic diagram of a communication system according to an embodiment of the present application, schematically illustrating a terminal device and a network device as an example.
  • the communication system 100 may include a first TRP 101, a second TRP 102 and a terminal device 103. .
  • the first TRP101 and the second TRP102 may be network devices.
  • Figure 1 only takes two network devices and one terminal device as an example for illustration, but the embodiment of the present application is not limited thereto.
  • existing services or services that may be implemented in the future can be transmitted between the first TRP 101, the second TRP 102, and the terminal device 103.
  • these services may include but are not limited to: enhanced mobile broadband (eMBB, enhanced Mobile Broadband), massive machine type communication (mMTC, massive Machine Type Communication) and high-reliability and low-latency communication (URLLC, Ultra-Reliable and Low -Latency Communication), etc.
  • eMBB enhanced mobile broadband
  • mMTC massive Machine Type Communication
  • URLLC Ultra-Reliable and Low -Latency Communication
  • mTRP transmission includes mTRP transmission based on sDCI (single DCI) and mTRP transmission based on mDCI (multiple DCI).
  • sDCI mTRP single DCI
  • mDCI mTRP multiple DCI
  • one DCI schedules the uplink and downlink transmission of two TRPs, which is more suitable for ideal situations where the backhaul between TRPs is ideal.
  • mDCI mTRP two TRPs use two DCIs to schedule the uplink and downlink transmission of their respective TRPs respectively, which is more suitable for situations where the backhaul between TRPs is not ideal.
  • the terminal device 103 sends PUSCH in a PUSCH repetition (PUSCH repetition) manner. For example, transmit to the first TRP 101 in time slot 1, transmit to the second TRP 102 in time slot 2, and so on.
  • PUSCH repetition PUSCH repetition
  • the terminal device is configured with two SRS resource sets.
  • the terminal device 103 is configured with the first SRS resource set corresponding to the first TRP101; the terminal device 103 is configured with the second SRS resource set corresponding to the second TRP102.
  • the second SRS resource set (2nd SRS resource set).
  • the terminal equipment may send PUSCH to the first TRP101 and/or the second TRP102 based on different precoding matrices, SRI (SRS resource indicator), power control parameters and other transmission parameters. .
  • the terminal device obtains transmission parameters for the first TRP101 and the second TRP102 based on the first SRS resource set and the second SRS resource set.
  • the terminal device needs to know the mapping relationship between PUSCH repetition and SRS resource set, that is, it needs to know which SRS resource set each PUSCH repetition should be sent based on.
  • Rel-17 the end device uses only one panel for each uplink transmission. Even if the terminal device has multiple panels, Re-17 does not support using multiple panels for simultaneous uplink transmission.
  • Rel-18 will research and standardize simultaneous multi-panel uplink transmission of terminal equipment, and is based on the unified TCI framework and mTRP scenario mentioned above. Currently, simultaneous multi-panel uplink transmission has been identified as one of the project contents of Rel-18, and the standardization work of Rel-18 has not yet started.
  • embodiments of the present application provide a method, device, and system for uplink transmission based on a unified TCI in a multi-TRP scenario.
  • the embodiment of the present application provides a signal sending method, which is applied on the terminal device side.
  • FIG. 2 is a schematic diagram of a signal sending method according to an embodiment of the present application. As shown in Figure 2, the method includes:
  • the terminal device receives Transmission Configuration Indication (TCI) status indication information, where the TCI status indication information indicates the first uplink or combined TCI status and the second uplink or combined TCI status;
  • TCI Transmission Configuration Indication
  • the terminal device receives downlink control information (DCI);
  • DCI downlink control information
  • the terminal device performs uplink transmission based on the first uplink or joint TCI state and/or the second uplink or joint TCI state according to the uplink transmission scheme indicated by the downlink control information.
  • TRP and “SRS resource set” may be used interchangeably.
  • TRP and “CSI-RS resource set” are interchangeable.
  • the terms “corresponding”, “associated” and “include” can be replaced with each other, and “uplink TCI status” and “joint TCI status” can be replaced with each other.
  • uplink TCI state or combined TCI state and “uplink or combined TCI state” may be interchanged.
  • the terms “transmitting” and “sending” may be interchangeable; the embodiments of the present application are not limited thereto.
  • the terminal device receives the downlink control information within the action time of the first uplink or combined TCI state and the second uplink or combined TCI state.
  • the uplink transmission scheme available to the terminal device is an uplink transmission scheme used in at least one of the following situations:
  • the terminal device is configured with two SRS resource sets
  • -DCI format 1_1/1_2with/without DL assignment indicates transmission configuration indication (TCI) status indication information, which indicates two uplink TCI states (UL-TCIState) or joint TCI state (DLorJoint-TCIState);
  • TCI transmission configuration indication
  • DCI Format 1_1 or DCI format 1_2 can schedule downlink data, which is called DCI format 1_1/1_2 with DL assignment, or it can not schedule downlink data, which is called DCI format 1_1/1_2 without DL assignment;
  • the terminal equipment has at least two panels and has the capability of simultaneous multi-panel uplink transmission.
  • DCI format 1_1 or DCI format 1_2 indicates two uplink TCI states or combined TCI states.
  • DCI format 0_1 or DCI format 0_2 further instructs the terminal device to use a certain uplink transmission scheme.
  • the uplink transmission scheme may be based on two TCI states, or based on the first TCI state, or based on the second TCI state.
  • the downlink control information indicates or activates the uplink transmission
  • the uplink transmission includes:
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • SRS Sounding Reference Signal
  • dynamic grant-based PUSCH includes initial transmission and retransmission of non-Type 1/Type 2 configured grant-based PUSCH scheduled by DCI, and type 1/Type 2 configured grant-based PUSCH scheduled by DCI. PUSCH retransmission.
  • uplink transmission includes transmission of at least one of the following:
  • the uplink transmission scheme available to the terminal device is the uplink transmission scheme without using unified TCI.
  • the terminal device determines the uplink transmission scheme according to the embodiment of the present application, but does not use the UL TX spatial filter determined based on unified TCI for uplink transmission, but uses the UL TX spatial filter determined based on the existing technology for uplink transmission.
  • the following is a schematic description of the uplink transmission scheme. There may be one or more uplink transmission schemes available.
  • the uplink transmission scheme includes:
  • Solution 0 Perform first uplink transmission based on the first uplink or joint TCI state and perform second uplink transmission based on the second uplink or joint TCI state at the same time; wherein the first uplink transmission uses a first set of power control parameters, the second uplink transmission uses a second set of power control parameters.
  • the terminal device uses two panels to perform the first uplink transmission and the second uplink transmission to the first transmission reception point and the second transmission reception point respectively.
  • the uplink transmission scheme includes:
  • Solution 1 Perform first uplink transmission based on the first uplink or combined TCI state and perform second uplink transmission based on the second uplink or combined TCI state at the same time; the first uplink transmission and the second uplink transmission use The first set of power control parameters.
  • the terminal device uses two panels to simultaneously perform the first uplink transmission and the second uplink transmission to the first transmission receiving point.
  • the uplink transmission scheme includes:
  • Solution 2 Perform first uplink transmission based on the first uplink or combined TCI state and perform second uplink transmission based on the second uplink or combined TCI state at the same time; the first uplink transmission and the second uplink transmission use The second set of power control parameters.
  • the terminal device uses two panels to simultaneously perform the first uplink transmission and the second uplink transmission to the second transmission receiving point.
  • the above adaptability illustrates the uplink transmission scheme using multiple panels at the same time, including at least one of the uplink transmission schemes 0 to 2.
  • the following describes the uplink transmission scheme using a single panel, including at least one of the uplink transmission schemes 3 to 6.
  • the uplink transmission scheme includes:
  • Solution 3 Perform first uplink transmission based on the first uplink or combined TCI state; wherein the first uplink transmission uses a first set of power control parameters.
  • the terminal device uses a panel to perform the first uplink transmission to a first transmission receiving point.
  • the uplink transmission scheme includes:
  • Solution 4 Perform a second uplink transmission based on the second uplink or combined TCI state; wherein the second uplink transmission uses a second set of power control parameters.
  • the terminal device uses a panel to perform the second uplink transmission to a second transmission receiving point.
  • the uplink transmission scheme includes:
  • Solution 5 Perform first uplink transmission based on the first uplink or combined TCI state and perform second uplink transmission based on the second uplink or combined TCI state through time division multiplexing (TDM); wherein the first uplink transmission is based on the first uplink Or the combined TCI state is based on the second uplink or combined TCI state, the first uplink transmission uses a first set of power control parameters, and the second uplink transmission uses a second set of power control parameters.
  • TDM time division multiplexing
  • the terminal device first uses a panel to perform the first uplink transmission to the first transmission receiving point, and then uses a panel to perform the second uplink transmission to the second transmission receiving point.
  • the uplink transmission scheme includes:
  • Solution 6 Perform first uplink transmission based on the first uplink or combined TCI state and perform second uplink transmission based on the second uplink or combined TCI state through time division multiplexing (TDM); wherein the first uplink transmission is based on the second uplink Or the combined TCI state is based on the first uplink or combined TCI state, the first uplink transmission uses a first set of power control parameters, and the second uplink transmission uses a second set of power control parameters.
  • TDM time division multiplexing
  • the terminal device first uses a panel to perform the second uplink transmission to the second transmission receiving point, and then uses a panel to perform the first uplink transmission to the first transmission receiving point.
  • Uplink transmission schemes 0 to 6 may be errors! Reference source not found. shown.
  • the uplink transmission scheme is equivalent.
  • Error! Reference source not found. Indicates the uplink transmission scheme of PUSCH.
  • FIG. 3 is an example diagram of the uplink transmission scheme according to the embodiment of the present application, schematically explaining the uplink transmission scheme 0.
  • the terminal device uses two panels for uplink transmission at the same time, and the two panels transmit to two TRPs respectively.
  • Figure 4 is another example diagram of the uplink transmission scheme according to the embodiment of the present application, schematically explaining the uplink transmission scheme 1 or 2.
  • the terminal device uses two panels for uplink transmission at the same time, and the two panels only transmit to a certain TRP.
  • Figure 5 is another example diagram of the uplink transmission scheme according to the embodiment of the present application, schematically explaining the uplink transmission scheme 3 or 4. As shown in Figure 5, the terminal device uses a panel for uplink transmission, and the panel only transmits to a certain TRP.
  • uplink transmission scheme 5 or 6 For uplink transmission scheme 5 or 6, refer to Figure 1 for schematic explanation. Different from transmission scheme 0, no matter the terminal device has one panel or two panels, in uplink transmission scheme 5 or 6, the terminal device only uses one panel for uplink transmission, but transmits data to different TRPs at different time units in a TDM manner. Make the transfer.
  • the SRS resource set and power control parameters (referred to as power control parameters) will be described below.
  • the first uplink transmission is based on a first set of SRS resources
  • the second uplink transmission is based on a second set of SRS resources.
  • uplink TCI status or joint TCI status in Table 2 can be equivalently replaced by "SRS resource set”.
  • the terminal device uses the i-th panel to send one or more SRSs in the i-th SRS resource set.
  • the network device can obtain the channel state information of the uplink channel from the i-th panel to the network device, thereby determining whether it is suitable for the i-th panel.
  • SRI can be indicated by the SRS resource indicator field or the Second SRS resource indicator field in DCI, which is referred to as indicated by the SRI field.
  • TPMI can be indicated by the Precoding information and number of layers field or the Second Precoding information field in DCI, which is referred to as indicated by the TPMI field.
  • the terminal device uses the same antenna to transmit SRS and other uplink signals (such as PUSCH)
  • the terminal device performs uplink transmission based on the i-th SRS resource set, which can also be equivalent to the terminal device using the i-th panel for uplink transmission.
  • the SRI field can be the SRS resource indicator field or the Second SRS resource indicator field in the standard TS 38.212
  • the TPMI field can be the Precoding information and number of layers field or the Second Precoding information field in the standard TS 38.212; this application is not limited to this.
  • the uplink beam used is determined based on the i-th uplink TCI state or the joint TCI state.
  • the terminal equipment performs uplink transmission based on the i-th SRS resource set, which is equivalent to using the i-th panel for uplink transmission, the uplink beam of the i-th panel of the terminal equipment is determined based on the i-th uplink TCI state or the joint TCI state.
  • the power control parameters include at least one of target received power (P0), path loss compensation factor (alpha), path loss reference signal (PL-RS, Pathloss-Reference Signal) and closed loop index (closed loop index).
  • P0 target received power
  • path loss compensation factor alpha
  • PL-RS path loss reference signal
  • PL-RS path loss reference signal
  • closed loop index closed loop index
  • an uplink TCI state or a joint TCI state includes or is associated with a set of power control parameters.
  • FIG. 6 is an example diagram of the association between power control parameters and uplink TCI status or joint TCI status according to an embodiment of the present application.
  • the RRC IE Information Element
  • the uplink TCI status or joint TCI status namely UL-TCIState and DLorJoint-TCIState, including the path loss reference signal identified as pathlossReferenceRS-Id
  • the Uplink-powerControlId associated target Power p0 in Figure 6
  • path loss compensation factor alpha in Figure 6
  • closed loop index closed loop index
  • FIG. 7 is an example diagram of the relationship between power control parameters and SRI according to the embodiment of the present application.
  • the specific method for determining the uplink beam, SRI and TPMI can follow the existing technology.
  • the terminal device performs the uplink transmission according to the downlink control information.
  • mTRP transmission reception points
  • sDCI single downlink control information
  • the terminal device performs the uplink transmission according to the downlink control information.
  • mTRP transmission reception points
  • mDCI downlink control information
  • the uplink transmission scheme available to the terminal device includes a simultaneous multi-panel uplink transmission scheme, or a multi-panel uplink transmission scheme and a single-panel uplink transmission scheme.
  • the available uplink transmission scheme of the terminal device may be one of the multiple uplink transmission schemes described in Table 1 or Table 2 or any combination thereof.
  • the uplink transmission solutions available for terminal equipment include:
  • the uplink transmission solutions available for end devices include:
  • the uplink transmission solutions available for terminal devices include:
  • the uplink transmission scheme used by the terminal device is indicated by DCI and/or configured by RRC signaling.
  • the uplink transmission schemes available to the terminal equipment include at least two of the uplink transmission schemes 0 to 2, and the DCI formats 0_1 and/or 0_2 indicate the uplink transmission schemes used by the terminal equipment.
  • the uplink transmission schemes available to the terminal device include uplink transmission scheme 0 and at least one of uplink transmission schemes 3 and 4, and the uplink transmission scheme used by the terminal device is indicated by DCI formats 0_1 and/or 0_2.
  • the uplink transmission schemes available to the terminal device include uplink transmission scheme 0 and at least one of uplink transmission schemes 3, 4, 5, and 6, and the uplink transmission scheme used by the terminal device is indicated by DCI formats 0_1 and/or 0_2. .
  • the uplink transmission schemes available to the terminal equipment include uplink transmission scheme 0 and at least one of uplink transmission schemes 3, 4, 5, and 6, and the uplink transmission scheme used by the terminal equipment is indicated by RRC signaling.
  • the uplink transmission scheme used by the terminal device is indicated by the SRS resource set indication field or the SRS request field in the DCI.
  • multiple uplink transmission schemes are configured for the terminal device through RRC signaling, and one of the multiple uplink transmission schemes is indicated by the downlink control information.
  • the uplink transmission schemes available to the terminal equipment include uplink transmission scheme 0, at least one of uplink transmission schemes 3 and 4, and at least one of uplink transmission schemes 5 and 6.
  • RRC signaling configures an RRC IE for the terminal equipment ( Marked as "multi-panel-simultaneous"), DCI formats 0_1 and/or 0_2 instruct the terminal device to use one of the uplink transmission schemes 0, 3, and 4, or RRC signaling configures an RRC IE for the terminal device (marked as "multi-panel-TDM"), DCI formats 0_1 and/or 0_2 indicate that the terminal device uses one of the uplink transmission schemes 5, 6, 3, and 4.
  • the terminal device When the terminal device is instructed to use two uplink TCI states or a combined TCI state, the terminal device can know according to the RRC signaling whether to use two TCI states for uplink transmission at the same time (scheme 0), or to use two TCI states to perform TDM transmission. mode for uplink transmission (schemes 5 and 6). Through DCI signaling, the uplink transmission scheme using two TCI states (scheme 0) and the uplink transmission scheme using one TCI state (schemes 3 and 4) can be further realized. Dynamic switching, or dynamic switching between the uplink transmission scheme using two TCI states (schemes 5 and 6) and the uplink transmission scheme using one TCI state (schemes 3 and 4).
  • any one of the uplink transmission schemes 0, 1, and 2 it includes more than one sub-scheme.
  • it includes more than one sub-scheme include at least one of the following subscenarios:
  • SDM Spatial Division Multiplex
  • Frequency Division Multiplex 1 (FDM1, Frequency Division Multiplex 1): The two panels of the terminal device send different layers on two frequency division multiplexed resources.
  • Frequency Division Multiplex 2 (FDM2, Frequency Division Multiplex 2): The two panels of the terminal device send two copies on two frequency division multiplexed resources respectively.
  • any one of the uplink transmission schemes 5 and 6 it includes more than one sub-scheme.
  • it includes more than one sub-scheme include at least one of the following subscenarios:
  • the terminal device performs TDM transmission in the order of 1, 2, 1, 2.
  • the terminal device performs TDM transmission in the order of 1, 1, 2, and 2.
  • 1 and 2 respectively represent the first and second uplink or joint TCI status, or SRS resource set, or TRP.
  • sub-schemes are configured by RRC signaling. For example, if RRC signaling configures the terminal device to use the FDM1 sub-scheme, it is an error! Reference source not found.
  • the uplink transmission scheme 0 in is replaced by this sub-scheme (the same applies to transmission schemes 1 and 2).
  • any of the previously described methods can be used to determine an uplink transmission scheme among multiple uplink transmission schemes. .
  • the sub-scheme is indicated by DCI signaling.
  • DCI Downlink Control Channel
  • the uplink transmission scheme 0 in is replaced by three uplink transmission schemes 0a, 0b, and 0c (the same applies to transmission schemes 1 and 2), corresponding to three sub-schemes respectively.
  • DCI indicates the sub-scheme used.
  • any of the previously described methods can be used to determine an uplink transmission plan among multiple uplink transmission plans.
  • the PUCCH transmission is described below.
  • the above scheme is also applicable, and the similarities with the previous ones will not be repeated again.
  • the terminal device receives transmission configuration indication (TCI) status indication information, the TCI status indication information indicating a first uplink or combined TCI status and a second uplink or combined TCI status;
  • TCI transmission configuration indication
  • the terminal device receives downlink control information (DCI); and
  • the terminal equipment transmits the PUCCH based on the first uplink or joint TCI state and/or the second uplink or joint TCI state on the physical uplink control channel (PUCCH) resource indicated by the downlink control information.
  • PUCCH physical uplink control channel
  • the Physical Uplink Control Channel (PUCCH) resource is configured by RRC signaling or MAC CE to use one of a plurality of uplink transmission schemes, and when the PUCCH resource is indicated by the DCI, the terminal The device uses the configured uplink transmission scheme to transmit PUCCH.
  • PUCCH Physical Uplink Control Channel
  • PUCCH resources are indicated by DCI can be equivalently replaced by "PUCCH resources are determined by the PUCCH resource indicator field of DCI and the CCE (Control Channel Element) index of DCI.”
  • DCI format 1_1 or DCI format 1_2 indicates two uplink TCI states or combined TCI states.
  • DCI format 1_1 or DCI format 1_2 instructs the terminal device to send PUCCH.
  • the PUCCH resource is determined based on the PUCCH resource indicator field of DCI format 1_1 or DCI format 1_2, and/or, the CCE (Control Channel Element) index of DCI format 1_1 or DCI format 1_2.
  • PUCCH resources are configured by RRC signaling or MAC CE to use a certain uplink transmission scheme.
  • the uplink transmission scheme may be based on two TCI states, or based on the first TCI state, or based on the second TCI state.
  • the terminal equipment sends the PUCCH using the uplink transmission scheme.
  • RRC signaling when using RRC signaling to configure PUCCH resources, configure the uplink transmission scheme used by the PUCCH resource through a new RRC IE (denoted as "scheme"), that is, the uplink transmission scheme associated with the PUCCH.
  • Scheme the uplink transmission scheme associated with the PUCCH.
  • Table 3 below provides a schematic explanation of RRC signaling.
  • RRC signaling can configure multiple PUCCH resources.
  • the PUCCH resource indicator field in DCI indicates one PUCCH resource among multiple PUCCH resources.
  • the terminal equipment uses the uplink transmission scheme associated with the PUCCH resource.
  • the PUCCH resources configured by RRC do not include the IE indicating the uplink transmission scheme.
  • the PUCCH resources are associated with the uplink transmission scheme through MAC CE.
  • the DCI indicates a PUCCH resource
  • the PUCCH uses the uplink transmission scheme configured by the MAC CE for transmission.
  • FIG. 8 is a schematic diagram of MAC CE according to an embodiment of the present application, providing a MAC CE diagram.
  • Each PUCCH resource ID field identifies a PUCCH resource.
  • Each PUCCH resource ID field is associated with one or more Si fields.
  • One or more Si fields are used to indicate the uplink transmission scheme associated with the PUCCH resource.
  • Si fields S5-S7
  • "000" represents uplink transmission scheme 0
  • "001” represents uplink transmission scheme 1
  • the unused Si fields S0 ⁇ S4 are reserved fields, which are equivalent to R fields (reserved fields), and can be marked as R.
  • the MAC CE may also include other fields not shown in Figure 8.
  • FIG 10 is another schematic diagram of the MAC CE according to the embodiment of the present application.
  • the C field is 0, indicating that the PUCCH resource (PUCCH resource ID) is associated with a Spatial Relation Info (Spatial Relation Info ID0).
  • At least one of the S0 and S1 fields indicates an uplink transmission scheme based on an uplink TCI state or a combined TCI state. For example, an S1 field of 1 indicates uplink transmission scheme 3, an S1 field of 0 indicates uplink transmission scheme 4, and the S0 field is marked R.
  • the C field is 1, indicating that the PUCCH resource (PUCCH resource ID) is associated with two Spatial Relation Info (Spatial Relation Info ID0, Spatial Relation Info ID1), and at least one of the S0, S1, S2, and S3 fields indicates that it is based on two uplink TCIs. state or combined TCI state uplink transmission scheme. For example, using the S0 and S1 fields, "00" indicates uplink transmission scheme 0, "01" indicates uplink transmission scheme 5, "10” indicates uplink transmission scheme 6, and the S2 and S3 fields are marked R. Without loss of generality, the MAC CE may also include other fields not shown in Figure 10.
  • PUCCH uses unified TCI
  • the UL TX spatial filter used to send PUCCH is determined based on the uplink or joint TCI status
  • the uplink transmission scheme used is determined based on RRC configuration or MAC CE configuration.
  • PUCCH does not use unified TCI
  • the UL TX spatial filter used to send PUCCH is determined based on Spatial Relation Info
  • the uplink transmission scheme used is determined based on RRC configuration or MAC CE configuration.
  • a PUCCH can be transmitted based on one Spatial Relation Info, or based on two Spatial Relation Info, depending on whether the PUCCH resource indicated by the DCI is associated with one or two Spatial Relation Info.
  • the uplink transmission scheme is based on RRC configuration
  • the uplink transmission mode of PUCCH is determined based on the "scheme" IE configured by RRC.
  • the uplink transmission method of the PUCCH is determined based on the Si field.
  • the terminal device performs uplink transmission based on the first uplink or combined TCI state and/or the second uplink or combined TCI state according to the uplink transmission scheme indicated by the downlink control information (DCI).
  • the terminal equipment can switch between at least one multi-panel uplink transmission scheme and/or at least one single-panel uplink transmission scheme, thereby obtaining more robust uplink transmission performance, thereby improving uplink transmission throughput or reliability.
  • the embodiment of the present application provides a signal receiving method, which is explained from the network device side.
  • the embodiments of the present application can be combined with the embodiments of the first aspect, or can be implemented independently. The same content as the embodiment of the first aspect will not be described again.
  • Figure 11 is a schematic diagram of a signal receiving method according to an embodiment of the present application. As shown in Figure 11, the method includes:
  • the network device sends transmission configuration indication (TCI) status indication information.
  • TCI status indication information indicates the first uplink or combined TCI status and the second uplink or combined TCI status;
  • the network device sends downlink control information (DCI); and
  • the network device receives uplink transmission; wherein the terminal device performs the transmission based on the first uplink or joint TCI state and/or the second uplink or joint TCI state according to the uplink transmission scheme indicated by the downlink control information.
  • the uplink transmission receives uplink transmission; wherein the terminal device performs the transmission based on the first uplink or joint TCI state and/or the second uplink or joint TCI state according to the uplink transmission scheme indicated by the downlink control information.
  • the downlink control information indicates or activates the uplink transmission
  • the uplink transmission includes:
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • SRS Sounding Reference Signal
  • the uplink transmission scheme includes:
  • a first uplink transmission is performed based on the first uplink or joint TCI state and a second uplink transmission is performed based on the second uplink or joint TCI state; wherein the first uplink transmission uses a first set of power control parameters, so The second uplink transmission uses a second set of power control parameters.
  • the uplink transmission scheme includes:
  • the first uplink transmission is performed based on the first uplink or combined TCI state and the second uplink transmission is performed based on the second uplink or combined TCI state; the first uplink transmission and the second uplink transmission use the first set Power control parameters.
  • the uplink transmission scheme includes:
  • the first uplink transmission is performed based on the first uplink or combined TCI state and the second uplink transmission is performed based on the second uplink or combined TCI state; the first uplink transmission and the second uplink transmission use a second set Power control parameters.
  • the uplink transmission scheme includes:
  • a first uplink transmission is performed based on the first uplink or joint TCI state; wherein the first uplink transmission uses a first set of power control parameters.
  • the uplink transmission scheme includes:
  • a second uplink transmission is performed based on the second uplink or combined TCI state; wherein the second uplink transmission uses a second set of power control parameters.
  • the uplink transmission scheme includes:
  • the first uplink transmission is performed based on the first uplink or joint TCI state and the second uplink transmission is performed based on the second uplink or joint TCI state through time division multiplexing (TDM); wherein the first uplink or joint TCI is first used.
  • TDM time division multiplexing
  • the status is then based on the second uplink or combined TCI status, the first uplink transmission using a first set of power control parameters, and the second uplink transmission using a second set of power control parameters.
  • the uplink transmission scheme includes:
  • the first uplink transmission is performed based on the first uplink or joint TCI state and the second uplink transmission is performed based on the second uplink or joint TCI state through time division multiplexing (TDM); wherein the first uplink or joint TCI is based on the second uplink or joint TCI state.
  • TDM time division multiplexing
  • the status is then based on the first uplink or combined TCI status, the first uplink transmission uses a first set of power control parameters, and the second uplink transmission uses a second set of power control parameters.
  • the first uplink transmission is based on a first set of SRS resources
  • the second uplink transmission is based on a second set of SRS resources.
  • the terminal device performs uplink transmission based on the first uplink or combined TCI state and/or the second uplink or combined TCI state according to the uplink transmission scheme indicated by the downlink control information (DCI).
  • the terminal equipment can switch between at least one multi-panel uplink transmission scheme and/or at least one single-panel uplink transmission scheme, thereby obtaining more robust uplink transmission performance, thereby improving uplink transmission throughput or reliability.
  • An embodiment of the present application provides a signal sending device.
  • the device may be, for example, a terminal device, or may be some or some parts or components configured in the terminal device, and the same content as the embodiment of the first aspect will not be described again.
  • Figure 12 is a schematic diagram of a signal sending device according to an embodiment of the present application.
  • the signal sending device 1200 includes:
  • the first receiving unit 1201 receives transmission configuration indication (TCI) status indication information, where the TCI status indication information indicates the first uplink or combined TCI status and the second uplink or combined TCI status;
  • TCI transmission configuration indication
  • the second receiving unit 1202 receives downlink control information (DCI); and
  • the sending unit 1203 performs uplink transmission based on the first uplink or joint TCI state and/or the second uplink or joint TCI state according to the uplink transmission scheme indicated by the downlink control information.
  • the second receiving unit 1202 receives the downlink control information within the action time of the first uplink or joint TCI state and the second uplink or joint TCI state.
  • the downlink control information indicates or activates the uplink transmission
  • the uplink transmission includes:
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • SRS Sounding Reference Signal
  • the uplink transmission scheme includes:
  • a first uplink transmission is performed based on the first uplink or joint TCI state and a second uplink transmission is performed based on the second uplink or joint TCI state; wherein the first uplink transmission uses a first set of power control parameters, so The second uplink transmission uses a second set of power control parameters;
  • the sending unit 1203 uses two panels to simultaneously perform the first uplink transmission and the second uplink transmission to the first transmission receiving point and the second transmission receiving point respectively.
  • the uplink transmission scheme includes:
  • the first uplink transmission is performed based on the first uplink or combined TCI state and the second uplink transmission is performed based on the second uplink or combined TCI state; the first uplink transmission and the second uplink transmission use the first set Power control parameters;
  • the sending unit 1203 uses two panels to simultaneously perform the first uplink transmission and the second uplink transmission to the first transmission receiving point.
  • the uplink transmission scheme includes:
  • the first uplink transmission is performed based on the first uplink or combined TCI state and the second uplink transmission is performed based on the second uplink or combined TCI state; the first uplink transmission and the second uplink transmission use a second set Power control parameters;
  • the sending unit 1203 uses two panels to simultaneously perform the first uplink transmission and the second uplink transmission to the second transmission receiving point.
  • the uplink transmission scheme includes:
  • the sending unit 1203 uses a panel to perform the first uplink transmission to the first transmission receiving point.
  • the uplink transmission scheme includes:
  • the sending unit 1203 uses a panel to perform the second uplink transmission to the second transmission receiving point.
  • the uplink transmission scheme includes:
  • the first uplink transmission is performed based on the first uplink or joint TCI state and the second uplink transmission is performed based on the second uplink or joint TCI state through time division multiplexing (TDM); wherein the first uplink or joint TCI is first used.
  • TDM time division multiplexing
  • the state is then based on the second uplink or combined TCI state, the first uplink transmission uses a first set of power control parameters, and the second uplink transmission uses a second set of power control parameters;
  • the sending unit 1203 first uses a panel to perform the first uplink transmission to a first transmission receiving point, and then uses a panel to perform the second uplink transmission to a second transmission receiving point.
  • the uplink transmission scheme includes:
  • the first uplink transmission is performed based on the first uplink or joint TCI state and the second uplink transmission is performed based on the second uplink or joint TCI state through time division multiplexing (TDM); wherein the first uplink or joint TCI is based on the second uplink or joint TCI state.
  • TDM time division multiplexing
  • the state is then based on the first uplink or combined TCI state, the first uplink transmission uses a first set of power control parameters, and the second uplink transmission uses a second set of power control parameters;
  • the sending unit 1203 first uses a panel to perform the second uplink transmission to the second transmission receiving point, and then uses a panel to perform the first uplink transmission to the first transmission receiving point.
  • the first uplink transmission is based on a first set of SRS resources
  • the second uplink transmission is based on a second set of SRS resources.
  • the sending unit 1203 performs the uplink transmission according to the downlink control information.
  • mTRP multi-transmission reception point
  • sDCI single downlink control information
  • the sending unit 1203 performs the uplink transmission according to the downlink control information.
  • multiple uplink transmission schemes are configured for the terminal device through RRC signaling, and one of the multiple uplink transmission schemes is indicated by the downlink control information.
  • a physical uplink control channel (PUCCH) resource is configured by RRC signaling or MAC CE to use one of a plurality of uplink transmission schemes, and when the PUCCH resource is indicated by the DCI, the sending Unit 1203 transmits the PUCCH using the configured uplink transmission scheme.
  • PUCCH physical uplink control channel
  • the signal sending device 1200 may also include other components or modules.
  • the specific contents of these components or modules please refer to related technologies.
  • FIG. 12 only illustrates the connection relationships or signal directions between various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connections can be used.
  • Each of the above components or modules can be implemented by hardware facilities such as a processor, a memory, a transmitter, a receiver, etc.; the implementation of this application is not limited to this.
  • the terminal device performs uplink transmission based on the first uplink or combined TCI state and/or the second uplink or combined TCI state according to the uplink transmission scheme indicated by the downlink control information (DCI).
  • the terminal equipment can switch between at least one multi-panel uplink transmission scheme and/or at least one single-panel uplink transmission scheme, thereby obtaining more robust uplink transmission performance, thereby improving uplink transmission throughput or reliability.
  • An embodiment of the present application provides a signal receiving device.
  • the device may be, for example, a network device, or may be some or some parts or components configured on the network device.
  • the same content as the embodiments of the first to third aspects will not be described again.
  • Figure 13 is a schematic diagram of a signal receiving device according to an embodiment of the present application. As shown in Figure 13, the signal receiving device 1300 includes:
  • the first sending unit 1301 sends transmission configuration indication (TCI) status indication information, where the TCI status indication information indicates the first uplink or joint TCI status and the second uplink or joint TCI status;
  • TCI transmission configuration indication
  • the second sending unit 1302 sends downlink control information (DCI); and
  • the receiving unit 1303 receives uplink transmission; wherein the terminal device performs the processing based on the first uplink or joint TCI state and/or the second uplink or joint TCI state according to the uplink transmission scheme indicated by the downlink control information. the above uplink transmission.
  • the downlink control information indicates or activates the uplink transmission
  • the uplink transmission includes:
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • SRS Sounding Reference Signal
  • the uplink transmission scheme includes at least one of the following:
  • a first uplink transmission is performed based on the first uplink or joint TCI state and a second uplink transmission is performed based on the second uplink or joint TCI state; wherein the first uplink transmission uses a first set of power control parameters, so The second uplink transmission uses a second set of power control parameters;
  • the first uplink transmission is performed based on the first uplink or combined TCI state and the second uplink transmission is performed based on the second uplink or combined TCI state; the first uplink transmission and the second uplink transmission use the first set Power control parameters;
  • the first uplink transmission is performed based on the first uplink or combined TCI state and the second uplink transmission is performed based on the second uplink or combined TCI state; the first uplink transmission and the second uplink transmission use a second set Power control parameters;
  • the first uplink transmission is performed based on the first uplink or joint TCI state and the second uplink transmission is performed based on the second uplink or joint TCI state through time division multiplexing (TDM); wherein the first uplink or joint TCI is first used.
  • TDM time division multiplexing
  • the state is then based on the second uplink or combined TCI state, the first uplink transmission uses a first set of power control parameters, and the second uplink transmission uses a second set of power control parameters;
  • the first uplink transmission is performed based on the first uplink or joint TCI state and the second uplink transmission is performed based on the second uplink or joint TCI state through time division multiplexing (TDM); wherein the first uplink or joint TCI is based on the second uplink or joint TCI state.
  • TDM time division multiplexing
  • the state is then based on the first uplink or combined TCI state, the first uplink transmission uses a first set of power control parameters, and the second uplink transmission uses a second set of power control parameters;
  • the first uplink transmission is based on a first set of SRS resources
  • the second uplink transmission is based on a second set of SRS resources.
  • the signal receiving device 1300 may also include other components or modules.
  • the specific contents of these components or modules please refer to related technologies.
  • FIG. 13 only illustrates the connection relationships or signal directions between various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connections can be used.
  • Each of the above components or modules can be implemented by hardware facilities such as a processor, a memory, a transmitter, a receiver, etc.; the implementation of this application is not limited to this.
  • the terminal device performs uplink transmission based on the first uplink or combined TCI state and/or the second uplink or combined TCI state according to the uplink transmission scheme indicated by the downlink control information (DCI).
  • the terminal equipment can switch between at least one multi-panel uplink transmission scheme and/or at least one single-panel uplink transmission scheme, thereby obtaining more robust uplink transmission performance, thereby improving uplink transmission throughput or reliability.
  • An embodiment of the present application also provides a communication system. Refer to FIG. 1 , and the same content as the embodiments of the first to fourth aspects will not be described again.
  • communication system 100 may include at least:
  • a network device that sends transmission configuration indication (TCI) status indication information indicating a first uplink or combined TCI status and a second uplink or combined TCI status; sends downlink control information (DCI) and receives uplink transmission;
  • TCI transmission configuration indication
  • DCI downlink control information
  • Terminal equipment which receives the transmission configuration indication (TCI) status indication information; receives the downlink control information (DCI); and according to the uplink transmission scheme indicated by the downlink control information, based on the first uplink or joint TCI status And/or the second uplink or combined TCI state is used to perform the uplink transmission.
  • TCI transmission configuration indication
  • DCI downlink control information
  • the embodiment of the present application also provides a network device, which may be a base station, for example, but the present application is not limited thereto and may also be other network devices.
  • a network device which may be a base station, for example, but the present application is not limited thereto and may also be other network devices.
  • Figure 14 is a schematic diagram of the structure of a network device according to an embodiment of the present application.
  • the network device 1400 may include a processor 1410 (eg, a central processing unit CPU) and a memory 1420; the memory 1420 is coupled to the processor 1410.
  • the memory 1420 can store various data; in addition, it also stores an information processing program 1430, and the program 1430 is executed under the control of the processor 1410.
  • the processor 1410 may be configured to execute a program to implement the signal receiving method as described in the embodiment of the second aspect.
  • the processor 1410 may be configured to perform the following control: sending transmission configuration indication (TCI) status indication information indicating a first uplink or combined TCI status and a second uplink or combined TCI status; sending downlink control information (DCI); and receiving uplink transmission; wherein the terminal device performs the uplink transmission scheme based on the first uplink or joint TCI state and/or the second uplink or joint TCI state according to the uplink transmission scheme indicated by the downlink control information.
  • TCI transmission configuration indication
  • DCI downlink control information
  • the network device 1400 may also include: a transceiver 1440, an antenna 1450, etc.; the functions of the above components are similar to those of the existing technology and will not be described again here. It is worth noting that the network device 1400 does not necessarily include all components shown in Figure 14; in addition, the network device 1400 may also include components not shown in Figure 14, and reference may be made to the existing technology.
  • the embodiment of the present application also provides a terminal device, but the present application is not limited to this and may also be other devices.
  • Figure 15 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 1500 may include a processor 1510 and a memory 1520; the memory 1520 stores data and programs and is coupled to the processor 1510. It is worth noting that this figure is exemplary; other types of structures may also be used to supplement or replace this structure to implement telecommunications functions or other functions.
  • the processor 1510 may be configured to execute a program to implement the signaling method as described in the embodiment of the first aspect.
  • the processor 1510 may be configured to perform the following control: receive transmission configuration indication (TCI) status indication information indicating a first uplink or combined TCI status and a second uplink or combined TCI status; receive downlink control information (DCI); and perform uplink transmission based on the first uplink or joint TCI state and/or the second uplink or joint TCI state according to the uplink transmission scheme indicated by the downlink control information.
  • TCI transmission configuration indication
  • DCI downlink control information
  • the terminal device 1500 may also include: a communication module 1530, an input unit 1540, a display 1550, and a power supply 1560.
  • the functions of the above components are similar to those in the prior art and will not be described again here. It is worth noting that the terminal device 1500 does not have to include all the components shown in Figure 15, and the above components are not required; in addition, the terminal device 1500 can also include components not shown in Figure 15, please refer to the current There is technology.
  • An embodiment of the present application also provides a computer program, wherein when the program is executed in a terminal device, the program causes the terminal device to execute the signal sending method described in the embodiment of the first aspect.
  • An embodiment of the present application also provides a storage medium storing a computer program, wherein the computer program causes the terminal device to execute the signal sending method described in the embodiment of the first aspect.
  • An embodiment of the present application also provides a computer program, wherein when the program is executed in a network device, the program causes the network device to perform the signal receiving method described in the embodiment of the second aspect.
  • An embodiment of the present application also provides a storage medium storing a computer program, wherein the computer program causes the network device to perform the signal receiving method described in the embodiment of the second aspect.
  • the above devices and methods of this application can be implemented by hardware, or can be implemented by hardware combined with software.
  • the present application relates to a computer-readable program that, when executed by a logic component, enables the logic component to implement the apparatus or component described above, or enables the logic component to implement the various methods described above or steps.
  • This application also involves storage media used to store the above programs, such as hard disks, magnetic disks, optical disks, DVDs, flash memories, etc.
  • the methods/devices described in connection with the embodiments of the present application may be directly embodied as hardware, a software module executed by a processor, or a combination of both.
  • one or more of the functional block diagrams and/or one or more combinations of the functional block diagrams shown in the figure may correspond to each software module of the computer program flow, or may correspond to each hardware module.
  • These software modules can respectively correspond to the various steps shown in the figure.
  • These hardware modules can be implemented by solidifying these software modules using a field programmable gate array (FPGA), for example.
  • FPGA field programmable gate array
  • the software module may be located in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.
  • a storage medium may be coupled to the processor such that the processor can read information from the storage medium and write information to the storage medium; or the storage medium may be an integral part of the processor.
  • the processor and storage media may be located in an ASIC.
  • the software module can be stored in the memory of the mobile terminal or in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or the large-capacity flash memory device.
  • One or more of the functional blocks and/or one or more combinations of the functional blocks described in the accompanying drawings may be implemented as a general-purpose processor or a digital signal processor (DSP) for performing the functions described in this application. ), application specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, or any appropriate combination thereof.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • One or more of the functional blocks and/or one or more combinations of the functional blocks described in the accompanying drawings can also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, or multiple microprocessors. processor, one or more microprocessors combined with DSP communications, or any other such configuration.
  • a signal sending method wherein the method includes:
  • the terminal device receives transmission configuration indication (TCI) status indication information, the TCI status indication information indicating a first uplink or combined TCI status and a second uplink or combined TCI status;
  • TCI transmission configuration indication
  • the terminal device receives downlink control information (DCI); and
  • the terminal device performs uplink transmission based on the first uplink or joint TCI state and/or the second uplink or joint TCI state according to the uplink transmission scheme indicated by the downlink control information.
  • PUSCH Physical uplink shared channel
  • PUCCH Physical Uplink Control Channel
  • SRS Sounding Reference Signal
  • a first uplink transmission is performed based on the first uplink or joint TCI state and a second uplink transmission is performed based on the second uplink or joint TCI state; wherein the first uplink transmission uses a first set of power control parameters, so The second uplink transmission uses a second set of power control parameters.
  • the first uplink transmission is performed based on the first uplink or combined TCI state and the second uplink transmission is performed based on the second uplink or combined TCI state; the first uplink transmission and the second uplink transmission use the first set Power control parameters.
  • the uplink transmission scheme includes:
  • the first uplink transmission is performed based on the first uplink or combined TCI state and the second uplink transmission is performed based on the second uplink or combined TCI state; the first uplink transmission and the second uplink transmission use a second set Power control parameters.
  • the uplink transmission scheme includes:
  • a first uplink transmission is performed based on the first uplink or joint TCI state; wherein the first uplink transmission uses a first set of power control parameters.
  • the uplink transmission scheme includes:
  • a second uplink transmission is performed based on the second uplink or combined TCI state; wherein the second uplink transmission uses a second set of power control parameters.
  • the uplink transmission scheme includes:
  • the first uplink transmission is performed based on the first uplink or joint TCI state and the second uplink transmission is performed based on the second uplink or joint TCI state through time division multiplexing (TDM); wherein the first uplink or joint TCI is first used.
  • TDM time division multiplexing
  • the status is then based on the second uplink or combined TCI status, the first uplink transmission using a first set of power control parameters, and the second uplink transmission using a second set of power control parameters.
  • the first uplink transmission is performed based on the first uplink or joint TCI state and the second uplink transmission is performed based on the second uplink or joint TCI state through time division multiplexing (TDM); wherein the first uplink or joint TCI is based on the second uplink or joint TCI state.
  • TDM time division multiplexing
  • the status is then based on the first uplink or combined TCI status, the first uplink transmission uses a first set of power control parameters, and the second uplink transmission uses a second set of power control parameters.
  • the physical uplink control channel (PUCCH) resource is configured by RRC signaling or MAC CE to use one of a plurality of uplink transmission schemes, and in When the DCI indicates PUCCH resources, the terminal equipment uses the configured uplink transmission scheme to transmit PUCCH.
  • PUCCH physical uplink control channel
  • the uplink transmission scheme includes:
  • a first uplink transmission is performed based on the first uplink or joint TCI state and a second uplink transmission is performed based on the second uplink or joint TCI state; wherein the first uplink transmission uses a first set of power control parameters, so The second uplink transmission uses a second set of power control parameters; and
  • the first uplink transmission is performed based on the first uplink or combined TCI state and the second uplink transmission is performed based on the second uplink or combined TCI state; the first uplink transmission and the second uplink transmission use the first set Power control parameters;
  • the first uplink transmission is performed based on the first uplink or combined TCI state and the second uplink transmission is performed based on the second uplink or combined TCI state; the first uplink transmission and the second uplink transmission use a second set Power control parameters;
  • the first uplink transmission is performed based on the first uplink or joint TCI state and the second uplink transmission is performed based on the second uplink or joint TCI state through time division multiplexing (TDM); wherein the first uplink or joint TCI is first used.
  • TDM time division multiplexing
  • the state is then based on the second uplink or combined TCI state, the first uplink transmission uses a first set of power control parameters, and the second uplink transmission uses a second set of power control parameters;
  • the first uplink transmission is performed based on the first uplink or joint TCI state and the second uplink transmission is performed based on the second uplink or joint TCI state through time division multiplexing (TDM); wherein the first uplink or joint TCI is based on the second uplink or joint TCI state.
  • TDM time division multiplexing
  • the status is then based on the first uplink or combined TCI status, the first uplink transmission uses a first set of power control parameters, and the second uplink transmission uses a second set of power control parameters.
  • the uplink transmission scheme includes:
  • the first uplink transmission is performed based on the first uplink or combined TCI state and the second uplink transmission is performed based on the second uplink or combined TCI state; the first uplink transmission and the second uplink transmission use the first set power control parameters; and
  • the first uplink transmission is performed based on the first uplink or combined TCI state and the second uplink transmission is performed based on the second uplink or combined TCI state; the first uplink transmission and the second uplink transmission use a second set Power control parameters.
  • the uplink transmission scheme includes:
  • the first uplink transmission is performed based on the first uplink or combined TCI state and the second uplink transmission is performed based on the second uplink or combined TCI state; the first uplink transmission and the second uplink transmission use the first set power control parameters; and/or
  • the first uplink transmission is performed based on the first uplink or combined TCI state and the second uplink transmission is performed based on the second uplink or combined TCI state; the first uplink transmission and the second uplink transmission use a second set Power control parameters;
  • the first uplink transmission is performed based on the first uplink or joint TCI state and the second uplink transmission is performed based on the second uplink or joint TCI state through time division multiplexing (TDM); wherein the first uplink or joint TCI is first used.
  • TDM time division multiplexing
  • the state is then based on the second uplink or combined TCI state, the first uplink transmission uses a first set of power control parameters, and the second uplink transmission uses a second set of power control parameters;
  • the first uplink transmission is performed based on the first uplink or joint TCI state and the second uplink transmission is performed based on the second uplink or joint TCI state through time division multiplexing (TDM); wherein the first uplink or joint TCI is based on the second uplink or joint TCI state.
  • TDM time division multiplexing
  • the status is then based on the first uplink or combined TCI status, the first uplink transmission uses a first set of power control parameters, and the second uplink transmission uses a second set of power control parameters.
  • a signal receiving method wherein the method includes:
  • the network device sends transmission configuration indication (TCI) status indication information, where the TCI status indication information indicates a first uplink or combined TCI status and a second uplink or combined TCI status;
  • TCI transmission configuration indication
  • the network device sends downlink control information (DCI); and
  • the network device receives uplink transmission; wherein, the terminal device performs the said uplink transmission based on the first uplink or joint TCI state and/or the second uplink or joint TCI state according to the uplink transmission scheme indicated by the downlink control information. Uplink transmission.
  • PUSCH Physical uplink shared channel
  • PUCCH Physical Uplink Control Channel
  • SRS Sounding Reference Signal
  • a first uplink transmission is performed based on the first uplink or joint TCI state and a second uplink transmission is performed based on the second uplink or joint TCI state; wherein the first uplink transmission uses a first set of power control parameters, so The second uplink transmission uses a second set of power control parameters.
  • the first uplink transmission is performed based on the first uplink or combined TCI state and the second uplink transmission is performed based on the second uplink or combined TCI state; the first uplink transmission and the second uplink transmission use the first set Power control parameters.
  • the first uplink transmission is performed based on the first uplink or combined TCI state and the second uplink transmission is performed based on the second uplink or combined TCI state; the first uplink transmission and the second uplink transmission use a second set Power control parameters.
  • a first uplink transmission is performed based on the first uplink or joint TCI state; wherein the first uplink transmission uses a first set of power control parameters.
  • a second uplink transmission is performed based on the second uplink or combined TCI state; wherein the second uplink transmission uses a second set of power control parameters.
  • the first uplink transmission is performed based on the first uplink or joint TCI state and the second uplink transmission is performed based on the second uplink or joint TCI state through time division multiplexing (TDM); wherein the first uplink or joint TCI is first used.
  • TDM time division multiplexing
  • the status is then based on the second uplink or combined TCI status, the first uplink transmission using a first set of power control parameters, and the second uplink transmission using a second set of power control parameters.
  • the first uplink transmission is performed based on the first uplink or joint TCI state and the second uplink transmission is performed based on the second uplink or joint TCI state through time division multiplexing (TDM); wherein the first uplink or joint TCI is based on the second uplink or joint TCI state.
  • TDM time division multiplexing
  • the status is then based on the first uplink or combined TCI status, the first uplink transmission uses a first set of power control parameters, and the second uplink transmission uses a second set of power control parameters.
  • a signal sending method wherein the method includes:
  • the terminal device receives transmission configuration indication (TCI) status indication information, the TCI status indication information indicating a first uplink or combined TCI status and a second uplink or combined TCI status;
  • TCI transmission configuration indication
  • the terminal device receives downlink control information (DCI); and
  • the terminal equipment transmits the PUCCH based on the first uplink or joint TCI state and/or the second uplink or joint TCI state on the physical uplink control channel (PUCCH) resource indicated by the downlink control information.
  • PUCCH physical uplink control channel
  • a signal receiving method wherein the method includes:
  • the network device sends transmission configuration indication (TCI) status indication information, where the TCI status indication information indicates a first uplink or combined TCI status and a second uplink or combined TCI status;
  • TCI transmission configuration indication
  • the network device sends downlink control information (DCI); and
  • the network device receives the PUCCH; wherein the terminal device receives the PUCCH based on the first uplink or joint TCI state and/or the second uplink or joint TCI state on the physical uplink control channel (PUCCH) resource indicated by the downlink control information. Transmit the PUCCH.
  • PUCCH physical uplink control channel
  • a terminal device comprising a memory and a processor
  • the memory stores a computer program
  • the processor is configured to execute the computer program to implement any one of appendices 1 to 25, 36, and 37 signal sending method.
  • a network device comprising a memory and a processor, the memory stores a computer program, and the processor is configured to execute the computer program to implement any one of appendices 26 to 35, 38, and 39 signal receiving method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Communication Control (AREA)

Abstract

本申请实施例提供一种信号发送和接收装置以及方法,所述方法包括:终端设备接收传输配置指示(TCI)状态指示信息,所述TCI状态指示信息指示第一上行或联合TCI状态和第二上行或联合TCI状态;所述终端设备接收下行控制信息(DCI);以及所述终端设备根据所述下行控制信息指示的上行传输方案,基于所述第一上行或联合TCI状态和/或所述第二上行或联合TCI状态进行上行传输。

Description

信号发送和接收装置以及方法 技术领域
本申请实施例涉及通信技术领域。
背景技术
3GPP标准化组织在版本17(release,Rel-17)的标准化过程中,对统一的(unified)传输配置指示(transmission configuration indication,TCI)进行了标准化相关的工作。其中,Rel-17中的unified TCI主要针对sTRP(single transmission and reception point)场景进行设计。
随着标准化工作的推进,多TRP(mTRP,multiple transmission and reception point)成为5G NR系统的重要场景,通过基于mTRP的传输,可以达到提高吞吐量或提高可靠性的目的。
在以往的标准化工作中,在Rel-16中,对基于mTRP的物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的传输进行了标准化;在Rel-17中,对基于mTRP的物理下行控制信道(Physical Downlink Control Channel,PDCCH)、物理上行共享信道(Physical Uplink Shared Channel,PUSCH)、物理上行控制信道(Physical Uplink Control Channel,PUCCH)传输进行了标准化。其中,mTRP传输包括基于单DCI(single Downlink Control Information,sDCI)的mTRP传输和基于多DCI(multiple DCI,mDCI)的mTRP传输。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的,不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
但是,发明人发现:Rel-17中的unified TCI仅适用于sTRP场景,考虑到mTRP的重要性,有必要为mTRP场景设计相应的unified TCI机制。
在Rel-17unified TCI针对sTRP(single transmission and reception point)的场景下,网络设备使用无线资源控制(RRC)信令为终端设备配置M(M≥1)个TCI状态(TCI state),使用介质访问控制(MAC)控制元素(CE)在M个TCI状态中激活N(1≤N ≤M)个TCI状态,使用下行控制信息(DCI)在N个TCI状态中指示L(1≤L≤N)个TCI状态。
其中,一个TCI状态(简称TCI)可以包括或对应一个或两个源参考信号(source RS,source Reference Signal)。源参考信号可为下行接收提供准共址(QCL,Quasi Co-Location)信息,称为下行源参考信号。源参考信号可以为上行发送空间滤波器(UL TX spatial filter,uplink transmission spatial filter)提供参考,称为上行源参考信号。
源参考信号可以为目的信道/信号提供波束信息。例如,终端设备用于接收目的信道/信号的波束与用于接收下行源参考信号的波束相同。又例如,终端设备用于发送目的信道/信号的波束与用于发送上行源参考信号的波束相同。又例如,终端设备用于发送目的信道/信号的波束与用于接收下行源参考信号的波束具有互易性,即使用方向相反的波束。
因此,对TCI状态的指示或更新实际上也包括了对终端设备所用波束的指示或更新。TCI状态包括联合TCI状态、下行TCI状态和上行TCI状态。下行TCI状态包含的源参考信号是下行源参考信号,上行TCI状态包含的源参考信号是上行源参考信号,联合TCI状态包含的源参考信号既是下行源参考信号,又是上行源参考信号。联合TCI状态同时作用于下行波束(接收波束)和上行波束(发送波束)。换句话说,下行波束和上行波束使用的是同一个波束,但波束方向相反,即上下行波束之间存在互易性。下行TCI状态仅作用于下行波束。上行TCI状态仅作用于上行波束。上行波束也称为上行发送空间滤波器。TCI字段可以指示联合TCI状态(joint DL/UL TCI),或者TCI字段可以指示独立TCI状态(separate DL/UL TCI),即指示下行TCI状态和/或上行TCI状态。TCI字段指示的是联合TCI状态还是独立TCI状态由RRC信令进行配置。
对于Rel-17的unified TCI,对于联合TCI状态,一个TCI字段指示一个联合TCI状态,对于独立TCI状态,一个TCI字段指示一个下行TCI状态,或者指示一个上行TCI状态,或者指示一个下行TCI状态和一个上行TCI状态。
对于mTRP的unified TCI,终端设备可以被指示两个上行TCI状态或联合TCI状态。对于具有同时多panel上行传输能力的终端设备,其可以基于两个上行TCI状态或联合TCI状态使用两个panel同时发送。例如,在两个上行TCI状态或联合TCI状态的作用时间内,终端设备进行同时多panel发送。
考虑到移动性、信道状态变化、信道阻塞(blockage)等因素影响,如果终端设备在两个TCI状态的作用时间内总是进行同时多panel上行传输,可能由于无法适应上述快速变化而无法为传输提供吞吐量或可靠性保障,或者,可能由于不必要的多panel发 送而对其他设备造成额外干扰。为解决上述问题,更理想的方式是终端设备能够有更大的自由度来在多种上行传输方案之间灵活切换。
针对上述问题的至少之一,本申请实施例提供一种信号发送和接收装置以及方法。
根据本申请实施例的另一个方面,提供一种信号发送方法,包括:
终端设备接收传输配置指示(TCI)状态指示信息,所述TCI状态指示信息指示第一上行或联合TCI状态和第二上行或联合TCI状态;
所述终端设备接收下行控制信息(DCI);以及
所述终端设备根据所述下行控制信息指示的上行传输方案,基于所述第一上行或联合TCI状态和/或所述第二上行或联合TCI状态进行上行传输。
根据本申请实施例的另一个方面,提供一种信号接收方法,包括:
网络设备发送传输配置指示(TCI)状态指示信息,所述TCI状态指示信息指示第一上行或联合TCI状态和第二上行或联合TCI状态;
所述网络设备发送下行控制信息(DCI);以及
所述网络设备接收上行传输;其中,由终端设备根据所述下行控制信息指示的上行传输方案,基于所述第一上行或联合TCI状态和/或所述第二上行或联合TCI状态进行所述上行传输。
根据本申请实施例的另一个方面,提供一种信号发送装置,包括:
第一接收单元,其接收传输配置指示(TCI)状态指示信息,所述TCI状态指示信息指示第一上行或联合TCI状态和第二上行或联合TCI状态;
第二接收单元,其接收下行控制信息(DCI);以及
发送单元,其根据所述下行控制信息指示的上行传输方案,基于所述第一上行或联合TCI状态和/或所述第二上行或联合TCI状态进行上行传输。
根据本申请实施例的另一个方面,提供一种信号接收装置,包括:
第一发送单元,其发送传输配置指示(TCI)状态指示信息,所述TCI状态指示信息指示第一上行或联合TCI状态和第二上行或联合TCI状态;
第二发送单元,其发送下行控制信息(DCI);以及
接收单元,其接收上行传输;其中,由终端设备根据所述下行控制信息指示的上行传输方案,基于所述第一上行或联合TCI状态和/或所述第二上行或联合TCI状态进行所述上行传输。
根据本申请实施例的另一个方面,提供一种通信系统,包括:
网络设备,其发送传输配置指示(TCI)状态指示信息,所述TCI状态指示信息指示第一上行或联合TCI状态和第二上行或联合TCI状态;发送下行控制信息(DCI)以及接收上行传输;
终端设备,其接收所述传输配置指示(TCI)状态指示信息;接收所述下行控制信息(DCI);以及根据所述下行控制信息指示的上行传输方案,基于所述第一上行或联合TCI状态和/或所述第二上行或联合TCI状态进行所述上行传输。
本申请实施例的有益效果之一在于:终端设备根据下行控制信息(DCI)指示的上行传输方案,基于第一上行或联合TCI状态和/或第二上行或联合TCI状态进行上行传输。由此,终端设备能够在至少一种多panel上行传输方案和/或至少一种单panel上行传输方案之间进行切换,可以获得更加鲁棒的上行传输性能,从而提高上行传输吞吐量或可靠性。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本申请的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本申请实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
图1是本申请实施例的通信系统的示意图;
图2是本申请实施例的信号发送方法的一示意图;
图3是本申请实施例的上行传输方案的一示例图;
图4是本申请实施例的上行传输方案的另一示例图;
图5是本申请实施例的上行传输方案的另一示例图;
图6是本申请实施例的功控参数和上行TCI状态或联合TCI状态关联的一示例图;
图7是本申请实施例的功控参数和SRI关联的一示例图;
图8是本申请实施例的MAC CE的一示意图;
图9是本申请实施例的MAC CE的另一示意图;
图10是本申请实施例的MAC CE的另一示意图;
图11是本申请实施例的信号接收方法的一示意图;
图12是本申请实施例的信号发送装置的一示意图;
图13是本申请实施例的信号接收装置的一示意图;
图14是本申请实施例的网络设备的构成示意图;
图15是本申请实施例的终端设备的构成示意图。
具体实施方式
参照附图,通过下面的说明书,本申请的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本申请的特定实施方式,其表明了其中可以采用本申请的原则的部分实施方式,应了解的是,本申请不限于所描述的实施方式,相反,本申请包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本申请实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本申请实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开发的通信协议。
在本申请实施例中,术语“网络设备”例如是指通信系统中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
其中,基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femeto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本申请实施例中,术语“用户设备”(UE,User Equipment)或者“终端设备”(TE,Terminal Equipment或Terminal Device)例如是指通过网络设备接入通信网络并接收网络服务的设备。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
其中,终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
此外,术语“网络侧”或“网络设备侧”是指网络的一侧,可以是某一基站,也可以包括如上的一个或多个网络设备。术语“用户侧”或“终端侧”或“终端设备侧”是指用户或终端的一侧,可以是某一UE,也可以包括如上的一个或多个终端设备。本文在没有特别指出的情况下,“设备”可以指网络设备,也可以指终端设备。
以下通过示例对本申请实施例的场景进行说明,但本申请不限于此。
图1是本申请实施例的通信系统的示意图,示意性说明了以终端设备和网络设备为 例的情况,如图1所示,通信系统100可以包括第一TRP101、第二TRP102和终端设备103。其中,第一TRP101和第二TRP102可以为网络设备。为简单起见,图1仅以两个网络设备和一个终端设备为例进行说明,但本申请实施例不限于此。
在本申请实施例中,第一TRP101、第二TRP102和终端设备103之间可以进行现有的业务或者未来可实施的业务发送。例如,这些业务可以包括但不限于:增强的移动宽带(eMBB,enhanced Mobile Broadband)、大规模机器类型通信(mMTC,massive Machine Type Communication)和高可靠低时延通信(URLLC,Ultra-Reliable and Low-Latency Communication),等等。
Rel-16对基于mTRP的PDSCH传输进行了标准化,Rel-17对基于mTRP的PDCCH、PUSCH、PUCCH传输进行了标准化。mTRP传输包括基于sDCI(single DCI)的mTRP传输和基于mDCI(multiple DCI)的mTRP传输。对于sDCI mTRP,一个DCI对两个TRP的上下行传输进行调度,更适用于TRP之间的回传(backhaul)比较理想的情况。对于mDCI mTRP,两个TRP使用两个DCI分别对各自TRP的上下行传输进行调度,更适用于TRP之间的回传不是很理想的情况。
以终端设备103在mTRP场景下进行PUSCH发送为例,如图1所示,终端设备103以PUSCH重复(PUSCH repetition)的方式发送PUSCH。例如,在时隙1向第一TRP101发送,在时隙2向第二TRP102发送,以此类推。
终端设备被配置了两个SRS资源集合(SRS resource set),例如,为终端设备103配置第一TRP101对应的第一SRS资源集合(1st SRS resource set);为终端设备103配置第二TRP102对应的第二SRS资源集合(2nd SRS resource set)。
由于第一TRP101和第二TRP102在地理位置上的差异,终端设备可能基于不同的预编码矩阵、SRI(SRS resource indicator)、功控参数等发送参数向第一TRP101和/或第二TRP102发送PUSCH。此外,终端设备基于第一SRS资源集合、第二SRS资源集合获得针对第一TRP101、第二TRP102的发送参数。
以发送参数为SRI(SRS resource indicator)为例,对于动态上行授权(dynamic UL grant),DCI中的两个SRI字段分别指示两个SRS资源集合中的SRS资源;对于配置授权(configured grant),两个SRI被RRC配置给两个SRS资源集合。因此,终端设备需要知晓PUSCH repetition与SRS资源集合的映射关系,即知晓每个PUSCH repetition应该基于哪一个SRS资源集合进行发送。
对于Rel-17,终端设备在每次上行传输时只使用一个panel。即使终端设备有多个 panel,Re-17也不支持使用多个panel同时进行上行传输。Rel-18将对终端设备同时多panel上行传输进行研究和标准化,并且基于前面所述的unified TCI框架和mTRP场景。目前,同时多panel上行传输已经被确定为Rel-18的立项内容之一,Rel-18的标准化工作尚未开始。
针对上述问题的至少之一,本申请实施例提供在多TRP场景中基于统一TCI进行上行传输的方法、装置以及系统。
第一方面的实施例
本申请实施例提供一种信号发送方法,应用在终端设备侧。
图2是本申请实施例的信号发送方法的一示意图,如图2所示,该方法包括:
201,终端设备接收传输配置指示(TCI)状态指示信息,所述TCI状态指示信息指示第一上行或联合TCI状态和第二上行或联合TCI状态;
202,所述终端设备接收下行控制信息(DCI);
203,所述终端设备根据所述下行控制信息指示的上行传输方案,基于所述第一上行或联合TCI状态和/或所述第二上行或联合TCI状态进行上行传输。
值得注意的是,以上附图2仅对本申请实施例进行了示意性说明,以终端设备为例,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作,此外,还可以调整上述操作的对象。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图2的记载。
在一些实施例中,术语“TRP”和“SRS资源集合(SRS resource set)”可以互相替换。术语“TRP”和“CSI-RS资源集合(CSI-RS resource set)”可以互相替换。术语“对应”、“关联”、“包括”可以互相替换,“上行TCI状态”与“联合TCI状态”可以互相替换。术语“上行TCI状态或联合TCI状态”与“上行或联合TCI状态”可以互相替换。术语“传输”与“发送”可以互相替换;本申请实施例不限于此。
在一些实施例中,终端设备在第一上行或联合TCI状态和第二上行或联合TCI状态的作用时间内接收所述下行控制信息。
在一些实施例中,终端设备可用的上行传输方案是在以下至少一种情况下使用的上行传输方案:
-终端设备被配置了两个SRS资源集合;
-DCI format 1_1/1_2with/without DL assignment指示传输配置指示(TCI)状态指示 信息,所述TCI状态指示信息指示了两个上行TCI状态(UL-TCIState)或联合TCI状态(DLorJoint-TCIState);DCI格式1_1或DCI格式1_2可以调度下行数据,称为DCI format 1_1/1_2with DL assignment,也可以不调度下行数据,称为DCI format 1_1/1_2 without DL assignment;
-在两个上行TCI状态或联合TCI状态的作用时间内;
-终端设备具有至少两个panel,并且具有同时多panel上行传输的能力。
例如,DCI格式1_1或DCI格式1_2指示了两个上行TCI状态或联合TCI状态,在上述两个TCI状态的作用时间内,DCI格式0_1或DCI格式0_2进一步指示终端设备使用某种上行传输方案进行上行传输,所述上行传输方案可以基于两个TCI状态,或者,基于第一个TCI状态,或者,基于第二个TCI状态。
在一些实施例中,所述下行控制信息指示或激活所述上行传输,所述上行传输包括:
-基于动态授权(dynamic grant)的物理上行共享信道(PUSCH)传输;或
-基于类型2配置授权(Type 2 configured grant)的PUSCH传输;或
-物理上行控制信道(PUCCH)传输;或
-半持续探测参考信号(SRS)传输;或
-非周期SRS传输。
在一些实施例中,基于dynamic grant的PUSCH包括通过DCI调度的对非基于Type 1/Type 2 configured grant的PUSCH的初传和重传,以及通过DCI调度的对基于Type 1/Type 2 configured grant的PUSCH的重传。
在一些实施例中,上行传输包括对以下至少之一的传输:
-基于dynamic grant的PUSCH;
-基于Type 1 configured grant的PUSCH;
-基于Type 2 configured grant的PUSCH;
-PUCCH;
-周期SRS(Periodic SRS);
-半持续SRS(Semi-persistent SRS);
-非周期SRS(Aperiodic SRS)。
在一些实施例中,终端设备可用的上行传输方案是在不使用unified TCI情况下的上行传输方案。例如,终端设备根据本申请实施例确定上行传输方案,但不使用基于unified TCI确定的UL TX spatial filter进行上行传输,而是使用基于现有技术确定的UL TX  spatial filter进行上行传输。
以下对于上行传输方案进行示意性说明,可用的上行传输方案可以是一个或多个。
在一些实施例中,上行传输方案包括:
方案0:同时基于所述第一上行或联合TCI状态进行第一上行传输和基于所述第二上行或联合TCI状态进行第二上行传输;其中,所述第一上行传输使用第一套功率控制参数,所述第二上行传输使用第二套功率控制参数。
在方案0中,所述终端设备使用两个面板(panel)同时向第一传输接收点和第二传输接收点分别进行所述第一上行传输和所述第二上行传输。
在一些实施例中,上行传输方案包括:
方案1:同时基于所述第一上行或联合TCI状态进行第一上行传输和基于所述第二上行或联合TCI状态进行第二上行传输;所述第一上行传输和所述第二上行传输使用第一套功率控制参数。
在方案1中,所述终端设备使用两个面板(panel)同时向第一传输接收点进行所述第一上行传输和所述第二上行传输。
在一些实施例中,上行传输方案包括:
方案2:同时基于所述第一上行或联合TCI状态进行第一上行传输和基于所述第二上行或联合TCI状态进行第二上行传输;所述第一上行传输和所述第二上行传输使用第二套功率控制参数。
在方案2中,所述终端设备使用两个面板(panel)同时向第二传输接收点进行所述第一上行传输和所述第二上行传输。
以上适应性说明了同时使用多panel的上行传输方案,包括上行传输方案0~2中的至少一种。以下再说明使用单pannel的上行传输方案,包括上行传输方案3~6中的至少一种。
在一些实施例中,上行传输方案包括:
方案3:基于所述第一上行或联合TCI状态进行第一上行传输;其中,所述第一上行传输使用第一套功率控制参数。
在方案3中,所述终端设备使用一个面板(panel)向第一传输接收点进行所述第一上行传输。
在一些实施例中,上行传输方案包括:
方案4:基于所述第二上行或联合TCI状态进行第二上行传输;其中,所述第二上 行传输使用第二套功率控制参数。
在方案4中,所述终端设备使用一个面板(panel)向第二传输接收点进行所述第二上行传输。
在一些实施例中,上行传输方案包括:
方案5:通过时分复用(TDM)基于所述第一上行或联合TCI状态进行第一上行传输和基于所述第二上行或联合TCI状态进行第二上行传输;其中先基于所述第一上行或联合TCI状态再基于所述第二上行或联合TCI状态,所述第一上行传输使用第一套功率控制参数,所述第二上行传输使用第二套功率控制参数。
在方案5中,所述终端设备先使用一个面板(panel)向第一传输接收点进行所述第一上行传输,再使用一个面板(panel)向第二传输接收点进行所述第二上行传输。
在一些实施例中,上行传输方案包括:
方案6:通过时分复用(TDM)基于所述第一上行或联合TCI状态进行第一上行传输和基于所述第二上行或联合TCI状态进行第二上行传输;其中先基于所述第二上行或联合TCI状态再基于所述第一上行或联合TCI状态,所述第一上行传输使用第一套功率控制参数,所述第二上行传输使用第二套功率控制参数。
在方案6中,所述终端设备先使用一个面板(panel)向第二传输接收点进行所述第二上行传输,再使用一个面板(panel)向第一传输接收点进行所述第一上行传输。
上行传输方案0~6可以如错误!未找到引用源。所示。
表1
Figure PCTCN2022090082-appb-000001
Figure PCTCN2022090082-appb-000002
在一些实施例中,错误!未找到引用源。与错误!未找到引用源。的上行传输方案等价。在两个上行TCI状态或联合TCI状态的作用时间内,第i个状态指上述两个状态中的第i个状态,i=1,2。例如,错误!未找到引用源。表示PUSCH的上行传输方案。
表2
Figure PCTCN2022090082-appb-000003
Figure PCTCN2022090082-appb-000004
图3是本申请实施例的上行传输方案的一示例图,对上行传输方案0进行了示意性说明。如图3所示,终端设备同时使用两个panel进行上行传输,并且两个panel分别向两个TRP进行传输。
图4是本申请实施例的上行传输方案的另一示例图,对上行传输方案1或2进行了示意性说明。如图4所示,终端设备同时使用两个panel进行上行传输,并且两个panel只向某一个TRP进行传输。
图5是本申请实施例的上行传输方案的另一示例图,对上行传输方案3或4进行了示意性说明。如图5所示,终端设备使用一个panel进行上行传输,并且该panel只向某一个TRP进行传输。
对于上行传输方案5或6,可以参考图1进行示意性说明。与传输方案0不同,无论终端设备具有一个panel还是两个panel,上行传输方案5或6中终端设备在进行上行传输时只使用一个panel,但以TDM的方式在不同的时间单元向不同的TRP进行传输。
以下再对SRS资源集合和功率控制参数(简称功控参数)进行说明。
在一些实施例中,所述第一上行传输基于第一SRS资源集合,所述第二上行传输基于第二SRS资源集合。例如,表2中的“上行TCI状态或联合TCI状态”可以被等价替换为“SRS资源集合”。
在一些实施例中,第i个SRS资源集合与第i个panel关联,i=1,2。例如,终端设备使用第i个panel发送第i个SRS资源集合内的一个或多个SRS,网络设备基于SRS可以获得第i个panel到网络设备的上行信道的信道状态信息,从而确定适合第i个panel使用的上行波束、SRI、TPMI(Transmission Precoding Matrix Information)、功控参数等。SRI可以由DCI中的SRS resource indicator字段或Second SRS resource indicator字段指示,简称为由SRI字段指示。TPMI可以由DCI中的Precoding information and number of layers字段或Second Precoding information字段指示,简称为由TPMI字段指示。考虑到终端设备使用相同的天线对SRS和其他上行信号(例如PUSCH)进行发送,终端设备基于第i个SRS资源集合进行上行传输,也可以等价于终端设备使用第i个panel进行上行传输。
例如,SRI字段可以是标准TS 38.212中的SRS resource indicator字段或Second SRS resource indicator字段,TPMI字段可以是标准TS 38.212中的Precoding information and number of layers字段或Second Precoding information字段;本申请不限于此。
在一些实施例中,第i个SRS资源集合与第i个上行TCI状态或联合TCI状态关联,i=1,2。例如,终端设备在基于第i个SRS资源集合进行上行传输时,使用的上行波束基于第i个上行TCI状态或联合TCI状态确定。在终端设备基于第i个SRS资源集合进行上行传输等价于使用第i个panel进行上行传输的情况下,终端设备第i个panel的上行波束基于第i个上行TCI状态或联合TCI状态确定。
在一些实施例中,第i套功控参数基于第i个上行TCI状态(UL-TCIState)或联合TCI状态(DLorJoint-TCIState)确定,i=1,2。功控参数包括目标接收功率(P0)、路损补偿因子(alpha)、路损参考信号(PL-RS,Pathloss-Reference Signal)和闭环索引(closed loop index)中的至少一种。例如,一个上行TCI状态或联合TCI状态包括或关联一套功控参数。
图6是本申请实施例的功控参数和上行TCI状态或联合TCI状态关联的一示例图。如图6所示,指示上行TCI状态或联合TCI状态的RRC IE(Information Element),即UL-TCIState和DLorJoint-TCIState,包括标识为pathlossReferenceRS-Id的路损参考信号,通过Uplink-powerControlId关联目标接收功率(图6中p0)、路损补偿因子(图6中alpha)和闭环索引(图6中closedLoopIndex)。第i套功控参数进一步与第i个SRS资源集合关联,并与图6中的第i个SRI字段关联,i=1,2。图6中的两个TPC(Transmit Power Control)字段分别对应closedLoopIndex=0(l=0)和closedLoopIndex=1(l=1)。
在一些实施例中,第i套功控参数基于与第i个SRS资源集合关联的SRI字段确定,i=1,2。
图7是本申请实施例的功控参数和SRI关联的一示例图。如图7所示,第i个SRI字段关联某个sri-PUSCH-PowerControlId,进而关联第i套功控参数,即第i个SRI字段通过sri-PUSCH-PowerControlId与第i套功控参数关联,i=1,2。
在一些实施例中,第i个SRI字段或TPMI字段基于第i个SRS资源集合确定,i=1,2。
在一些实施例中,确定上行波束、SRI和TPMI的具体方法可以沿用现有技术。
在一些实施例中,对于基于单下行控制信息(sDCI)的多传输接收点(mTRP),所述终端设备根据所述下行控制信息进行所述上行传输。
在一些实施例中,对于基于多下行控制信息(mDCI)的多传输接收点(mTRP), 所述终端设备根据所述下行控制信息进行所述上行传输。
在一些实施例中,终端设备可用的上行传输方案包括同时多panel上行传输方案,或者,包括多panel上行传输方案和单panel上行传输方案。例如,终端设备的可用上行传输方案可以是表1或表2所述的多个上行传输方案中的其中之一或者任意组合。
例如,终端设备可用的上行传输方案包括:
-上行传输方案0,或者,
-上行传输方案0和上行传输方案1~6中的至少一种,或者,
-上行传输方案1~2中的至少一种,或者,
-上行传输方案1~2中的至少一种和上行传输方案3~6中的至少一种。
例如,对于基于sDCI的mTRP,终端设备可用的上行传输方案包括:
-上行传输方案0,或者,
-上行传输方案0和上行传输方案1~6中的至少一种。
例如,对于基于mDCI的mTRP,终端设备可用的上行传输方案包括:
-上行传输方案1~2中的至少一种,或者,
-上行传输方案1~2中的至少一种和上行传输方案3~6中的至少一种。
以下再对如何配置和/或指示上行传输方案进行示意性说明。
在一些实施例中,在终端设备可用的上行传输方案包括多于一种上行传输方案的情况下,终端设备所使用的上行传输方案由DCI指示,和/或,由RRC信令配置。
例如,终端设备可用的上行传输方案包括上行传输方案0~2中的至少两种,DCI格式0_1和/或0_2指示终端设备所使用的上行传输方案。
例如,终端设备可用的上行传输方案包括上行传输方案0以及包括上行传输方案3、4中的至少一种,并且由DCI格式0_1和/或0_2指示终端设备所使用的上行传输方案。
例如,终端设备可用的上行传输方案包括上行传输方案0以及包括上行传输方案3、4、5、6中的至少一种,并且由DCI格式0_1和/或0_2指示终端设备所使用的上行传输方案。
例如,终端设备可用的上行传输方案包括上行传输方案0以及包括上行传输方案3、4、5、6中的至少一种,并且由RRC信令指示终端设备所使用的上行传输方案。
在一些实施例中,终端设备所使用的上行传输方案由DCI中的SRS资源集合指示字段或SRS请求字段指示。
在一些实施例中,通过RRC信令为所述终端设备配置多个上行传输方案,并由所 述下行控制信息指示所述多个上行传输方案中的一个上行传输方案。
例如,终端设备可用的上行传输方案包括上行传输方案0、上行传输方案3、4中的至少一种、上行传输方案5、6中的至少一种,RRC信令为终端设备配置一个RRC IE(记为“multi-panel-simultaneous”),DCI格式0_1和/或0_2指示终端设备使用上行传输方案0、3、4中的一种,或者,RRC信令为终端设备配置一个RRC IE(记为“multi-panel-TDM”),DCI格式0_1和/或0_2指示终端设备使用上行传输方案5、6、3、4中的一种。在终端设备被指示了两个上行TCI状态或联合TCI状态的情况下,终端设备根据RRC信令可以知晓是使用两个TCI状态同时进行上行传输(方案0),还是使用两个TCI状态以TDM方式进行上行传输(方案5、6),通过DCI信令可以进一步实现在使用两个TCI状态的上行传输方案(方案0)和使用一个TCI状态的上行传输方案(方案3、4)之间的动态切换,或者,实现在使用两个TCI状态的上行传输方案(方案5、6)和使用一个TCI状态的上行传输方案(方案3、4)之间的动态切换。
在一些实施例中,对于上行传输方案0、1、2中的任意一种,其包括多于一种子方案。例如,包括以下至少一种子方案:
-空分复用(SDM,Spatial Division Multiplex):终端设备的两个panel分别在两个相同的资源上发送不同的layer(层)。
-频分复用1(FDM1,Frequency Division Multiplex 1):终端设备的两个panel分别在两个频分复用的资源上发送不同的layer(层)。
-频分复用2(FDM2,Frequency Division Multiplex 2):终端设备的两个panel分别在两个频分复用的资源上发送两个副本。
在一些实施例中,对于上行传输方案5、6中的任意一种,其包括多于一种子方案。例如,包括以下至少一种子方案:
-循环映射(Cyclic mapping):终端设备按照1、2、1、2的顺序进行TDM发送。
-顺序映射(Sequential mapping):终端设备按照1、1、2、2的顺序进行TDM发送。
这里1、2分别表示第一个和第二个上行或联合TCI状态,或者,SRS资源集合,或者,TRP。
在一些实施例中,子方案由RRC信令配置。例如,RRC信令配置终端设备使用FDM1子方案,则错误!未找到引用源。中的上行传输方案0被替换为该子方案(对于传输方案1、2同样适用),在此基础上,可以使用前面所述的任何一种方法在多个上行传输方案中确定一个上行传输方案。
在一些实施例中,子方案由DCI信令指示。例如,错误!未找到引用源。中的上行传输方案0被替换为三种上行传输方案0a、0b、0c(对于传输方案1、2同样适用),分别对应三种子方案,DCI对所使用的子方案进行指示,在此基础上,可以使用前面所述的任何一种方法在多个上行传输方案中确定一个上行传输方案。
以下对PUCCH传输进行说明,以上方案同样适用,与之前相同之处不再赘述。
在一些实施例中,终端设备接收传输配置指示(TCI)状态指示信息,所述TCI状态指示信息指示第一上行或联合TCI状态和第二上行或联合TCI状态;
所述终端设备接收下行控制信息(DCI);以及
所述终端设备在所述下行控制信息指示的物理上行控制信道(PUCCH)资源上,基于所述第一上行或联合TCI状态和/或所述第二上行或联合TCI状态传输PUCCH。
在一些实施例中,物理上行控制信道(PUCCH)资源被RRC信令或MAC CE配置为使用多个上行传输方案中的一个上行传输方案,以及在由所述DCI指示PUCCH资源时,所述终端设备使用配置的上行传输方案传输PUCCH。
在一些实施例中,“PUCCH资源由DCI指示”可以被等价替换为“PUCCH资源由DCI的PUCCH resource indicator字段和DCI的CCE(Control Channel Element)索引确定”。
例如,DCI格式1_1或DCI格式1_2指示了两个上行TCI状态或联合TCI状态,在上述两个TCI状态的作用时间内,DCI格式1_1或DCI格式1_2指示终端设备发送PUCCH。PUCCH资源基于DCI格式1_1或DCI格式1_2的PUCCH resource indicator字段,和/或,DCI格式1_1或DCI格式1_2的CCE(Control Channel Element)索引确定。PUCCH资源被RRC信令或MAC CE配置为使用某一种上行传输方案,所述上行传输方案可以基于两个TCI状态,或者,基于第一个TCI状态,或者,基于第二个TCI状态。终端设备使用所述上行传输方案发送PUCCH。
例如,在使用RRC信令配置PUCCH资源时,通过一个新的RRC IE(记为“scheme”)配置该PUCCH资源使用的上行传输方案,即与该PUCCH关联的上行传输方案。以下表3对RRC信令进行了示意性说明。RRC信令可以配置多个PUCCH资源。DCI中的PUCCH resource indicator字段在多个PUCCH资源中指示一个PUCCH资源。终端设备在发送PUCCH时,使用与该PUCCH资源关联的上行传输方案。
表3
Figure PCTCN2022090082-appb-000005
Figure PCTCN2022090082-appb-000006
例如,通过MAC CE为PUCCH资源关联一个上行传输方案。RRC配置的PUCCH资源不包括指示上行传输方案的IE,通过MAC CE将PUCCH资源与上行传输方案进行关联。当DCI指示了一个PUCCH资源时,PUCCH使用MAC CE配置的上行传输方案进行传输。
图8是本申请实施例的MAC CE的一示意图,给出一种MAC CE示意。每个PUCCH resource ID字段标识一个PUCCH资源。每个PUCCH resource ID字段关联一个或多个Si字段。一个或多个Si字段用于指示与PUCCH资源关联的上行传输方案。
例如,假设使用3个Si字段(S5~S7),“000”表示上行传输方案0,“001”表示上行传输方案1,以此类推。未使用的Si字段(S0~S4)作为保留字段,即等价于R字段(保留字段),可以标记为R。不失一般性,MAC CE也可以包括图8中未示出的其他字段。
图9是本申请实施例的MAC CE的另一示意图。如果Si字段为1并且其他j≠i的Sj字段为0,则表示PUCCH resource ID标识的PUCCH资源使用上行传输方案i,i=0,1,…6。不失一般性,MAC CE也可以包括图9中未示出的其他字段。
图10是本申请实施例的MAC CE的另一示意图。C字段为0,表示PUCCH资源(PUCCH resource ID)关联一个Spatial Relation Info(Spatial Relation Info ID0),S0、S1字段中的至少之一指示基于一个上行TCI状态或联合TCI状态的上行传输方案。例如S1字段为1表示上行传输方案3,S1字段为0表示上行传输方案4,S0字段标记为R。C字段为1,表示PUCCH资源(PUCCH resource ID)关联两个Spatial Relation Info(Spatial Relation Info ID0,Spatial Relation Info ID1),S0、S1、S2、S3字段中的至少之 一指示基于两个上行TCI状态或联合TCI状态的上行传输方案。例如,使用S0、S1字段,“00”表示上行传输方案0,“01”表示上行传输方案5,“10”表示上行传输方案6,S2、S3字段标记为R。不失一般性,MAC CE也可以包括图10中未示出的其他字段。
在一些实施例中,PUCCH使用unified TCI,发送PUCCH所使用的UL TX spatial filter基于上行或联合TCI状态确定,所使用的上行传输方案基于RRC配置或MAC CE配置确定。
在一些实施例中,PUCCH不使用unified TCI,发送PUCCH所使用的UL TX spatial filter基于Spatial Relation Info确定,所使用的上行传输方案基于RRC配置或MAC CE配置确定。
例如,如图10所示,一个PUCCH可以基于一个Spatial Relation Info进行传输,或者,基于两个Spatial Relation Info进行传输,取决于DCI指示的PUCCH资源关联一个还是两个Spatial Relation Info。在上行传输方案基于RRC配置的情况下,PUCCH的上行传输方式基于RRC配置的“scheme”IE确定。在上行传输方案基于MAC CE配置确定的情况下,PUCCH的上行传输方式基于Si字段确定。
在一些实施例中,当DCI指示PUCCH资源时,PUCCH使用该DCI指示的上行传输方案进行传输。例如,在两个上行TCI状态或联合TCI状态的作用时间内,DCI格式1_1或1_2指示了一个PUCCH资源,该DCI也指示发送该PUCCH所使用的上行传输方案。如果DCI指示的上行传输方案使用第i个上行TCI状态或联合TCI状态,则第i个状态指上述两个上行TCI状态或联合TCI状态中的第i个状态,i=1,2。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
由上述实施例可知,终端设备根据下行控制信息(DCI)指示的上行传输方案,基于第一上行或联合TCI状态和/或第二上行或联合TCI状态进行上行传输。由此,终端设备能够在至少一种多panel上行传输方案和/或至少一种单panel上行传输方案之间进行切换,可以获得更加鲁棒的上行传输性能,从而提高上行传输吞吐量或可靠性。
第二方面的实施例
本申请实施例提供一种信号接收方法,从网络设备侧进行说明。本申请实施例可以与第一方面的实施例结合起来,也可以单独实施。与第一方面的实施例相同的内容不再 赘述。
图11是本申请实施例的信号接收方法的一示意图,如图11所示,该方法包括:
1101,网络设备发送传输配置指示(TCI)状态指示信息,所述TCI状态指示信息指示第一上行或联合TCI状态和第二上行或联合TCI状态;
1102,所述网络设备发送下行控制信息(DCI);以及
1103,所述网络设备接收上行传输;其中,由终端设备根据所述下行控制信息指示的上行传输方案,基于所述第一上行或联合TCI状态和/或所述第二上行或联合TCI状态进行所述上行传输。
值得注意的是,以上附图11仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图11的记载。
在一些实施例中,所述下行控制信息指示或激活所述上行传输,所述上行传输包括:
-基于动态授权(dynamic grant)的物理上行共享信道(PUSCH)传输;或
-基于类型2配置授权(Type 2 configured grant)的PUSCH传输;或
-物理上行控制信道(PUCCH)传输;或
-半持续探测参考信号(SRS)传输;或
-非周期SRS传输。
在一些实施例中,所述上行传输方案包括:
同时基于所述第一上行或联合TCI状态进行第一上行传输和基于所述第二上行或联合TCI状态进行第二上行传输;其中,所述第一上行传输使用第一套功率控制参数,所述第二上行传输使用第二套功率控制参数。
在一些实施例中,所述上行传输方案包括:
同时基于所述第一上行或联合TCI状态进行第一上行传输和基于所述第二上行或联合TCI状态进行第二上行传输;所述第一上行传输和所述第二上行传输使用第一套功率控制参数。
在一些实施例中,所述上行传输方案包括:
同时基于所述第一上行或联合TCI状态进行第一上行传输和基于所述第二上行或联合TCI状态进行第二上行传输;所述第一上行传输和所述第二上行传输使用第二套功率控制参数。
在一些实施例中,所述上行传输方案包括:
基于所述第一上行或联合TCI状态进行第一上行传输;其中,所述第一上行传输使用第一套功率控制参数。
在一些实施例中,所述上行传输方案包括:
基于所述第二上行或联合TCI状态进行第二上行传输;其中,所述第二上行传输使用第二套功率控制参数。
在一些实施例中,所述上行传输方案包括:
通过时分复用(TDM)基于所述第一上行或联合TCI状态进行第一上行传输和基于所述第二上行或联合TCI状态进行第二上行传输;其中先基于所述第一上行或联合TCI状态再基于所述第二上行或联合TCI状态,所述第一上行传输使用第一套功率控制参数,所述第二上行传输使用第二套功率控制参数。
在一些实施例中,所述上行传输方案包括:
通过时分复用(TDM)基于所述第一上行或联合TCI状态进行第一上行传输和基于所述第二上行或联合TCI状态进行第二上行传输;其中先基于所述第二上行或联合TCI状态再基于所述第一上行或联合TCI状态,所述第一上行传输使用第一套功率控制参数,所述第二上行传输使用第二套功率控制参数。
在一些实施例中,所述第一上行传输基于第一SRS资源集合,所述第二上行传输基于第二SRS资源集合。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
由上述实施例可知,终端设备根据下行控制信息(DCI)指示的上行传输方案,基于第一上行或联合TCI状态和/或第二上行或联合TCI状态进行上行传输。由此,终端设备能够在至少一种多panel上行传输方案和/或至少一种单panel上行传输方案之间进行切换,可以获得更加鲁棒的上行传输性能,从而提高上行传输吞吐量或可靠性。
第三方面的实施例
本申请实施例提供一种信号发送装置。该装置例如可以是终端设备,也可以是配置于终端设备的某个或某些部件或者组件,与第一方面的实施例相同的内容不再赘述。
图12是本申请实施例的信号发送装置的一示意图。
如图12所示,信号发送装置1200包括:
第一接收单元1201,其接收传输配置指示(TCI)状态指示信息,所述TCI状态指示信息指示第一上行或联合TCI状态和第二上行或联合TCI状态;
第二接收单元1202,其接收下行控制信息(DCI);以及
发送单元1203,其根据所述下行控制信息指示的上行传输方案,基于所述第一上行或联合TCI状态和/或所述第二上行或联合TCI状态进行上行传输。
在一些实施例中,第二接收单元1202在所述第一上行或联合TCI状态和所述第二上行或联合TCI状态的作用时间内接收所述下行控制信息。
在一些实施例中,所述下行控制信息指示或激活所述上行传输,所述上行传输包括:
-基于动态授权(dynamic grant)的物理上行共享信道(PUSCH)传输;或
-基于类型2配置授权(Type 2 configured grant)的PUSCH传输;或
-物理上行控制信道(PUCCH)传输;或
-半持续探测参考信号(SRS)传输;或
-非周期SRS传输。
在一些实施例中,所述上行传输方案包括:
同时基于所述第一上行或联合TCI状态进行第一上行传输和基于所述第二上行或联合TCI状态进行第二上行传输;其中,所述第一上行传输使用第一套功率控制参数,所述第二上行传输使用第二套功率控制参数;
其中,所述发送单元1203使用两个面板(panel)同时向第一传输接收点和第二传输接收点分别进行所述第一上行传输和所述第二上行传输。
在一些实施例中,所述上行传输方案包括:
同时基于所述第一上行或联合TCI状态进行第一上行传输和基于所述第二上行或联合TCI状态进行第二上行传输;所述第一上行传输和所述第二上行传输使用第一套功率控制参数;
其中,所述发送单元1203使用两个面板(panel)同时向第一传输接收点进行所述第一上行传输和所述第二上行传输。
在一些实施例中,所述上行传输方案包括:
同时基于所述第一上行或联合TCI状态进行第一上行传输和基于所述第二上行或联合TCI状态进行第二上行传输;所述第一上行传输和所述第二上行传输使用第二套功率控制参数;
其中,所述发送单元1203使用两个面板(panel)同时向第二传输接收点进行所述第一上行传输和所述第二上行传输。
在一些实施例中,所述上行传输方案包括:
基于所述第一上行或联合TCI状态进行第一上行传输;其中,所述第一上行传输使用第一套功率控制参数;
其中,所述发送单元1203使用一个面板(panel)向第一传输接收点进行所述第一上行传输。
在一些实施例中,所述上行传输方案包括:
基于所述第二上行或联合TCI状态进行第二上行传输;其中,所述第二上行传输使用第二套功率控制参数;
其中,所述发送单元1203使用一个面板(panel)向第二传输接收点进行所述第二上行传输。
在一些实施例中,所述上行传输方案包括:
通过时分复用(TDM)基于所述第一上行或联合TCI状态进行第一上行传输和基于所述第二上行或联合TCI状态进行第二上行传输;其中先基于所述第一上行或联合TCI状态再基于所述第二上行或联合TCI状态,所述第一上行传输使用第一套功率控制参数,所述第二上行传输使用第二套功率控制参数;
其中,所述发送单元1203先使用一个面板(panel)向第一传输接收点进行所述第一上行传输,再使用一个面板(panel)向第二传输接收点进行所述第二上行传输。
在一些实施例中,所述上行传输方案包括:
通过时分复用(TDM)基于所述第一上行或联合TCI状态进行第一上行传输和基于所述第二上行或联合TCI状态进行第二上行传输;其中先基于所述第二上行或联合TCI状态再基于所述第一上行或联合TCI状态,所述第一上行传输使用第一套功率控制参数,所述第二上行传输使用第二套功率控制参数;
其中,所述发送单元1203先使用一个面板(panel)向第二传输接收点进行所述第二上行传输,再使用一个面板(panel)向第一传输接收点进行所述第一上行传输。
在一些实施例中,所述第一上行传输基于第一SRS资源集合,所述第二上行传输基于第二SRS资源集合。
在一些实施例中,对于基于单下行控制信息(sDCI)的多传输接收点(mTRP),所述发送单元1203根据所述下行控制信息进行所述上行传输。
在一些实施例中,对于基于多下行控制信息(mDCI)的多传输接收点(mTRP),所述发送单元1203根据所述下行控制信息进行所述上行传输。
在一些实施例中,通过RRC信令为终端设备配置多个上行传输方案,并由所述下行控制信息指示所述多个上行传输方案中的一个上行传输方案。
在一些实施例中,物理上行控制信道(PUCCH)资源被RRC信令或MAC CE配置为使用多个上行传输方案中的一个上行传输方案,以及在由所述DCI指示PUCCH资源时,所述发送单元1203使用配置的上行传输方案传输PUCCH。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。信号发送装置1200还可以包括其他部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图12中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
由上述实施例可知,终端设备根据下行控制信息(DCI)指示的上行传输方案,基于第一上行或联合TCI状态和/或第二上行或联合TCI状态进行上行传输。由此,终端设备能够在至少一种多panel上行传输方案和/或至少一种单panel上行传输方案之间进行切换,可以获得更加鲁棒的上行传输性能,从而提高上行传输吞吐量或可靠性。
第四方面的实施例
本申请实施例提供一种信号接收装置。该装置例如可以是网络设备,也可以是配置于网络设备的某个或某些部件或者组件,与第一至三方面的实施例相同的内容不再赘述。
图13是本申请实施例的信号接收装置的一示意图。如图13所示,信号接收装置1300包括:
第一发送单元1301,其发送传输配置指示(TCI)状态指示信息,所述TCI状态指示信息指示第一上行或联合TCI状态和第二上行或联合TCI状态;
第二发送单元1302,其发送下行控制信息(DCI);以及
接收单元1303,其接收上行传输;其中,由终端设备根据所述下行控制信息指示的上行传输方案,基于所述第一上行或联合TCI状态和/或所述第二上行或联合TCI状态进行所述上行传输。
在一些实施例中,所述下行控制信息指示或激活所述上行传输,所述上行传输包括:
-基于动态授权(dynamic grant)的物理上行共享信道(PUSCH)传输;或
-基于类型2配置授权(Type 2 configured grant)的PUSCH传输;或
-物理上行控制信道(PUCCH)传输;或
-半持续探测参考信号(SRS)传输;或
-非周期SRS传输。
在一些实施例中,所述上行传输方案包括如下至少之一:
同时基于所述第一上行或联合TCI状态进行第一上行传输和基于所述第二上行或联合TCI状态进行第二上行传输;其中,所述第一上行传输使用第一套功率控制参数,所述第二上行传输使用第二套功率控制参数;
同时基于所述第一上行或联合TCI状态进行第一上行传输和基于所述第二上行或联合TCI状态进行第二上行传输;所述第一上行传输和所述第二上行传输使用第一套功率控制参数;
同时基于所述第一上行或联合TCI状态进行第一上行传输和基于所述第二上行或联合TCI状态进行第二上行传输;所述第一上行传输和所述第二上行传输使用第二套功率控制参数;
基于所述第一上行或联合TCI状态进行第一上行传输;其中,所述第一上行传输使用第一套功率控制参数;
基于所述第二上行或联合TCI状态进行第二上行传输;其中,所述第二上行传输使用第二套功率控制参数;
通过时分复用(TDM)基于所述第一上行或联合TCI状态进行第一上行传输和基于所述第二上行或联合TCI状态进行第二上行传输;其中先基于所述第一上行或联合TCI状态再基于所述第二上行或联合TCI状态,所述第一上行传输使用第一套功率控制参数,所述第二上行传输使用第二套功率控制参数;
通过时分复用(TDM)基于所述第一上行或联合TCI状态进行第一上行传输和基于所述第二上行或联合TCI状态进行第二上行传输;其中先基于所述第二上行或联合TCI状态再基于所述第一上行或联合TCI状态,所述第一上行传输使用第一套功率控制 参数,所述第二上行传输使用第二套功率控制参数;
在一些实施例中,所述第一上行传输基于第一SRS资源集合,所述第二上行传输基于第二SRS资源集合。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。信号接收装置1300还可以包括其他部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图13中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
由上述实施例可知,终端设备根据下行控制信息(DCI)指示的上行传输方案,基于第一上行或联合TCI状态和/或第二上行或联合TCI状态进行上行传输。由此,终端设备能够在至少一种多panel上行传输方案和/或至少一种单panel上行传输方案之间进行切换,可以获得更加鲁棒的上行传输性能,从而提高上行传输吞吐量或可靠性。
第五方面的实施例
本申请实施例还提供一种通信系统,可以参考图1,与第一方面至第四方面的实施例相同的内容不再赘述。
在一些实施例中,通信系统100至少可以包括:
网络设备,其发送传输配置指示(TCI)状态指示信息,所述TCI状态指示信息指示第一上行或联合TCI状态和第二上行或联合TCI状态;发送下行控制信息(DCI)以及接收上行传输;
终端设备,其接收所述传输配置指示(TCI)状态指示信息;接收所述下行控制信息(DCI);以及根据所述下行控制信息指示的上行传输方案,基于所述第一上行或联合TCI状态和/或所述第二上行或联合TCI状态进行所述上行传输。
本申请实施例还提供一种网络设备,例如可以是基站,但本申请不限于此,还可以是其他的网络设备。
图14是本申请实施例的网络设备的构成示意图。如图14所示,网络设备1400可以包括:处理器1410(例如中央处理器CPU)和存储器1420;存储器1420耦合到处理器1410。其中该存储器1420可存储各种数据;此外还存储信息处理的程序1430,并且在处理器1410的控制下执行该程序1430。
例如,处理器1410可以被配置为执行程序而实现如第二方面的实施例所述的信号接收方法。例如处理器1410可以被配置为进行如下的控制:发送传输配置指示(TCI)状态指示信息,所述TCI状态指示信息指示第一上行或联合TCI状态和第二上行或联合TCI状态;发送下行控制信息(DCI);以及接收上行传输;其中,由终端设备根据所述下行控制信息指示的上行传输方案,基于所述第一上行或联合TCI状态和/或所述第二上行或联合TCI状态进行所述上行传输。
此外,如图14所示,网络设备1400还可以包括:收发机1440和天线1450等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络设备1400也并不是必须要包括图14中所示的所有部件;此外,网络设备1400还可以包括图14中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种终端设备,但本申请不限于此,还可以是其他的设备。
图15是本申请实施例的终端设备的示意图。如图15所示,该终端设备1500可以包括处理器1510和存储器1520;存储器1520存储有数据和程序,并耦合到处理器1510。值得注意的是,该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。
例如,处理器1510可以被配置为执行程序而实现如第一方面的实施例所述的信号发送方法。例如处理器1510可以被配置为进行如下的控制:接收传输配置指示(TCI)状态指示信息,所述TCI状态指示信息指示第一上行或联合TCI状态和第二上行或联合TCI状态;接收下行控制信息(DCI);以及根据所述下行控制信息指示的上行传输方案,基于所述第一上行或联合TCI状态和/或所述第二上行或联合TCI状态进行上行传输。
如图15所示,该终端设备1500还可以包括:通信模块1530、输入单元1540、显示器1550、电源1560。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,终端设备1500也并不是必须要包括图15中所示的所有部件,上述部件并不是必需的;此外,终端设备1500还可以包括图15中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种计算机程序,其中当在终端设备中执行所述程序时,所述 程序使得所述终端设备执行第一方面的实施例所述的信号发送方法。
本申请实施例还提供一种存储有计算机程序的存储介质,其中所述计算机程序使得终端设备执行第一方面的实施例所述的信号发送方法。
本申请实施例还提供一种计算机程序,其中当在网络设备中执行所述程序时,所述程序使得所述网络设备执行第二方面的实施例所述的信号接收方法。
本申请实施例还提供一种存储有计算机程序的存储介质,其中所述计算机程序使得网络设备执行第二方面的实施例所述的信号接收方法。
本申请以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本申请涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本申请还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本申请实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图中所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何 其它这种配置。
以上结合具体的实施方式对本申请进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本申请保护范围的限制。本领域技术人员可以根据本申请的精神和原理对本申请做出各种变型和修改,这些变型和修改也在本申请的范围内。
关于包括以上实施例的实施方式,还公开下述的附记:
1.一种信号发送方法,其中,所述方法包括:
终端设备接收传输配置指示(TCI)状态指示信息,所述TCI状态指示信息指示第一上行或联合TCI状态和第二上行或联合TCI状态;
所述终端设备接收下行控制信息(DCI);以及
所述终端设备根据所述下行控制信息指示的上行传输方案,基于所述第一上行或联合TCI状态和/或所述第二上行或联合TCI状态进行上行传输。
2.根据附记1所述的方法,其中,所述终端设备在所述第一上行或联合TCI状态和所述第二上行或联合TCI状态的作用时间内接收所述下行控制信息。
3.根据附记1所述的方法,其中,所述下行控制信息指示或激活所述上行传输,所述上行传输包括:
基于动态授权(dynamic grant)的物理上行共享信道(PUSCH)传输;或
基于类型2配置授权(Type 2 configured grant)的PUSCH传输;或
物理上行控制信道(PUCCH)传输;或
半持续探测参考信号(SRS)传输;或
非周期SRS传输。
4.根据附记1至3任一项所述的方法,其中,所述上行传输方案包括:
同时基于所述第一上行或联合TCI状态进行第一上行传输和基于所述第二上行或联合TCI状态进行第二上行传输;其中,所述第一上行传输使用第一套功率控制参数,所述第二上行传输使用第二套功率控制参数。
5.根据附记4所述的方法,其中,所述终端设备使用两个面板(panel)同时向第一传输接收点和第二传输接收点分别进行所述第一上行传输和所述第二上行传输。
6.根据附记1至3任一项所述的方法,其中,所述上行传输方案包括:
同时基于所述第一上行或联合TCI状态进行第一上行传输和基于所述第二上行或联合TCI状态进行第二上行传输;所述第一上行传输和所述第二上行传输使用第一套功率控制参数。
7.根据附记6所述的方法,其中,所述终端设备使用两个面板(panel)同时向第一传输接收点进行所述第一上行传输和所述第二上行传输。
8.根据附记1至3任一项所述的方法,其中,所述上行传输方案包括:
同时基于所述第一上行或联合TCI状态进行第一上行传输和基于所述第二上行或联合TCI状态进行第二上行传输;所述第一上行传输和所述第二上行传输使用第二套功率控制参数。
9.根据附记8所述的方法,其中,所述终端设备使用两个面板(panel)同时向第二传输接收点进行所述第一上行传输和所述第二上行传输。
10.根据附记1至9任一项所述的方法,其中,所述上行传输方案包括:
基于所述第一上行或联合TCI状态进行第一上行传输;其中,所述第一上行传输使用第一套功率控制参数。
11.根据附记10所述的方法,其中,所述终端设备使用一个面板(panel)向第一传输接收点进行所述第一上行传输。
12.根据附记1至9任一项所述的方法,其中,所述上行传输方案包括:
基于所述第二上行或联合TCI状态进行第二上行传输;其中,所述第二上行传输使用第二套功率控制参数。
13.根据附记12所述的方法,其中,所述终端设备使用一个面板(panel)向第二传输接收点进行所述第二上行传输。
14.根据附记1至9任一项所述的方法,其中,所述上行传输方案包括:
通过时分复用(TDM)基于所述第一上行或联合TCI状态进行第一上行传输和基于所述第二上行或联合TCI状态进行第二上行传输;其中先基于所述第一上行或联合TCI状态再基于所述第二上行或联合TCI状态,所述第一上行传输使用第一套功率控制参数,所述第二上行传输使用第二套功率控制参数。
15.根据附记14所述的方法,其中,所述终端设备先使用一个面板(panel)向第一传输接收点进行所述第一上行传输,再使用一个面板(panel)向第二传输接收点进行所述第二上行传输。
16.根据附记1至9任一项所述的方法,其中,所述上行传输方案包括:
通过时分复用(TDM)基于所述第一上行或联合TCI状态进行第一上行传输和基于所述第二上行或联合TCI状态进行第二上行传输;其中先基于所述第二上行或联合TCI状态再基于所述第一上行或联合TCI状态,所述第一上行传输使用第一套功率控制 参数,所述第二上行传输使用第二套功率控制参数。
17.根据附记16所述的方法,其中,所述终端设备先使用一个面板(panel)向第二传输接收点进行所述第二上行传输,再使用一个面板(panel)向第一传输接收点进行所述第一上行传输。
18.根据附记4至17任一项所述的方法,其中,所述第一上行传输基于第一SRS资源集合,所述第二上行传输基于第二SRS资源集合。
19.根据附记1所述的方法,其中,对于基于单下行控制信息(sDCI)的多传输接收点(mTRP),所述终端设备根据所述下行控制信息进行所述上行传输。
20.根据附记1所述的方法,其中,对于基于多下行控制信息(mDCI)的多传输接收点(mTRP),所述终端设备根据所述下行控制信息进行所述上行传输。
21.根据附记1至20任一项所述的方法,其中,通过RRC信令为所述终端设备配置多个上行传输方案,并由所述下行控制信息指示所述多个上行传输方案中的一个上行传输方案。
22.根据附记1至21任一项所述的方法,其中,物理上行控制信道(PUCCH)资源被RRC信令或MAC CE配置为使用多个上行传输方案中的一个上行传输方案,以及在由所述DCI指示PUCCH资源时,所述终端设备使用配置的上行传输方案传输PUCCH。
23.根据附记1所述的方法,其中,对于基于单下行控制信息(sDCI)的多传输接收点(mTRP),所述上行传输方案包括:
同时基于所述第一上行或联合TCI状态进行第一上行传输和基于所述第二上行或联合TCI状态进行第二上行传输;其中,所述第一上行传输使用第一套功率控制参数,所述第二上行传输使用第二套功率控制参数;以及
如下传输方案的至少之一:
同时基于所述第一上行或联合TCI状态进行第一上行传输和基于所述第二上行或联合TCI状态进行第二上行传输;所述第一上行传输和所述第二上行传输使用第一套功率控制参数;
同时基于所述第一上行或联合TCI状态进行第一上行传输和基于所述第二上行或联合TCI状态进行第二上行传输;所述第一上行传输和所述第二上行传输使用第二套功率控制参数;
基于所述第一上行或联合TCI状态进行第一上行传输;其中,所述第一上行传输使用第一套功率控制参数;
基于所述第二上行或联合TCI状态进行第二上行传输;其中,所述第二上行传输使用第二套功率控制参数;
通过时分复用(TDM)基于所述第一上行或联合TCI状态进行第一上行传输和基于所述第二上行或联合TCI状态进行第二上行传输;其中先基于所述第一上行或联合TCI状态再基于所述第二上行或联合TCI状态,所述第一上行传输使用第一套功率控制参数,所述第二上行传输使用第二套功率控制参数;
通过时分复用(TDM)基于所述第一上行或联合TCI状态进行第一上行传输和基于所述第二上行或联合TCI状态进行第二上行传输;其中先基于所述第二上行或联合TCI状态再基于所述第一上行或联合TCI状态,所述第一上行传输使用第一套功率控制参数,所述第二上行传输使用第二套功率控制参数。
24.根据附记1所述的方法,其中,对于基于多下行控制信息(mDCI)的多传输接收点(mTRP),所述上行传输方案包括:
同时基于所述第一上行或联合TCI状态进行第一上行传输和基于所述第二上行或联合TCI状态进行第二上行传输;所述第一上行传输和所述第二上行传输使用第一套功率控制参数;和
同时基于所述第一上行或联合TCI状态进行第一上行传输和基于所述第二上行或联合TCI状态进行第二上行传输;所述第一上行传输和所述第二上行传输使用第二套功率控制参数。
25.根据附记1所述的方法,其中,对于基于多下行控制信息(mDCI)的多传输接收点(mTRP),所述上行传输方案包括:
同时基于所述第一上行或联合TCI状态进行第一上行传输和基于所述第二上行或联合TCI状态进行第二上行传输;所述第一上行传输和所述第二上行传输使用第一套功率控制参数;和/或
同时基于所述第一上行或联合TCI状态进行第一上行传输和基于所述第二上行或联合TCI状态进行第二上行传输;所述第一上行传输和所述第二上行传输使用第二套功率控制参数;
以及如下传输方案的至少之一:
基于所述第一上行或联合TCI状态进行第一上行传输;其中,所述第一上行传输使用第一套功率控制参数;
基于所述第二上行或联合TCI状态进行第二上行传输;其中,所述第二上行传输使 用第二套功率控制参数;
通过时分复用(TDM)基于所述第一上行或联合TCI状态进行第一上行传输和基于所述第二上行或联合TCI状态进行第二上行传输;其中先基于所述第一上行或联合TCI状态再基于所述第二上行或联合TCI状态,所述第一上行传输使用第一套功率控制参数,所述第二上行传输使用第二套功率控制参数;
通过时分复用(TDM)基于所述第一上行或联合TCI状态进行第一上行传输和基于所述第二上行或联合TCI状态进行第二上行传输;其中先基于所述第二上行或联合TCI状态再基于所述第一上行或联合TCI状态,所述第一上行传输使用第一套功率控制参数,所述第二上行传输使用第二套功率控制参数。
26.一种信号接收方法,其中,所述方法包括:
网络设备发送传输配置指示(TCI)状态指示信息,所述TCI状态指示信息指示第一上行或联合TCI状态和第二上行或联合TCI状态;
所述网络设备发送下行控制信息(DCI);以及
所述网络设备接收上行传输;其中,由终端设备根据所述下行控制信息指示的上行传输方案,基于所述第一上行或联合TCI状态和/或所述第二上行或联合TCI状态进行所述上行传输。
27.根据附记26所述的方法,其中,所述下行控制信息指示或激活所述上行传输,所述上行传输包括:
基于动态授权(dynamic grant)的物理上行共享信道(PUSCH)传输;或
基于类型2配置授权(Type 2 configured grant)的PUSCH传输;或
物理上行控制信道(PUCCH)传输;或
半持续探测参考信号(SRS)传输;或
非周期SRS传输。
28.根据附记26或27所述的方法,其中,所述上行传输方案包括:
同时基于所述第一上行或联合TCI状态进行第一上行传输和基于所述第二上行或联合TCI状态进行第二上行传输;其中,所述第一上行传输使用第一套功率控制参数,所述第二上行传输使用第二套功率控制参数。
29.根据附记26或27所述的方法,其中,所述上行传输方案包括:
同时基于所述第一上行或联合TCI状态进行第一上行传输和基于所述第二上行或联合TCI状态进行第二上行传输;所述第一上行传输和所述第二上行传输使用第一套功 率控制参数。
30.根据附记26或27所述的方法,其中,所述上行传输方案包括:
同时基于所述第一上行或联合TCI状态进行第一上行传输和基于所述第二上行或联合TCI状态进行第二上行传输;所述第一上行传输和所述第二上行传输使用第二套功率控制参数。
31.根据附记26至30任一项所述的方法,其中,所述上行传输方案包括:
基于所述第一上行或联合TCI状态进行第一上行传输;其中,所述第一上行传输使用第一套功率控制参数。
32.根据附记26至30任一项所述的方法,其中,所述上行传输方案包括:
基于所述第二上行或联合TCI状态进行第二上行传输;其中,所述第二上行传输使用第二套功率控制参数。
33.根据附记26至30任一项所述的方法,其中,所述上行传输方案包括:
通过时分复用(TDM)基于所述第一上行或联合TCI状态进行第一上行传输和基于所述第二上行或联合TCI状态进行第二上行传输;其中先基于所述第一上行或联合TCI状态再基于所述第二上行或联合TCI状态,所述第一上行传输使用第一套功率控制参数,所述第二上行传输使用第二套功率控制参数。
34.根据附记26至30任一项所述的方法,其中,所述上行传输方案包括:
通过时分复用(TDM)基于所述第一上行或联合TCI状态进行第一上行传输和基于所述第二上行或联合TCI状态进行第二上行传输;其中先基于所述第二上行或联合TCI状态再基于所述第一上行或联合TCI状态,所述第一上行传输使用第一套功率控制参数,所述第二上行传输使用第二套功率控制参数。
35.根据附记27至34任一项所述的方法,其中,所述第一上行传输基于第一SRS资源集合,所述第二上行传输基于第二SRS资源集合。
36.一种信号发送方法,其中,所述方法包括:
终端设备接收传输配置指示(TCI)状态指示信息,所述TCI状态指示信息指示第一上行或联合TCI状态和第二上行或联合TCI状态;
所述终端设备接收下行控制信息(DCI);以及
所述终端设备在所述下行控制信息指示的物理上行控制信道(PUCCH)资源上,基于所述第一上行或联合TCI状态和/或所述第二上行或联合TCI状态传输PUCCH。
37.根据附记36所述的方法,其中,所述PUCCH资源被RRC信令或MAC CE配 置为使用多个上行传输方案中的一个上行传输方案,以及所述终端设备使用配置的上行传输方案传输所述PUCCH。
38.一种信号接收方法,其中,所述方法包括:
网络设备发送传输配置指示(TCI)状态指示信息,所述TCI状态指示信息指示第一上行或联合TCI状态和第二上行或联合TCI状态;
所述网络设备发送下行控制信息(DCI);以及
所述网络设备接收PUCCH;其中终端设备在所述下行控制信息指示的物理上行控制信道(PUCCH)资源上,基于所述第一上行或联合TCI状态和/或所述第二上行或联合TCI状态传输所述PUCCH。
39.根据附记38所述的方法,其中,所述PUCCH资源被RRC信令或MAC CE配置为使用多个上行传输方案中的一个上行传输方案,以及所述终端设备使用配置的上行传输方案传输所述PUCCH。
40.一种终端设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记1至25、36、37任一项所述的信号发送方法。
41.一种网络设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记26至35、38、39任一项所述的信号接收方法。

Claims (20)

  1. 一种信号发送装置,包括:
    第一接收单元,其接收传输配置指示状态指示信息,所述传输配置指示状态指示信息指示第一上行或联合传输配置指示状态和第二上行或联合传输配置指示状态;
    第二接收单元,其接收下行控制信息;以及
    发送单元,其根据所述下行控制信息指示的上行传输方案,基于所述第一上行或联合传输配置指示状态和/或所述第二上行或联合传输配置指示状态进行上行传输。
  2. 根据权利要求1所述的装置,其中,所述第二接收单元在所述第一上行或联合传输配置指示状态和所述第二上行或联合传输配置指示状态的作用时间内接收所述下行控制信息。
  3. 根据权利要求1所述的装置,其中,所述下行控制信息指示或激活所述上行传输,所述上行传输包括:
    基于动态授权的物理上行共享信道传输;或
    基于类型2配置授权的物理上行共享信道传输;或
    物理上行控制信道传输;或
    半持续探测参考信号传输;或
    非周期探测参考信号传输。
  4. 根据权利要求1所述的装置,其中,所述上行传输方案包括:
    同时基于所述第一上行或联合传输配置指示状态进行第一上行传输和基于所述第二上行或联合传输配置指示状态进行第二上行传输;其中,所述第一上行传输使用第一套功率控制参数,所述第二上行传输使用第二套功率控制参数;
    其中,所述发送单元使用两个面板同时向第一传输接收点和第二传输接收点分别进行所述第一上行传输和所述第二上行传输。
  5. 根据权利要求1所述的装置,其中,所述上行传输方案包括:
    同时基于所述第一上行或联合传输配置指示状态进行第一上行传输和基于所述第二上行或联合传输配置指示状态进行第二上行传输;所述第一上行传输和所述 第二上行传输使用第一套功率控制参数;
    其中,所述发送单元使用两个面板同时向第一传输接收点进行所述第一上行传输和所述第二上行传输。
  6. 根据权利要求1所述的装置,其中,所述上行传输方案包括:
    同时基于所述第一上行或联合传输配置指示状态进行第一上行传输和基于所述第二上行或联合传输配置指示状态进行第二上行传输;所述第一上行传输和所述第二上行传输使用第二套功率控制参数;
    其中,所述发送单元使用两个面板同时向第二传输接收点进行所述第一上行传输和所述第二上行传输。
  7. 根据权利要求1所述的装置,其中,所述上行传输方案包括:
    基于所述第一上行或联合传输配置指示状态进行第一上行传输;其中,所述第一上行传输使用第一套功率控制参数;
    其中,所述发送单元使用一个面板向第一传输接收点进行所述第一上行传输。
  8. 根据权利要求1所述的装置,其中,所述上行传输方案包括:
    基于所述第二上行或联合传输配置指示状态进行第二上行传输;其中,所述第二上行传输使用第二套功率控制参数;
    其中,所述发送单元使用一个面板向第二传输接收点进行所述第二上行传输。
  9. 根据权利要求1所述的装置,其中,所述上行传输方案包括:
    通过时分复用基于所述第一上行或联合传输配置指示状态进行第一上行传输和基于所述第二上行或联合传输配置指示状态进行第二上行传输;其中,先基于所述第一上行或联合传输配置指示状态再基于所述第二上行或联合传输配置指示状态,所述第一上行传输使用第一套功率控制参数,所述第二上行传输使用第二套功率控制参数;
    其中,所述发送单元先使用一个面板向第一传输接收点进行所述第一上行传输,再使用一个面板向第二传输接收点进行所述第二上行传输。
  10. 根据权利要求1所述的装置,其中,所述上行传输方案包括:
    通过时分复用基于所述第一上行或联合传输配置指示状态进行第一上行传输和基于所述第二上行或联合传输配置指示状态进行第二上行传输;其中,先基于所述第二上行或联合传输配置指示状态再基于所述第一上行或联合传输配置指示状 态,所述第一上行传输使用第一套功率控制参数,所述第二上行传输使用第二套功率控制参数;
    其中,所述发送单元先使用一个面板向第二传输接收点进行所述第二上行传输,再使用一个面板向第一传输接收点进行所述第一上行传输。
  11. 根据权利要求1所述的装置,其中,所述第一上行传输基于第一探测参考信号资源集合,所述第二上行传输基于第二探测参考信号资源集合。
  12. 根据权利要求1所述的装置,其中,对于基于单下行控制信息的多传输接收点,所述发送单元根据所述下行控制信息进行所述上行传输。
  13. 根据权利要求1所述的装置,其中,对于基于多下行控制信息的多传输接收点,所述发送单元根据所述下行控制信息进行所述上行传输。
  14. 根据权利要求1所述的装置,其中,通过无线资源控制信令为终端设备配置多个上行传输方案,并由所述下行控制信息指示所述多个上行传输方案中的一个上行传输方案。
  15. 根据权利要求1所述的装置,其中,物理上行控制信道资源被无线资源控制信令或介质访问控制控制元素配置为使用多个上行传输方案中的一个上行传输方案,以及在由所述下行控制信息指示物理上行控制信道资源时,所述发送单元使用配置的上行传输方案传输物理上行控制信道。
  16. 一种信号接收装置,其中,所述装置包括:
    第一发送单元,其发送传输配置指示状态指示信息,所述传输配置指示状态指示信息指示第一上行或联合传输配置指示状态和第二上行或联合传输配置指示状态;
    第二发送单元,其发送下行控制信息;以及
    接收单元,其接收上行传输;其中,由终端设备根据所述下行控制信息指示的上行传输方案,基于所述第一上行或联合传输配置指示状态和/或所述第二上行或联合传输配置指示状态进行所述上行传输。
  17. 根据权利要求16所述的装置,其中,所述下行控制信息指示或激活所述上行传输,所述上行传输包括:
    基于动态授权的物理上行共享信道传输;或
    基于类型2配置授权的物理上行共享信道传输;或
    物理上行控制信道传输;或
    半持续探测参考信号传输;或
    非周期探测参考信号传输。
  18. 根据权利要求16所述的装置,其中,所述上行传输方案包括如下至少之一:
    同时基于所述第一上行或联合传输配置指示状态进行第一上行传输和基于所述第二上行或联合传输配置指示状态进行第二上行传输;其中,所述第一上行传输使用第一套功率控制参数,所述第二上行传输使用第二套功率控制参数;
    同时基于所述第一上行或联合传输配置指示状态进行第一上行传输和基于所述第二上行或联合传输配置指示状态进行第二上行传输;所述第一上行传输和所述第二上行传输使用第一套功率控制参数;
    同时基于所述第一上行或联合传输配置指示状态进行第一上行传输和基于所述第二上行或联合传输配置指示状态进行第二上行传输;所述第一上行传输和所述第二上行传输使用第二套功率控制参数;
    基于所述第一上行或联合传输配置指示状态进行第一上行传输;其中,所述第一上行传输使用第一套功率控制参数;
    基于所述第二上行或联合传输配置指示状态进行第二上行传输;其中,所述第二上行传输使用第二套功率控制参数;
    通过时分复用基于所述第一上行或联合传输配置指示状态进行第一上行传输和基于所述第二上行或联合传输配置指示状态进行第二上行传输;其中先基于所述第一上行或联合传输配置指示状态再基于所述第二上行或联合传输配置指示状态,所述第一上行传输使用第一套功率控制参数,所述第二上行传输使用第二套功率控制参数;
    通过时分复用基于所述第一上行或联合传输配置指示状态进行第一上行传输和基于所述第二上行或联合传输配置指示状态进行第二上行传输;其中先基于所述第二上行或联合传输配置指示状态再基于所述第一上行或联合传输配置指示状态,所述第一上行传输使用第一套功率控制参数,所述第二上行传输使用第二套功率控制参数。
  19. 根据权利要求16所述的装置,其中,所述第一上行传输基于第一探测参考信号资源集合,所述第二上行传输基于第二探测参考信号资源集合。
  20. 一种通信系统,包括:
    网络设备,其发送传输配置指示状态指示信息,所述传输配置指示状态指示信息指示第一上行或联合传输配置指示状态和第二上行或联合传输配置指示状态;发送下行控制信息以及接收上行传输;
    终端设备,其接收所述传输配置指示状态指示信息;接收所述下行控制信息;以及根据所述下行控制信息指示的上行传输方案,基于所述第一上行或联合传输配置指示状态和/或所述第二上行或联合传输配置指示状态进行所述上行传输。
PCT/CN2022/090082 2022-04-28 2022-04-28 信号发送和接收装置以及方法 WO2023206293A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/090082 WO2023206293A1 (zh) 2022-04-28 2022-04-28 信号发送和接收装置以及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/090082 WO2023206293A1 (zh) 2022-04-28 2022-04-28 信号发送和接收装置以及方法

Publications (1)

Publication Number Publication Date
WO2023206293A1 true WO2023206293A1 (zh) 2023-11-02

Family

ID=88516860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090082 WO2023206293A1 (zh) 2022-04-28 2022-04-28 信号发送和接收装置以及方法

Country Status (1)

Country Link
WO (1) WO2023206293A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020143909A1 (en) * 2019-01-09 2020-07-16 Huawei Technologies Co., Ltd. Client device and network access node for tci configuration
WO2021198988A1 (en) * 2020-04-01 2021-10-07 Telefonaktiebolaget Lm Ericsson (Publ) Pusch multiple trp reliability with ul tci indication
CN113767697A (zh) * 2021-08-05 2021-12-07 北京小米移动软件有限公司 一种传输配置指示tci状态配置的方法及其装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020143909A1 (en) * 2019-01-09 2020-07-16 Huawei Technologies Co., Ltd. Client device and network access node for tci configuration
WO2021198988A1 (en) * 2020-04-01 2021-10-07 Telefonaktiebolaget Lm Ericsson (Publ) Pusch multiple trp reliability with ul tci indication
CN113767697A (zh) * 2021-08-05 2021-12-07 北京小米移动软件有限公司 一种传输配置指示tci状态配置的方法及其装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OPPO: "Enhancements on Multi-Beam Operation", 3GPP TSG RAN WG1 #104B-E, R1-2102378, 7 April 2021 (2021-04-07), XP052177095 *

Similar Documents

Publication Publication Date Title
US11438898B2 (en) Beam indication method, apparatus and system
US11678212B2 (en) Methods executed by user equipment and user equipment
WO2019153347A1 (zh) 配置信息的接收和发送方法、装置及通信系统
CN113498627B (zh) 信号接收或发送方法、装置和系统
EP3627943B1 (en) Control information transmission method and device
EP3963782B1 (en) Hybrid automatic repeat request (harq) feedback for multiple physical downlink shared channel (pdsch) with downlink (dl) semi-persistent scheduling
WO2021026917A1 (zh) 信号发送方法、装置和系统
JP7318703B2 (ja) 参照信号の送受信方法及び装置
US11470597B2 (en) Configured grants in time division duplex communications
US11582736B2 (en) Communication method and apparatus and communication system
CN110932820A (zh) 发送和接收上行控制信息的方法以及通信装置
US20220225143A1 (en) Method and Apparatus For Handling Sidelink Reports
US20220173878A1 (en) Serving cell activation and deactivation
WO2021031042A1 (zh) 信号发送和接收方法以及装置
WO2023206293A1 (zh) 信号发送和接收装置以及方法
WO2022152944A1 (en) Hybrid automatic repeat request (harq) feedback en-/disabling for multicast
CN110431887A (zh) 系统信息指示方法及其装置、通信系统
WO2021034255A1 (en) Data rate handling for nr-dc with mcg and scg operation in same frequency range
WO2024026858A1 (zh) 上行数据发送、上行数据接收装置以及方法
WO2023206302A1 (zh) 信号发送、信号接收装置以及方法
WO2024031505A1 (zh) 信号接收方法、信号发送方法以及装置
WO2024031547A1 (zh) 非周期参考信号的接收和发送方法以及装置
WO2021159386A1 (zh) 上行信号的发送和接收方法、装置和通信系统
WO2024026859A1 (zh) 上行数据发送、上行数据接收装置以及方法
WO2024060078A1 (zh) 信息收发方法与装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939143

Country of ref document: EP

Kind code of ref document: A1