WO2024031294A1 - 通信方法以及通信设备 - Google Patents

通信方法以及通信设备 Download PDF

Info

Publication number
WO2024031294A1
WO2024031294A1 PCT/CN2022/110981 CN2022110981W WO2024031294A1 WO 2024031294 A1 WO2024031294 A1 WO 2024031294A1 CN 2022110981 W CN2022110981 W CN 2022110981W WO 2024031294 A1 WO2024031294 A1 WO 2024031294A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing
feedback information
information
result feedback
signals
Prior art date
Application number
PCT/CN2022/110981
Other languages
English (en)
French (fr)
Inventor
张轶
徐婧
梁彬
林亚男
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/110981 priority Critical patent/WO2024031294A1/zh
Publication of WO2024031294A1 publication Critical patent/WO2024031294A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems

Definitions

  • the present application relates to the field of communication technology, and more specifically, to a communication method and communication device.
  • Communication and perception integration technology can integrate the two functions of wireless communication and perception, and realize many functions. For example, based on communication and perception integration technology, the wireless resources of wireless communication can be used to realize the sensing function. Alternatively, widely deployed cellular networks can be leveraged to enable sensing services over a larger area. Alternatively, network devices and multiple terminal devices can be used for joint sensing to achieve higher sensing accuracy. Alternatively, wireless communication hardware modules can be reused to implement sensing functions and reduce costs.
  • This application provides a communication method and communication device. Each aspect involved in this application is introduced below.
  • a communication method includes: a first device receiving one or more sensing signals, where the sensing signals are reference signals and/or signals carried in a data channel.
  • a communication method includes: a second device sending one or more sensing signals, where the sensing signals are reference signals and/or signals carried in a data channel.
  • a communication method includes: a third device receiving result feedback information corresponding to one or more sensing signals, where the sensing signals are reference signals and/or signals carried in a data channel.
  • a communication device is provided.
  • the communication device is a first device.
  • the communication device includes: a first receiving unit configured to receive one or more sensing signals, where the sensing signals are reference signals and/or or signals carried in data channels.
  • a communication device is provided.
  • the communication device is a second device.
  • the communication device includes: a first sending unit configured to send one or more sensing signals, where the sensing signals are reference signals and/or or signals carried in data channels.
  • a communication device is provided.
  • the communication device is a third device.
  • the communication device includes: a fourth receiving unit configured to receive result feedback information corresponding to one or more sensing signals.
  • the sensing signals For reference signals and/or signals carried in data channels.
  • a seventh aspect provides a communication device, including a processor, a memory, and a transceiver.
  • the memory is used to store one or more computer programs.
  • the processor is used to call the computer program in the memory so that the communication device Perform some or all of the steps of the method of the first aspect.
  • An eighth aspect provides a communication device, including a processor, a memory, and a transceiver.
  • the memory is used to store one or more computer programs.
  • the processor is used to call the computer program in the memory so that the communication device Perform some or all of the steps of the method of the second aspect.
  • a ninth aspect provides a communication device, including a processor, a memory, and a transceiver.
  • the memory is used to store one or more computer programs.
  • the processor is used to call the computer program in the memory so that the communication device Perform some or all of the steps of the method of the third aspect.
  • embodiments of the present application provide a communication system, which includes the above communication device.
  • the system may also include other devices that interact with the communication device in the solution provided by the embodiments of the present application.
  • embodiments of the present application provide a computer-readable storage medium that stores a computer program, and the computer program causes a terminal to perform some or all of the steps in the methods of the above aspects.
  • embodiments of the present application provide a computer program product, wherein the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to cause the communication device to execute Some or all of the steps in the methods of the above aspects.
  • the computer program product can be a software installation package.
  • embodiments of the present application provide a chip, which includes a memory and a processor.
  • the processor can call and run a computer program from the memory to implement some or all of the steps described in the methods of the above aspects. .
  • the reference signal in the wireless communication system and/or the signal carried in the data channel can be multiplexed for sensing.
  • sensing can be achieved without defining new signals or channels, thereby reducing the standardization workload of sensing and communication integration, and also reducing system complexity and system overhead.
  • the bandwidth of the reference signal can be relatively large. Therefore, multiplexing the reference signal for sensing can at least achieve higher-precision sensing.
  • the signal carried in the data channel the signal is usually a signal that needs to be sent during the communication process. Therefore, multiplexing the signal in the data channel for sensing can at least reduce the overhead of sensing.
  • Figure 1 is a wireless communication system applied in the embodiment of the present application.
  • Figure 2 is an example diagram of the 8 modes of perception.
  • Figure 3 is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • Figure 4 is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • Figure 5 is an example diagram in which the result feedback information provided by the embodiment of the application is periodic or semi-persistent.
  • Figure 6 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • FIG. 1 is a wireless communication system 100 applied in the embodiment of the present application.
  • the wireless communication system 100 may include one or more communication devices, which may be, for example, the network device 110 or the terminal device 120.
  • the network device 110 may be a device that communicates with the terminal device 120 .
  • the network device 110 may provide communication coverage for a specific geographical area and may communicate with terminal devices 120 located within the coverage area.
  • Figure 1 shows a network device and two terminal devices.
  • the wireless communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. This application The embodiment does not limit this.
  • the wireless communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiments of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: fifth generation (5th generation, 5G) systems or new radio (NR), long term evolution (long term evolution, LTE) systems , LTE frequency division duplex (FDD) system, LTE time division duplex (TDD), etc.
  • 5G fifth generation
  • NR new radio
  • long term evolution long term evolution
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • future communication systems such as the sixth generation mobile communication system and subsequent versions of communication systems, satellite communication systems, and so on.
  • the terminal equipment in the embodiment of this application may also be called user equipment (UE), access terminal, user unit, user station, mobile station, mobile station (MS), mobile terminal (MT) ), remote station, remote terminal, mobile device, user terminal, terminal, wireless communications equipment, user agent or user device.
  • the terminal device in the embodiment of the present application may be a device that provides voice and/or data connectivity to users, and may be used to connect people, things, and machines, such as handheld devices and vehicle-mounted devices with wireless connection functions.
  • the terminal device in the embodiment of the present application can be a mobile phone (mobile phone), a tablet computer (Pad), a notebook computer, a handheld computer, a mobile internet device (mobile internet device, MID), a wearable device, a virtual reality (virtual reality, VR) equipment, augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, smart Wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, etc.
  • a UE may be used to act as a base station.
  • a UE may act as a scheduling entity that provides sidelink signals between UEs in vehicle to everything (V2X) or device-to-device (D2D), etc.
  • V2X vehicle to everything
  • D2D device-to-device
  • cell phones and cars use sidelink signals to communicate with each other.
  • Cell phones and smart home devices communicate between each other without having to relay communication signals through base stations.
  • the network device in the embodiment of the present application may be a device used to communicate with a terminal device.
  • Network equipment may include access network equipment and core network equipment. Access network equipment may also be called wireless access network equipment.
  • the network device in the embodiment of this application may refer to a radio access network (radio access network, RAN) node (or device) that connects the terminal device to the wireless network.
  • the network device may be a base station.
  • the base station can broadly cover various names as follows, or be replaced with the following names, such as: Node B (NodeB), evolved base station (evolved NodeB, eNB), next generation base station (next generation NodeB, gNB), relay station, Access point, transmission point (transmitting and receiving point, TRP), transmitting point (TP), receiving point (RP), master station (master eNB, MeNB), secondary station (secondary eNB, SeNB) , multi-standard radio (MSR) node, home base station, network controller, access node, wireless node, access point (AP), transmission node, transceiver node, base band unit , BBU), radio remote unit (Remote Radio Unit, RRU), active antenna unit (active antenna unit, AAU), radio head (remote radio head, RRH), central unit (central unit, CU), distributed unit (distributed unit, DU), positioning nodes, etc.
  • NodeB Node B
  • eNB evolved base station
  • eNB evolved base
  • the base station may be a macro base station, a micro base station, a relay node, a donor node or the like, or a combination thereof.
  • a base station may also refer to a communication module, modem or chip used in the aforementioned equipment or devices.
  • the base station can also be a mobile switching center and equipment that performs base station functions in D2D, V2X, and machine-to-machine (M2M) communications, network-side equipment in 6G networks, and equipment that performs base station functions in future communication systems. wait.
  • Base stations can support networks with the same or different access technologies. The embodiments of this application do not limit the specific technology and specific equipment form used by the network equipment.
  • Base stations can be fixed or mobile.
  • a helicopter or drone may be configured to act as a mobile base station, and one or more cells may move based on the mobile base station's location.
  • a helicopter or drone may be configured to serve as a device that communicates with another base station.
  • the network device in the embodiment of this application may refer to a CU or a DU, or the network device includes a CU and a DU.
  • gNB can also include AAU.
  • Network equipment and terminal equipment can be deployed on land, indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and satellites in the sky. In the embodiments of this application, the scenarios in which network devices and terminal devices are located are not limited.
  • Perception networks in a narrow sense can refer to systems with capabilities such as target positioning, target imaging, target detection, target tracking, and target recognition.
  • Target positioning may include one or more of the following sensing operations for the sensed target: ranging, speed measurement, and angle measurement.
  • a broad sense network can refer to a system with the attributes and status of any business, network, user, terminal, and environmental object.
  • sensing can include the following classifications: outdoor/wide area/local area applications and indoor/local area applications.
  • Outdoor/wide area/local area applications can include one or more of the following applications: smart cities, smart transportation/high-speed rail, low-altitude applications, etc.
  • Smart cities may include weather monitoring, for example.
  • Smart transportation/high-speed rail for example, can include one or more of high-precision map construction, road supervision, intrusion detection, etc.
  • Low-altitude applications may include, for example, one or more of: UAV monitoring, UAV obstacle avoidance, flight intrusion detection, flight path management, etc.
  • Indoor/local area applications can include one or more of the following applications: smart home, health management, smart factory, etc.
  • Health management may include, for example, one or more of: respiratory monitoring, intrusion detection, gesture/posture recognition, motion monitoring, movement trajectory tracking, etc.
  • a smart factory may include, for example, one or more of intrusion detection, material detection, item defect detection, etc.
  • sensing applications and classification of sensing applications are exemplary, and the scope of sensing applications is not limited to the above examples.
  • Perception is an important application of modern radio frequency technology. Sensing can be achieved using radio waves. For example, perception technology can use radio waves to detect parameters of the physical environment to achieve environmental perception such as target positioning, action recognition, and imaging. Another important application of modern radio frequency technology is wireless communications. Perception and wireless communication exist independently, that is, separated design, which will lead to a waste of wireless spectrum and hardware resources.
  • Next-generation networks (such as 6G networks) may be a fusion of at least two of mobile communication networks, perception networks, and computing networks.
  • Communication and perception integration technology can integrate the two functions of wireless communication and perception.
  • Communication perception integration technology can realize many functions. For example, based on communication and perception integration technology, the wireless resources of wireless communication can be used to realize the sensing function. Alternatively, widely deployed cellular networks can be leveraged to enable sensing services over a larger area. Alternatively, network devices and multiple terminal devices can be used for joint sensing to achieve higher sensing accuracy. Alternatively, wireless communication hardware modules can be reused to implement sensing functions and reduce costs.
  • communication and perception integration technology can make wireless communication systems have perception capabilities, providing a foundation for the development of smart transportation, smart cities, smart factories, drones and other businesses.
  • sensing nodes there may be at least one of the following types of nodes: sensing nodes, sensed targets, and sensing control nodes.
  • the sensing node may include a sensing signal sending node and/or a sensing signal receiving node.
  • the sensing signal sending node and the sensing signal receiving node may be the same entity. Taking the eight sensing modes shown in Figure 2 as an example, the sensing node can be a network device in mode one or a terminal device in mode two. In mode one, the sensing signal sending node and the sensing signal receiving node are the same entity, and the entity is a network device. In mode two, the sensing signal sending node and the sensing signal receiving node are the same entity, and the entity is a terminal device. .
  • the sensed target may be a target that needs to be sensed.
  • the sensed target may also be called a sensed node or a measured target.
  • the sensing control node may be a node that controls and manages sensing nodes and/or sensing services.
  • the functions of the sensing control node may include but are not limited to: managing sensing services, sending configuration information to sensing nodes and/or sensed targets, configuring the sending and/or receiving of sensing measurement signals, configuring the sending and/or receiving of sensing signals, and configuring
  • the sensing node and/or the sensed target reports measurement results and/or sensing results, collects and processes the measurement results and/or sensing results.
  • the sensing control node may be the same entity as the sensed target or the sensing signal sending node or the sensing signal receiving node. Alternatively, the sensing control node may be a separate entity from the sensing signal and sensed target.
  • Perception can be achieved through different modes.
  • Figure 2 is an example diagram of the 8 modes of perception.
  • FIG 2(a) is an example diagram of mode one.
  • mode one is the spontaneous self-sensing of network devices.
  • the sending node for sensing signals/channels (hereinafter referred to as sensing signals/channels) is the network device 210a (such as gNB).
  • the network device 210a After the network device 210a sends a sensing signal, it is reflected by the sensing target 230 (the vehicle as shown in Figure 2(a)), and the reflected signal returns to the network device 210a (which can also be considered as a sensing signal). Return to network device 210a).
  • the network device 210a is both a sending node and a receiving node of sensing signals/channels.
  • the signal/channel described in the embodiment of this application can also be called a channel/signal.
  • Figure 2(b) is an example diagram of mode two.
  • mode two is the terminal device's spontaneous self-sensing.
  • the sending node of the sensing signal/channel is the terminal device 220a.
  • the sensing target 230 the vehicle shown in Figure 2(b)
  • the signal is returned to the terminal device 220a (it can also be considered as the sensing signal returned to the terminal device 220a).
  • the terminal device 220a is both a sending node and a receiving node of sensing signals/channels.
  • FIG 2(c) is an example diagram of mode three.
  • mode three is network device cooperative sensing.
  • the sending node of the sensing signal/channel is a network device 210a (such as gNB).
  • the network device 210a After the network device 210a sends the sensing signal, it is reflected by the sensing target 230 (the vehicle as shown in Figure 2(c)), and the reflected signal is transmitted to another network device 210b (it can also be considered as the sensing signal being transmitted to another network device).
  • Network device 210b is a receiving node that senses the signal/channel.
  • Figure 2(d) is an example diagram of mode four.
  • mode four is terminal cooperative sensing.
  • the sending node of the sensing signal/channel is the terminal device 220a.
  • the terminal device 220a After the terminal device 220a sends the sensing signal, it is reflected by the sensing target 230 (the vehicle shown in Figure 2(d)).
  • the signal is transmitted to another terminal device 220b (it can also be considered that the sensing signal is transmitted to the terminal device 220b), and the terminal device 220b is the receiving node of the sensing signal/channel.
  • Figure 2(e) is an example diagram of mode five.
  • mode five is network device-terminal device cooperative sensing.
  • the sending node of the sensing signal/channel is the network device 210a (such as gNB).
  • the network device 210a After the network device 210a sends the sensing signal, it is reflected by the sensing target 230 (the vehicle as shown in Figure 2(e)), and the reflected signal is transmitted to the terminal device.
  • 220a (which can also be considered as the transmission of the sensing signal to the terminal device 220a), and the terminal device 220a is the receiving node of the sensing signal/channel.
  • Figure 2(f) is an example diagram of mode six.
  • mode six is terminal device-network device cooperative sensing.
  • the sending node of the sensing signal/channel is the terminal device 220a.
  • the terminal device 220a After the terminal device 220a sends the sensing signal, it is reflected by the sensing target 230 (the vehicle as shown in Figure 2(f)), and the reflected signal is transmitted to the network device 210a (or the It is considered that the sensing signal is transmitted to the network device 210a), and the network device 210a is the receiving node of the sensing signal/channel.
  • Figure 2(g) is an example diagram of mode seven.
  • the sensed target is the sending node of the sensing signal/channel.
  • the terminal device 220a as a sensed target, sends a sensing signal to the network device 210a (such as gNB), and the network device 210a receives the sensing signal and senses the terminal device 220a.
  • the network device 210a such as gNB
  • Figure 2(h) is an example diagram of mode eight.
  • the sensed target is the receiving node that senses the signal/channel.
  • the network device 210a (such as gNB) sends a sensing signal
  • the terminal device 220a is a receiving node of the sensing signal/channel.
  • the terminal device 220a After receiving the sensing signal, the terminal device 220a sends a feedback signal (feedback) to the network device 210a.
  • Figure 3 is a communication method provided by an embodiment of the present application. The method shown in Figure 3 may be performed by the first device and/or the second device.
  • the first device, the second device, the third device and other devices involved in this application can be any communication device described above. It can be understood that when a communication device has sensing capabilities, the communication device may also be called a sensing communication device.
  • the first device, the second device or the third device may be a terminal device or a network device in the eight sensing modes described above.
  • the method shown in Figure 3 may include S310.
  • the first device receives one or more sensing signals.
  • the second device sends one or more sensing signals.
  • the sensing signal may be a reference signal and/or a signal carried in a data channel.
  • this application proposes that the sensing signal can reuse part of the signals in the wireless communication system.
  • the sensing signal proposed in this application can be an enhancement of the reference signal and/or the signal carried in the data channel, that is, the reference signal and/or the signal carried in the data channel have sensing capabilities.
  • the reference signal may include an uplink reference signal, a downlink reference signal, and a sidelink reference signal.
  • the uplink reference signal may include but is not limited to: sounding reference signal (SRS), phase tracking reference signal (PT-RS) and other signals.
  • SRS sounding reference signal
  • PT-RS phase tracking reference signal
  • SRS can be used for uplink channel quality measurement, uplink beam management, etc.
  • PT-RS can be used for phase tracking during the communication process.
  • Downlink reference signals may include but are not limited to: synchronization signal block (SSB), channel state information-reference signal (CSI-RS), PT-RS, positioning reference signals, PRS) and other signals.
  • SSB can be used for terminal equipment acquisition and downlink synchronization of network equipment
  • CSI-RS can be used for time-frequency tracking, downlink beam management, downlink channel quality measurement, etc. during the communication process
  • PRS can be used for positioning.
  • the sidelink reference signal may include synchronization signal blocks, CSI-RS signals, etc. transmitted in the sidelink.
  • data channels can carry communication data.
  • the data channel may include but is not limited to: one of physical downlink shared channel (PDSCH), physical uplink shared channel (PUSCH), and physical side shared channel (physical sidelink shared channel, PSSCH) or multiple items.
  • the signal carried in the data channel may include one or more of the data signal carried by the data channel and a demodulation reference signal (DMRS).
  • the data signal may include, but is not limited to, one or more of the following: uplink data signal (such as a signal carried in the PUSCH), downlink data signal (such as a signal carried in the PDSCH), sidelink data signal (such as a signal carried in the PDSCH) signal in PSSCH).
  • the transmission of the data signal/channel also corresponds to the transmission of the DMRS signal, which is used to demodulate the data channel.
  • the sensing signal enables sensing of the environment around the first device and/or the second device.
  • the first device can have generalized wireless sensing capabilities by sensing signals.
  • the environment surrounding the first device and/or the second device may include sensed objects.
  • the sensed target may include any object around the first device and/or the second device.
  • the sensed target may be a communication device (such as a terminal device), a non-communication device, an animal or a plant, etc.
  • the position, shape, distance, angle, moving speed, movement trajectory, breathing frequency, and special form (such as falling) of the sensed target can be detected and/or perceived.
  • detection, imaging, and map construction of the surrounding environment can be achieved.
  • sensing can be achieved without defining new signals or channels, thereby reducing the standardization workload of sensing and communication integration, and also reducing system complexity and system overhead.
  • the bandwidth of the reference signal can be relatively large. Therefore, multiplexing the reference signal for sensing can at least achieve higher-precision sensing.
  • the signal carried in the data channel the signal is usually a signal that needs to be sent during the communication process. Therefore, multiplexing the signal in the data channel for sensing can at least reduce the overhead of sensing.
  • This application does not limit the implementation of sensing. For example, detection or perception of a sensed target can be achieved by measuring a sensing signal and the reflection of the sensing signal.
  • the signal reflected by the sensed target for the sensing signal can be received, and the sensed target can be sensed based on the transmission delay of the echo signal and/or the result feedback information of the sensing signal.
  • the third device may measure the azimuth angle of the echo signal based on the echo signal to sense the azimuth of the target object.
  • sensing may include one or more of positioning, detection, ranging, angle measurement, imaging, detection, tracking, identification, and the like.
  • the “perception” mentioned in this application can be replaced by words related to perception.
  • one or more of the following may be used instead of “perception”: positioning, ranging, speed measurement, angle measurement, target imaging, target detection, target tracking, and target recognition.
  • the sensing signal can also be called sensing communication signal, positioning signal, ranging signal or target imaging signal, etc.
  • the sensing signal of the present application can multiplex one or more of the data signal/channel and the reference signal/channel in the communication system. That is to say, the sensing signal can be used for sensing or communication, or the sensing signal can be used for both sensing and communication (that is, the sensing signal is used for sensing and communication).
  • the first information related to the one or more sensing signals may be used to determine whether the one or more sensing signals are used for sensing and/or whether for communication.
  • the first device may receive first information to determine whether one or more sensing signals are used for sensing and/or whether to be used for communication based on the first information.
  • the sending end of the first information may be the sending end of one or more sensing signals (for example, the second device), or it may be other devices.
  • the first device ie, the receiving end of the one or more sensing signals
  • the first information may also be used to indicate whether the receiving end needs to feed back sensing result information.
  • the first information may be included in configuration information and/or control information corresponding to one or more sensing signals. That is, the configuration information and/or control information may include the first information.
  • the first device may receive the configuration information to obtain the first information.
  • the configuration information may be sent by the second device, or may be sent by a device other than the first device and the second device.
  • the first device may receive the control information to obtain the first information.
  • the control information may be sent by the second device, or may be sent by a device other than the first device and the second device.
  • Configuration information can be used to configure one or more sensing signals.
  • configuration information may be carried in radio resource control (RRC) messages, system information block (SIB) messages, and medium access control (MAC) messages.
  • RRC radio resource control
  • SIB system information block
  • MAC medium access control
  • Configuration information may include one or more information elements (IEs). Part or all of the first information may be carried in the one or more information elements.
  • IEs information elements
  • the configuration information may include a first information element. That is, the first cell may be used to configure one or more sensing signals for sensing.
  • the configuration information may include a second information element. That is, the second information element may be used to configure one or more sensing signals for communication.
  • the configuration information may include a third information element. That is, the third information element may be used to configure one or more sensing signals for communication and for sensing.
  • the configuration information may include a first information element and a second information element, wherein the first information element may carry the first information element.
  • the second cell can carry the second part of the first information.
  • the first part of information and the second part of information can be different.
  • the first part of the information can be used to configure one or more sensing signals for sensing; and the second part of the information can be used to configure one or more sensing signals for communication.
  • the first information unit may be used to configure one or more CSI-RSs for sensing
  • the second information unit may be used to configure one or more CSI-RSs for communication. That is to say, the CSI-RS used for sensing can be configured through the first cell, and the CSI-RS used for communication can be configured through the second cell.
  • the CSI-RS configured in the first cell may be called CSI-RS for sensing
  • the CSI-RS configured in the second cell may be called CSI-RS for communication.
  • -RS for communication the CSI-RS for communication.
  • Configuration information can include one or more parameters.
  • One or more parameters may be contained in one or more information elements.
  • the one or more information elements may include, for example, one or more of the above-mentioned first information element, second information element, and third information element.
  • the one or more parameters may include one or more of a first parameter, a second parameter, a third parameter, a fourth parameter, and a fifth parameter.
  • the first information may be carried by one or more of the first parameter, the second parameter, the third parameter, the fourth parameter and the fifth parameter.
  • one or more of the first parameter, the second parameter, the third parameter, the fourth parameter, and the fifth parameter may be common (or shared, shared) in one or more cell configurations.
  • the common one or more cells may include a fourth cell.
  • the fourth information element may include one or more of the first parameter, the second parameter, the third parameter, the fourth parameter, and the fifth parameter.
  • the common plurality of cells may include a fifth cell and a sixth cell.
  • the fifth information element may include one or more of the first parameter, the second parameter, the third parameter, the fourth parameter, and the fifth parameter.
  • the sixth information element may include one or more of the first parameter, the second parameter, the third parameter, the fourth parameter, and the fifth parameter.
  • the parameters included in the sixth information unit may be different from the parameters included in the fifth information unit.
  • the configuration information may include the first parameter and/or the second parameter.
  • the first parameter may be used to indicate part or all of the first information
  • the second parameter may be used to indicate part or all of the first information.
  • the configuration information may include the first parameter. That is to say, if the first parameter is configured, it can indicate that one or more sensing signals are used for sensing.
  • the configuration information may include the second parameter. That is to say, if the second parameter is configured, it can indicate that one or more sensing signals are used for communication.
  • the configuration information may include first parameters and second parameters. That is to say, if the first parameter and the second parameter are configured, it can indicate that one or more sensing signals are used for communication and sensing.
  • the configuration information may not include the first parameter.
  • the configuration information may include a fourth parameter.
  • the fourth parameter may be a parameter different from the first parameter, and the fourth parameter may be used to indicate one or more sensing signals for sensing. It can be understood that, in the case where the configuration information includes the second parameter and the fourth parameter, one or more sensing signals may be used for both communication and sensing.
  • the configuration information may not include the second parameter.
  • the configuration information may include a fifth parameter.
  • the fifth parameter may be a different parameter than the second parameter, and the fifth parameter may be used to indicate one or more sensing signals for communication. It can be understood that, in the case where the configuration information includes the first parameter and the fifth parameter, one or more sensing signals may be used for both communication and sensing.
  • the configuration information may include a third parameter, and the third parameter may be used to indicate the first information.
  • the value of the third parameter may include the first value or not include the second value. That is to say, when the value of the third parameter in the configuration information corresponding to the one or more sensing signals used for sensing includes the first value, the one or more sensing signals can be used for sensing.
  • the value of the third parameter may include the second value or not include the first value. That is to say, when the value of the third parameter in the configuration information corresponding to the one or more sensing signals used for sensing includes the second value, the one or more sensing signals can be used for communication.
  • the value of the third parameter may include a third value.
  • the third value may be a different value from the first value and/or the second value. That is to say, when the value of the third parameter in the configuration information corresponding to the one or more sensing signals used for sensing includes the third value, the one or more sensing signals can be used for communication and sensing.
  • the technical solution in which the first information is included in the configuration information is described in detail above.
  • the following describes a technical solution in which the first information is included in the control information.
  • the first information may be included in the configuration information alone, the first information may be included in the control information alone, or the first information may be included in the configuration information and the control information. That is to say, the technical solution in the configuration information included in the first information and the technical solution in the control information included in the first information mentioned above can be implemented separately or in combination.
  • control information can be used to trigger the transmission of one or more sensing signals. That is to say, the transmission of one or more sensing signals may be controlled by control information corresponding to one or more sensing control signals.
  • control information may include downlink control information (DCI).
  • the first information may be carried in the first indication field of the control information. That is to say, the control information may indicate through the first indication field that its corresponding one or more sensing signals are used for sensing, or for communication, or for both sensing and communication.
  • the first device ie, the receiving end of the one or more sensing signals
  • the first indication field may also be used to indicate whether the receiving end needs to feed back sensing result information.
  • one or more sensing signals may be used for sensing.
  • one or more sensing signals may be used for communication.
  • one or more sensing signals may be used for communication and sensing.
  • the first information may be included in only the configuration information or the control information, or may be included in both the configuration information and the control information. That is to say, by configuring the information, the first information can be determined. Alternatively, through the control information, the first information can be determined. Alternatively, the first information may be determined by combining the configuration information and the control information. For example, the third part of the information in the first information may be included in the configuration information, and the fourth part of the information in the first information may be included in the control information. The first terminal device can combine the third part of information and the fourth part of information to obtain the first information. That is to say, the third part of information and the fourth part of information can constitute the entire information of the first information.
  • the perception signal is explained above, and the feedback of the perception signal is explained below.
  • Feedback on the sensing signal may be indicated by result feedback information.
  • the result feedback information may be used to indicate the sensing result feedback information. That is, the result feedback information may include perception result feedback information for indicating the feedback result for the perception signal.
  • the resulting feedback information may be used to indicate the communication feedback information.
  • the communication feedback information may include communication measurement feedback information (such as channel measurement results).
  • the communication feedback information may include hybrid automatic repeat request (HARQ) feedback information.
  • HARQ hybrid automatic repeat request
  • the result feedback information may correspond to one or more sensing signals. That is to say, a result feedback information may include feedback information of one sensing signal, or may include feedback information of multiple sensing signals.
  • multiple sensing result feedback information may correspond to multiple sensing signals.
  • multiple sensing result feedback information can correspond to multiple sensing signals one-to-one.
  • Figure 4 is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • the method shown in Figure 4 may be performed by the first device and/or the third device.
  • the third device may be any communication device or cognitive communication device described above.
  • the third device may be the same device as the second device, or may be a different device from the second device.
  • the third device may be a receiving end of the reflected signal of the sensing signal.
  • the third device may be an entity where the sensing node and/or the sensing control node is located.
  • the method shown in Figure 4 may include S410.
  • the first device may send sensing result feedback information corresponding to one or more sensing signals.
  • the third device may receive sensing result feedback information corresponding to one or more sensing signals.
  • Case 1 is used to illustrate the situation where the sensing signal is a reference signal
  • case 2 is used to illustrate the situation where the sensing signal is a signal carried in a data channel.
  • the embodiments in case one and case two described below can be implemented in combination. That is to say, when the sensing signal is a reference signal and a signal carried in a data channel, it can be implemented in combination with the embodiments described in case one and case two.
  • the resulting feedback information can be periodic, semi-periodic or aperiodic.
  • the result feedback information corresponding to one or more sensing signals is periodic or semi-persistent.
  • the result feedback information is periodic
  • the result feedback information does not need to be triggered, and the receiving device of the sensing signal (ie, the first device) can perform periodic feedback on the communication and/or sensing results.
  • the result feedback information is semi-persistent
  • the result feedback information needs to be triggered.
  • the receiving device of the sensing signal i.e., the first device
  • the result feedback information can be obtained based on the sensing signal not later than (earlier or equal to) the first time unit.
  • the first time unit may be determined according to the time unit occupied by the result feedback information.
  • the first time unit may be one of one or more time units occupied by the result feedback information.
  • the first time unit may be the first time unit or the last time unit occupied by the result feedback information.
  • the first time unit may be another time unit mapped from the time unit occupied by the result feedback information. In other words, the first time unit may be determined according to the time unit occupied by the result feedback information.
  • Figure 5 is an example diagram in which the result feedback information provided by the embodiment of the application is periodic or semi-persistent. As shown in Figure 5, the first time unit occupied by the result feedback information may be the first time unit.
  • the result feedback information may be obtained based on the first sensing signal.
  • the first sensing signal may be a sensing signal transmitted no later than a first reference time before the first time unit. It can be understood that the first sensing signal may be a sensing signal sent or received earlier than or equal to the first reference time before the first time unit.
  • the first reference time may be N time units, and the first sensing signal may be the sensing signal transmitted Nth time unit before the first time unit, or the first sensing signal may be the Nth time unit before the first time unit.
  • the first reference time may be 12 symbols as shown in Figure 5, and the first sensing signal may be earlier than or equal to the sensing signal of the 12 symbols before the first time unit, that is, sensing signal 3.
  • the result feedback information may be obtained based on the second perception signal.
  • the second sensing signal may be a sensing signal sent or received no later than a second reference time before the first time unit. It can be understood that the second sensing signal may be a sensing signal transmitted earlier than or equal to the second reference time before the first time unit.
  • the second reference time may be M time units, and the second sensing signal may be the sensing signal transmitted Mth time unit before the first time unit, or the second sensing signal may be Mth time unit before the first time unit.
  • M can be an integer greater than 0.
  • the second reference time may be 18 symbols as shown in Figure 5, and the second sensing signal may be earlier than or equal to the sensing signal of the 18 symbols before the first time unit, that is, sensing signal 4.
  • the result feedback information is used to indicate both the sensing result feedback information and the communication measurement feedback information, it can be obtained based on the first sensing signal and the second sensing signal based on the method described above.
  • the result feedback information can be obtained based on the first sensing signal and the second sensing signal based on the method described above.
  • the result feedback information may be obtained based on the third perception signal.
  • the third sensing signal may be a sensing signal sent or received no later than a third reference time before the first time unit, and the third reference time is obtained based on the first reference time and the second reference time.
  • the third reference time may be the largest of the first reference time and the second reference time.
  • the first reference time may be 12 symbols as shown in Figure 5
  • the second reference time may be 18 symbols as shown in Figure 5
  • the third reference time may be one of the first reference time and the second reference time. Larger 18 symbols. That is, the third sensing signal may be earlier than or equal to the sensing signal 18 symbols before the first time unit, that is, sensing signal 4.
  • the result feedback information corresponding to one or more sensing signals is non-periodic.
  • the sending of the result feedback information needs to be triggered. For example, it can be triggered by control information.
  • the receiving device of the sensing signal ie, the first device
  • the receiving device of the sensing signal can feedback the communication and/or sensing results.
  • the time unit in which the result feedback information corresponding to one or more sensing signals is located may be determined based on the second time unit.
  • the second time unit may be determined based on the time unit where one or more sensing signals are located, or the second time unit may be determined based on the time unit where the control information corresponding to one or more sensing signals is located.
  • the second time unit may be the first time unit or the last time unit among the one or more time units occupied by the one or more sensing signals.
  • the second time unit may be the first time unit or the last time unit among the one or more time units in which the control information corresponding to the one or more sensing signals is located.
  • the first time unit or the last time unit among the one or more time units occupied by one or more sensing signals may map to another time unit, and the second time unit may be the other time unit.
  • time unit That is to say, the second time unit may be determined based on the first time unit or the last time unit among the one or more time units occupied by the one or more sensing signals.
  • the first time unit or the last time unit among the one or more time units in which the control information corresponding to one or more sensing signals is located may map to another time unit, and the second time unit may be the other time unit.
  • time unit That is to say, the second time unit may be determined based on the first time unit or the last time unit among the one or more time units occupied by the control information corresponding to the one or more sensing signals.
  • the sensing result feedback information indicated by the result feedback information may be valid. It can be understood that if the time unit in which the result feedback information is located is later than or equal to the first processing time after the second time unit, one or more sensing signal receiving nodes (for example, the first device) may report valid sensing result feedback. information.
  • one or more receiving nodes of the sensing signal may report invalid sensing result feedback information or not report the sensing result feedback information, which may depend on Implementation of the first device.
  • the first processing time may correspond to or include a period of time (which may be referred to as the first processing period). In some embodiments, the first processing time may occupy one or more time units.
  • the result feedback information is used to indicate communication measurement feedback information
  • the time unit in which the result feedback information is located is not earlier than the second processing time after the second time unit
  • the communication indicated by the result feedback information Measurement feedback information can be available. It can be understood that if the time unit in which the communication measurement feedback information is located is later than or equal to the second processing time after the second time unit, one or more receiving nodes (for example, the first device) of the sensing signal may report valid communication measurements. Feedback.
  • one or more receiving nodes of the sensing signal may report invalid communication measurement feedback information or may not report the communication measurement feedback information, which may depend on on the realization of the first device.
  • the second processing time may correspond to or include a period of time (which may become the second processing period). In some embodiments, the second processing time may occupy one or more time units.
  • the second processing time may be determined based on the first processing time.
  • the first processing time may be determined based on the second processing time.
  • the first processing time and the second processing time may be determined separately, that is, they are independent of each other.
  • the result feedback information includes perception result feedback information and communication measurement feedback information
  • whether the communication measurement feedback information and the perception result feedback information are valid can be determined respectively based on the method described above.
  • the result feedback information is used to indicate the perception result feedback information and the communication measurement feedback information
  • the time unit in which the result feedback information is located is not earlier than (later than or equal to) the second time unit after the second time unit.
  • the third processing time may be determined based on the first processing time and the second processing time. In some embodiments, the third processing time may be the largest of the first processing time and the second processing time.
  • the receiving node can report effective communication measurement feedback information and sensing result feedback information. If the time unit where the result feedback information is located is earlier than the third processing time after the second time unit, one or more receiving nodes of the sensing signal may report invalid communication measurement feedback information and sensing result feedback information, or the receiving node may not report Communicating measurement feedback information and/or sensing result feedback information, which may depend on the implementation of the first device.
  • the third processing time may correspond to or include a period of time (which may become the third processing period). In some embodiments, the third processing time may occupy one or more time units.
  • one or more of the duration corresponding to the first processing time or the occupied time unit, the duration corresponding to the second processing time or the occupied time unit, the duration corresponding to the third processing time or the occupied time unit can be predefined, preset, or configured.
  • the duration of the first processing time and/or the duration of the second processing time may be agreed upon by a protocol or configured by the sensing control node.
  • the time unit in which the communication measurement feedback information corresponding to one or more sensing signals is located and the time unit in which the sensing result information corresponding to one or more sensing signals is located may be the same or different.
  • the sensing signal is a signal carried in the data channel
  • the result feedback information corresponding to one or more sensing signals may include feedback information indicating the sensing result and/or HARQ feedback information.
  • the time unit in which the sensing result feedback information and/or the HARQ feedback information is located may be determined based on the second time unit.
  • the second time unit may be determined based on the time unit where one or more sensing signals are located, or the second time unit may be determined based on the time unit where the control information corresponding to one or more sensing signals is located.
  • the second time unit may be the first time unit or the last time unit occupied by one or more sensing signals.
  • the second time unit may be the first time unit or the last time unit where the control information corresponding to one or more sensing signals is located.
  • the first time unit or the last time unit among the one or more time units occupied by one or more sensing signals may map to another time unit, and the second time unit may be the other time unit.
  • time unit That is to say, the second time unit may be determined based on the first time unit or the last time unit among the one or more time units occupied by the one or more sensing signals.
  • the first time unit or the last time unit among the one or more time units in which the control information corresponding to one or more sensing signals is located may map to another time unit, and the second time unit may be the other time unit.
  • time unit That is to say, the second time unit may be determined based on the first time unit or the last time unit among the one or more time units occupied by the control information corresponding to the one or more sensing signals.
  • the perception result feedback information corresponding to the one or more perception signals is It is effective. It can be understood that if the time unit in which the result feedback information is located is later than or equal to the fourth processing time after the second time unit, one or more sensing signal receiving nodes may report valid sensing result feedback information. If the time unit in which the result feedback information is located is earlier than the fourth processing time after the second time unit, one or more receiving nodes of the sensing signal may report invalid sensing result feedback information or not report the sensing result feedback information, which may depend on Implementation of the first device.
  • the fourth processing time may correspond to or include a period of time (which may become the fourth processing period). In some embodiments, the fourth processing time may occupy one or more time units.
  • the HARQ feedback information corresponding to the one or more sensing signals is Effective. It can be understood that if the time unit in which the HARQ feedback information is located is later than or equal to the fifth processing time after the second time unit, one or more sensing signal receiving nodes may report valid communication measurement feedback information. If the time unit in which the HARQ feedback information is located is earlier than the fifth processing time after the second time unit, one or more receiving nodes of the sensing signal may report invalid communication measurement feedback information or not report communication measurement feedback information, which may depend on Implementation of the first device.
  • the fifth processing time may correspond to or include a period of time (which may become the fifth processing time period). In some embodiments, the fifth processing time may occupy one or more time units.
  • the fifth processing time may be determined based on the fourth processing time.
  • the fourth processing time may be determined based on the fifth processing time.
  • the fourth processing time and the fifth processing time may be determined separately, that is, they are independent of each other.
  • the result feedback information includes both the perception result feedback information and the HARQ feedback information
  • the HARQ feedback information corresponding to one or more sensing signals and the sensing result feedback information corresponding to the sensing signal are transmitted in the same time unit, and the time unit with the same count is no earlier than the second time unit.
  • the HARQ feedback information and the sensing result feedback information corresponding to one or more sensing signals are both valid.
  • the sixth processing time may be determined based on the fourth processing time and the fifth processing time. For example, the sixth processing time may be the largest of the fourth processing time and the fifth processing time.
  • one or more receiving nodes of the sensing signal can report effective HARQ feedback information and sensing result feedback information. If the time unit where the HARQ feedback information and the sensing result feedback information are located is earlier than the sixth processing time after the second time unit, one or more receiving nodes of the sensing signal may report invalid HARQ feedback information and sensing result feedback information, or receive The node may not report HARQ feedback information and/or sensing result feedback information, which may depend on the implementation of the first device.
  • the sixth processing time may correspond to a period of time. In some embodiments, the sixth processing time may occupy one or more time units.
  • one or more of the duration corresponding to the fourth processing time or the occupied time unit, the duration corresponding to the fifth processing time or the occupied time unit, the duration corresponding to the sixth processing time or the occupied time unit can be predefined, preset, or configured.
  • the duration of the fourth processing time and/or the duration of the fifth processing time may be agreed upon by a protocol or configured by the sensing control node.
  • the time unit in which the HARQ feedback information corresponding to one or more sensing signals is located and the time unit in which the sensing result information corresponding to one or more sensing signals is located may be the same or different.
  • the time unit in which the HARQ feedback information corresponding to one or more sensing signals is located is no later than the time unit in which the sensing result feedback information corresponding to one or more sensing signals is located.
  • the first device can obtain the HARQ feedback information before or at the same time as receiving the sensing result feedback information, so that it can determine the conditions (such as channel quality) of the channel for transmitting one or more sensing signals according to the HARQ feedback information. . For example, when the HARQ feedback information is NACK, the channel quality is poor. Or, when the HARQ feedback information is ACK, the channel quality is good.
  • the first device may also determine whether the sensing result feedback information is valid or determine whether to transmit (including send and/or receive) the sensing result feedback information according to the channel conditions.
  • the following describes in detail the processing of sensing result feedback information when the HARQ feedback information is in different situations.
  • the first device may send sensing result feedback information corresponding to one or more sensing signals
  • the third device may receive sensing result feedback information corresponding to one or more sensing signals. information. That is to say, only when one or more sensing signals used for communication are demodulated correctly can the first device send sensing result feedback information and the third device receive sensing result feedback information.
  • the HARQ feedback information is ACK
  • the channel quality for transmitting one or more sensing signals is better. When the channel quality is good, sensing results with higher accuracy can be obtained. In this case, the feedback information of the sensing results can be transmitted to achieve more accurate sensing.
  • the first device may not send the sensing result feedback information corresponding to one or more sensing signals, and the third device may not accept the sensing result corresponding to one or more sensing signals. Result feedback information.
  • the first device when the HARQ feedback information is NACK, the first device can send sensing result feedback information, and the third device can receive sensing result feedback information, where the bits corresponding to the sensing result feedback information are preset values.
  • the default value can be preconfigured or predefined for the protocol.
  • the preset value can be used as a placeholder, that is, the bits corresponding to the sensing result feedback information are one or more placeholders. That is to say, if the bit corresponding to the perception result feedback information is a preset value, what is transmitted in the perception result feedback information is not the real perception result. The receiving end of the sensing result feedback information can ignore the sensing result feedback information.
  • the first device can transmit the HARQ feedback information in the fourth time unit, and in the fourth time unit later than the fourth time unit.
  • the five time units transmit the feedback information of the sensing results corresponding to one or more sensing signals.
  • the HARQ feedback information is NACK
  • the first device may transmit the HARQ feedback information in the fourth time unit and not transmit the sensing result feedback information corresponding to one or more sensing signals in the fifth time unit that is later than the fourth time unit.
  • the first device may transmit sensing result feedback information in the fifth time unit, and the bits corresponding to the sensing result feedback information are preset values.
  • the following description takes the HARQ feedback information and the sensing result feedback information occupying the same time unit as an example.
  • the coding method of the HARQ feedback information and the perception result feedback information may be an independent coding method or a common coding method.
  • independent encoding HARQ feedback information and sensing result feedback information can be encoded using independent (separate) code rates and/or independently added cyclic redundancy check (cyclic redundancy check, CRC) check, thereby outputting respective rate matches the output sequence.
  • CRC cyclic redundancy check
  • the HARQ feedback information and the sensing result feedback information can use the same code rate to form a bit sequence together, or a CRC check can be added to the bit sequence to output a rate matching output sequence.
  • the first device may not transmit the sensing result feedback information corresponding to one or more sensing signals.
  • the HARQ feedback information and the perception result feedback information are independent of each other, and the coding of the perception result feedback information will not affect the coding of the HARQ feedback information.
  • the change in the number of bits of the feedback information of the sensing results does not affect the demodulation of the HARQ feedback information. Therefore, when the HARQ feedback information is NACK, the sensing result feedback information may not be fed back, thereby reducing communication overhead.
  • the first device may transmit sensing result feedback information, and the bits corresponding to the sensing result feedback information are preset values.
  • the number of bits corresponding to the sensing result feedback information changes (for example, when no sensing result feedback information is sent, the number of bits is 0), it may affect the solution of the HARQ feedback information. tune. Regardless of whether the HARQ feedback information is ACK or NACK, the bits corresponding to the sensing result feedback information need to exist and the length does not change. Therefore, setting the bits corresponding to the sensing result feedback information to a preset value can enable the HARQ feedback information to be demodulated correctly.
  • the time domain and/or frequency domain resources used for sensing result information feedback can be determined through control information corresponding to one or more sensing signals.
  • control information may include a second indication field, and the second indication field may be used to indicate the time domain and/or frequency domain resources occupied by the sensing result feedback information.
  • the second indication field may also be called a sensing result feedback resource indication field.
  • the sensing result feedback resource indication domain may include a time domain resource indication domain and/or a frequency domain resource indication domain.
  • the time domain resource indication field may indicate the absolute position of the time domain resource where the sensing result feedback information is located.
  • the time domain resource indication field may indicate a relative position relative to the time domain resource where one or more sensing signals are located.
  • the time domain resource indication field may indicate the relative position of the time domain resource where the control information corresponding to one or more sensing signals is located.
  • the frequency domain resource indication field may indicate the absolute position of the frequency domain resource where the sensing result feedback information is located, or the relative position within a preset frequency domain range where the receiving end receives one or more sensing signals.
  • the second indication field may be used to indicate the time offset between the sensing result feedback information and the second time unit.
  • the second time unit may be determined based on the time unit where one or more sensing signals are located, or the second time unit may be determined based on the time unit where the control information corresponding to one or more sensing signals is located.
  • the second time unit may be the first time unit or the last time unit occupied by one or more sensing signals.
  • the second time unit may be the first time unit or the last time unit where the control information corresponding to one or more sensing signals is located.
  • the time unit where one or more sensing signals or the control information corresponding to one or more sensing signals is located is n
  • the second indication field indicates the offset of the time unit n and the time unit where the sensing result feedback information is located.
  • the time domain resource where the sensing result feedback information is located is determined based on the time unit n and offset k. For example, if the subcarrier spacing (SCS) of the control information and the sensing result feedback information are the same, the time unit where the sensing result feedback information is located is n+k.
  • SCS subcarrier spacing
  • k can be an integer greater than or equal to 0.
  • the time domain resources occupied by the sensing result feedback information can be explicitly indicated by the control information. In some embodiments, the time domain resources occupied by the sensing result feedback information may be directly indicated through the second indication field.
  • the resources occupied by the perception result feedback information can also be determined implicitly. In some embodiments, the time domain resources occupied by the sensing result feedback information may be based on the control information corresponding to one or more sensing signals and/or the time domain and/or frequency domain resources where the one or more sensing signals are located. According to the preset Or the configured mapping relationship is determined implicitly.
  • the sensing signal multiplexes CSI-RS signals in communication systems such as NR systems. Sensing signals may be indicated for sensing and/or communication in the following manner.
  • the configuration information may include the first IE and the second IE.
  • the CSI-RS configured by the first IE may be used for sensing.
  • the CSI-RS configured by the second IE may be used for communication.
  • the CSI-RS can be used for both communication and sensing.
  • the CSI-RS used for sensing and communication may include more fine-grained sub-functions, which will not be described again here.
  • Method 2 The CSI-RS used for sensing and the CSI-RS used for communication can share an IE configuration.
  • the configuration information corresponding to the CSI-RS used for sensing must include the first parameter (parameter 1). In other words, if the first parameter is configured, the CSI-RS is configured for sensing.
  • the configuration information corresponding to the CSI-RS used for communication may not include the first parameter, or the configuration information corresponding to the CSI-RS used for communication must include the second parameter (parameter 2).
  • the CSI-RS used for sensing and the CSI-RS used for communication can share an IE configuration, and the third parameter can be included in this IE.
  • the third parameter In the configuration information corresponding to the CSI-RS used for sensing, the third parameter must be the first value (value 1). In other words, if the value of the third parameter is configured as the first value, it means that this CSI-RS is configured for sensing.
  • the third parameter in the configuration information corresponding to the CSI-RS used for communication, the third parameter must have a value of the second value (value 2), or not the first value.
  • the sensing signal multiplexes the PDSCH or PSSCH channel.
  • the sending end of the sensing signal can send a PDSCH channel or PSSCH channel, and the PDSCH channel or PSSCH channel can be used for communication and sensing at the same time.
  • the Y-th processing time may be the fourth processing time, that is, the Y-th processing time may be the sensing processing time.
  • the Y-th processing time may be agreed upon by the protocol or configured by the sensing control node. If the time unit where the sensing result feedback corresponding to the PDSCH or PSSCH is located is at the Yth processing time after the time unit where the PDSCH or PSSCH is located (or the time unit where the control information corresponding to the PDSCH or PSSCH is located), the first signal receiving node then Report valid sensory outcome feedback information.
  • Y can be an integer greater than or equal to 0.
  • the Xth processing time may be the fifth processing time, that is, the Xth processing time may be the communication processing time.
  • the Xth processing time may be agreed upon by the protocol or configured by the sensing control node. If the time unit where the HARQ feedback corresponding to the PDSCH or PSSCH is located is at the Xth processing time after the time unit where the PDSCH or PSSCH is located (or the time unit where the control information corresponding to the PDSCH or PSSCH is located), the receiving end of the sensing signal can report Valid HARQ feedback information.
  • X can be an integer greater than or equal to 0.
  • the sensing signal multiplexes the PDSCH or PSSCH channel.
  • the sending end of the sensing signal can send a PDSCH channel or PSSCH channel, and the PDSCH channel or PSSCH channel can be used for communication and sensing at the same time.
  • the receiving end feeds back ACK information and sensing result information; if the PDSCH or PSSCH is not received correctly, the receiving end only feeds back NACK information and does not feed back sensing result information, or changes the bits corresponding to the sensing result information.
  • the position is the default value.
  • HARQ feedback information and perception result information can be encoded separately or jointly.
  • the sensing signal multiplexes the PDSCH or PSSCH channel.
  • the sending end of the sensing signal can send a PDSCH channel or PSSCH channel, and the PDSCH channel or PSSCH channel can be used for communication and sensing at the same time.
  • the control information corresponding to one or more sensing signals may include the first indication field.
  • the first indication domain may be called a perceptual indication domain.
  • the sensing indication field may be 1 bit, indicating whether one or more sensing signals are used for sensing, or whether the receiving end needs to feed back sensing result information. For example, 1 can represent that one or more sensing signals are used for sensing, and 0 can represent that one or more sensing signals are not used for sensing;
  • the control information corresponding to one or more sensing signals may include a second indication field.
  • the second indication field may also be called a sensing result feedback resource indication field.
  • the sensing result feedback resource indication field may include a time domain resource indication field and/or a frequency domain resource indication field.
  • the time domain resource indication field may indicate the absolute position of the time domain resource where the sensing result feedback information is located, or relative to one or more The relative position of the time domain resource where a sensing signal or control information corresponding to one or more sensing signals is located.
  • the frequency domain resource indication field may indicate the absolute position of the frequency domain resource where the sensing result feedback information is located, or the relative position within a preset frequency domain range where the receiving end receives one or more sensing signals.
  • time unit mentioned above may include: subframe, frame, time slot, sub-time slot, symbol, symbol set, second or millisecond, etc.
  • FIG. 6 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • Communication device 600 may be a first device.
  • the communication device 600 may include: a first receiving unit 610.
  • the first receiving unit is configured to receive one or more sensing signals, where the sensing signals are reference signals and/or signals carried in a data channel.
  • whether the one or more sensing signals are used for sensing and/or whether used for communication is determined based on the first information.
  • the communication device 600 further includes a second receiving unit 620.
  • the second receiving unit 620 is configured to receive configuration information corresponding to one or more sensing signals; wherein the configuration information includes the first information.
  • the configuration information when the one or more sensing signals are used for sensing, the configuration information includes a first information element, and the first information element is used to carry the first information; or in the case where the one or more sensing signals are used for sensing, the configuration information includes a first information element.
  • the configuration information when the one or more sensing signals are used for communication, the configuration information includes a second information element, and the second information element is used to carry the first information; or when the one or more sensing signals are used In the case of communication and sensing, the configuration information includes a third information element, and the third information element is used to carry the first information.
  • the configuration information when the one or more sensing signals are used for sensing, the configuration information includes a first parameter, or does not include a second parameter, and the first parameter is used to indicate the first parameter. Part of information of a piece of information; and/or, in the case where the one or more sensing signals are used for communication, the configuration information contains the second parameter, or does not include the first parameter, and the second parameter Partial information used to indicate the first information.
  • the first information is carried in a third parameter.
  • the value of the third parameter in the configuration information includes the first value, or the value of the third parameter does not include the second value; and/or when the one or more sensing signals are used for communication, the third parameter in the configuration information includes The second value, or the value of the third parameter does not include the first value.
  • the communication device 600 further includes: a third receiving unit.
  • the third receiving unit is configured to receive control information corresponding to the one or more sensing signals; wherein the control information includes the first information.
  • the first information is carried in a first indication field of the control information.
  • the sensing signal is the reference signal
  • the result feedback information corresponding to the one or more sensing signals is periodic, semi-persistent or aperiodic.
  • the result feedback information corresponding to the one or more sensing signals is periodic or semi-persistent
  • the result feedback information is used to indicate communication measurement feedback information
  • the The result feedback information is obtained based on the first perception signal, which is a perception signal sent no later than the first reference time before the first time unit; and/or the result feedback information is used to indicate the perception result feedback.
  • the result feedback information is obtained based on a second perception signal, which is a perception signal sent or received no later than the second reference time before the first time unit; and/or in the
  • the result feedback information is obtained based on the third sensing signal, and the third sensing signal is a third reference no later than the first time unit.
  • the sensing signal is sent or received at the same time, and the third reference time is obtained according to the first reference time and the second reference time.
  • the first time unit is determined according to the time unit occupied by the result feedback information.
  • the result feedback information corresponding to the one or more sensing signals is aperiodic
  • the result feedback information is used to indicate the sensing result feedback information
  • the time at which the result feedback information is located When the unit is no earlier than the first processing time after the second time unit, the sensing result feedback information indicated by the result feedback information is valid; and/or, when the result feedback information is used to indicate communication measurement feedback information , when the time unit where the result feedback information is located is not earlier than the second processing time after the second time unit, the communication measurement feedback information indicated by the result feedback information is valid; and/or, when the result Feedback information is used to indicate sensing result feedback information and communication measurement feedback information.
  • the third processing time is determined based on the first processing time and the second processing time.
  • the sensing signal is a signal carried in a data channel.
  • the time unit in which the HARQ feedback information corresponding to the one or more sensing signals is located is not later than the time unit in which the sensing result feedback information corresponding to the one or more sensing signals is located.
  • the sensing result feedback information corresponding to the one or more sensing signals and the HARQ feedback information are transmitted in the same time unit.
  • the coding method of the HARQ feedback information and the perception result feedback information is an independent coding method or a common coding method.
  • the communication device further includes: when the HARQ feedback information corresponding to the one or more sensing signals is a positive acknowledgment ACK, the first device sends the one or more sensing signals corresponding to sensing result feedback information; or in the case where the HARQ feedback information corresponding to the one or more sensing signals is a negative acknowledgment NACK, the first device does not send the sensing result feedback information corresponding to the one or more sensing signals , or the first device sends the sensing result feedback information, wherein the bit corresponding to the sensing result feedback information is a preset value.
  • the communication device 600 when the coding mode of the HARQ feedback information and the sensing result feedback information is an independent coding mode, the communication device 600 is further configured to: when the HARQ feedback information is NACK In this case, the sensing result feedback information is not sent.
  • the communication device 600 is further configured to: when the HARQ feedback information is NACK, send the sensing result feedback information, and the sensing result feedback information corresponds to Bits are default values.
  • the time domain resources and/or frequency domain resources occupied by the sensing result feedback information of the one or more sensing signals are determined by the control information corresponding to the one or more sensing signals.
  • the time unit corresponding to the one or more perception signals is The sensing result feedback information is valid; and/or if the time unit in which the HARQ feedback information corresponding to the one or more sensing signals is located is not earlier than the fifth processing time after the second time unit, then the one or more The HARQ feedback information corresponding to the sensing signal is valid; and/or if the time unit where the HARQ feedback information and the sensing result feedback information corresponding to the one or more sensing signals are located is not earlier than the sixth processing time after the second time unit , then the HARQ feedback information and sensing result feedback information corresponding to the one or more sensing signals are valid, wherein the sixth processing time is determined according to the fourth processing time and the fifth processing time. .
  • the fourth processing time is greater than or equal to the fifth processing time.
  • the second time unit is determined based on the time unit in which the one or more sensing signals are located.
  • the second time unit is the last or first time unit in which the one or more sensing signals are located.
  • the second time unit is determined according to the time unit in which the control information corresponding to the one or more sensing signals is located.
  • the second time unit is the last or the first time unit in which the control information is located.
  • the data channel includes one or more of the downlink physical shared channel PDSCH, the uplink physical shared channel PUSCH, and the sidelink physical shared channel PSSCH, and the signals carried by the data channel include the signals carried by the data channel.
  • the data signal or the demodulation reference symbol DMRS signal; or the reference signal includes one or more of the synchronization signal block SSB, the channel state information reference signal CSI-RS, PT-RS, the positioning reference signal PRS, and the sounding reference signal SRS. item.
  • Figure 7 is a schematic structural diagram of a communication device 700 provided by an embodiment of the present application.
  • the communication device 700 is a second device, and the communication device 700 includes: a first sending unit 710 .
  • the first sending unit 710 is configured to send one or more sensing signals, where the sensing signals are reference signals and/or signals carried in a data channel.
  • whether the one or more sensing signals are used for sensing and/or whether used for communication is determined based on the first information.
  • the first information is included in configuration information corresponding to the one or more sensing signals.
  • the configuration information when the one or more sensing signals are used for sensing, the configuration information includes a first information element, and the first information element is used to carry the first information; or in the case where the one or more sensing signals are used for sensing, the configuration information includes a first information element.
  • the configuration information when the one or more sensing signals are used for communication, the configuration information includes a second information element, and the second information element is used to carry the first information; or when the one or more sensing signals are used In the case of communication and sensing, the configuration information includes a third information element, and the third information element is used to carry the first information.
  • the communication device 700 may further include a second sending unit 720.
  • the second sending unit 720 is used to send the configuration information.
  • the configuration information when the one or more sensing signals are used for sensing, the configuration information includes the first parameter, or does not include the second parameter, and the first parameter is used to indicate the part or all of the first information; and/or, in the case where the one or more sensing signals are used for communication, the configuration information includes the second parameter, or does not include the first parameter. , the second parameter is used to indicate part or all of the first information.
  • the first information is carried in a third parameter.
  • the value of the third parameter in the configuration information includes the first value, or, the value of the third parameter does not include the second value; and/or, when the one or more sensing signals are used for communication, the value of the third parameter in the configuration information The value includes the second value, or the value of the third parameter does not include the first value.
  • the first information is included in control information corresponding to the one or more sensing signals.
  • the first information is carried in a first indication field of the control information.
  • the data channel includes one or more of the downlink physical shared channel PDSCH, the uplink physical shared channel PUSCH, and the sidelink physical shared channel PSSCH, and the signals carried by the data channel include the signals carried by the data channel.
  • the data signal or the demodulation reference symbol DMRS signal; or the reference signal includes one or more of the synchronization signal block SSB, the channel state information reference signal CSI-RS, PT-RS, the positioning reference signal PRS, and the sounding reference signal SRS. item.
  • FIG. 8 is a schematic structural diagram of a communication device 800 provided by an embodiment of the present application.
  • the communication device 800 may be a third device.
  • the communication device 800 may include a fourth receiving unit 810.
  • the fourth receiving unit 810 is configured to receive result feedback information corresponding to one or more sensing signals, where the sensing signals are reference signals and/or signals carried in a data channel.
  • the sensing signal is the reference signal
  • the result feedback information corresponding to the one or more sensing signals is periodic, semi-persistent or aperiodic.
  • the result feedback information corresponding to the one or more sensing signals is periodic or semi-persistent
  • the result feedback information is used to indicate communication measurement feedback information
  • the The result feedback information is obtained based on the first perception signal, which is a perception signal sent or received no later than the first reference time before the first time unit; and/or the result feedback information is used to indicate perception.
  • the result feedback information is obtained based on the second perception signal, which is a perception signal sent or received no later than the second reference time before the first time unit; and/or in When the result feedback information is used to indicate the sensing result feedback information and the communication measurement feedback information, the result feedback information is obtained based on the third sensing signal, and the third sensing signal is no later than the first time unit before the third sensing signal. Sensing signals sent or received at three reference times, where the third reference time is obtained based on the first reference time and the second reference time.
  • the first time unit is determined according to the time unit occupied by the result feedback information.
  • the result feedback information corresponding to the one or more sensing signals is aperiodic
  • the result feedback information is used to indicate the sensing result feedback information
  • the time at which the result feedback information is located When the unit is no earlier than the first processing time after the second time unit, the sensing result feedback information indicated by the result feedback information is valid; and/or, when the result feedback information is used to indicate communication measurement feedback information , when the time unit where the result feedback information is located is not earlier than the second processing time after the second time unit, the communication measurement feedback information indicated by the result feedback information is valid; and/or, when the result When feedback information is used to indicate perception result feedback information and communication measurement feedback information, if the time unit where the result feedback information is located is not earlier than the third processing time after the second time unit, then the result feedback information indicates Both the communication measurement feedback information and the sensing result feedback information are valid, and the third processing time is determined according to the first processing time and the second processing time.
  • the sensing signal is a signal carried in a data channel
  • the result feedback information includes hybrid automatic repeat request HARQ feedback information corresponding to one or more sensing signals and/or the one or more Perception result feedback information corresponding to the perception signal.
  • the time unit in which the HARQ feedback information corresponding to the one or more sensing signals is located is no later than the time unit in which the sensing result feedback information corresponding to the one or more sensing signals is located.
  • the sensing result feedback information corresponding to the one or more sensing signals and the HARQ feedback information are transmitted in the same time unit.
  • the coding method of the HARQ feedback information and the perception result feedback information is an independent coding method or a common coding method.
  • the communication device 800 is further configured to: receive the sensing result feedback information when the HARQ feedback information is a positive acknowledgment ACK; or when the HARQ feedback information is a negative acknowledgment NACK In this case, the third device does not receive the sensing result feedback information, or the third device receives the sensing result feedback information, wherein the bit corresponding to the sensing result feedback information is a preset value.
  • the communication device 800 further includes a fifth receiving unit 820.
  • the fifth receiving unit 820 may be used to receive sensing result feedback information.
  • the communication device 800 is further configured to: when the HARQ feedback information is NACK , does not receive the sensing result feedback information.
  • the communication device 800 is further configured to: when the HARQ feedback information is NACK Next, the sensing result feedback information is received, and the bit corresponding to the sensing result feedback information is a preset value.
  • the time domain resources and/or frequency domain resources occupied by the sensing result feedback information of the one or more sensing signals are determined by the control information corresponding to the one or more sensing signals.
  • the time unit corresponding to the one or more perception signals is The sensing result feedback information is valid; and/or if the time unit in which the HARQ feedback information corresponding to the one or more sensing signals is located is not earlier than the fifth processing time after the second time unit, then the one or more The HARQ feedback information corresponding to the sensing signal is valid; and/or if the time unit where the HARQ feedback information and the sensing result feedback information corresponding to the one or more sensing signals are located is not earlier than the sixth processing time after the second time unit , then the HARQ feedback information and the sensing result feedback information corresponding to the one or more sensing signals are both valid, and the sixth processing time is determined according to the fourth processing time and the fifth processing time.
  • the fourth processing time is greater than or equal to the fifth processing time.
  • the second time unit is determined based on the time unit in which the one or more sensing signals are located.
  • the second time unit is the last or first time unit in which the one or more sensing signals are located.
  • the second time unit is determined based on the time unit in which the control information corresponding to the one or more sensing signals is located.
  • the second time unit is the last or the first time unit in which the control information is located.
  • the data channel includes one or more of the downlink physical shared channel PDSCH, the uplink physical shared channel PUSCH, and the sidelink physical shared channel PSSCH, and the signals carried by the data channel include the signals carried by the data channel.
  • data signal or demodulation reference symbol DMRS signal; or the reference signal includes one or more of the synchronization signal block SSB, the channel state information reference signal CSI-RS, PT-RS, the positioning reference signal PRS, and the sounding reference signal SRS. item.
  • Figure 9 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the dashed line in Figure 9 indicates that the unit or module is optional.
  • the device 900 can be used to implement the method described in the above method embodiment.
  • the device 900 may be a chip, terminal equipment, access network equipment or core network equipment.
  • the apparatus 900 may be a first device, a second device, or a third device.
  • Apparatus 900 may include one or more processors 910.
  • the processor 910 can support the device 900 to implement the method described in the foregoing method embodiments.
  • the processor 910 may be a general-purpose processor or a special-purpose processor.
  • the processor may be a central processing unit (CPU).
  • the processor can also be another general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), or an off-the-shelf programmable gate array (FPGA) Or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • Apparatus 900 may also include one or more memories 920.
  • the memory 920 stores a program, which can be executed by the processor 910, so that the processor 910 executes the method described in the foregoing method embodiment.
  • the memory 920 may be independent of the processor 910 or integrated in the processor 910 .
  • Apparatus 900 may also include a transceiver 930.
  • Processor 910 may communicate with other devices or chips through transceiver 930.
  • the processor 910 can transmit and receive data with other devices or chips through the transceiver 930 .
  • the first receiving unit 610 in FIG. 6 may be the transceiver 930 in FIG. 9, and the transceiver 930 may be used to receive one or more sensing signals.
  • the first sending unit 710 in FIG. 7 may be the transceiver 930 in FIG. 9, and the transceiver 930 may be used to send one or more sensing signals.
  • the fourth receiving unit 810 in Figure 8 may be the transceiver 930 in Figure 9 , and the transceiver 930 may be used to receive result feedback information corresponding to one or more sensing signals.
  • An embodiment of the present application also provides a computer-readable storage medium for storing a program.
  • the computer-readable storage medium can be applied in the communication device provided by the embodiments of the present application, and the program causes the computer to execute the methods performed by the communication device in various embodiments of the present application.
  • An embodiment of the present application also provides a computer program product.
  • the computer program product includes a program.
  • the computer program product can be applied in the communication device provided by the embodiments of the present application, and the program causes the computer to execute the methods performed by the communication device in various embodiments of the present application.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the communication device provided by the embodiments of the present application, and the computer program causes the computer to execute the methods performed by the communication device in various embodiments of the present application.
  • the "instruction" mentioned may be a direct instruction, an indirect instruction, or an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • B corresponding to A means that B is associated with A, and B can be determined based on A.
  • determining B based on A does not mean determining B only based on A.
  • B can also be determined based on A and/or other information.
  • the term "correspondence” can mean that there is a direct correspondence or indirect correspondence between the two, or it can also mean that there is an association between the two, or it can also mean indicating and being instructed, configuring and being configured, etc. relation.
  • predefinition or “preconfiguration” can be achieved by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • devices for example, including terminal devices and network devices.
  • predefined can refer to what is defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, which may include, for example, LTE protocol, NR protocol, and related protocols applied in future communication systems. This application does not limit this.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be determined by the implementation process of the embodiments of the present application. constitute any limitation.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be read by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the available media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., digital video discs (DVD)) or semiconductor media (e.g., solid state disks (SSD) )wait.
  • magnetic media e.g., floppy disks, hard disks, magnetic tapes
  • optical media e.g., digital video discs (DVD)
  • semiconductor media e.g., solid state disks (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种通信方法以及通信设备。通信方法包括:第一设备接收一个或多个感知信号,所述感知信号为参考信号和/或数据信道中承载的信号。基于本申请,无线通信系统中的参考信号和/或数据信道中承载的信号可以复用进行感知。如此,可以不用定义新的信号或信道即可实现感知,从而降低了感知通信一体化的标准化工作量,也可以降低系统的复杂度与系统开销。另外,对于参考信号,参考信号的带宽可以比较大,因此,复用参考信号进行感知至少可以实现较高精度的感知。对于数据信道中承载的信号,该信号为通信过程中通常需要发送的信号,因此,复用数据信道中的信号进行感知至少可以降低感知的开销。

Description

通信方法以及通信设备 技术领域
本申请涉及通信技术领域,并且更为具体地,涉及一种通信方法以及通信设备。
背景技术
通信感知一体化技术可以将无线通信和感知两个功能融合,以及实现诸多功能。例如,基于通信感知一体化技术,可以利用无线通信的无线资源来实现感知的功能。或者,可以利用广泛部署的蜂窝网络实现更大范围内的感知业务。或者,可以利用网络设备和多个终端设备进行联合感知,实现更高的感知精度。或者,可以复用无线通信的硬件模块实现感知功能,降低成本。
在通信系统具备感知能力的情况下,具体如何实现感知是亟待解决的技术问题。
发明内容
本申请提供一种通信方法以及通信设备。下面对本申请涉及的各个方面进行介绍。
第一方面,提供了一种通信方法,所述方法包括:第一设备接收一个或多个感知信号,所述感知信号为参考信号和/或数据信道中承载的信号。
第二方面,提供了一种通信方法,所述方法包括:第二设备发送一个或多个感知信号,所述感知信号为参考信号和/或数据信道中承载的信号。
第三方面,提供了一种通信方法,所述方法包括:第三设备接收一个或多个感知信号对应的结果反馈信息,所述感知信号为参考信号和/或数据信道中承载的信号。
第四方面,提供了一种通信设备,所述通信设备为第一设备,所述通信设备包括:第一接收单元,用于接收一个或多个感知信号,所述感知信号为参考信号和/或数据信道中承载的信号。
第五方面,提供了一种通信设备,所述通信设备为第二设备,所述通信设备包括:第一发送单元,用于发送一个或多个感知信号,所述感知信号为参考信号和/或数据信道中承载的信号。
第六方面,提供了一种通信设备,所述通信设备为第三设备,所述通信设备包括:第四接收单元,用于接收一个或多个感知信号对应的结果反馈信息,所述感知信号为参考信号和/或数据信道中承载的信号。
第七方面,提供一种通信设备,包括处理器、存储器以及收发器,所述存储器用于存储一个或多个计算机程序,所述处理器用于调用所述存储器中的计算机程序使得所述通信设备执行第一方面的方法中的部分或全部步骤。
第八方面,提供一种通信设备,包括处理器、存储器以及收发器,所述存储器用于存储一个或多个计算机程序,所述处理器用于调用所述存储器中的计算机程序使得所述通信设备执行第二方面的方法中的部分或全部步骤。
第九方面,提供一种通信设备,包括处理器、存储器以及收发器,所述存储器用于存储一个或多个计算机程序,所述处理器用于调用所述存储器中的计算机程序使得所述通信设备执行第三方面的方法中的部分或全部步骤。
第十方面,本申请实施例提供了一种通信系统,该系统包括上述的通信设备。在另一种可能的设计中,该系统还可以包括本申请实施例提供的方案中与该通信设备进行交互的其他设备。
第十一方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序使得终端执行上述各个方面的方法中的部分或全部步骤。
第十二方面,本申请实施例提供了一种计算机程序产品,其中,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使通信设备执行上述各个方面的方法中的部分或全部步骤。在一些实现方式中,该计算机程序产品可以为一个软件安装包。
第十三方面,本申请实施例提供了一种芯片,该芯片包括存储器和处理器,处理器可以从存储器中调用并运行计算机程序,以实现上述各个方面的方法中所描述的部分或全部步骤。
基于本申请,可以复用无线通信系统中的参考信号和/或数据信道中承载的信号进行感知。如此,可以不用定义新的信号或信道即可实现感知,从而降低了感知通信一体化的标准化工作量,也可以降低系统的复杂度与系统开销。另外,对于参考信号,参考信号的带宽可以比较大,因此,复用参考信号进行感知至少可以实现较高精度的感知。对于数据信道中承载的信号,该信号为通信过程中通常需要发送的信号,因此,复用数据信道中的信号进行感知至少可以降低感知的开销。
附图说明
图1是本申请实施例应用的无线通信系统。
图2为感知的8种模式的示例图。
图3为本申请实施例提供的一种通信方法的示意性流程图。
图4为本申请实施例提供的一种通信方法的示意性流程图。
图5为申请实施例提供的一种结果反馈信息为周期性或半持续性的示例图。
图6为本申请实施例提供的一种通信设备的示意性结构图。
图7为本申请实施例提供的一种通信设备的示意性结构图。
图8为本申请实施例提供的一种通信设备的示意性结构图。
图9是本申请实施例提供的装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
通信网络
图1是本申请实施例应用的无线通信系统100。无线通信系统100可以包括一个或多个通信设备,通信设备例如可以为网络设备110或终端设备120。网络设备110可以是与终端设备120通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备120进行通信。
图1示出了一个网络设备和两个终端设备,在一些实施例中,该无线通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
在一些实施例中,该无线通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)系统或新无线(new radio,NR)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)等。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统及后续版本的通信系统,又如卫星通信系统,等等。
本申请实施例中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请实施例中的终端设备可以是指向用户提供语音和/或数据连通性的设备,可以用于连接人、物和机,例如具有无线连接功能的手持式设备、车载设备等。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。在一些实施例中,UE可以用于充当基站。例如,UE可以充当调度实体,其在车辆外联(vehicle to everything,V2X)或设备到设备(device-to-device,D2D)等中的UE之间提供侧行链路信号。比如,蜂窝电话和汽车利用侧行链路信号彼此通信。蜂窝电话和智能家居设备之间通信,而无需通过基站中继通信信号。
本申请实施例中的网络设备可以是用于与终端设备通信的设备。网络设备可以包括接入网设备、核心网设备。接入网设备也可以称为无线接入网设备。本申请实施例中的网络设备可以是指将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备)。网络设备可以是基站。基站可以广义的覆盖如下中的各种名称,或与如下名称进行替换,比如:节点B(NodeB)、演进型基站(evolved NodeB,eNB)、下一代基站(next generation NodeB,gNB)、中继站、接入点、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、接收点(receiving point,RP)、主站(master eNB,MeNB)、辅站(secondary eNB,SeNB)、多标准无线(multi-standard radio,MSR)节点、家庭基站、网络控制器、接入节点、无线节点、接入点(access point,AP)、传输节点、收发节点、基带单元(base band unit,BBU)、射频拉远单元(Remote Radio Unit,RRU)、有源天线单元(active antenna unit,AAU)、射频头(remote radio head,RRH)、中心单元(central unit,CU)、分布式单元(distributed unit,DU)、定位节点等。基站可以是宏基站、微基站、中继节点、施主节点或类似物,或其组合。基 站还可以指用于设置于前述设备或装置内的通信模块、调制解调器或芯片。基站还可以是移动交换中心以及D2D、V2X、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备、6G网络中的网络侧设备、未来的通信系统中承担基站功能的设备等。基站可以支持相同或不同接入技术的网络。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
基站可以是固定的,也可以是移动的。例如,直升机或无人机可以被配置成充当移动基站,一个或多个小区可以根据该移动基站的位置移动。在其他示例中,直升机或无人机可以被配置成用作与另一基站通信的设备。
在一些部署中,本申请实施例中的网络设备可以是指CU或者DU,或者,网络设备包括CU和DU。gNB还可以包括AAU。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请实施例中对网络设备和终端设备所处的场景不做限定。
应理解,本申请中的通信设备的全部或部分功能也可以通过在硬件上运行的软件功能来实现,或者通过平台(例如云平台)上实例化的虚拟化功能来实现。
感知(sensing)网络
狭义的感知网络可以指具有目标定位、目标成像、目标检测、目标跟踪和目标识别等能力的系统。其中目标定位可以包括针对被感知目标的以下一项或多项感知操作:测距、测速、测角。
广义的感知网络可以指具有任何业务、网络、用户、终端、以及环境物体的属性和状态的系统。
从感知应用来看,感知可以包括以下分类:室外/广域/局域应用以及室内/局域应用。
室外/广域/局域应用可以包括以下应用中的一种或多种:智慧城市、智慧交通/高铁、低空应用等。智慧城市例如可以包括天气监测等。智慧交通/高铁例如可以包括:高精地图构建、道路监管、入侵检测等的一项或多项。低空应用例如可以包括:无人机监测、无人机避障、飞行入侵检测、飞行路径管理等的一项或多项。
室内/局域应用可以包括以下应用中的一种或多种:智能家居、健康管理、智慧工厂等。健康管理例如可以包括:呼吸监测、入侵检测、手势/姿势识别、运动监测、移动轨迹追踪等中的一项或多项。智慧工厂例如可以包括入侵检测、材料探测、物品缺陷检测等中的一项或多项。
需要说明的是,以上感知的应用以及感知应用的分类是示例性的,感知的应用范围不限于以上举例。
感知通信一体化
感知是现代射频技术的重要应用。感知可以利用无线电波实现。例如,感知技术可以利用无线电波探测物理环境的参数,以实现目标定位、动作识别、成像等环境感知。现代射频技术的另一个重要应用为无线通信。感知与无线通信独立存在,即分离化设计,会导致无线频谱和硬件资源的浪费。
随着技术的发展,在一些网络(例如6G或后5G(beyond 5G,B5G)网络)中,通信频谱可以基于毫米波、太赫兹、可见光等实现通信。也就是说,无线通信的频谱可以与感知频谱重合。下一代网络(例如6G网络)可能是移动通信网络、感知网络以及算力网络中的至少两项的融合体。
通信感知一体化技术可以将无线通信和感知两个功能融合。通信感知一体化技术可以实现诸多功能。例如,基于通信感知一体化技术,可以利用无线通信的无线资源来实现感知的功能。或者,可以利用广泛部署的蜂窝网络实现更大范围内的感知业务。或者,可以利用网络设备和多个终端设备进行联合感知,实现更高的感知精度。或者,可以复用无线通信的硬件模块实现感知功能,降低成本。
可以理解的是,通信感知一体化技术可以使得无线通信系统具有感知能力,为智慧交通、智慧城市、智慧工厂、无人机等业务的发展提供基础。
在感知过程中,可以存在以下类型的节点中的至少之一:感知节点、被感知目标、感知控制节点。
感知节点可以包括感知信号发送节点和/或感知信号接收节点。其中,感知信号发送节点和感知信号接收节点可以为同一个实体。以图2所示的感知的8种模式为例,感知节点可以为模式一中的网络设备或模式二中的终端设备。在模式一中,感知信号发送节点和感知信号接收节点为同一实体,该实体为网络设备。在模式二中,感知信号发送节点和感知信号接收节点为同一实体,该实体为终端设备。。
被感知目标可以为需要感知的目标。在一些实施例中,被感知目标也可以称为被感知节点或被测量目标。
感知控制节点可以为控制、管理感知节点和/或感知业务的节点。感知控制节点的作用可以包括但不限于:管理感知业务、向感知节点和/或被感知目标发送配置信息、配置感知测量信号的发送和/或接收、配置感知信号的发送和/或接收、配置感知节点和/或被感知目标上报测量结果和/或感知结果、收集并处理测量结果和/或感知结果。需要说明的是,感知控制节点可以和被感知目标或者感知信号发送节点或者感知信号接收节点为同一个实体。或者,感知控制节点可以为与感知信号和被感知目标不同的单独的实体。
感知可以通过不同的模式实现。图2为感知的8种模式的示例图。
图2(a)为模式一的示例图。其中,模式一为网络设备自发自收感知。如图2(a)所示用于感知的信号/信道(以下简称感知信号/信道)的发送节点为网络设备210a(如gNB)。网络设备210a发送感知信号(sensing signal)后,经由被感知目标230(如图2(a)中所示的车辆)反射,反射信号(reflected signal)返回至网络设备210a(也可以认为是感知信号返回至网络设备210a)。网络设备210a既是感知信号/信道的发送节点、也是感知信号/信道的接收节点。本申请实施例中所述的信号/信道又可以称为信道/信号。
图2(b)为模式二的示例图。其中,模式二为终端设备自发自收感知。如图2(b)所示,感知信号/信道的发送节点为终端设备220a,终端设备220a发送感知信号后,经由被感知目标230(如图2(b)中所示的车辆)反射,反射信号返回至终端设备220a(也可以认为是感知信号返回至终端设备220a)。终端设备220a既是感知信号/信道的发送节点、也是感知信号/信道的接收节点。
图2(c)为模式三的示例图。其中,模式三为网络设备协作感知。如图2(c)所示,感知信号/信道的发送节点为一个网络设备210a(如gNB)。网络设备210a发送感知信号后,经由被感知目标230(如图2(c)中所示的车辆)反射,反射信号传输至另一个网络设备210b(也可以认为是感知信号传输至另一个网络设备210b)。网络设备210b为感知信号/信道的接收节点。
图2(d)为模式四的示例图。其中,模式四为终端协作感知。如图2(d)所示,感知信号/信道的发送节点为终端设备220a,终端设备220a发送感知信号后,经由被感知目标230(如图2(d)中所示的车辆)反射,反射信号传输至另一个终端设备220b(也可以认为是感知信号传输至终端设备220b),终端设备220b为感知信号/信道的接收节点。
图2(e)为模式五的示例图。其中,模式五为网络设备-终端设备协作感知。感知信号/信道的发送节点为网络设备210a(如gNB),网络设备210a发送感知信号后,经由被感知目标230(如图2(e)中所示的车辆)反射,反射信号传输至终端设备220a(也可以认为是感知信号传输至终端设备220a),终端设备220a为感知信号/信道的接收节点。
图2(f)为模式六的示例图。其中,模式六为终端设备-网络设备协作感知。感知信号/信道的发送节点为终端设备220a,终端设备220a发送感知信号后,经由被感知目标230(如图2(f)中所示的车辆)反射,反射信号传输至网络设备210a(也可以认为是感知信号传输至网络设备210a),网络设备210a为感知信号/信道的接收节点。
图2(g)为模式七的示例图。在该模式七中,被感知目标为感知信号/信道的发送节点。例如,终端设备220a作为被感知目标,向网络设备210a(如gNB)发送感知信号,网络设备210a接收该感知信号、并感知终端设备220a。
图2(h)为模式八的示例图。如模式八中,被感知目标为感知信号/信道的接收节点。例如,网络设备210a(如gNB)发送感知信号,终端设备220a是感知信号/信道的接收节点,终端设备220a接收到该感知信号后,向网络设备210a发送反馈信号(feedback)。
在通信系统具备感知能力的情况下,尚未确定通过哪个或哪些信号或信道进行感知。例如,可以定义新的信号或信道专门用于感知。
本申请提出了一种通信方法,基于通信系统中的数据信号/信道以及参考信号/信道中的一项或多项完成感知的功能。图3为本申请实施例提供的通信方法。图3所示的方法可以由第一设备和/或第二设备执行。
需要说明的是,本申请涉及的第一设备、第二设备以及第三设备等设备,可以为上文所述的任意通信设备。可以理解的是,通信设备具有感知能力的情况下,该通信设备也可以称为感知通信设备。例如,第一设备、第二设备或第三设备可以为上文所述的8种感知模式中的终端设备或网络设备。
图3所示的方法可以包括S310。
S310,第一设备接收一个或多个感知信号。第二设备发送一个或多个感知信号。
感知信号可以为参考信号和/或数据信道中承载的信号。也就是说,本申请提出感知信号可以复用无线通信系统中的部分信号。在一些情况下,本申请提出的感知信号可以为参考信号和/或数据信道中承载的信号的增强,即使得参考信号和/或数据信道中承载的信号具有感知的能力。
参考信号可以包括上行参考信号、下行参考信号、侧行参考信号。
上行参考信号可以包括但不限于:探测参考信号(sounding reference symbol,SRS)、相位跟踪参考信号(phase tracking reference signal,PT-RS)等信号。在无线通信系统中,SRS可以用于上行信道质量测量、上行波束管理等;PT-RS可以用于通信过程中的相位跟踪。
下行参考信号可以包括但不限于:同步信号块(synchronization signal block,SSB)、信道状态信息参考信号(channel state information-reference signal,CSI-RS)、PT-RS、定位参考信号(positioning reference  signals,PRS)等信号。在无线通信系统中,SSB可以用于终端设备获取和网络设备的下行同步;CSI-RS可以用于通信过程中的时频跟踪、下行波束管理、下行信道质量测量等;PRS可以用于定位。
侧行参考信号可以包括侧行链路(sidelink)中传输的同步信号块、CSI-RS信号等。
在无线通信系统中,数据信道可以承载通信数据。数据信道可以包括但不限于:物理下行共享信道(physical downlink shared channel,PDSCH)、物理上行共享信道(physical uplink shared channel,PUSCH)、物理侧共享信道(physical sidelink shared channel,PSSCH)中的一项或多项。承载在数据信道中的信号可以包括数据信道承载的数据信号、解调参考信号(demodulation reference signal,DMRS)中的一项或多项。数据信号可以包括但不限于以下一项或多项:上行数据信号(例如承载在PUSCH中的信号)、下行数据信号(例如承载在PDSCH中的信号)、侧行链路数据信号(例如承载在PSSCH中的信号)。数据信号/信道的传输同时对应于DMRS信号的传输,用于对数据信道进行解调。
感知信号能够实现对第一设备和/或第二设备周围的环境进行感知。
可以理解的是,通过感知信号可以实现广义的感知。也就是说,第一设备可以通过感知信号具有广义的无线感知能力。在一些实施例中,第一设备和/或第二设备周围的环境可以包括被感知目标。被感知目标可以包括第一设备和/或第二设备周围的任意对象。例如,被感知目标可以为通信设备(例如终端设备)、非通信设备或动植物等。通过感知信号,可以实现对被感知目标的位置、形状、距离、角度、移动速度、运动轨迹、呼吸频次、特殊形态(如摔倒)的探测和/或感知。或者,通过感知信号,可以实现对周围环境的探测感知、成像、和地图构建。
如此,可以不用定义新的信号或信道即可实现感知,从而降低了感知通信一体化的标准化工作量,也可以降低系统的复杂度与系统开销。另外,对于参考信号,参考信号的带宽可以比较大,因此,复用参考信号进行感知至少可以实现较高精度的感知。对于数据信道中承载的信号,该信号为通信过程中通常需要发送的信号,因此,复用数据信道中的信号进行感知至少可以降低感知的开销。本申请不限制感知的实现方式。例如,可以通过测量感知信号以及该感知信号的反射实现针对被感知目标的探测或感知。在一些实施例中,可以接收被感知目标针对感知信号反射的信号(或称为回波信号),并基于回波信号的传输时延和/或感知信号的结果反馈信息感知被感知目标。例如,第三设备可以基于回波信号测量回波信号的方位角,来感测目标物体的方位。
需要说明的是,本申请所述的感知为广义的感知。例如,感知可以包括定位、探测、测距、测角、成像、检测、跟踪、识别等的一项或多项。
需要说明的是,本申请所述的“感知”可以通过与感知相关的词汇进行替代。例如,可以使用以下一项或多项替代“感知”:定位、测距、测速、测角、目标成像、目标检测、目标跟踪和目标识别等。作为一种实现方式,感知信号也可以称为感知通信信号、定位信号、测距信号或目标成像信号等。
如上文所述,本申请的感知信号可以复用通信系统中的数据信号/信道以及参考信号/信道中的一项或多项。也就是说,感知信号可以用于感知,也可以用于通信,或者,感知信号可以既用于感知也用于通信(即感知信号用于感知和通信)。
与一个或多个感知信号相关的第一信息可以用于确定一个或多个感知信号是否用于感知和/或是否用于通信。在一些实施例中,第一设备可以接收第一信息,以根据该第一信息确定一个或多个感知信号是否用于感知和/或是否用于通信。第一信息的发送端可以是一个或多个感知信号的发送端(例如第二设备),也可以是其他设备。
在一个或多个感知信号用于感知或同时用于感知和通信的情况下,第一设备(即一个或多个感知信号的接收端)可以反馈感知结果信息。因此,在一些实施例中,第一信息也可以用于指示所述接收端是否需要反馈感知结果信息。
第一信息可以包含于一个或多个感知信号对应的配置信息和/或控制信息中。即配置信息和/或控制信息可以包括第一信息。
在配置信息包括第一信息的情况下,第一设备可以接收配置信息,以获取第一信息。配置信息可以是第二设备发送的,也可以是除第一设备和第二设备以外的设备发送的。
在控制信息包括第一信息的情况下,第一设备可以接收控制信息,以获取第一信息。控制信息可以是第二设备发送的,也可以是除第一设备和第二设备以外的设备发送的。
配置信息可以用于对一个或多个感知信号进行配置。在一些实施例中,配置信息可以承载于无线资源控制(radio resource control,RRC)消息、系统信息块(system information block,SIB)消息、媒体接入控制(medium access control,MAC)消息中。
配置信息可以包括一个或多个信元(information element,IE)。第一信息中的部分或全部信息可以承载于该一个或多个信元中。
在一些实施例中,在一个或多个感知信号用于感知的情况下,配置信息可以包括第一信元。也就是 说,第一信元可以用于配置一个或多个感知信号用于感知。
在一些实施例中,在一个或多个感知信号用于通信的情况下,配置信息可以包括第二信元。也就是说,第二信元可以用于配置一个或多个感知信号用于通信。
在一些实施例中,在一个或多个感知信号用于感知和通信的情况下,配置信息可以包括第三信元。也就是说,第三信元可以用于配置一个或多个感知信号用于通信并且用于感知。
在一些实施例中,在一个或多个感知信号用于通信和感知的情况下,配置信息可以包括第一信元和第二信元,其中,第一信元可以承载第一信息中的第一部分信息,第二信元可以承载第一信息中的第二部分信息。第一部分信息和第二部分信息可以不同。其中,第一部分信息可以用于配置一个或多个感知信号用于感知;并且,第二部分信息可以用于配置一个或多个感知信号用于通信。
下面以感知信号为CSI-RS为例,说明第一信元和第二信元。第一信元可以用于配置一个或多个CSI-RS用于感知,第二信元可以用于配置一个或多个CSI-RS用于通信。也就是说,用于感知的CSI-RS可以通过第一信元配置,用于通信的CSI-RS可以通过第二信元配置。其中,第一信元配置的CSI-RS可以称为用于感知的CSI-RS(CSI-RS for sensing),第二信元配置的CSI-RS可以称为用于通信的CSI-RS(CSI-RS for communication)。
配置信息可以包括一个或多个参数。一个或多个参数可以包含于一个或多个信元中。所述一个或多个信元例如可以包括上文所述的第一信元、第二信元、第三信元中的一项或多项。一个或多个参数可以包括第一参数、第二参数、第三参数、第四参数、第五参数中的一项或多项。第一信息可以承载于第一参数、第二参数、第三参数、第四参数、第五参数中的一项或多项。
在一些实施例中,第一参数、第二参数、第三参数、第四参数、第五参数中的一项或多项可以公用(或共用、共享)一个或多个信元配置。例如,公用的一个或多个信元可以包括第四信元。第四信元可以包括第一参数、第二参数、第三参数、第四参数、第五参数中的一项或多项。或者,公用的多个信元可以包括第五信元和第六信元。第五信元可以包括第一参数、第二参数、第三参数、第四参数、第五参数中的一项或多项。第六信元可以包括第一参数、第二参数、第三参数、第四参数、第五参数中的一项或多项。其中,第六信元包括的参数可以第五信元中包括的参数不同。
在一些实施例中,配置信息中可以包括第一参数和/或第二参数。第一参数可以用于指示第一信息的部分或全部信息,第二参数可以用于指示第一信息的部分或全部信息。
在一些实现方式中,在一个或多个感知信号用于感知的情况下,配置信息可以包括第一参数。也就是说,如果配置了第一参数,则可以说明一个或多个感知信号是用于感知的。
在一些实现方式中,在一个或多个感知信号用于通信的情况下,配置信息可以包括第二参数。也就是说,如果配置第二参数,则可以说明一个或多个感知信号是用于通信的。
在一些实现方式中,在一个或多个感知信号用于通信和感知的情况下,配置信息可以包括第一参数和第二参数。也就是说,如果配置了第一参数和第二参数,则可以说明一个或多个感知信号是用于通信和感知的。
在一些实现方式中,在一个或多个感知信号用于通信的情况下,配置信息可以不包括第一参数。
在一些实现方式中,配置信息可以包括第四参数。第四参数可以是与第一参数不同的参数,第四参数可以用于指示一个或多个感知信号用于感知。可以理解的是,在配置信息中包括第二参数和第四参数的情况下,一个或多个感知信号可以既用于通信又用于感知。
在一些实现方式中,在一个或多个感知信号用于感知的情况下,配置信息可以不包括第二参数。
在一些实现方式中,配置信息可以包括第五参数。第五参数可以是与第二参数不同的参数,第五参数可以用于指示一个或多个感知信号用于通信。可以理解的是,在配置信息中包括第一参数和第五参数的情况下,一个或多个感知信号可以既用于通信又用于感知。
在一些实施例中,配置信息可以包含第三参数,第三参数可以用于指示第一信息。在一个或多个感知信号用于感知的情况下,第三参数的取值可以包括第一值或不包括第二值。也就是说,用于感知的一个或多个感知信号对应的配置信息中的第三参数的取值包括第一值时,一个或多个感知信号可以用于感知。在一个或多个感知信号用于通信的情况下,第三参数的取值可以包括第二值或不包括第一值。也就是说,用于感知的一个或多个感知信号对应的配置信息中的第三参数的取值包括第二值时,一个或多个感知信号可以用于通信。
作为一种实现方式,在一个或多个感知信号用于通信和感知的情况下,第三参数的取值可以包括第三值。第三值可以为与第一值和/或第二值不同的取值。也就是说,用于感知的一个或多个感知信号对应的配置信息中的第三参数的取值包括第三值时,一个或多个感知信号可以用于通信和感知。
上文详细说明了第一信息包含在配置信息中的技术方案。下面说明第一信息包含在控制信息的技术方案。可以理解的是,第一信息可以单独包含在配置信息中,第一信息可以单独包括在控制信息中, 或者,第一信息可以包含在配置信息和控制信息中。也就是说,上文所述的第一信息包含的配置信息中的技术方案以及第一信息包含在控制信息的技术方案,可以单独实施,也可以结合起来实施。
需要说明的是,第一信息包含在配置信息和/或控制信息的情况可以包括第一信息即为配置信息和/或控制信息的情况。控制信息可以用于触发一个或多个感知信号的发送。也就是说,一个或多个感知信号的发送可以由一个或多个感知控制信号对应的控制信息控制。例如,控制信息可以包括下行控制信息(downlink control information,DCI)。
第一信息可以承载于控制信息的第一指示域中。也就是说,控制信息可以通过第一指示域指示其对应的一个或多个感知信号用于感知、或用于通信、或同时用于感知和通信。
在一个或多个感知信号用于感知或同时用于感知和通信的情况下,第一设备(即一个或多个感知信号的接收端)可以反馈感知结果信息。因此,在一些实施例中,第一指示域也可以用于指示所述接收端是否需要反馈感知结果信息。
在一些实现方式中,第一指示域的取值包括第四值时,一个或多个感知信号可以用于感知。或者,第一指示域的取值包括第五值时,一个或多个感知信号可以用于通信。或者,第一指示域的取值包括第六值时,一个或多个感知信号可以用于通信和感知。
可以理解的是,第一信息可以仅包含在配置信息或控制信息,也可以同时包含在配置信息和控制信息中。也就是说,通过配置信息,可以确定第一信息。或者,通过控制信息,可以确定第一信息。或者,结合配置信息和控制信息,可以确定第一信息。例如,第一信息中的第三部分信息可以包含在配置信息中,第一信息中的第四部分信息可以包含在控制信息中。第一终端设备可以结合第三部分信息和第四部分信息得到第一信息。也就是说,第三部分信息和第四部分信息可以组成第一信息的全部信息。
上文对感知信号进行了说明,下面对感知信号的反馈进行说明。针对感知信号的反馈可以通过结果反馈信息指示。在感知信号用于感知的情况下,结果反馈信息可以用于指示感知结果反馈信息。也就是说,结果反馈信息可以包括感知结果反馈信息,用于指示针对感知信号的反馈结果。在感知信号用于通信的情况下,结果反馈信息可以用于指示通信反馈信息。在一些实施例中,在感知信号为参考信号的情况下,通信反馈信息可以包括通信测量反馈信息(例如信道测量结果)。或者,在感知信号为数据信道中承载的信号的情况下,通信反馈信息可以包括混合自动重传请求(hybrid automatic repeat request,HARQ)反馈信息。
需要说明的是,结果反馈信息可以与一个或多个感知信号对应。也就是说,一个结果反馈信息可以包括一个感知信号的反馈的信息,也可以包括多个感知信号的反馈的信息。在一些实施例中,多个感知结果反馈信息可以与多个感知信号对应。例如,多个感知结果反馈信息可以与多个感知信号一一对应。
图4为本申请实施例提供的一种通信方法的示意性流程图。图4所示的方法可以由第一设备和/或第三设备执行。第三设备可以是上文所述的任意通信设备或感知通信设备。第三设备可以是与第二设备相同的设备,也可以是与第二设备不同的设备。第三设备可以为感知信号的反射信号的接收端。第三设备可以是感知节点和/或感知控制节点所在的实体。
图4所示的方法可以包括S410。S410,第一设备可以发送一个或多个感知信号对应的感知结果反馈信息。对应地,第三设备可以接收一个或多个感知信号对应的感知结果反馈信息。
需要说明的是,图3和图4所示的方法可以单独实施,也可以结合起来实施。
下面分别就感知信号为参考信号和/或数据信道中承载的信号的情况,对感知信号的反馈进行说明。情况一用于说明感知信号为参考信号的情况,情况二用于说明感知信号为数据信道中承载的信号的情况。可以理解的是,下文所述的情况一和情况二中的实施例可以结合实施。也就是说,在感知信号为参考信号和数据信道中承载的信号的情况下,可以结合情况一和情况二所述的实施例实现。
情况一:感知信号为参考信号
在感知信号为参考信号的情况下,结果反馈信息可以为周期性、半持续性或非周期性的。下面分别就结果反馈信息为不同类型的情况进行说明。1)一个或多个感知信号对应的结果反馈信息为周期性或半持续性的情况。
在结果反馈信息为周期性的情况下,结果反馈信息可以不需要触发,感知信号的接收设备(即第一设备)即可对通信和/或感知的结果进行周期性的反馈。结果反馈信息为半持续性的情况下,需要对结果反馈信息进行触发,在触发后,感知信号的接收设备(即第一设备)可以对通信和/或感知的结果进行周期性的反馈。
结果反馈信息可以基于不晚于(早于或等于)第一时间单元的感知信号得到。其中,第一时间单元可以根据所述结果反馈信息占用的时间单元确定。在一些实现方式中,第一时间单元可以为结果反馈信息占用的一个或多个时间单元中的一个。例如,第一时间单元可以为结果反馈信息占用的第一个时间单元或最后一个时间单元。在一些实现方式中,第一时间单元可以是结果反馈信息占用的时间单元映射出 的另一时间单元。换句话说,第一时间单元可以根据结果反馈信息占用的时间单元确定。
图5为申请实施例提供的一种结果反馈信息为周期性或半持续性的示例图。如图5所示,结果反馈信息占用的第一个时间单元可以为第一时间单元。
在一些实施例中,在结果反馈信息用于指示通信测量反馈信息的情况下,结果反馈信息可以基于第一感知信号得到。第一感知信号可以为不晚于第一时间单元前的第一参考时间传输的感知信号。可以理解的是,第一感知信号可以为早于或等于第一时间单元前的第一参考时间发送或接收的感知信号。例如,第一参考时间可以为N个时间单元,第一感知信号可以为第一时间单元前第N个时间单元传输的感知信号,或者,第一感知信号可以为第一时间单元前第N个时间单元之前的时间单元传输的感知信号。其中,N可以为大于0的整数。例如,第一参考时间可以为如图5所示的12个符号,第一感知信号可以早于或等于第一时间单元前12个符号的感知信号,即感知信号3。
在一些实施例中,在结果反馈信息用于指示感知结果反馈信息的情况下,结果反馈信息可以基于第二感知信号得到。第二感知信号可以为不晚于第一时间单元前的第二参考时间发送或接收的感知信号。可以理解的是,第二感知信号可以为早于或等于第一时间单元前的第二参考时间传输的感知信号。例如,第二参考时间可以为M个时间单元,第二感知信号可以为第一时间单元前第M个时间单元传输的感知信号,或者,第二感知信号可以为第一时间单元前第M个时间单元之前的时间单元传输的感知信号。其中,M可以为大于0的整数。例如,第二参考时间可以为如图5所示的18个符号,第二感知信号可以早于或等于第一时间单元前18个符号的感知信号,即感知信号4。
可以理解的是,在结果反馈信息既用于指示感知结果反馈信息又用于指示通信测量反馈信息的情况下,可以基于上文所述的方法,分别基于第一感知信号和第二感知信号得到所述结果反馈信息。
在一些实施例中,在结果反馈信息用于指示感知结果反馈信息和通信测量反馈信息的情况下,结果反馈信息可以基于第三感知信号得到。第三感知信号可以为不晚于第一时间单元前的第三参考时间发送或接收的感知信号,第三参考时间为根据第一参考时间和第二参考时间得到的。在一些实施例中,第三参考时间可以为第一参考时间和第二参考时间中最大的。例如,第一参考时间可以为如图5所示的12个符号,第二参考时间可以为如图5所示的18个符号,第三参考时间可以为第一参考时间和第二参考时间中较大的18个符号。即第三感知信号可以早于或等于第一时间单元前18个符号的感知信号,即感知信号4。
2)一个或多个感知信号对应的结果反馈信息为非周期性的情况。
在结果反馈信息为非周期性的情况下,结果反馈信息的发送需要触发。例如可以通过控制信息触发。在对结果反馈信息进行触发后,感知信号的接收设备(即第一设备)即可对通信和/或感知的结果进行反馈。
一个或多个感知信号对应的结果反馈信息所在的时间单元可以根据第二时间单元确定。其中,第二时间单元可以根据一个或多个感知信号所在的时间单元确定,或第二时间单元可以根据一个或多个感知信号对应的控制信息所在的时间单元确定。
在一些实施例中,第二时间单元可以为一个或多个感知信号占用的一个或多个时间单元中的第一个时间单元或最后一个时间单元。或者,第二时间单元可以为一个或多个感知信号对应的控制信息所在的一个或多个时间单元中的第一个时间单元或最后一个时间单元。
在一些实施例中,一个或多个感知信号占用的一个或多个时间单元中的第一个时间单元或最后一个时间单元可以映射出另一时间单元,第二时间单元可以为所述另一时间单元。也就是说,第二时间单元可以根据一个或多个感知信号占用的一个或多个时间单元中的第一个时间单元或最后一个时间单元确定。或者,一个或多个感知信号对应的控制信息所在的一个或多个时间单元中的第一个时间单元或最后一个时间单元可以映射出另一时间单元,第二时间单元可以为所述另一时间单元。也就是说,第二时间单元可以根据一个或多个感知信号对应的控制信息占用的一个或多个时间单元中的第一个时间单元或最后一个时间单元确定。
在一些实施例中,在结果反馈信息用于指示感知结果反馈信息的情况下,如果结果反馈信息所在的时间单元(例如结果反馈信息所在的一个或多个时间单元中的第一时间单元和/或最后一个时间单元)不早于第二时间单元后的第一处理时间,则结果反馈信息指示的感知结果反馈信息可以是有效的。可以理解的是,如果结果反馈信息所在的时间单元晚于或等于第二时间单元后的第一处理时间,一个或多个感知信号的接收节点(例如第一设备)可以报告有效的感知结果反馈信息。如果结果反馈信息所在的时间单元早于第二时间单元后的第一处理时间,一个或多个感知信号的接收节点可以报告无效的感知结果反馈信息或不报告感知结果反馈信息,这可以取决于第一设备的实现。
需要说明的是,第一处理时间可以对应或包括一段时长(可以称为第一处理时长)。在一些实施例中,第一处理时间可以占用一个或多个时间单元。
在一些实施例中,在结果反馈信息用于指示通信测量反馈信息的情况下,如果结果反馈信息所在的时间单元不早于第二时间单元后的第二处理时间,则结果反馈信息指示的通信测量反馈信息可以是有效的。可以理解的是,如果通信测量反馈信息所在的时间单元晚于或等于第二时间单元后的第二处理时间,一个或多个感知信号的接收节点(例如第一设备)可以报告有效的通信测量反馈信息。如果通信测量反馈信息所在的时间单元早于第二时间单元后的第二处理时间,一个或多个感知信号的接收节点可以报告无效的通信测量反馈信息或不报告通信测量反馈信息,这可以取决于第一设备的实现。
需要说明的是,第二处理时间可以对应或包括一段时长(可以成为第二处理时长)。在一些实施例中,第二处理时间可以占用一个或多个时间单元。
在一些实施例中,第二处理时间可以基于第一处理时间确定。或者,第一处理时间可以基于第二处理时间确定。或者,第一处理时间与第二处理时间可以是分别确定的,即二者之间相互独立。
可以理解的是,在结果反馈信息包括感知结果反馈信息和通信测量反馈信息的情况下,可以基于上文所述的方法,分别确定通信测量反馈信息和感知结果反馈信息是否有效。
在一些实施例中,在结果反馈信息用于指示感知结果反馈信息和通信测量反馈信息的情况下,如果结果反馈信息所在的时间单元不早于(晚于或等于)第二时间单元后的第三处理时间,则结果反馈信息指示的通信测量反馈信息和感知结果反馈信息均可以是有效的。其中,第三处理时间可以根据第一处理时间和第二处理时间确定。在一些实施例中,第三处理时间可以为第一处理时间和第二处理时间中最大的。可以理解的是,如果感知结果反馈信息和通信测量反馈信息在相同的时间单元传输,结果反馈信息所在的时间单元晚于或等于第二时间单元后的第三处理时间,一个或多个感知信号的接收节点可以报告有效的通信测量反馈信息以及感知结果反馈信息。如果结果反馈信息所在的时间单元早于第二时间单元后的第三处理时间,一个或多个感知信号的接收节点可以报告无效的通信测量反馈信息以及感知结果反馈信息,或接收节点可以不报告通信测量反馈信息和/或感知结果反馈信息,这可以取决于第一设备的实现。
需要说明的是,第三处理时间可以对应或包括一段时长(可以成为第三处理时长)。在一些实施例中,第三处理时间可以占用一个或多个时间单元。
需要说明的是,第一处理时间对应的时长或占用的时间单元、第二处理时间对应的时长或占用的时间单元、第三处理时间对应的时长或占用的时间单元中的一项或多项可以是预定义、预设置或配置的。例如,第一处理时间的时长和/或第二处理时间的时长可以是协议约定的或感知控制节点配置的。
需要说明的是,在情况一种,一个或多个感知信号对应的通信测量反馈信息所在的时间单元和一个或多个感知信号对应的感知结果信息所在的时间单元可以相同也可以不同。
情况二,感知信号为数据信道中承载的信号
一个或多个感知信号对应的结果反馈信息可以包括指示感知结果反馈信息和/或HARQ反馈信息。感知结果反馈信息和/或HARQ反馈信息所在时间单元可以根据第二时间单元确定。其中,第二时间单元可以根据一个或多个感知信号所在的时间单元确定,或第二时间单元可以根据一个或多个感知信号对应的控制信息所在的时间单元确定。在一些实施例中,第二时间单元可以为一个或多个感知信号占用的第一个时间单元或最后一个时间单元。在一些实施例中,第二时间单元可以为一个或多个感知信号对应的控制信息所在的第一个时间单元或最后一个时间单元。
在一些实施例中,一个或多个感知信号占用的一个或多个时间单元中的第一个时间单元或最后一个时间单元可以映射出另一时间单元,第二时间单元可以为所述另一时间单元。也就是说,第二时间单元可以根据一个或多个感知信号占用的一个或多个时间单元中的第一个时间单元或最后一个时间单元确定。或者,一个或多个感知信号对应的控制信息所在的一个或多个时间单元中的第一个时间单元或最后一个时间单元可以映射出另一时间单元,第二时间单元可以为所述另一时间单元。也就是说,第二时间单元可以根据一个或多个感知信号对应的控制信息占用的一个或多个时间单元中的第一个时间单元或最后一个时间单元确定。
在一些实施例中,如果一个或多个感知信号对应的感知结果反馈信息所在的时间单元不早于第二时间单元后的第四处理时间,则一个或多个感知信号对应的感知结果反馈信息是有效的。可以理解的是,如果结果反馈信息所在的时间单元晚于或等于第二时间单元后的第四处理时间,一个或多个感知信号的接收节点可以报告有效的感知结果反馈信息。如果结果反馈信息所在的时间单元早于第二时间单元后的第四处理时间,一个或多个感知信号的接收节点可以报告无效的感知结果反馈信息或不报告感知结果反馈信息,这可以取决于第一设备的实现。
需要说明的是,第四处理时间可以对应或包括一段时长(可以成为第四处理时长)。在一些实施例中,第四处理时间可以占用一个或多个时间单元。
在一些实施例中,如果一个或多个感知信号对应的HARQ反馈信息所在的时间单元不早于在第二 时间单元后的第五处理时间,则一个或多个感知信号对应的HARQ反馈信息是有效的。可以理解的是,如果HARQ反馈信息所在的时间单元晚于或等于第二时间单元后的第五处理时间,一个或多个感知信号的接收节点可以报告有效的通信测量反馈信息。如果HARQ反馈信息所在的时间单元早于第二时间单元后的第五处理时间,一个或多个感知信号的接收节点可以报告无效的通信测量反馈信息或不报告通信测量反馈信息,这可以取决于第一设备的实现。
需要说明的是,第五处理时间可以对应或包括一段时长(可以成为第五处理时长)。在一些实施例中,第五处理时间可以占用一个或多个时间单元。
在一些实施例中,第五处理时间可以基于第四处理时间确定。或者,第四处理时间可以基于第五处理时间确定。或者,第四处理时间与第五处理时间可以是分别确定的,即二者之间相互独立。
可以理解的是,在结果反馈信息既包括感知结果反馈信息又包括HARQ反馈信息的情况下,可以基于上文所述的方法,分别确定HARQ反馈信息和感知结果反馈信息是否有效。
在一些实施例中,如果一个或多个感知信号对应的HARQ反馈信息和感知信号对应的感知结果反馈信息在相同的时间单元传输,并且作数相同的时间单元不早于第二时间单元后的第六处理时间,则一个或多个感知信号对应的HARQ反馈信息和感知结果反馈信息均是有效的。其中,第六处理时间可以根据第四处理时间和第五处理时间确定。例如,第六处理时间可以为第四处理时间和第五处理时间中最大的。可以理解的是,在感知结果反馈信息和HARQ反馈信息在相同的时间单元传输的情况下,如果HARQ反馈信息和感知结果反馈信息所在的时间单元晚于或等于第二时间单元后的第六处理时间,一个或多个感知信号的接收节点可以报告有效的HARQ反馈信息和感知结果反馈信息。如果HARQ反馈信息和感知结果反馈信息所在的时间单元早于第二时间单元后的第六处理时间,一个或多个感知信号的接收节点可以报告无效的HARQ反馈信息和感知结果反馈信息,或接收节点可以不报告HARQ反馈信息和/或感知结果反馈信息,这可以取决于第一设备的实现。
需要说明的是,第六处理时间可以对应一段时长。在一些实施例中,第六处理时间可以占用一个或多个时间单元。
需要说明的是,第四处理时间对应的时长或占用的时间单元、第五处理时间对应的时长或占用的时间单元、第六处理时间对应的时长或占用的时间单元中的一项或多项可以是预定义、预设置或配置的。例如,第四处理时间的时长和/或第五处理时间的时长可以是协议约定的或感知控制节点配置的。
一个或多个感知信号对应的HARQ反馈信息所在的时间单元和一个或多个感知信号对应的感知结果信息所在的时间单元可以相同也可以不同。
在一个实施例中,一个或多个感知信号对应的HARQ反馈信息所在的时间单元不晚于一个或多个感知信号对应的感知结果反馈信息所在的时间单元。可以理解的是,第一设备可以在感知结果反馈信息接收之前或同时获取到HARQ反馈信息,从而可以根据HARQ反馈信息的情况,确定传输一个或多个感知信号的信道的情况(例如信道质量)。例如,在HARQ反馈信息为NACK的情况下,所述信道质量较差。或者,在HARQ反馈信息为ACK的情况下,所述信道质量较好。第一设备还可以根据信道的情况,确定感知结果反馈信息是否有效或确定是否传输(包括发送和/或接收)感知结果反馈信息。
下面详细介绍HARQ反馈信息为不同情况时,对感知结果反馈信息的处理。
在一些实施例中,在HARQ反馈信息为ACK的情况下,第一设备可以发送一个或多个感知信号对应的感知结果反馈信息,第三设备可以接收一个或多个感知信号对应的感知结果反馈信息。也就是说,用于通信的一个或多个感知信号解调正确的情况下,第一设备才可以发送感知结果反馈信息,第三设备才可以接收感知结果反馈信息。可以理解的是,在HARQ反馈信息为ACK的情况下,传输一个或多个感知信号的信道质量较好。在信道质量较好的情况下,可以获取到准确性较高的感知结果,在这种情况下,传输感知结果反馈信息,可以更为准确的感知。
在一些实施例中,在HARQ反馈信息为NACK的情况下,第一设备可以不发送一个或多个感知信号对应的感知结果反馈信息,第三设备可以不接受一个或多个感知信号对应的感知结果反馈信息。
在一些实施例中,在HARQ反馈信息为NACK的情况下,第一设备可以发送感知结果反馈信息,第三设备可以接收感知结果反馈信息,其中,感知结果反馈信息对应的比特位为预设值。预设值可以与预配置的,也可以为协议预先规定的。预设值可以用于占位,即感知结果反馈信息对应的比特位为一个或多个占位符。也就是说,如果感知结果反馈信息对应的比特位为预设值,则感知结果反馈信息中传输的不是真正的感知结果。感知结果反馈信息的接收端可以忽略该感知结果反馈信息。
以HARQ反馈信息和感知结果反馈信息占用不同的时间单元为例,在HARQ反馈信息为ACK的情况下,第一设备可以在第四时间单元传输HARQ反馈信息,在晚于第四时间单元的第五时间单元传输一个或多个感知信号对应的感知结果反馈信息。在HARQ反馈信息为NACK的情况下,第一设备可以在第四时间单元传输HARQ反馈信息,在晚于第四时间单元的第五时间单元不传输一个或多个感知 信号对应的感知结果反馈信息,或者,第一设备可以在第五时间单元传输感知结果反馈信息,感知结果反馈信息对应的比特位为预设值。
下面以HARQ反馈信息和感知结果反馈信息占用同一时间单元为例进行说明。
在HARQ反馈信息和感知结果反馈信息占用同一时间单元的情况下,HARQ反馈信息和感知结果反馈信息的编码方式可以是独立编码的方式或共同编码的方式。在独立编码的情况下,HARQ反馈信息和感知结果反馈信息可以使用独立的(separate)码率和/或独立添加循环冗余校验(cyclic redundancy check,CRC)校验进行编码,从而分别输出各自的速率匹配输出序列。在共同编码的情况下,HARQ反馈信息和感知结果反馈信息可以使用相同的码率一起形成比特序列,也可以对比特序列共同添加CRC校验,输出一个速率匹配输出序列。
在独立编码的情况下,在HARQ反馈信息为NACK的情况下,第一设备可以不传输一个或多个感知信号对应的感知结果反馈信息。
可以理解的是,在独立编码的情况下,HARQ反馈信息和感知结果反馈信息相互独立,感知结果反馈信息的编码不会影响HARQ反馈信息的编码。也就是说,独立编码时,感知结果反馈信息比特数的变化并不影响HARQ反馈信息的解调。因此,可以在HARQ反馈信息为NACK的情况下,不反馈感知结果反馈信息,从而减少通信开销。
在共同编码的情况下,在HARQ反馈信息为NACK的情况下,第一设备可以传输感知结果反馈信息,感知结果反馈信息对应的比特位为预设值。
可以理解的是,在共同编码的情况下,如果感知结果反馈信息对应的比特数发生变化(例如在不发送感知结果反馈信息的情况下,比特数为0),则可能影响HARQ反馈信息的解调。不论HARQ反馈信息为ACK还是NACK,感知结果反馈信息对应的比特位都需要存在并且长度不发生变化。因此,将感知结果反馈信息对应的比特位设置为预设值,可以使得HARQ反馈信息正确解调。
用于感知结果信息反馈的时域和/或频域资源可以通过一个或多个感知信号对应的控制信息确定。
在一些实施例中,控制信息可以包括第二指示域,第二指示域可以用于指示感知结果反馈信息占用的时域和/或频域资源。
第二指示域也可以称为感知结果反馈资源指示域。感知结果反馈资源指示域可以包括时域资源指示域和/或频域资源指示域。在一些实施例中,所述时域资源指示域可以指示感知结果反馈信息所在的时域资源的绝对位置。在一些实施例中,所述时域资源指示域可以指示相对于一个或多个感知信号所在的时域资源的相对位置。在一些实施例中,所述时域资源指示域可以指示一个或多个感知信号对应的控制信息所在的时域资源的相对位置。所述频域资源指示域可以指示所述感知结果反馈信息所在的频域资源的绝对位置,或者在接收端接收一个或多个感知信号所在的预设频域范围内的相对位置。
以第二指示域指示感知结果反馈信息占用的时域资源为例,第二指示域可以用于指示感知结果反馈信息与第二时间单元之间的时间偏移。其中,第二时间单元可以根据一个或多个感知信号所在的时间单元确定,或第二时间单元可以根据一个或多个感知信号对应的控制信息所在的时间单元确定。例如,第二时间单元可以为一个或多个感知信号占用的第一个时间单元或最后一个时间单元。例如,第二时间单元可以为一个或多个感知信号对应的控制信息所在的第一个时间单元或最后一个时间单元。
在一个实施例中,一个或多个感知信号或一个或多个感知信号对应的控制信息所在的时间单元为n,第二指示域指示时间单元n和感知结果反馈信息所在的时间单元的偏移为k,则感知结果反馈信息所在的时域资源为根据时间单元n和偏移k确定的。例如,若控制信息和感知结果反馈信息的子载波间隔(subcarrier spacing,SCS)相同,则感知结果反馈信息所在的时间单元为n+k。其中,n可以为大于或等于0的整数,k可以为大于或等于0的整数。
感知结果反馈信息占用的时域资源可以是控制信息显式指示的。在一些实施例中,可以通过第二指示域直接指示感知结果反馈信息占用的时域资源。感知结果反馈信息占用的是与资源也可以是隐式确定的。在一些实施例中,感知结果反馈信息占用的时域资源可以基于一个或多个感知信号对应的控制信息和/或一个或多个感知信号所在的时域和/或频域资源,根据预设或者配置的映射关系,隐式确定。
下面通过实施例1~实施例4详细说明本申请提供的通信方法。
实施例1
感知信号复用通信系统(例如NR系统)中的CSI-RS信号。可以通过如下方式,指示感知信号用于感知和/或通信。
方式一:配置信息可以包括第一IE和第二IE。第一IE配置的CSI-RS可以是用于感知的。第二IE配置的CSI-RS可以是用于通信的。在第一IE和第二IE均配置的情况下,CSI-RS可以既用于通信也用于感知。在用于感知和用于通信的CSI-RS中又可以包括更细粒度的子功能,在此不再赘述。
方式二:用于感知的CSI-RS和用于通信的CSI-RS可以共用一个IE配置,在这个IE中,用于感 知的CSI-RS对应的配置信息必须包含第一参数(parameter 1)。换句话说,若第一参数被配置了,则该CSI-RS被配置为用于感知的。在一些实施例中,用于通信的CSI-RS对应的配置信息可以不包含第一参数,或者,用于通信的CSI-RS对应的配置信息必须包含第二参数(parameter 2)。
方式三:用于感知的CSI-RS和用于通信的CSI-RS可以共用一个IE配置,在这个IE中可以包含第三参数。用于感知的CSI-RS对应的配置信息中,第三参数必须取值为第一值(value 1)。换句话说,如果第三参数的取值配置为第一值,则说明这个CSI-RS被配置为用于感知的。在一些实施例中,在用于通信的CSI-RS对应的配置信息中,第三参数必须取值为第二值(value 2),或者不是第一值。
实施例2
感知信号复用PDSCH或者PSSCH信道。感知信号的发送端可以发送PDSCH信道或者PSSCH信道,所述PDSCH信道或者PSSCH信道可以同时用于通信和感知。
第Y处理时间可以为第四处理时间,也就是说,第Y处理时间可以为感知处理时间。第Y处理时间可以是协议约定或者感知控制节点配置的。如果PDSCH或PSSCH对应的感知结果反馈所在的时间单元在所述PDSCH或PSSCH所在的时间单元(或者PDSCH或PSSCH对应的控制信息所在的时间单元)后的第Y处理时间,第一信号接收节点则报告有效的感知结果反馈信息。其中,Y可以为大于或等于0的整数。
第X处理时间可以为第五处理时间,也就是说,第X处理时间可以为通信处理时间。第X处理时间可以是协议约定或者感知控制节点配置的。如果PDSCH或PSSCH对应的HARQ反馈所在的时间单元在所述PDSCH或PSSCH所在的时间单元(或者PDSCH或PSSCH对应的控制信息所在的时间单元)后的第X处理时间,感知信号的接收端可以报告有效的HARQ反馈信息。其中,X可以为大于或等于0的整数。
实施例3
感知信号复用PDSCH或者PSSCH信道。感知信号的发送端可以发送PDSCH信道或者PSSCH信道,所述PDSCH信道或者PSSCH信道可以同时用于通信和感知。
如果所述PDSCH或者PSSCH接收正确,接收端反馈ACK信息和感知结果信息;如果所述PDSCH或者PSSCH没有接收正确,接收端只反馈NACK信息,不反馈感知结果信息,或者将感知结果信息对应的比特位置为预设值。其中,HARQ反馈信息和感知结果信息可以分别编码或者联合编码。
实施例4
感知信号复用PDSCH或者PSSCH信道。感知信号的发送端可以发送PDSCH信道或者PSSCH信道,所述PDSCH信道或者PSSCH信道可以同时用于通信和感知。
一个或多个感知信号对应的控制信息中可以包含第一指示域。第一指示域可以称为感知指示域。所述感知指示域可以为1比特,指示一个或多个感知信号是否用于感知,或者,接收端是否需要反馈感知结果信息。例如,1可以表示一个或多个感知信号用于感知,0可以表示一个或多个感知信号不用于感知;
一个或多个感知信号对应的控制信息中可以包含第二指示域。第二指示域也可以称为感知结果反馈资源指示域。感知结果反馈资源指示域可以包括时域资源指示域和/或频域资源指示域,所述时域资源指示域可以指示感知结果反馈信息所在的时域资源的绝对位置,或者相对于一个或多个感知信号或者一个或多个感知信号对应的控制信息所在的时域资源的相对位置。所述频域资源指示域可以指示所述感知结果反馈信息所在的频域资源的绝对位置,或者在接收端接收一个或多个感知信号所在的预设频域范围内的相对位置。
需要说明的是,上文所述的时间单元可以包括:子帧、帧、时隙、子时隙、符号、符号集、秒或毫秒等。
上文结合图1至图5,详细描述了本申请的方法实施例,下面结合图6至图9,详细描述本申请的装置实施例。应理解,方法实施例的描述与装置实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。
图6为本申请实施例提供的一种通信设备600的结构性示意图。通信设备600可以为第一设备。通信设备600可以包括:第一接收单元610。
第一接收单元用于接收一个或多个感知信号,所述感知信号为参考信号和/或数据信道中承载的信号。
在一些实施例中,所述一个或多个感知信号是否用于感知和/或是否用于通信是根据第一信息确定的。
在一些实施例中,所述通信设备600还包括第二接收单元620。第二接收单元620用于接收一个或多个感知信号对应的配置信息;其中,所述配置信息包括所述第一信息。
在一些实施例中,在所述一个或多个感知信号用于感知的情况下,所述配置信息包括第一信元,所述第一信元用于承载所述第一信息;或在所述一个或多个感知信号用于通信的情况下,所述配置信息包括第二信元,所述第二信元用于承载所述第一信息;或在所述一个或多个感知信号用于通信和感知的情况下,所述配置信息包括第三信元,所述第三信元用于承载所述第一信息。
在一些实施例中,在所述一个或多个感知信号用于感知的情况下,所述配置信息中包含第一参数,或不包含第二参数,所述第一参数用于指示所述第一信息的部分信息;和/或,在所述一个或多个感知信号用于通信的情况下,所述配置信息中包含第二参数,或不包括所述第一参数,所述第二参数用于指示所述第一信息的部分信息。
在一些实施例中,所述第一信息承载于第三参数,在所述一个或多个感知信号用于感知的情况下,所述配置信息中的所述第三参数的取值包括第一值,或,所述第三参数的取值不包括第二值;和/或,在所述一个或多个感知信号用于通信的情况下,所述配置信息中的所述第三参数包括第二值,或,所述第三参数的取值不包括第一值。
在一些实施例中,所述通信设备600还包括:第三接收单元。第三接收单元用于接收述一个或多个感知信号对应的控制信息;其中所述控制信息包括所述第一信息。
在一些实施例中,所述第一信息承载于所述控制信息的第一指示域。
在一些实施例中,所述感知信号为所述参考信号,所述一个或多个感知信号对应的结果反馈信息为周期性、半持续性或非周期的。
在一些实施例中,在所述一个或多个感知信号对应的结果反馈信息为周期性或半持续性的情况下,在所述结果反馈信息用于指示通信测量反馈信息的情况下,所述结果反馈信息基于第一感知信号得到,所述第一感知信号为不晚于第一时间单元前的第一参考时间发送的感知信号;和/或在所述结果反馈信息用于指示感知结果反馈信息的情况下,所述结果反馈信息基于第二感知信号得到,所述第二感知信号为不晚于第一时间单元前的第二参考时间发送或接收的感知信号;和/或在所述结果反馈信息用于指示感知结果反馈信息和通信测量反馈信息的情况下,所述结果反馈信息基于第三感知信号得到,所述第三感知信号为不晚于第一时间单元前的第三参考时间发送或接收的感知信号,所述第三参考时间为根据所述第一参考时间和所述第二参考时间得到的。
在一些实施例中,所述第一时间单元根据所述结果反馈信息占用的时间单元确定。
在一些实施例中,在所述一个或多个感知信号对应的结果反馈信息为非周期性的情况下,在所述结果反馈信息用于指示感知结果反馈信息,所述结果反馈信息所在的时间单元不早于第二时间单元后的第一处理时间的情况下,所述结果反馈信息指示的感知结果反馈信息是有效的;和/或,在所述结果反馈信息用于指示通信测量反馈信息,所述结果反馈信息所在的时间单元不早于第二时间单元后的第二处理时间的情况下,所述结果反馈信息指示的通信测量反馈信息是有效的;和/或,在所述结果反馈信息用于指示感知结果反馈信息和通信测量反馈信息,所述结果反馈信息所在的时间单元不早于第二时间单元后的第三处理时间的情况下,则所述结果反馈信息指示的通信测量反馈信息和感知结果反馈信息均是有效的,其中,所述第三处理时间为根据所述第一处理时间和所述第二处理时间确定的。
在一些实施例中,所述感知信号为承载于数据信道中的信号。
在一些实施例中,所述一个或多个感知信号对应的混合自动重传请求HARQ反馈信息所在的时间单元不晚于所述一个或多个感知信号对应的感知结果反馈信息所在的时间单元。
在一些实施例中,所述一个或多个感知信号对应的感知结果反馈信息和所述HARQ反馈信息在相同的时间单元传输。
在一些实施例中,所述HARQ反馈信息和所述感知结果反馈信息的编码方式为独立编码的方式或共同编码的方式。
在一些实施例中,所述通信设备还包括:在所述一个或多个感知信号对应的HARQ反馈信息为肯定确认ACK的情况下,所述第一设备发送所述一个或多个感知信号对应的感知结果反馈信息;或在所述一个或多个感知信号对应的HARQ反馈信息为否定确认NACK的情况下,所述第一设备不发送所述一个或多个感知信号对应的感知结果反馈信息,或者,所述第一设备发送所述感知结果反馈信息,其中,所述感知结果反馈信息对应的比特位为预设值。
在一些实施例中,在在所述HARQ反馈信息和所述感知结果反馈信息的编码方式为独立编码的方式的情况下,所述通信设备600还用于:在所述HARQ反馈信息为NACK的情况下,不发送所述感知结果反馈信息。
在一些实施例中,在共同编码的情况下,所述通信设备600还用于:在所述HARQ反馈信息为NACK的情况下,发送所述感知结果反馈信息,所述感知结果反馈信息对应的比特位为预设值。
在一些实施例中,所述一个或多个感知信号的感知结果反馈信息占用的时域资源和/或频域资源通 过所述一个或多个感知信号对应的控制信息确定。
在一些实施例中,如果所述一个或多个感知信号对应的感知结果反馈信息所在的时间单元不早于第二时间单元后的第四处理时间,则所述一个或多个感知信号对应的感知结果反馈信息是有效的;和/或如果所述一个或多个感知信号对应的HARQ反馈信息所在的时间单元不早于第二时间单元后的第五处理时间,则所述一个或多个感知信号对应的HARQ反馈信息是有效的;和/或如果所述一个或多个感知信号对应的HARQ反馈信息和感知结果反馈信息所在的时间单元不早于第二时间单元后的第六处理时间,则所述一个或多个感知信号对应的HARQ反馈信息和感知结果反馈信息均是有效的,其中,所述第六处理时间为根据所述第四处理时间和所述第五处理时间确定的。
在一些实施例中,所述第四处理时间大于或等于所述第五处理时间。
在一些实施例中,所述第二时间单元是根据所述一个或多个感知信号所在的时间单元确定的。
在一些实施例中,所述第二时间单元为所述一个或多个所述感知信号所在的最后一个或第一个时间单元。
在一些实施例中,所述第二时间单元是根据所述一个或多个感知信号对应的控制信息所在的时间单元确定的。
在一些实施例中,所述第二时间单元为所述控制信息所在的最后一个或第一个时间单元。
在一些实施例中,所述数据信道包括下行物理共享信道PDSCH、上行物理共享信道PUSCH、侧行物理共享信道PSSCH中的一项或多项,所述数据信道承载的信号包括所述数据信道承载的数据信号或解调参考符号DMRS信号;或所述参考信号包括同步信号块SSB、信道状态信息参考信号CSI-RS、PT-RS、定位参考信号PRS、探测参考信号SRS中的一项或多项。
图7为本申请实施例提供的一种通信设备700的示意性结构图。所述通信设备700为第二设备,所述通信设备700包括:第一发送单元710。
第一发送单元710用于发送一个或多个感知信号,所述感知信号为参考信号和/或数据信道中承载的信号。
在一些实施例中,所述一个或多个感知信号是否用于感知和/或是否用于通信是根据第一信息确定的。
在一些实施例中,所述第一信息包含于所述一个或多个感知信号对应的配置信息中。
在一些实施例中,在所述一个或多个感知信号用于感知的情况下,所述配置信息包括第一信元,所述第一信元用于承载所述第一信息;或在所述一个或多个感知信号用于通信的情况下,所述配置信息包括第二信元,所述第二信元用于承载所述第一信息;或在所述一个或多个感知信号用于通信和感知的情况下,所述配置信息包括第三信元,所述第三信元用于承载所述第一信息。
在一些实施例中,通信设备700还可以包括第二发送单元720。第二发送单元720用于发送所述配置信息。
在一些实施例中,在所述一个或多个感知信号用于感知的情况下,所述配置信息中包含所述第一参数,或不包含第二参数,所述第一参数用于指示所述第一信息的部分或全部信息;和/或,在所述一个或多个感知信号用于通信的情况下,所述配置信息中包含所述第二参数,或不包括所述第一参数,所述第二参数用于指示所述第一信息的部分或全部信息。
在一些实施例中,所述第一信息承载于第三参数,在所述一个或多个感知信号用于感知的情况下,所述配置信息中的所述第三参数的取值包括第一值,或,所述第三参数的取值不包括第二值;和/或,在所述一个或多个感知信号用于通信的情况下,所述配置信息中的所述第三参数的取值包括第二值,或,所述第三参数的取值不包括第一值。
在一些实施例中,所述第一信息包含于所述一个或多个感知信号对应的控制信息中。
在一些实施例中,所述第一信息承载于所述控制信息的第一指示域。
在一些实施例中,所述数据信道包括下行物理共享信道PDSCH、上行物理共享信道PUSCH、侧行物理共享信道PSSCH中的一项或多项,所述数据信道承载的信号包括所述数据信道承载的数据信号或解调参考符号DMRS信号;或所述参考信号包括同步信号块SSB、信道状态信息参考信号CSI-RS、PT-RS、定位参考信号PRS、探测参考信号SRS中的一项或多项。
图8为本申请实施例提供的一种通信设备800的示意性结构图。所述通信设备800可以为第三设备。通信设备800可以包括第四接收单元810。
第四接收单元810用于接收一个或多个感知信号对应的结果反馈信息,所述感知信号为参考信号和/或数据信道中承载的信号。
在一些实施例中,所述感知信号为所述参考信号,所述一个或多个感知信号对应的结果反馈信息为周期性、半持续性或非周期的。
在一些实施例中,在所述一个或多个感知信号对应的结果反馈信息为周期性或半持续性的情况下,在所述结果反馈信息用于指示通信测量反馈信息的情况下,所述结果反馈信息基于第一感知信号得到,所述第一感知信号为不晚于第一时间单元前的第一参考时间发送或接收的感知信号;和/或在所述结果反馈信息用于指示感知结果反馈信息的情况下,所述结果反馈信息基于第二感知信号得到,所述第二感知信号为不晚于第一时间单元前的第二参考时间发送或接收的感知信号;和/或在所述结果反馈信息用于指示感知结果反馈信息和通信测量反馈信息的情况下,所述结果反馈信息基于第三感知信号得到,所述第三感知信号为不晚于第一时间单元前的第三参考时间发送或接收的感知信号,所述第三参考时间为根据所述第一参考时间和所述第二参考时间得到的。
在一些实施例中,所述第一时间单元根据所述结果反馈信息占用的时间单元确定。
在一些实施例中,在所述一个或多个感知信号对应的结果反馈信息为非周期性的情况下,在所述结果反馈信息用于指示感知结果反馈信息,所述结果反馈信息所在的时间单元不早于第二时间单元后的第一处理时间的情况下,所述结果反馈信息指示的感知结果反馈信息是有效的;和/或,在所述结果反馈信息用于指示通信测量反馈信息,所述结果反馈信息所在的时间单元不早于第二时间单元后的第二处理时间的情况下,所述结果反馈信息指示的通信测量反馈信息是有效的;和/或,在所述结果反馈信息用于指示感知结果反馈信息和通信测量反馈信息的情况下,如果所述结果反馈信息所在的时间单元不早于第二时间单元后的第三处理时间,则所述结果反馈信息指示的通信测量反馈信息和感知结果反馈信息均是有效的,其中第三处理时间为根据所述第一处理时间和所述第二处理时间确定的。
在一些实施例中,所述感知信号为承载于数据信道中的信号,所述结果反馈信息包括一个或多个感知信号对应的混合自动重传请求HARQ反馈信息和/或所述一个或多个感知信号对应的感知结果反馈信息。
在一些实施例中,所述一个或多个感知信号对应的HARQ反馈信息所在的时间单元不晚于所述一个或多个感知信号对应的感知结果反馈信息所在的时间单元。
在一些实施例中,所述一个或多个感知信号对应的感知结果反馈信息和所述HARQ反馈信息在相同的时间单元传输。
在一些实施例中,所述HARQ反馈信息和所述感知结果反馈信息的编码方式为独立编码的方式或共同编码的方式。
在一些实施例中,所述通信设备800还用于:在所述HARQ反馈信息为肯定确认ACK的情况下,接收所述感知结果反馈信息;或在所述HARQ反馈信息为否定确认NACK的情况下,所述第三设备不接收所述感知结果反馈信息,或者,所述第三设备接收所述感知结果反馈信息,其中,所述感知结果反馈信息对应的比特位为预设值。
在一些实施例中,所述通信设备800还包括第五接收单元820。所述第五接收单元820可以用于接收感知结果反馈信息。
在一些实施例中,在所述HARQ反馈信息和所述感知结果反馈信息的编码方式独立编码的方式的情况下,所述通信设备800还用于:在所述HARQ反馈信息为NACK的情况下,不接收所述感知结果反馈信息。
在一些实施例中,在所述HARQ反馈信息和所述感知结果反馈信息的编码方式为共同编码的方式的情况下,所述通信设备800还用于:在所述HARQ反馈信息为NACK的情况下,接收所述感知结果反馈信息,所述感知结果反馈信息对应的比特位为预设值。
在一些实施例中,所述一个或多个感知信号的感知结果反馈信息占用的时域资源和/或频域资源通过所述一个或多个感知信号对应的控制信息确定。
在一些实施例中,如果所述一个或多个感知信号对应的感知结果反馈信息所在的时间单元不早于第二时间单元后的第四处理时间,则所述一个或多个感知信号对应的感知结果反馈信息是有效的;和/或如果所述一个或多个感知信号对应的HARQ反馈信息所在的时间单元不早于第二时间单元后的第五处理时间,则所述一个或多个感知信号对应的HARQ反馈信息是有效的;和/或如果所述一个或多个感知信号对应的HARQ反馈信息和感知结果反馈信息所在的时间单元不早于第二时间单元后的第六处理时间,则所述一个或多个感知信号对应的HARQ反馈信息和感知结果反馈信息均是有效的,其中第六处理时间为根据所述第四处理时间和所述第五处理时间确定的。
在一些实施例中,所述第四处理时间大于或等于所述第五处理时间。
在一些实施例中,所述第二时间单元是根据所述一个或多个感知信号所在的时间单元确定的。
在一些实施例中,所述第二时间单元为所述一个或多个所述感知信号所在的最后一个或第一个时间单元。
在一些实施例中,所述第二时间单元是根据所述一个或多个感知信号对应的控制信息所在的时间 单元确定的。
在一些实施例中,所述第二时间单元为所述控制信息所在的最后一个或第一个时间单元。
在一些实施例中,所述数据信道包括下行物理共享信道PDSCH、上行物理共享信道PUSCH、侧行物理共享信道PSSCH中的一项或多项,所述数据信道承载的信号包括所述数据信道承载的数据信号或解调参考符号DMRS信号;或所述参考信号包括同步信号块SSB、信道状态信息参考信号CSI-RS、PT-RS、定位参考信号PRS、探测参考信号SRS中的一项或多项。
图9是本申请实施例的通信装置的示意性结构图。图9中的虚线表示该单元或模块为可选的。该装置900可用于实现上述方法实施例中描述的方法。装置900可以是芯片、终端设备、接入网设备或核心网设备。装置900可以是第一设备、第二设备或第三设备。
装置900可以包括一个或多个处理器910。该处理器910可支持装置900实现前文方法实施例所描述的方法。该处理器910可以是通用处理器或者专用处理器。例如,该处理器可以为中央处理单元(central processing unit,CPU)。或者,该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
装置900还可以包括一个或多个存储器920。存储器920上存储有程序,该程序可以被处理器910执行,使得处理器910执行前文方法实施例所描述的方法。存储器920可以独立于处理器910也可以集成在处理器910中。
装置900还可以包括收发器930。处理器910可以通过收发器930与其他设备或芯片进行通信。例如,处理器910可以通过收发器930与其他设备或芯片进行数据收发。
在一些实施例中,图6中的第一接收单元610可以为图9中的收发器930,该收发器930可以用于接收一个或多个感知信号。在一些实施例中,图7中的第一发送单元710可以为图9中的收发器930,该收发器930可以用于发送一个或多个感知信号。在一些实施例中,图8中的第四接收单元810可以为图9中的收发器930,该收发器930可以用于接收一个或多个感知信号对应的结果反馈信息。
本申请实施例还提供一种计算机可读存储介质,用于存储程序。该计算机可读存储介质可应用于本申请实施例提供的通信设备中,并且该程序使得计算机执行本申请各个实施例中的由通信设备执行的方法。
本申请实施例还提供一种计算机程序产品。该计算机程序产品包括程序。该计算机程序产品可应用于本申请实施例提供的通信设备中,并且该程序使得计算机执行本申请各个实施例中的由通信设备执行的方法。
本申请实施例还提供一种计算机程序。该计算机程序可应用于本申请实施例提供的通信设备中,并且该计算机程序使得计算机执行本申请各个实施例中的由通信设备执行的方法。
应理解,本申请中术语“系统”和“网络”可以被可互换使用。另外,本申请使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
在本申请的实施例中,提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
在本申请实施例中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,“预定义”或“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
本申请实施例中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺 序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够读取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital video disc,DVD))或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (77)

  1. 一种通信方法,其特征在于,所述方法包括:
    第一设备接收一个或多个感知信号,所述感知信号为参考信号和/或数据信道中承载的信号。
  2. 根据权利要求1所述的方法,其特征在于,所述一个或多个感知信号是否用于感知和/或是否用于通信是根据第一信息确定的。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收一个或多个感知信号对应的配置信息;
    其中,所述配置信息包括所述第一信息。
  4. 根据权利要求3所述的方法,其特征在于,在所述一个或多个感知信号用于感知的情况下,所述配置信息包括第一信元,所述第一信元用于承载所述第一信息;或
    在所述一个或多个感知信号用于通信的情况下,所述配置信息包括第二信元,所述第二信元用于承载所述第一信息;或
    在所述一个或多个感知信号用于通信和感知的情况下,所述配置信息包括第三信元,所述第三信元用于承载所述第一信息。
  5. 根据权利要求3所述的方法,其特征在于,
    在所述一个或多个感知信号用于感知的情况下,所述配置信息中包含第一参数,或不包含第二参数,所述第一参数用于指示所述第一信息的部分或全部信息;和/或,
    在所述一个或多个感知信号用于通信的情况下,所述配置信息中包含所述第二参数,或不包括所述第一参数,所述第二参数用于指示所述第一信息的部分或全部信息。
  6. 根据权利要求3所述的方法,其特征在于,所述配置信息包含第三参数,所述第三参数用于指示第一信息,
    在所述一个或多个感知信号用于感知的情况下,所述第三参数的取值包括第一值,或,所述第三参数的取值不包括第二值;和/或,
    在所述一个或多个感知信号用于通信的情况下,所述第三参数包括第二值,或,所述第三参数的取值不包括第一值。
  7. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收述一个或多个感知信号对应的控制信息;
    其中,所述控制信息包括所述第一信息。
  8. 根据权利要求7所述的方法,其特征在于,所述第一信息承载于所述控制信息的第一指示域中。
  9. 根据权利要求1-8中任一项所述的方法,其特征在于,所述感知信号为所述参考信号,所述一个或多个感知信号对应的结果反馈信息为周期性、半持续性或非周期的。
  10. 根据权利要求9所述的方法,其特征在于,
    在所述一个或多个感知信号对应的结果反馈信息为周期性或半持续性的情况下,
    在所述结果反馈信息用于指示通信测量反馈信息的情况下,所述结果反馈信息基于第一感知信号得到,所述第一感知信号为不晚于第一时间单元前的第一参考时间发送的感知信号;和/或
    在所述结果反馈信息用于指示感知结果反馈信息的情况下,所述结果反馈信息基于第二感知信号得到,所述第二感知信号为不晚于第一时间单元前的第二参考时间发送或接收的感知信号;和/或
    在所述结果反馈信息用于指示感知结果反馈信息和通信测量反馈信息的情况下,所述结果反馈信息基于第三感知信号得到,所述第三感知信号为不晚于第一时间单元前的第三参考时间发送或接收的感知信号,所述第三参考时间为根据所述第一参考时间和所述第二参考时间得到的。
  11. 根据权利要求10所述的方法,其特征在于,所述第一时间单元根据所述结果反馈信息占用的时间单元确定。
  12. 根据权利要求9所述的方法,其特征在于,在所述一个或多个感知信号对应的结果反馈信息为非周期性的情况下,
    在所述结果反馈信息用于指示感知结果反馈信息,所述结果反馈信息所在的时间单元不早于第二时间单元后的第一处理时间的情况下,所述结果反馈信息指示的感知结果反馈信息是有效的;和/或,
    在所述结果反馈信息用于指示通信测量反馈信息,所述结果反馈信息所在的时间单元不早于第二时间单元后的第二处理时间的情况下,所述结果反馈信息指示的通信测量反馈信息是有效的;和/或,
    在所述结果反馈信息用于指示感知结果反馈信息和通信测量反馈信息,所述结果反馈信息所在的时间单元不早于第二时间单元后的第三处理时间的情况下,则所述结果反馈信息指示的通信测量反馈信息和感知结果反馈信息均是有效的,其中,所述第三处理时间为根据所述第一处理时间和所述第二处 理时间确定的。
  13. 根据权利要求1-8中任一项所述的方法,其特征在于,所述感知信号为承载于数据信道中的信号。
  14. 根据权利要求13所述的方法,其特征在于,所述一个或多个感知信号对应的混合自动重传请求HARQ反馈信息所在的时间单元不晚于所述一个或多个感知信号对应的感知结果反馈信息所在的时间单元。
  15. 根据权利要求13所述的方法,其特征在于,所述一个或多个感知信号对应的感知结果反馈信息和所述HARQ反馈信息在相同的时间单元传输。
  16. 根据权利要求15所述的方法,其特征在于,所述HARQ反馈信息和所述感知结果反馈信息的编码方式为独立编码的方式或共同编码的方式。
  17. 根据权利要求13-16中任一项所述的方法,其特征在于,所述方法还包括:
    在所述一个或多个感知信号对应的HARQ反馈信息为肯定确认ACK的情况下,所述第一设备发送所述一个或多个感知信号对应的感知结果反馈信息;或
    在所述一个或多个感知信号对应的HARQ反馈信息为否定确认NACK的情况下,所述第一设备不发送所述一个或多个感知信号对应的感知结果反馈信息,或者,所述第一设备发送所述感知结果反馈信息,其中,所述感知结果反馈信息对应的比特位为预设值。
  18. 根据权利要求16所述的方法,其特征在于,在在所述HARQ反馈信息和所述感知结果反馈信息的编码方式为独立编码的方式的情况下,所述方法还包括:
    在所述HARQ反馈信息为NACK的情况下,所述第一设备不发送所述感知结果反馈信息。
  19. 根据权利要求16所述的方法,其特征在于,在所述HARQ反馈信息和所述感知结果反馈信息的编码方式为共同编码的方式的情况下,所述方法还包括:
    在所述HARQ反馈信息为NACK的情况下,所述第一设备发送所述感知结果反馈信息,所述感知结果反馈信息对应的比特位为预设值。
  20. 根据权利要求13-19中任一项所述的方法,其特征在于,所述一个或多个感知信号的感知结果反馈信息占用的时域资源和/或频域资源通过所述一个或多个感知信号对应的控制信息确定。
  21. 根据权利要求13-20中任一项所述的方法,其特征在于,
    如果所述一个或多个感知信号对应的感知结果反馈信息所在的时间单元不早于第二时间单元后的第四处理时间,则所述一个或多个感知信号对应的感知结果反馈信息是有效的;和/或
    如果所述一个或多个感知信号对应的HARQ反馈信息所在的时间单元不早于第二时间单元后的第五处理时间,则所述一个或多个感知信号对应的HARQ反馈信息是有效的;和/或
    如果所述一个或多个感知信号对应的HARQ反馈信息和感知结果反馈信息所在的时间单元不早于第二时间单元后的第六处理时间,则所述一个或多个感知信号对应的HARQ反馈信息和感知结果反馈信息均是有效的,其中,所述第六处理时间为根据所述第四处理时间和所述第五处理时间确定的。
  22. 根据权利要求21所述的方法,其特征在于,所述第四处理时间大于或等于所述第五处理时间。
  23. 根据权利要求12或21所述的方法,其特征在于,所述第二时间单元是根据所述一个或多个感知信号所在的时间单元确定的。
  24. 根据权利要求23所述的方法,其特征在于,所述第二时间单元为所述一个或多个所述感知信号所在的最后一个或第一个时间单元。
  25. 根据权利要求12或21所述的方法,其特征在于,所述第二时间单元是根据所述一个或多个感知信号对应的控制信息所在的时间单元确定的。
  26. 根据权利要求25所述的方法,其特征在于,所述第二时间单元为所述控制信息所在的最后一个或第一个时间单元。
  27. 根据权利要求1-26中任一项所述的方法,其特征在于,
    所述数据信道包括下行物理共享信道PDSCH、上行物理共享信道PUSCH、侧行物理共享信道PSSCH中的一项或多项,所述数据信道承载的信号包括所述数据信道承载的数据信号或解调参考符号DMRS信号;或
    所述参考信号包括同步信号块SSB、信道状态信息参考信号CSI-RS、相位跟踪参考信号PT-RS、定位参考信号PRS、探测参考信号SRS中的一项或多项。
  28. 一种通信方法,其特征在于,所述方法包括:
    第二设备发送一个或多个感知信号,所述感知信号为参考信号和/或数据信道中承载的信号。
  29. 根据权利要求28所述的方法,其特征在于,所述一个或多个感知信号是否用于感知和/或是否用于通信是根据第一信息确定的。
  30. 根据权利要求29所述的方法,其特征在于,所述第一信息包含于所述一个或多个感知信号对应的配置信息中。
  31. 根据权利要求30所述的方法,其特征在于,
    在所述一个或多个感知信号用于感知的情况下,所述配置信息包括第一信元,所述第一信元用于承载所述第一信息;或
    在所述一个或多个感知信号用于通信的情况下,所述配置信息包括第二信元,所述第二信元用于承载所述第一信息;或
    在所述一个或多个感知信号用于通信和感知的情况下,所述配置信息包括第三信元,所述第三信元用于承载所述第一信息。
  32. 根据权利要求30所述的方法,其特征在于,
    在所述一个或多个感知信号用于感知的情况下,所述配置信息中包含所述第一参数,或不包含第二参数,所述第一参数用于指示所述第一信息的部分或全部信息;和/或,
    在所述一个或多个感知信号用于通信的情况下,所述配置信息中包含所述第二参数,或不包括所述第一参数,所述第二参数用于指示所述第一信息的部分或全部信息。
  33. 根据权利要求30所述的方法,其特征在于,所述配置信息包含第三参数,所述第三参数用于指示第一信息,
    在所述一个或多个感知信号用于感知的情况下,所述第三参数的取值包括第一值,或,所述第三参数的取值不包括第二值;和/或,
    在所述一个或多个感知信号用于通信的情况下,所述第三参数的取值包括第二值,或,所述第三参数的取值不包括第一值。
  34. 根据权利要求29所述的方法,其特征在于,所述第一信息包含于所述一个或多个感知信号对应的控制信息中。
  35. 根据权利要求34所述的方法,其特征在于,所述第一信息承载于所述控制信息的第一指示域。
  36. 根据权利要求28-35中任一项所述的方法,其特征在于,
    所述数据信道包括下行物理共享信道PDSCH、上行物理共享信道PUSCH、侧行物理共享信道PSSCH中的一项或多项,所述数据信道承载的信号包括所述数据信道承载的数据信号或解调参考符号DMRS信号;或
    所述参考信号包括同步信号块SSB、信道状态信息参考信号CSI-RS、相位跟踪参考信号PT-RS、定位参考信号PRS、探测参考信号SRS中的一项或多项。
  37. 一种通信方法,其特征在于,所述方法包括:
    第三设备接收一个或多个感知信号对应的结果反馈信息,所述感知信号为参考信号和/或数据信道中承载的信号。
  38. 根据权利要求37所述的方法,其特征在于,所述感知信号为所述参考信号,所述一个或多个感知信号对应的结果反馈信息为周期性、半持续性或非周期的。
  39. 根据权利要求38所述的方法,其特征在于,
    在所述一个或多个感知信号对应的结果反馈信息为周期性或半持续性的情况下,
    在所述结果反馈信息用于指示通信测量反馈信息的情况下,所述结果反馈信息基于第一感知信号得到,所述第一感知信号为不晚于第一时间单元前的第一参考时间发送或接收的感知信号;和/或
    在所述结果反馈信息用于指示感知结果反馈信息的情况下,所述结果反馈信息基于第二感知信号得到,所述第二感知信号为不晚于第一时间单元前的第二参考时间发送或接收的感知信号;和/或
    在所述结果反馈信息用于指示感知结果反馈信息和通信测量反馈信息的情况下,所述结果反馈信息基于第三感知信号得到,所述第三感知信号为不晚于第一时间单元前的第三参考时间发送或接收的感知信号,所述第三参考时间为根据所述第一参考时间和所述第二参考时间得到的。
  40. 根据权利要求39所述的方法,其特征在于,所述第一时间单元根据所述结果反馈信息占用的时间单元确定。
  41. 根据权利要求38所述的方法,其特征在于,在所述一个或多个感知信号对应的结果反馈信息为非周期性的情况下,
    在所述结果反馈信息用于指示感知结果反馈信息,所述结果反馈信息所在的时间单元不早于第二时间单元后的第一处理时间的情况下,所述结果反馈信息指示的感知结果反馈信息是有效的;和/或,
    在所述结果反馈信息用于指示通信测量反馈信息,所述结果反馈信息所在的时间单元不早于第二时间单元后的第二处理时间的情况下,所述结果反馈信息指示的通信测量反馈信息是有效的;和/或,
    在所述结果反馈信息用于指示感知结果反馈信息和通信测量反馈信息的情况下,如果所述结果反 馈信息所在的时间单元不早于第二时间单元后的第三处理时间,则所述结果反馈信息指示的通信测量反馈信息和感知结果反馈信息均是有效的,其中第三处理时间为根据所述第一处理时间和所述第二处理时间确定的。
  42. 根据权利要求37所述的方法,其特征在于,所述感知信号为承载于数据信道中的信号,所述结果反馈信息包括一个或多个感知信号对应的混合自动重传请求HARQ反馈信息和/或所述一个或多个感知信号对应的感知结果反馈信息。
  43. 根据权利要求42所述的方法,其特征在于,所述一个或多个感知信号对应的HARQ反馈信息所在的时间单元不晚于所述一个或多个感知信号对应的感知结果反馈信息所在的时间单元。
  44. 根据权利要求42所述的方法,其特征在于,所述一个或多个感知信号对应的感知结果反馈信息和所述HARQ反馈信息在相同的时间单元传输。
  45. 根据权利要求44所述的方法,其特征在于,所述HARQ反馈信息和所述感知结果反馈信息的编码方式为独立编码的方式或共同编码的方式。
  46. 根据权利要求42-45中任一项所述的方法,其特征在于,所述方法还包括:
    在所述HARQ反馈信息为肯定确认ACK的情况下,所述第三设备接收所述感知结果反馈信息;或
    在所述HARQ反馈信息为否定确认NACK的情况下,所述第三设备不接收所述感知结果反馈信息,或者,所述第三设备接收所述感知结果反馈信息,其中,所述感知结果反馈信息对应的比特位为预设值。
  47. 根据权利要求45所述的方法,其特征在于,在所述HARQ反馈信息和所述感知结果反馈信息的编码方式独立编码的方式的情况下,所述方法还包括:
    在所述HARQ反馈信息为NACK的情况下,所述第三设备不接收所述感知结果反馈信息。
  48. 根据权利要求45所述的方法,其特征在于,在所述HARQ反馈信息和所述感知结果反馈信息的编码方式为共同编码的方式的情况下,所述方法还包括:
    在所述HARQ反馈信息为NACK的情况下,所述第三设备接收所述感知结果反馈信息,所述感知结果反馈信息对应的比特位为预设值。
  49. 根据权利要求42-48中任一项所述的方法,其特征在于,所述一个或多个感知信号的感知结果反馈信息占用的时域资源和/或频域资源通过所述一个或多个感知信号对应的控制信息确定。
  50. 根据权利要求42-49中任一项所述的方法,其特征在于,如果所述一个或多个感知信号对应的感知结果反馈信息所在的时间单元不早于第二时间单元后的第四处理时间,则所述一个或多个感知信号对应的感知结果反馈信息是有效的;和/或
    如果所述一个或多个感知信号对应的HARQ反馈信息所在的时间单元不早于第二时间单元后的第五处理时间,则所述一个或多个感知信号对应的HARQ反馈信息是有效的;和/或
    如果所述一个或多个感知信号对应的HARQ反馈信息和感知结果反馈信息所在的时间单元不早于第二时间单元后的第六处理时间,则所述一个或多个感知信号对应的HARQ反馈信息和感知结果反馈信息均是有效的,其中第六处理时间为根据所述第四处理时间和所述第五处理时间确定的。
  51. 根据权利要求50所述的方法,其特征在于,所述第四处理时间大于或等于所述第五处理时间。
  52. 根据权利要求41或50所述的方法,其特征在于,所述第二时间单元是根据所述一个或多个感知信号所在的时间单元确定的。
  53. 根据权利要求52所述的方法,其特征在于,所述第二时间单元为所述一个或多个所述感知信号所在的最后一个或第一个时间单元。
  54. 根据权利要求41或50所述的方法,其特征在于,所述第二时间单元是根据所述一个或多个感知信号对应的控制信息所在的时间单元确定的。
  55. 根据权利要求54所述的方法,其特征在于,所述第二时间单元为所述控制信息所在的最后一个或第一个时间单元。
  56. 根据权利要求37-55中任一项所述的方法,其特征在于,
    所述数据信道包括下行物理共享信道PDSCH、上行物理共享信道PUSCH、侧行物理共享信道PSSCH中的一项或多项,所述数据信道承载的信号包括所述数据信道承载的数据信号或解调参考符号DMRS信号;或
    所述参考信号包括同步信号块SSB、信道状态信息参考信号CSI-RS、相位跟踪参考信号PT-RS、定位参考信号PRS、探测参考信号SRS中的一项或多项。
  57. 一种通信设备,其特征在于,所述通信设备为第一设备,所述通信设备包括:
    第一接收单元,用于接收一个或多个感知信号,所述感知信号为参考信号和/或数据信道中承载的信号。
  58. 一种通信设备,其特征在于,所述通信设备为第二设备,所述通信设备包括:
    第一发送单元,用于发送一个或多个感知信号,所述感知信号为参考信号和/或数据信道中承载的信号。
  59. 一种通信设备,其特征在于,所述通信设备为第三设备,所述通信设备包括:
    第四接收单元,用于接收一个或多个感知信号对应的结果反馈信息,所述感知信号为参考信号和/或数据信道中承载的信号。
  60. 一种通信设备,其特征在于,包括收发器、存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,以使所述通信设备执行如权利要求1-27中任一项所述的方法。
  61. 一种通信设备,其特征在于,包括收发器、存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,以使所述通信设备执行如权利要求28-36中任一项所述的方法。
  62. 一种通信设备,其特征在于,包括收发器、存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,以使所述通信设备执行如权利要求37-56中任一项所述的方法。
  63. 一种装置,其特征在于,包括处理器,用于从存储器中调用程序,以使所述装置执行如权利要求1-27中任一项所述的方法。
  64. 一种装置,其特征在于,包括处理器,用于从存储器中调用程序,以使所述装置执行如权利要求28-36中任一项所述的方法。
  65. 一种装置,其特征在于,包括处理器,用于从存储器中调用程序,以使所述装置执行如权利要求37-56中任一项所述的方法。
  66. 一种芯片,其特征在于,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行如权利要求1-27中任一项所述的方法。
  67. 一种芯片,其特征在于,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行如权利要求28-36中任一项所述的方法。
  68. 一种芯片,其特征在于,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行如权利要求37-56中任一项所述的方法。
  69. 一种计算机可读存储介质,其特征在于,其上存储有程序,所述程序使得计算机执行如权利要求1-27中任一项所述的方法。
  70. 一种计算机可读存储介质,其特征在于,其上存储有程序,所述程序使得计算机执行如权利要求28-36中任一项所述的方法。
  71. 一种计算机可读存储介质,其特征在于,其上存储有程序,所述程序使得计算机执行如权利要求37-56中任一项所述的方法。
  72. 一种计算机程序产品,其特征在于,包括程序,所述程序使得计算机执行如权利要求1-27中任一项所述的方法。
  73. 一种计算机程序产品,其特征在于,包括程序,所述程序使得计算机执行如权利要求28-36中任一项所述的方法。
  74. 一种计算机程序产品,其特征在于,包括程序,所述程序使得计算机执行如权利要求37-56中任一项所述的方法。
  75. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1-27中任一项所述的方法。
  76. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求28-36中任一项所述的方法。
  77. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求37-56中任一项所述的方法。
PCT/CN2022/110981 2022-08-08 2022-08-08 通信方法以及通信设备 WO2024031294A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/110981 WO2024031294A1 (zh) 2022-08-08 2022-08-08 通信方法以及通信设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/110981 WO2024031294A1 (zh) 2022-08-08 2022-08-08 通信方法以及通信设备

Publications (1)

Publication Number Publication Date
WO2024031294A1 true WO2024031294A1 (zh) 2024-02-15

Family

ID=89850179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110981 WO2024031294A1 (zh) 2022-08-08 2022-08-08 通信方法以及通信设备

Country Status (1)

Country Link
WO (1) WO2024031294A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111436127A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 一种参考信号发送方法及装置
US20200266932A1 (en) * 2019-02-14 2020-08-20 Qualcomm Incorporated Acknowledgment feedback techniques in wireless communications
CN112748425A (zh) * 2019-10-31 2021-05-04 华为技术有限公司 感知方法及装置
CN113784443A (zh) * 2021-07-29 2021-12-10 中国信息通信研究院 一种通信感知信号处理方法和设备
CN114745783A (zh) * 2021-01-07 2022-07-12 大唐移动通信设备有限公司 一种信令传输方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111436127A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 一种参考信号发送方法及装置
US20200266932A1 (en) * 2019-02-14 2020-08-20 Qualcomm Incorporated Acknowledgment feedback techniques in wireless communications
CN112748425A (zh) * 2019-10-31 2021-05-04 华为技术有限公司 感知方法及装置
CN114745783A (zh) * 2021-01-07 2022-07-12 大唐移动通信设备有限公司 一种信令传输方法及装置
CN113784443A (zh) * 2021-07-29 2021-12-10 中国信息通信研究院 一种通信感知信号处理方法和设备

Similar Documents

Publication Publication Date Title
EP4109937B1 (en) Wireless time-sensitive networking
US11903026B2 (en) Positioning method by user device in wireless communication system
US10536197B2 (en) Device and method for managing spectrum resources, and wireless communication device and method
EP4013171B1 (en) Method for user equipment in wireless communication system
US20220317229A1 (en) Method by user device in wireless communication system
JP2022528159A (ja) 無線通信システムにおいてサイドリンク通信及びフィードバックに関連するueの動作方法
WO2017221202A1 (en) Beam change
WO2022012549A1 (zh) 定位信号发送方法及装置
CN112039644B (zh) 一种非周期定位导频传送方法和装置
US20200229055A1 (en) Base station and user equipment for mobile communication system
US20220304031A1 (en) Method for transmitting and receiving sidelink signal in wireless communication system
WO2021077305A1 (zh) 测量方法、装置及系统
WO2022253150A1 (zh) 数据传输方法及装置
WO2024031294A1 (zh) 通信方法以及通信设备
WO2022001973A1 (en) Apparatus and method of wireless communication
WO2024007309A1 (zh) 一种无线通信方法以及通信设备
WO2024012328A1 (zh) 一种信号发送方法及装置
WO2024098552A1 (en) Joint positioning using downlink and sidelink measurements
US20230284242A1 (en) Method and apparatus for performing positioning based on congestion control in nr v2x
WO2024060201A1 (en) Methods, system, and apparatus for terrestrial and non-terrestrial positioning
WO2022206688A1 (zh) 一种定位方法及装置
WO2023184536A1 (zh) 通信方法、终端设备以及网络设备
WO2023065242A1 (en) Transmission of measurement data associated with location information
US20230284174A1 (en) Method and device for sl prs transmission for sl positioning
US20230283434A1 (en) Method and device for sl prs transmission based on measurement gap

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954274

Country of ref document: EP

Kind code of ref document: A1