WO2024029977A1 - 압력센서 및 압력센서 제조방법 - Google Patents

압력센서 및 압력센서 제조방법 Download PDF

Info

Publication number
WO2024029977A1
WO2024029977A1 PCT/KR2023/011456 KR2023011456W WO2024029977A1 WO 2024029977 A1 WO2024029977 A1 WO 2024029977A1 KR 2023011456 W KR2023011456 W KR 2023011456W WO 2024029977 A1 WO2024029977 A1 WO 2024029977A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
pressure sensor
pattern
pressure
patterns
Prior art date
Application number
PCT/KR2023/011456
Other languages
English (en)
French (fr)
Inventor
박성훈
김보현
김동영
이의석
Original Assignee
숭실대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 숭실대학교 산학협력단 filed Critical 숭실대학교 산학협력단
Publication of WO2024029977A1 publication Critical patent/WO2024029977A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2287Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force

Definitions

  • the present invention relates to a pressure sensor and a method of manufacturing a pressure sensor, and more specifically, to a pressure sensor and a method of manufacturing a pressure sensor with a wide measurement range.
  • Existing pressure sensors not only have different materials depending on the range of force being measured, but their structures are also manufactured differently. Accordingly, existing pressure sensors can only measure pressure within a certain range, but it is difficult to measure pressure outside the certain range.
  • pressure sensors that are sensitive to small forces have limitations in sensing relatively large forces, and pressure sensors that accurately measure large forces have the disadvantage of not being able to detect minute pressure changes.
  • Patent Document 1 Korea Registered Utility Model Publication No. 20-0127105
  • the present invention was created to solve the above problems, and the purpose of the present invention is to provide a pressure sensor that can measure forces of different magnitudes with a single pressure sensor and a method of manufacturing the pressure sensor.
  • a pressure sensor for achieving the above object includes a conductive composite formed with a plurality of patterns having different heights protruding from the surface; and conductive electrodes provided on the upper and lower surfaces of the conductive composite, and a change in first resistance measured according to a change in the gap between the conductive electrode on the upper surface of the conductive composite and the conductive electrode on the lower surface of the conductive composite due to pressure; A change in second resistance measured as the upper conductive electrode contacts at least one of the plurality of patterns and the surface of the conductive composite due to the pressure is measured.
  • the plurality of patterns may have different horizontal cross-sectional areas on the same line.
  • the plurality of patterns may be provided in at least one of a truncated cone, a pyramid, a hemisphere, a cylinder, and a regular hexagon.
  • the plurality of patterns may be prepared to maintain a constant distance from the closest pattern based on the center point of the contact surface with the surface.
  • a pressure sensor manufacturing method for achieving the above object includes the steps of manufacturing a pattern mold including a plurality of patterns with different heights; Placing a paste containing a conductive filler and a main resin on the pattern mold and then performing a heat-pressing process to form a conductive composite in which the plurality of patterns protrude from the surface; And manufacturing a pressure sensor by adhering conductive electrodes to the upper and lower surfaces of the conductive composite, wherein the pressure sensor is formed between the conductive electrode on the upper surface of the conductive composite and the conductive electrode on the lower surface of the conductive composite due to pressure.
  • a change in first resistance measured according to a gap change and a change in second resistance measured as the top-side conductive electrode contacts at least one of the plurality of patterns and the surface of the conductive composite due to the pressure are measured.
  • the main resin may be an elastomer polymer containing polydimethylsiloxane (PDMS), which has elasticity, thermosetting properties, and thermoplasticity.
  • PDMS polydimethylsiloxane
  • the particles of the conductive filler may be at least one particle selected from carbon black, carbon nanotubes, graphene, metal nanowires, and metal particles.
  • the particles of the conductive filler may be one-dimensional carbon nanotubes.
  • the conductive filler may have an aspect ratio of 300 to 2,400, and the particle diameter of the conductive filler may be 5 to 30 nm.
  • Figure 2 is a diagram for explaining the conductive composite of Figure 1;
  • Figure 3 is a diagram for explaining a pressure sensor manufacturing method for manufacturing the pressure sensor of Figure 1;
  • Figures 4 to 6 are diagrams for explaining tools used in the step of manufacturing the pattern mold of Figure 3;
  • FIGS. 7 to 9 are diagrams showing the conductive filler of the conductive composite of the present invention.
  • Figure 11 is a graph showing the real-time change rate of normalized resistance in a conventional pressure sensor
  • 14 to 17 are diagrams for explaining the process of contacting the conductive electrode of the present invention with the conductive composite as pressure increases;
  • 18 and 19 are diagrams showing the change rate of the electrode according to the change in pressure in the pressure sensor of the present invention.
  • Figures 20 and 21 are diagrams showing the change rate of the electrode according to the pressure change in a pressure sensor with only a single-sized pattern, and,
  • Figure 22 is a graph showing the normalized contact area in the pressure sensor of the present invention and the pressure sensor having only a single size pattern.
  • the components according to the present invention are components defined by functional division rather than physical division, and can be defined by the functions each performs.
  • Each component may be implemented as hardware or program code and processing units that perform each function, and the functions of two or more components may be included and implemented in one component. Therefore, the names given to the components in the following embodiments are not intended to physically distinguish each component, but are given to suggest the representative function performed by each component, and the names of the components refer to the present invention. It should be noted that the technical idea is not limited.
  • FIG. 1 is a diagram illustrating the pressure sensor 1 of the present invention
  • FIG. 2 is a diagram illustrating the conductive composite 10 of FIG. 1 .
  • the pressure sensor 1 measures different sizes of force with a single structure without the need to have a plurality of pressure sensors with two different structures to measure small and large force changes. It is prepared to do so.
  • the pressure sensor 1 may be provided including a conductive composite 10 and a conductive electrode 20.
  • the conductive composite 10 is a composite of a conductive filler and a main resin and may be prepared in a film form.
  • the conductive filler may be selected from at least one of carbon black, carbon nanotubes, graphene, and metal particles, and the main resin may be prepared from polydimethylsiloxane (PDMS).
  • PDMS polydimethylsiloxane
  • This conductive composite 10 can be manufactured using a pattern mold (M) containing a plurality of patterns with different heights, and the pattern mold (M) is made of graphite to form a plurality of patterns 100. It can be prepared as a mold made of material.
  • the conductive composite 10 is manufactured through a pattern mold M on which a plurality of patterns 100 are formed, and includes a plurality of patterns 100 that protrude from the surface to have different heights. do.
  • the plurality of patterns 100 may include a first pattern 100-1 and a second pattern 100-2, and this is only an example for convenience of explanation and is not limited thereto.
  • the first pattern 100-1 and the second pattern 100-2 may also have different horizontal cross-sectional areas on the same line.
  • the height and cross-sectional area of the first pattern 100-1 may be different from those of the second pattern 100-1. It may be provided higher or larger than the height and cross-sectional area of the pattern 100-2.
  • the top diameter of the first pattern 100-1 may be 50 to 400 ⁇ m
  • the bottom diameter, which is the contact surface with the surface of the conductive composite 10 may be 100 to 800 ⁇ m
  • the height may be 50 to 400 ⁇ m.
  • the second pattern 100-2 may have a top diameter of 10 to 200 ⁇ m, a bottom diameter of 50 to 800 ⁇ m, and a height of 10 to 200 ⁇ m.
  • first pattern 100-1 and the second pattern 100-2 may be provided in at least one shape among a truncated cone, a pyramid, a hemisphere, a cylinder, and a regular hexagon.
  • the shape of the plurality of patterns 100 is preferably provided in the shape of a truncated cone so that the pattern can be maintained even under repeated pressure, but is not necessarily limited to this.
  • first pattern 100-1 and the second pattern 100-2 may be prepared to maintain a constant distance from the nearest pattern based on the center point of the lower surface, which is the contact surface with the surface of the conductive composite 10. .
  • the distance between the center points of the lower surfaces of the patterns, as the distance between the most adjacent patterns may be within 50 to 600 ⁇ m.
  • the conductive electrode 20 is provided on the upper and lower surfaces of the conductive composite 10 and can be adhered to the conductive composite 10, and serves as an electrode.
  • This conductive electrode 20 may be made of copper tape and adhered to the slide glass (G). At this time, the copper tape can be replaced with another material, but it must have a width sufficient to press the entire conductive composite 10.
  • the slide glass (G) can also be replaced with another material.
  • the first pattern (100-1) and the second pattern (100-2) of the conductive composite (10) are changed without applying pressure to the pressure sensor (1). It must be light enough not to be pressurized, and must have a flat surface sufficient to adhere conductive electrodes 20 such as copper tape.
  • the pressure sensor 1 when pressure is applied to the pressure sensor 1 including the conductive composite 10 and the conductive electrode 20, the pressure sensor 1 according to an embodiment of the present invention changes the first resistance and the second resistance. Change can be measured.
  • the first resistance may be a resistance that changes according to a change in the gap between the conductive electrode 20 on the upper side of the conductive composite 10 and the conductive electrode 20 on the lower side of the conductive composite 10 due to pressure, for example, a piezoresistance. It can be.
  • the second resistance may be a resistance that changes as the upper conductive electrode 20 contacts at least one of the plurality of patterns 100 and the surface of the conductive composite 10 due to pressure, for example, it may be a contact resistance.
  • This contact resistance is the degree to which the conductive electrode 20 is in contact with the conductive composite 10, that is, the number and conductivity of the first pattern 100-1 and the second pattern 100-2 with which the conductive electrode 20 is in contact. It may change depending on the contact area with which the electrode 20 is in contact.
  • the upper conductive electrode 20 presses the first pattern 100-1 by pressure, so that the first pattern 100-1 is pressed and the side of the first pattern 100-1 becomes a conductive electrode.
  • the contact resistance begins to gradually decrease.
  • the top-side conductive electrode 20 presses the first pattern 100-1 and comes into contact with the second pattern 100-2. It first contacts the second pattern 100-2 and contacts the second pattern 100-2. Contact resistance changes rapidly due to contact with (100-2).
  • the upper conductive electrode 20 presses both the first pattern 100-1 and the second pattern 100-2, and the side of the second pattern 100-2 is exposed to the conductive electrode 20. As it comes into contact with , the contact resistance begins to gradually decrease.
  • step 5 the upper conductive electrode 20 contacts the surface of the conductive composite 10 while pressing both the first pattern 100-1 and the second pattern 100-2, thereby rapidly increasing the contact area. This causes the contact resistance to also change rapidly.
  • the upper conductive electrode 20 presses all the surfaces of the first pattern 100-1, the second pattern 100-2, and the conductive composite 10, so that the contact resistance can be maintained. .
  • the pressure sensor 1 can measure the change in contact resistance through the process of steps 1 to 6 described above.
  • the pressure sensor 1 can simultaneously measure changes in different resistances, such as piezoresistance and contact resistance, and can have a wide measurement range.
  • Figure 3 is a diagram for explaining the pressure sensor manufacturing method for manufacturing the pressure sensor 1 of Figure 1, and Figures 4 to 6 show tools used in the step of manufacturing the pattern mold (M) of Figure 3.
  • 7 to 9 are drawings for explanation showing the conductive filler of the conductive composite 10 of the present invention.
  • the pressure sensor manufacturing method for manufacturing the pressure sensor 1 includes the steps of manufacturing a pattern mold (M) (S110), forming the conductive composite 10 (S130), and conducting It includes a step (S150) of manufacturing the pressure sensor 1 by adhering the electrodes 20.
  • a pattern mold M including a plurality of patterns 100 having different heights may be manufactured.
  • the plurality of patterns 100 may include a first pattern 100-1 and a second pattern 100-2, and this is only an example for convenience of explanation and is not limited thereto.
  • the pattern mold M may be made of graphite to form the first pattern 100-1 and the second pattern 100-2.
  • graphite When graphite is used as a mold, it has the advantage of being highly resistant to heat and chemicals, being easy to machine, and not generating many burs because it is brittle.
  • the number of first patterns 100-1 and second patterns 100-2 formed in the pattern mold M may be within 100 to 200, respectively.
  • FIGS. 4 to 6 are diagrams of tools used when the first pattern 100-1 and the second pattern 100-2 of the present invention are provided in the shape of a truncated cone, and are not limited thereto.
  • the microtool produced through this can be machined into the preliminary shape of a truncated truncated cone by rotating the spindle. Afterwards, the rotation is stopped and one side of the tool is processed to produce a micro tool with a D-shaped cross section as shown in FIG. 5. Finally, the micro tool can be manufactured into a truncated cone shape as shown in FIG. 6.
  • the material of these micro tools may be tungsten carbide, and when using the wire discharge grinding method, the applied voltage and capacitor may be set to 100V and 1,000pF, respectively.
  • the paste (P) containing the conductive filler and the main resin is placed on the pattern mold (M), and then a heat-pressing process is performed to form the first pattern (100).
  • a conductive composite 10 in which the -1) and second patterns 100-2 protrude from the surface may be formed.
  • the conductive filler included in the paste (P) may have an aspect ratio of 300 to 2,400, and the particle diameter of the conductive filler may be 5 to 500 nm.
  • the paste (P) for forming the conductive composite 10 is selected from at least one of carbon black, carbon nanotubes, graphene, and metal particles, or a conductive filler made of one-dimensional carbon nanotubes and polydimethylsiloxane. It may be a composite containing a mixture of main resins including (PDMS, PolyDiMethyl Siloxane).
  • the length of the carbon nanotubes may be 1 ⁇ m to 1mm, and the thickness of the carbon nanotubes may be 1 ⁇ m to 20 ⁇ m.
  • These carbon nanotubes may be resistors with a certain resistance.
  • the conductive filler may be provided in an amount of 0.5 to 10 parts by weight (wt%) for the first pattern 100-1 and the second pattern 100-2.
  • the main resin is a polymer containing polydimethylsiloxane and may be an elastomer polymer having elasticity, thermosetting, and thermoplasticity.
  • the paste (P) is made by adding a conductive filler to polydimethylsiloxane containing the prepolymer of Part A and the curing agent of Part B at a weight ratio of 10:1, mixing it first with a paste mixer, and then 3-roll-milling.
  • Equipment can be used to disperse the conductive filler within the polydimethylsiloxane.
  • carbon nanotubes cohere with each other due to the strong Van der Waals force inside the material to form multiple cohesive regions. Therefore, when carbon nanotubes are selected as the conductive filler, the conductive filler is uniformly distributed. It is desirable to use 3-roll-milling equipment that applies strong shear force to disperse.
  • the method of dispersing the conductive filler is not necessarily limited to this, and it may be dispersed by ultrasonic dispersion (sonication) or shear force dispersion method.
  • Figures 7 and 8 are images (magnification It shows that the filler is well dispersed.
  • the paste (P) which has successfully dispersed the conductive filler through the above process, can be placed on the pattern mold (M) and cured in a heat press equipment that performs a heat-compression process that applies high temperature and pressure. At this time, the heat and pressure applied to the paste (P) may be 150°C and 15MPa, respectively.
  • the film-shaped conductive composite 10 produced by curing the paste P can be separated from the pattern mold M.
  • the electrical conductivity of the conductive composite 10 produced through the step of forming the conductive composite 10 may be 10 -4 S/m to 10 3 S/m.
  • the pressure sensor 1 can be manufactured by adhering the conductive electrode 20 to the upper and lower surfaces of the conductive composite 10. .
  • the conductive electrode 20 may be made of copper tape and may be attached to the slide glass (G).
  • the conductive composite 10 is placed on the slide glass (G) to which the conductive electrode 20 is adhered to form a lower surface of the conductive composite 10.
  • the conductive electrode 20 can be adhered to.
  • the slide glass (G) to which the conductive electrode 20 is attached can be placed on the conductive composite 10 to adhere the conductive electrode 20 to the upper surface of the conductive composite 10.
  • the pressure sensor 1 can be finally manufactured, and the detection range of the manufactured pressure sensor 1 may be 1 Pa to 500 kPa.
  • the pressure sensor 1 according to an embodiment of the present invention manufactured through this pressure sensor manufacturing method has the upper conductive electrode 20 and the conductive composite 10 of the conductive composite 10 depending on the pressure applied to the conductive electrode. ), a change in the first resistance measured according to a change in the gap between the lower surface conductive electrodes 20, and the upper surface conductive electrode 20 depending on the pressure at least one of the surfaces of the plurality of patterns 100 and the conductive composite 10. A change in the second resistance measured as it comes into contact with one can be measured.
  • the first resistance may be a piezoresistor
  • the second resistance may be a contact resistance, through which the pressure sensor 1 manufactured according to the pressure sensor manufacturing method of the present invention can simultaneously measure changes in different resistances. there is.
  • Figure 10 is a graph showing the electrical conductivity of the conductive composite 10 of the present invention. Specifically, Figure 10 shows the results of measuring the electrical conductivity of a conductive composite 10 containing carbon nanotubes dispersed as a conductive filler and containing the conductive filler in amounts of 0.5, 1, 2, 5, and 10 parts by weight. As shown in Figure 10, the electrical conductivity of the conductive composite 10 formed through the pressure sensor manufacturing method of the present invention may be 10 -4 S/m to 10 3 S/m.
  • the prepolymer of Part A of polydimethylsiloxane and the curing agent of Part B were added at a weight ratio of 10:1, a conductive filler was added, mixed initially with a paste mixer, and dispersed using a 3-roll-milling method.
  • the dispersed paste was mixed with 150% Heat and pressure of 15 MPa were applied to form a conductive composite in the form of a flat film without a pattern.
  • a pressure sensor was manufactured by attaching a slide glass with copper tape to the top and bottom of the completed conductive composite.
  • the copper tapes on the top and bottom serve as electrodes, and the change in resistance between the electricity can be measured.
  • the prepolymer of Part A of polydimethylsiloxane and the curing agent of Part B were added at a weight ratio of 10:1, a conductive filler was added, mixed initially with a paste mixer, and dispersed using a 3-roll-milling method.
  • the dispersed paste was placed in a graphite mold with a truncated cone pattern and pressed for 150 degrees Celsius. Heat and pressure of 15 MPa were applied to form the conductive composite according to the shape of the mold. After curing was completed, the completed conductive composite was removed from the mold and a slide glass with copper tape attached to the top and bottom of the conductive composite was attached to manufacture a pressure sensor. The copper tapes on the top and bottom serve as electrodes, and the change in resistance between the electricity can be measured.
  • Example 1 a conductive composite was used that had a square shape with both horizontal and vertical lengths of 1.5 cm and a thickness of 1 mm. In order to measure the change in resistance due to pressure, pressure was applied from top to bottom. To measure, pressure was applied with a load cell.
  • Figure 11 is a graph showing the real-time change rate of normalized resistance in the pressure sensor without a pattern manufactured in Example 1 for each of three types of conductive composites having 2 parts by weight, 5 parts by weight, and 10 parts by weight of conductive filler.
  • the real-time change rate of normalized resistance according to pressure (0 ⁇ 190kPA) was measured. As a result, it was confirmed that the initial resistance changed by 29%, 72%, and 85%, respectively.
  • Example 2 a conductive composite was used that was shaped like a square with both horizontal and vertical lengths of 1.5 cm and a thickness of 1 mm. In order to measure the change in resistance due to pressure, pressure was applied from top to bottom. Pressure was applied with a load cell to measure.
  • Figures 12 and 13 are graphs comparing the real-time change rate of normalization resistance in the pressure sensor of the present invention, which is Example 2, and the conventional pressure sensor, which is Example 1.
  • the conventional pressure sensor shown in Figures 12 and 13 is ⁇ This is a pressure sensor made of a conductive composite containing 10 parts by weight of conductive filler, which had the highest resistance change rate in Experimental Example 1>.
  • FIG. 12 is an enlarged graph of 0 to 60 kPA, which is part of the entire range of pressure applied to the pressure sensor
  • FIG. 13 is a graph showing 0 to 190 kPA, which is the entire range of pressure applied to the pressure sensor. Additionally, the picture included in the graph schematically shows how the conductive electrode is in contact with the truncated cone pattern.
  • the conductive electrode contacts only the high-height truncated cone and the actual measurement begins. Then, in the second step (2), the high-height truncated cone is pressed and the side of the truncated cone It can be seen that the resistance gradually decreases when it comes into contact with this conductive electrode. Afterwards, as in step 3 (3), when the conductive electrode first contacts the truncated cone with a low height, it can be seen that the resistance changes rapidly due to a rapid increase in the contact area.
  • step 4 (4) the resistance gradually begins to decrease as both the truncated cone with high and low conductive electrodes are pressed, and as in step 5 (5), the truncated cone with high and low conductive electrodes is pressed. As they all come into contact with the surface of the conductive composite while being pressed, it can be seen that the resistance changes rapidly due to a rapid increase in the contact area. Afterwards, in step 6 (6), it can be seen that the rate of change in resistance becomes gentle as the conductive electrode presses on all surfaces including the high truncated cone, low truncated cone, and the surface of the conductive composite.
  • Figures 14 to 17 are diagrams to explain the process in which the conductive electrode 20 of the present invention contacts the conductive composite 10 as pressure increases.
  • the conductive electrode 20 is a diagram showing how the pattern of the conductive composite 10 is pressed and ultimately touches the surface of the conductive composite 10 without a pattern.
  • the pattern used in FIGS. 14 to 17 is a truncated cone-shaped pattern, with 5 high-height truncated cones and 4 low-height truncated cones, and the numbers at the bottom left of each figure are the numbers in ⁇ Experimental Example 2> above. It refers to each step described.
  • Figures 18 and 19 are diagrams showing the rate of change of the electrode according to the change in pressure in the pressure sensor 1 of the present invention.
  • the strain rate of the electrode is color coded when the conductive electrode contacts the pattern of the conductive composite. It is a drawing marked with .
  • the pattern is prepared in the shape of a truncated cone, and this is the result of an experiment performed with eight high truncated cones and eight low truncated cones each.
  • Figure 18 shows the strain rate of the conductive electrode changed by the applied pressure after applying pressure to the conductive electrode just before the conductive electrode touches the low truncated cone pattern
  • Figure 19 shows the conductive electrode contacting all patterns and showing a conductive composite without a pattern. This is the strain rate at which the conductive electrode changes due to the pressure applied to the conductive electrode just before it touches the surface.
  • Figures 20 and 21 show the change rate of the electrode according to the pressure change in the pressure sensor having only a single-size pattern
  • Figure 22 shows normalization in the pressure sensor of the present invention and the pressure sensor having only a single-size pattern. This is a graph showing the contact area.
  • Figure 20 shows the strain rate of the electrode in the pressure sensor provided to include only the first pattern 100-1, which is a pattern with a high height included in the present invention, unlike the pressure sensor according to the present invention having patterns of various sizes.
  • This is a drawing shown using Inventor simulation.
  • the pattern shown in FIG. 20 is a case where only 16 first patterns 100-1 are provided.
  • Figure 21 is a diagram showing the strain rate of the electrode in a pressure sensor provided to include only the second pattern 100-2, which is a pattern with a low height included in the present invention, using Inventor simulation.
  • the pattern shown in FIG. 21 is a case where only 16 second patterns 100-2 are provided.
  • pressure is applied to the conductive electrode until the conductive electrode touches all the patterns and just before it touches the surface of the conductive composite without a pattern, and the strain rate at which the conductive electrode changes due to the applied pressure is shown in color.
  • Figure 22 shows a pressure sensor (case 1) in the present invention having a first pattern (100-1) and a second pattern (100-2) as shown in Figures 18 and 19, and a first pattern (100) as shown in Figure 20.
  • the strain rate of the pressure sensor (case 2) with only -1) and the pressure sensor (case 3) with only the second pattern (100-2) as shown in FIG. 21 is converted into a ratio of the actual size, and the change in normalized contact area is graphed for each step. It is expressed as
  • stage 1 the stage just before the conductive electrode contacts the surface of the conductive composite is defined and indicated as stage 4.
  • the initial contact area was defined as A 0
  • the instantaneous contact area that occurred as the level increased was defined as A.
  • the pressure sensor 1 according to the present invention has superior flexibility than existing metal pressure sensors, and can respond to external forces such as tension, torsion, and rubbing in addition to pressure.
  • the pressure sensor 1 has a pattern of various sizes with electrical conductivity, that is, a multi-scale pattern, so that it can simultaneously measure contact resistance changes and piezoresistance changes according to external pressure, as well as a wide range of pressures. It has the advantage of being able to precisely measure resistance changes over a range.
  • Pressure sensor 10 Conductive composite

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

본 발명은 압력센서에 관한 것으로, 서로 다른 높이를 갖는 복수의 패턴이 표면에 돌출되어 형성된 전도성 복합체 및 상기 전도성 복합체의 상면 및 하면에 구비되는 전도성 전극을 포함하고, 압력으로 인해 상기 전도성 복합체의 상면측 전도성 전극과 상기 전도성 복합체의 하면측 전도성 전극 간의 간극 변화에 따라 측정되는 제1 저항의 변화와 상기 압력으로 인해 상기 상면측 전도성 전극이 상기 복수의 패턴 및 상기 전도성 복합체의 표면 중 적어도 하나와 접촉함에 따라 측정되는 제2 저항의 변화를 측정한다. 이에 의해 단일 구조의 압력센서로 서로 다른 크기의 힘을 측정할 수 있다. [대표도] 도 1

Description

압력센서 및 압력센서 제조방법
본 발명은 압력센서 및 압력센서 제조방법에 관한 것으로, 보다 상세하게는 광범위한 측정 범위를 갖는 압력센서 및 압력센서 제조방법에 관한 것이다.
기존의 압력센서는 측정되는 힘의 범위에 따라 그 소재가 달라지는 것은 물론 구조 또한 다르게 제작된다. 이에 따라 기존의 압력센서는 일정 범위 내에 해당되는 압력만을 측정할 수 있을 뿐, 일정 범위를 벗어나는 압력에 대해서는 측정이 어렵다.
예를 들어 작은 힘에 민감한 압력센서의 경우 상대적으로 큰 힘을 센싱하는데 한계를 가지고, 큰 힘을 적확하게 측정하는 압력센서의 경우에는 반대로 미세한 압력변화를 감지하지 못하는 한계를 갖는다는 단점이 있다.
이에 로봇손과 같이 미세한 힘을 센싱하는 영역과 큰 힘을 센싱하는 영역을 동시에 요구하는 응용 분야에서는 2개의 다른 구조의 압력센서를 설치하여 각각의 힘을 센싱하고 있다.
따라서 서로 다른 크기의 힘을 측정하기 위한 압력센서를 복수개 구비해야 한다는 점에서 경제적이지 못하다는 문제가 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 한국등록실용신안공보 제20-0127105
본 발명은 상기와 같은 문제를 해결하기 위해 안출된 것으로, 본 발명의 목적은 단일의 압력센서로 서로 다른 크기의 힘을 측정할 수 있는 압력센서 및 압력센서 제조방법을 제공하는 것이다.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 압력센서는, 서로 다른 높이를 갖는 복수의 패턴이 표면에 돌출되어 형성된 전도성 복합체; 및 상기 전도성 복합체의 상면 및 하면에 구비되는 전도성 전극을 포함하고, 압력으로 인해 상기 전도성 복합체의 상면측 전도성 전극과 상기 전도성 복합체의 하면측 전도성 전극 간의 간극 변화에 따라 측정되는 제1 저항의 변화와 상기 압력으로 인해 상기 상면측 전도성 전극이 상기 복수의 패턴 및 상기 전도성 복합체의 표면 중 적어도 하나와 접촉함에 따라 측정되는 제2 저항의 변화를 측정한다.
여기서 상기 복수의 패턴은, 동일 선상에서의 수평 단면적이 서로 다를 수 있다.
그리고 상기 복수의 패턴은, 원뿔대, 피라미드, 반구형, 원통형 및 정육각형 중 적어도 하나로 마련될 수 있다.
또한 상기 복수의 패턴은, 상기 표면과의 접촉면에서의 중심점을 기준으로 가장 인접한 패턴과 일정한 간격을 유지하도록 마련될 수 있다.
한편 상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 압력센서 제조방법은, 서로 다른 높이를 갖는 복수의 패턴을 포함하는 패턴 몰드가 제작되는 단계; 전도성 필러 및 주제수지를 포함하는 페이스트를 상기 패턴 몰드 상에 위치시킨 다음, 열-압착 공정을 수행하여 상기 복수의 패턴이 표면에 돌출되어 형성되는 전도성 복합체가 성형되는 단계; 및 상기 전도성 복합체의 상면 및 하면에 전도성 전극을 접착시켜 압력센서를 제조하는 단계를 포함하고, 상기 압력센서는, 압력으로 인해 상기 전도성 복합체의 상면측 전도성 전극과 상기 전도성 복합체의 하면측 전도성 전극 간의 간극 변화에 따라 측정되는 제1 저항의 변화와 상기 압력으로 인해 상기 상면측 전도성 전극이 상기 복수의 패턴 및 상기 전도성 복합체의 표면 중 적어도 하나와 접촉함에 따라 측정되는 제2 저항의 변화를 측정한다.
그리고 상기 주제수지는, 폴리디메틸실록산(PDMS, PolyDiMethyl Siloxane)을 포함하는 고분자로써 탄성력, 열경화성 및 열가소성을 갖는 일레스토머(elastomer) 고분자일 수 있다.
또한 상기 전도성 필러의 입자는, 카본 블랙, 탄소 나노 튜브, 그래핀, 금속 나노 와이어 및 금속 입자 중에서 선택된 적어도 하나 이상의 입자일 수 있다.
그리고 상기 전도성 필러의 입자는, 1차원 형상의 탄소 나노 튜브일 수 있다.
또한 상기 전도성 복합체가 성형되는 단계에서, 상기 전도성 필러는 종횡비(aspect ratio)가 300 내지 2,400이고, 상기 전도성 필러의 입자 직경은 5 내지 30㎚으로 마련될 수 있다.
상술한 본 발명의 일측면에 따르면, 압력센서 및 압력센서 제조방법을 제공함으로써, 단일의 압력센서로 서로 다른 크기의 힘을 측정할 수 있다.
도 1은 본 발명의 압력센서를 설명하기 위한 도면,
도 2는 도 1의 전도성 복합체를 설명하기 위한 도면,
도 3은 도 1의 압력센서를 제조하기 위한 압력센서 제조방법을 설명하기 위한 도면,
도 4 내지 도 6은 도 3의 패턴 몰드가 제작되는 단계에서 사용되는 공구를 설명하기 위한 도면,
도 7 내지 도 9는 본 발명의 전도성 복합체의 전도성 필러를 도시한 도면,
도 10은 본 발명의 전도성 복합체의 전기 전도도를 도시한 그래프,
도 11은 종래의 압력센서에서의 정규화 저항의 실시간 변화율을 도시한 그래프,
도 12 및 도 13은 본 발명의 압력센서와 종래의 압력센서에서의 정규화 저항의 실시간 변화율을 비교한 그래프,
도 14 내지 도 17은 압력의 증가에 따라 본 발명의 전도성 전극이 전도성 복합체와 접촉되는 과정을 설명하기 위한 도면,
도 18 및 도 19는 본 발명의 압력센서에서 압력의 변화에 따른 전극의 변화율을 도시한 도면,
도 20 및 도 21은 단일 크기의 패턴만을 갖는 압력센서에서의 압력 변화에 따른 전극의 변화율을 도시한 도면, 그리고,
도 22는 본 발명의 압력센서와 단일 크기의 패턴만을 갖는 압력센서에서의 정규화 접촉 면적을 도시한 그래프이다.
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예와 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭한다.
본 발명에 따른 구성요소들은 물리적인 구분이 아니라 기능적인 구분에 의해서 정의되는 구성요소들로써 각각이 수행하는 기능들에 의해서 정의될 수 있다. 각각의 구성요소들은 하드웨어 또는 각각의 기능을 수행하는 프로그램 코드 및 프로세싱 유닛으로 구현될 수 있을 것이며, 두 개 이상의 구성요소의 기능이 하나의 구성요소에 포함되어 구현될 수도 있을 것이다. 따라서 이하의 실시예에서 구성요소에 부여되는 명칭은 각각의 구성요소를 물리적으로 구분하기 위한 것이 아니라 각각의 구성요소가 수행되는 대표적인 기능을 암시하기 위해서 부여된 것이며, 구성요소의 명칭에 의해서 본 발명의 기술적 사상이 한정되지 않는 것임에 유의하여야 한다.
이하에서는 도면들을 참조하여 본 발명의 바람직한 실시예들을 보다 상세하게 설명하기로 한다.
도 1은 본 발명의 압력센서(1)를 설명하기 위한 도면, 그리고 도 2는 도 1의 전도성 복합체(10)를 설명하기 위한 도면이다.
본 발명의 실시예에 따른 압력센서(1)는 미세한 힘의 변화와 큰 힘의 변화를 측정하기 위해 2개의 서로 다른 구조의 압력센서를 복수개 구비할 필요 없이 단일 구조만으로도 서로 다른 크기의 힘을 측정하기 위해 마련된다.
이러한 본 발명의 실시예에 따른 압력센서(1)는 전도성 복합체(10) 및 전도성 전극(20)을 포함하여 마련될 수 있다.
전도성 복합체(10)는 전도성 필러와 주제수지가 혼합된 복합체로써 필름 형태로 마련될 수 있다.
여기서 전도성 필러는 카본 블랙, 탄소 나노 튜브, 그래핀, 및 금속 입자 중에서 적어도 하나 이상이 선택될 수 있으며, 주제수지는 폴리디메틸실록산(PDMS, PolyDiMethyl Siloxane)로 마련될 수 있다.
이러한 전도성 복합체(10)는 서로 다른 높이를 갖는 복수의 패턴을 포함하는 패턴 몰드(M)를 이용해 제작될 수 있으며, 패턴 몰드(M)는 복수의 패턴(100)을 형성하기 위하여 그라파이트(Graphite) 재질의 몰드로 마련될 수 있다.
그리고 전도성 복합체(10)는 도 1에 도시된 바와 같이 복수의 패턴(100)이 형성된 패턴 몰드(M)를 통해 제작됨으로써 표면으로부터 서로 다른 높이를 갖도록 돌출되어 형성되는 복수의 패턴(100)을 포함한다. 이러한 복수의 패턴(100)은 제1 패턴(100-1) 및 제2 패턴(100-2)을 포함할 수 있고, 이는 설명의 편의를 위한 예시일 뿐 이에 한정되지 않는다.
제1 패턴(100-1) 및 제2 패턴(100-2)은 동일 선상에서의 수평 단면적 역시 서로 다르게 마련될 수 있으며, 예를 들면 제1 패턴(100-1)의 높이 및 단면적이 제2 패턴(100-2)의 높이 및 단면적보다 높거나 크게 마련될 수 있다.
구체적으로 제1 패턴(100-1)의 윗면 지름은 50 내지 400㎛, 전도성 복합체(10)의 표면과의 접촉면인 아랫면 지름은 100 내지 800㎛, 그리고 높이는 50 내지 400㎛로 마련될 수 있다.
한편 제2 패턴(100-2)의 윗면 지름은 10 내지 200㎛, 아랫면 지름은 50 내지 800㎛, 그리고 높이는 10 내지 200㎛의 높이로 마련될 수 있다.
그리고 제1 패턴(100-1) 및 제2 패턴(100-2)은 원뿔대, 피라미드, 반구형, 원통형 및 정육각형 중 적어도 하나의 형상으로 마련될 수 있다. 이러한 복수의 패턴(100)의 형상은 반복적인 압력에도 패턴을 유지할 수 있도록 원뿔대의 형상으로 마련되는 것이 바람직하나, 꼭 이에 한정되는 것은 아니다.
그리고 제1 패턴(100-1) 및 제2 패턴(100-2)은 전도성 복합체(10)의 표면과의 접촉면인 아랫면의 중심점을 기준으로 가장 인접한 패턴과 서로 일정한 간격을 유지하도록 마련될 수 있다. 예컨대, 가장 인접한 패턴 간의 거리로써 패턴의 아랫면의 중심점 간의 거리는 50 내지 600㎛ 이내일 수 있다.
한편, 전도성 전극(20)은 전도성 복합체(10)의 상면 및 하면에 구비되어 전도성 복합체(10)와 접착될 수 있고, 전극의 역할을 한다.
이러한 전도성 전극(20)은 구리 테이프로 구비되어 슬라이드 글라스(G)에 접착된 상태로 마련될 수 있다. 이때 구리 테이프는 다른 재질로 대체될 수 있으나, 전도성 복합체(10) 전체가 눌릴 정도의 폭을 가지고 있어야 한다.
또한 슬라이드 글라스(G) 역시 다른 재질로 대체될 수 있다. 단, 슬라이드 글라스(G)가 다른 재질로 대체될 때에는 압력센서(1)에 압력을 가하지 않은 상태에서 전도성 복합체(10)의 제1 패턴(100-1) 및 제2 패턴(100-2)이 가압되지 않을 정도로 가벼워야 하며, 구리 테이프와 같은 전도성 전극(20)을 접착시킬 수 있을 정도의 평평한 면을 가지고 있어야 한다.
따라서 전도성 복합체(10) 및 전도성 전극(20)을 포함하는 압력센서(1)에 압력이 가해지면, 본 발명의 일 실시예에 따른 압력센서(1)는 제1 저항의 변화와 제2 저항의 변화를 측정할 수 있다.
여기서 제1 저항은 압력으로 인해 전도성 복합체(10)의 상면측 전도성 전극(20)과 전도성 복합체(10)의 하면측 전도성 전극(20) 간의 간극 변화에 따라 변화하는 저항일 수 있으며, 예컨대 피에조 저항일 수 있다.
한편 제2 저항은 압력으로 인해 상면측 전도성 전극(20)이 복수의 패턴(100) 및 전도성 복합체(10)의 표면 중 적어도 하나와 접촉함에 따라 변화하는 저항일 수 있으며, 예컨대 접촉 저항일 수 있다. 이러한 접촉 저항은 전도성 전극(20)이 전도성 복합체(10)와 접촉하는 정도, 즉 전도성 전극(20)이 접촉하는 제1 패턴(100-1) 및 제2 패턴(100-2)의 개수 및 전도성 전극(20)이 접촉하는 접촉면적에 따라 변화할 수 있다.
이하에서는 압력에 의한 접촉 저항의 변화에 대해 구체적으로 설명하기로 한다. 먼저 압력센서(1)에 압력이 가해지면 1단계로 상면측 전도성 전극(20)은 제1 패턴(100-1)과만 접촉하게 된다. 이러한 1단계에서는 최초로 저항이 측정되기 시작되므로 실질적인 측정의 시작일 수 있다.
2단계로 압력에 의해 상면측 전도성 전극(20)이 제1 패턴(100-1)을 가압하게 되면서, 제1 패턴(100-1)이 눌리고 제1 패턴(100-1)의 옆면이 전도성 전극(20)과 접촉하게 됨으로써 접촉 저항이 서서히 감소하기 시작한다.
3단계로 상면측 전도성 전극(20)이 제1 패턴(100-1)을 가압하면서 제2 패턴(100-2)과 접촉하게 되는데, 제2 패턴(100-2)과 최초로 접촉하며 제2 패턴(100-2)과의 접촉으로 인해 접촉 저항이 급격하게 변하게 된다.
이후 4단계로 상면측 전도성 전극(20)이 제1 패턴(100-1)과 제2 패턴(100-2)을 모두 가압하게 되면서 제2 패턴(100-2)의 옆면이 전도성 전극(20)과 접촉하므로 접촉 저항이 서서히 감소하기 시작한다.
그 다음 5단계로 상면측 전도성 전극(20)이 제1 패턴(100-1)과 제2 패턴(100-2)을 모두 가압한 상태에서 전도성 복합체(10)의 표면과 접촉하여 접촉면이 급격히 증가하게 되고, 이에 의해 접촉 저항 역시 급격하게 변화하게 된다.
이후 마지막 6단계로 상면측 전도성 전극(20)이 제1 패턴(100-1), 제2 패턴(100-2) 및 전도성 복합체(10)의 표면을 모두 가압하게 됨으로써 접촉 저항이 유지될 수 있다.
따라서 압력센서(1)는 상술한 1단계 내지 6단계의 과정을 통해 접촉 저항의 변화를 측정할 수 있다.
이를 통해 본 발명의 일 실시예에 따른 압력센서(1)는 피에조 저항 및 접촉 저항과 같이 서로 다른 저항의 변화를 동시에 측정할 수 있게 되어 광범위한 측정범위를 가질 수 있다.
한편, 도 3은 도 1의 압력센서(1)를 제조하기 위한 압력센서 제조방법을 설명하기 위한 도면, 도 4 내지 도 6은 도 3의 패턴 몰드(M)가 제작되는 단계에서 사용되는 공구를 설명하기 위한 도면, 도 7 내지 도 9는 본 발명의 전도성 복합체(10)의 전도성 필러를 도시한 도면이다.
본 발명의 일 실시예에 따른 압력센서(1)를 제조하기 위한 압력센서 제조 방법은, 패턴 몰드(M)가 제작되는 단계(S110), 전도성 복합체(10)가 성형되는 단계(S130) 및 전도성 전극(20)을 접착시켜 압력센서(1)를 제조하는 단계(S150)를 포함한다.
패턴 몰드가 제작되는 단계(S110)에서는, 서로 다른 높이를 갖는 복수의 패턴(100)을 포함하는 패턴 몰드(M)가 제작될 수 있다. 복수의 패턴(100)은 제1 패턴(100-1) 및 제2 패턴(100-2)을 포함할 수 있고, 이는 설명의 편의를 위한 예시일 뿐 이에 한정되지 않는다.
패턴 몰드(M)는 제1 패턴(100-1) 및 제2 패턴(100-2)을 형성하기 위하여 그라파이트(Graphite) 재질의 몰드로 마련될 수 있다. 그라파이트가 몰드로 사용될 경우 높은 열 및 화학성에 대한 저항이 높고 기계가공이 용이하며, 부서지기 쉬우므로 버(bur)가 많이 발생하지 않는다는 장점이 있다.
이때 패턴 몰드(M)에 형성되는 제1 패턴(100-1) 및 제2 패턴(100-2)의 개수는 각각 100개 내지 200개 이내로 마련될 수 있다.
그리고 패턴 몰드(M)가 제작되는 단계(S110) 이전에 패턴 몰드(M)를 제작하기 위하여 도 4 내지 도 6에서와 같이 사전에 와이어 방전 연삭(Wire electro-discharge grinding) 공법을 이용하여 마이크로 사이즈의 공구를 제작할 수 있다. 도 4 내지 도 6은 본 발명의 제1 패턴(100-1) 및 제2 패턴(100-2)이 원뿔대 형상으로 마련되는 경우에 사용되는 공구에 대한 도면으로, 꼭 이에 한정되는 것은 아니다.
이때 와이어가 전극 사이를 지나갈 때 방전 스파크가 발생하면서 공구를 깎을 수 있다. 이를 통해 제작된 마이크로 공구는 스핀들 회전을 하여 잘린 원뿔대의 예비 형상으로 가공될 수 있다. 이 후 회전을 멈추고 공구의 한 면을 가공하여 도 5에서와 같이 마이크로 공구를 D자형 단면으로 제작할 수 있으며, 최종적으로 마이크로 공구를 도 6과 같이 원뿔대 모양으로 제작할 수 있다.
이러한 마이크로 공구의 재료는 텅스텐 카바이드(Tungsten carbide)로 구비될 수 있고, 와이어 방전 연삭 공법을 사용할 때 인가된 전압과 커패시터는 각각 100V 및 1,000pF로 설정될 수 있다.
한편 전도성 복합체(10)가 성형되는 단계(S130)에서는 전도성 필러 및 주제수지를 포함하는 페이스트(P)를 패턴 몰드(M) 상에 위치시킨 다음, 열-압착 공정을 수행하여 제1 패턴(100-1) 및 제2 패턴(100-2)이 표면에 돌출되어 형성되는 전도성 복합체(10)가 성형될 수 있다.
그리고 페이스트(P)에 포함되는 전도성 필러는 종횡비(aspect ratio)가 300 내지 2,400이고, 전도성 필러의 입자 직경은 5 내지 500㎚으로 마련될 수 있다.
여기서 전도성 복합체(10)를 성형하기 위한 페이스트(P)는 카본 블랙, 탄소 나노 튜브, 그래핀, 및 금속 입자 중에서 적어도 하나 이상으로 선택되거나 1차원 형상의 탄소 나노 튜브로 마련된 전도성 필러와 폴리디메틸실록산(PDMS, PolyDiMethyl Siloxane)을 포함하는 주제수지가 혼합된 복합물일 수 있다.
또한 전도성 필러가 1차원 형상의 탄소 나노 튜브로 마련되는 경우, 탄소 나노 튜브의 길이는 1㎛ 내지 1mm로 마련될 수 있으며, 탄소 나노 튜브의 두께는 1㎛ 내지 20㎛로 마련될 수 있다. 이러한 탄소 나노 튜브는 소정의 저항을 가지는 저항체일 수 있다.
그리고 전도성 필러는 제1 패턴(100-1) 및 제2 패턴(100-2)에 대해서 0.5 내지 10 중량부(wt%)의 함량으로 마련될 수 있다. 또한 주제수지는 폴리디메틸실록산을 포함하는 고분자로써 탄성력, 열경화성 및 열가소성을 갖는 일레스토머(elastomer) 고분자일 수 있다.
그리고 페이스트(P)는 Part A의 예비 중합체와 Part B의 경화제를 중량비 10:1로 포함하는 폴리디메틸실록산에 전도성 필러를 추가하여 페이스트 믹서(paste mixer)로 1차로 혼합한 후 3-roll-milling 장비를 이용하여 폴리디메틸실록산 내에서 전도성 필러가 분산되도록 할 수 있다.
특히 탄소 나노 튜브는 물질 내부에 강한 반데르발스(Van der Waals) 힘으로 각 탄소 나노 튜브끼리는 서로 응집하여 복수 개의 응집 영역을 형성하므로, 전도성 필러로써 탄소 나노 튜브가 선택된 경우, 전도성 필러를 균일하게 분산시키기 위해 강한 전단력을 가하는 3-roll-milling 장비를 이용하는 것이 바람직하다.
물론 전도성 필러를 분산시키는 방법은 꼭 이에 한정되는 것은 아니며, 초음파 분산법(sonication) 또는 전단력 분산법에 의하여 분산시킬 수도 있을 것이다.
도 7 내지 도 8은 2 중량부, 5 중량부 및 10 중량부의 전도성 필러를 갖는 전도성 복합체(10)의 단면을 SEM(Scanning Electron Microscope)으로 촬영한 이미지(배율 X5,000)로, 매트릭스 속에 전도성 필러가 잘 분산됨을 보여준다.
이상의 과정을 통해 성공적으로 전도성 필러를 분산시킨 페이스트(P)를 패턴 몰드(M)에 올려놓고 고온과 압력을 가하는 열-압착 공정을 수행하는 히트프레스 장비에 넣고 경화시킬 수 있다. 이때 페이스트(P)에 가해지는 열 및 압력은 각각 150℃ 및 15MPa일 수 있다.
그리고 페이스트(P)가 경화되어 생성된 필름 형태의 전도성 복합체(10)를 패턴 몰드(M)로부터 분리시킬 수 있다.
이러한 전도성 복합체(10)가 성형되는 단계(S130)를 통해 생성된 전도성 복합체(10)의 전기전도도는 10-4S/m 내지 103S/m일 수 있다.
한편 전도성 전극(20)을 접착시켜 압력센서(1)를 제조하는 단계(S150)에서는 전도성 복합체(10)의 상면 및 하면에 전도성 전극(20)을 접착시켜 압력센서(1)를 제조할 수 있다.
전도성 전극(20)은 구리 테이프로 구비될 수 있으며, 슬라이드 글라스(G)에 부착된 상태로 마련될 수 있다.
그리고 전도성 전극(20)을 접착시켜 압력센서(1)를 제조하는 단계(S150)에서는 전도성 전극(20)이 접착된 슬라이드 글라스(G) 위에 전도성 복합체(10)를 올려 전도성 복합체(10)의 하면에 전도성 전극(20)을 접착시킬 수 있다. 그리고 전도성 전극(20)이 접착된 슬라이드 글라스(G)를 전도성 복합체(10) 위에 올려 전도성 복합체(10)의 상면에 전도성 전극(20)을 접착시킬 수 있다.
이를 통해 최종적으로 압력센서(1)를 제조할 수 있으며, 제조된 압력센서(1)의 감지범위는 1Pa 내지 500kPa일 수 있다.
이러한 압력센서 제조방법을 통해 제조된 본 발명의 일 실시예에 따른 압력센서(1)는, 전도성 전극에 가해지는 압력에 따라 전도성 복합체(10)의 상면측 전도성 전극(20) 및 전도성 복합체(10)의 하면측 전도성 전극(20) 간의 간극 변화에 따라 측정되는 제1 저항의 변화와, 압력에 따라 상면측 전도성 전극(20)이 복수의 패턴(100) 및 전도성 복합체(10)의 표면 중 적어도 하나와 접촉함에 따라 측정되는 제2 저항의 변화를 측정할 수 있다.
여기서 제1 저항은 피에조 저항일 수 있고, 제2 저항은 접촉 저항일 수 있으며, 이를 통해 본 발명의 압력센서 제조방법에 따라 제조된 압력센서(1)는 서로 다른 저항의 변화를 동시에 측정할 수 있다.
도 10은 본 발명의 전도성 복합체(10)의 전기 전도도를 도시한 그래프이다. 구체적으로 도 10은 탄소 나노 튜브를 전도성 필러로 분산시키고, 전도성 필러를 0.5, 1, 2, 5, 10 중량부의 함량으로 포함하는 전도성 복합체(10)의 전기전도도를 각각 측정한 결과이다. 도 10에 도시된 바와 같이 본 발명의 압력센서 제조방법을 통해 성형된 전도성 복합체(10)의 전기전도도는 10-4S/m 내지 103S/m일 수 있다.
이하에서는 본 발명의 실시예에 따른 압력센서(1)의 효과를 설명하기 위한 실험결과에 대해 설명하기로 한다. 그리고 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위해서 제공되는 것일 뿐, 실시예에 의해서 본 발명이 제한되는 것은 아니다.
패턴이 없는 전도성 복합체의 제조
폴리디메틸실록산의 Part A의 예비 중합체와 Part B의 경화제를 10:1의 중량비로 넣고 전도성 필러를 추가해 페이스트 믹서(paste mixer)로 1차적으로 섞어 3-roll-milling 공법으로 분산시켰다.
분산시킨 페이스트를 150
Figure PCTKR2023011456-appb-img-000001
의 열과 15 MPa의 압력을 가해주어 패턴이 없는 평평한 필름 형태의 전도성 복합체가 성형되도록 하였다. 경화가 완료된 후 완성한 전도성 복합체의 상하에 구리 테이프가 붙여진 슬라이드 글라스를 접착시켜 압력센서를 제조하였다. 윗면과 아랫면의 구리 테이프는 전극의 역할을 하며 전기가 전극과 전극 사이에서 저항이 변화됨을 측정할 수 있다.
원뿔대 패턴을 갖는 전도성 복합체의 제조
폴리디메틸실록산의 Part A의 예비 중합체와 Part B의 경화제를 10:1의 중량비로 넣고 전도성 필러를 추가해 페이스트 믹서(paste mixer)로 1차적으로 섞어 3-roll-milling 공법으로 분산시켰다.
분산시킨 페이스트를 원뿔대 패턴을 갖는 그라파이트 몰드에 놓고 150
Figure PCTKR2023011456-appb-img-000002
의 열과 15 MPa의 압력을 가해주어 몰드가 갖는 모양에 맞게 전도성 복합체가 성형되도록 하였다. 경화가 완료된 후 완성한 전도성 복합체를 몰드로부터 떼어 내고 전도성 복합체의 상하에 구리 테이프가 붙여진 슬라이드 글라스를 접착시켜 압력센서를 제조하였다. 윗면과 아랫면의 구리 테이프는 전극의 역할을 하며 전기가 전극과 전극 사이에서 저항이 변화됨을 측정할 수 있다.
실시예 1로 제조된 패턴이 없는 압력센서의 실시간 압력에 따른 정규화 저항 변화 측정
실시예 1을 통해 가로 및 세로의 길이가 모두 1.5cm의 크기를 갖는 정사각형 모양이고, 두께는 1mm로 성형된 전도성 복합체를 사용하였으며, 압력에 의한 저항 변화를 측정하기 위해서 위에서 아래 방향으로 가해주는 압력을 측정하기 위해 로드셀(load cell)로 압력을 가하였다.
도 11은 실시예 1로 제조된 패턴이 없는 압력센서에서의 정규화 저항의 실시간 변화율을 도시한 그래프로써 2 중량부, 5 중량부 및 10 중량부의 전도성 필러를 갖는 3가지 종류의 전도성 복합체 각각에 대해 압력(0~190kPA)에 따른 정규화 저항의 실시간 변화율을 측정하였다. 그 결과 초기 저항에 비해 각각 29%, 72% 85% 변화한 것을 확인하였다.
실시예 2로 제조된 원뿔대 패턴을 갖는 압력센서의 실시간 압력에 따른 정규화 저항 변화 측정
실시예 2를 통해 가로 및 세로의 길이가 모두 1.5cm의 크기를 갖는 정사각형 모양이고, 두께는 1mm로 성형된 전도성 복합체를 사용하였으며, 압력에 의한 저항 변화를 측정하기 위해서 위에서 아래 방향으로 가해주는 압력을 측정하기 위해 로드셀로 압력을 가하였다.
도 12 및 도 13은 실시예 2인 본 발명의 압력센서와 실시예 1인 종래의 압력센서에서의 정규화 저항의 실시간 변화율을 비교한 그래프로써 도 12및 도 13에 도시된 종래의 압력센서는 <실험예 1>에서 가장 높은 저항 변화율을 가졌던 전도성 필러 10 중량부의 전도성 복합체로 마련된 압력센서이다.
여기서 도 12는 압력센서에 가해지는 압력의 전체 범위 중 일부인 0~60kPA 부분을 확대한 그래프이고, 도 13은 압력센서에 가해지는 압력의 전체 범위인 0~190kPA를 나타낸 그래프이다. 또한 그래프에 포함된 그림은 전도성 전극이 원뿔대 패턴과 어떻게 닿고 있는지를 개략적으로 나타낸 것이다.
도 12에 도시된 바와 같이 1단계(①)로 전도성 전극이 높이가 높은 원뿔대와만 접촉되어 측정이 시작되면서 실질적인 측정이 시작된 후 2단계(②)와 같이 높이가 높은 원뿔대가 가압되면서 원뿔대의 옆면이 전도성 전극과 닿게 되어 저항이 서서히 감소함을 알 수 있다. 이후 3단계(③)와 같이 전도성 전극이 높이가 낮은 원뿔대와 최초로 접촉하면서 접촉면의 급격한 증가로 인해 저항이 급격하게 변함을 알 수 있다.
그리고 도 13에 도시된 바와 같이 4단계(④)에서 전도성 전극이 높은 원뿔대와 낮은 원뿔대를 모두 가압하면서 저항이 서서히 감소하기 시작하고, 5단계(⑤)와 같이 전도성 전극이 높은 원뿔대와 낮은 원뿔대를 모두 가압하면서 전도성 복합체의 표면과 접촉하게 되므로 접촉면의 급격한 증가로 저항이 급격하게 변함을 알 수 있다. 이후 6단계(⑥)로 전도성 전극이 높은 원뿔대, 낮은 원뿔대 및 전도성 복합체의 표면을 포함하는 모든 면을 누르기에 저항의 변화율이 완만해짐을 알 수 있다.
한편 도 14 내지 도 17은 압력의 증가에 따라 본 발명의 전도성 전극(20)이 전도성 복합체(10)와 접촉되는 과정을 설명하기 위한 도면으로써, ANSYS 시뮬레이션을 통해 압력이 증가함에 따라 전도성 전극(20)이 전도성 복합체(10)의 패턴을 누르고 최종적으로는 패턴이 없는 전도성 복합체(10)의 표면과 닿는 모습을 보여주는 도면이다.
도 14 내지 도 17에 사용된 패턴은 원뿔대 형상의 패턴으로써, 높이가 높은 원뿔대는 5개, 높이가 낮은 원뿔대는 4개로 마련된 경우이며, 각 도면의 좌측 하단의 숫자는 이상의 <실험예 2>에서 설명한 각 단계를 의미한다.
한편 도 18 및 도 19는 본 발명의 압력센서(1)에서 압력의 변화에 따른 전극의 변화율을 도시한 도면으로써, Inventor 시뮬레이션을 이용하여 전도성 전극이 전도성 복합체의 패턴과 닿을 때 전극의 변형율을 색상으로 표시한 도면이다. 여기서 패턴은 원뿔대 형상으로 마련된 경우이고, 높은 원뿔대 및 낮은 원뿔대 모두 8개씩 갖도록 마련하여 수행된 실험결과이다.
구체적으로 도 18은 전도성 전극이 낮은 원뿔대 패턴과 닿기 직전까지의 압력을 전도성 전극에 가하고, 가해진 압력에 의해 전도성 전극이 변한 변형율이고, 도 19는 전도성 전극이 모든 패턴과 닿으며 패턴이 없는 전도성 복합체의 표면과 닿기 직전까지의 압력을 전도성 전극에 가하고 가해진 압력에 의해 전도성 전극이 변한 변형율이다.
도 20 및 도 21은 단일 크기의 패턴만을 갖는 압력센서에서의 압력 변화에 따른 전극의 변화율을 도시한 도면, 그리고, 도 22는 본 발명의 압력센서와 단일 크기의 패턴만을 갖는 압력센서에서의 정규화 접촉 면적을 도시한 그래프이다.
구체적으로 도 20은 다양한 크기의 패턴을 갖는 본 발명에 따른 압력센서와 달리, 본 발명에 포함된 높은 높이를 갖는 패턴인 제1 패턴(100-1)만을 포함하도록 마련된 압력센서에서의 전극의 변형율을 Inventor 시뮬레이션을 이용하여 나타낸 도면이다. 도 20에 도시된 패턴은 제1 패턴(100-1)만을 16개 구비한 경우이다.
도 21은 본 발명에 포함된 낮은 높이를 갖는 패턴인 제2 패턴(100-2)만을 포함하도록 마련된 압력센서에서의 전극의 변형율을 Inventor 시뮬레이션을 이용하여 나타낸 도면이다. 도 21에 도시된 패턴은 제2 패턴(100-2)만을 16개 구비한 경우이다.
그리고 도 20 및 도 21은 모두 전도성 전극이 모든 패턴과 닿으며 패턴이 없는 전도성 복합체의 표면과 닿기 직전까지의 압력을 전도성 전극에 가하고, 가해진 압력에 의해 전도성 전극이 변한 변형율을 색으로 나타낸 것이다.
한편 도 22는 도 18 및 도 19와 같이 제1 패턴(100-1)과 제2 패턴(100-2)을 갖는 본 발명에서의 압력센서(경우 1), 도 20과 같이 제1 패턴(100-1)만을 갖는 압력센서(경우 2), 그리고 도 21과 같이 제2 패턴(100-2)만을 갖는 압력센서(경우 3)의 변형율을 실제 크기 비율로 환산하여 단계별로 정규화 접촉 면적 변화를 그래프로 나타낸 것이다.
여기서 본 발명의 압력센서(경우 1)을 제외한 나머지 두 가지 경우(경우 2, 경우 3)는 상술한 1단계 내지 6단계의 과정이 없기 때문에 전도성 전극과 전도성 복합체 간에 처음 접촉이 일어나는 단계를 동일하게 1단계로 정의하지만, 전도성 전극이 전도성 복합체의 표면과 닿기 직전의 단계를 4단계로 정의하여 표시하였다.
이때 최초 접촉 면적을 A0로 정의하며, 단계가 높아짐에 따라 발생하는 순간 접촉 면적을 A로 정의하였다.
도 22에 도시된 바와 같이 본 발명에 따른 압력센서(경우 1)에서는 압력에 가해짐에 따라 전도성 전극과 전도성 복합체 간의 접촉 면적이 증가함을 알 수 있다.
이상의 실험을 통해 본 발명에 따른 압력센서(1)는 기존의 금속 계열 압력 센서보다 유연성이 우수하고, 압력 이외에도 장력, 비틀림 및 비빔 등의 외력에도 반응할 수 있다.
특히 본 발명에 따른 압력센서(1)는 전기 전도성을 가지는 다양한 크기의 패턴, 즉 멀티 스케일의 패턴을 가지고 있어 외부 압력에 따른 접촉 저항 변화와 피에조 저항 변화를 동시에 측정할 수 있는 것은 물론, 넓은 압력 범위에서 저항 변화를 정밀하게 측정할 수 있다는 장점이 있다.
이상에서는 본 발명의 다양한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.
[부호의설명]
1 : 압력센서 10 : 전도성 복합체
100-1 : 제1 패턴 100-2 : 제2 패턴
20 : 전도성 전극 G : 슬라이드 글라스
P : 페이스트 M : 패턴 몰드

Claims (9)

  1. 서로 다른 높이를 갖는 복수의 패턴이 표면에 돌출되어 형성된 전도성 복합체; 및
    상기 전도성 복합체의 상면 및 하면에 구비되는 전도성 전극을 포함하고,
    압력으로 인해 상기 전도성 복합체의 상면측 전도성 전극과 상기 전도성 복합체의 하면측 전도성 전극 간의 간극 변화에 따라 측정되는 제1 저항의 변화와 상기 압력으로 인해 상기 상면측 전도성 전극이 상기 복수의 패턴 및 상기 전도성 복합체의 표면 중 적어도 하나와 접촉함에 따라 측정되는 제2 저항의 변화를 측정하는, 압력센서.
  2. 제1항에 있어서,
    상기 복수의 패턴은,
    동일 선상에서의 수평 단면적이 서로 다른 것을 특징으로 하는, 압력센서.
  3. 제1항에 있어서,
    상기 복수의 패턴은,
    원뿔대, 피라미드, 반구형, 원통형 및 정육각형 중 적어도 하나로 마련되는 것을 특징으로 하는, 압력센서.
  4. 제1항에 있어서,
    상기 복수의 패턴은,
    상기 표면과의 접촉면에서의 중심점을 기준으로 가장 인접한 패턴과 일정한 간격을 유지하도록 마련되는 것을 특징으로 하는, 압력센서.
  5. 서로 다른 높이를 갖는 복수의 패턴을 포함하는 패턴 몰드가 제작되는 단계;
    전도성 필러 및 주제수지를 포함하는 페이스트를 상기 패턴 몰드 상에 위치시킨 다음, 열-압착 공정을 수행하여 상기 복수의 패턴이 표면에 돌출되어 형성되는 전도성 복합체가 성형되는 단계; 및
    상기 전도성 복합체의 상면 및 하면에 전도성 전극을 접착시켜 압력센서를 제조하는 단계를 포함하고,
    상기 압력센서는,
    압력으로 인해 상기 전도성 복합체의 상면측 전도성 전극과 상기 전도성 복합체의 하면측 전도성 전극 간의 간극 변화에 따라 측정되는 제1 저항의 변화와 상기 압력으로 인해 상기 상면측 전도성 전극이 상기 복수의 패턴 및 상기 전도성 복합체의 표면 중 적어도 하나와 접촉함에 따라 측정되는 제2 저항의 변화를 측정하는 것을 특징으로 하는, 압력센서 제조방법.
  6. 제5항에 있어서,
    상기 주제수지는,
    폴리디메틸실록산(PDMS, PolyDiMethyl Siloxane)을 포함하는 고분자로써 탄성력, 열경화성 및 열가소성을 갖는 일레스토머(elastomer) 고분자인 것을 특징으로 하는, 압력센서 제조방법.
  7. 제5항에 있어서,
    상기 전도성 필러의 입자는,
    카본 블랙, 탄소 나노 튜브, 그래핀, 금속 나노 와이어 및 금속 입자 중에서 선택된 적어도 하나 이상의 입자인 것을 특징으로 하는, 압력센서 제조방법.
  8. 제5항에 있어서,
    상기 전도성 필러의 입자는,
    1차원 형상의 탄소 나노 튜브인 것을 특징으로 하는, 압력센서 제조방법.
  9. 제6항에 있어서,
    상기 전도성 복합체가 성형되는 단계에서,
    상기 전도성 필러는 종횡비(aspect ratio)가 300 내지 2,400이고,
    상기 전도성 필러의 입자 직경은 5 내지 30㎚으로 마련되는 것을 특징으로 하는, 압력센서 제조방법.
PCT/KR2023/011456 2022-08-04 2023-08-04 압력센서 및 압력센서 제조방법 WO2024029977A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0097561 2022-08-04
KR1020220097561A KR20240019633A (ko) 2022-08-04 2022-08-04 압력센서 및 압력센서 제조방법

Publications (1)

Publication Number Publication Date
WO2024029977A1 true WO2024029977A1 (ko) 2024-02-08

Family

ID=89849655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/011456 WO2024029977A1 (ko) 2022-08-04 2023-08-04 압력센서 및 압력센서 제조방법

Country Status (2)

Country Link
KR (1) KR20240019633A (ko)
WO (1) WO2024029977A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150028125A (ko) * 2013-09-05 2015-03-13 삼성전자주식회사 압저항(piezo-resistive) 전극을 구비한 저항성 압력 센서
CN108775979A (zh) * 2018-05-10 2018-11-09 西安建筑科技大学 一种高灵敏度柔性压力传感器及其制备方法
KR20190110795A (ko) * 2018-03-21 2019-10-01 중앙대학교 산학협력단 압력 센서 및 이의 제조방법
CN114088254A (zh) * 2021-10-22 2022-02-25 厦门大学 灵敏度可调的高线性度柔性压力传感器及其制备方法
CN114216591A (zh) * 2021-12-24 2022-03-22 济南大学 一种柔性压力传感材料、传感器及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0127105Y1 (ko) 1995-04-14 1998-12-15 노관호 압력센서

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150028125A (ko) * 2013-09-05 2015-03-13 삼성전자주식회사 압저항(piezo-resistive) 전극을 구비한 저항성 압력 센서
KR20190110795A (ko) * 2018-03-21 2019-10-01 중앙대학교 산학협력단 압력 센서 및 이의 제조방법
CN108775979A (zh) * 2018-05-10 2018-11-09 西安建筑科技大学 一种高灵敏度柔性压力传感器及其制备方法
CN114088254A (zh) * 2021-10-22 2022-02-25 厦门大学 灵敏度可调的高线性度柔性压力传感器及其制备方法
CN114216591A (zh) * 2021-12-24 2022-03-22 济南大学 一种柔性压力传感材料、传感器及其制备方法

Also Published As

Publication number Publication date
KR20240019633A (ko) 2024-02-14

Similar Documents

Publication Publication Date Title
Yan et al. Flexible strain sensors fabricated using carbon-based nanomaterials: A review
Jeong et al. Flexible resistive pressure sensor with silver nanowire networks embedded in polymer using natural formation of air gap
CN109785995B (zh) 一种用于制备柔性压阻式传感器的多孔导电浆料及其制备方法和应用
DE112016000510B4 (de) Kapazitiver Sensor, Sensorlage und Verfahren zur Herstellung eines kapazitiven Sensors
CN107112069B (zh) 导电性银浆
Zuruzi et al. Towards wearable pressure sensors using multiwall carbon nanotube/polydimethylsiloxane nanocomposite foams
CN100379087C (zh) 各向异性导电薄片及其制造工艺,适配器装置及其制造工艺,和用于电路装置的电气检查设备
WO2024029977A1 (ko) 압력센서 및 압력센서 제조방법
US7971489B2 (en) Carbon nanotube-based load cells
Can-Ortiz et al. Electrical characterization of carbon-based fibers and their application for sensing relaxation-induced piezoresistivity in polymer composites
DE102007020131B4 (de) Taktiler Flächensensor
CN101775205B (zh) 各向异性感压导电橡胶及其制备方法
WO2012108690A2 (ko) 인쇄용 잉크 조성물, 이를 이용한 인쇄 방법
CN112254850B (zh) 柔性压力传感器用导电碳浆及其制备方法和压力传感器
WO2012165839A9 (ko) 미세섬모의 인터락킹을 이용한 가역적 전기커넥터, 이를 이용한 다기능 센서 및 그 제작방법
CN113789082B (zh) 一种适用于凹版印刷法制备的石墨烯rfid电子标签
EP3813104A1 (en) Thermally conductive sheet
CN114076564B (zh) 基于负泊松比结构的应变传感器阵列及其制备方法和应用
EP1837907A2 (de) Leistungshalbleiterbauelement mit Passivierungsschicht und zugehöriges Herstellungsverfahren
WO2017090899A1 (ko) 플로팅 구조의 전극 패턴 형성 방법 및 상기 방법을 이용한 전사 인쇄 방법
WO2022255509A1 (ko) 민감도 제어가 가능한 자기 유변 탄성체 기반 스트레인 게이지와 이를 포함하는 감지장치
WO2020145577A1 (ko) 신호 전송 커넥터용 도전부 보호부재 및 그 제조방법과, 이를 갖는 신호 전송 커넥터 및 그 제조방법
Mosallaei et al. Improvements in the electromechanical properties of stretchable interconnects by locally tuning the stiffness
WO2018128513A1 (ko) 머신러닝을 이용한 센싱 방법과 센싱 시스템
WO2019146983A1 (ko) 캐패시터형 스트레인 센서 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23850477

Country of ref document: EP

Kind code of ref document: A1