WO2024029408A1 - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
WO2024029408A1
WO2024029408A1 PCT/JP2023/027249 JP2023027249W WO2024029408A1 WO 2024029408 A1 WO2024029408 A1 WO 2024029408A1 JP 2023027249 W JP2023027249 W JP 2023027249W WO 2024029408 A1 WO2024029408 A1 WO 2024029408A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging device
film
section
metal compound
compound layer
Prior art date
Application number
PCT/JP2023/027249
Other languages
English (en)
French (fr)
Inventor
到 押山
徹 丸山
勇樹 宮波
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2024029408A1 publication Critical patent/WO2024029408A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures

Definitions

  • the present disclosure relates to an imaging device.
  • An imaging device has been proposed in which an air gap having a refractive index lower than that of the color filter is provided between two adjacent color filters (Patent Document 1).
  • Imaging devices are required to suppress color mixture between pixels.
  • An imaging device includes a plurality of pixels each having a photoelectric conversion section that photoelectrically converts light, a color filter provided for each pixel, a separation section provided between adjacent photoelectric conversion sections, and a plurality of pixels each having a photoelectric conversion section that photoelectrically converts light.
  • the structure includes a structure having a gap provided between matching color filters, and a metal compound layer provided on the photoelectric conversion section between the color filter and the photoelectric conversion section. The structure is provided between adjacent color filters and above the metal compound layer, and is connected to the separation section.
  • FIG. 1 is a block diagram illustrating an example of a schematic configuration of an imaging device according to a first embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating an example of a pixel section of the imaging device according to the first embodiment of the present disclosure.
  • FIG. 3 is a diagram illustrating an example of a cross-sectional configuration of an imaging device according to the first embodiment of the present disclosure.
  • FIG. 4 is a diagram illustrating an example of a planar configuration of an imaging device according to the first embodiment of the present disclosure.
  • FIG. 5 is a diagram illustrating an example of a cross-sectional configuration of an imaging device according to the first embodiment of the present disclosure.
  • FIG. 6A is a diagram illustrating an example of a method for manufacturing an imaging device according to the first embodiment of the present disclosure.
  • FIG. 6B is a diagram illustrating an example of a method for manufacturing an imaging device according to the first embodiment of the present disclosure.
  • FIG. 6C is a diagram illustrating an example of a method for manufacturing an imaging device according to the first embodiment of the present disclosure.
  • FIG. 6D is a diagram illustrating an example of a method for manufacturing an imaging device according to the first embodiment of the present disclosure.
  • FIG. 7 is a diagram illustrating an example of a cross-sectional configuration of an imaging device according to Modification 1 of the present disclosure.
  • FIG. 8A is a diagram illustrating an example of a method for manufacturing an imaging device according to Modification 1 of the present disclosure.
  • FIG. 8B is a diagram illustrating an example of a method for manufacturing an imaging device according to Modification 1 of the present disclosure.
  • FIG. 8A is a diagram illustrating an example of a method for manufacturing an imaging device according to Modification 1 of the present disclosure.
  • FIG. 8B is a diagram illustrating an example of a method for manufacturing an imaging device
  • FIG. 8C is a diagram illustrating an example of a method for manufacturing an imaging device according to Modification 1 of the present disclosure.
  • FIG. 8D is a diagram illustrating an example of a method for manufacturing an imaging device according to Modification 1 of the present disclosure.
  • FIG. 9 is a diagram illustrating an example of a cross-sectional configuration of an imaging device according to Modification 2 of the present disclosure.
  • FIG. 10A is a diagram illustrating an example of a method for manufacturing an imaging device according to Modification 2 of the present disclosure.
  • FIG. 10B is a diagram illustrating an example of a method for manufacturing an imaging device according to Modification 2 of the present disclosure.
  • FIG. 10C is a diagram illustrating an example of a method for manufacturing an imaging device according to Modification 2 of the present disclosure.
  • FIG. 10A is a diagram illustrating an example of a method for manufacturing an imaging device according to Modification 2 of the present disclosure.
  • FIG. 10B is a diagram illustrating an example of a method for manufacturing an imaging device
  • FIG. 10D is a diagram illustrating an example of a method for manufacturing an imaging device according to Modification 2 of the present disclosure.
  • FIG. 11 is a diagram illustrating an example of a cross-sectional configuration of an imaging device according to Modification 3 of the present disclosure.
  • FIG. 12A is a diagram illustrating an example of a method for manufacturing an imaging device according to Modification 3 of the present disclosure.
  • FIG. 12B is a diagram illustrating an example of a method for manufacturing an imaging device according to Modification 3 of the present disclosure.
  • FIG. 12C is a diagram illustrating an example of a method for manufacturing an imaging device according to Modification 3 of the present disclosure.
  • FIG. 12D is a diagram illustrating an example of a method for manufacturing an imaging device according to Modification 3 of the present disclosure.
  • FIG. 12A is a diagram illustrating an example of a method for manufacturing an imaging device according to Modification 3 of the present disclosure.
  • FIG. 12B is a diagram illustrating an example of a method for manufacturing an imaging device
  • FIG. 13 is a diagram illustrating an example of a cross-sectional configuration of an imaging device according to modification example 4 of the present disclosure.
  • FIG. 14A is a diagram illustrating an example of a method for manufacturing an imaging device according to Modification 4 of the present disclosure.
  • FIG. 14B is a diagram illustrating an example of a method for manufacturing an imaging device according to Modification 4 of the present disclosure.
  • FIG. 14C is a diagram illustrating an example of a method for manufacturing an imaging device according to Modification 4 of the present disclosure.
  • FIG. 14D is a diagram illustrating an example of a method for manufacturing an imaging device according to Modification 4 of the present disclosure.
  • FIG. 15 is a diagram illustrating an example of a cross-sectional configuration of an imaging device according to a second embodiment of the present disclosure.
  • FIG. 16 is a diagram illustrating an example of a cross-sectional configuration of an imaging device according to a second embodiment of the present disclosure.
  • FIG. 17 is a diagram illustrating another example of the cross-sectional configuration of the imaging device according to the second embodiment of the present disclosure.
  • FIG. 18A is a diagram illustrating an example of a method for manufacturing an imaging device according to the second embodiment of the present disclosure.
  • FIG. 18B is a diagram illustrating an example of a method for manufacturing an imaging device according to the second embodiment of the present disclosure.
  • FIG. 18C is a diagram illustrating an example of a method for manufacturing an imaging device according to the second embodiment of the present disclosure.
  • FIG. 18D is a diagram illustrating an example of a method for manufacturing an imaging device according to the second embodiment of the present disclosure.
  • FIG. 18A is a diagram illustrating an example of a method for manufacturing an imaging device according to the second embodiment of the present disclosure.
  • FIG. 18B is a diagram illustrating an example of a method for manufacturing an
  • FIG. 19 is a diagram illustrating an example of a cross-sectional configuration of an imaging device according to Modification Example 5 of the present disclosure.
  • FIG. 20A is a diagram illustrating an example of a method for manufacturing an imaging device according to Modification 5 of the present disclosure.
  • FIG. 20B is a diagram illustrating an example of a method for manufacturing an imaging device according to Modification 5 of the present disclosure.
  • FIG. 20C is a diagram illustrating an example of a method for manufacturing an imaging device according to Modification 5 of the present disclosure.
  • FIG. 20D is a diagram illustrating an example of a method for manufacturing an imaging device according to Modification 5 of the present disclosure.
  • FIG. 21 is a diagram illustrating an example of a cross-sectional configuration of an imaging device according to Modification 6 of the present disclosure.
  • FIG. 20A is a diagram illustrating an example of a method for manufacturing an imaging device according to Modification 5 of the present disclosure.
  • FIG. 20B is a diagram illustrating an example of a method for manufacturing
  • FIG. 22 is a block diagram illustrating a configuration example of an electronic device having an imaging device.
  • FIG. 23 is a block diagram showing an example of a schematic configuration of a vehicle control system.
  • FIG. 24 is an explanatory diagram showing an example of the installation positions of the outside-vehicle information detection section and the imaging section.
  • FIG. 25 is a diagram illustrating an example of a schematic configuration of an endoscopic surgery system.
  • FIG. 26 is a block diagram showing an example of the functional configuration of a camera head and a CCU.
  • FIG. 1 is a block diagram illustrating an example of a schematic configuration of an imaging device according to a first embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating an example of a pixel section of the imaging device according to the first embodiment.
  • the imaging device 1 includes a plurality of pixels P each having a photoelectric conversion section, and is configured to photoelectrically convert incident light to generate a signal.
  • the photoelectric conversion unit is, for example, a photodiode, and is configured to be able to photoelectrically convert light.
  • the imaging device 1 has an area (pixel section 100) in which a plurality of pixels P are two-dimensionally arranged in a matrix as an imaging area.
  • the imaging device 1 takes in incident light (image light) from a subject via an optical system (not shown) including an optical lens.
  • the imaging device 1 captures an image of a subject formed by an optical lens.
  • the imaging device 1 photoelectrically converts the received light to generate a pixel signal.
  • the imaging device 1 is, for example, a CMOS (Complementary Metal Oxide Semiconductor) image sensor.
  • the imaging device 1 can be used in electronic devices such as digital still cameras, video cameras, and mobile phones.
  • the incident direction of light from the subject is the Z-axis direction
  • the left-right direction of the paper plane perpendicular to the Z-axis direction is the X-axis direction
  • the vertical direction of the paper plane orthogonal to the Z-axis and the X-axis is the Y-axis direction.
  • the imaging device 1 includes, for example, a vertical drive section 111, a signal processing section 112, a horizontal drive section 113, an output section 114, a control section 115, and an input/output section in the peripheral area of the pixel section 100. It has a terminal 116 and the like.
  • the imaging device 1 is provided with, for example, a plurality of pixel drive lines Lread and a plurality of vertical signal lines VSL.
  • a plurality of pixel drive lines Lread are wired for each pixel row constituted by a plurality of pixels P arranged in the horizontal direction (row direction).
  • a vertical signal line VSL is wired for each pixel column constituted by a plurality of pixels P aligned in the vertical direction (column direction).
  • the pixel drive line Lread is configured to transmit a drive signal for reading signals from the pixel P.
  • the vertical signal line VSL is a signal line capable of transmitting a signal from the pixel P.
  • the vertical signal line VSL is configured to transmit a signal output from the pixel P.
  • the vertical drive unit 111 is composed of a shift register, an address decoder, etc.
  • the vertical drive section 111 is configured to drive each pixel P of the pixel section 100.
  • the vertical drive unit 111 is a pixel drive unit, generates a signal for driving the pixel P, and outputs it to each pixel P of the pixel unit 100 via the pixel drive line Lread.
  • the vertical drive unit 111 generates, for example, a signal for controlling a transfer transistor, a signal for controlling a reset transistor, etc., and supplies them to each pixel P via a pixel drive line Lread.
  • the signal processing unit 112 is configured to perform signal processing on input pixel signals.
  • the signal processing section 112 includes, for example, a load circuit section, an AD (Analog Digital) conversion section, a horizontal selection switch, and the like.
  • AD Analog Digital
  • a signal output from each pixel P selectively scanned by the vertical drive unit 111 is supplied to the signal processing unit 112 through the vertical signal line VSL.
  • the signal processing unit 112 performs signal processing such as AD conversion and CDS (Correlated Double Sampling), for example.
  • the horizontal drive unit 113 is composed of a shift register, an address decoder, and the like.
  • the horizontal drive unit 113 is configured to drive the horizontal selection switch of the signal processing unit 112.
  • the horizontal drive section 113 sequentially drives each horizontal selection switch of the signal processing section 112 while scanning them.
  • the signal of each pixel P transmitted through each of the vertical signal lines VSL is subjected to signal processing by the signal processing section 112, and sequentially output to the horizontal signal line 121 by selective scanning by the horizontal driving section 113.
  • the output unit 114 is configured to perform signal processing on the input signal and output the signal.
  • the output unit 114 performs signal processing on pixel signals sequentially input from the signal processing unit 112 via the horizontal signal line 121, and outputs the processed signal.
  • the output unit 114 may perform only buffering, or may perform black level adjustment, column variation correction, various digital signal processing, etc.
  • the circuit portion consisting of the vertical drive section 111, the signal processing section 112, the horizontal drive section 113, the horizontal signal line 121, and the output section 114 may be formed on the semiconductor substrate 11, or may be arranged on an external control IC. It may be something. Moreover, those circuit parts may be formed on another board connected by a cable or the like.
  • the control section 115 is configured to control each section of the imaging device 1.
  • the control unit 115 receives a clock given from outside the semiconductor substrate 11, data instructing an operation mode, etc., and outputs data such as internal information of the imaging device 1.
  • the control unit 115 has a timing generator that generates various timing signals, and controls peripheral circuits such as the vertical drive unit 111, the signal processing unit 112, and the horizontal drive unit 113 based on the various timing signals generated by the timing generator. Performs drive control.
  • the input/output terminal 116 is for exchanging signals with the outside.
  • FIG. 3 is a diagram showing an example of the cross-sectional configuration of the imaging device according to the first embodiment.
  • FIG. 4 is a diagram showing an example of the planar configuration of the imaging device according to the first embodiment.
  • the imaging device 1 includes a light receiving section 10 and a light guiding section 20.
  • the light receiving section 10 includes a semiconductor substrate 11 having a first surface 11S1 and a second surface 11S2 facing each other.
  • FIG. 3 shows an example of a cross-sectional configuration in a region where the distance from the center of the pixel section 100 (light receiving section 10), that is, the image height is high.
  • a light guide section 20 is provided on the first surface 11S1 side of the semiconductor substrate 11.
  • a multilayer wiring layer (not shown) is provided on the second surface 11S2 side of the semiconductor substrate 11.
  • the imaging device 1 has a configuration in which a light receiving section 10, a light guiding section 20, and a multilayer wiring layer are stacked in the Z-axis direction. It can also be said that the light guide section 20 is provided on the side where the light from the optical lens system is incident, and the multilayer wiring layer is provided on the side opposite to the side where the light is incident.
  • the imaging device 1 is a so-called back-illuminated imaging device.
  • the semiconductor substrate 11 is made of, for example, a silicon substrate.
  • the photoelectric conversion unit 12 is a photodiode (PD) and has a pn junction in a predetermined region of the semiconductor substrate 11.
  • a plurality of photoelectric conversion units 12 are embedded in the semiconductor substrate 11 .
  • a plurality of photoelectric conversion sections 12 are provided along the first surface 11S1 and the second surface 11S2 of the semiconductor substrate 11.
  • the multilayer wiring layer provided on the second surface 11S2 side of the semiconductor substrate 11 has, for example, a structure in which a plurality of wiring layers are laminated with an interlayer insulating layer interposed therebetween.
  • the wiring layer of the multilayer wiring layer is formed using, for example, aluminum (Al), copper (Cu), tungsten (W), or the like.
  • the interlayer insulating layer is formed using, for example, silicon oxide (SiOx), silicon nitride (SiNx), silicon oxynitride (SiOxNy), or the like.
  • a circuit for example, a transfer transistor, a reset transistor, an amplification transistor, etc. for reading out a pixel signal based on the charge generated by the photoelectric conversion section 12 is formed in the semiconductor substrate 11 and the multilayer wiring layer. Further, the semiconductor substrate 11 and the multilayer wiring layer are formed with, for example, the above-mentioned vertical drive section 111, signal processing section 112, horizontal drive section 113, output section 114, control section 115, input/output terminal 116, and the like.
  • the light guide section 20 is stacked on the light receiving section 10 in the thickness direction perpendicular to the first surface 11S1 of the semiconductor substrate 11.
  • the light guide section 20 includes a lens section 21 and a color filter 25, and guides light incident from above toward the light receiving section 10 side.
  • the lens unit 21 is an optical member also called an on-chip lens, and is provided above the color filter 25 for each pixel P, for example. Light from a subject enters the lens unit 21 via the optical system of the imaging device 1.
  • the photoelectric conversion section 12 photoelectrically converts the light that enters through the lens section 21 and the color filter 25.
  • the color filter 25 is configured to selectively transmit light in a specific wavelength range of the incident light.
  • the plurality of pixels P provided in the pixel section 100 of the imaging device 1 include a plurality of pixels Pr, pixels Pg, and pixels Pb.
  • a plurality of pixels Pr, a plurality of pixels Pg, and a plurality of pixels Pb are repeatedly arranged.
  • the pixel Pr is a pixel provided with a color filter 25 that transmits red (R) light.
  • the red color filter 25 transmits light in the red wavelength range.
  • the photoelectric conversion section of the pixel Pr receives red wavelength light and performs photoelectric conversion.
  • the pixel Pr is a pixel that receives light in the red wavelength range and generates a signal.
  • the pixel Pg is a pixel provided with a color filter 25 that transmits green (G) light.
  • the green color filter 25 transmits light in the green wavelength range.
  • the photoelectric conversion section of the pixel Pg receives green wavelength light and performs photoelectric conversion.
  • the pixel Pg is a pixel that receives light in the green wavelength range and generates a signal.
  • Pixel Pb is a pixel provided with a color filter 25 that transmits blue (B) light.
  • the blue color filter 25 transmits light in the blue wavelength range.
  • the photoelectric conversion section of the pixel Pb receives blue wavelength light and performs photoelectric conversion.
  • Pixel Pb is a pixel that receives light in the blue wavelength range and generates a signal.
  • Pixel Pr, pixel Pg, and pixel Pb generate an R component pixel signal, a G component pixel signal, and a B component pixel signal, respectively. Therefore, the imaging device 1 can obtain RGB pixel signals.
  • the imaging device 1 is provided with a separation section 15, a metal compound layer 30, and an oxide film layer 40.
  • the separation section 15 is provided between adjacent photoelectric conversion sections 12 and isolates the photoelectric conversion sections 12 from each other.
  • the isolation section 15 has a trench structure provided at the boundary between adjacent pixels P (or photoelectric conversion sections 12), and can also be called an inter-pixel isolation section or an inter-pixel isolation wall.
  • the separation part 15 is configured to include a trench 16 (groove part).
  • the trench 16 of the separation section 15 is provided in the semiconductor substrate 11 so as to surround the photoelectric conversion section 12 .
  • an oxide film is provided in the trench 16.
  • trenches 16 are formed between adjacent photoelectric conversion parts 12, and the trenches 16 are filled with an oxide film.
  • the metal compound layer 30 is provided on the photoelectric conversion section 12 between the color filter 25 and the photoelectric conversion section 12.
  • the metal compound layer 30 is formed using a metal compound.
  • the metal compound layer 30 is, for example, a layer made of metal oxide or metal nitride.
  • the metal compound layer 30 has a fixed charge film 31 and an antireflection film 32.
  • the fixed charge film 31 is a film having fixed charges, and is formed using a high dielectric material.
  • the fixed charge film 31 is made of, for example, a metal oxide such as hafnium oxide, and is provided on the photoelectric conversion section 12 . Fixed charge film 31 is formed between photoelectric conversion section 12 and separation section 15 .
  • the fixed charge film 31 is provided to cover the photoelectric conversion section 12.
  • the fixed charge film 31 is, for example, a film having a negative fixed charge, and suppresses the generation of dark current at the interface of the semiconductor substrate 11.
  • the fixed charge film 31 is made of elements such as hafnium (Hf), zirconium (Zr), aluminum (Al), titanium (Ti), tantalum (Ta), magnesium (Mg), yttrium (Y), and lanthanide (La). It is formed to include at least one oxide.
  • the fixed charge film 31 is made of praseodymium oxide, cerium oxide, neodymium oxide, promethium oxide, samarium oxide, europium oxide, gadolinium oxide, terbium oxide, dysprosium oxide, holmium oxide, thulium oxide, ytterbium oxide, lutetium oxide, yttrium oxide, etc. It may be configured by Further, the fixed charge film 31 may be formed using a metal nitride or a metal oxynitride, such as an aluminum nitride film, a hafnium oxynitride film, or an aluminum oxynitride film. A film having positive fixed charges may be provided as the fixed charge film 31.
  • the antireflection film 32 is made of, for example, a metal oxide such as tantalum oxide, and is provided on the fixed charge film 31.
  • the antireflection film 32 is provided between the fixed charge film 31 and the oxide film layer 40 to reduce reflection.
  • the antireflection film 32 may be made of a metal oxide film other than tantalum oxide, or may be made of a metal nitride film or a metal oxynitride film.
  • a fixed charge film 31 and an antireflection film 32 may be formed to cover the side surfaces of the trench 16, as in the example shown in FIG.
  • the oxide film layer 40 is provided between the color filter 25 and the metal compound layer 30.
  • the oxide film layer 40 is formed using silicon oxide (SiOx), for example.
  • the oxide film layer 40 is made of a silicon oxide film, a silicon oxynitride film, or the like. Note that the oxide film layer 40 can also be called a flattening layer (flattening film).
  • the imaging device 1 has a structure 50 as shown in FIG. 3.
  • a part of the structure 50 is provided between adjacent color filters 25 to separate the color filters 25 from each other.
  • the structure 50 has a gap (cavity) provided between adjacent color filters 25, and can also be called a separation wall (or separation part) that utilizes the gap (cavity).
  • the structure 50 is provided from between adjacent color filters 25 to above the metal compound layer 30, and is connected to the separation section 15.
  • the structure 50 extends between the oxide film layer 40 and the metal compound layer 30, as shown in FIG.
  • a portion of the structure 50 is formed on the metal compound layer 30 and is in contact with the metal compound layer 30.
  • the structure 50 is provided so as to surround the color filter 25, as shown in FIG.
  • the structure 50 has a first portion 51 provided between adjacent color filters 25 and a second portion 52 provided along the metal compound layer 30 up to the separation portion 15.
  • the first portion 51 of the structure 50 is located between adjacent color filters 25 and has a refractive index lower than the refractive index of the surrounding medium.
  • the first portion 51 of the structure 50 has a refractive index lower than the refractive index of the color filter 25.
  • the first portion 51 is made of air (gap).
  • the first portion 51 of the structure 50 is a light guiding portion, and changes the traveling direction of incident light due to the difference in refractive index between the first portion 51 and the surrounding medium.
  • the imaging device 1 can also be said to have a waveguide structure in which light is guided by the first portion 51 of the structure 50.
  • the second portion 52 of the structure 50 is made of a member that blocks light, and is provided on the metal compound layer 30.
  • the second portion 52 of the structure 50 is made of, for example, titanium nitride (TiN), and connects the first portion 51 and the isolation portion 15.
  • TiN titanium nitride
  • the second portion 52 can also be said to be a connecting portion (or a connecting portion) that connects the first portion 51 and the trench 16 of the isolation portion 15 .
  • the second portion 52 of the structure 50 connects the first portion 51 and the separation portion 15 and suppresses light from leaking to surrounding pixels P.
  • the second portion 52 of the structure 50 may be made of a metal film that absorbs light.
  • the second portion 52 may be made of tungsten (W).
  • the positions of the lens section 21 and the color filter 25 in each pixel P are configured to differ depending on the distance from the center of the pixel section 100 (light receiving section 10), that is, the image height.
  • the lens section 21 and color filter 25 of a pixel P are arranged to be shifted toward the center of the pixel section 100 (light receiving section 10) with respect to the photoelectric conversion section 12 of the pixel P.
  • the structure 50 has second portions 52 of different sizes depending on the distance from the center of the light receiving section 10. For example, the farther a region is located from the center of the pixel section 100, the larger the width (area) of the second portion 52 of the structure 50 in that region.
  • the pixel P is configured as shown in FIG. 5, for example.
  • the center positions of the lens section 21, the color filter 25, and the photoelectric conversion section 12 substantially coincide with each other, as in the example shown in FIG.
  • the positions of the lens unit 21 and the color filter 25 are adjusted according to the image height, and pupil correction can be performed appropriately. It is possible to suppress a decrease in the amount of light incident on the photoelectric conversion unit 12 and prevent a decrease in sensitivity to incident light.
  • the structure 50 by providing the structure 50, it is possible to suppress leakage of light to surrounding pixels and suppress the occurrence of color mixture.
  • the structure 50 can propagate the incident light to the photoelectric conversion unit 12 side, and can improve the sensitivity to the incident light.
  • FIGS. 6A to 6D are diagrams illustrating an example of a method for manufacturing an imaging device according to the first embodiment.
  • a metal compound layer 30 is formed on the semiconductor substrate 11 on which elements such as the photoelectric conversion section 12 are formed. Further, a titanium nitride film is formed as the second portion 52 of the structure 50, and a silicon oxide film is formed as the oxide film layer 40. Then, the excess silicon oxide film is removed by CMP or etchback processing.
  • an a-Si film 53 (amorphous silicon film) is formed, and a silicon oxide film is formed around the a-Si film 53 as a protective film. Further, as shown in FIG. 6C, a color filter 25 is formed. Then, a hole (opening) is formed in a part of the silicon oxide film on the a-Si film 53, and the a-Si film 53 is etched through the hole. As a result, a void in the first portion 51 of the structure 50 is formed.
  • the holes in the silicon oxide film may be arranged at the corners (corners) of the pixel P, for example, at the four corners, in a plan view.
  • the hole is closed with, for example, a silicon oxide film.
  • a structure 50 having a void in the first portion 51 is formed.
  • the imaging device (imaging device 1) includes a plurality of pixels (pixels P) each having a photoelectric conversion unit (photoelectric conversion unit 12) that photoelectrically converts light, and a color filter (color filter) provided for each pixel. 25), a separation section (15) provided between adjacent photoelectric conversion sections, a structure (structure 50) having a gap provided between adjacent color filters, and a color filter and a photoelectric conversion section. A metal compound layer (metal compound layer 30) provided on the photoelectric conversion section between the two. The structure is provided between adjacent color filters and above the metal compound layer, and is connected to the separation section.
  • the structure 50 having voids is provided from between adjacent color filters 25 to above the metal compound layer 30, and is connected to the separation section 15. Therefore, it is possible to suppress color mixture between pixels. It becomes possible to realize the imaging device 1 that can reduce color mixture.
  • the structure 50 includes a first portion 51 provided between adjacent color filters 25 and a second portion 52 provided along the metal compound layer 30 up to the separation portion 15.
  • the first portion 51 is made of a void
  • the second portion 52 is made of a metal film.
  • FIG. 7 is a diagram illustrating an example of a cross-sectional configuration of an imaging device according to Modification 1 of the present disclosure.
  • the second portion 52 of the structure 50 may be composed of a void and a metal film.
  • the second portion 52 of the structure 50 includes a metal film (for example, a titanium nitride film) laminated on the metal compound layer 30, and a void formed on the metal film. Also in the case of this modification, the same effects as those of the above-described embodiment can be obtained.
  • FIGS. 8A to 8D are diagrams illustrating an example of a method for manufacturing an imaging device according to Modification 1.
  • a metal compound layer 30 is formed on the semiconductor substrate 11 on which elements such as the photoelectric conversion section 12 are formed. Further, a titanium nitride film and an a-Si film 53a, which are the second portion 52 of the structure 50, and a silicon oxide film as the oxide film layer 40 are formed. Then, the excess silicon oxide film is removed by CMP or etchback processing.
  • an a-Si film 53b is formed, and a silicon oxide film is formed as a protective film around the a-Si films 53a and 53b.
  • a color filter 25 is formed.
  • a hole (opening) is formed in a part of the silicon oxide film on the a-Si film 53b, and the a-Si film 53b and the a-Si film 53a are etched through the hole. As a result, a void in the first portion 51 of the structure 50 is formed. After the void is formed, the hole is closed with a silicon oxide film, thereby forming a structure 50 having the void as shown in FIG. 8D.
  • the imaging device 1 shown in FIG. 7 can be manufactured.
  • FIG. 9 is a diagram illustrating an example of a cross-sectional configuration of an imaging device according to modification 2.
  • the second portion 52 of the structure 50 may be composed of multiple types of metal films. As shown in FIG. 9, the second portion 52 of the structure 50 may have a structure in which a first metal film 54a and a second metal film 54b are stacked.
  • the first metal film 54a is made of a titanium nitride film, and is provided on the metal compound layer 30.
  • the second metal film 54b is made of a tungsten film and is provided on the first metal film 54a. Note that the first metal film 54a and the second metal film 54b may be formed using other metal materials.
  • FIGS. 10A to 10D are diagrams illustrating an example of a method for manufacturing an imaging device according to Modification 2.
  • a metal compound layer 30 is formed on the semiconductor substrate 11 on which elements such as the photoelectric conversion section 12 are formed. Further, a titanium nitride film as the first metal film 54a, a tungsten film as the second metal film 54b, and a silicon oxide film as the oxide film layer 40 are formed. Then, the excess silicon oxide film is removed by CMP or etchback processing.
  • an a-Si film 53 is formed, and a silicon oxide film is formed around the a-Si film 53 as a protective film.
  • a color filter 25 is formed.
  • a hole is formed in a part of the silicon oxide film on the a-Si film 53, and the a-Si film 53 is etched through the hole. As a result, a void in the first portion 51 of the structure 50 is formed. After the void is formed, the hole is closed with a silicon oxide film, thereby forming a structure 50 having the void as shown in FIG. 10D.
  • the imaging device 1 shown in FIG. 9 can be manufactured.
  • FIG. 11 is a diagram illustrating an example of a cross-sectional configuration of an imaging device according to Modification Example 3.
  • the second portion 52 of the structure 50 may include a void and a plurality of metal films.
  • the second portion 52 of the structure 50 includes a first metal film 54a stacked on the metal compound layer 30, a second metal film 54b stacked on the first metal film 54a, and a second metal film 54b stacked on the first metal film 54a.
  • the metal film 54b has a void layered thereon.
  • FIG. 12A to 12D are diagrams illustrating an example of a method for manufacturing an imaging device according to Modification 3.
  • a metal compound layer 30 is formed on the semiconductor substrate 11 on which elements such as the photoelectric conversion section 12 are formed.
  • a first metal film 54a, a second metal film 54b, and an a-Si film 53a are formed as the second portion 52 of the structure 50, and a silicon oxide film is formed as the oxide film layer 40.
  • the excess silicon oxide film is removed by CMP or etchback processing.
  • an a-Si film 53b is formed, and a silicon oxide film is formed as a protective film around the a-Si films 53a and 53b.
  • a color filter 25 is formed.
  • a hole is formed in a part of the silicon oxide film on the a-Si film 53b, and the a-Si film 53b and the a-Si film 53a are etched through the hole. As a result, voids in the structure 50 are formed. After the void is formed, the hole is closed with a silicon oxide film, thereby forming a structure 50 having the void as shown in FIG. 12D.
  • the imaging device 1 shown in FIG. 11 can be manufactured.
  • FIG. 13 is a diagram illustrating an example of a cross-sectional configuration of an imaging device according to modification 4.
  • a portion of the structure 50 may be provided within the separation section 15.
  • a part of the second portion 52 of the structure 50 is embedded in the isolation portion 15 .
  • the same effects as those of the above-described embodiment can be obtained.
  • FIGS. 14A to 14D are diagrams illustrating an example of a method for manufacturing an imaging device according to Modification 4.
  • a metal compound layer 30 is formed on the semiconductor substrate 11 on which elements such as the photoelectric conversion section 12 are formed. Further, a titanium nitride film as the second portion 52 of the structure 50 and a silicon oxide film as the oxide film layer 40 are formed. A portion of the second portion 52 of the structure 50 is embedded within the isolation portion 15 . Then, the excess silicon oxide film is removed by CMP or etchback treatment.
  • an a-Si film 53 is formed, and a silicon oxide film is formed around the a-Si film 53 as a protective film. Then, as shown in FIG. 14C, a color filter 25 is formed.
  • a hole is formed in a part of the silicon oxide film on the a-Si film 53, and the a-Si film 53 is etched through the hole. As a result, a void in the first portion 51 of the structure 50 is formed. After the void is formed, the hole is closed with a silicon oxide film, thereby forming a structure 50 having the void as shown in FIG. 14D.
  • the imaging device 1 shown in FIG. 13 can be manufactured.
  • FIG. 15 is a diagram illustrating an example of a cross-sectional configuration of an imaging device according to a second embodiment of the present disclosure.
  • FIG. 15 shows an example of a cross-sectional configuration in a region where the distance from the center of the pixel section 100 (light receiving section 10), that is, the image height is high.
  • the second portion 52 of the structure 50 is made of air (void).
  • the first portion 51 and the second portion 52 are both constituted by a gap, and can be said to be provided continuously.
  • the second portion 52 of the structure 50 is a light guiding portion, and changes the traveling direction of the incident light due to the difference in refractive index between the second portion 52 and the surrounding medium. It can also be said that the imaging device 1 has a waveguide structure in which light is guided by the first portion 51 and the second portion 52 of the structure 50.
  • the imaging device 1 by providing the first portion 51 and the second portion 52 which are made of voids, it is possible to suppress leakage of light to surrounding pixels P and suppress the occurrence of color mixture. can. Further, the structure 50 made of voids can efficiently guide light to the photoelectric conversion unit 12, and can improve sensitivity to incident light.
  • the second portion 52 of the structure 50 is formed of a void and is formed so as to be in contact with the metal compound layer 30. Compared to the case where a material with a low refractive index is formed inside the oxide film layer, it is possible to reduce the difficulty in manufacturing the imaging device 1.
  • the pixel P is configured as shown in FIG. 16, for example.
  • the center positions of the lens section 21, the color filter 25, and the photoelectric conversion section 12 substantially coincide with each other, as in the example shown in FIG.
  • the width w1 (see FIG. 16) of the second portion 52 of the structure 50 at the center of the pixel portion 100 is the width w2 ( (see FIG. 15). Note that, as shown in FIG. 17, the width w1 of the second portion 52 of the structure 50 at the center of the pixel portion 100 may be approximately equal to the width w2 of the second portion 52 shown in FIG.
  • the imaging device (imaging device 1) includes a plurality of pixels (pixels P) each having a photoelectric conversion unit (photoelectric conversion unit 12) that photoelectrically converts light, and a color filter (color filter) provided for each pixel. 25), a separation part (separation part 15) provided between adjacent photoelectric conversion parts, and a gap (first part 51, second part 52) provided between adjacent color filters. structure 50) and a metal compound layer (metal compound layer 30) provided between the color filter and the photoelectric conversion unit and on the photoelectric conversion unit. The structure is provided between adjacent color filters and above the metal compound layer, and is connected to the separation section.
  • the structure 50 is provided from between adjacent color filters 25 to above the metal compound layer 30, and is connected to the separation section 15. Therefore, it is possible to suppress the occurrence of color mixture. It becomes possible to realize the imaging device 1 that can reduce color mixture.
  • the structure 50 includes a first portion 51 provided between adjacent color filters 25 and a second portion 52 provided along the metal compound layer 30 up to the separation portion 15.
  • the first portion 51 and the second portion 52 are formed by a gap.
  • FIGS. 18A to 18D are diagrams illustrating an example of a method for manufacturing an imaging device according to the second embodiment.
  • a metal compound layer 30 is formed on the semiconductor substrate 11 on which elements such as the photoelectric conversion section 12 are formed. Furthermore, a silicon oxide film is formed as the oxide film layer 40 .
  • an a-Si film 53 (amorphous silicon film) is formed by, for example, CVD, and a silicon oxide film is formed as a protective film around the a-Si film 53. Further, as shown in FIG. 18C, a color filter 25 is formed. Then, holes (through holes) are formed in a part of the silicon oxide film on the a-Si film 53, for example, in the four corners of the pixel P, and the a-Si film 53 is etched through the hole. As a result, a void in the first portion 51 of the structure 50 is formed.
  • the hole is closed with, for example, a silicon oxide film.
  • a structure 50 having voids in the first portion 51 is formed.
  • the imaging device 1 shown in FIG. 15 and the like can be manufactured.
  • the manufacturing method mentioned above is an example to the last, Comprising: Other manufacturing methods may be employ
  • FIG. 19 is a diagram illustrating an example of a cross-sectional configuration of an imaging device according to Modification Example 5 of the present disclosure.
  • a portion of the structure 50 may be provided within the separation section 15.
  • the second portion 52 of the structure 50 ie, a part of the gap, is formed within the separation portion 15. Also in the case of this modification, the same effects as those of the above-described embodiment can be obtained.
  • 20A to 20D are diagrams illustrating an example of a method for manufacturing an imaging device according to Modification 5.
  • a metal compound layer 30 is formed on the semiconductor substrate 11 on which elements such as the photoelectric conversion section 12 are formed.
  • a silicon oxide film is formed as the oxide film layer 40 .
  • an a-Si film 53 is formed by CVD, and a silicon oxide film is formed around the a-Si film 53 as a protective film. Then, as shown in FIG. 20C, a color filter 25 is formed.
  • a hole is formed in a part of the silicon oxide film on the a-Si film 53, and the a-Si film 53 is etched through the hole. As a result, a gap is provided, and the first portion 51 and the second portion 52 of the structure 50 are formed. After the void is formed, the hole is closed with a silicon oxide film, thereby forming a structure 50 having the void as shown in FIG. 20D.
  • the imaging device 1 shown in FIG. 19 can be manufactured.
  • FIG. 21 is a diagram illustrating an example of a cross-sectional configuration of an imaging device according to modification 6.
  • the structure 50 of the imaging device 1 may include a protective film 45 provided between the color filter 25 and the gap.
  • a protective film 45 is provided between the first portion 51 and the color filter 25.
  • the protective film 45 includes at least one of an oxide film and a nitride film.
  • the protective film 45 may be made of a silicon oxide film, a silicon nitride film, a silicon oxynitride film, a metal oxide film (for example, aluminum oxide, magnesium oxide), or the like.
  • the imaging device 1 and the like can be applied to any type of electronic device having an imaging function, such as a camera system such as a digital still camera or a video camera, or a mobile phone having an imaging function.
  • FIG. 22 shows a schematic configuration of electronic device 1000.
  • the electronic device 1000 includes, for example, a lens group 1001, an imaging device 1, a DSP (Digital Signal Processor) circuit 1002, a frame memory 1003, a display section 1004, a recording section 1005, an operation section 1006, and a power supply section 1007. and are interconnected via a bus line 1008.
  • a lens group 1001 an imaging device 1
  • a DSP (Digital Signal Processor) circuit 1002 a frame memory 1003, a display section 1004, a recording section 1005, an operation section 1006, and a power supply section 1007. and are interconnected via a bus line 1008.
  • DSP Digital Signal Processor
  • the lens group 1001 takes in incident light (image light) from a subject and forms an image on the imaging surface of the imaging device 1.
  • the imaging device 1 converts the amount of incident light focused on the imaging surface by the lens group 1001 into an electrical signal for each pixel, and supplies the electrical signal to the DSP circuit 1002 as a pixel signal.
  • the DSP circuit 1002 is a signal processing circuit that processes signals supplied from the imaging device 1.
  • the DSP circuit 1002 processes signals from the imaging device 1 and outputs image data obtained.
  • the frame memory 1003 temporarily stores image data processed by the DSP circuit 1002 in units of frames.
  • the display unit 1004 is composed of a panel type display device such as a liquid crystal panel or an organic EL (Electro Luminescence) panel, and displays image data of moving images or still images captured by the imaging device 1 on a recording medium such as a semiconductor memory or a hard disk. to be recorded.
  • a panel type display device such as a liquid crystal panel or an organic EL (Electro Luminescence) panel
  • a recording medium such as a semiconductor memory or a hard disk. to be recorded.
  • the operation unit 1006 outputs operation signals regarding various functions owned by the electronic device 1000 in accordance with user operations.
  • the power supply unit 1007 appropriately supplies various kinds of power to serve as operating power for the DSP circuit 1002, frame memory 1003, display unit 1004, recording unit 1005, and operation unit 1006 to these supply targets.
  • the technology according to the present disclosure (this technology) can be applied to various products.
  • the technology according to the present disclosure may be realized as a device mounted on any type of moving body such as a car, electric vehicle, hybrid electric vehicle, motorcycle, bicycle, personal mobility, airplane, drone, ship, robot, etc. You can.
  • FIG. 23 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile object control system to which the technology according to the present disclosure can be applied.
  • the vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside vehicle information detection unit 12030, an inside vehicle information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio/image output section 12052, and an in-vehicle network I/F (interface) 12053 are illustrated.
  • the drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs.
  • the drive system control unit 12010 includes a drive force generation device such as an internal combustion engine or a drive motor that generates drive force for the vehicle, a drive force transmission mechanism that transmits the drive force to wheels, and a drive force transmission mechanism that controls the steering angle of the vehicle. It functions as a control device for a steering mechanism to adjust and a braking device to generate braking force for the vehicle.
  • the body system control unit 12020 controls the operations of various devices installed in the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as a headlamp, a back lamp, a brake lamp, a turn signal, or a fog lamp.
  • radio waves transmitted from a portable device that replaces a key or signals from various switches may be input to the body control unit 12020.
  • the body system control unit 12020 receives input of these radio waves or signals, and controls the door lock device, power window device, lamp, etc. of the vehicle.
  • the external information detection unit 12030 detects information external to the vehicle in which the vehicle control system 12000 is mounted.
  • an imaging section 12031 is connected to the outside-vehicle information detection unit 12030.
  • the vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image of the exterior of the vehicle, and receives the captured image.
  • the external information detection unit 12030 may perform object detection processing such as a person, car, obstacle, sign, or text on the road surface or distance detection processing based on the received image.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal according to the amount of received light.
  • the imaging unit 12031 can output the electrical signal as an image or as distance measurement information.
  • the light received by the imaging unit 12031 may be visible light or non-visible light such as infrared rays.
  • the in-vehicle information detection unit 12040 detects in-vehicle information.
  • a driver condition detection section 12041 that detects the condition of the driver is connected to the in-vehicle information detection unit 12040.
  • the driver condition detection unit 12041 includes, for example, a camera that images the driver, and the in-vehicle information detection unit 12040 detects the degree of fatigue or concentration of the driver based on the detection information input from the driver condition detection unit 12041. It may be calculated, or it may be determined whether the driver is falling asleep.
  • the microcomputer 12051 calculates control target values for the driving force generation device, steering mechanism, or braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, Control commands can be output to 12010.
  • the microcomputer 12051 realizes ADAS (Advanced Driver Assistance System) functions, including vehicle collision avoidance or impact mitigation, following distance based on vehicle distance, vehicle speed maintenance, vehicle collision warning, vehicle lane departure warning, etc. It is possible to perform cooperative control for the purpose of ADAS (Advanced Driver Assistance System) functions, including vehicle collision avoidance or impact mitigation, following distance based on vehicle distance, vehicle speed maintenance, vehicle collision warning, vehicle lane departure warning, etc. It is possible to perform cooperative control for the purpose of
  • ADAS Advanced Driver Assistance System
  • the microcomputer 12051 controls the driving force generating device, steering mechanism, braking device, etc. based on information about the surroundings of the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040. It is possible to perform cooperative control for the purpose of autonomous driving, etc., which does not rely on operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the outside information detection unit 12030.
  • the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or oncoming vehicle detected by the vehicle exterior information detection unit 12030, and performs cooperative control for the purpose of preventing glare, such as switching from high beam to low beam. It can be carried out.
  • the audio and image output unit 12052 transmits an output signal of at least one of audio and images to an output device that can visually or audibly notify information to the occupants of the vehicle or to the outside of the vehicle.
  • an audio speaker 12061, a display section 12062, and an instrument panel 12063 are illustrated as output devices.
  • the display unit 12062 may include, for example, at least one of an on-board display and a head-up display.
  • FIG. 24 is a diagram showing an example of the installation position of the imaging section 12031.
  • the vehicle 12100 has imaging units 12101, 12102, 12103, 12104, and 12105 as the imaging unit 12031.
  • the imaging units 12101, 12102, 12103, 12104, and 12105 are provided, for example, at positions such as the front nose, side mirrors, rear bumper, back door, and the top of the windshield inside the vehicle 12100.
  • An imaging unit 12101 provided in the front nose and an imaging unit 12105 provided above the windshield inside the vehicle mainly acquire images in front of the vehicle 12100.
  • Imaging units 12102 and 12103 provided in the side mirrors mainly capture images of the sides of the vehicle 12100.
  • An imaging unit 12104 provided in the rear bumper or back door mainly captures images of the rear of the vehicle 12100.
  • the images of the front acquired by the imaging units 12101 and 12105 are mainly used for detecting preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, and the like.
  • FIG. 24 shows an example of the imaging range of the imaging units 12101 to 12104.
  • An imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose
  • imaging ranges 12112 and 12113 indicate imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors, respectively
  • an imaging range 12114 shows the imaging range of the imaging unit 12101 provided on the front nose.
  • the imaging range of the imaging unit 12104 provided in the rear bumper or back door is shown. For example, by overlapping the image data captured by the imaging units 12101 to 12104, an overhead image of the vehicle 12100 viewed from above can be obtained.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the imaging units 12101 to 12104 may be a stereo camera including a plurality of image sensors, or may be an image sensor having pixels for phase difference detection.
  • the microcomputer 12051 determines the distance to each three-dimensional object within the imaging ranges 12111 to 12114 and the temporal change in this distance (relative speed with respect to the vehicle 12100) based on the distance information obtained from the imaging units 12101 to 12104. In particular, by determining the three-dimensional object that is closest to the vehicle 12100 on its path and that is traveling at a predetermined speed (for example, 0 km/h or more) in approximately the same direction as the vehicle 12100, it is possible to extract the three-dimensional object as the preceding vehicle. can.
  • a predetermined speed for example, 0 km/h or more
  • the microcomputer 12051 can set an inter-vehicle distance to be secured in advance in front of the preceding vehicle, and perform automatic brake control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform cooperative control for the purpose of autonomous driving, etc., in which the vehicle travels autonomously without depending on the driver's operation.
  • the microcomputer 12051 transfers three-dimensional object data to other three-dimensional objects such as two-wheeled vehicles, regular vehicles, large vehicles, pedestrians, and utility poles based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic obstacle avoidance. For example, the microcomputer 12051 identifies obstacles around the vehicle 12100 into obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 determines a collision risk indicating the degree of risk of collision with each obstacle, and when the collision risk exceeds a set value and there is a possibility of a collision, the microcomputer 12051 transmits information via the audio speaker 12061 and the display unit 12062. By outputting a warning to the driver via the vehicle control unit 12010 and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be provided.
  • the microcomputer 12051 determines a collision risk indicating the degree of risk of collision with each obstacle, and when the collision risk exceed
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether the pedestrian is present in the images captured by the imaging units 12101 to 12104.
  • pedestrian recognition involves, for example, a procedure for extracting feature points in images captured by the imaging units 12101 to 12104 as infrared cameras, and a pattern matching process is performed on a series of feature points indicating the outline of an object to determine whether it is a pedestrian or not.
  • the audio image output unit 12052 creates a rectangular outline for emphasis on the recognized pedestrian.
  • the display section 12062 is controlled so as to display the .
  • the audio image output unit 12052 may also control the display unit 12062 to display an icon or the like indicating a pedestrian at a desired position.
  • the technology according to the present disclosure can be applied to, for example, the imaging unit 12031 among the configurations described above.
  • the imaging device 1 etc. can be applied to the imaging unit 12031.
  • the technology according to the present disclosure (this technology) can be applied to various products.
  • the technology according to the present disclosure may be applied to an endoscopic surgery system.
  • FIG. 25 is a diagram illustrating an example of a schematic configuration of an endoscopic surgery system to which the technology according to the present disclosure (present technology) can be applied.
  • FIG. 25 shows an operator (doctor) 11131 performing surgery on a patient 11132 on a patient bed 11133 using the endoscopic surgery system 11000.
  • the endoscopic surgery system 11000 includes an endoscope 11100, other surgical instruments 11110 such as a pneumoperitoneum tube 11111 and an energy treatment instrument 11112, and a support arm device 11120 that supports the endoscope 11100. , and a cart 11200 loaded with various devices for endoscopic surgery.
  • the endoscope 11100 is composed of a lens barrel 11101 whose distal end is inserted into a body cavity of a patient 11132 over a predetermined length, and a camera head 11102 connected to the proximal end of the lens barrel 11101.
  • an endoscope 11100 configured as a so-called rigid scope having a rigid tube 11101 is shown, but the endoscope 11100 may also be configured as a so-called flexible scope having a flexible tube. good.
  • An opening into which an objective lens is fitted is provided at the tip of the lens barrel 11101.
  • a light source device 11203 is connected to the endoscope 11100, and the light generated by the light source device 11203 is guided to the tip of the lens barrel by a light guide extending inside the lens barrel 11101, and the light is guided to the tip of the lens barrel. Irradiation is directed toward an observation target within the body cavity of the patient 11132 through the lens.
  • the endoscope 11100 may be a direct-viewing mirror, a diagonal-viewing mirror, or a side-viewing mirror.
  • An optical system and an image sensor are provided inside the camera head 11102, and reflected light (observation light) from an observation target is focused on the image sensor by the optical system.
  • the observation light is photoelectrically converted by the image sensor, and an electric signal corresponding to the observation light, that is, an image signal corresponding to the observation image is generated.
  • the image signal is transmitted as RAW data to a camera control unit (CCU) 11201.
  • CCU camera control unit
  • the CCU 11201 is configured with a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and the like, and centrally controls the operations of the endoscope 11100 and the display device 11202. Further, the CCU 11201 receives an image signal from the camera head 11102, and performs various image processing on the image signal, such as development processing (demosaic processing), for displaying an image based on the image signal.
  • a CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • the display device 11202 displays an image based on an image signal subjected to image processing by the CCU 11201 under control from the CCU 11201.
  • the light source device 11203 is composed of a light source such as an LED (Light Emitting Diode), and supplies irradiation light to the endoscope 11100 when photographing the surgical site or the like.
  • a light source such as an LED (Light Emitting Diode)
  • LED Light Emitting Diode
  • the input device 11204 is an input interface for the endoscopic surgery system 11000.
  • the user can input various information and instructions to the endoscopic surgery system 11000 via the input device 11204.
  • the user inputs an instruction to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 11100.
  • a treatment tool control device 11205 controls driving of an energy treatment tool 11112 for cauterizing tissue, incising, sealing blood vessels, or the like.
  • the pneumoperitoneum device 11206 injects gas into the body cavity of the patient 11132 via the pneumoperitoneum tube 11111 in order to inflate the body cavity of the patient 11132 for the purpose of ensuring a field of view with the endoscope 11100 and a working space for the operator. send in.
  • the recorder 11207 is a device that can record various information regarding surgery.
  • the printer 11208 is a device that can print various types of information regarding surgery in various formats such as text, images, or graphs.
  • the light source device 11203 that supplies irradiation light to the endoscope 11100 when photographing the surgical site can be configured, for example, from a white light source configured by an LED, a laser light source, or a combination thereof.
  • a white light source configured by a combination of RGB laser light sources
  • the output intensity and output timing of each color (each wavelength) can be controlled with high precision, so the white balance of the captured image is adjusted in the light source device 11203. It can be carried out.
  • the laser light from each RGB laser light source is irradiated onto the observation target in a time-sharing manner, and the drive of the image sensor of the camera head 11102 is controlled in synchronization with the irradiation timing, thereby supporting each of RGB. It is also possible to capture images in a time-division manner. According to this method, a color image can be obtained without providing a color filter in the image sensor.
  • the driving of the light source device 11203 may be controlled so that the intensity of the light it outputs is changed at predetermined time intervals.
  • the drive of the image sensor of the camera head 11102 in synchronization with the timing of changes in the light intensity to acquire images in a time-division manner and compositing the images, a high dynamic It is possible to generate an image of a range.
  • the light source device 11203 may be configured to be able to supply light in a predetermined wavelength band compatible with special light observation.
  • Special light observation uses, for example, the wavelength dependence of light absorption in body tissues to illuminate the mucosal surface layer by irradiating a narrower band of light than the light used for normal observation (i.e., white light). So-called narrow band imaging is performed in which predetermined tissues such as blood vessels are photographed with high contrast.
  • fluorescence observation may be performed in which an image is obtained using fluorescence generated by irradiating excitation light.
  • Fluorescence observation involves irradiating body tissues with excitation light and observing the fluorescence from the body tissues (autofluorescence observation), or locally injecting reagents such as indocyanine green (ICG) into the body tissues and It is possible to obtain a fluorescence image by irradiating excitation light corresponding to the fluorescence wavelength of the reagent.
  • the light source device 11203 may be configured to be able to supply narrowband light and/or excitation light compatible with such special light observation.
  • FIG. 26 is a block diagram showing an example of the functional configuration of the camera head 11102 and CCU 11201 shown in FIG. 25.
  • the camera head 11102 includes a lens unit 11401, an imaging section 11402, a driving section 11403, a communication section 11404, and a camera head control section 11405.
  • the CCU 11201 includes a communication section 11411, an image processing section 11412, and a control section 11413. Camera head 11102 and CCU 11201 are communicably connected to each other by transmission cable 11400.
  • the lens unit 11401 is an optical system provided at the connection part with the lens barrel 11101. Observation light taken in from the tip of the lens barrel 11101 is guided to the camera head 11102 and enters the lens unit 11401.
  • the lens unit 11401 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
  • the imaging unit 11402 is composed of an image sensor.
  • the imaging unit 11402 may include one image sensor (so-called single-plate type) or a plurality of image sensors (so-called multi-plate type).
  • image signals corresponding to R, G, and B may be generated by each image sensor, and a color image may be obtained by combining them.
  • the imaging unit 11402 may be configured to include a pair of imaging elements for respectively acquiring right-eye and left-eye image signals corresponding to 3D (dimensional) display. By performing 3D display, the operator 11131 can more accurately grasp the depth of the living tissue at the surgical site.
  • a plurality of lens units 11401 may be provided corresponding to each imaging element.
  • the imaging unit 11402 does not necessarily have to be provided in the camera head 11102.
  • the imaging unit 11402 may be provided inside the lens barrel 11101 immediately after the objective lens.
  • the drive unit 11403 is constituted by an actuator, and moves the zoom lens and focus lens of the lens unit 11401 by a predetermined distance along the optical axis under control from the camera head control unit 11405. Thereby, the magnification and focus of the image captured by the imaging unit 11402 can be adjusted as appropriate.
  • the communication unit 11404 is configured by a communication device for transmitting and receiving various information to and from the CCU 11201.
  • the communication unit 11404 transmits the image signal obtained from the imaging unit 11402 to the CCU 11201 via the transmission cable 11400 as RAW data.
  • the communication unit 11404 receives a control signal for controlling the drive of the camera head 11102 from the CCU 11201 and supplies it to the camera head control unit 11405.
  • the control signal may include, for example, information specifying the frame rate of the captured image, information specifying the exposure value at the time of capturing, and/or information specifying the magnification and focus of the captured image. Contains information about conditions.
  • the above imaging conditions such as the frame rate, exposure value, magnification, focus, etc. may be appropriately specified by the user, or may be automatically set by the control unit 11413 of the CCU 11201 based on the acquired image signal. good.
  • the endoscope 11100 is equipped with so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function.
  • the camera head control unit 11405 controls the drive of the camera head 11102 based on the control signal from the CCU 11201 received via the communication unit 11404.
  • the communication unit 11411 is configured by a communication device for transmitting and receiving various information to and from the camera head 11102.
  • the communication unit 11411 receives an image signal transmitted from the camera head 11102 via the transmission cable 11400.
  • the communication unit 11411 transmits a control signal for controlling the drive of the camera head 11102 to the camera head 11102.
  • the image signal and control signal can be transmitted by electrical communication, optical communication, or the like.
  • the image processing unit 11412 performs various image processing on the image signal, which is RAW data, transmitted from the camera head 11102.
  • the control unit 11413 performs various controls related to the imaging of the surgical site etc. by the endoscope 11100 and the display of the captured image obtained by imaging the surgical site etc. For example, the control unit 11413 generates a control signal for controlling the drive of the camera head 11102.
  • control unit 11413 causes the display device 11202 to display a captured image showing the surgical site, etc., based on the image signal subjected to image processing by the image processing unit 11412.
  • the control unit 11413 may recognize various objects in the captured image using various image recognition techniques. For example, the control unit 11413 detects the shape and color of the edge of an object included in the captured image to detect surgical tools such as forceps, specific body parts, bleeding, mist when using the energy treatment tool 11112, etc. can be recognized.
  • the control unit 11413 may use the recognition result to superimpose and display various types of surgical support information on the image of the surgical site. By displaying the surgical support information in a superimposed manner and presenting it to the surgeon 11131, it becomes possible to reduce the burden on the surgeon 11131 and to allow the surgeon 11131 to proceed with the surgery reliably.
  • the transmission cable 11400 connecting the camera head 11102 and the CCU 11201 is an electrical signal cable compatible with electrical signal communication, an optical fiber compatible with optical communication, or a composite cable thereof.
  • communication is performed by wire using the transmission cable 11400, but communication between the camera head 11102 and the CCU 11201 may be performed wirelessly.
  • the technology according to the present disclosure can be suitably applied to, for example, the imaging unit 11402 provided in the camera head 11102 of the endoscope 11100.
  • the sensitivity of the imaging unit 11402 can be increased, and a high-definition endoscope 11100 can be provided.
  • An imaging device includes a plurality of pixels each having a photoelectric conversion section that photoelectrically converts light, a color filter provided for each pixel, a separation section provided between adjacent photoelectric conversion sections, and a plurality of pixels each having a photoelectric conversion section that photoelectrically converts light.
  • the structure includes a structure having a gap provided between matching color filters, and a metal compound layer provided on the photoelectric conversion section between the color filter and the photoelectric conversion section. The structure is provided between adjacent color filters and above the metal compound layer, and is connected to the separation section. Therefore, it is possible to suppress the occurrence of color mixture.
  • the present disclosure can also have the following configuration.
  • the structure body is provided from between the adjacent color filters to above the metal compound layer, and is connected to the separation section.
  • the imaging device. (2) The imaging device according to (1) above, wherein the metal compound layer is a layer made of a metal oxide or a metal nitride.
  • the metal compound layer includes a film having a fixed charge and an antireflection film.
  • the film having the fixed charge is provided on the photoelectric conversion section, The imaging device according to (7), wherein the antireflection film is provided on the film having fixed charges.
  • the structure has a first portion provided between the adjacent color filters, and a second portion provided along the metal compound layer up to the separation portion, The first portion is constituted by a void, The second portion is configured of a metal film.
  • the imaging device according to (9), wherein the second portion includes a first metal film provided on the metal compound layer and a second metal film provided on the first metal film.
  • the structure has a first portion provided between the adjacent color filters, and a second portion provided along the metal compound layer up to the separation portion,
  • the structure includes a protective film provided between the color filter and the void.
  • the protective film includes at least one of an oxide film and a nitride film.
  • the separation section includes a trench provided so as to surround the photoelectric conversion section.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

本開示の一実施形態の撮像装置は、光を光電変換する光電変換部を有する複数の画素と、前記画素毎に設けられるカラーフィルタと、隣り合う前記光電変換部の間に設けられる分離部と、隣り合う前記カラーフィルタの間に設けられた空隙を有する構造体と、前記カラーフィルタと前記光電変換部との間において前記光電変換部の上に設けられる金属化合物層とを備える。前記構造体は、隣り合う前記カラーフィルタの間から前記金属化合物層上まで設けられ、前記分離部と接続されている。

Description

撮像装置
 本開示は、撮像装置に関する。
 隣り合う2つのカラーフィルタの間に、カラーフィルタよりも低い屈折率を有するエアギャップが設けられた撮像装置が提案されている(特許文献1)。
米国特許出願公開第2019/0157329号明細書
 撮像装置では、画素間の混色を抑えることが求められている。
 混色を低減可能な撮像装置を提供することが望まれる。
 本開示の一実施形態の撮像装置は、光を光電変換する光電変換部を有する複数の画素と、画素毎に設けられるカラーフィルタと、隣り合う光電変換部の間に設けられる分離部と、隣り合うカラーフィルタの間に設けられた空隙を有する構造体と、カラーフィルタと光電変換部との間において光電変換部の上に設けられる金属化合物層とを備える。構造体は、隣り合うカラーフィルタの間から金属化合物層上まで設けられ、分離部と接続されている。
図1は、本開示の第1の実施の形態に係る撮像装置の概略構成の一例を示すブロック図である。 図2は、本開示の第1の実施の形態に係る撮像装置の画素部の一例を示す図である。 図3は、本開示の第1の実施の形態に係る撮像装置の断面構成の一例を示す図である。 図4は、本開示の第1の実施の形態に係る撮像装置の平面構成の一例を示す図である。 図5は、本開示の第1の実施の形態に係る撮像装置の断面構成の一例を示す図である。 図6Aは、本開示の第1の実施の形態に係る撮像装置の製造方法の一例を示す図である。 図6Bは、本開示の第1の実施の形態に係る撮像装置の製造方法の一例を示す図である。 図6Cは、本開示の第1の実施の形態に係る撮像装置の製造方法の一例を示す図である。 図6Dは、本開示の第1の実施の形態に係る撮像装置の製造方法の一例を示す図である。 図7は、本開示の変形例1に係る撮像装置の断面構成の一例を示す図である。 図8Aは、本開示の変形例1に係る撮像装置の製造方法の一例を示す図である。 図8Bは、本開示の変形例1に係る撮像装置の製造方法の一例を示す図である。 図8Cは、本開示の変形例1に係る撮像装置の製造方法の一例を示す図である。 図8Dは、本開示の変形例1に係る撮像装置の製造方法の一例を示す図である。 図9は、本開示の変形例2に係る撮像装置の断面構成の一例を示す図である。 図10Aは、本開示の変形例2に係る撮像装置の製造方法の一例を示す図である。 図10Bは、本開示の変形例2に係る撮像装置の製造方法の一例を示す図である。 図10Cは、本開示の変形例2に係る撮像装置の製造方法の一例を示す図である。 図10Dは、本開示の変形例2に係る撮像装置の製造方法の一例を示す図である。 図11は、本開示の変形例3に係る撮像装置の断面構成の一例を示す図である。 図12Aは、本開示の変形例3に係る撮像装置の製造方法の一例を示す図である。 図12Bは、本開示の変形例3に係る撮像装置の製造方法の一例を示す図である。 図12Cは、本開示の変形例3に係る撮像装置の製造方法の一例を示す図である。 図12Dは、本開示の変形例3に係る撮像装置の製造方法の一例を示す図である。 図13は、本開示の変形例4に係る撮像装置の断面構成の一例を示す図である。 図14Aは、本開示の変形例4に係る撮像装置の製造方法の一例を示す図である。 図14Bは、本開示の変形例4に係る撮像装置の製造方法の一例を示す図である。 図14Cは、本開示の変形例4に係る撮像装置の製造方法の一例を示す図である。 図14Dは、本開示の変形例4に係る撮像装置の製造方法の一例を示す図である。 図15は、本開示の第2の実施の形態に係る撮像装置の断面構成の一例を示す図である。 図16は、本開示の第2の実施の形態に係る撮像装置の断面構成の一例を示す図である。 図17は、本開示の第2の実施の形態に係る撮像装置の断面構成の別の例を示す図である。 図18Aは、本開示の第2の実施の形態に係る撮像装置の製造方法の一例を示す図である。 図18Bは、本開示の第2の実施の形態に係る撮像装置の製造方法の一例を示す図である。 図18Cは、本開示の第2の実施の形態に係る撮像装置の製造方法の一例を示す図である。 図18Dは、本開示の第2の実施の形態に係る撮像装置の製造方法の一例を示す図である。 図19は、本開示の変形例5に係る撮像装置の断面構成の一例を示す図である。 図20Aは、本開示の変形例5に係る撮像装置の製造方法の一例を示す図である。 図20Bは、本開示の変形例5に係る撮像装置の製造方法の一例を示す図である。 図20Cは、本開示の変形例5に係る撮像装置の製造方法の一例を示す図である。 図20Dは、本開示の変形例5に係る撮像装置の製造方法の一例を示す図である。 図21は、本開示の変形例6に係る撮像装置の断面構成の一例を示す図である。 図22は、撮像装置を有する電子機器の構成例を表すブロック図である。 図23は、車両制御システムの概略的な構成の一例を示すブロック図である。 図24は、車外情報検出部及び撮像部の設置位置の一例を示す説明図である。 図25は、内視鏡手術システムの概略的な構成の一例を示す図である。 図26は、カメラヘッド及びCCUの機能構成の一例を示すブロック図である。
 以下、本開示の実施の形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
 1.第1の実施の形態
 2.第2の実施の形態
 3.適用例
 4.応用例
<1.第1の実施の形態>
 図1は、本開示の第1の実施の形態に係る撮像装置の概略構成の一例を示すブロック図である。図2は、第1の実施の形態に係る撮像装置の画素部の一例を示す図である。撮像装置1は、光電変換部を有する複数の画素Pを有し、入射した光を光電変換して信号を生成するように構成される。光電変換部は、例えばフォトダイオードであり、光を光電変換可能に構成される。撮像装置1は、図2に示すように、複数の画素Pが行列状に2次元配置された領域(画素部100)を、撮像エリアとして有している。
 撮像装置1は、光学レンズを含む光学系(不図示)を介して、被写体からの入射光(像光)を取り込む。撮像装置1は、光学レンズにより形成される被写体の像を撮像する。撮像装置1は、受光した光を光電変換して画素信号を生成する。撮像装置1は、例えば、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサである。撮像装置1は、デジタルスチルカメラ、ビデオカメラ、携帯電話等の電子機器に利用可能である。
 なお、図2に示すように、被写体からの光の入射方向をZ軸方向、Z軸方向に直交する紙面左右方向をX軸方向、Z軸及びX軸に直交する紙面上下方向をY軸方向とする。以降の図において、図2の矢印の方向を基準として方向を表記する場合もある。
 撮像装置1は、図1に示す例のように、画素部100の周辺領域に、例えば、垂直駆動部111、信号処理部112、水平駆動部113、出力部114、制御部115、及び入出力端子116等を有している。
 撮像装置1には、例えば、複数の画素駆動線Lreadと、複数の垂直信号線VSLが設けられる。例えば、画素部100には、水平方向(行方向)に並ぶ複数の画素Pにより構成される画素行ごとに、複数の画素駆動線Lreadが配線される。また、画素部100には、垂直方向(列方向)に並ぶ複数の画素Pにより構成される画素列ごとに、垂直信号線VSLが配線される。
 画素駆動線Lreadは、画素Pからの信号読み出しのための駆動信号を伝送するように構成される。垂直信号線VSLは、画素Pからの信号を伝えることが可能な信号線である。垂直信号線VSLは、画素Pから出力される信号を伝送するように構成される。
 垂直駆動部111は、シフトレジスタやアドレスデコーダ等によって構成される。垂直駆動部111は、画素部100の各画素Pを駆動するように構成される。垂直駆動部111は、画素駆動部であり、画素Pを駆動するための信号を生成し、画素駆動線Lreadを介して画素部100の各画素Pへ出力する。垂直駆動部111は、例えば、転送トランジスタを制御する信号、及びリセットトランジスタを制御する信号等を生成し、画素駆動線Lreadによって各画素Pに供給する。
 信号処理部112は、入力される画素の信号の信号処理を行うように構成される。信号処理部112は、例えば、負荷回路部、AD(Analog Digital)変換部、水平選択スイッチ等を有する。
 垂直駆動部111によって選択走査された各画素Pから出力される信号は、垂直信号線VSLを通して信号処理部112に供給される。信号処理部112は、例えば、AD変換、及びCDS(Correlated Double Sampling:相関二重サンプリング)等の信号処理を行う。
 水平駆動部113は、シフトレジスタやアドレスデコーダ等によって構成される。水平駆動部113は、信号処理部112の水平選択スイッチを駆動するように構成される。水平駆動部113は、信号処理部112の各水平選択スイッチを走査しつつ順番に駆動する。垂直信号線VSLの各々を通して伝送される各画素Pの信号は、信号処理部112により信号処理が施され、水平駆動部113による選択走査によって順に水平信号線121に出力される。
 出力部114は、入力される信号に対して信号処理を行い、信号を出力するように構成される。出力部114は、信号処理部112から水平信号線121を介して順次入力される画素の信号に対して信号処理を行い、処理後の信号を出力する。出力部114は、例えば、バッファリングのみを行う場合もあるし、黒レベル調整、列ばらつき補正、及び各種デジタル信号処理等を行う場合もある。
 垂直駆動部111、信号処理部112、水平駆動部113、水平信号線121及び出力部114からなる回路部分は、半導体基板11に形成されていてもよいし、あるいは外部制御ICに配設されたものであってもよい。また、それらの回路部分は、ケーブル等により接続された他の基板に形成されていてもよい。
 制御部115は、撮像装置1の各部を制御するように構成される。制御部115は、半導体基板11の外部から与えられるクロックや、動作モードを指令するデータ等を受け取り、また、撮像装置1の内部情報等のデータを出力する。制御部115は、各種のタイミング信号を生成するタイミングジェネレータを有し、タイミングジェネレータで生成された各種のタイミング信号を基に垂直駆動部111、信号処理部112及び水平駆動部113等の周辺回路の駆動制御を行う。入出力端子116は、外部との信号のやり取りを行うものである。
 図3は、第1の実施の形態に係る撮像装置の断面構成の一例を示す図である。また、図4は、第1の実施の形態に係る撮像装置の平面構成の一例を示す図である。撮像装置1は、受光部10と、導光部20とを有する。受光部10は、対向する第1面11S1及び第2面11S2を有する半導体基板11を有する。なお、図3は、画素部100(受光部10)の中心からの距離、即ち、像高が高い領域における断面構成の一例を示している。
 半導体基板11の第1面11S1側に、導光部20が設けられる。半導体基板11の第2面11S2側には、多層配線層(不図示)が設けられる。撮像装置1は、受光部10と、導光部20と、多層配線層とがZ軸方向に積層された構成を有している。光学レンズ系からの光が入射する側に導光部20が設けられ、光が入射する側とは反対側に多層配線層が設けられるともいえる。撮像装置1は、いわゆる裏面照射型の撮像装置である。
 半導体基板11は、例えば、シリコン基板により構成される。光電変換部12は、フォトダイオード(PD)であり、半導体基板11の所定領域にpn接合を有している。半導体基板11には、複数の光電変換部12が埋め込み形成されている。受光部10では、半導体基板11の第1面11S1及び第2面11S2に沿って、複数の光電変換部12が設けられる。
 半導体基板11の第2面11S2側に設けられる多層配線層は、例えば、複数の配線層が、層間絶縁層を間に積層された構成を有している。多層配線層の配線層は、例えば、アルミニウム(Al)、銅(Cu)またはタングステン(W)等を用いて形成される。層間絶縁層は、例えば、酸化シリコン(SiOx)、窒化シリコン(SiNx)及び酸窒化シリコン(SiOxNy)等を用いて形成される。
 半導体基板11及び多層配線層には、光電変換部12で生成された電荷に基づく画素信号を読み出すための回路(例えば、転送トランジスタ、リセットトランジスタ、増幅トランジスタ等)が形成される。また、半導体基板11及び多層配線層には、例えば、上述した垂直駆動部111、信号処理部112、水平駆動部113、出力部114、制御部115及び入出力端子116等が形成されている。
 導光部20は、半導体基板11の第1面11S1と直交する厚さ方向において、受光部10に積層される。導光部20は、レンズ部21と、カラーフィルタ25とを有し、上方から入射する光を受光部10側へ導く。レンズ部21は、オンチップレンズとも呼ばれる光学部材であり、例えば画素P毎にカラーフィルタ25の上方に設けられる。レンズ部21には、撮像装置1の光学系を介して被写体からの光が入射する。光電変換部12は、レンズ部21及びカラーフィルタ25を介して入射する光を光電変換する。
 カラーフィルタ25は、入射する光のうちの特定の波長域の光を選択的に透過させるように構成される。撮像装置1の画素部100に設けられた複数の画素Pには、図4に示したように、画素Pr、画素Pg、及び画素Pbが複数含まれる。画素部100では、複数の画素Pr、複数の画素Pg、及び複数の画素Pbが繰り返し配置されている。
 画素Prは、赤(R)の光を透過するカラーフィルタ25が設けられた画素である。赤のカラーフィルタ25は、赤色の波長域の光を透過する。画素Prの光電変換部は、赤色の波長光を受光して光電変換を行う。画素Prは、赤の波長域の光を受光して信号を生成する画素である。また、画素Pgは、緑(G)の光を透過するカラーフィルタ25が設けられた画素である。緑のカラーフィルタ25は、緑色の波長域の光を透過する。画素Pgの光電変換部は、緑色の波長光を受光して光電変換を行う。画素Pgは、緑の波長域の光を受光して信号を生成する画素である。
 画素Pbは、青(B)の光を透過するカラーフィルタ25が設けられた画素である。青のカラーフィルタ25は、青色の波長域の光を透過する。画素Pbの光電変換部は、青色の波長光を受光して光電変換を行う。画素Pbは、青の波長域の光を受光して信号を生成する画素である。画素Pr、画素Pg、及び画素Pbは、それぞれ、R成分の画素信号、G成分の画素信号、及びB成分の画素信号を生成する。このため、撮像装置1は、RGBの画素信号を得ることができる。
 また、撮像装置1には、図3に示すように、分離部15と、金属化合物層30と、酸化膜層40とが設けられる。分離部15は、隣り合う光電変換部12の間に設けられ、光電変換部12間を分離する。分離部15は、隣り合う画素P(又は光電変換部12)の境界に設けられるトレンチ構造を有し、画素間分離部または画素間分離壁ともいえる。v
 分離部15は、トレンチ16(溝部)を含んで構成される。分離部15のトレンチ16は、半導体基板11において、光電変換部12を囲むように設けられる。トレンチ16内には、例えば、酸化膜が設けられる。図3に示す例では、隣り合う光電変換部12の間にトレンチ16(溝)が形成され、トレンチ16に対して酸化膜が埋め込まれている。
 金属化合物層30は、カラーフィルタ25と光電変換部12との間において、光電変換部12の上に設けられる。金属化合物層30は、金属化合物を用いて構成される。金属化合物層30は、例えば、金属酸化物又は金属窒化物からなる層である。
 金属化合物層30は、固定電荷膜31及び反射防止膜32を有する。固定電荷膜31は、固定電荷を有する膜であり、高誘電体を用いて形成される。固定電荷膜31は、例えば、酸化ハフニウム等の金属酸化物により構成され、光電変換部12上に設けられる。固定電荷膜31は、光電変換部12と分離部15との間に形成される。
 図3に示す例では、固定電荷膜31は、光電変換部12を覆うように設けられる。固定電荷膜31は、例えば負の固定電荷を有する膜であり、半導体基板11の界面における暗電流の発生を抑制する。固定電荷膜31は、例えば、ハフニウム(Hf)、ジルコニウム(Zr)、アルミニウム(Al)、チタン(Ti)、タンタル(Ta)、マグネシウム(Mg)、イットリウム(Y)、ランタノイド(La)元素等の酸化物の少なくとも1つを含むように形成される。
 なお、固定電荷膜31は、酸化プラセオジム、酸化セリウム、酸化ネオジム、酸化プロメチウム、酸化サマリウム、酸化ユウロピウム、酸化ガドリニウム、酸化テルビウム、酸化ジスプロシウム、酸化ホルミウム、酸化ツリウム、酸化イッテルビウム、酸化ルテチウム、酸化イットリウム等により構成されてもよい。また、固定電荷膜31は、窒化アルミニウム膜、酸窒化ハフニウム膜、酸窒化アルミニウム膜等、金属窒化物または金属酸窒化物を用いて構成されてもよい。固定電荷膜31として、正の固定電荷を有する膜を設けるようにしてもよい。
 反射防止膜32は、例えば、酸化タンタル等の金属酸化物により構成され、固定電荷膜31上に設けられる。反射防止膜32は、固定電荷膜31と酸化膜層40との間に設けられ、反射を低減する。反射防止膜32は、酸化タンタル以外の他の金属酸化膜により構成されてもよいし、金属窒化膜または金属酸窒化膜により構成されてもよい。分離部15では、図3に示す例のように、トレンチ16の側面を覆うように固定電荷膜31及び反射防止膜32が形成され得る。
 酸化膜層40は、カラーフィルタ25と金属化合物層30との間に設けられる。酸化膜層40は、例えば、酸化シリコン(SiOx)を用いて形成される。酸化膜層40は、シリコン酸化膜、シリコン酸窒化膜等により構成される。なお、酸化膜層40は、平坦化層(平坦化膜)ともいえる。
 また、撮像装置1は、図3に示すように構造体50を有する。構造体50の一部は、隣り合うカラーフィルタ25の間に設けられ、カラーフィルタ25間を分離する。構造体50は、隣り合うカラーフィルタ25の間に設けられた空隙(空洞)を有し、空隙(空洞)を利用した分離壁(又は分離部)ともいえる。
 構造体50は、隣り合うカラーフィルタ25の間から金属化合物層30上まで設けられ、分離部15と接続されている。構造体50は、図3に示すように、酸化膜層40と金属化合物層30との間まで延びている。構造体50の一部は、金属化合物層30上に形成され、金属化合物層30に接している。また、構造体50は、図4に示すように、カラーフィルタ25を囲むように設けられる。
 構造体50は、図3に示すように、隣り合うカラーフィルタ25の間に設けられる第1部分51と、金属化合物層30に沿って分離部15まで設けられる第2部分52とを有する。構造体50の第1部分51は、隣り合うカラーフィルタ25の間に位置し、周囲の媒質の屈折率よりも低い屈折率を有する。
 構造体50の第1部分51は、カラーフィルタ25の屈折率よりも低い屈折率を有する。本実施の形態では、第1部分51は、空気(空隙)により構成される。構造体50の第1部分51は、導光部であり、第1部分51とその周囲の媒質との屈折率差によって、入射した光の進行方向を変化させる。撮像装置1は、構造体50の第1部分51によって光を導く導波路構造を有するともいえる。
 構造体50の第2部分52は、光を遮る部材により構成され、金属化合物層30上に設けられる。構造体50の第2部分52は、例えば窒化チタン(TiN)により構成され、第1部分51と分離部15とを接続する。第2部分52は、第1部分51と分離部15のトレンチ16とを連結する連結部(又は接続部)ともいえる。
 構造体50の第2部分52は、第1部分51と分離部15とを接続し、周囲の画素Pに光が漏れることを抑制する。なお、構造体50の第2部分52は、光を吸収する金属膜により構成されてもよい。例えば、第2部分52は、タングステン(W)により構成されてもよい。
 撮像装置1の画素部100の中央部分には、光学レンズからの光がほぼ垂直に入射する。一方、中央部分よりも外側に位置する周辺部分、即ち画素部100の中央から離れた領域には、図3において矢印で示す例のように、光が斜めに入射する。そこで、撮像装置1では、各画素Pにおけるレンズ部21及びカラーフィルタ25の位置が、画素部100(受光部10)の中心からの距離、即ち、像高に応じて異なるように構成される。
 図3に示すように、画素Pのレンズ部21及びカラーフィルタ25は、その画素Pの光電変換部12に対して画素部100(受光部10)の中央側にずらして配置される。構造体50は、受光部10の中心からの距離に応じて互いに異なる大きさの第2部分52を有する。例えば、画素部100の中央から離れて位置する領域ほど、その領域における構造体50の第2部分52の幅(面積)は、大きくなっている。
 なお、画素部100の中央領域では、画素Pは、例えば図5に示すように構成される。画素部100の中央の画素Pでは、図5に示す例のように、レンズ部21、カラーフィルタ25、及び光電変換部12の各々の中心位置は、略一致している。
 このように、撮像装置1では、レンズ部21及びカラーフィルタ25の各々の位置が像高に応じて調整され、瞳補正を適切に行うことができる。光電変換部12に入射する光量が低下することを抑制し、入射光に対する感度が低下することを防ぐことが可能となる。
 また、本実施の形態に係る撮像装置1では、構造体50が設けられることで、周囲の画素に光が漏れることを抑制し、混色が生じることを抑えることができる。構造体50は、入射した光を光電変換部12側へ伝搬することができ、入射光に対する感度を向上させることが可能となる。
 図6A~図6Dは、第1の実施の形態に係る撮像装置の製造方法の一例を示す図である。まず、図6Aに示すように、光電変換部12等の素子が形成された半導体基板11に、金属化合物層30を形成する。また、構造体50の第2部分52として窒化チタン膜、酸化膜層40としてシリコン酸化膜を成膜する。そして、CMP又はエッチバック処理によって、余分なシリコン酸化膜が除去される。
 次に、図6Bに示すように、a-Si膜53(アモルファスシリコン膜)を成膜し、a-Si膜53の周りに保護膜としてシリコン酸化膜を成膜する。また、図6Cに示すように、カラーフィルタ25を形成する。そして、a-Si膜53上のシリコン酸化膜の一部にホール(開口)を形成し、そのホールを介してa-Si膜53のエッチングを行う。これにより、構造体50の第1部分51の空隙が形成される。なお、シリコン酸化膜のホールは、平面視において、画素Pの隅(角部)、例えば四隅に配置され得る。
 空隙が形成された後、例えばシリコン酸化膜によってホールを閉塞する。これにより、図6Dに示すように、第1部分51の空隙を有する構造体50が形成される。以上のような製造方法によって、図3等に示す撮像装置1を製造することができる。なお、上述した製造方法は、あくまでも一例であって、他の製造方法を採用してもよい。
[作用・効果]
 本実施の形態に係る撮像装置(撮像装置1)は、光を光電変換する光電変換部(光電変換部12)を有する複数の画素(画素P)と、画素毎に設けられるカラーフィルタ(カラーフィルタ25)と、隣り合う光電変換部の間に設けられる分離部(15)と、隣り合うカラーフィルタの間に設けられた空隙を有する構造体(構造体50)と、カラーフィルタと光電変換部との間において光電変換部の上に設けられる金属化合物層(金属化合物層30)とを備える。構造体は、隣り合うカラーフィルタの間から金属化合物層上まで設けられ、分離部と接続されている。
 本実施の形態に係る撮像装置1では、空隙を有する構造体50は、隣り合うカラーフィルタ25の間から金属化合物層30上まで設けられ、分離部15と接続されている。このため、画素間において混色が生じることを抑制することができる。混色を低減可能な撮像装置1を実現することが可能となる。
 また、本実施の形態では、構造体50は、隣り合うカラーフィルタ25の間に設けられる第1部分51と、金属化合物層30に沿って分離部15まで設けられる第2部分52とを有する。第1部分51は、空隙により構成され、第2部分52は、金属膜により構成される。空隙からなる第1部分51と金属膜からなる第2部分52とが積層して構成された構造体50が設けられることで、混色が生じることを効果的に抑制することができる。画像の画質低下を防ぐことが可能となる。
 次に、本開示の変形例について説明する。以下では、上記実施の形態と同様の構成要素については同一の符号を付し、適宜説明を省略する。
(1-1.変形例1)
 図7は、本開示の変形例1に係る撮像装置の断面構成の一例を示す図である。構造体50の第2部分52は、空隙と金属膜によって構成されてもよい。図7に示す例では、構造体50の第2部分52は、金属化合物層30に積層される金属膜(例えば窒化チタン膜)と、その金属膜に積層して設けられる空隙とを有する。本変形例の場合も、上記した実施の形態と同様の効果を得ることができる。
 図8A~図8Dは、変形例1に係る撮像装置の製造方法の一例を示す図である。まず、図8Aに示すように、光電変換部12等の素子が形成された半導体基板11に、金属化合物層30を形成する。また、構造体50の第2部分52である窒化チタン膜及びa-Si膜53aと、酸化膜層40としてシリコン酸化膜を成膜する。そして、CMP又はエッチバック処理によって、余分なシリコン酸化膜が除去される。
 次に、図8Bに示すように、a-Si膜53bを成膜し、a-Si膜53a,53bの周りに保護膜としてシリコン酸化膜を成膜する。そして、図8Cに示すように、カラーフィルタ25を形成する。
 次に、a-Si膜53b上のシリコン酸化膜の一部にホール(開口)を形成し、そのホールを介してa-Si膜53b及びa-Si膜53aのエッチングを行う。これにより、構造体50の第1部分51の空隙が形成される。空隙が形成された後にシリコン酸化膜によってホールを閉塞することで、図8Dに示すように空隙を有する構造体50が形成される。以上のような製造方法によって、図7に示す撮像装置1を製造することができる。
(1-2.変形例2)
 図9は、変形例2に係る撮像装置の断面構成の一例を示す図である。構造体50の第2部分52は、複数種の金属膜によって構成されてもよい。図9に示すように、構造体50の第2部分52は、第1金属膜54aと第2金属膜54bが積層された構成を有していてもよい。
 例えば、第1金属膜54aは、窒化チタン膜により構成され、金属化合物層30上に設けられる。また、第2金属膜54bは、タングステン膜により構成され、第1金属膜54a上に設けられる。なお、第1金属膜54a及び第2金属膜54bは、他の金属材料を用いて構成されてもよい。
 図10A~図10Dは、変形例2に係る撮像装置の製造方法の一例を示す図である。まず、図10Aに示すように、光電変換部12等の素子が形成された半導体基板11に、金属化合物層30を形成する。また、第1金属膜54aである窒化チタン膜と、第2金属膜54bであるタングステン膜と、酸化膜層40としてシリコン酸化膜を成膜する。そして、CMP又はエッチバック処理によって、余分なシリコン酸化膜が除去される。
 次に、図10Bに示すように、a-Si膜53を成膜し、a-Si膜53の周りに保護膜としてシリコン酸化膜を成膜する。そして、図10Cに示すように、カラーフィルタ25を形成する。
 次に、a-Si膜53上のシリコン酸化膜の一部にホールを形成し、そのホールを介してa-Si膜53のエッチングを行う。これにより、構造体50の第1部分51の空隙が形成される。空隙が形成された後にシリコン酸化膜によってホールを閉塞することで、図10Dに示すように空隙を有する構造体50が形成される。以上のような製造方法によって、図9に示す撮像装置1を製造することができる。
(1-3.変形例3)
 図11は、変形例3に係る撮像装置の断面構成の一例を示す図である。構造体50の第2部分52は、空隙と複数の金属膜によって構成されてもよい。図11に示す例では、構造体50の第2部分52は、金属化合物層30に積層される第1金属膜54aと、第1金属膜54aに積層される第2金属膜54bと、第2金属膜54bに積層される空隙とを有する。
 図12A~図12Dは、変形例3に係る撮像装置の製造方法の一例を示す図である。まず、図12Aに示すように、光電変換部12等の素子が形成された半導体基板11に、金属化合物層30を形成する。また、構造体50の第2部分52として第1金属膜54aと第2金属膜54bとa-Si膜53a、酸化膜層40としてシリコン酸化膜を成膜する。そして、CMP又はエッチバック処理によって、余分なシリコン酸化膜が除去される。
 次に、図12Bに示すように、a-Si膜53bを成膜し、a-Si膜53a,53bの周りに保護膜としてシリコン酸化膜を成膜する。そして、図12Cに示すように、カラーフィルタ25を形成する。
 次に、a-Si膜53b上のシリコン酸化膜の一部にホールを形成し、そのホールを介してa-Si膜53b及びa-Si膜53aのエッチングを行う。これにより、構造体50の空隙が形成される。空隙が形成された後にシリコン酸化膜によってホールを閉塞することで、図12Dに示すように空隙を有する構造体50が形成される。以上のような製造方法によって、図11に示す撮像装置1を製造することができる。
(1-4.変形例4)
 図13は、変形例4に係る撮像装置の断面構成の一例を示す図である。図13に示す例のように、構造体50の一部は、分離部15内に設けられてもよい。図13に示す例では、構造体50の第2部分52の一部は、分離部15内に埋め込み形成されている。本変形例の場合も、上記した実施の形態と同様の効果を得ることができる。
 図14A~図14Dは、変形例4に係る撮像装置の製造方法の一例を示す図である。まず、図14Aに示すように、光電変換部12等の素子が形成された半導体基板11に、金属化合物層30を形成する。また、構造体50の第2部分52である窒化チタン膜と、酸化膜層40としてシリコン酸化膜を成膜する。構造体50の第2部分52の一部は、分離部15内に埋め込み形成される。そして、CMP又はエッチバック処理によって、余分なシリコン酸化膜が除去される。
 次に、図14Bに示すように、a-Si膜53を成膜し、a-Si膜53の周りに保護膜としてシリコン酸化膜を成膜する。そして、図14Cに示すように、カラーフィルタ25を形成する。
 次に、a-Si膜53上のシリコン酸化膜の一部にホールを形成し、そのホールを介してa-Si膜53のエッチングを行う。これにより、構造体50の第1部分51の空隙が形成される。空隙が形成された後にシリコン酸化膜によってホールを閉塞することで、図14Dに示すように空隙を有する構造体50が形成される。以上のような製造方法によって、図13に示す撮像装置1を製造することができる。
<2.第2の実施の形態>
 次に、本開示の第2の実施の形態について説明する。以下では、上述した実施の形態と同様の構成部分については同一の符号を付し、適宜説明を省略する。
 図15は、本開示の第2の実施の形態に係る撮像装置の断面構成の一例を示す図である。図15は、画素部100(受光部10)の中心からの距離、即ち、像高が高い領域における断面構成の一例を示している。本実施の形態では、構造体50の第2部分52は、空気(空隙)により構成される。第1部分51と第2部分52は、共に空隙により構成され、連続して設けられるともいえる。
 構造体50の第2部分52は、導光部であり、第2部分52とその周囲の媒質との屈折率差によって、入射した光の進行方向を変化させる。撮像装置1は、構造体50の第1部分51及び第2部分52によって光を導く導波路構造を有するともいえる。
 本実施の形態に係る撮像装置1では、空隙からなる第1部分51及び第2部分52が設けられることで、周囲の画素Pに光が漏れることを抑制し、混色が生じることを抑えることができる。また、空隙からなる構造体50は、光電変換部12へ効率よく光を導くことができ、入射光に対する感度を向上させることが可能となる。
 また、構造体50の第2部分52は、空隙により構成され、金属化合物層30に接するように形成される。酸化膜層の内部において低屈折率の材料を形成する場合と比較して、撮像装置1の製造の難易度を低減させることが可能となる。
 なお、画素部100の中央領域では、画素Pは、例えば図16に示すように構成される。画素部100の中央の画素Pでは、図16に示す例のように、レンズ部21、カラーフィルタ25、及び光電変換部12の各々の中心位置は、略一致している。
 また、画素部100の中央部における構造体50の第2部分52の幅w1(図16参照)は、中央部分よりも外側に位置する周辺部分における構造体50の第2部分52の幅w2(図15参照)よりも小さくなっている。なお、図17に示すように、画素部100の中央部における構造体50の第2部分52の幅w1は、図15に示す第2部分52の幅w2と略等しくなっていてもよい。
[作用・効果]
 本実施の形態に係る撮像装置(撮像装置1)は、光を光電変換する光電変換部(光電変換部12)を有する複数の画素(画素P)と、画素毎に設けられるカラーフィルタ(カラーフィルタ25)と、隣り合う光電変換部の間に設けられる分離部(分離部15)と、隣り合うカラーフィルタの間に設けられた空隙(第1部分51、第2部分52)を有する構造体(構造体50)と、カラーフィルタと光電変換部との間において光電変換部の上に設けられる金属化合物層(金属化合物層30)とを備える。構造体は、隣り合うカラーフィルタの間から金属化合物層上まで設けられ、分離部と接続されている。
 本実施の形態に係る撮像装置1では、構造体50は、隣り合うカラーフィルタ25の間から金属化合物層30上まで設けられ、分離部15と接続されている。このため、混色が生じることを抑制することができる。混色を低減可能な撮像装置1を実現することが可能となる。
 また、本実施の形態では、構造体50は、隣り合うカラーフィルタ25の間に設けられる第1部分51と、金属化合物層30に沿って分離部15まで設けられる第2部分52とを有する。第1部分51と第2部分52は、空隙により構成される。空隙により構成された構造体50が設けられることで、混色が生じることを効果的に抑制することができる。また、光電変換部12へ効率よく光を導くことができ、入射光に対する感度を向上させることが可能となる。画像の画質低下を防ぐことが可能となる。
 図18A~図18Dは、第2の実施の形態に係る撮像装置の製造方法の一例を示す図である。まず、図18Aに示すように、光電変換部12等の素子が形成された半導体基板11に、金属化合物層30を形成する。また、酸化膜層40として、シリコン酸化膜を成膜する。
 次に、図18Bに示すように、例えばCVDによってa-Si膜53(アモルファスシリコン膜)を成膜し、a-Si膜53の周りに保護膜としてシリコン酸化膜を成膜する。また、図18Cに示すように、カラーフィルタ25を形成する。そして、a-Si膜53上のシリコン酸化膜の一部、例えば画素Pの四隅にホール(スルーホール)を形成し、そのホールを介してa-Si膜53のエッチングを行う。これにより、構造体50の第1部分51の空隙が形成される。
 空隙が形成された後、例えばシリコン酸化膜によってホールを閉塞する。これにより、図18Dに示すように、第1部分51の空隙を有する構造体50が形成される。そして、レンズ部21等を形成することで、図15等に示す撮像装置1を製造することができる。なお、上述した製造方法は、あくまでも一例であって、他の製造方法を採用してもよい。
 次に、本開示の変形例について説明する。以下では、上記実施の形態と同様の構成要素については同一の符号を付し、適宜説明を省略する。
(2-1.変形例5)
 図19は、本開示の変形例5に係る撮像装置の断面構成の一例を示す図である。図19に示す例のように、構造体50の一部は、分離部15内に設けられてもよい。図19に示す例では、構造体50の第2部分52、即ち空隙の一部は、分離部15内に形成されている。本変形例の場合も、上記した実施の形態と同様の効果を得ることができる。
 図20A~図20Dは、変形例5に係る撮像装置の製造方法の一例を示す図である。まず、図20Aに示すように、光電変換部12等の素子が形成された半導体基板11に、金属化合物層30を形成する。また、酸化膜層40として、シリコン酸化膜を成膜する。
 次に、図20Bに示すように、CVDによってa-Si膜53を成膜し、a-Si膜53の周りに保護膜としてシリコン酸化膜を成膜する。そして、図20Cに示すように、カラーフィルタ25を形成する。
 次に、a-Si膜53上のシリコン酸化膜の一部にホールを形成し、そのホールを介してa-Si膜53のエッチングを行う。これにより、空隙が設けられ、構造体50の第1部分51及び第2部分52が形成される。空隙が形成された後にシリコン酸化膜によってホールを閉塞することで、図20Dに示すように空隙を有する構造体50が形成される。以上のような製造方法によって、図19に示す撮像装置1を製造することができる。
(2-2.変形例6)
 図21は、変形例6に係る撮像装置の断面構成の一例を示す図である。図21に示す例のように、撮像装置1の構造体50は、カラーフィルタ25と空隙との間に設けられる保護膜45を有していてもよい。図21に示す例では、第1部分51とカラーフィルタ25との間に、保護膜45が設けられる。
 保護膜45は、酸化膜及び窒化膜の少なくとも一方を含んで構成される。保護膜45は、シリコン酸化膜、シリコン窒化膜、シリコン酸窒化膜、金属酸化膜(例えば酸化アルミニウム、酸化マグネシウム)等により構成されてもよい。
<3.適用例>
 上記撮像装置1等は、例えば、デジタルスチルカメラやビデオカメラ等のカメラシステムや、撮像機能を有する携帯電話等、撮像機能を備えたあらゆるタイプの電子機器に適用することができる。図22は、電子機器1000の概略構成を表したものである。
 電子機器1000は、例えば、レンズ群1001と、撮像装置1と、DSP(Digital Signal Processor)回路1002と、フレームメモリ1003と、表示部1004と、記録部1005と、操作部1006と、電源部1007とを有し、バスライン1008を介して相互に接続されている。
 レンズ群1001は、被写体からの入射光(像光)を取り込んで撮像装置1の撮像面上に結像するものである。撮像装置1は、レンズ群1001によって撮像面上に結像された入射光の光量を画素単位で電気信号に変換して画素信号としてDSP回路1002に供給する。
 DSP回路1002は、撮像装置1から供給される信号を処理する信号処理回路である。DSP回路1002は、撮像装置1からの信号を処理して得られる画像データを出力する。フレームメモリ1003は、DSP回路1002により処理された画像データをフレーム単位で一時的に保持するものである。
 表示部1004は、例えば、液晶パネルや有機EL(Electro Luminescence)パネル等のパネル型表示装置からなり、撮像装置1で撮像された動画または静止画の画像データを、半導体メモリやハードディスク等の記録媒体に記録する。
 操作部1006は、ユーザによる操作に従い、電子機器1000が所有する各種の機能についての操作信号を出力する。電源部1007は、DSP回路1002、フレームメモリ1003、表示部1004、記録部1005および操作部1006の動作電源となる各種の電源を、これら供給対象に対して適宜供給するものである。
<4.応用例>
(移動体への応用例)
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
 図23は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図23に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図23の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
 図24は、撮像部12031の設置位置の例を示す図である。
 図24では、車両12100は、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。撮像部12101及び12105で取得される前方の画像は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
 なお、図24には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
 以上、本開示に係る技術が適用され得る移動体制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば、撮像部12031に適用され得る。具体的には、例えば、撮像装置1等は、撮像部12031に適用することができる。撮像部12031に本開示に係る技術を適用することにより、高精細な撮影画像を得ることができ、移動体制御システムにおいて撮影画像を利用した高精度な制御を行うことができる。
(内視鏡手術システムへの応用例)
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、内視鏡手術システムに適用されてもよい。
 図25は、本開示に係る技術(本技術)が適用され得る内視鏡手術システムの概略的な構成の一例を示す図である。
 図25では、術者(医師)11131が、内視鏡手術システム11000を用いて、患者ベッド11133上の患者11132に手術を行っている様子が図示されている。図示するように、内視鏡手術システム11000は、内視鏡11100と、気腹チューブ11111やエネルギー処置具11112等の、その他の術具11110と、内視鏡11100を支持する支持アーム装置11120と、内視鏡下手術のための各種の装置が搭載されたカート11200と、から構成される。
 内視鏡11100は、先端から所定の長さの領域が患者11132の体腔内に挿入される鏡筒11101と、鏡筒11101の基端に接続されるカメラヘッド11102と、から構成される。図示する例では、硬性の鏡筒11101を有するいわゆる硬性鏡として構成される内視鏡11100を図示しているが、内視鏡11100は、軟性の鏡筒を有するいわゆる軟性鏡として構成されてもよい。
 鏡筒11101の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡11100には光源装置11203が接続されており、当該光源装置11203によって生成された光が、鏡筒11101の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者11132の体腔内の観察対象に向かって照射される。なお、内視鏡11100は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。
 カメラヘッド11102の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU: Camera Control Unit)11201に送信される。
 CCU11201は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡11100及び表示装置11202の動作を統括的に制御する。さらに、CCU11201は、カメラヘッド11102から画像信号を受け取り、その画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。
 表示装置11202は、CCU11201からの制御により、当該CCU11201によって画像処理が施された画像信号に基づく画像を表示する。
 光源装置11203は、例えばLED(Light Emitting Diode)等の光源から構成され、術部等を撮影する際の照射光を内視鏡11100に供給する。
 入力装置11204は、内視鏡手術システム11000に対する入力インタフェースである。ユーザは、入力装置11204を介して、内視鏡手術システム11000に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、内視鏡11100による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示等を入力する。
 処置具制御装置11205は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具11112の駆動を制御する。気腹装置11206は、内視鏡11100による視野の確保及び術者の作業空間の確保の目的で、患者11132の体腔を膨らめるために、気腹チューブ11111を介して当該体腔内にガスを送り込む。レコーダ11207は、手術に関する各種の情報を記録可能な装置である。プリンタ11208は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。
 なお、内視鏡11100に術部を撮影する際の照射光を供給する光源装置11203は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成することができる。RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置11203において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド11102の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。
 また、光源装置11203は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド11102の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。
 また、光源装置11203は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察すること(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得ること等を行うことができる。光源装置11203は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。
 図26は、図25に示すカメラヘッド11102及びCCU11201の機能構成の一例を示すブロック図である。
 カメラヘッド11102は、レンズユニット11401と、撮像部11402と、駆動部11403と、通信部11404と、カメラヘッド制御部11405と、を有する。CCU11201は、通信部11411と、画像処理部11412と、制御部11413と、を有する。カメラヘッド11102とCCU11201とは、伝送ケーブル11400によって互いに通信可能に接続されている。
 レンズユニット11401は、鏡筒11101との接続部に設けられる光学系である。鏡筒11101の先端から取り込まれた観察光は、カメラヘッド11102まで導光され、当該レンズユニット11401に入射する。レンズユニット11401は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。
 撮像部11402は、撮像素子で構成される。撮像部11402を構成する撮像素子は、1つ(いわゆる単板式)であってもよいし、複数(いわゆる多板式)であってもよい。撮像部11402が多板式で構成される場合には、例えば各撮像素子によってRGBそれぞれに対応する画像信号が生成され、それらが合成されることによりカラー画像が得られてもよい。あるいは、撮像部11402は、3D(Dimensional)表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成されてもよい。3D表示が行われることにより、術者11131は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部11402が多板式で構成される場合には、各撮像素子に対応して、レンズユニット11401も複数系統設けられ得る。
 また、撮像部11402は、必ずしもカメラヘッド11102に設けられなくてもよい。例えば、撮像部11402は、鏡筒11101の内部に、対物レンズの直後に設けられてもよい。
 駆動部11403は、アクチュエータによって構成され、カメラヘッド制御部11405からの制御により、レンズユニット11401のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部11402による撮像画像の倍率及び焦点が適宜調整され得る。
 通信部11404は、CCU11201との間で各種の情報を送受信するための通信装置によって構成される。通信部11404は、撮像部11402から得た画像信号をRAWデータとして伝送ケーブル11400を介してCCU11201に送信する。
 また、通信部11404は、CCU11201から、カメラヘッド11102の駆動を制御するための制御信号を受信し、カメラヘッド制御部11405に供給する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。
 なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、ユーザによって適宜指定されてもよいし、取得された画像信号に基づいてCCU11201の制御部11413によって自動的に設定されてもよい。後者の場合には、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡11100に搭載されていることになる。
 カメラヘッド制御部11405は、通信部11404を介して受信したCCU11201からの制御信号に基づいて、カメラヘッド11102の駆動を制御する。
 通信部11411は、カメラヘッド11102との間で各種の情報を送受信するための通信装置によって構成される。通信部11411は、カメラヘッド11102から、伝送ケーブル11400を介して送信される画像信号を受信する。
 また、通信部11411は、カメラヘッド11102に対して、カメラヘッド11102の駆動を制御するための制御信号を送信する。画像信号や制御信号は、電気通信や光通信等によって送信することができる。
 画像処理部11412は、カメラヘッド11102から送信されたRAWデータである画像信号に対して各種の画像処理を施す。
 制御部11413は、内視鏡11100による術部等の撮像、及び、術部等の撮像により得られる撮像画像の表示に関する各種の制御を行う。例えば、制御部11413は、カメラヘッド11102の駆動を制御するための制御信号を生成する。
 また、制御部11413は、画像処理部11412によって画像処理が施された画像信号に基づいて、術部等が映った撮像画像を表示装置11202に表示させる。この際、制御部11413は、各種の画像認識技術を用いて撮像画像内における各種の物体を認識してもよい。例えば、制御部11413は、撮像画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具11112の使用時のミスト等を認識することができる。制御部11413は、表示装置11202に撮像画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させてもよい。手術支援情報が重畳表示され、術者11131に提示されることにより、術者11131の負担を軽減することや、術者11131が確実に手術を進めることが可能になる。
 カメラヘッド11102及びCCU11201を接続する伝送ケーブル11400は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。
 ここで、図示する例では、伝送ケーブル11400を用いて有線で通信が行われていたが、カメラヘッド11102とCCU11201との間の通信は無線で行われてもよい。
 以上、本開示に係る技術が適用され得る内視鏡手術システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば、内視鏡11100のカメラヘッド11102に設けられた撮像部11402に好適に適用され得る。撮像部11402に本開示に係る技術を適用することにより、撮像部11402を高感度化することができ、高精細な内視鏡11100を提供することができる。
 以上、実施の形態、変形例および適用例ならびに応用例を挙げて本開示を説明したが、本技術は上記実施の形態等に限定されるものではなく、種々の変形が可能である。例えば、上述した変形例は、上記実施の形態の変形例として説明したが、各変形例の構成を適宜組み合わせることができる。
 本開示の一実施形態の撮像装置は、光を光電変換する光電変換部を有する複数の画素と、画素毎に設けられるカラーフィルタと、隣り合う光電変換部の間に設けられる分離部と、隣り合うカラーフィルタの間に設けられた空隙を有する構造体と、カラーフィルタと光電変換部との間において光電変換部の上に設けられる金属化合物層とを備える。構造体は、隣り合うカラーフィルタの間から金属化合物層上まで設けられ、分離部と接続されている。このため、混色が生じることを抑制することが可能となる。
 なお、本明細書中に記載された効果はあくまで例示であってその記載に限定されるものではなく、他の効果があってもよい。また、本開示は以下のような構成をとることも可能である。
(1)
 光を光電変換する光電変換部を有する複数の画素と、
 前記画素毎に設けられるカラーフィルタと、
 隣り合う前記光電変換部の間に設けられる分離部と、
 隣り合う前記カラーフィルタの間に設けられた空隙を有する構造体と、
 前記カラーフィルタと前記光電変換部との間において前記光電変換部の上に設けられる金属化合物層と
 を備え、
 前記構造体は、隣り合う前記カラーフィルタの間から前記金属化合物層上まで設けられ、前記分離部と接続されている
 撮像装置。
(2)
 前記金属化合物層は、金属酸化物又は金属窒化物からなる層である
 前記(1)に記載の撮像装置。
(3)
 前記構造体は、前記金属化合物層に接している
 前記(1)または(2)に記載の撮像装置。
(4)
 前記カラーフィルタと前記金属化合物層との間に設けられる酸化膜層を有する
 前記(1)から(3)のいずれか1つに記載の撮像装置。
(5)
 前記構造体は、前記酸化膜層と前記金属化合物層との間まで延びている
 前記(1)から(4)のいずれか1つに記載の撮像装置。
(6)
 前記金属化合物層は、固定電荷を有する膜を有する
 前記(1)から(5)のいずれか1つに記載の撮像装置。
(7)
 前記金属化合物層は、固定電荷を有する膜と反射防止膜とを有する
 前記(1)から(5)のいずれか1つに記載の撮像装置。
(8)
 前記固定電荷を有する膜は、前記光電変換部の上に設けられ、
 前記反射防止膜は、前記固定電荷を有する膜の上に設けられる
 前記(7)に記載の撮像装置。
(9)
 前記構造体は、隣り合う前記カラーフィルタの間に設けられる第1部分と、前記金属化合物層に沿って前記分離部まで設けられる第2部分とを有し、
 前記第1部分は、空隙により構成され、
 前記第2部分は、金属膜により構成される
 前記(1)から(8)のいずれか1つに記載の撮像装置。
(10)
 前記第2部分は、前記金属化合物層上に設けられる第1金属膜と、前記第1金属膜上に設けられる第2金属膜とを有する
 前記(9)に記載の撮像装置。
(11)
 前記カラーフィルタと前記金属化合物層との間に設けられる酸化膜層を有し、
 前記第1部分の一部は、前記酸化膜層内に設けられる
 前記(9)または(10)に記載の撮像装置。
(12)
 前記第2部分の一部は、前記分離部内に設けられる
 前記(9)から(11)のいずれか1つに記載の撮像装置。
(13)
 複数の前記画素が設けられた受光部を有し、
 前記構造体は、前記受光部の中心からの距離に応じて互いに異なる大きさの前記第2部分を有する
 前記(9)から(12)のいずれか1つに記載の撮像装置。
(14)
 前記構造体は、隣り合う前記カラーフィルタの間に設けられる第1部分と、前記金属化合物層に沿って前記分離部まで設けられる第2部分とを有し、
 前記第1部分と前記第2部分は、空隙により構成される
 前記(1)から(8)のいずれか1つに記載の撮像装置。
(15)
 前記第2部分の一部は、前記分離部内に設けられる
 前記(14)に記載の撮像装置。
(16)
 前記構造体は、前記カラーフィルタと前記空隙との間に設けられる保護膜を有する
 前記(14)または(15)に記載の撮像装置。
(17)
 前記保護膜は、酸化膜及び窒化膜の少なくとも一方を含む
 前記(16)に記載の撮像装置。
(18)
 複数の前記画素が設けられた受光部を有し、
 前記構造体は、前記受光部の中心からの距離に応じて互いに異なる大きさの前記第2部分を有する
 前記(14)から(17)のいずれか1つに記載の撮像装置。
(19)
 前記構造体は、前記カラーフィルタを囲むように設けられる
 前記(1)から(18)のいずれか1つに記載の撮像装置。
(20)
 前記分離部は、前記光電変換部を囲むように設けられるトレンチを有する
 前記(1)から(19)のいずれか1つに記載の撮像装置。
 本出願は、日本国特許庁において2022年8月3日に出願された日本特許出願番号2022-123953号を基礎として優先権を主張するものであり、この出願の全ての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (20)

  1.  光を光電変換する光電変換部を有する複数の画素と、
     前記画素毎に設けられるカラーフィルタと、
     隣り合う前記光電変換部の間に設けられる分離部と、
     隣り合う前記カラーフィルタの間に設けられた空隙を有する構造体と、
     前記カラーフィルタと前記光電変換部との間において前記光電変換部の上に設けられる金属化合物層と
     を備え、
     前記構造体は、隣り合う前記カラーフィルタの間から前記金属化合物層上まで設けられ、前記分離部と接続されている
     撮像装置。
  2.  前記金属化合物層は、金属酸化物又は金属窒化物からなる層である
     請求項1に記載の撮像装置。
  3.  前記構造体は、前記金属化合物層に接している
     請求項1に記載の撮像装置。
  4.  前記カラーフィルタと前記金属化合物層との間に設けられる酸化膜層を有する
     請求項1に記載の撮像装置。
  5.  前記構造体は、前記酸化膜層と前記金属化合物層との間まで延びている
     請求項4に記載の撮像装置。
  6.  前記金属化合物層は、固定電荷を有する膜を有する
     請求項1に記載の撮像装置。
  7.  前記金属化合物層は、固定電荷を有する膜と反射防止膜とを有する
     請求項1に記載の撮像装置。
  8.  前記固定電荷を有する膜は、前記光電変換部の上に設けられ、
     前記反射防止膜は、前記固定電荷を有する膜の上に設けられる
     請求項7に記載の撮像装置。
  9.  前記構造体は、隣り合う前記カラーフィルタの間に設けられる第1部分と、前記金属化合物層に沿って前記分離部まで設けられる第2部分とを有し、
     前記第1部分は、空隙により構成され、
     前記第2部分は、金属膜により構成される
     請求項1に記載の撮像装置。
  10.  前記第2部分は、前記金属化合物層上に設けられる第1金属膜と、前記第1金属膜上に設けられる第2金属膜とを有する
     請求項9に記載の撮像装置。
  11.  前記カラーフィルタと前記金属化合物層との間に設けられる酸化膜層を有し、
     前記第1部分の一部は、前記酸化膜層内に設けられる
     請求項9に記載の撮像装置。
  12.  前記第2部分の一部は、前記分離部内に設けられる
     請求項9に記載の撮像装置。
  13.  複数の前記画素が設けられた受光部を有し、
     前記構造体は、前記受光部の中心からの距離に応じて互いに異なる大きさの前記第2部分を有する
     請求項9に記載の撮像装置。
  14.  前記構造体は、隣り合う前記カラーフィルタの間に設けられる第1部分と、前記金属化合物層に沿って前記分離部まで設けられる第2部分とを有し、
     前記第1部分と前記第2部分は、空隙により構成される
     請求項1に記載の撮像装置。
  15.  前記第2部分の一部は、前記分離部内に設けられる
     請求項14に記載の撮像装置。
  16.  前記構造体は、前記カラーフィルタと前記空隙との間に設けられる保護膜を有する
     請求項14に記載の撮像装置。
  17.  前記保護膜は、酸化膜及び窒化膜の少なくとも一方を含む
     請求項16に記載の撮像装置。
  18.  複数の前記画素が設けられた受光部を有し、
     前記構造体は、前記受光部の中心からの距離に応じて互いに異なる大きさの前記第2部分を有する
     請求項14に記載の撮像装置。
  19.  前記構造体は、前記カラーフィルタを囲むように設けられる
     請求項1に記載の撮像装置。
  20.  前記分離部は、前記光電変換部を囲むように設けられるトレンチを有する
     請求項1に記載の撮像装置。
PCT/JP2023/027249 2022-08-03 2023-07-25 撮像装置 WO2024029408A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022123953 2022-08-03
JP2022-123953 2022-08-03

Publications (1)

Publication Number Publication Date
WO2024029408A1 true WO2024029408A1 (ja) 2024-02-08

Family

ID=89849011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027249 WO2024029408A1 (ja) 2022-08-03 2023-07-25 撮像装置

Country Status (1)

Country Link
WO (1) WO2024029408A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020100607A1 (ja) * 2018-11-16 2020-05-22 ソニーセミコンダクタソリューションズ株式会社 撮像装置
US20200395392A1 (en) * 2019-06-11 2020-12-17 SK Hynix Inc. Image sensing device and method for forming the same
WO2021199724A1 (ja) * 2020-03-31 2021-10-07 ソニーセミコンダクタソリューションズ株式会社 撮像素子および撮像装置
JP2022083419A (ja) * 2020-11-24 2022-06-03 三星電子株式会社 イメージセンサ
US20220199667A1 (en) * 2020-12-21 2022-06-23 SK Hynix Inc. Image sensing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020100607A1 (ja) * 2018-11-16 2020-05-22 ソニーセミコンダクタソリューションズ株式会社 撮像装置
US20200395392A1 (en) * 2019-06-11 2020-12-17 SK Hynix Inc. Image sensing device and method for forming the same
WO2021199724A1 (ja) * 2020-03-31 2021-10-07 ソニーセミコンダクタソリューションズ株式会社 撮像素子および撮像装置
JP2022083419A (ja) * 2020-11-24 2022-06-03 三星電子株式会社 イメージセンサ
US20220199667A1 (en) * 2020-12-21 2022-06-23 SK Hynix Inc. Image sensing device

Similar Documents

Publication Publication Date Title
JPWO2020175195A1 (ja) 固体撮像装置および電子機器
JP2018195719A (ja) 撮像素子および撮像素子の製造方法
WO2021131318A1 (ja) 固体撮像装置及び電子機器
WO2021241019A1 (ja) 撮像素子および撮像装置
WO2019207978A1 (ja) 撮像素子および撮像素子の製造方法
WO2019220696A1 (ja) 撮像素子および撮像装置
WO2023013444A1 (ja) 撮像装置
JPWO2020158443A1 (ja) 撮像装置及び電子機器
WO2022131034A1 (ja) 撮像装置
WO2021186907A1 (ja) 固体撮像装置及びその製造方法、並びに電子機器
WO2024029408A1 (ja) 撮像装置
WO2023162496A1 (ja) 撮像装置
WO2023058326A1 (ja) 撮像装置
WO2023132137A1 (ja) 撮像素子および電子機器
WO2023013393A1 (ja) 撮像装置
WO2024057814A1 (ja) 光検出装置および電子機器
WO2023067935A1 (ja) 撮像装置
WO2024095832A1 (en) Photodetector, electronic apparatus, and optical element
WO2023234069A1 (ja) 撮像装置および電子機器
WO2022130987A1 (ja) 固体撮像装置およびその製造方法
WO2023079835A1 (ja) 光電変換装置
WO2024075253A1 (ja) 光検出装置および電子機器
WO2023105678A1 (ja) 光検出装置および光学フィルタ
WO2024116302A1 (ja) 光検出素子
WO2023195315A1 (en) Light detecting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849963

Country of ref document: EP

Kind code of ref document: A1