WO2024075253A1 - 光検出装置および電子機器 - Google Patents

光検出装置および電子機器 Download PDF

Info

Publication number
WO2024075253A1
WO2024075253A1 PCT/JP2022/037482 JP2022037482W WO2024075253A1 WO 2024075253 A1 WO2024075253 A1 WO 2024075253A1 JP 2022037482 W JP2022037482 W JP 2022037482W WO 2024075253 A1 WO2024075253 A1 WO 2024075253A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
light
unit
section
wavelength
Prior art date
Application number
PCT/JP2022/037482
Other languages
English (en)
French (fr)
Inventor
和芳 山下
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to PCT/JP2022/037482 priority Critical patent/WO2024075253A1/ja
Publication of WO2024075253A1 publication Critical patent/WO2024075253A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors

Definitions

  • This disclosure relates to a light detection device and electronic equipment.
  • a device has been proposed that has a photodiode that detects light that falls within a specific region of the visible region of the light spectrum (red light, green light, blue light) and a photodiode that detects light that falls within the infrared region (infrared light) (Patent Document 1).
  • An optical detection device includes a first photoelectric conversion unit that performs photoelectric conversion of light, a first light guiding unit that includes a first structure having a size equal to or smaller than the wavelength of incident light and into which light that has passed through the first photoelectric conversion unit is incident, and a second photoelectric conversion unit that performs photoelectric conversion of infrared light that is incident via the first light guiding unit.
  • an electronic device includes an optical system and a photodetector that receives light transmitted through the optical system.
  • the photodetector has a first photoelectric conversion unit that performs photoelectric conversion of light, a first light guide unit that includes a first structure having a size equal to or smaller than the wavelength of the incident light and receives the light that has transmitted through the first photoelectric conversion unit, and a second photoelectric conversion unit that performs photoelectric conversion of infrared light that is incident via the first light guide unit.
  • FIG. 1 is a block diagram showing an example of a schematic configuration of an imaging device which is an example of a light detection device according to an embodiment of the present disclosure.
  • 1 is a diagram illustrating an example of a pixel unit of an imaging device according to an embodiment of the present disclosure.
  • 1 is a diagram illustrating an example of a cross-sectional configuration of an imaging device according to an embodiment of the present disclosure.
  • FIG. 1 is a diagram illustrating an example of a planar configuration of an imaging device according to an embodiment of the present disclosure.
  • FIG. 1 is a diagram illustrating an example of a planar configuration of an imaging device according to an embodiment of the present disclosure.
  • FIG. 1 is a diagram illustrating an example of a planar configuration of an imaging device according to an embodiment of the present disclosure.
  • FIG. 1 is a diagram illustrating an example of a planar configuration of an imaging device according to an embodiment of the present disclosure.
  • FIG. 1 is a diagram illustrating an example of a cross-sectional configuration of an imaging device according to an embodiment of the present disclosure.
  • FIG. 1 is a diagram illustrating an example of a planar configuration of an imaging device according to an embodiment of the present disclosure.
  • FIG. 13 is a diagram illustrating an example of a cross-sectional configuration of an imaging device according to a first modified example of the present disclosure
  • FIG. 11 is a diagram illustrating an example of a cross-sectional configuration of an imaging device according to a second modified example of the present disclosure.
  • FIG. 11 is a diagram illustrating an example of a planar configuration of an imaging device according to a second modified example of the present disclosure.
  • FIG. 1 is a diagram illustrating an example of a cross-sectional configuration of an imaging device according to an embodiment of the present disclosure.
  • FIG. 1 is a diagram illustrating an example of a planar configuration of an imaging device according to an embodiment of the present disclosure.
  • FIG. 13 is a diagram illustrating an example of a
  • FIG. 11 is a diagram illustrating an example of a planar configuration of an imaging device according to a second modified example of the present disclosure.
  • FIG. 11 is a diagram illustrating an example of a planar configuration of an imaging device according to a second modified example of the present disclosure.
  • FIG. 13 is a diagram illustrating an example of a cross-sectional configuration of an imaging device according to a third modified example of the present disclosure.
  • FIG. 13 is a diagram illustrating an example of a planar configuration of an imaging device according to a third modified example of the present disclosure.
  • FIG. 13 is a diagram illustrating an example of a planar configuration of an imaging device according to a third modified example of the present disclosure.
  • FIG. 13 is a diagram illustrating an example of a planar configuration of an imaging device according to a third modified example of the present disclosure.
  • FIG. 13 is a diagram illustrating an example of a planar configuration of an imaging device according to a third modified example of the present disclosure.
  • FIG. 1 is a block diagram illustrating an example of the configuration of an electronic device having an imaging device. 1 is a block diagram showing an example of a schematic configuration of a vehicle control system; 4 is an explanatory diagram showing an example of the installation positions of an outside-vehicle information detection unit and an imaging unit; FIG. 1 is a diagram illustrating an example of a schematic configuration of an endoscopic surgery system. 2 is a block diagram showing an example of the functional configuration of a camera head and a CCU. FIG.
  • Fig. 1 is a block diagram showing an example of a schematic configuration of an imaging device which is an example of a photodetection device according to an embodiment of the present disclosure.
  • Fig. 2 is a diagram showing an example of a pixel unit of an imaging device according to an embodiment.
  • the photodetection device is a device capable of detecting incident light.
  • the imaging device 1 which is a photodetection device can receive light transmitted through an optical system and generate a signal.
  • the imaging device 1 (photodetection device) has a plurality of pixels P having a photoelectric conversion unit, and is configured to perform photoelectric conversion of the incident light to generate a signal.
  • the photoelectric conversion unit of each pixel P of the imaging device 1 is, for example, a photodiode, and is configured to be capable of photoelectric conversion of light.
  • the imaging device 1 has an area (pixel unit 100) in which multiple pixels P are arranged two-dimensionally in a matrix as an imaging area.
  • the pixel unit 100 is a pixel array in which multiple pixels P are arranged, and can also be considered a light receiving area.
  • the imaging device 1 captures incident light (image light) from a subject through an optical system (not shown) that includes an optical lens.
  • the imaging device 1 captures an image of the subject formed by the optical lens.
  • the imaging device 1 photoelectrically converts the received light to generate a pixel signal.
  • the imaging device 1 is, for example, a CMOS (Complementary Metal Oxide Semiconductor) image sensor.
  • the imaging device 1 can be used in electronic devices such as digital still cameras, video cameras, and mobile phones.
  • the direction of incidence of light from the subject is the Z-axis direction
  • the left-right direction on the paper perpendicular to the Z-axis direction is the X-axis direction
  • the up-down direction on the paper perpendicular to the Z-axis and X-axis is the Y-axis direction.
  • directions may be indicated based on the direction of the arrow in Figure 2.
  • the imaging device 1 has, for example, a pixel driving unit 111, a signal processing unit 112, a control unit 113, and a processing unit 114 in a peripheral region of a pixel unit 100 (pixel array).
  • the imaging device 1 is provided with a plurality of control lines L1 and a plurality of signal lines L2.
  • the imaging device 1 is provided with a control line L1, which is a signal line capable of transmitting a signal that controls the pixel P.
  • a control line L1 is a signal line capable of transmitting a signal that controls the pixel P.
  • a plurality of control lines L1 are wired for each pixel row composed of a plurality of pixels P arranged in the horizontal direction (row direction).
  • the control line L1 is configured to transmit a control signal for reading out a signal from the pixel P.
  • the control line L1 can also be considered a pixel drive line that transmits a signal that drives the pixel P.
  • the imaging device 1 is also provided with a signal line L2 capable of transmitting a signal from the pixel P.
  • a signal line L2 is wired for each pixel column made up of a plurality of pixels P aligned in the vertical direction (column direction).
  • the signal line L2 is a vertical signal line and is configured to transmit a signal output from the pixel P.
  • the pixel driving unit 111 is composed of a shift register, an address decoder, etc.
  • the pixel driving unit 111 is configured to be able to drive each pixel P of the pixel unit 100.
  • the pixel driving unit 111 generates a signal for controlling the pixel P, and outputs it to each pixel P of the pixel unit 100 via the control line L1.
  • the pixel driving unit 111 generates, for example, a signal that controls the transfer transistor of the pixel P, a signal that controls the reset transistor, etc., and supplies these to each pixel P via a control line L1.
  • the pixel driving unit 111 can control the reading of pixel signals from each pixel P.
  • the pixel driving unit 111 can also be considered a pixel control unit configured to be able to control each pixel P.
  • the signal processing unit 112 is configured to be able to perform signal processing of the input pixel signals.
  • the signal processing unit 112 has, for example, a load circuit unit, an AD (Analog Digital) conversion unit, a horizontal selection switch, etc.
  • the signals output from each pixel P selected and scanned by the pixel driving unit 111 are input to the signal processing unit 112 via a signal line L2.
  • the signal processing unit 112 performs signal processing such as AD conversion of the pixel P signal and CDS (Correlated Double Sampling).
  • the signals of each pixel P transmitted through each of the signal lines L2 are subjected to signal processing by the signal processing unit 112 and output to the processing unit 114.
  • the processing unit 114 is configured to be able to perform signal processing on the input signal.
  • the processing unit 114 is configured, for example, by a circuit that performs various types of signal processing on pixel signals.
  • the processing unit 114 may include a processor and a memory.
  • the processing unit 114 performs signal processing on pixel signals input from the signal processing unit 112, and outputs the processed pixel signals.
  • the processing unit 114 can perform various types of signal processing, for example, noise reduction processing, tone correction processing, etc.
  • the control unit 113 is configured to be able to control each unit of the imaging device 1.
  • the control unit 113 receives an externally provided clock, data instructing the operation mode, etc., and can also output data such as internal information of the imaging device 1.
  • the control unit 113 has a timing generator configured to be able to generate various timing signals.
  • the control unit 113 controls the driving of peripheral circuits such as the pixel driving unit 111 and the signal processing unit 112 based on the various timing signals (pulse signals, clock signals, etc.) generated by the timing generator.
  • the control unit 113 and the processing unit 114 may be configured as an integrated unit.
  • the pixel driving unit 111, the signal processing unit 112, the control unit 113, the processing unit 114, etc. may be provided on one semiconductor substrate, or may be provided separately on multiple semiconductor substrates.
  • the imaging device 1 may have a structure (a stacked structure) formed by stacking multiple substrates.
  • FIG. 3 is a diagram showing an example of a cross-sectional configuration of an imaging device according to an embodiment.
  • FIGS. 4A to 4C are diagrams showing an example of a planar configuration of an imaging device according to an embodiment.
  • the imaging device 1 has a first light receiving section 10, a second light receiving section 20, and a light guiding section 30.
  • FIG. 4A shows an example of the planar configuration of the first light receiving section 10
  • FIG. 4B shows an example of the planar configuration of the light guiding section 30.
  • FIG. 4C shows an example of the planar configuration of the second light receiving section 20.
  • the imaging device 1 has a configuration in which, for example, a lens section 15, a color filter 16, a first light receiving section 10, a transparent layer 25, a light guiding section 30, a second light receiving section 20, and a multi-layer wiring layer 90 are stacked in the Z-axis direction.
  • the pixel P has a first photoelectric conversion section 12 and a second photoelectric conversion section 22.
  • the pixel P has a structure in which the first photoelectric conversion section 12 and the second photoelectric conversion section 22 are stacked.
  • the first light receiving unit 10 shown in FIG. 3 has a first substrate 11 having a first surface 11S1 and a second surface 11S2 facing each other.
  • a lens unit 15 and a color filter 16 are provided on the first surface 11S1 side of the first substrate 11.
  • the lens unit 15 and the color filter 16 are provided on the side where light from the optical system is incident.
  • a light guide unit 30 is provided on the second surface 11S2 side of the first substrate 11.
  • the first substrate 11 is composed of a semiconductor substrate, for example, a silicon substrate.
  • a plurality of first photoelectric conversion units 12 are provided along the first surface 11S1 and the second surface 11S2 of the first substrate 11.
  • a plurality of first photoelectric conversion units 12 are embedded and formed in the first substrate 11.
  • the first photoelectric conversion unit 12 is configured to be capable of generating electric charge by photoelectric conversion.
  • the first photoelectric conversion unit 12 is a photodiode (PD) and converts incident light into an electric charge.
  • the first photoelectric conversion unit 12 is configured to receive visible light and generate an electric charge.
  • the first photoelectric conversion unit 12 performs photoelectric conversion to generate an electric charge according to the amount of light received.
  • the first light receiving unit 10 (or the first substrate 11) can also be said to be a first photodiode layer.
  • the second light receiving unit 20 has a second substrate 21 having a first surface 21S1 and a second surface 21S2 that face each other.
  • a transparent layer 25 is provided on the first surface 21S1 side of the second substrate 21, and a multi-layer wiring layer 90 is provided on the second surface 21S2 side of the second substrate 21.
  • the multi-layer wiring layer 90 is provided on the side opposite to the side where light is incident.
  • the second substrate 21 is composed of a semiconductor substrate.
  • a plurality of second photoelectric conversion sections 22 are provided along the first surface 21S1 and the second surface 21S2 of the second substrate 21.
  • the plurality of second photoelectric conversion sections 22 are embedded and formed in the second substrate 21.
  • the second photoelectric conversion unit 22 is configured to be capable of generating electric charge by photoelectric conversion.
  • the second photoelectric conversion unit 22 is a photodiode (PD) that converts incident light into an electric charge.
  • the second photoelectric conversion unit 22 is configured to receive infrared light and generate an electric charge.
  • the second photoelectric conversion unit 22 is configured using materials such as Si, Ge, InGaAs, and InP.
  • the second photoelectric conversion unit 22 performs photoelectric conversion to generate an electric charge according to the amount of light received.
  • the second light receiving unit 20 (or the second substrate 21) can also be said to be a second photodiode layer.
  • the multi-layer wiring layer 90 has a configuration in which, for example, multiple wiring layers are stacked with interlayer insulating layers between them.
  • the wiring layers of the multi-layer wiring layer 90 are formed using, for example, aluminum (Al), copper (Cu), etc.
  • the wiring layers may be formed using polysilicon (Poly-Si).
  • the interlayer insulating layers are formed using, for example, silicon oxide (SiOx), silicon nitride (SiNx), silicon oxynitride (SiOxNy), etc.
  • the second substrate 21 and the multi-layer wiring layer 90 are provided with a readout circuit (not shown) configured to be able to output a pixel signal based on the charge generated in the first photoelectric conversion unit 12 or the second photoelectric conversion unit 22.
  • the second substrate 21 and the multi-layer wiring layer 90 may also be formed with the pixel driving unit 111, the signal processing unit 112, the control unit 113, the processing unit 114, and the like described above.
  • the readout circuit of the pixel P includes, for example, a transfer transistor, a floating diffusion (FD), a reset transistor, and an amplification transistor.
  • the pixel P has, for example, a first readout circuit that reads out a pixel signal based on the charge photoelectrically converted by the first photoelectric conversion unit 12, and a second readout circuit that reads out a pixel signal based on the charge photoelectrically converted by the second photoelectric conversion unit 22.
  • the first readout circuit is configured to be capable of reading out pixel signals based on the charges converted by the first photoelectric conversion unit 12 to the signal line L2, which is the vertical signal line described above.
  • the second readout circuit is configured to be capable of reading out pixel signals based on the charges converted by the second photoelectric conversion unit 22 to the signal line L2.
  • the pixel driving unit 111 (see FIG. 1) controls the readout circuit of each pixel P to output a pixel signal from each pixel P to the signal line L2.
  • the pixel driving unit 111 can control the reading out of the pixel signal of each pixel P to the signal line L2.
  • the pixel driving unit 111 and the control unit 113 can be collectively referred to as a pixel control unit.
  • the lens unit 15 guides light incident from above to the first light receiving unit 10.
  • the lens unit 15 is an optical component also known as an on-chip lens.
  • the lens unit 15 is provided above the color filter 16, for example, for each pixel P or for each set of pixels P.
  • Light from a subject enters the lens unit 15 via an optical system such as an imaging lens.
  • the first photoelectric conversion unit 12 photoelectrically converts the visible light incident via the lens unit 15 and the color filter 16.
  • the color filters 16 are configured to selectively transmit light of a specific wavelength range from the incident light.
  • the multiple pixels P provided in the pixel section 100 of the imaging device 1 include multiple pixels Pr provided with color filters 16 that transmit red (R) light, multiple pixels Pg provided with color filters 16 that transmit green (G) light, and multiple pixels Pb provided with color filters 16 that transmit blue (B) light.
  • a plurality of pixels Pr, a plurality of pixels Pg, and a plurality of pixels Pb are arranged repeatedly.
  • the pixels Pr, Pg, and Pb are arranged according to a Bayer array. 2 ⁇ 2 pixels each consisting of one pixel Pr, two pixels Pg, and one pixel Pb are arranged repeatedly.
  • the pixels Pr, Pg, and Pb generate an R component pixel signal, a G component pixel signal, and a B component pixel signal, respectively.
  • the imaging device 1 can obtain RGB pixel signals.
  • the color filter 16 provided in the pixel P of the pixel unit 100 is not limited to a primary color (RGB) color filter, but may be a complementary color filter such as Cy (cyan), Mg (magenta), or Ye (yellow).
  • the pixel Pw that receives white (W) light and performs photoelectric conversion does not need to have a color filter 16.
  • a color filter corresponding to W (white) that is, a filter that transmits light of all wavelengths of incident light, may be disposed.
  • the color filter 16 may be omitted if necessary.
  • the transparent layer 25 is a transparent layer that transmits light, and is made of a material with a low refractive index, such as silicon oxide (SiOx) or silicon nitride (SiNx).
  • the transparent layer 25 may be made of other transparent materials that transmit infrared light.
  • the light-guiding section 30 has a structure 31 and is configured to guide the incident light towards the second light-receiving section 20. Infrared light that has passed through the first photoelectric conversion section 12 is incident on the light-guiding section 30.
  • the structure 31 is a fine (micro) structure with a size equal to or smaller than a predetermined wavelength of the incident light, for example, with a size equal to or smaller than the wavelength of infrared light.
  • the light-guiding section 30 is an optical member (light-guiding member) that guides (propagates) light.
  • the structures 31 are, for example, pillar-shaped structures as shown in Figures 3 and 4B, and are provided within the transparent layer 25. As shown diagrammatically in Figure 3, the multiple structures 31 are arranged side by side in the left-right direction (X-axis direction) of the paper, sandwiching a part of the transparent layer 25 between them. Within the transparent layer 25, the multiple structures 31 can be arranged at intervals equal to or less than a predetermined wavelength of incident light, for example, equal to or less than the wavelength of infrared light.
  • the structure 31 has a refractive index higher than that of the surrounding medium.
  • the medium around the structure 31 is, for example, silicon oxide (SiO), air (voids), etc.
  • the structure 31 is made of a material having a refractive index higher than that of the transparent layer 25.
  • the structure 31 is made of a high refractive index material and can also be called a high refractive index portion.
  • the transparent layer 25 can also be called a low refractive index portion.
  • the structure 31 is formed, for example, using amorphous silicon (a-Si), polysilicon, germanium (Ge), etc.
  • the structure 31 may be composed of silicon compounds such as silicon nitride and silicon carbide, metal oxides such as titanium oxide, tantalum oxide, niobium oxide, hafnium oxide, indium oxide, and tin oxide, or composite oxides of these.
  • the structure 31, which is the high refractive index portion may be composed of an organic material such as siloxane.
  • the structure 31 may be composed of a siloxane-based resin, a styrene-based resin, an acrylic-based resin, etc.
  • the light-guiding section 30 can affect the wavefront by causing a phase delay in the incident light due to the difference between the refractive index of the structures 31 and the refractive index of the surrounding medium. By applying different amounts of phase delay depending on the wavelength of the light, the light-guiding section 30 can adjust the propagation direction of the light and separate the incident light into light of each wavelength range.
  • the size, shape, refractive index, etc. of each structure 31 are determined so that the light of each wavelength range contained in the incident light travels in the desired direction.
  • the light-guiding section 30 is a spectral element that can disperse light using metamaterial (metasurface) technology, and can also be called a splitter (color splitter).
  • the imaging device 1 can also be said to have a color splitter structure.
  • the propagation direction of light of each wavelength through the light-guiding section 30 can be adjusted by the materials (optical constants) of the structures 31 and the transparent layer 25, the shape, height, and arrangement interval (gap) of the structures 31, etc.
  • the light-guiding section 30 can also be called a region (spectral region) where the structures 31 disperse the incident light.
  • the light-guiding unit 30 is a spectroscopic unit configured to be able to split incident light.
  • the light-guiding unit 30 is configured to split infrared light that has passed through the first photoelectric conversion unit 12.
  • the light-guiding unit 30 imparts different phase delays to infrared light in multiple wavelength ranges, for example, infrared light in the first wavelength range to the fourth wavelength range. This makes it possible for the imaging device 1 to split the infrared light incident via the first photoelectric conversion unit 12 into infrared light in the first wavelength range, infrared light in the second wavelength range, infrared light in the third wavelength range, and infrared light in the fourth wavelength range.
  • the light guide section 30 of one pixel Pg of the 2 ⁇ 2 pixels in the Bayer array is configured, for example, as shown diagrammatically by the arrow in FIG. 3, to guide infrared light in a first wavelength range (e.g., 800 nm to 850 nm) of the incident infrared light to the second photoelectric conversion section 22 of that pixel Pg.
  • the light guide section 30 of this pixel Pg is configured to guide infrared light in a second wavelength range (e.g., 850 nm to 900 nm) of the incident infrared light to the second photoelectric conversion section 22 of the pixel Pr.
  • the light guide section 30 of pixel Pg shown in FIG. 3 is configured to guide infrared light in a third wavelength range (e.g., 900 nm to 950 nm) to the second photoelectric conversion section 22 of pixel Pb, and infrared light in a fourth wavelength range (e.g., 950 nm or more) to the second photoelectric conversion section 22 of pixel Pr, the other of the 2 ⁇ 2 pixels in the Bayer array.
  • a third wavelength range e.g., 900 nm to 950 nm
  • a fourth wavelength range e.g., 950 nm or more
  • the light guide section 30 of the pixel Pr shown in FIG. 3 is configured to guide infrared light in the second wavelength range, of the incident infrared light, to the second photoelectric conversion section 22 of that pixel Pr, as shown, for example, as diagrammatically shown by the arrow in FIG. 3.
  • the light guide section 30 of the pixel Pr is configured to guide infrared light in the first wavelength range to the second photoelectric conversion section 22 of one pixel Pg of the 2 ⁇ 2 pixels in the Bayer array.
  • the light guide section 30 of the pixel Pr is also configured to propagate infrared light in the third wavelength range to the second photoelectric conversion section 22 of the pixel Pb, and infrared light in the fourth wavelength range to the second photoelectric conversion section 22 of the other pixel Pg.
  • the light guide section 30 of pixel Pb is configured to, for example, propagate infrared light in a third wavelength range among the incident infrared light to the second photoelectric conversion section 22 of that pixel Pb.
  • the light guide section 30 of pixel Pb is also configured to propagate infrared light in a first wavelength range among the incident infrared light to the second photoelectric conversion section 22 of one pixel Pg, infrared light in a second wavelength range to the second photoelectric conversion section 22 of pixel Pr, and infrared light in a fourth wavelength range to the second photoelectric conversion section 22 of the other pixel Pg.
  • the light guide section 30 of the other pixel Pg of the 2 ⁇ 2 pixels in the Bayer array is configured to, for example, propagate infrared light in a fourth wavelength range of the incident infrared light to the second photoelectric conversion section 22 of that pixel Pg.
  • the light guide section 30 of this pixel Pg is also configured to propagate infrared light in a first wavelength range of the incident infrared light to the second photoelectric conversion section 22 of one pixel Pg of the 2 ⁇ 2 pixels in the Bayer array, infrared light in the second wavelength range to the second photoelectric conversion section 22 of pixel Pr, and infrared light in the third wavelength range to the second photoelectric conversion section 22 of pixel Pb.
  • the second photoelectric conversion unit 22 labeled "IR1”, i.e., the second photoelectric conversion unit 22 of one pixel Pg of the 2 ⁇ 2 pixels in the Bayer array photoelectrically converts infrared light in a first wavelength range (e.g., 800 nm to 850 nm) incident via the light guide unit 30.
  • the second photoelectric conversion unit 22 labeled "IR2”, i.e., the second photoelectric conversion unit 22 of pixel Pr of the 2 ⁇ 2 pixels in the Bayer array photoelectrically converts infrared light in a second wavelength range (e.g., 850 nm to 900 nm) incident via the light guide unit 30.
  • the second photoelectric conversion unit 22 designated “IR1” can receive infrared light in a first wavelength range, perform photoelectric conversion, and generate a charge according to the amount of light received.
  • the second photoelectric conversion unit 22 designated “IR2” can receive infrared light in a second wavelength range, perform photoelectric conversion, and generate a charge according to the amount of light received.
  • the second photoelectric conversion unit 22 designated “IR3” can receive infrared light in a third wavelength range, perform photoelectric conversion, and generate a charge according to the amount of light received.
  • the second photoelectric conversion unit 22 labeled "IR4" can receive infrared light in a fourth wavelength range, perform photoelectric conversion, and generate an electric charge according to the amount of light received.
  • each pixel P labeled "IR1" to "IR4" is also an IR pixel, and can receive infrared light, perform photoelectric conversion, and generate a pixel signal. Therefore, the imaging device 1 can obtain a pixel signal of the IR component for each wavelength range.
  • the imaging device 1 can simultaneously obtain pixel signals corresponding to the amount of visible light and pixel signals corresponding to the amount of light for each wavelength range of infrared light.
  • the imaging device 1 can generate a visible image using RGB pixel signals obtained by photoelectric conversion by the first photoelectric conversion unit 12.
  • the imaging device 1 can also generate an infrared image (IR image) using pixel signals obtained by photoelectric conversion by the second photoelectric conversion unit 22.
  • IR image infrared image
  • a light guide section 30 having the above-mentioned structure 31 is provided between the first photoelectric conversion section 12 and the second photoelectric conversion section 22.
  • the infrared light that has passed through the first photoelectric conversion section 12 can be appropriately guided to the second photoelectric conversion section 22. Therefore, the imaging device 1 can suppress a decrease in sensitivity to infrared light.
  • the light guide section 30, which is constructed using a high refractive index material, can focus infrared light from pixels surrounding the pixel P onto the second photoelectric conversion section 22.
  • the second photoelectric conversion section 22 of the pixel P can efficiently receive infrared light, perform photoelectric conversion, and generate an electric charge according to the amount of light received. Furthermore, compared to a case where a photoelectric conversion section that photoelectrically converts infrared light is provided in place of some of the multiple first photoelectric conversion sections 12 that photoelectrically convert visible light, it is possible to suppress a decrease in RGB resolution. It is also possible to reduce the occurrence of color mixing.
  • a light guide section 30 that separates infrared light according to wavelength. This makes it possible to simultaneously obtain images that distinguish IR wavelengths (for example, infrared images for each of the first to fourth wavelength ranges described above). It is possible to realize a light detection device that detects infrared light in multiple wavelength bands (multispectrum). Furthermore, compared to a case where separation is performed using a filter that absorbs IR light (for example, a bandpass filter), it is possible to suppress a decrease in IR sensitivity. It is possible to improve quantum efficiency (QE).
  • QE quantum efficiency
  • FIG. 5 shows an example of the cross-sectional configuration in the region where the image height is high, i.e., the distance from the center of the pixel section 100 (pixel array) of the imaging device 1.
  • (A) to (C) of FIG. 6 show examples of the planar configurations of the first light receiving section 10, the light guide section 30, and the second light receiving section 20, respectively, in the region where the image height is high.
  • the lens portion 15, color filter 16, first photoelectric conversion portion 12, and light guide portion 30 of a pixel P are shifted toward the center of the pixel unit 100 relative to the second photoelectric conversion portion 22 of that pixel P. It can also be said that the light guide portion 30 and second photoelectric conversion portion 22 are shifted toward the edge of the pixel unit 100 relative to the lens portion 15, color filter 16, and first photoelectric conversion portion 12 of that pixel P.
  • the lens section 15, the color filter 16, the first photoelectric conversion section 12, and the light guide section 30 are shifted to the right on the page relative to the second photoelectric conversion section 22. It can also be said that the light guide section 30 and the second photoelectric conversion section 22 are shifted to the left on the page relative to the lens section 15, the color filter 16, and the first photoelectric conversion section 12.
  • the pixel P is configured, for example, as shown in FIG. 3 and FIG. 4A to FIG. 4C described above.
  • the center positions of the lens section 15, color filter 16, first photoelectric conversion section 12, light guide section 30, and second photoelectric conversion section 22 are approximately aligned, as in the example shown in FIG. 3.
  • the positions of the lens unit 15, color filter 16, first photoelectric conversion unit 12, light guide unit 30, second photoelectric conversion unit 22, etc. are adjusted according to the image height, making it possible to perform appropriate pupil correction. It is possible to suppress a decrease in the amount of light incident on the first photoelectric conversion unit 12 and the second photoelectric conversion unit 22, and to prevent a decrease in sensitivity to incident light. Even when light is incident at an angle, it is possible to properly propagate the incident light to the second photoelectric conversion unit 22.
  • the imaging device 1 described above can be manufactured using a general semiconductor process.
  • the imaging device 1 shown in FIG. 3 can be manufactured by bonding together a first substrate 11 on which the first photoelectric conversion section 12, the light guide section 30, and the transparent layer 25 are formed, and a second substrate 21 on which the second photoelectric conversion section 22 is formed, and then forming a color filter 16, a lens section 15, etc.
  • this manufacturing method is merely one example, and other manufacturing methods may be adopted.
  • the photodetector includes a first photoelectric conversion unit (first photoelectric conversion unit 12) that performs photoelectric conversion of light, a first structure (structure 31) having a size equal to or smaller than the wavelength of the incident light, a first light guiding unit (light guiding unit 30) into which light that has passed through the first photoelectric conversion unit is incident, and a second photoelectric conversion unit (second photoelectric conversion unit 22) that performs photoelectric conversion of infrared light that is incident via the first light guiding unit.
  • first photoelectric conversion unit first photoelectric conversion unit 12
  • first structure 31 having a size equal to or smaller than the wavelength of the incident light
  • first light guiding unit light guiding unit 30
  • second photoelectric conversion unit 22 that performs photoelectric conversion of infrared light that is incident via the first light guiding unit.
  • the photodetector (imaging device 1) is provided with a light guide section 30 into which light that has passed through the first photoelectric conversion section 12 is incident, and a second photoelectric conversion section 22 that performs photoelectric conversion on the infrared light that is incident via the light guide section 30. This makes it possible to suppress a decrease in sensitivity to infrared light. It is possible to realize a photodetector with good detection performance.
  • the photodetector according to this embodiment has a third photoelectric conversion unit (e.g., the second photoelectric conversion unit 22 of pixel Pr) that is provided next to the second photoelectric conversion unit (e.g., the second photoelectric conversion unit 22 of one pixel Pg of the 2 ⁇ 2 pixels in the Bayer array) and performs photoelectric conversion on the infrared light incident via the first light guiding unit.
  • the photodetector also has a fourth photoelectric conversion unit (e.g., the second photoelectric conversion unit 22 of pixel Pb) and a fifth photoelectric conversion unit (e.g., the second photoelectric conversion unit 22 of the other pixel Pg of the 2 ⁇ 2 pixels in the Bayer array).
  • the second photoelectric conversion unit, the third photoelectric conversion unit, the fourth photoelectric conversion unit, and the fifth photoelectric conversion unit receive infrared light of different wavelengths and perform photoelectric conversion.
  • FIG. 7 is a diagram showing an example of a cross-sectional configuration of an imaging device according to a first modified example of the present disclosure.
  • FIG. 7 shows an example of a cross-sectional configuration of a pixel P in a region where the image height is high.
  • the imaging device 1 may have a structure in which a light guide section 30a including a structure 31a and a light guide section 30b including a structure 31b are stacked.
  • the second photoelectric conversion section 22 may generate charges by photoelectrically converting infrared light incident through the light guide section 30a and the light guide section 30b.
  • the light guide section 30a including the structure 31a and the light guide section 30b including the structure 31b may be shifted and arranged according to the image height.
  • the two-layer light guide section can appropriately guide obliquely incident light.
  • the structures 31a of the light-guiding section 30a and the structures 31b of the light-guiding section 30b are microstructures with a size equal to or smaller than a predetermined wavelength of the incident light, for example, equal to or smaller than the wavelength of infrared light.
  • the structures 31a of the light-guiding section 30a and the structures 31b of the light-guiding section 30b may be formed, for example, to have different sizes, shapes, etc. In this case, it is possible to effectively suppress the degradation of the spectral characteristics in the case of obliquely incident light.
  • the light-guiding section 30a and the light-guiding section 30b may be made of the same material or different materials.
  • FIG. 8 is a diagram showing an example of a cross-sectional configuration of an imaging device according to Modification 2.
  • Figs. 9A to 9C are diagrams showing an example of a planar configuration of an imaging device according to Modification 2.
  • the imaging device 1 may have a pixel Pw that receives white (W) light and performs photoelectric conversion.
  • W white
  • the same effects as those of the above-mentioned embodiment can be obtained.
  • FIG. 10 is a diagram showing an example of a cross-sectional configuration of an imaging device according to Modification 3.
  • Figs. 11A to 11C are diagrams showing an example of a planar configuration of an imaging device according to Modification 3.
  • the second photoelectric conversion units 22 may be arranged in 2x2 units.
  • four second photoelectric conversion units 22a-22d labeled "IR1"-"IR4" are arranged for each pixel P.
  • the second photoelectric conversion units 22a-22d are provided for one lens unit 15.
  • the second photoelectric conversion units 22a-22d can receive infrared light in different wavelength ranges, perform photoelectric conversion, and generate electric charges. It is possible to obtain pixel signals of the IR component in each of the first to fourth wavelength ranges.
  • the shape of the structures 31 of the light guiding section 30 is not limited to the above-described example.
  • the shape of the structures 31 can be changed as appropriate, and may be, for example, a quadrangle in a plan view.
  • the shape of the structures 31 may be a polygon, an ellipse, a cross, or another shape.
  • a light guide section configured using a structure may be provided above the first photoelectric conversion section 12.
  • This structure is, for example, a columnar microstructure, similar to the structure 31 of the light guide section 30.
  • the shape of the structure can be changed as appropriate, and may be a polygon or other shape.
  • the imaging device 1 and the like can be applied to any type of electronic device equipped with an imaging function, for example, a camera system such as a digital still camera or a video camera, or a mobile phone with an imaging function.
  • Fig. 12 shows a schematic configuration of an electronic device 1000.
  • the electronic device 1000 includes, for example, a lens group 1001, an imaging device 1, a DSP (Digital Signal Processor) circuit 1002, a frame memory 1003, a display unit 1004, a recording unit 1005, an operation unit 1006, and a power supply unit 1007, which are interconnected via a bus line 1008.
  • a lens group 1001 an imaging device 1
  • a DSP (Digital Signal Processor) circuit 1002 a frame memory 1003, a display unit 1004, a recording unit 1005, an operation unit 1006, and a power supply unit 1007, which are interconnected via a bus line 1008.
  • DSP Digital Signal Processor
  • the lens group 1001 captures incident light (image light) from a subject and forms an image on the imaging surface of the imaging device 1.
  • the imaging device 1 converts the amount of incident light formed on the imaging surface by the lens group 1001 into an electrical signal on a pixel-by-pixel basis and supplies the signal as a pixel signal to the DSP circuit 1002.
  • the DSP circuit 1002 is a signal processing circuit that processes the signal supplied from the imaging device 1.
  • the DSP circuit 1002 outputs image data obtained by processing the signal from the imaging device 1.
  • the frame memory 1003 temporarily holds the image data processed by the DSP circuit 1002 on a frame-by-frame basis.
  • the display unit 1004 is, for example, a panel-type display device such as a liquid crystal panel or an organic EL (Electro Luminescence) panel, and records image data of moving images or still images captured by the imaging device 1 on a recording medium such as a semiconductor memory or a hard disk.
  • a panel-type display device such as a liquid crystal panel or an organic EL (Electro Luminescence) panel
  • a recording medium such as a semiconductor memory or a hard disk.
  • the operation unit 1006 outputs operation signals for various functions of the electronic device 1000 in accordance with operations by the user.
  • the power supply unit 1007 appropriately supplies various types of power to the DSP circuit 1002, frame memory 1003, display unit 1004, recording unit 1005, and operation unit 1006 to these devices.
  • the technology according to the present disclosure (the present technology) can be applied to various products.
  • the technology according to the present disclosure may be realized as a device mounted on any type of moving body such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility device, an airplane, a drone, a ship, or a robot.
  • FIG. 13 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile object control system to which the technology disclosed herein can be applied.
  • the vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside vehicle information detection unit 12030, an inside vehicle information detection unit 12040, and an integrated control unit 12050.
  • Also shown as functional components of the integrated control unit 12050 are a microcomputer 12051, an audio/video output unit 12052, and an in-vehicle network I/F (interface) 12053.
  • the drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs.
  • the drive system control unit 12010 functions as a control device for a drive force generating device for generating the drive force of the vehicle, such as an internal combustion engine or a drive motor, a drive force transmission mechanism for transmitting the drive force to the wheels, a steering mechanism for adjusting the steering angle of the vehicle, and a braking device for generating a braking force for the vehicle.
  • the body system control unit 12020 controls the operation of various devices installed in the vehicle body according to various programs.
  • the body system control unit 12020 functions as a control device for a keyless entry system, a smart key system, a power window device, or various lamps such as headlamps, tail lamps, brake lamps, turn signals, and fog lamps.
  • radio waves or signals from various switches transmitted from a portable device that replaces a key can be input to the body system control unit 12020.
  • the body system control unit 12020 accepts the input of these radio waves or signals and controls the vehicle's door lock device, power window device, lamps, etc.
  • the outside-vehicle information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000.
  • the image capturing unit 12031 is connected to the outside-vehicle information detection unit 12030.
  • the outside-vehicle information detection unit 12030 causes the image capturing unit 12031 to capture images outside the vehicle and receives the captured images.
  • the outside-vehicle information detection unit 12030 may perform object detection processing or distance detection processing for people, cars, obstacles, signs, or characters on the road surface based on the received images.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal according to the amount of light received.
  • the imaging unit 12031 can output the electrical signal as an image, or as distance measurement information.
  • the light received by the imaging unit 12031 may be visible light, or may be invisible light such as infrared light.
  • the in-vehicle information detection unit 12040 detects information inside the vehicle.
  • a driver state detection unit 12041 that detects the state of the driver is connected.
  • the driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 may calculate the driver's degree of fatigue or concentration based on the detection information input from the driver state detection unit 12041, or may determine whether the driver is dozing off.
  • the microcomputer 12051 can calculate the control target values of the driving force generating device, steering mechanism, or braking device based on the information inside and outside the vehicle acquired by the outside vehicle information detection unit 12030 or the inside vehicle information detection unit 12040, and output a control command to the drive system control unit 12010.
  • the microcomputer 12051 can perform cooperative control aimed at realizing the functions of an ADAS (Advanced Driver Assistance System), including avoiding or mitigating vehicle collisions, following based on the distance between vehicles, maintaining vehicle speed, vehicle collision warning, or vehicle lane departure warning.
  • ADAS Advanced Driver Assistance System
  • the microcomputer 12051 can also control the driving force generating device, steering mechanism, braking device, etc. based on information about the surroundings of the vehicle acquired by the outside vehicle information detection unit 12030 or the inside vehicle information detection unit 12040, thereby performing cooperative control aimed at automatic driving, which allows the vehicle to travel autonomously without relying on the driver's operation.
  • the microcomputer 12051 can also output control commands to the body system control unit 12020 based on information outside the vehicle acquired by the outside-vehicle information detection unit 12030. For example, the microcomputer 12051 can control the headlamps according to the position of a preceding vehicle or an oncoming vehicle detected by the outside-vehicle information detection unit 12030, and perform cooperative control aimed at preventing glare, such as switching high beams to low beams.
  • the audio/image output unit 12052 transmits at least one output signal of audio and image to an output device capable of visually or audibly notifying the occupants of the vehicle or the outside of the vehicle of information.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are exemplified as output devices.
  • the display unit 12062 may include, for example, at least one of an on-board display and a head-up display.
  • FIG. 14 shows an example of the installation position of the imaging unit 12031.
  • the vehicle 12100 has imaging units 12101, 12102, 12103, 12104, and 12105 as the imaging unit 12031.
  • the imaging units 12101, 12102, 12103, 12104, and 12105 are provided, for example, at the front nose, side mirrors, rear bumper, back door, and the top of the windshield inside the vehicle cabin of the vehicle 12100.
  • the imaging unit 12101 provided at the front nose and the imaging unit 12105 provided at the top of the windshield inside the vehicle cabin mainly acquire images of the front of the vehicle 12100.
  • the imaging units 12102 and 12103 provided at the side mirrors mainly acquire images of the sides of the vehicle 12100.
  • the imaging unit 12104 provided at the rear bumper or back door mainly acquires images of the rear of the vehicle 12100.
  • the images of the front acquired by the imaging units 12101 and 12105 are mainly used to detect preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, etc.
  • FIG. 14 shows an example of the imaging ranges of the imaging units 12101 to 12104.
  • Imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose
  • imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors, respectively
  • imaging range 12114 indicates the imaging range of the imaging unit 12104 provided on the rear bumper or back door.
  • an overhead image of the vehicle 12100 viewed from above is obtained by superimposing the image data captured by the imaging units 12101 to 12104.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the imaging units 12101 to 12104 may be a stereo camera consisting of multiple imaging elements, or an imaging element having pixels for detecting phase differences.
  • the microcomputer 12051 can obtain the distance to each solid object within the imaging ranges 12111 to 12114 and the change in this distance over time (relative speed with respect to the vehicle 12100) based on the distance information obtained from the imaging units 12101 to 12104, and can extract as a preceding vehicle, in particular, the closest solid object on the path of the vehicle 12100 that is traveling in approximately the same direction as the vehicle 12100 at a predetermined speed (e.g., 0 km/h or faster). Furthermore, the microcomputer 12051 can set the inter-vehicle distance that should be maintained in advance in front of the preceding vehicle, and perform automatic braking control (including follow-up stop control) and automatic acceleration control (including follow-up start control). In this way, cooperative control can be performed for the purpose of automatic driving, which runs autonomously without relying on the driver's operation.
  • automatic braking control including follow-up stop control
  • automatic acceleration control including follow-up start control
  • the microcomputer 12051 classifies and extracts three-dimensional object data on three-dimensional objects, such as two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, utility poles, and other three-dimensional objects, based on the distance information obtained from the imaging units 12101 to 12104, and can use the data to automatically avoid obstacles.
  • the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see.
  • the microcomputer 12051 determines the collision risk, which indicates the risk of collision with each obstacle, and when the collision risk is equal to or exceeds a set value and there is a possibility of a collision, it can provide driving assistance for collision avoidance by outputting an alarm to the driver via the audio speaker 12061 or the display unit 12062, or by forcibly decelerating or steering the vehicle to avoid a collision via the drive system control unit 12010.
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian is present in the captured image of the imaging units 12101 to 12104. The recognition of such a pedestrian is performed, for example, by a procedure of extracting feature points in the captured image of the imaging units 12101 to 12104 as infrared cameras, and a procedure of performing pattern matching processing on a series of feature points that indicate the contour of an object to determine whether or not it is a pedestrian.
  • the audio/image output unit 12052 controls the display unit 12062 to superimpose a rectangular contour line for emphasis on the recognized pedestrian.
  • the audio/image output unit 12052 may also control the display unit 12062 to display an icon or the like indicating a pedestrian at a desired position.
  • the technology of the present disclosure can be applied to, for example, the imaging unit 12031.
  • the imaging device 1 etc. can be applied to the imaging unit 12031.
  • the technology according to the present disclosure (Application example to endoscopic surgery system)
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure may be applied to an endoscopic surgery system.
  • FIG. 15 is a diagram showing an example of the general configuration of an endoscopic surgery system to which the technology disclosed herein (the present technology) can be applied.
  • an operator (doctor) 11131 is shown using an endoscopic surgery system 11000 to perform surgery on a patient 11132 on a patient bed 11133.
  • the endoscopic surgery system 11000 is composed of an endoscope 11100, other surgical tools 11110 such as an insufflation tube 11111 and an energy treatment tool 11112, a support arm device 11120 that supports the endoscope 11100, and a cart 11200 on which various devices for endoscopic surgery are mounted.
  • the endoscope 11100 is composed of a lens barrel 11101, the tip of which is inserted into the body cavity of the patient 11132 at a predetermined length, and a camera head 11102 connected to the base end of the lens barrel 11101.
  • the endoscope 11100 is configured as a so-called rigid scope having a rigid lens barrel 11101, but the endoscope 11100 may also be configured as a so-called flexible scope having a flexible lens barrel.
  • the tip of the tube 11101 has an opening into which an objective lens is fitted.
  • a light source device 11203 is connected to the endoscope 11100, and light generated by the light source device 11203 is guided to the tip of the tube by a light guide extending inside the tube 11101, and is irradiated via the objective lens towards an object to be observed inside the body cavity of the patient 11132.
  • the endoscope 11100 may be a direct-viewing endoscope, an oblique-viewing endoscope, or a side-viewing endoscope.
  • An optical system and an image sensor are provided inside the camera head 11102, and the reflected light (observation light) from the object of observation is focused on the image sensor by the optical system.
  • the observation light is photoelectrically converted by the image sensor to generate an electrical signal corresponding to the observation light, i.e., an image signal corresponding to the observed image.
  • the image signal is sent to the camera control unit (CCU: Camera Control Unit) 11201 as RAW data.
  • CCU Camera Control Unit
  • the CCU 11201 is composed of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), etc., and controls the overall operation of the endoscope 11100 and the display device 11202. Furthermore, the CCU 11201 receives an image signal from the camera head 11102, and performs various image processing on the image signal, such as development processing (demosaic processing), in order to display an image based on the image signal.
  • a CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • the display device 11202 under the control of the CCU 11201, displays an image based on the image signal that has been subjected to image processing by the CCU 11201.
  • the light source device 11203 is composed of a light source such as an LED (Light Emitting Diode) and supplies irradiation light to the endoscope 11100 when photographing the surgical site, etc.
  • a light source such as an LED (Light Emitting Diode) and supplies irradiation light to the endoscope 11100 when photographing the surgical site, etc.
  • the input device 11204 is an input interface for the endoscopic surgery system 11000.
  • a user can input various information and instructions to the endoscopic surgery system 11000 via the input device 11204.
  • the user inputs an instruction to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) of the endoscope 11100.
  • the treatment tool control device 11205 controls the operation of the energy treatment tool 11112 for cauterizing tissue, incising, sealing blood vessels, etc.
  • the insufflation device 11206 sends gas into the body cavity of the patient 11132 via the insufflation tube 11111 to inflate the body cavity in order to ensure a clear field of view for the endoscope 11100 and to ensure a working space for the surgeon.
  • the recorder 11207 is a device capable of recording various types of information related to the surgery.
  • the printer 11208 is a device capable of printing various types of information related to the surgery in various formats such as text, images, or graphs.
  • the light source device 11203 that supplies illumination light to the endoscope 11100 when photographing the surgical site can be composed of a white light source composed of, for example, an LED, a laser light source, or a combination of these.
  • a white light source composed of, for example, an LED, a laser light source, or a combination of these.
  • the white light source is composed of a combination of RGB laser light sources, the output intensity and output timing of each color (each wavelength) can be controlled with high precision, so that the white balance of the captured image can be adjusted in the light source device 11203.
  • the light source device 11203 may be controlled to change the intensity of the light it outputs at predetermined time intervals.
  • the image sensor of the camera head 11102 may be controlled to acquire images in a time-division manner in synchronization with the timing of the change in the light intensity, and the images may be synthesized to generate an image with a high dynamic range that is free of so-called blackout and whiteout.
  • the light source device 11203 may be configured to supply light of a predetermined wavelength band corresponding to special light observation.
  • special light observation for example, by utilizing the wavelength dependency of light absorption in body tissue, a narrow band of light is irradiated compared to the light irradiated during normal observation (i.e., white light), and a predetermined tissue such as blood vessels on the surface of the mucosa is photographed with high contrast, so-called narrow band imaging is performed.
  • fluorescent observation may be performed in which an image is obtained by fluorescence generated by irradiating excitation light.
  • excitation light is irradiated to the body tissue and the fluorescence from the body tissue is observed (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into the body tissue and excitation light corresponding to the fluorescent wavelength of the reagent is irradiated to the body tissue to obtain a fluorescent image.
  • the light source device 11203 may be configured to supply narrow band light and/or excitation light corresponding to such special light observation.
  • FIG. 16 is a block diagram showing an example of the functional configuration of the camera head 11102 and CCU 11201 shown in FIG. 15.
  • the camera head 11102 has a lens unit 11401, an imaging unit 11402, a drive unit 11403, a communication unit 11404, and a camera head control unit 11405.
  • the CCU 11201 has a communication unit 11411, an image processing unit 11412, and a control unit 11413.
  • the camera head 11102 and the CCU 11201 are connected to each other via a transmission cable 11400 so that they can communicate with each other.
  • the lens unit 11401 is an optical system provided at the connection with the lens barrel 11101. Observation light taken in from the tip of the lens barrel 11101 is guided to the camera head 11102 and enters the lens unit 11401.
  • the lens unit 11401 is composed of a combination of multiple lenses including a zoom lens and a focus lens.
  • the imaging unit 11402 is composed of an imaging element.
  • the imaging element constituting the imaging unit 11402 may be one (so-called single-plate type) or multiple (so-called multi-plate type).
  • each imaging element may generate an image signal corresponding to each of RGB, and a color image may be obtained by combining these.
  • the imaging unit 11402 may be configured to have a pair of imaging elements for acquiring image signals for the right eye and the left eye corresponding to 3D (dimensional) display. By performing 3D display, the surgeon 11131 can more accurately grasp the depth of the biological tissue in the surgical site.
  • 3D dimensional
  • the imaging unit 11402 does not necessarily have to be provided in the camera head 11102.
  • the imaging unit 11402 may be provided inside the lens barrel 11101, immediately after the objective lens.
  • the driving unit 11403 is composed of an actuator, and moves the zoom lens and focus lens of the lens unit 11401 a predetermined distance along the optical axis under the control of the camera head control unit 11405. This allows the magnification and focus of the image captured by the imaging unit 11402 to be adjusted appropriately.
  • the communication unit 11404 is configured with a communication device for transmitting and receiving various information to and from the CCU 11201.
  • the communication unit 11404 transmits the image signal obtained from the imaging unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400.
  • the communication unit 11404 also receives control signals for controlling the operation of the camera head 11102 from the CCU 11201, and supplies them to the camera head control unit 11405.
  • the control signals include information on the imaging conditions, such as information specifying the frame rate of the captured image, information specifying the exposure value during imaging, and/or information specifying the magnification and focus of the captured image.
  • the above-mentioned frame rate, exposure value, magnification, focus, and other imaging conditions may be appropriately specified by the user, or may be automatically set by the control unit 11413 of the CCU 11201 based on the acquired image signal.
  • the endoscope 11100 is equipped with so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function.
  • the camera head control unit 11405 controls the operation of the camera head 11102 based on a control signal from the CCU 11201 received via the communication unit 11404.
  • the communication unit 11411 is configured with a communication device for transmitting and receiving various information to and from the camera head 11102.
  • the communication unit 11411 receives an image signal transmitted from the camera head 11102 via the transmission cable 11400.
  • the communication unit 11411 also transmits to the camera head 11102 a control signal for controlling the operation of the camera head 11102.
  • the image signal and the control signal can be transmitted by electrical communication, optical communication, etc.
  • the image processing unit 11412 performs various image processing operations on the image signal, which is the RAW data transmitted from the camera head 11102.
  • the control unit 11413 performs various controls related to the imaging of the surgical site, etc. by the endoscope 11100, and the display of the captured images obtained by imaging the surgical site, etc. For example, the control unit 11413 generates a control signal for controlling the driving of the camera head 11102.
  • the control unit 11413 also causes the display device 11202 to display the captured image showing the surgical site, etc., based on the image signal that has been image-processed by the image processing unit 11412. At this time, the control unit 11413 may recognize various objects in the captured image using various image recognition techniques. For example, the control unit 11413 can recognize surgical tools such as forceps, specific body parts, bleeding, mist generated when the energy treatment tool 11112 is used, etc., by detecting the shape and color of the edges of objects included in the captured image. When the control unit 11413 causes the display device 11202 to display the captured image, it may use the recognition result to superimpose various types of surgical support information on the image of the surgical site. By superimposing the surgical support information and presenting it to the surgeon 11131, the burden on the surgeon 11131 can be reduced and the surgeon 11131 can proceed with the surgery reliably.
  • various image recognition techniques such as forceps, specific body parts, bleeding, mist generated when the energy treatment tool 11112 is used, etc.
  • the transmission cable 11400 that connects the camera head 11102 and the CCU 11201 is an electrical signal cable that supports electrical signal communication, an optical fiber that supports optical communication, or a composite cable of these.
  • communication is performed wired using a transmission cable 11400, but communication between the camera head 11102 and the CCU 11201 may also be performed wirelessly.
  • the technology of the present disclosure can be suitably applied to, for example, the imaging unit 11402 provided in the camera head 11102 of the endoscope 11100.
  • the technology of the present disclosure can be suitably applied to the imaging unit 11402, the sensitivity of the imaging unit 11402 can be increased, and a high-definition endoscope 11100 can be provided.
  • an imaging device has been described as an example, but the light detection device disclosed herein may be, for example, a device that receives incident light and converts the light into an electric charge.
  • the output signal may be a signal of image information or a signal of distance measurement information.
  • the light detection device imaging device
  • the light detection device may be applied to an image sensor, a distance measurement sensor, etc.
  • the optical detection device disclosed herein may also be applied as a distance measurement sensor capable of measuring distance using the Time Of Flight (TOF) method.
  • the optical detection device (imaging device) may also be applied as a sensor capable of detecting events, for example, an event-driven sensor (called an Event Vision Sensor (EVS), Event Driven Sensor (EDS), Dynamic Vision Sensor (DVS), etc.).
  • EVS Event Vision Sensor
  • EDS Event Driven Sensor
  • DVS Dynamic Vision Sensor
  • the photodetector includes a first photoelectric conversion unit that converts light into an electric signal, a first light guide unit that includes a first structure having a size equal to or smaller than the wavelength of incident light and into which light that has passed through the first photoelectric conversion unit is incident, and a second photoelectric conversion unit that converts infrared light incident via the first light guide unit into an electric signal.
  • a first photoelectric conversion unit that converts light into an electric signal
  • a first light guide unit that includes a first structure having a size equal to or smaller than the wavelength of incident light and into which light that has passed through the first photoelectric conversion unit is incident
  • a second photoelectric conversion unit that converts infrared light incident via the first light guide unit into an electric signal.
  • a first photoelectric conversion unit that converts light into an electric signal; a first light guiding unit including a first structure having a size equal to or smaller than the wavelength of the incident light, into which the light transmitted through the first photoelectric conversion unit is incident; a second photoelectric conversion unit that performs photoelectric conversion on the infrared light incident via the first light guiding unit.
  • the light detection device further comprising a third photoelectric conversion unit provided adjacent to the second photoelectric conversion unit and performing photoelectric conversion on infrared light incident via the first light guide unit.
  • the second photoelectric conversion unit photoelectrically converts infrared light having a first wavelength incident via the first light guiding unit
  • the light detection device according to (2) wherein the third photoelectric conversion unit photoelectrically converts infrared light having a second wavelength different from the first wavelength that is incident via the first light guiding unit.
  • a fifth photoelectric conversion unit that performs photoelectric conversion on the infrared light incident through the first light guiding unit;
  • a fourth photoelectric conversion unit that performs photoelectric conversion on the infrared light incident through the first light guiding unit,
  • a fifth photoelectric conversion unit that performs photoelectric conversion on the infrared light incident through the first light guiding unit;
  • (10) a pixel array provided with a plurality of the first photoelectric conversion units;
  • (11) a pixel array provided with a plurality of the first photoelectric conversion units;
  • (12) The light detection device according to any one of (1) to (11), wherein the first structure has a size equal to or smaller than the wavelength of infrared light.
  • the optical detection device according to any one of (1) to (12), wherein the refractive index of the first structure is higher than the refractive index of a medium adjacent to the first structure.
  • a second light guiding section provided between the first photoelectric conversion section and the first light guiding section and including a second structure having a size equal to or smaller than a wavelength of incident light;
  • the light detection device according to any one of (1) to (13), wherein the second photoelectric conversion unit performs photoelectric conversion on infrared light incident via the first light guiding unit and the second light guiding unit.
  • a pixel array provided with a plurality of the first photoelectric conversion units;
  • the second structure has a size equal to or smaller than the wavelength of infrared light,
  • the optical detection device according to (14) or (15), wherein the refractive index of the second structure is higher than the refractive index of a medium adjacent to the second structure.
  • An optical system a light detection device that receives light transmitted through the optical system;
  • the light detection device includes: A first photoelectric conversion unit that converts light into an electric signal; a first light guiding unit including a first structure having a size equal to or smaller than the wavelength of the incident light, into which the light transmitted through the first photoelectric conversion unit is incident; and a second photoelectric conversion unit that performs photoelectric conversion on the infrared light incident via the first light guiding unit.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

本開示の一実施形態の光検出装置は、光を光電変換する第1光電変換部(12)と、入射光の波長以下の大きさの第1構造体(31)を含み、前記第1光電変換部(12)を透過した光が入射する第1導光部(30)と、前記第1導光部(30)を介して入射する赤外光を光電変換する第2光電変換部(22)とを備える。

Description

光検出装置および電子機器
 本開示は、光検出装置および電子機器に関する。
 光スペクトルの可視領域の特定領域に該当する光(赤色光、緑色光、青色光)を検出するフォトダイオードと、赤外領域に該当する光(赤外光)を検出するフォトダイオードとを有する装置が提案されている(特許文献1)。
特開2009-272620号公報
 光を検出する装置では、赤外光に対する感度を向上させることが望ましい。
 良好な感度を有する光検出装置を提供することが望まれる。
 本開示の一実施形態の光検出装置は、光を光電変換する第1光電変換部と、入射光の波長以下の大きさの第1構造体を含み、第1光電変換部を透過した光が入射する第1導光部と、第1導光部を介して入射する赤外光を光電変換する第2光電変換部とを備える。
 本開示の一実施形態の電子機器は、光学系と、光学系を透過した光を受光する光検出装置とを備える。光検出装置は、光を光電変換する第1光電変換部と、入射光の波長以下の大きさの第1構造体を含み、第1光電変換部を透過した光が入射する第1導光部と、第1導光部を介して入射する赤外光を光電変換する第2光電変換部とを有する。
本開示の実施の形態に係る光検出装置の一例である撮像装置の概略構成の一例を示すブロック図である。 本開示の実施の形態に係る撮像装置の画素部の一例を示す図である。 本開示の実施の形態に係る撮像装置の断面構成の一例を示す図である。 本開示の実施の形態に係る撮像装置の平面構成の一例を示す図である。 本開示の実施の形態に係る撮像装置の平面構成の一例を示す図である。 本開示の実施の形態に係る撮像装置の平面構成の一例を示す図である。 本開示の実施の形態に係る撮像装置の断面構成の一例を示す図である。 本開示の実施の形態に係る撮像装置の平面構成の一例を示す図である。 本開示の変形例1に係る撮像装置の断面構成の一例を示す図である。 本開示の変形例2に係る撮像装置の断面構成の一例を示す図である。 本開示の変形例2に係る撮像装置の平面構成の一例を示す図である。 本開示の変形例2に係る撮像装置の平面構成の一例を示す図である。 本開示の変形例2に係る撮像装置の平面構成の一例を示す図である。 本開示の変形例3に係る撮像装置の断面構成の一例を示す図である。 本開示の変形例3に係る撮像装置の平面構成の一例を示す図である。 本開示の変形例3に係る撮像装置の平面構成の一例を示す図である。 本開示の変形例3に係る撮像装置の平面構成の一例を示す図である。 撮像装置を有する電子機器の構成例を表すブロック図である。 車両制御システムの概略的な構成の一例を示すブロック図である。 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。 内視鏡手術システムの概略的な構成の一例を示す図である。 カメラヘッド及びCCUの機能構成の一例を示すブロック図である。
 以下、本開示の実施の形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
 1.実施の形態
 2.変形例
 3.適用例
 4.応用例
<1.実施の形態>
 図1は、本開示の実施の形態に係る光検出装置の一例である撮像装置の概略構成の一例を示すブロック図である。図2は、実施の形態に係る撮像装置の画素部の一例を示す図である。光検出装置は、入射する光を検出可能な装置である。光検出装置である撮像装置1は、光学系を透過した光を受光して信号を生成し得る。撮像装置1(光検出装置)は、光電変換部を有する複数の画素Pを有し、入射した光を光電変換して信号を生成するように構成される。
 撮像装置1の各画素Pの光電変換部は、例えばフォトダイオードであり、光を光電変換可能に構成される。撮像装置1は、図2に示すように、複数の画素Pが行列状に2次元配置された領域(画素部100)を、撮像エリアとして有している。画素部100は、複数の画素Pが配置される画素アレイであり、受光領域ともいえる。
 撮像装置1は、光学レンズを含む光学系(不図示)を介して、被写体からの入射光(像光)を取り込む。撮像装置1は、光学レンズにより形成される被写体の像を撮像する。撮像装置1は、受光した光を光電変換して画素信号を生成する。撮像装置1は、例えば、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサである。撮像装置1は、デジタルスチルカメラ、ビデオカメラ、携帯電話等の電子機器に利用可能である。
 なお、図2に示すように、被写体からの光の入射方向をZ軸方向、Z軸方向に直交する紙面左右方向をX軸方向、Z軸及びX軸に直交する紙面上下方向をY軸方向とする。以降の図において、図2の矢印の方向を基準として方向を表記する場合もある。
[撮像装置の概略構成]
 撮像装置1は、図1に示す例のように、画素部100(画素アレイ)の周辺領域に、例えば、画素駆動部111、信号処理部112、制御部113、及び処理部114等を有する。また、撮像装置1には、複数の制御線L1と、複数の信号線L2が設けられる。
 撮像装置1には、画素Pを制御する信号を伝えることが可能な信号線である制御線L1が設けられる。画素部100では、例えば、水平方向(行方向)に並ぶ複数の画素Pにより構成される画素行ごとに、複数の制御線L1が配線される。制御線L1は、画素Pからの信号読み出しのための制御信号を伝送するように構成される。制御線L1は、画素Pを駆動する信号を伝送する画素駆動線ともいえる。
 また、撮像装置1には、画素Pからの信号を伝えることが可能な信号線である信号線L2が設けられる。画素部100には、例えば、垂直方向(列方向)に並ぶ複数の画素Pにより構成される画素列ごとに、信号線L2が配線される。信号線L2は、垂直信号線であり、画素Pから出力される信号を伝送するように構成される。
 画素駆動部111は、シフトレジスタ、アドレスデコーダ等によって構成される。画素駆動部111は、画素部100の各画素Pを駆動可能に構成される。画素駆動部111は、画素Pを制御するための信号を生成し、制御線L1を介して画素部100の各画素Pへ出力する。
 画素駆動部111は、例えば、画素Pの転送トランジスタを制御する信号、リセットトランジスタを制御する信号等を生成し、制御線L1によって各画素Pに供給する。画素駆動部111は、各画素Pから画素信号を読み出す制御を行い得る。画素駆動部111は、各画素Pを制御可能に構成された画素制御部ともいえる。
 信号処理部112は、入力される画素の信号の信号処理を実行可能に構成される。信号処理部112は、例えば、負荷回路部、AD(Analog Digital)変換部、水平選択スイッチ等を有する。画素駆動部111によって選択走査された各画素Pから出力される信号は、信号線L2を介して信号処理部112に入力される。信号処理部112は、画素Pの信号のAD変換、CDS(Correlated Double Sampling:相関二重サンプリング)等の信号処理を行う。信号線L2の各々を通して伝送される各画素Pの信号は、信号処理部112によって信号処理が施され、処理部114に出力される。
 処理部114は、入力される信号に対して信号処理を実行可能に構成される。処理部114は、例えば、画素信号に対して各種の信号処理を施す回路により構成される。処理部114は、プロセッサ及びメモリを含んでいてもよい。処理部114は、信号処理部112から入力される画素の信号に対して信号処理を行い、処理後の画素の信号を出力する。処理部114は、例えば、ノイズ低減処理、階調補正処理等の各種の信号処理を行い得る。
 制御部113は、撮像装置1の各部を制御可能に構成される。制御部113は、外部から与えられるクロック、動作モードを指令するデータ等を受け取り、また、撮像装置1の内部情報等のデータを出力し得る。制御部113は、各種のタイミング信号を生成可能に構成されたタイミングジェネレータを有する。制御部113は、タイミングジェネレータで生成された各種のタイミング信号(パルス信号、クロック信号等)に基づき、画素駆動部111及び信号処理部112等の周辺回路の駆動制御を行う。なお、制御部113及び処理部114は、一体的に構成されていてもよい。
 画素駆動部111、信号処理部112、制御部113、処理部114等は、1つの半導体基板に設けられていてもよいし、複数の半導体基板に分けて設けられていてもよい。撮像装置1は、複数の基板を積層して構成された構造(積層構造)を有していてもよい。
 図3は、実施の形態に係る撮像装置の断面構成の一例を示す図である。図4A~図4Cは、実施の形態に係る撮像装置の平面構成の一例を示す図である。撮像装置1は、図3に示すように、第1受光部10と、第2受光部20と、導光部30とを有する。図4Aは、第1受光部10の平面構成の一例を示し、図4Bは、導光部30の平面構成の一例を示している。また、図4Cは、第2受光部20の平面構成の一例を示している。
 図3に示すように、撮像装置1は、例えば、レンズ部15と、カラーフィルタ16と、第1受光部10と、透明層25と、導光部30と、第2受光部20と、多層配線層90とがZ軸方向に積層された構成を有している。画素Pは、第1光電変換部12及び第2光電変換部22を有する。図3に示す例のように、画素Pは、第1光電変換部12と第2光電変換部22とが積層された構造を有する。
 図3に示す第1受光部10は、対向する第1面11S1及び第2面11S2を有する第1基板11を有する。第1基板11の第1面11S1側に、レンズ部15及びカラーフィルタ16が設けられる。光学系からの光が入射する側に、レンズ部15及びカラーフィルタ16が設けられている。第1基板11の第2面11S2側には、導光部30が設けられる。
 第1基板11は、半導体基板、例えばシリコン基板により構成される。第1受光部10では、第1基板11の第1面11S1及び第2面11S2に沿って、複数の第1光電変換部12が設けられる。第1基板11には、例えば、複数の第1光電変換部12が埋め込み形成される。
 第1光電変換部12は、光電変換により電荷を生成可能に構成される。第1光電変換部12は、フォトダイオード(PD)であり、入射する光を電荷に変換する。第1光電変換部12は、可視光を受光して電荷を生成するように構成される。第1光電変換部12は、光電変換を行って受光量に応じた電荷を生成する。第1受光部10(又は第1基板11)は、第1のフォトダイオード層ともいえる。
 第2受光部20は、対向する第1面21S1及び第2面21S2を有する第2基板21を有する。第2基板21の第1面21S1側に透明層25が設けられ、第2基板21の第2面21S2側に多層配線層90が設けられる。光が入射する側とは反対側に、多層配線層90が設けられている。
 第2基板21は、半導体基板により構成される。第2受光部20では、第2基板21の第1面21S1及び第2面21S2に沿って、複数の第2光電変換部22が設けられる。第2基板21には、例えば、複数の第2光電変換部22が埋め込み形成される。
 第2光電変換部22は、光電変換により電荷を生成可能に構成される。第2光電変換部22は、フォトダイオード(PD)であり、入射する光を電荷に変換する。第2光電変換部22は、赤外光を受光して電荷を生成するように構成される。第2光電変換部22は、例えば、Si、Ge、InGaAs、InP等の材料を用いて構成される。第2光電変換部22は、光電変換を行って受光量に応じた電荷を生成する。第2受光部20(又は第2基板21)は、第2のフォトダイオード層ともいえる。
 多層配線層90は、例えば、複数の配線層が、層間絶縁層を間に積層された構成を有する。多層配線層90の配線層は、例えば、アルミニウム(Al)、銅(Cu)等を用いて形成される。配線層は、ポリシリコン(Poly-Si)を用いて形成されてもよい。層間絶縁層は、例えば、酸化シリコン(SiOx)、窒化シリコン(SiNx)及び酸窒化シリコン(SiOxNy)等を用いて形成される。
 第2基板21及び多層配線層90には、第1光電変換部12又は第2光電変換部22で生成された電荷に基づく画素信号を出力可能に構成された読み出し回路(不図示)が設けられる。また、第2基板21及び多層配線層90には、上述した画素駆動部111、信号処理部112、制御部113、及び処理部114等も形成され得る。
 画素Pの読み出し回路は、例えば、転送トランジスタ、フローティングディフュージョン(FD)、リセットトランジスタ、及び増幅トランジスタ等を含んで構成される。画素Pは、例えば、第1光電変換部12で光電変換された電荷に基づく画素信号を読み出す第1の読み出し回路と、第2光電変換部22で光電変換された電荷に基づく画素信号を読み出す第2の読み出し回路とを有する。
 第1の読み出し回路は、第1光電変換部12で変換された電荷に基づく画素信号を、上述した垂直信号線である信号線L2に読み出し可能に構成される。また、第2の読み出し回路は、第2光電変換部22で変換された電荷に基づく画素信号を信号線L2に読み出し可能に構成される。
 画素駆動部111(図1参照)は、各画素Pの読み出し回路を制御することによって、各画素Pから画素信号を信号線L2に出力させる。画素駆動部111は、各画素Pの画素信号を信号線L2へ読み出す制御を行い得る。なお、画素駆動部111と制御部113とを併せて、画素制御部ということもできる。
 レンズ部15は、上方から入射する光を第1受光部10側へ導く。レンズ部15は、オンチップレンズとも呼ばれる光学部材である。レンズ部15は、例えば、画素P毎または複数の画素P毎に、カラーフィルタ16の上方に設けられる。レンズ部15には、撮像レンズ等の光学系を介して被写体からの光が入射する。第1光電変換部12は、レンズ部15及びカラーフィルタ16を介して入射する可視光を光電変換する。
 カラーフィルタ16は、入射する光のうちの特定の波長域の光を選択的に透過させるように構成される。撮像装置1の画素部100に設けられた複数の画素Pには、赤(R)の光を透過するカラーフィルタ16が設けられた複数の画素Prと、緑(G)の光を透過するカラーフィルタ16が設けられた複数の画素Pgと、青(B)の光を透過するカラーフィルタ16が設けられた複数の画素Pbが含まれる。
 画素部100では、図4Aに示す例のように、複数の画素Pr、複数の画素Pg、及び複数の画素Pbが繰り返し配置されている。画素Pr、画素Pg、及び画素Pbは、ベイヤー配列に従って配置されている。1つの画素Prと、2つの画素Pgと、1つの画素Pbにより構成される2×2画素が、繰り返し設けられる。画素Pr、画素Pg、及び画素Pbは、それぞれ、R成分の画素信号、G成分の画素信号、及びB成分の画素信号を生成する。撮像装置1は、RGBの画素信号を得ることができる。
 なお、画素部100の画素Pに設けられるカラーフィルタ16は、原色系(RGB)のカラーフィルタに限定されず、例えばCy(シアン)、Mg(マゼンダ)、Ye(イエロー)等の補色系のカラーフィルタであってもよい。白(W)の光を受光して光電変換を行う画素Pwでは、カラーフィルタ16を設けなくてよい。また、W(ホワイト)に対応したカラーフィルタ、即ち入射光の全波長域の光を透過させるフィルタを配置するようにしてもよい。なお、必要に応じて、カラーフィルタ16を省略してもよい。
 透明層25は、光を透過する透明層であり、例えば酸化シリコン(SiOx)、窒化シリコン(SiNx)等の低屈折率の材料により形成される。透明層25は、赤外光を透過する他の透明な材料により構成されてもよい。
 導光部30は、構造体31を有し、入射した光を第2受光部20側へ導くように構成される。導光部30には、第1光電変換部12を透過した赤外光が入射する。構造体31は、入射する光の所定波長以下の大きさの微細(微小)な構造体であり、例えば赤外光の波長以下の大きさを有する。導光部30は、光を導光(伝搬)する光学部材(導光部材)である。
 構造体31は、例えば、図3及び図4Bに示すように、柱状(ピラー状)の構造体であり、透明層25内に設けられる。図3に模式的に示すように、複数の構造体31は、透明層25の一部を挟んで、紙面左右方向(X軸方向)に互いに並んで配置される。透明層25内において、入射光の所定波長以下、例えば赤外光の波長以下の間隔で、複数の構造体31が配置され得る。
 構造体31は、周囲の媒質の屈折率よりも高い屈折率を有する。構造体31の周りの媒質は、例えば、酸化シリコン(SiO)、空気(空隙)等である。図3及び図4Bに示す例では、構造体31は、透明層25の屈折率よりも高い屈折率を有する材料により構成される。構造体31は、高屈折率材料により構成され、高屈折率部ともいえる。また、透明層25は、低屈折率部ともいえる。
 構造体31は、一例として、アモルファスシリコン(a-Si)、ポリシリコン、ゲルマニウム(Ge)等を用いて形成される。また、例えば、構造体31は、窒化シリコン、炭化シリコン等のシリコン化合物、酸化チタン、酸化タンタル、酸化ニオブ、酸化ハフニウム、酸化インジウム、酸化スズなどの金属酸化物、或いはこれらの複合酸化物で構成されてもよい。また、高屈折率部である構造体31は、シロキサンなどの有機物から構成されてもよい。構造体31は、シロキサン系樹脂、スチレン系樹脂、アクリル系樹脂等を用いて構成されてもよい。
 導光部30は、構造体31の屈折率とその周囲の媒質の屈折率との差によって、入射する光に位相遅延を生じさせ、波面に影響を与えることができる。導光部30は、光の波長に応じて異なる位相遅延量を与えることで、光の伝搬方向を調整し、入射した光を各波長域の光に分離することが可能となる。入射光に含まれる各波長域の光が所望の方向に進むように、各構造体31の大きさ(サイズ)、形状、屈折率等が定められる。
 導光部30(分光部)は、メタマテリアル(メタサーフェス)技術を利用して光を分光可能な分光素子であり、スプリッター(カラースプリッター)ともいえる。撮像装置1は、カラースプリッター構造を有するともいえる。導光部30による各波長の光の伝搬方向は、構造体31及び透明層25の材料(光学定数)、構造体31の形状、高さ、配置間隔(ギャップ)等によって調整可能である。導光部30は、構造体31によって入射光を分光する領域(分光領域)ともいえる。
 導光部30は、入射した光を分光可能に構成された分光部である。導光部30は、第1光電変換部12を通過した赤外光を分光するように構成される。導光部30は、複数の波長域の赤外光、例えば第1の波長域~第4の波長域の赤外光にそれぞれ異なる位相遅延を与える。これにより、撮像装置1では、第1光電変換部12を介して入射した赤外光を、第1の波長域の赤外光、第2の波長域の赤外光、第3の波長域の赤外光、及び第4の波長域の赤外光に分けることが可能となる。
 ベイヤー配列の2×2画素のうちの一方の画素Pgの導光部30は、例えば、図3において矢印で模式的に示すように、入射する赤外光のうち、第1の波長域(例えば800nm~850nm)の赤外光をその画素Pgの第2光電変換部22へ導くように構成される。この画素Pgの導光部30は、入射する赤外光のうち、第2の波長域(例えば850nm~900nm)の赤外光を画素Prの第2光電変換部22へ導くように構成される。
 また、図3に示す画素Pgの導光部30は、第3の波長域(例えば900nm~950nm)の赤外光を画素Pbの第2光電変換部22へ、第4の波長域(例えば950nm~)の赤外光をベイヤー配列の2×2画素のうちの他方の画素Prの第2光電変換部22へそれぞれ導くように構成される。
 図3に示す画素Prの導光部30は、例えば、図3において矢印で模式的に示すように、入射する赤外光のうち、第2の波長域の赤外光をその画素Prの第2光電変換部22へ導くように構成される。画素Prの導光部30は、第1の波長域の赤外光を、ベイヤー配列の2×2画素のうちの一方の画素Pgの第2光電変換部22へ導くように構成される。また、画素Prの導光部30は、第3の波長域の赤外光を画素Pbの第2光電変換部22へ、第4の波長域の赤外光を他方の画素Pgの第2光電変換部22へそれぞれ伝搬するように構成される。
 画素Pbの導光部30は、例えば、入射する赤外光のうち、第3の波長域の赤外光をその画素Pbの第2光電変換部22へ伝搬するように構成される。また、画素Pbの導光部30は、入射する赤外光のうち、第1の波長域の赤外光を一方の画素Pgの第2光電変換部22へ、第2の波長域の赤外光を画素Prの第2光電変換部22へ、第4の波長域の赤外光を他方の画素Pgの第2光電変換部22へそれぞれ伝搬するように構成される。
 ベイヤー配列の2×2画素のうちの他方の画素Pgの導光部30は、例えば、入射する赤外光のうち、第4の波長域の赤外光をその画素Pgの第2光電変換部22へ伝搬するように構成される。また、この画素Pgの導光部30は、入射する赤外光のうち、第1の波長域の赤外光をベイヤー配列の2×2画素のうちの一方の画素Pgの第2光電変換部22へ、第2の波長域の赤外光を画素Prの第2光電変換部22へ、第3の波長域の赤外光を画素Pbの第2光電変換部22へそれぞれ伝搬するように構成される。
 図4Cに示す例では、「IR1」が付された第2光電変換部22、即ちベイヤー配列の2×2画素のうちの一方の画素Pgの第2光電変換部22は、導光部30を介して入射する第1の波長域(例えば800nm~850nm)の赤外光を光電変換する。また、「IR2」が付された第2光電変換部22、即ちベイヤー配列の2×2画素のうちの画素Prの第2光電変換部22は、導光部30を介して入射する第2の波長域(例えば850nm~900nm)の赤外光を光電変換する。
 「IR3」が付された第2光電変換部22、即ちベイヤー配列の2×2画素のうちの画素Pbの第2光電変換部22は、導光部30を介して入射する第3の波長域(例えば900nm~950nm)の赤外光を光電変換する。また、「IR4」が付された第2光電変換部22、即ちベイヤー配列の2×2画素のうちの他方の画素Pgの第2光電変換部22は、導光部30を介して入射する第4の波長域(例えば950nm~)の赤外光を光電変換する。
 こうして、撮像装置1では、「IR1」が付された第2光電変換部22は、第1の波長域の赤外光を受光して光電変換を行い、受光量に応じた電荷を生成し得る。「IR2」が付された第2光電変換部22は、第2の波長域の赤外光を受光して光電変換を行い、受光量に応じた電荷を生成し得る。「IR3」が付された第2光電変換部22は、第3の波長域の赤外光を受光して光電変換を行い、受光量に応じた電荷を生成し得る。
 また、「IR4」が付された第2光電変換部22は、第4の波長域の赤外光を受光して光電変換を行い、受光量に応じた電荷を生成し得る。このように、「IR1」~「IR4」が付された各画素Pは、IR画素でもあり、赤外光を受光して光電変換し、画素信号を生成し得る。このため、撮像装置1は、波長域毎のIR成分の画素信号を得ることができる。
 こうして、撮像装置1では、可視光の光量に応じた画素信号と赤外光の波長域毎の光量に応じた画素信号とを同時に得ることが可能となる。撮像装置1は、第1光電変換部12による光電変換によって得られるRGBの画素信号を用いて、可視画像を生成することができる。
 また、撮像装置1は、第2光電変換部22による光電変換によって得られる画素信号を用いて、赤外画像(IR画像)を生成することができる。また、本実施の形態では、赤外光の波長域毎の赤外画像を取得することが可能となる。赤外光領域に対してマルチスペクトル化を実現することが可能となる。
 このように、撮像装置1では、第1光電変換部12と第2光電変換部22の間に、上述した構造体31を有する導光部30が設けられる。第1光電変換部12を透過した赤外光を、第2光電変換部22へ適切に導くことができる。このため、撮像装置1は、赤外光に対する感度が低下することを抑制することができる。
 本実施の形態では、高屈折率材料を用いて構成される導光部30によって、画素Pの周辺画素から、赤外光を第2光電変換部22へ集光させることができる。画素Pの第2光電変換部22は、赤外光を効率よく受光して光電変換を行い、受光量に応じた電荷を生成することが可能となる。また、可視光を光電変換する複数の第1光電変換部12の一部に置換して赤外光を光電変換する光電変換部を設ける場合と比較して、RGBの解像度が低下することを抑制することができる。また、混色が生じることを低減することが可能となる。
 また、本実施の形態では、赤外光を波長に応じて分光する導光部30が設けられる。このため、IR波長を区別した画像(例えば、上述した第1~第4の波長域毎の赤外画像)を同時に得ることが可能となる。複数の波長帯域の赤外光(マルチスペクトル)を検出する光検出装置を実現することが可能となる。また、IR光を吸収するフィルタ(例えばバンドパスフィルタ)を用いて分光を行う場合と比較して、IR感度の低下を抑制することができる。量子効率(QE)を向上させることが可能となる。
 図5は、撮像装置1の画素部100(画素アレイ)の中心からの距離、即ち、像高が高い領域における断面構成の一例を示している。図6の(A)~(C)は、それぞれ、像高が高い領域における第1受光部10、導光部30、第2受光部20の平面構成の一例を示している。
 撮像装置1の画素部100の中央部分には、光学レンズからの光がほぼ垂直に入射する。一方、中央部分よりも外側に位置する周辺部分、即ち画素部100の中央から離れた領域には、図5において白抜き矢印で示す例のように、光が斜めに入射する。そこで、撮像装置1では、各画素Pにおけるレンズ部15、カラーフィルタ16、第1光電変換部12、導光部30、及び第2光電変換部22等の位置が、画素部100の中心からの距離、即ち、像高に応じて異なるように構成される。
 図5に示すように、画素P(図5では画素Pr,Pg)のレンズ部15、カラーフィルタ16、第1光電変換部12、及び導光部30は、その画素Pの第2光電変換部22に対して画素部100の中央側にずらして配置される。導光部30及び第2光電変換部22が、その画素Pのレンズ部15、カラーフィルタ16、及び第1光電変換部12に対して、画素部100の端側にずらして配置されるともいえる。
 図5に示す例では、レンズ部15、カラーフィルタ16、第1光電変換部12、及び導光部30は、第2光電変換部22に対して紙面右方向にシフトして設けられる。導光部30及び第2光電変換部22が、レンズ部15、カラーフィルタ16、及び第1光電変換部12に対して、紙面左方向にシフトして設けられるともいえる。
 なお、画素部100(画素アレイ)の中央領域では、画素Pは、例えば、上述した図3及び図4A~図4Cに示すように構成される。画素部100の中央の画素Pでは、図3に示す例のように、レンズ部15、カラーフィルタ16、第1光電変換部12、導光部30、及び第2光電変換部22の各々の中心位置は、略一致している。
 このように、撮像装置1では、レンズ部15、カラーフィルタ16、第1光電変換部12、導光部30、及び第2光電変換部22等の各々の位置が像高に応じて調整され、瞳補正を適切に行うことができる。第1光電変換部12及び第2光電変換部22に入射する光量が低下することを抑制し、入射光に対する感度が低下することを防ぐことが可能となる。光が斜めに入射する場合でも、入射する光を適切に第2光電変換部22へ伝搬させることが可能となる。
 上述した撮像装置1は、一般的な半導体プロセスを用いて製造することができる。例えば、第1光電変換部12及び導光部30及び透明層25が形成された第1基板11と、第2光電変換部22が形成された第2基板21とを貼り合わせた後、カラーフィルタ16及びレンズ部15等を形成することにより、図3等に示す撮像装置1を製造することができる。なお、この製造方法は、あくまでも一例であって、他の製造方法を採用してもよい。
[作用・効果]
 本実施の形態に係る光検出装置は、光を光電変換する第1光電変換部(第1光電変換部12)と、入射光の波長以下の大きさの第1構造体(構造体31)を含み、第1光電変換部を透過した光が入射する第1導光部(導光部30)と、第1導光部を介して入射する赤外光を光電変換する第2光電変換部(第2光電変換部22)とを備える。
 本実施の形態に係る光検出装置(撮像装置1)では、第1光電変換部12を透過した光が入射する導光部30と、導光部30を介して入射する赤外光を光電変換する第2光電変換部22が設けられる。このため、赤外光に対する感度の低下を抑制することができる。良好な検出性能を有する光検出装置を実現することが可能となる。
 本実施の形態に係る光検出装置は、第2光電変換部(例えば、ベイヤー配列の2×2画素のうちの一方の画素Pgの第2光電変換部22)の隣に設けられ、第1導光部を介して入射する赤外光を光電変換する第3光電変換部(例えば、画素Prの第2光電変換部22)を有する。また、光検出装置は、第4光電変換部(例えば、画素Pbの第2光電変換部22)と、第5光電変換部(例えば、ベイヤー配列の2×2画素のうちの他方の画素Pgの第2光電変換部22)を有する。第2光電変換部と第3光電変換部と第4光電変換部と第5光電変換部とは、互いに異なる波長の赤外光を受光して光電変換を行う。
 本実施の形態では、第1の波長域~第4の波長域の各々におけるIR成分の画素信号を得ることができる。複数の波長帯域の赤外光(マルチスペクトル)を検出する光検出装置を実現することが可能となる。赤外光の波長域毎の赤外画像を取得することが可能となる。
 次に、本開示の変形例について説明する。以下では、上記実施の形態と同様の構成要素については同一の符号を付し、適宜説明を省略する。
<2.変形例>
(2-1.変形例1)
 図7は、本開示の変形例1に係る撮像装置の断面構成の一例を示す図である。図7では、像高が高い領域における画素Pの断面構成の一例を示している。撮像装置1は、図7に示す例のように、構造体31aを含む導光部30aと、構造体31bを含む導光部30bとが積層された構造を有していてもよい。第2光電変換部22は、導光部30aと導光部30bとを介して入射する赤外光を光電変換して電荷を生成し得る。図7に示す例のように、像高に応じて、構造体31aを含む導光部30aと構造体31bを含む導光部30bをずらして配置してもよい。本変形例では、2層の導光部によって斜入射光を適切に導光することができる。
 導光部30aの構造体31aと導光部30bの構造体31bは、それぞれ、入射する光の所定波長以下の大きさの微細構造体であり、例えば赤外光の波長以下の大きさを有する。導光部30aの構造体31a、導光部30bの構造体31bは、例えば、各々の大きさ、形状等が異なるように形成され得る。この場合、斜入射光の場合に分光特性が低下することを効果的に抑制することが可能となる。なお、導光部30a及び導光部30bは、同じ材料を用いて構成されてもよいし、異なる材料を用いて構成されてもよい。
(2-2.変形例2)
 図8は、変形例2に係る撮像装置の断面構成の一例を示す図である。図9A~図9Cは、変形例2に係る撮像装置の平面構成の一例を示す図である。撮像装置1は、図8及び図9A~図9Cに示す例のように、白(W)の光を受光して光電変換を行う画素Pwを有していてもよい。本変形例に係る撮像装置1では、画素Pwの画素信号によって、輝度信号を得ることが可能となる。また、本変形例の場合も、上述した実施の形態と同様の効果を得ることができる。
(2-3.変形例3)
 上述した実施の形態では、画素P毎に1つの第2光電変換部22を設ける例について説明した。しかし、画素P毎に、複数の第2光電変換部22を設けるようにしてもよい。図10は、変形例3に係る撮像装置の断面構成の一例を示す図である。図11A~図11Cは、変形例3に係る撮像装置の平面構成の一例を示す図である。
 図10及び図11C等に示すように、2×2単位で第2光電変換部22を設けるようにしてもよい。図11Cに示す例では、「IR1」~「IR4」が付された4つの第2光電変換部22a~22dが、画素P毎に配置される。第2光電変換部22a~22dは、1つのレンズ部15に対して設けられる。第2光電変換部22a~22dは、互いに異なる波長域の赤外光を受光して光電変換し、電荷を生成し得る。第1の波長域~第4の波長域の各々におけるIR成分の画素信号を得ることができる。
 本変形例では、赤外光に対して、高感度で、且つ、波長分解能と空間分解能の高い画素信号(又は画像)を得ることが可能となる。また、上述した実施の形態の場合と同様に、RGBの解像度の低下を回避しつつ、赤外光の波長域においてマルチスペクトル化を実現することが可能となる。
(2-4.変形例4)
 上述した実施の形態及び変形例では、構造体31を有する導光部30の構成例について説明した。導光部30の構造体31の形状は、上述した例に限られない。構造体31の形状は、適宜変更可能であり、例えば、平面視において四角形の形状であってもよい。構造体31の形状は、多角形、楕円、十字形、又はその他の形状であってもよい。
 なお、レンズ部15及びカラーフィルタ16の少なくとも一方の代わりに、又はこれらに加えて、第1光電変換部12の上方に、構造体を用いて構成された導光部を設けるようにしてもよい。この構造体は、例えば、導光部30の構造体31と同様に、柱状の微細構造体である。なお、構造体の形状は、適宜変更可能であり、多角形又はその他の形状であってよい。
<3.適用例>
 上記撮像装置1等は、例えば、デジタルスチルカメラやビデオカメラ等のカメラシステムや、撮像機能を有する携帯電話等、撮像機能を備えたあらゆるタイプの電子機器に適用することができる。図12は、電子機器1000の概略構成を表したものである。
 電子機器1000は、例えば、レンズ群1001と、撮像装置1と、DSP(Digital Signal Processor)回路1002と、フレームメモリ1003と、表示部1004と、記録部1005と、操作部1006と、電源部1007とを有し、バスライン1008を介して相互に接続されている。
 レンズ群1001は、被写体からの入射光(像光)を取り込んで撮像装置1の撮像面上に結像するものである。撮像装置1は、レンズ群1001によって撮像面上に結像された入射光の光量を画素単位で電気信号に変換して画素信号としてDSP回路1002に供給する。
 DSP回路1002は、撮像装置1から供給される信号を処理する信号処理回路である。DSP回路1002は、撮像装置1からの信号を処理して得られる画像データを出力する。フレームメモリ1003は、DSP回路1002により処理された画像データをフレーム単位で一時的に保持するものである。
 表示部1004は、例えば、液晶パネルや有機EL(Electro Luminescence)パネル等のパネル型表示装置からなり、撮像装置1で撮像された動画または静止画の画像データを、半導体メモリやハードディスク等の記録媒体に記録する。
 操作部1006は、ユーザによる操作に従い、電子機器1000が所有する各種の機能についての操作信号を出力する。電源部1007は、DSP回路1002、フレームメモリ1003、表示部1004、記録部1005および操作部1006の動作電源となる各種の電源を、これら供給対象に対して適宜供給するものである。
<4.応用例>
(移動体への応用例)
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
 図13は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図13に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図13の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
 図14は、撮像部12031の設置位置の例を示す図である。
 図14では、車両12100は、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。撮像部12101及び12105で取得される前方の画像は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
 なお、図14には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
 以上、本開示に係る技術が適用され得る移動体制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば、撮像部12031に適用され得る。具体的には、例えば、撮像装置1等は、撮像部12031に適用することができる。撮像部12031に本開示に係る技術を適用することにより、高精細な撮影画像を得ることができ、移動体制御システムにおいて撮影画像を利用した高精度な制御を行うことができる。
(内視鏡手術システムへの応用例)
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、内視鏡手術システムに適用されてもよい。
 図15は、本開示に係る技術(本技術)が適用され得る内視鏡手術システムの概略的な構成の一例を示す図である。
 図15では、術者(医師)11131が、内視鏡手術システム11000を用いて、患者ベッド11133上の患者11132に手術を行っている様子が図示されている。図示するように、内視鏡手術システム11000は、内視鏡11100と、気腹チューブ11111やエネルギー処置具11112等の、その他の術具11110と、内視鏡11100を支持する支持アーム装置11120と、内視鏡下手術のための各種の装置が搭載されたカート11200と、から構成される。
 内視鏡11100は、先端から所定の長さの領域が患者11132の体腔内に挿入される鏡筒11101と、鏡筒11101の基端に接続されるカメラヘッド11102と、から構成される。図示する例では、硬性の鏡筒11101を有するいわゆる硬性鏡として構成される内視鏡11100を図示しているが、内視鏡11100は、軟性の鏡筒を有するいわゆる軟性鏡として構成されてもよい。
 鏡筒11101の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡11100には光源装置11203が接続されており、当該光源装置11203によって生成された光が、鏡筒11101の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者11132の体腔内の観察対象に向かって照射される。なお、内視鏡11100は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。
 カメラヘッド11102の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU: Camera Control Unit)11201に送信される。
 CCU11201は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡11100及び表示装置11202の動作を統括的に制御する。さらに、CCU11201は、カメラヘッド11102から画像信号を受け取り、その画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。
 表示装置11202は、CCU11201からの制御により、当該CCU11201によって画像処理が施された画像信号に基づく画像を表示する。
 光源装置11203は、例えばLED(Light Emitting Diode)等の光源から構成され、術部等を撮影する際の照射光を内視鏡11100に供給する。
 入力装置11204は、内視鏡手術システム11000に対する入力インタフェースである。ユーザは、入力装置11204を介して、内視鏡手術システム11000に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、内視鏡11100による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示等を入力する。
 処置具制御装置11205は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具11112の駆動を制御する。気腹装置11206は、内視鏡11100による視野の確保及び術者の作業空間の確保の目的で、患者11132の体腔を膨らめるために、気腹チューブ11111を介して当該体腔内にガスを送り込む。レコーダ11207は、手術に関する各種の情報を記録可能な装置である。プリンタ11208は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。
 なお、内視鏡11100に術部を撮影する際の照射光を供給する光源装置11203は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成することができる。RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置11203において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド11102の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。
 また、光源装置11203は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド11102の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。
 また、光源装置11203は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察すること(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得ること等を行うことができる。光源装置11203は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。
 図16は、図15に示すカメラヘッド11102及びCCU11201の機能構成の一例を示すブロック図である。
 カメラヘッド11102は、レンズユニット11401と、撮像部11402と、駆動部11403と、通信部11404と、カメラヘッド制御部11405と、を有する。CCU11201は、通信部11411と、画像処理部11412と、制御部11413と、を有する。カメラヘッド11102とCCU11201とは、伝送ケーブル11400によって互いに通信可能に接続されている。
 レンズユニット11401は、鏡筒11101との接続部に設けられる光学系である。鏡筒11101の先端から取り込まれた観察光は、カメラヘッド11102まで導光され、当該レンズユニット11401に入射する。レンズユニット11401は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。
 撮像部11402は、撮像素子で構成される。撮像部11402を構成する撮像素子は、1つ(いわゆる単板式)であってもよいし、複数(いわゆる多板式)であってもよい。撮像部11402が多板式で構成される場合には、例えば各撮像素子によってRGBそれぞれに対応する画像信号が生成され、それらが合成されることによりカラー画像が得られてもよい。あるいは、撮像部11402は、3D(Dimensional)表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成されてもよい。3D表示が行われることにより、術者11131は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部11402が多板式で構成される場合には、各撮像素子に対応して、レンズユニット11401も複数系統設けられ得る。
 また、撮像部11402は、必ずしもカメラヘッド11102に設けられなくてもよい。例えば、撮像部11402は、鏡筒11101の内部に、対物レンズの直後に設けられてもよい。
 駆動部11403は、アクチュエータによって構成され、カメラヘッド制御部11405からの制御により、レンズユニット11401のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部11402による撮像画像の倍率及び焦点が適宜調整され得る。
 通信部11404は、CCU11201との間で各種の情報を送受信するための通信装置によって構成される。通信部11404は、撮像部11402から得た画像信号をRAWデータとして伝送ケーブル11400を介してCCU11201に送信する。
 また、通信部11404は、CCU11201から、カメラヘッド11102の駆動を制御するための制御信号を受信し、カメラヘッド制御部11405に供給する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。
 なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、ユーザによって適宜指定されてもよいし、取得された画像信号に基づいてCCU11201の制御部11413によって自動的に設定されてもよい。後者の場合には、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡11100に搭載されていることになる。
 カメラヘッド制御部11405は、通信部11404を介して受信したCCU11201からの制御信号に基づいて、カメラヘッド11102の駆動を制御する。
 通信部11411は、カメラヘッド11102との間で各種の情報を送受信するための通信装置によって構成される。通信部11411は、カメラヘッド11102から、伝送ケーブル11400を介して送信される画像信号を受信する。
 また、通信部11411は、カメラヘッド11102に対して、カメラヘッド11102の駆動を制御するための制御信号を送信する。画像信号や制御信号は、電気通信や光通信等によって送信することができる。
 画像処理部11412は、カメラヘッド11102から送信されたRAWデータである画像信号に対して各種の画像処理を施す。
 制御部11413は、内視鏡11100による術部等の撮像、及び、術部等の撮像により得られる撮像画像の表示に関する各種の制御を行う。例えば、制御部11413は、カメラヘッド11102の駆動を制御するための制御信号を生成する。
 また、制御部11413は、画像処理部11412によって画像処理が施された画像信号に基づいて、術部等が映った撮像画像を表示装置11202に表示させる。この際、制御部11413は、各種の画像認識技術を用いて撮像画像内における各種の物体を認識してもよい。例えば、制御部11413は、撮像画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具11112の使用時のミスト等を認識することができる。制御部11413は、表示装置11202に撮像画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させてもよい。手術支援情報が重畳表示され、術者11131に提示されることにより、術者11131の負担を軽減することや、術者11131が確実に手術を進めることが可能になる。
 カメラヘッド11102及びCCU11201を接続する伝送ケーブル11400は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。
 ここで、図示する例では、伝送ケーブル11400を用いて有線で通信が行われていたが、カメラヘッド11102とCCU11201との間の通信は無線で行われてもよい。
 以上、本開示に係る技術が適用され得る内視鏡手術システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば、内視鏡11100のカメラヘッド11102に設けられた撮像部11402に好適に適用され得る。撮像部11402に本開示に係る技術を適用することにより、撮像部11402を高感度化することができ、高精細な内視鏡11100を提供することができる。
 以上、実施の形態、変形例および適用例ならびに応用例を挙げて本開示を説明したが、本技術は上記実施の形態等に限定されるものではなく、種々の変形が可能である。例えば、上述した変形例は、上記実施の形態の変形例として説明したが、各変形例の構成を適宜組み合わせることができる。
 上記実施の形態等では、撮像装置を例示して説明するようにしたが、本開示の光検出装置は、例えば、入射する光を受光し、光を電荷に変換するものであればよい。出力される信号は、画像情報の信号でもよいし、測距情報の信号でもよい。光検出装置(撮像装置)は、イメージセンサ、測距センサ等に適用され得る。
 本開示に係る光検出装置は、TOF(Time Of Flight)方式の距離計測が可能な測距センサとしても適用され得る。光検出装置(撮像装置)は、イベントを検出可能なセンサ、例えば、イベント駆動型のセンサ(EVS(Event Vision Sensor)、EDS(Event Driven Sensor)、DVS(Dynamic Vision Sensor)等と呼ばれる)としても適用され得る。
 本開示の一実施形態の光検出装置は、光を光電変換する第1光電変換部と、入射光の波長以下の大きさの第1構造体を含み、第1光電変換部を透過した光が入射する第1導光部と、第1導光部を介して入射する赤外光を光電変換する第2光電変換部とを備える。このため、赤外光に対する感度の低下を抑制することができる。良好な検出性能を有する光検出装置を実現することが可能となる。
 なお、本明細書中に記載された効果はあくまで例示であってその記載に限定されるものではなく、他の効果があってもよい。また、本開示は以下のような構成をとることも可能である。
(1)
 光を光電変換する第1光電変換部と、
 入射光の波長以下の大きさの第1構造体を含み、前記第1光電変換部を透過した光が入射する第1導光部と、
 前記第1導光部を介して入射する赤外光を光電変換する第2光電変換部と
 を備える光検出装置。
(2)
 前記第2光電変換部の隣に設けられ、前記第1導光部を介して入射する赤外光を光電変換する第3光電変換部を有する
 前記(1)に記載の光検出装置。
(3)
 前記第2光電変換部は、前記第1導光部を介して入射する第1波長の赤外光を光電変換し、
 前記第3光電変換部は、前記第1導光部を介して入射する前記第1波長とは異なる第2波長の赤外光を光電変換する
 前記(2)に記載の光検出装置。
(4)
 前記第1導光部は、前記第1光電変換部と前記第2光電変換部との間に設けられ、前記第1光電変換部を透過した光を分光する
 前記(2)または(3)に記載の光検出装置。
(5)
 前記第1導光部は、入射光のうち、第1波長の赤外光を前記第2光電変換部側へ導き、前記第1波長とは異なる第2波長の赤外光を前記第3光電変換部側へ導く
 前記(2)から(4)のいずれか1つに記載の光検出装置。
(6)
 前記第1導光部を介して入射する赤外光を光電変換する第4光電変換部を有し、
 前記第2光電変換部と前記第3光電変換部と前記第4光電変換部とは、互いに異なる波長の赤外光を受光して光電変換を行う
 前記(2)から(5)のいずれか1つに記載の光検出装置。
(7)
 前記第1導光部を介して入射する赤外光を光電変換する第5光電変換部を有し、
 前記第2光電変換部と前記第3光電変換部と前記第4光電変換部と前記第5光電変換部とは、互いに異なる波長の赤外光を受光して光電変換を行う
 前記(6)に記載の光検出装置。
(8)
 前記第1導光部を介して入射する赤外光を光電変換する第4光電変換部を有し、
 前記第1導光部は、入射光のうち、第1波長の赤外光を前記第2光電変換部側へ導き、第2波長の赤外光を前記第3光電変換部側へ導き、第3波長の赤外光を前記第4光電変換部側へ導く
 前記(2)から(7)のいずれか1つに記載の光検出装置。
(9)
 前記第1導光部を介して入射する赤外光を光電変換する第5光電変換部を有し、
 前記第1導光部は、入射光のうち、第1波長の赤外光を前記第2光電変換部側へ導き、第2波長の赤外光を前記第3光電変換部側へ導き、第3波長の赤外光を前記第4光電変換部側へ導き、第4波長の赤外光を前記第5光電変換部側へ導く
 前記(8)に記載の光検出装置。
(10)
 複数の前記第1光電変換部が設けられた画素アレイを有し、
 前記画素アレイの中心からの距離に応じて、前記第1光電変換部の中心と前記第1導光部の中心との距離が異なっている
 前記(1)から(9)のいずれか1つに記載の光検出装置。
(11)
 複数の前記第1光電変換部が設けられた画素アレイを有し、
 前記画素アレイの中心からの距離に応じて、前記第1導光部の中心と前記第2光電変換部の中心との距離が異なっている
 前記(1)から(10)のいずれか1つに記載の光検出装置。
(12)
 前記第1構造体は、赤外光の波長以下の大きさを有する
 前記(1)から(11)のいずれか1つに記載の光検出装置。
(13)
 前記第1構造体の屈折率は、前記第1構造体の隣の媒質の屈折率よりも高い
 前記(1)から(12)のいずれか1つに記載の光検出装置。
(14)
 前記第1光電変換部と前記第1導光部の間に設けられ、入射光の波長以下の大きさの第2構造体を含む第2導光部を有し、
 前記第2光電変換部は、前記第1導光部と前記第2導光部とを介して入射する赤外光を光電変換する
 前記(1)から(13)のいずれか1つに記載の光検出装置。
(15)
 複数の前記第1光電変換部が設けられた画素アレイを有し、
 前記画素アレイの中心からの距離に応じて、前記第1導光部の中心と前記第2導光部の中心との距離が異なっている
 前記(14)に記載の光検出装置。
(16)
 前記第2構造体は、赤外光の波長以下の大きさを有し、
 前記第2構造体の屈折率は、前記第2構造体の隣の媒質の屈折率よりも高い
 前記(14)または(15)に記載の光検出装置。
(17)
 前記第1光電変換部は、可視光を光電変換する
 前記(1)から(16)のいずれか1つに記載の光検出装置。
(18)
 光が入射するレンズと、
 前記レンズと前記第1光電変換部との間に設けられるカラーフィルタと
 を有し、
 前記第1光電変換部は、前記レンズと前記カラーフィルタとを透過した光を光電変換する
 前記(2)から(17)のいずれか1つに記載の光検出装置。
(19)
 前記第2光電変換部と前記第3光電変換部は、前記レンズに対して設けられる
 前記(18)に記載の光検出装置。
(20)
 光学系と、
 前記光学系を透過した光を受光する光検出装置と
 を備え、
 前記光検出装置は、
 光を光電変換する第1光電変換部と、
 入射光の波長以下の大きさの第1構造体を含み、前記第1光電変換部を透過した光が入射する第1導光部と、
 前記第1導光部を介して入射する赤外光を光電変換する第2光電変換部と
 を有する電子機器。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (20)

  1.  光を光電変換する第1光電変換部と、
     入射光の波長以下の大きさの第1構造体を含み、前記第1光電変換部を透過した光が入射する第1導光部と、
     前記第1導光部を介して入射する赤外光を光電変換する第2光電変換部と
     を備える光検出装置。
  2.  前記第2光電変換部の隣に設けられ、前記第1導光部を介して入射する赤外光を光電変換する第3光電変換部を有する
     請求項1に記載の光検出装置。
  3.  前記第2光電変換部は、前記第1導光部を介して入射する第1波長の赤外光を光電変換し、
     前記第3光電変換部は、前記第1導光部を介して入射する前記第1波長とは異なる第2波長の赤外光を光電変換する
     請求項2に記載の光検出装置。
  4.  前記第1導光部は、前記第1光電変換部と前記第2光電変換部との間に設けられ、前記第1光電変換部を透過した光を分光する
     請求項2に記載の光検出装置。
  5.  前記第1導光部は、入射光のうち、第1波長の赤外光を前記第2光電変換部側へ導き、前記第1波長とは異なる第2波長の赤外光を前記第3光電変換部側へ導く
     請求項2に記載の光検出装置。
  6.  前記第1導光部を介して入射する赤外光を光電変換する第4光電変換部を有し、
     前記第2光電変換部と前記第3光電変換部と前記第4光電変換部とは、互いに異なる波長の赤外光を受光して光電変換を行う
     請求項2に記載の光検出装置。
  7.  前記第1導光部を介して入射する赤外光を光電変換する第5光電変換部を有し、
     前記第2光電変換部と前記第3光電変換部と前記第4光電変換部と前記第5光電変換部とは、互いに異なる波長の赤外光を受光して光電変換を行う
     請求項6に記載の光検出装置。
  8.  前記第1導光部を介して入射する赤外光を光電変換する第4光電変換部を有し、
     前記第1導光部は、入射光のうち、第1波長の赤外光を前記第2光電変換部側へ導き、第2波長の赤外光を前記第3光電変換部側へ導き、第3波長の赤外光を前記第4光電変換部側へ導く
     請求項2に記載の光検出装置。
  9.  前記第1導光部を介して入射する赤外光を光電変換する第5光電変換部を有し、
     前記第1導光部は、入射光のうち、第1波長の赤外光を前記第2光電変換部側へ導き、第2波長の赤外光を前記第3光電変換部側へ導き、第3波長の赤外光を前記第4光電変換部側へ導き、第4波長の赤外光を前記第5光電変換部側へ導く
     請求項8に記載の光検出装置。
  10.  複数の前記第1光電変換部が設けられた画素アレイを有し、
     前記画素アレイの中心からの距離に応じて、前記第1光電変換部の中心と前記第1導光部の中心との距離が異なっている
     請求項1に記載の光検出装置。
  11.  複数の前記第1光電変換部が設けられた画素アレイを有し、
     前記画素アレイの中心からの距離に応じて、前記第1導光部の中心と前記第2光電変換部の中心との距離が異なっている
     請求項1に記載の光検出装置。
  12.  前記第1構造体は、赤外光の波長以下の大きさを有する
     請求項1に記載の光検出装置。
  13.  前記第1構造体の屈折率は、前記第1構造体の隣の媒質の屈折率よりも高い
     請求項1に記載の光検出装置。
  14.  前記第1光電変換部と前記第1導光部の間に設けられ、入射光の波長以下の大きさの第2構造体を含む第2導光部を有し、
     前記第2光電変換部は、前記第1導光部と前記第2導光部とを介して入射する赤外光を光電変換する
     請求項1に記載の光検出装置。
  15.  複数の前記第1光電変換部が設けられた画素アレイを有し、
     前記画素アレイの中心からの距離に応じて、前記第1導光部の中心と前記第2導光部の中心との距離が異なっている
     請求項14に記載の光検出装置。
  16.  前記第2構造体は、赤外光の波長以下の大きさを有し、
     前記第2構造体の屈折率は、前記第2構造体の隣の媒質の屈折率よりも高い
     請求項14に記載の光検出装置。
  17.  前記第1光電変換部は、可視光を光電変換する
     請求項1に記載の光検出装置。
  18.  光が入射するレンズと、
     前記レンズと前記第1光電変換部との間に設けられるカラーフィルタと
     を有し、
     前記第1光電変換部は、前記レンズと前記カラーフィルタとを透過した光を光電変換する
     請求項2に記載の光検出装置。
  19.  前記第2光電変換部と前記第3光電変換部は、前記レンズに対して設けられる
     請求項18に記載の光検出装置。
  20.  光学系と、
     前記光学系を透過した光を受光する光検出装置と
     を備え、
     前記光検出装置は、
     光を光電変換する第1光電変換部と、
     入射光の波長以下の大きさの第1構造体を含み、前記第1光電変換部を透過した光が入射する第1導光部と、
     前記第1導光部を介して入射する赤外光を光電変換する第2光電変換部と
     を有する電子機器。
PCT/JP2022/037482 2022-10-06 2022-10-06 光検出装置および電子機器 WO2024075253A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/037482 WO2024075253A1 (ja) 2022-10-06 2022-10-06 光検出装置および電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/037482 WO2024075253A1 (ja) 2022-10-06 2022-10-06 光検出装置および電子機器

Publications (1)

Publication Number Publication Date
WO2024075253A1 true WO2024075253A1 (ja) 2024-04-11

Family

ID=90607943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037482 WO2024075253A1 (ja) 2022-10-06 2022-10-06 光検出装置および電子機器

Country Status (1)

Country Link
WO (1) WO2024075253A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047282A1 (ja) * 2014-09-24 2016-03-31 ソニー株式会社 撮像素子、撮像装置および撮像素子の製造方法
WO2016143554A1 (ja) * 2015-03-12 2016-09-15 ソニー株式会社 固体撮像素子、撮像装置、並びに電子機器
WO2016178266A1 (ja) * 2015-05-01 2016-11-10 オリンパス株式会社 撮像装置
JP2017208496A (ja) * 2016-05-20 2017-11-24 ソニー株式会社 固体撮像装置、及び、電子機器
JP2018098342A (ja) * 2016-12-13 2018-06-21 ソニーセミコンダクタソリューションズ株式会社 撮像素子、撮像素子の製造方法、金属薄膜フィルタ、及び、電子機器
JP2018190749A (ja) * 2015-09-30 2018-11-29 パナソニック・タワージャズセミコンダクター株式会社 固体撮像装置
JP2019114602A (ja) * 2017-12-21 2019-07-11 ソニーセミコンダクタソリューションズ株式会社 電磁波処理装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047282A1 (ja) * 2014-09-24 2016-03-31 ソニー株式会社 撮像素子、撮像装置および撮像素子の製造方法
WO2016143554A1 (ja) * 2015-03-12 2016-09-15 ソニー株式会社 固体撮像素子、撮像装置、並びに電子機器
WO2016178266A1 (ja) * 2015-05-01 2016-11-10 オリンパス株式会社 撮像装置
JP2018190749A (ja) * 2015-09-30 2018-11-29 パナソニック・タワージャズセミコンダクター株式会社 固体撮像装置
JP2017208496A (ja) * 2016-05-20 2017-11-24 ソニー株式会社 固体撮像装置、及び、電子機器
JP2018098342A (ja) * 2016-12-13 2018-06-21 ソニーセミコンダクタソリューションズ株式会社 撮像素子、撮像素子の製造方法、金属薄膜フィルタ、及び、電子機器
JP2019114602A (ja) * 2017-12-21 2019-07-11 ソニーセミコンダクタソリューションズ株式会社 電磁波処理装置

Similar Documents

Publication Publication Date Title
WO2019044213A1 (en) SEMICONDUCTOR IMAGING DEVICE AND ELECTRONIC APPARATUS
WO2021241019A1 (ja) 撮像素子および撮像装置
WO2020137203A1 (ja) 撮像素子および撮像装置
WO2020158443A1 (ja) 撮像装置及び電子機器
WO2023013444A1 (ja) 撮像装置
JP7503399B2 (ja) 固体撮像装置及びその製造方法、並びに電子機器
WO2024075253A1 (ja) 光検出装置および電子機器
WO2023013393A1 (ja) 撮像装置
JP2024066302A (ja) 光検出装置、電子機器、および光学素子
WO2023162496A1 (ja) 撮像装置
WO2023058326A1 (ja) 撮像装置
WO2024029408A1 (ja) 撮像装置
WO2023195316A1 (en) Light detecting device
WO2023195315A1 (en) Light detecting device
WO2023132137A1 (ja) 撮像素子および電子機器
WO2023013394A1 (ja) 撮像装置
JP7316340B2 (ja) 固体撮像装置および電子機器
JP7437957B2 (ja) 受光素子、固体撮像装置及び電子機器
WO2021215299A1 (ja) 撮像素子および撮像装置
JP7504802B2 (ja) 固体撮像素子、固体撮像装置及び電子機器
WO2023067935A1 (ja) 撮像装置
WO2024057814A1 (ja) 光検出装置および電子機器
WO2021171796A1 (ja) 固体撮像装置及び電子機器
WO2024116302A1 (ja) 光検出素子
JP2024060822A (ja) 光検出装置、電子機器、および光学素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22961440

Country of ref document: EP

Kind code of ref document: A1