WO2024029019A1 - 複合材部品の製造方法、および、複合材部品製造装置 - Google Patents
複合材部品の製造方法、および、複合材部品製造装置 Download PDFInfo
- Publication number
- WO2024029019A1 WO2024029019A1 PCT/JP2022/029891 JP2022029891W WO2024029019A1 WO 2024029019 A1 WO2024029019 A1 WO 2024029019A1 JP 2022029891 W JP2022029891 W JP 2022029891W WO 2024029019 A1 WO2024029019 A1 WO 2024029019A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- prepreg
- movable mold
- thin plate
- molding
- mold
- Prior art date
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 126
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 68
- 238000000465 moulding Methods 0.000 claims abstract description 158
- 238000000034 method Methods 0.000 claims abstract description 105
- 230000008569 process Effects 0.000 claims abstract description 57
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 14
- 238000012546 transfer Methods 0.000 claims description 59
- 238000003825 pressing Methods 0.000 claims description 28
- 239000000463 material Substances 0.000 claims description 21
- 238000010438 heat treatment Methods 0.000 claims description 20
- 239000007769 metal material Substances 0.000 claims description 9
- 239000013256 coordination polymer Substances 0.000 description 34
- 239000000835 fiber Substances 0.000 description 9
- 238000005452 bending Methods 0.000 description 7
- 230000008859 change Effects 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 238000003856 thermoforming Methods 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000012779 reinforcing material Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229920001169 thermoplastic Polymers 0.000 description 3
- 239000004416 thermosoftening plastic Substances 0.000 description 3
- 238000004026 adhesive bonding Methods 0.000 description 2
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 230000005489 elastic deformation Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011152 fibreglass Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 241000446313 Lamella Species 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C43/00—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
- B29C43/02—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
- B29C43/04—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds
- B29C43/06—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds continuously movable in one direction, e.g. mounted on chains, belts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/30—Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
- B29C70/34—Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
Definitions
- the present invention relates to a method for manufacturing composite parts, and an apparatus for manufacturing composite parts.
- Composite parts made of fiber and resin are used in various products such as aircraft and automobiles.
- Composite parts include CFRP (carbon fiber reinforced plastic), GFRP (glass fiber reinforced plastic), and the like. There is a need to optimize the shape or reduce the weight of composite parts.
- CFRP carbon fiber reinforced plastic
- GFRP glass fiber reinforced plastic
- the autoclave manufacturing method it is possible to manufacture composite parts with complex shapes using a mold that corresponds to the product shape.
- the cost of molding is high.
- the pultrusion molding method it is possible to mold elongated composite parts relatively inexpensively.
- the pultrusion molding method can generally only mold composite parts whose cross-sectional shape is constant along the longitudinal direction.
- Patent Document 1 describes a continuous molding method for composite material shapes having different cross sections.
- a composite material whose cross section differs depending on the position along the longitudinal direction is used using one movable mold whose outer surface dimensions differ depending on the position along the longitudinal direction.
- a mold material (for example, a composite material mold material whose thickness dimension varies depending on the position along the longitudinal direction) is molded.
- a member whose outer surface dimension changes along the longitudinal direction is to be molded, and shapes that can be molded are limited.
- Patent Document 2 discloses a method for manufacturing composite material parts.
- the method for manufacturing composite parts described in Patent Document 2 includes a first thermoforming step of thermoforming a first thermoplastic prepreg sheet into a three-dimensional shape to create a first three-dimensional prepreg sheet; A laminate creation step in which a three-dimensional prepreg sheet and a second prepreg sheet are laminated to create a prepreg sheet laminate, and a pressing device applies heat and pressing force to the prepreg sheet laminate to create a prepreg sheet laminate. and a laminate forming step of forming the laminate.
- An object of the present invention is to provide a technology that improves the degree of freedom in the shape of manufactured composite parts.
- a method for manufacturing a composite component in some embodiments includes the steps of arranging a prepreg in a movable mold, molding the prepreg, and moving the prepreg together with the movable mold.
- the method includes the steps of transferring from upstream to downstream, and separating the composite part formed from the prepreg from the moving mold.
- the step of arranging the prepreg includes arranging the prepreg between a first movable mold and a second movable mold.
- the step of molding the prepreg includes applying pressure to the prepreg from a molding die via the movable die, and transmitting heat from the movable die to the prepreg.
- the step of separating the composite part from the movable mold includes separating the composite part from both the first movable mold and the second movable mold.
- the composite material parts manufacturing apparatus in some embodiments includes a movable mold that accommodates prepreg, a transfer device that transports the movable mold that accommodates the prepreg from upstream to downstream, and a transfer device that transports the movable mold that accommodates the prepreg.
- the method includes a molding die that applies pressure and heat to the prepreg via the prepreg, a press device that applies pressing force from the molding die to the movable mold, and a heating device that heats the molding die.
- the movable mold includes a first movable mold and a second movable mold disposed opposite to the first movable mold via the prepreg.
- FIG. 1 is a flowchart illustrating an example of a method for manufacturing a composite material component in the first embodiment.
- FIG. 2 is a schematic cross-sectional view showing an example of prepreg.
- FIG. 3 is a schematic perspective view schematically showing an example of how the prepreg is arranged between the first movable mold and the second movable mold.
- FIG. 4 is a schematic perspective view schematically showing another example of how the prepreg is arranged between the first movable mold and the second movable mold.
- FIG. 5 is a schematic perspective view schematically showing an example of how the prepreg transported in the first direction is molded by the molding device.
- FIG. 6 is a schematic perspective view schematically showing another example of how the prepreg transported in the first direction is molded by the molding device.
- FIG. 7 is a schematic cross-sectional view schematically showing how some steps of the method for manufacturing a composite material component according to the first embodiment are executed.
- FIG. 8 is a sectional view taken along the line JJ in FIG.
- FIG. 9 is a schematic cross-sectional view schematically showing how some steps of the method for manufacturing a composite material component according to the first embodiment are executed.
- FIG. 10 is a schematic vertical cross-sectional view schematically showing how the transfer process is performed.
- FIG. 11 is a schematic vertical cross-sectional view schematically showing how the transfer process is performed.
- FIG. 12 is a schematic vertical cross-sectional view schematically showing how the transfer process in a modified example is performed.
- FIG. 13 is a schematic cross-sectional view schematically showing how the molding process is performed.
- FIG. 10 is a schematic vertical cross-sectional view schematically showing how the transfer process is performed.
- FIG. 11 is a schematic vertical cross-sectional view schematically showing how the transfer process is performed.
- FIG. 12 is
- FIG. 14 is a schematic perspective view schematically showing an example of how a composite material component is separated from a moving mold.
- FIG. 15 is a schematic perspective view schematically showing another example of how the composite material component is separated from the movable mold.
- FIG. 16 is a schematic cross-sectional view schematically showing how the molding process is performed in a modified example.
- FIG. 17 is a graph showing an example of temperature change of the moving mold.
- FIG. 18 is a schematic cross-sectional view schematically showing how the molding process is performed in the second embodiment.
- FIG. 1 is a flowchart illustrating an example of a method for manufacturing a composite material component CP in the first embodiment.
- FIG. 2 is a schematic cross-sectional view showing an example of prepreg PP.
- FIG. 3 is a schematic perspective view schematically showing an example of how the prepreg PP is arranged between the first movable mold 21 and the second movable mold 24.
- FIG. 4 is a schematic perspective view schematically showing another example of how the prepreg PP is arranged between the first movable mold 21 and the second movable mold 24.
- FIG. 1 is a flowchart illustrating an example of a method for manufacturing a composite material component CP in the first embodiment.
- FIG. 2 is a schematic cross-sectional view showing an example of prepreg PP.
- FIG. 3 is a schematic perspective view schematically showing an example of how the prepreg PP is arranged between the first movable mold 21 and the second movable mold 24.
- FIG. 4 is a schematic perspective
- FIG. 5 is a schematic perspective view schematically showing an example of how the prepreg PP transferred in the first direction DR1 is molded by the molding device 3.
- FIG. 6 is a schematic perspective view schematically showing another example of how the prepreg PP transferred in the first direction DR1 is molded by the molding device 3.
- FIG. 7 is a schematic cross-sectional view schematically showing how some steps of the method for manufacturing the composite material component CP in the first embodiment are executed.
- FIG. 8 is a sectional view taken along the line JJ in FIG.
- FIG. 9 is a schematic cross-sectional view schematically showing how some steps of the method for manufacturing the composite material component CP in the first embodiment are executed.
- FIGS. 10 and 11 are schematic vertical cross-sectional views schematically showing how the transfer process is performed.
- FIG. 12 is a schematic vertical cross-sectional view schematically showing how the transfer process in a modified example is performed.
- FIG. 13 is a schematic cross-sectional view schematically showing how the molding process is performed.
- FIG. 14 is a schematic perspective view schematically showing an example of how the composite component CP is separated from the movable mold 2.
- FIG. 15 is a schematic perspective view schematically showing another example of how the composite component CP is separated from the movable mold 2.
- FIG. 16 is a schematic cross-sectional view schematically showing how the molding process is performed in a modified example.
- prepreg PP is prepared in the first step ST1.
- the first step ST1 is a preparation process.
- the prepreg PP prepared in the preparation step includes a reinforcing material RF such as carbon fiber or glass fiber, and a base material N such as a resin impregnated with the reinforcing material RF.
- the reinforcing material RF may contain continuous fibers such as a textile material, or may contain discontinuous fibers such as long fibers or short fibers.
- the base material N may be made of a thermosetting resin or a thermoplastic resin.
- the prepreg PP may be a laminate LB in which a plurality of prepreg sheets PS are laminated. Lamination of prepreg sheets PS may be performed using an AFP (automatic lamination machine). Further, as illustrated in FIGS. 3 to 5 of Patent No. 6411673, preparing the prepreg as the laminate LB involves thermoforming each thermoplastic prepreg sheet into a three-dimensional shape and thermoforming. The method may include laminating a plurality of thermoplastic prepreg sheets. Furthermore, preparing the prepreg as the laminate LB may be performed continuously by superimposing a prepreg sheet fed out from a bobbin on another prepreg sheet.
- the orientation of the reinforcing material RF (more specifically, the fibers RF1) in each prepreg sheet PS is such that they are arranged adjacent to each other.
- the fiber orientation in the prepreg sheet may be different from that in the prepreg sheet. It is preferable that the orientation of the fibers in each prepreg sheet is set appropriately so that the composite component manufactured from prepreg PP has the desired strength.
- the preparation step (first step ST1) includes cutting the laminate LB in which a plurality of prepreg sheets PS are laminated to a desired size (for example, a desired length and/or a desired width). It's okay to stay.
- prepreg PP is placed in the movable mold 2 in the second step ST2.
- the second step ST2 is a placement process.
- the placement step (second step ST2) includes placing the prepreg PP between the first movable mold 21 and the second movable mold 24.
- 3(a) or 4(a) shows the state before the placement step (first step ST1)
- FIG. 3(b) or FIG. 4(b) shows the state before the placement step (second step ST1).
- the state after executing step ST2) is shown.
- the second movable mold 24 is separate from the first movable mold 21.
- the first movable mold 21 is an outer mold disposed facing the outer surface of the prepreg PP, and the second movable mold 24 is disposed opposite the inner surface of the prepreg PP.
- This is the inner mold.
- the first movable mold 21 has a concave first inner surface 22n that is arranged opposite to the outer surface of the prepreg PP, and a first outer surface 22u that will be pressed by a molding die 30, which will be described later.
- the second movable mold 24 includes a second outer surface 25u that is arranged to face the inner surface of the prepreg PP, and a concave second inner surface 25n that will be pressed by a molding die 30, which will be described later.
- the third step ST3 is a molding process.
- prepreg PP is molded by applying heat and pressure to prepreg PP.
- the base material N of the prepreg PP is a thermosetting resin
- it is preferable that the temperature of the prepreg PP is heated to a temperature equal to or higher than the polymerization start temperature in the molding process.
- the base material N of the prepreg PP is a thermoplastic resin
- the molding process (third step ST3) is carried out from the molding die 30 to the prepreg PP (for example, the first region RG1 of the prepreg PP) via the movable die 2.
- This includes applying pressure F and transmitting heat Q from the movable mold 2 to the prepreg PP (for example, the first region RG1 of the prepreg PP).
- a molded region M2 is formed from the prepreg PP.
- a part with a high density of dots corresponds to the already formed area M2
- a part with a low density of dots corresponds to the pre-molding area M1 of the prepreg PP. do.
- the fourth step ST4 is a transfer step.
- the transfer process includes transferring the prepreg PP together with the movable mold 2 from upstream to downstream.
- the direction in which the movable mold 2 is transferred is defined as a "first direction DR1."
- first direction DR1 is a straight line (more specifically, the longitudinal direction of the movable mold 2). This is the direction along the straight line).
- first direction DR1 is a direction along the curve.
- downstream means downstream in the transfer direction of the movable mold 2
- upstream means upstream in the transfer direction of the movable mold 2.
- the transfer step involves transferring the pre-molding region M1 of the prepreg PP together with the movable mold 2 toward the molding device 3 in the first direction DR1.
- the example shown in FIG. 5 or 6 includes transferring the already formed region M2 formed from prepreg PP from the molding device 3 in the first direction DR1 together with the movable mold 2.
- the pre-molding area M1 and the already-molded area M2 are shown for convenience. are shown separated, but in reality, the pre-molding area M1 and the already-molded area M2 are connected to each other.
- the above-mentioned molding step (third step ST3) and the above-mentioned transfer step (fourth step ST4) are performed alternately, so that the long prepreg PP is continuously molded to manufacture the composite material part CP. be able to.
- the composite part CP formed from the prepreg PP is separated from the movable mold 2.
- the fifth step ST5 is a separation step.
- the separation step includes separating the composite part CP from both the first moving mold 21 and the second moving mold 24. Further processing (for example, cutting processing, drilling processing, etc.) may be performed on the composite material component CP separated from the movable mold 2. Alternatively or additionally, the composite component CP separated from the movable mold 2 and another composite component may be stacked.
- the first movable mold 21 and the second movable mold 24 separated from the composite material component CP may be reused as the movable mold 2.
- the first moving mold 21 and the second moving mold 24 separated from the composite component CP may be recovered and reused as metal resources.
- the prepreg PP is molded with the prepreg PP disposed between the first movable mold 21 and the second movable mold 24. Therefore, by setting the shape of the space between the first movable mold 21 and the second movable mold 24 to a desired shape, prepreg PP having a desired shape can be molded. Therefore, when the method for manufacturing a composite component according to the first embodiment is used, the degree of freedom in the shape of the composite component CP to be molded is improved.
- the composite material parts manufacturing apparatus 1A in the first embodiment includes a moving mold 2, a transfer device 6, a molding mold 30, a press device 40, and a heating device. 50.
- the moving mold 2 accommodates prepreg PP.
- the movable mold 2 includes a first movable mold 21 and a second movable mold 24.
- the second movable mold 24 is arranged to face the first movable mold 21 via the prepreg PP.
- the first movable mold 21 is an outer mold disposed facing the outer surface of the prepreg PP, and the second movable mold 24 is disposed opposite the inner surface of the prepreg PP. This is the inner mold.
- the transfer device 6 transfers the movable mold 2 containing the prepreg PP from upstream to downstream.
- the transfer device 6 includes a moving device 60 that moves the molding die 30 and the press device 40 along the movement trajectory OB of the moving die 2.
- the moving device 60 moves the forming die 30 and the press device in a state where the forming die 30 disposed at the tip of the press device 40 is pressing the movable die 2. 40 along the movement trajectory OB of the movable mold 2.
- the transfer device 6 may include a traction device 61 provided independently of the forming device 3, as illustrated in FIG. 12(b).
- the traction device 61 is arranged downstream of the molding device 3.
- the pulling device 61 pulls the movable mold 2 from upstream to downstream.
- the transfer device 6 may include a transfer roller 68 (see FIG. 8, if necessary) arranged upstream of the forming device 3, Other types of transfer devices (for example, intermittent transfer devices) disposed upstream of the device 3 may also be included.
- the molding die 30 applies pressure F and heat Q to the prepreg PP via the movable die 2.
- the press device 40 applies a pressing force from the molding die 30 to the movable die 2. Further, the heating device 50 heats the molding die 30.
- the composite component manufacturing apparatus 1A in the first embodiment includes a first movable mold 21 and a second movable mold 24 disposed opposite to the first movable mold 21 via prepreg PP. Therefore, by setting the shape of the space between the first movable mold 21 and the second movable mold 24 to a desired shape, prepreg PP having a desired shape can be molded. Therefore, when the composite component manufacturing apparatus 1A according to the first embodiment is used, the degree of freedom in the shape of the composite component CP to be manufactured is improved.
- the prepreg PP placed in the movable mold 2 has a three-dimensional shape.
- a three-dimensional shape means a shape other than a two-dimensional planar shape.
- the three-dimensional shape is, for example, a shape with at least one bend.
- the prepreg PP has a bent portion B extending along the longitudinal direction of the prepreg PP.
- the prepreg PP may have a first bent portion B1 extending along the longitudinal direction of the prepreg PP, and a second bent portion B2 extending along the longitudinal direction of the prepreg PP.
- the cross-sectional shape of the prepreg PP in a plane perpendicular to the longitudinal direction of the prepreg PP may have a substantially C-shape as illustrated in FIG. 3(a).
- the cross-sectional shape of the prepreg PP in a plane perpendicular to the longitudinal direction of the prepreg PP may have a substantially Z-shape, a substantially L-shape, or other shapes. It may have.
- cross section in a plane perpendicular to the longitudinal direction of the member
- the cross-sectional shape of the prepreg PP may be constant along the longitudinal direction of the prepreg PP (in other words, the prepreg PP may have a constant cross-sectional shape).
- the cross-sectional shape of the prepreg PP may vary along the longitudinal direction of the prepreg PP (in other words, the prepreg PP (It may have a surface shape.)
- the height dimension H3 of the prepreg PP, the width dimension W3 of the prepreg PP, or the thickness T3 of the prepreg PP may vary along the longitudinal direction of the prepreg PP.
- the prepreg PP includes a first portion Pa whose width dimension is a first value, a second portion Pb whose width dimension is a second value larger than the first value, and a prepreg PP. It has a width changing portion Pc whose width dimension changes along the longitudinal direction.
- the width changing portion Pc is arranged between the first portion Pa and the second portion Pb.
- the width changing portion Pc may include a tapered portion Pc1 whose width dimension changes smoothly, or may include a stepped portion Pc2 (see FIG. 4(a)).
- the longitudinal axis CA of the prepreg PP may be a straight line.
- the longitudinal axis CA of the prepreg PP may include a curve, as illustrated in FIG. 4(a).
- first moving mold 21 and second moving mold 24 As illustrated in FIG. 3(a) or FIG. 4(a), at least one of the first movable mold 21 and the second movable mold 24 has a thin plate having a three-dimensional shape (for example, It is preferable to include a thin plate of 1.5 mm or less.
- the first movable mold 21 includes a first thin plate 22 having a three-dimensional shape (for example, a first thin plate 22 having a thickness T1 of 1.5 mm or less).
- the second movable mold 24 includes a second thin plate 25 having a three-dimensional shape (for example, a second thin plate 25 having a thickness T2 of 1.5 mm or less).
- the above-mentioned thin plate may have a trough shape.
- the trough shape means a shape that is elongated as a whole and has an elongated recess D along the entire length.
- the first thin plate 22 has a bent portion 221 extending along the longitudinal direction of the first thin plate 22.
- the first thin plate 22 may have two bent portions (221a, 221b) extending along the longitudinal direction of the movable mold 2.
- the first thin plate 22 may have a trough shape.
- the first thin plate 22 includes a first side wall 225, a second side wall 226, and a first connecting wall 227 (more specifically, connecting the first side wall 225 and the second side wall 226). Specifically, it has a first top wall). Further, the first side wall 225 is a flat, elongated wall, and the second side wall 226 is a flat, elongated wall. The first connecting wall 227 is a flat, elongated wall portion.
- the first thin plate 22 includes a first side wall 225, a second side wall 226, and a first connecting wall 227 (more specifically, connecting the first side wall 225 and the second side wall 226).
- first side wall 225 is a curved plate-shaped wall
- second side wall 226 is a curved plate-shaped wall.
- the radius of curvature of the second side wall 226 is smaller than the radius of curvature of the first side wall 225.
- the first connecting wall 227 is a flat wall portion extending along a curve.
- the second thin plate 25 has a bent portion 251 extending along the longitudinal direction of the movable mold 2.
- the second thin plate 25 may have two bent portions (251a, 251b) extending along the longitudinal direction of the movable mold 2.
- the second thin plate 25 may have a trough shape.
- the second thin plate 25 faces the third side wall 255 which faces the first side wall 225 via the prepreg PP, and the second side wall 226 via the prepreg PP. It has a different fourth side wall 256 and a second connecting wall 257 (more specifically, a second top wall) that connects the third side wall 255 and the fourth side wall 256.
- the second connecting wall 257 is a wall that faces the first connecting wall 227 via prepreg PP.
- the third side wall 255 is a flat, elongated wall
- the fourth side wall 256 is a flat, elongated wall.
- the second connecting wall 257 is a flat, elongated wall portion.
- the second thin plate 25 faces the third side wall 255 which faces the first side wall 225 through the prepreg PP, and the second side wall 226 through the prepreg PP. It has a different fourth side wall 256 and a second connecting wall 257 (more specifically, a second top wall) that connects the third side wall 255 and the fourth side wall 256.
- the second connecting wall 257 is a wall that faces the first connecting wall 227 via prepreg PP.
- the third side wall 255 is a curved plate-shaped wall
- the fourth side wall 256 is a curved plate-shaped wall.
- the radius of curvature of the fourth side wall 256 is smaller than the radius of curvature of the third side wall 255.
- the second connecting wall 257 is a flat wall portion extending along a curve.
- the cross-sectional shape of the first thin plate 22 may be approximately C-shaped.
- the cross-sectional shape of the first thin plate 22 may be approximately L-shaped or may have another shape.
- the cross-sectional shape of the second thin plate 25 may be approximately C-shaped.
- the cross-sectional shape of the second thin plate 25 may be approximately L-shaped, or may have another shape.
- the cross-sectional shape of the first thin plate 22 may be constant along the longitudinal direction of the first thin plate 22.
- the cross-sectional shape of the first lamella 22 may vary along its longitudinal direction.
- the height H1 of the first thin plate 22, the width W1 of the first thin plate 22, or the thickness T1 of the first thin plate 22 may vary along the longitudinal direction of the first thin plate 22.
- the cross-sectional shape of the second thin plate 25 may be constant along the longitudinal direction of the second thin plate 25.
- the cross-sectional shape of the second thin plate 25 may vary along the length of the second thin plate 25.
- the height H2 of the second thin plate 25, the width W2 of the second thin plate 25, or the thickness T2 of the second thin plate 25 may vary along the longitudinal direction of the second thin plate 25.
- the second thin plate 25 may have a thickness changing portion 25c whose thickness changes along the longitudinal direction of the second thin plate 25.
- the longitudinal axis CL1 of the first thin plate 22 may be a straight line.
- the longitudinal axis CL1 of the first thin plate 22 may include a curve.
- the thickness T1 of the first thin plate 22 is preferably 1.5 mm or less. Moreover, it is preferable that the thickness T2 of the second thin plate 25 is 1.5 mm or less. When the thickness T1 of the first thin plate 22 and/or the thickness T2 of the second thin plate 25 is 1.5 mm or less, the first thin plate 22 (or the second thin plate 25) which receives the pressing force from the molding die 30 ) and the shape of the prepreg PP are easily compatible with each other (see FIG. 9(b)).
- the thickness of the thin plate (first thin plate 22 and/or second thin plate 25) disposed between the molding die 30 and the prepreg PP is 1.5 mm or less, the prepreg is removed from the shaping die 30. Heat Q can be efficiently transferred to PP via the thin plates (first thin plate 22 and/or second thin plate 25).
- the pressing force acting on the movable mold 2 from the molding mold 30 will not be sufficiently transmitted to the prepreg PP.
- the first movable mold 21 includes the first thin plate 22 with a thickness of 1.5 mm or less, the pressing force acting on the first thin plate 22 from the molding die 30 is reduced due to the deformation of the first thin plate 22. , is preferably transmitted to the prepreg PP via the deforming first thin plate 22.
- the second movable mold 24 includes a second thin plate 25 having a thickness of 1.5 mm or less
- the deformation of the second thin plate 25 causes the pressing force acting on the second thin plate 25 from the molding die 30 to deform. It is suitably transmitted to the prepreg PP via the second thin plate 25.
- the thickness T1 of the first thin plate 22 may be smaller than the thickness T3 of the prepreg PP (more specifically, the laminate LB of a plurality of prepreg sheets). Further, the thickness T2 of the second thin plate 25 may be smaller than the thickness T3 of the prepreg PP (more specifically, the laminate LB formed of a plurality of prepreg sheets).
- the first thin plate 22 and/or the second thin plate 25 are preferably formed of a metal material.
- the first thin plate 22 is formed of a metal material
- the first thin plate 22 that receives the pressing force from the molding die 30 is easily deformed to match the surface shape of the prepreg PP.
- the deformation includes elastic deformation, plastic deformation, thermal deformation, or a combination thereof.
- the second thin plate 25 is formed of a metal material
- the second thin plate 25 that receives the pressing force from the molding die 30 is easily deformed to fit the surface shape of the prepreg PP.
- the deformation includes elastic deformation, plastic deformation, thermal deformation, or a combination thereof.
- the material of the first thin plate 22 and/or the second thin plate 25 may be iron or stainless steel in consideration of durability and the like.
- the material of the first thin plate 22 and/or the second thin plate 25 may be made of copper or aluminum in consideration of thermal conductivity and the like.
- the first thin plate 22 and/or the second thin plate 25 have a thermal conductivity of 15 W/m ⁇ K or more, 50 W/m ⁇ K or more, or 100 W/m ⁇ K or more at the prepreg PP molding temperature. You can.
- the step of molding the prepreg PP includes (1) deforming the thin plate (22; 25) by pressing the thin plate (22; 25) with the molding die 30; (2) The deformed thin plate (22; 25) may apply pressure F to the prepreg PP.
- the first thin plate 22 and/or the second thin plate 25 are pressed and deformed by the molding die 30, so that the shape of the first thin plate 22 and/or the second thin plate 25 matches the surface shape of the prepreg PP. do.
- the thin plate (22; 25) may have a curved region CR. Further, in the curved region CR, the longitudinal axis CL of the thin plate may be curved.
- the first thin plate 22 has a first curved region CR1, and the longitudinal axis CL1 of the first thin plate 22 is curved in the first curved region CR1.
- the entire first thin plate 22 may be constituted by the first curved region CR1.
- a part of the first thin plate 22 may be constituted by the first curved region CR1, and another part of the first thin plate 22 may be constituted by a straight region.
- the second thin plate 25 has a second curved region CR2, and the longitudinal axis CL2 of the second thin plate 25 is curved in the second curved region CR2.
- the entire second thin plate 25 may be constituted by the second curved region CR2.
- a part of the second thin plate 25 may be constituted by the second curved region CR2, and another part of the second thin plate 25 may be constituted by a straight region.
- the first movable mold 21 includes a first thin plate 22 having a three-dimensional shape, and the first thin plate 22 is attached to the second movable mold 24 via prepreg PP. It has opposing first inner surfaces 22n.
- the cross-sectional shape of the first inner surface 22n (in other words, the cross-sectional shape of the first inner surface 22n in a plane perpendicular to the longitudinal direction of the first thin plate 22) may be constant along the longitudinal direction of the first thin plate 22. good. Alternatively, the cross-sectional shape of the first inner surface 22n may vary along the longitudinal direction of the first thin plate 22.
- the first thin plate 22 has a first outer surface 22u that will be pressed by the molding die 30. Even if the cross-sectional shape of the first outer surface 22u (in other words, the cross-sectional shape of the first outer surface 22u in a plane perpendicular to the longitudinal direction of the first thin plate 22) is constant along the longitudinal direction of the first thin plate 22, good. In this case, any region of the first thin plate 22 that is intermittently transferred in the first direction DR1 is suitably pressed by the molding die 30.
- the second movable mold 24 includes a second thin plate 25 having a three-dimensional shape, and the second thin plate 25 is attached to the first movable mold 21 via prepreg PP. It has opposing second outer surfaces 25u. Even if the cross-sectional shape of the second outer surface 25u (in other words, the cross-sectional shape of the second outer surface 25u in a plane perpendicular to the longitudinal direction of the second thin plate 25) is constant along the longitudinal direction of the second thin plate 25, good. Alternatively, the cross-sectional shape of the second outer surface 25u may change along the longitudinal direction of the second thin plate 25.
- the second thin plate 25 has a second inner surface 25n that is pressed by the molding die 30. Even if the cross-sectional shape of the second inner surface 25n (in other words, the cross-sectional shape of the second inner surface 25n in a plane perpendicular to the longitudinal direction of the second thin plate 25) is constant along the longitudinal direction of the second thin plate 25, good. In this case, any region of the second thin plate 25 that is intermittently transferred in the first direction DR1 is suitably pressed by the molding die 30.
- the movable mold 2 may include a block 27 attached to at least one of the first thin plate 22 and the second thin plate 25. .
- the movable mold 2 includes a first block 27-1 attached to the first thin plate 22.
- the first block 27-1 is attached to the inner surface of the first thin plate 22.
- the first block 27-1 and the first thin plate 22 function as an outer mold that is placed opposite to the outer surface of the prepreg PP.
- the first block 27-1 has a portion 27p-1 whose width or height continuously changes along the longitudinal direction of the first block 27-1. may have.
- the portion 27p-1 may be formed by forming a portion of the surface of the first block 27-1 into a tapered surface 27t-1.
- the first block 27-1 may be attached to the first thin plate 22 via a fastening member such as a bolt or screw. Alternatively or additionally, the first block 27-1 may be attached to the first thin plate 22 by gluing or welding.
- the block 27 (for example, the first block 27-1) is preferably formed of a metal material.
- the material of the block 27 may be made of iron or stainless steel in consideration of durability and the like.
- the material of the block 27 (for example, the first block 27-1) may be made of copper or aluminum in consideration of thermal conductivity and the like.
- the block 27 (for example, the first block 27-1) is a metal material whose thermal conductivity at the prepreg PP molding temperature is 15 W/m ⁇ K or more, 50 W/m ⁇ K or more, or 100 W/m ⁇ K or more. It may be configured by
- the movable mold 2 includes a second block 27-2 attached to the second thin plate 25.
- the second block 27-2 is attached to the outer surface of the second thin plate 25.
- the second block 27-2 and the second thin plate 25 function as an inner mold placed opposite to the inner surface of the prepreg PP.
- the second block 27-2 has a portion 27p-2 whose width or height continuously changes along the longitudinal direction of the second block 27-2. may have.
- the portion 27p-2 may be formed by forming a portion of the surface of the second block 27-2 into a tapered surface 27t-2.
- the second block 27-2 may be attached to the second thin plate 25 via a fastening member such as a bolt or screw. Alternatively or additionally, the second block 27-2 may be attached to the second sheet 25 by gluing or welding.
- the second block 27-2 is preferably formed of a metal material.
- the material of the second block 27-2 may be iron or stainless steel in consideration of durability and the like.
- the material of the second block 27-2 may be copper or aluminum in consideration of thermal conductivity and the like.
- the second block 27-2 may have a thermal conductivity of 15 W/m ⁇ K or more, 50 W/m ⁇ K or more, or 100 W/m ⁇ K or more at the prepreg PP molding temperature.
- the step of forming the prepreg PP includes a block 27 attached to one of the first thin plate 22 and the second thin plate 25, and the first The process may be performed with the other of the thin plate 22 and the second thin plate 25 in contact with the prepreg PP.
- the second block 27-2 attached to the second thin plate 25 and the first thin plate 22 are in contact with the prepreg PP.
- the second thin plate 25 is also in contact with the prepreg PP.
- the movable mold 2 is configured by a combination of the thin plate (22; 25) and the block 27, prepreg PP having a more complicated shape can be molded using the molding mold 30 and the movable mold 2. .
- the movable mold 2 when the movable mold 2 is constituted by a combination of thin plates (22; 25) and blocks 27, along the longitudinal direction of the prepreg PP, , the width dimension W3, the height dimension H3, the thickness T3, or the bending angle (more specifically, the bending angle at the bending part B) of the prepreg PP is continuously processed without changing the molding die 30. It can be formed into.
- the movable mold 2 when configured by a combination of a thin plate (22; 25) extending along a curve and a block 27 extending along a curve,
- the molding die 30 is changed for prepreg PP in which the radius of curvature (for example, the radius of curvature of the inner side surface PS1 of the prepreg PP or the radius of curvature of the outer side surface PS2 of the prepreg PP) changes along the longitudinal direction of the prepreg PP. It can be molded continuously without any problems.
- the cross section of at least one of the first inner surface 22n of the first thin plate 22 and the second outer surface 25u of the second thin plate 25 may change along the longitudinal direction of the movable mold 2 (see the thickness changing portion 25c in FIG. 3(a)).
- the presence of the thickness changing portion 25c makes it possible to make the shape of the movable mold 2 correspond to the prepreg PP whose width dimension W3 or thickness T3 changes along the longitudinal direction. can. In this way, composite parts can be produced that vary in width or thickness along the length.
- the molding device 3 includes a molding mold 30 that presses the movable mold 2, and a press device 40 that moves the molding mold 30 in the direction toward the movable mold 2.
- the molding device 3 may include a moving device 60 that moves the press device 40 and the molding die 30 along the movement trajectory OB of the movable die 2.
- the molding device 3 (more specifically, the molding die 30 of the molding device 3) is preferably configured to intermittently heat and pressurize the long prepreg PP via the movable mold 2.
- the transfer device 6 (for example, the transfer device 60 of the molding device 3) is preferably configured to intermittently transfer the movable mold 2 and the long prepreg PP in the first direction DR1.
- the long prepreg PP is intermittently heated and pressurized by the molding die 30 via the moving die 2, and the moving die 2 and the long prepreg By intermittently transporting the PP in the first direction DR1, a long prepreg PP is continuously molded.
- the stroke of the transfer device 6 (for example, the transfer device 60) to transfer the prepreg PP may be several mm or several mm. It may be cm.
- the stroke by which the transfer device 6 (for example, the transfer device 60) transfers the prepreg PP may be approximately equal to the length of the molding die 30 in the first direction DR1, or may be approximately equal to the length of the mold 30 in the first direction DR1. It may be half or approximately 1 ⁇ 3 of the length.
- the temperature distribution of the molding die 30 during molding of the prepreg PP may be substantially constant along the first direction DR1.
- the temperature distribution of the molding die 30 during molding of the prepreg PP may have a temperature gradient. For example, preheating is performed at the entrance of the molding die 30, main molding is performed at the center of the molding die 30 in the direction along the first direction DR1, and appropriate cooling is performed at the exit of the molding die 30.
- the temperature gradient described above may be set so that the In addition, if the stroke of the transfer device 6 (for example, the transfer device 60) to transfer the prepreg PP is large, each cycle including the step of molding the prepreg PP (third step ST3) and the transfer step (fourth step ST4) , a step of heating the molding die 30 and a step of stopping the heating of the molding die 30 may be provided.
- the composite material component manufacturing apparatus 1A includes a plurality of molds 30.
- the composite parts manufacturing apparatus 1A may include an upper mold 30-1 that presses the movable mold 2 (for example, the first movable mold 21) from above, and the movable mold 2 (for example, the first movable mold 21). It may also include a lower molding die 30-2 that presses the second moving die 24) from below.
- the composite part manufacturing apparatus 1A includes at least two horizontal molding molds (for example, , a first horizontal mold 30-3 and a second horizontal mold 30-4).
- the lower molding die 30-2 is moved relative to the lower molding die 30-2 in the first direction DR1.
- the process is performed while being inserted into the recess of the movable second movable mold 24.
- the molding die 30 may have a built-in heating device 50 such as a heater.
- the upper molding die 30-1 includes a first heating device 50-1.
- the heat generated by the first heating device 50-1 is transmitted to the prepreg PP via the upper molding die 30-1 and the movable die 2 (for example, the first movable die 21).
- the lower molding die 30-2 includes a second heating device 50-2.
- the heat generated by the second heating device 50-2 is transmitted to the prepreg PP via the lower molding die 30-2 and the movable die 2 (for example, the second movable die 24).
- the first horizontal molding die 30-3 includes a third heating device 50-3.
- the heat generated by the third heating device 50-3 is transmitted to the prepreg PP via the first horizontal forming mold 30-3 and the movable mold 2 (for example, the first side of the first movable mold 21). be done.
- the second horizontal molding die 30-4 includes a fourth heating device 50-4. The heat generated by the fourth heating device 50-4 is transmitted to the prepreg PP via the second horizontal molding mold 30-4 and the movable mold 2 (for example, the second side of the first movable mold 21). be done.
- the press device 40 presses the movable mold 2 (for example, the upper surface of the first movable mold 21) by moving the upper molding mold 30-1 downward.
- the first press device 40-1 is, for example, a fluid pressure actuator.
- the first press device 40-1 may include a first moving section 41-1 and a first driving section 42-1 that moves the first moving section 41-1.
- the press device 40 includes a second press device 40-2 that presses the movable mold 2 (for example, the bottom surface of the second movable mold 24) by moving the lower mold mold 30-2 upward. may have.
- the second press device 40-2 is, for example, a fluid pressure actuator.
- the second press device 40-2 may include a second moving section 41-2 and a second driving section 42-2 that moves the second moving section 41-2.
- the press device 40 moves the first lateral forming die 30-3 so that the first side surface of the movable die 2 (for example, the first side surface of the first movable die 21) ) may be provided with a third press device 40-3 for pressing.
- the third press device 40-3 is, for example, a fluid pressure actuator.
- the third press device 40-3 may include a third moving section 41-3 and a third driving section 42-3 that moves the third moving section 41-3.
- the press device 40 is a fourth press device that presses the second side surface of the movable mold 2 (for example, the second side surface of the first movable mold 21) by moving the second horizontal mold 30-4. 40-4.
- the fourth press device 40-4 is, for example, a fluid pressure actuator.
- the fourth press device 40-4 may include a fourth moving section 41-4 and a fourth driving section 42-4 that moves the fourth moving section 41-4.
- Transfer device 6 In the example shown in FIG. 5 or 6, the transfer device 6 transfers the movable mold 2 containing the prepreg PP from upstream to downstream.
- the transfer device 6 includes a moving device 60 that moves the molding die 30 and the press device 40 along the movement trajectory OB of the moving die 2.
- the moving device 60 includes a moving actuator 66 that moves the molding die 30 and the press device 40 along the moving trajectory OB of the moving die 2.
- the movement actuator 66 is directly or indirectly connected to the press device 40.
- the moving actuator 66 is connected to the press device 40 via the frame 64.
- the telescopic portion 66b of the moving actuator 66 is connected to the frame 64, and the main body portion 66a of the moving actuator 66 is connected to the base 62. Then, the frame 64 moves relative to the base 62 as the extendable portion 66b moves relative to the main body portion 66a.
- a bearing 63 (for example, a ball bearing) is preferably disposed between the base 62 and the frame 64.
- the frame 64 is supported by the base 62 via a plurality of bearings 63.
- a rail eg, a straight rail or a curved rail
- a slider that slides on the rail may be disposed between the base 62 and the frame 64.
- the moving device 60 moves the molding die 30 and the press device 40 along the moving trajectory OB of the moving die 2, and the moving trajectory OB is a linear trajectory.
- the moving device 60 moves the molding die 30 and the press device 40 along the moving trajectory OB of the moving die 2, and the moving trajectory OB is a curved trajectory.
- the composite material parts manufacturing apparatus 1A may include a dam 7 disposed between the first movable mold 21 and the second movable mold 24.
- the dam 7 allows softened material generated from the prepreg PP to flow out from the gap G2 between the first movable mold 21 and the second movable mold 24 during the process of molding the prepreg PP (third step ST3). prevent
- the dam 7 may include a first dam 7a arranged below the first side P1 of the prepreg PP, and a second dam 7b arranged below the second side P2 of the prepreg PP.
- the first dam 7a is arranged between the second block 27-2 attached to the second thin plate 25 and the first thin plate 22. Further, a second dam 7b is arranged between the first thin plate 22 and the second thin plate 25.
- prepreg PP (more specifically, prepreg PP having a three-dimensional shape) is prepared (preparation step). Since the prepreg PP prepared in the preparation process has already been explained in detail, a repeated explanation of the prepreg PP will be omitted.
- the prepreg PP prepared in the preparation process may be a prepreg with a constant cross-sectional shape (in other words, a prepreg whose cross-sectional shape does not change along the longitudinal direction of the prepreg PP), or a prepreg with a constant cross-sectional shape. It may be a prepreg whose cross-sectional shape changes along the longitudinal direction of the prepreg PP (in other words, a prepreg whose cross-sectional shape changes along the longitudinal direction of the prepreg PP). Further, the prepreg PP prepared in the preparation step may be a linear prepreg or a curved prepreg.
- the prepreg PP is placed on the movable mold 2 (placement step). Since the arrangement process has already been explained in detail, repeated explanation of the arrangement process will be omitted.
- the arrangement step preferably includes integrating the movable mold 2 and the prepreg PP. The integration may be performed by the adhesive force of the prepreg PP.
- the surface of the movable mold 2 is coated with ceramic coat CT or the like.
- Surface treatment may be performed. More specifically, a ceramic coat may be applied to the surface of the first moving mold 21 made of metal, and a ceramic coat may be applied to the surface of the second moving mold 24 made of metal.
- the transfer may be performed using a transfer roller 68 that contacts the moving mold 2. Further, the transfer may include moving the movable mold 2 along the guide rail 69 while the movable mold 2 is supported by the guide rail 69 .
- prepreg PP is molded (molding process).
- the prepreg PP is molded by applying pressure F and heat Q to the prepreg PP.
- the molding process includes applying pressure F and heat Q from the molding die 30 to the first region RG1 of the prepreg PP via the movable die 2.
- the molding process includes the molding die 30 pressing the movable mold 2 and the movable mold 2 pressed by the molding die 30 applying pressure F and heat to the prepreg.
- the molding die 30 presses the prepreg PP via the movable die 2 without directly contacting the prepreg PP.
- the first movable mold 21 and the second movable mold 24 are placed between the first movable mold 21 and the second movable mold 24. It may be carried out in a state where a dam 7 is disposed to prevent the softened material generated from the prepreg PP from flowing out from the gap G2 between the prepreg PP and the prepreg PP.
- the prepreg PP is transferred (transfer step).
- the transfer step (1) the pre-formed region M2 (in the example shown in FIG. 10A, the first region RG1) of the prepreg PP is held by the molding die 30 via the moving die 2; moving the molding die 30 and the press device 40 in the first direction DR1 (see arrow AR1 in FIG. 10(a)); (2) the molding die 30 (for example, the upper molding die 30-1, etc.); (3) moving the molding die 30 so that it is separated from the movable mold 2 (see arrow AR2 in FIG. 10(b)); In contrast, it may include relative movement in a second direction DR2 opposite to the first direction DR1 (see arrow AR3 in FIG. 10(c)).
- the prepreg PP and the movable mold 2 are integrally moved in the first direction DR1.
- the cycle including the third step ST3 (molding process) and the fourth step ST4 (transfer process) is repeatedly executed.
- the cycle including the third step ST3 (molding process) and the fourth step ST4 (transfer process) may be repeatedly executed “N” times.
- “K” is defined as any natural number between “1” and “N-1”
- after the "K"th molding process and the "K”th transfer process are executed "K+1"
- the molding process for the th time and the transfer process for the "K+1"th time will be executed.
- the molding process (for example, the "K"th molding process) is performed by moving the prepreg PP from the molding die 30 through the first portion 20a of the movable die 2. This includes applying pressure F and heat Q to region RG1. Applying pressure F and heat Q to the first region RG1 of the prepreg PP is performed with the first portion 20a of the movable mold 2 in contact with the first region RG1 of the prepreg PP.
- the first portion 20a of the movable mold 2 includes a part 22a of the first thin plate 22 and a part 25a of the second thin plate 25. Additionally, the first portion 20a of the movable mold 2 (in other words, the portion that contacts the first region RG1 of the prepreg PP) is a part of the block 27 (for example, the second block 27 in FIG. 9(b) -2 part 27a-2).
- applying the pressure F and the heat Q to the first region RG1 of the prepreg PP means that a portion 22a of the first thin plate 22, a portion 25a of the second thin plate 25, The process is performed with the part 27a-2 of the second block 27-2 in contact with the first region RG1 of the prepreg PP.
- the molding process (for example, the "K+1"th molding process) is performed after the process of moving the prepreg PP together with the movable mold 2 (for example, the "K"th transfer process). ), applying pressure F and heat Q from the molding die 30 to the second region RG2 of the prepreg PP via the second portion 20b of the movable die 2. Applying pressure F and heat Q to the second region RG2 of the prepreg PP is performed with the second portion 20b of the movable mold 2 in contact with the second region RG2 of the prepreg PP.
- the cross-sectional shape of the second portion 20b of the movable mold 2 (more specifically, the cross-sectional shape of the second portion 20b in a plane perpendicular to the longitudinal direction of the movable mold 2) is , is different from the cross-sectional shape of the first portion 20a of the movable mold 2 in FIG. 9(b) (more specifically, the cross-sectional shape of the first portion 20a in a plane perpendicular to the longitudinal direction of the movable mold 2). You can leave it there.
- the cross-sectional shape of the second portion 20b and the cross-sectional shape of the first portion 20a are different, a composite part with a more complex shape is manufactured.
- the second portion 20b of the movable mold 2 includes the other part 22b of the first thin plate 22, the other part 25b of the second thin plate 25, and the first block 27-1.
- Part 27b-1 In other words, applying the pressure F and the heat Q to the second region RG2 of the prepreg PP causes the other part 22b of the first thin plate 22, the other part 25b of the second thin plate 25, and the first block The process is performed with a part 27b-1 of 27-1 in contact with the second region RG2 of the prepreg PP.
- the second portion 20b of the movable mold 2 includes the other part 22b of the first thin plate 22, the other part 25b of the second thin plate 25, and the second block 27-2. 27b-2.
- applying the pressure F and the heat Q to the second region RG2 of the prepreg PP causes the other part 22b of the first thin plate 22, the other part 25b of the second thin plate 25, and the second block
- the other part 27b-2 of 27-2 may be in contact with the second region RG2 of the prepreg PP.
- the step of forming the prepreg PP is performed by forming the prepreg PP by using the first block 27-1 attached to the first thin plate 22 and the second block 27-2 attached to the second thin plate 25. A part of the PP is being executed in a pinched state.
- a cycle including the process of molding prepreg PP (third step ST3) and the transfer process (fourth step ST4) is executed multiple times to form composite material component CP.
- the composite material component CP may have a constant cross-sectional shape along its longitudinal direction.
- the composite material component CP has a cross-sectional shape along its longitudinal direction (for example, a height dimension H4 and a width dimension W4 in a cross section perpendicular to the longitudinal direction). , or may be a component whose thickness T4) changes.
- the composite material component CP may be a linear component (see FIG. 14) or a curved component (see FIG. 15).
- the radius of curvature of the composite material component CP may change along the longitudinal direction of the composite material component CP.
- the composite part CP formed from the prepreg PP is separated from the movable mold 2.
- the fifth step ST5 is a separation step.
- the separation step includes separating the composite part CP from both the first moving mold 21 and the second moving mold 24. Further processing (for example, cutting processing, drilling processing, etc.) may be performed on the composite material component CP separated from the movable mold 2. Alternatively or additionally, the composite component CP separated from the movable mold 2 and another composite component may be stacked. For example, a first composite part manufactured by the method for manufacturing a composite part in the first embodiment and a second composite part manufactured by the method for manufacturing a composite part in the first embodiment are By laminating, thicker composite parts may be manufactured. In addition, the lamination
- the composite component CP manufactured using the composite component manufacturing apparatus 1A in the first embodiment or the composite component manufacturing method in the first embodiment may be an aircraft component, or an automobile component. It may also be a part.
- the length of the composite material component CP may be 1 m or more, or 2 m or more.
- FIG. 17 is a graph showing an example of temperature change of the moving mold.
- FIG. 18 is a schematic cross-sectional view schematically showing how the molding process is performed.
- the volume or heat capacity of the block 27 is large, there will be a delay in the temperature rise of the block 27, and the thermoforming of the portion of the prepreg PP that is in contact with the block 27 (for example, curing of the portion) will be delayed. It may be insufficient.
- the block 27 is made of a material with high thermal conductivity, or the step of molding the prepreg PP (third step ST3) is such that the block 27 directly heats the block 27. It is executed while the heater 51 is in contact with the heater 51.
- the second embodiment is similar to the first embodiment except for the points mentioned above.
- the points that are different from the first embodiment will be mainly described, and repeated explanations of matters already explained in the first embodiment will be omitted. Therefore, it goes without saying that matters already explained in the first embodiment can be adopted in the second embodiment even if they are not explicitly explained in the second embodiment.
- the block 27 (for example, the first block 27-1 and/or the second block 27-2) is made of a material with high thermal conductivity (more specifically, a material with high thermal conductivity). made of high-quality metal).
- first block 27-1 and/or the second block 27-2 have a thermal conductivity of 100 W/m ⁇ K or more at the molding temperature of the prepreg PP, or 200 W/m ⁇ K. It may be made of the above metal materials.
- the first block 27-1 and/or the second block 27-2 may be made of copper or aluminum.
- the step of molding the prepreg PP (third step ST3) is performed while the block 27 is in contact with the heater 51 that directly heats the block 27. May be executed.
- the heater 51 may be attached to the block 27.
- the heater 51 may be configured to be pressed against the block 27 by an actuator.
- the first heater 51a (for example, extending along the longitudinal direction of the first block 27-1) is attached to the first block 27-1.
- a rod-shaped first heater 51a) is in contact with the first heater 51a).
- a second heater 51b (for example, a rod-shaped second heater 51b extending along the longitudinal direction of the second block 27-2) is in contact with the second block 27-2. You can.
- the second embodiment has the same effects as the first embodiment.
- the temperature difference between the part without the block 27 and the part with the block 27 is reduced. Therefore, the thermoforming of the portion of the prepreg PP that comes into contact with the block 27 (for example, curing of the portion) is not insufficient. Additionally, wrinkles are less likely to occur in composite parts formed from prepreg PP.
- Thickness changing part 25n... Second inner surface of second thin plate, 25u... Second outer surface of second thin plate, 27... Block, 27-1... First block, 27-2... Second block, 27a -2...part of the second block, 27b-1...part of the first block, 27b-2...other part of the second block, 27p-1, 27p-2...width or height dimensions are continuous 27t-1, 27t-2...Tapered surface, 30...Forming die, 30-1...Upper forming die, 30-2...Lower forming die, 30-3...First horizontal forming die Mold, 30-4...Second horizontal mold, 40...Press device, 40-1...First press device, 40-2...Second press device, 40-3...Third press device, 40-4...No.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
Abstract
複合材部品の製造方法は、移動金型にプリプレグを配置する工程と、プリプレグを成形する工程と、プリプレグを移動金型とともに上流から下流に移送する工程と、プリプレグから形成された複合材部品を移動金型から分離する工程と、を具備する。プリプレグを配置する工程は、第1移動金型と第2移動金型との間にプリプレグを配置することを含む。プリプレグを成形する工程は、成形金型から、移動金型を介して、プリプレグに圧力を作用させることと、移動金型からプリプレグに熱を伝達させることとを含む。複合材部品を移動金型から分離する工程は、第1移動金型および第2移動金型の両方から複合材部品を分離することを含む。
Description
本発明は、複合材部品の製造方法、および、複合材部品製造装置に関する。
繊維と樹脂とで構成される複合材部品は、航空機、自動車等の様々な製品に使用されている。複合材部品には、CFRP(炭素繊維強化プラスチック)、GFRP(ガラス繊維強化プラスチック)等が含まれる。複合材部品において、形状の最適化あるいは軽量化のニーズが存在する。構造部材としての複合材部品において、荷重条件に合わせて、複合材部品の高さ、厚み等を最適化する設計が求められる場合もある。
オートクレーブ製法を用いる場合には、製品形状に対応した金型を用いて、複雑な形状の複合材部品を製造することが可能である。しかし、成形のコストは高い。他方、プルトルージョン成形法を用いる場合には、長尺の複合材部品を相対的に安価に成形することが可能である。しかし、プルトルージョン成形法では、一般的には、断面形状が長手方向に沿って一定の複合材部品しか成形することができない。
関連する技術として、特許文献1には、断面の異なる複合材型材の連続成形方法が記載されている。特許文献1に記載の成形方法では、外側表面の寸法が長手方向に沿う方向の位置に応じて異なる1つの移動金型を用いて、長手方向に沿う方向の位置に応じて断面が異なる複合材型材(例えば、長手方向に沿う方向の位置に応じて厚さ寸法が異なる複合材型材)が成形される。特許文献1に記載の技術では、外側表面の寸法が長手方向に沿って変化する部材を成形対象にしており、成形可能な形状等が限られる。
また、特許文献2には、複合材部品の製造方法が開示されている。特許文献2に記載の複合材部品の製造方法は、熱可塑性の第1プリプレグシートを三次元形状に熱成形して第1の三次元プリプレグシートを作成する第1熱成形工程と、第1の三次元プリプレグシートと、第2プリプレグシートとを積層して、プリプレグシート積層体を作成する積層体作成工程と、押圧装置によりプリプレグシート積層体に熱および押圧力を付与して、プリプレグシート積層体を成形する積層体成形工程とを具備する。
本発明の目的は、製造される複合材部品の形状の自由度を向上させる技術を提供することである。
上記の課題を解決するために、いくつかの実施形態における複合材部品の製造方法は、移動金型にプリプレグを配置する工程と、前記プリプレグを成形する工程と、前記プリプレグを前記移動金型とともに上流から下流に移送する工程と、前記プリプレグから形成された複合材部品を前記移動金型から分離する工程と、を具備する。前記プリプレグを配置する工程は、第1移動金型と第2移動金型との間に前記プリプレグを配置することを含む。前記プリプレグを成形する工程は、成形金型から、前記移動金型を介して、前記プリプレグに圧力を作用させることと、前記移動金型から前記プリプレグに熱を伝達させることとを含む。前記複合材部品を前記移動金型から分離する工程は、前記第1移動金型および前記第2移動金型の両方から前記複合材部品を分離することを含む。
また、いくつかの実施形態における複合材部品製造装置は、プリプレグを収容する移動金型と、前記プリプレグが収容された前記移動金型を上流から下流に移送する移送装置と、前記移動金型を介して前記プリプレグに圧力および熱を作用させる成形金型と、前記成形金型から前記移動金型に押圧力を作用させるプレス装置と、前記成形金型を加熱する加熱装置と、を具備する。前記移動金型は、第1移動金型と、前記プリプレグを介して前記第1移動金型に対向配置される第2移動金型と、を含む。
本発明により、製造される複合材部品の形状の自由度を向上させる技術を提供することができる。
以下、図面を参照して、実施形態における複合材部品CPの製造方法、および、複合材部品製造装置1について説明する。なお、以下の実施形態の説明において、同一の機能を有する部位、部材については同一の符号を付し、同一の符号が付された部位、部材についての繰り返しとなる説明は省略する。
(第1の実施形態)
図1乃至図16を参照して、第1の実施形態における複合材部品CPの製造方法および複合材部品製造装置1Aについて説明する。図1は、第1の実施形態における複合材部品CPの製造方法の一例を示すフローチャートである。図2は、プリプレグPPの一例を示す概略断面図である。図3は、第1移動金型21と第2移動金型24との間にプリプレグPPが配置される様子の一例を模式的に示す概略斜視図である。図4は、第1移動金型21と第2移動金型24との間にプリプレグPPが配置される様子の他の一例を模式的に示す概略斜視図である。図5は、第1方向DR1に移送されるプリプレグPPが成形装置3によって成形される様子の一例を模式的に示す概略斜視図である。図6は、第1方向DR1に移送されるプリプレグPPが成形装置3によって成形される様子の他の一例を模式的に示す概略斜視図である。図7は、第1の実施形態における複合材部品CPの製造方法の一部の工程が実行されている様子を模式的に示す概略横断面図である。図8は、図7におけるJ-J矢視断面図である。図9は、第1の実施形態における複合材部品CPの製造方法の一部の工程が実行されている様子を模式的に示す概略横断面図である。図10および図11は、移送工程が実行されている様子を模式的に示す概略縦断面図である。図12は、変形例における移送工程が実行されている様子を模式的に示す概略縦断面図である。図13は、成形工程が実行されている様子を模式的に示す概略横断面図である。図14は、移動金型2から複合材部品CPが分離される様子の一例を模式的に示す概略斜視図である。図15は、移動金型2から複合材部品CPが分離される様子の他の一例を模式的に示す概略斜視図である。図16は、変形例における成形工程が実行されている様子を模式的に示す概略横断面図である。
図1乃至図16を参照して、第1の実施形態における複合材部品CPの製造方法および複合材部品製造装置1Aについて説明する。図1は、第1の実施形態における複合材部品CPの製造方法の一例を示すフローチャートである。図2は、プリプレグPPの一例を示す概略断面図である。図3は、第1移動金型21と第2移動金型24との間にプリプレグPPが配置される様子の一例を模式的に示す概略斜視図である。図4は、第1移動金型21と第2移動金型24との間にプリプレグPPが配置される様子の他の一例を模式的に示す概略斜視図である。図5は、第1方向DR1に移送されるプリプレグPPが成形装置3によって成形される様子の一例を模式的に示す概略斜視図である。図6は、第1方向DR1に移送されるプリプレグPPが成形装置3によって成形される様子の他の一例を模式的に示す概略斜視図である。図7は、第1の実施形態における複合材部品CPの製造方法の一部の工程が実行されている様子を模式的に示す概略横断面図である。図8は、図7におけるJ-J矢視断面図である。図9は、第1の実施形態における複合材部品CPの製造方法の一部の工程が実行されている様子を模式的に示す概略横断面図である。図10および図11は、移送工程が実行されている様子を模式的に示す概略縦断面図である。図12は、変形例における移送工程が実行されている様子を模式的に示す概略縦断面図である。図13は、成形工程が実行されている様子を模式的に示す概略横断面図である。図14は、移動金型2から複合材部品CPが分離される様子の一例を模式的に示す概略斜視図である。図15は、移動金型2から複合材部品CPが分離される様子の他の一例を模式的に示す概略斜視図である。図16は、変形例における成形工程が実行されている様子を模式的に示す概略横断面図である。
(製造方法)
第1の実施形態における複合材部品の製造方法では、図5に例示されるように、第1移動金型21と第2移動金型24との間にプリプレグPPが配置された状態で、当該プリプレグPPの成形が行われる。また、図5に例示されるように、プリプレグPPは、第1移動金型21および第2移動金型24を含む移動金型2とともに上流から下流に移送される。
第1の実施形態における複合材部品の製造方法では、図5に例示されるように、第1移動金型21と第2移動金型24との間にプリプレグPPが配置された状態で、当該プリプレグPPの成形が行われる。また、図5に例示されるように、プリプレグPPは、第1移動金型21および第2移動金型24を含む移動金型2とともに上流から下流に移送される。
第1の実施形態における複合材部品の製造方法の各工程について説明する。
図2に例示されるように、第1ステップST1において、プリプレグPPが準備される。第1ステップST1は準備工程である。準備工程で準備されるプリプレグPPは、炭素繊維、ガラス繊維等の補強素材RFと、補強素材RFが含浸される樹脂等の母材Nとを有する。補強素材RFは、織物材等の連続繊維を含んでいてもよく、長繊維または短繊維等の非連続繊維を含んでいてもよい。また、母材Nは、熱硬化性樹脂によって構成されていてもよく、熱可塑性樹脂によって構成されていてもよい。
プリプレグPPは、複数のプリプレグシートPSが積層された積層体LBであってもよい。プリプレグシートPSの積層は、AFP(自動積層マシン)を用いて実行されてもよい。また、特許第6411673号の図3乃至図5に例示されるように、積層体LBとしてのプリプレグを準備することは、熱可塑性プリプレグシートの各々を三次元形状に熱成形することと、熱成形された複数の熱可塑性プリプレグシートを積層することとを含んでいてもよい。更に、積層体LBとしてのプリプレグを準備することは、ボビンから繰り出されるプリプレグシートを、他のプリプレグシートに重ね合わせることにより連続的に実行されてもよい。
なお、プリプレグPPが、複数のプリプレグシートPSが積層された積層体LBである場合、各プリプレグシートPS中の補強素材RF(より具体的には、繊維RF1)の配向は、隣接配置される他のプリプレグシート中の繊維の配向と異なっていてもよい。プリプレグPPから製造される複合材部品が所望の強度を有するよう、各プリプレグシート中の繊維の配向が適切に設定されていることが好ましい。
準備工程(第1ステップST1)は、複数のプリプレグシートPSが積層された積層体LBを、所望のサイズ(例えば、所望の長さ、および/または、所望の幅)に、カットすることを含んでいてもよい。
図3あるいは図4に例示されるように、第2ステップST2において、移動金型2にプリプレグPPが配置される。第2ステップST2は、配置工程である。
配置工程(第2ステップST2)は、第1移動金型21と第2移動金型24との間にプリプレグPPを配置することを含む。図3(a)あるいは図4(a)には、配置工程(第1ステップST1)を実行前の状態が示され、図3(b)あるいは図4(b)には、配置工程(第2ステップST2)を実行後の状態が示されている。図3(a)あるいは図4(a)に記載の例では、第2移動金型24は、第1移動金型21とは別体である。
図3あるいは図4に記載の例において、第1移動金型21は、プリプレグPPの外面に対向配置される外側金型であり、第2移動金型24は、プリプレグPPの内面に対向配置される内側金型である。より具体的には、第1移動金型21は、プリプレグPPの外面に対向配置される凹状の第1内面22nと、後述の成形金型30によって押圧されることとなる第1外面22uとを含む。また、第2移動金型24は、プリプレグPPの内面に対向配置される第2外面25uと、後述の成形金型30によって押圧されることとなる凹状の第2内面25nとを含む。
図5あるいは図6に例示されるように、第3ステップST3において、プリプレグPPが成形される。第3ステップST3は、成形工程である。成形工程(第3ステップST3)では、プリプレグPPに熱および圧力が付与されることにより、プリプレグPPが成形される。なお、プリプレグPPの母材Nが熱硬化性樹脂である場合には、成形工程において、プリプレグPPの温度が重合開始温度以上の温度となるように加熱されることが好ましい。また、プリプレグPPの母材Nが熱可塑性樹脂である場合には、プリプレグPPの温度が融点温度以上の温度となるように加熱されることが好ましい。
図9(b)に例示されるように、成形工程(第3ステップST3)は、成形金型30から、移動金型2を介して、プリプレグPP(例えば、プリプレグPPの第1領域RG1)に圧力Fを作用させることと、移動金型2からプリプレグPP(例えば、プリプレグPPの第1領域RG1)に熱Qを伝達させることとを含む。
図10(a)に例示されるように、プリプレグPPを成形する工程(第3ステップST3)の実行により、プリプレグPPから既成形領域M2が形成される。なお、図10(a)において、ドットによるハッチングが付与された領域中、ドットの密度の高い部分が既成形領域M2に対応し、ドットの密度の低い部分がプリプレグPPの成形前領域M1に対応する。プリプレグPPを成形する工程(第3ステップST3)が、一回または複数回実行されることにより、プリプレグPPから複合材部品CPが形成される。
図5あるいは図6における破線矢印によって示されるように、第4ステップST4において、プリプレグPPが移送される。第4ステップST4は、移送工程である。移送工程は、プリプレグPPを移動金型2とともに上流から下流に移送することを含む。
本明細書において、移動金型2が移送される方向を「第1方向DR1」と定義する。図5に例示されるように、移動金型2が直線に沿って延在する金型である場合には、第1方向DR1は、直線(より具体的には、移動金型2の長手方向に沿う直線)に沿った方向である。代替的に、図6に例示されるように、移動金型2が曲線に沿って延在する金型である場合には、第1方向DR1は、曲線に沿った方向である。
また、本明細書において、「下流」とは、移動金型2の移送方向における下流を意味し、「上流」とは、移動金型2の移送方向における上流を意味する。
図5あるいは図6に記載の例では、移送工程(第4ステップST4)は、プリプレグPPの成形前領域M1を移動金型2とともに、成形装置3に向けて第1方向DR1に移送することを含む。また、図5あるいは図6に記載の例では、プリプレグPPから形成された既成形領域M2を、移動金型2とともに、成形装置3から第1方向DR1に移送することを含む。なお、図5あるいは図6に記載の例では、成形金型30と移動金型2との間の配置関係を把握し易くするために、便宜的に、成形前領域M1と既成形領域M2とが分離されて表示されているが、実際には、成形前領域M1と既成形領域M2とは互いに繋がっている。
上述の成形工程(第3ステップST3)と上述の移送工程(第4ステップST4)とが交互に実行されることにより、長尺のプリプレグPPを連続的に成形して複合材部品CPを製造することができる。
図14あるいは図15に例示されるように、第5ステップST5において、プリプレグPPから形成された複合材部品CPが移動金型2から分離される。第5ステップST5は、分離工程である。
分離工程(第5ステップST5)は、第1移動金型21および第2移動金型24の両方から複合材部品CPを分離することを含む。移動金型2から分離された複合材部品CPに、更なる加工(例えば、切断加工、穴あけ加工等)が施されてもよい。代替的に、あるいは、付加的に、移動金型2から分離された複合材部品CPと、他の複合材部品とが積層されてもよい。
複合材部品CPから分離された第1移動金型21および第2移動金型24は、移動金型2として再利用されてもよい。代替的に、複合材部品CPから分離された第1移動金型21および第2移動金型24は回収されて、金属資源として再利用されてもよい。
第1の実施形態における複合材部品の製造方法では、第1移動金型21と第2移動金型24との間にプリプレグPPが配置された状態で、当該プリプレグPPの成形が行われる。よって、第1移動金型21と第2移動金型24との間の空間の形状を所望の形状に設定することにより、所望の形状のプリプレグPPを成形することができる。よって、第1の実施形態における複合材部品の製造方法が使用される場合、成形される複合材部品CPの形状の自由度が向上する。
(複合材部品製造装置1A)
図5あるいは図6に例示されるように、第1の実施形態における複合材部品製造装置1Aは、移動金型2と、移送装置6と、成形金型30と、プレス装置40と、加熱装置50と、を備える。
図5あるいは図6に例示されるように、第1の実施形態における複合材部品製造装置1Aは、移動金型2と、移送装置6と、成形金型30と、プレス装置40と、加熱装置50と、を備える。
移動金型2は、プリプレグPPを収容する。図5あるいは図6に記載の例では、移動金型2は、第1移動金型21と、第2移動金型24とを含む。第2移動金型24は、プリプレグPPを介して第1移動金型21に対向配置される。図5あるいは図6に記載の例において、第1移動金型21は、プリプレグPPの外面に対向配置される外側金型であり、第2移動金型24は、プリプレグPPの内面に対向配置される内側金型である。
移送装置6は、プリプレグPPが収容された移動金型2を上流から下流に移送する。図5あるいは図6に記載の例では、移送装置6は、成形金型30およびプレス装置40を移動金型2の移動軌道OBに沿って移動させる移動装置60を含む。
図5あるいは図6に記載の例では、移動装置60は、プレス装置40の先端部に配置された成形金型30が移動金型2を押圧している状態で、成形金型30およびプレス装置40を移動金型2の移動軌道OBに沿って移動させる装置である。
代替的に、あるいは、付加的に、図12(b)に例示されるように、移送装置6は、成形装置3とは独立して設けられた牽引装置61を含んでいてもよい。牽引装置61は、成形装置3よりも下流側に配置される。牽引装置61は、移動金型2を、上流から下流に向けて牽引する。代替的に、あるいは、付加的に、移送装置6は、成形装置3よりも上流側に配置された移送ローラ68(必要であれば、図8を参照。)を含んでいてもよいし、成形装置3よりも上流側に配置された他の形態の移送装置(例えば、間欠移送装置)を含んでいてもよい。
図9(b)に例示されるように、成形金型30は、移動金型2を介してプリプレグPPに圧力Fおよび熱Qを作用させる。
図9(b)に記載の例において、プレス装置40は、成形金型30から移動金型2に押圧力を作用させる。また、加熱装置50は、成形金型30を加熱する。
第1の実施形態における複合材部品製造装置1Aは、第1移動金型21と、プリプレグPPを介して第1移動金型21に対向配置される第2移動金型24とを備える。よって、第1移動金型21と第2移動金型24との間の空間の形状を所望の形状に設定することにより、所望の形状のプリプレグPPを成形することができる。よって、第1の実施形態における複合材部品製造装置1Aが使用される場合、製造される複合材部品CPの形状の自由度が向上する。
もちろん、第1の実施形態における複合材部品の製造方法を用いることなく、オートクレーブ製法を用いて、複雑な形状の複合材部品を製造することが可能である。しかし、オートクレーブ製法を採用する場合には、複合材部品の各形状に合わせて、高価な金型を多数用意する必要がある。また、オートクレーブ製法を採用する場合には、プリプレグをバギングフィルムで覆う等の追加の作業が必要となる。また、オートクレーブ製法を採用する場合には、製造できる複合材部品の長さに限界がある。これに対し、第1の実施形態における複合材部品の製造方法を用いると、複雑な形状かつ長尺な複合材部品を、安価に効率的に製造することができる。また、プレス装置40および移送装置6が採用されることにより、複合材部品の製造を自動化することができる。
(任意付加的な構成)
続いて、図1乃至図16を参照して、第1の実施形態における複合材部品CPの製造方法および第1の実施形態における複合材部品製造装置1Aにおいて採用可能な任意付加的な構成について説明する。
続いて、図1乃至図16を参照して、第1の実施形態における複合材部品CPの製造方法および第1の実施形態における複合材部品製造装置1Aにおいて採用可能な任意付加的な構成について説明する。
(プリプレグPPの形状)
図3(a)に記載の例では、移動金型2に配置されるプリプレグPPは、三次元形状を有する。なお、本明細書において、三次元形状とは、二次元的な平面形状以外の形状を意味する。三次元形状は、例えば、少なくとも1つの屈曲部を備えた形状である。図3(a)に記載の例では、プリプレグPPは、プリプレグPPの長手方向に沿って延在する屈曲部Bを有する。プリプレグPPは、プリプレグPPの長手方向に沿って延在する第1屈曲部B1と、プリプレグPPの長手方向に沿って延在する第2屈曲部B2とを有していてもよい。
図3(a)に記載の例では、移動金型2に配置されるプリプレグPPは、三次元形状を有する。なお、本明細書において、三次元形状とは、二次元的な平面形状以外の形状を意味する。三次元形状は、例えば、少なくとも1つの屈曲部を備えた形状である。図3(a)に記載の例では、プリプレグPPは、プリプレグPPの長手方向に沿って延在する屈曲部Bを有する。プリプレグPPは、プリプレグPPの長手方向に沿って延在する第1屈曲部B1と、プリプレグPPの長手方向に沿って延在する第2屈曲部B2とを有していてもよい。
プリプレグPPの長手方向に垂直な面におけるプリプレグPPの断面形状は、図3(a)に例示されるように略C字形状を有していてもよい。代替的に、プリプレグPPの長手方向に垂直な面におけるプリプレグPPの断面形状は、略Z字形状を有していてもよいし、略L字形状を有していてもよいし、その他の形状を有していてもよい。
以下、本明細書において、各部材の断面に関し、当該部材の長手方向に垂直な面における断面のことを「横断面」と呼ぶ。プリプレグPPの横断面の形状は、プリプレグPPの長手方向に沿って一定であってもよい(換言すれば、プリプレグPPは、一定の横断面形状を有していてもよい。)。代替的に、図3(a)に例示されるように、プリプレグPPの横断面の形状は、プリプレグPPの長手方向に沿って変化してもよい(換言すれば、プリプレグPPは、変化する横断面形状を有していてもよい。)。例えば、プリプレグPPの高さ寸法H3、プリプレグPPの幅寸法W3、あるいは、プリプレグPPの厚さT3は、プリプレグPPの長手方向に沿って変化してもよい。図3(a)に記載の例では、プリプレグPPは、幅寸法が第1値である第1部分Paと、幅寸法が第1値より大きな第2値である第2部分Pbと、プリプレグPPの長手方向に沿って幅寸法が変化する幅変化部Pcを有する。また、幅変化部Pcは、第1部分Paと第2部分Pbとの間に配置されている。幅変化部Pcは、幅寸法が滑らかに変化するテーパ形状部Pc1を含んでいてもよいし、段差部Pc2(図4(a)を参照。)を含んでいてもよい。
図3(a)に例示されるように、プリプレグPPの長手方向軸線CAは、直線であってもよい。代替的に、図4(a)に例示されるように、プリプレグPPの長手方向軸線CAは、曲線を含んでいてもよい。
(第1移動金型21および第2移動金型24)
図3(a)あるいは図4(a)に例示されるように、第1移動金型21および第2移動金型24のうちの少なくとも一方は、三次元形状を有する薄板(例えば、厚さが1.5mm以下の薄板)を含むことが好ましい。図3(a)に記載の例では、第1移動金型21は、三次元形状を有する第1薄板22(例えば、厚さT1が1.5mm以下の第1薄板22)を含む。また、第2移動金型24は、三次元形状を有する第2薄板25(例えば、厚さT2が1.5mm以下の第2薄板25)を含む。
図3(a)あるいは図4(a)に例示されるように、第1移動金型21および第2移動金型24のうちの少なくとも一方は、三次元形状を有する薄板(例えば、厚さが1.5mm以下の薄板)を含むことが好ましい。図3(a)に記載の例では、第1移動金型21は、三次元形状を有する第1薄板22(例えば、厚さT1が1.5mm以下の第1薄板22)を含む。また、第2移動金型24は、三次元形状を有する第2薄板25(例えば、厚さT2が1.5mm以下の第2薄板25)を含む。
上述の薄板は、トラフ形状を有していてもよい。なお、本明細書において、トラフ形状とは、全体が細長く、その全体に沿って細長い凹部Dを有する形状を意味する。
図3(a)あるいは図4(a)に記載の例では、第1薄板22は、第1薄板22の長手方向に沿って延在する屈曲部221を有する。第1薄板22は、移動金型2の長手方向に沿って延在する2つの屈曲部(221a、221b)を有していてもよい。第1薄板22は、トラフ形状を有していてもよい。
図3(a)に記載の例では、第1薄板22は、第1側壁225と、第2側壁226と、第1側壁225と第2側壁226とを連結する第1連結壁227(より具体的には、第1頂壁)とを有する。また、第1側壁225は平板状の細長い壁部であり、第2側壁226は平板状の細長い壁部である。第1連結壁227は、平板状の細長い壁部である。
図4(a)に記載の例では、第1薄板22は、第1側壁225と、第2側壁226と、第1側壁225と第2側壁226とを連結する第1連結壁227(より具体的には、頂壁)とを有する。第1側壁225は湾曲板状の壁部であり、第2側壁226は湾曲板状の壁部である。第2側壁226の曲率半径は、第1側壁225の曲率半径よりも小さい。また、第1連結壁227は、曲線に沿って延在する平板状の壁部である。
図3(a)あるいは図4(a)に記載の例では、第2薄板25は、移動金型2の長手方向に沿って延在する屈曲部251を有する。第2薄板25は、移動金型2の長手方向に沿って延在する2つの屈曲部(251a、251b)を有していてもよい。第2薄板25は、トラフ形状を有していてもよい。
図3(a)に記載の例では、第2薄板25は、プリプレグPPを介して第1側壁225に対向することとなる第3側壁255と、プリプレグPPを介して第2側壁226に対向することとなる第4側壁256と、第3側壁255と第4側壁256とを連結する第2連結壁257(より具体的には、第2頂壁)とを有する。第2連結壁257は、プリプレグPPを介して第1連結壁227と対向することとなる壁である。第3側壁255は平板状の細長い壁部であり、第4側壁256は平板状の細長い壁部である。また、第2連結壁257は、平板状の細長い壁部である。
図4(a)に記載の例では、第2薄板25は、プリプレグPPを介して第1側壁225に対向することとなる第3側壁255と、プリプレグPPを介して第2側壁226に対向することとなる第4側壁256と、第3側壁255と第4側壁256とを連結する第2連結壁257(より具体的には、第2頂壁)とを有する。第2連結壁257は、プリプレグPPを介して第1連結壁227と対向することとなる壁である。第3側壁255は湾曲板状の壁部であり、第4側壁256は湾曲板状の壁部である。第4側壁256の曲率半径は、第3側壁255の曲率半径よりも小さい。また、第2連結壁257は、曲線に沿って延在する平板状の壁部である。
図3(a)あるいは図4(a)に例示されるように、第1薄板22の横断面形状は、略C字形状であってもよい。代替的に、第1薄板22の横断面形状は、略L字形状であってもよいし、その他の形状であってもよい。図3(a)あるいは図4(a)に例示されるように、第2薄板25の横断面形状は、略C字形状であってもよい。代替的に、第2薄板25の横断面形状は、略L字形状であってもよいし、その他の形状であってもよい。
図3(a)に例示されるように、第1薄板22の横断面の形状は、第1薄板22の長手方向に沿って一定であってもよい。代替的に、第1薄板22の横断面の形状は、第1薄板22の長手方向に沿って変化してもよい。例えば、第1薄板22の高さ寸法H1、第1薄板22の幅寸法W1、あるいは、第1薄板22の厚さT1は、第1薄板22の長手方向に沿って変化してもよい。
第2薄板25の横断面の形状は、第2薄板25の長手方向に沿って一定であってもよい。代替的に、第2薄板25の横断面の形状は、第2薄板25の長手方向に沿って変化してもよい。例えば、第2薄板25の高さ寸法H2、第2薄板25の幅寸法W2、あるいは、第2薄板25の厚さT2は、第2薄板25の長手方向に沿って変化してもよい。例えば、図3(a)に例示されるように、第2薄板25は、第2薄板25の長手方向に沿って厚さが変化する厚さ変化部25cを有していてもよい。
図3(a)に例示されるように、第1薄板22の長手方向軸線CL1(あるいは、第2薄板25の長手方向軸線CL2)は、直線であってもよい。代替的に、図4(a)に例示されるように、第1薄板22の長手方向軸線CL1(あるいは、第2薄板25の長手方向軸線CL2)は、曲線を含んでいてもよい。
図3(a)あるいは図4(a)に記載の例において、第1薄板22の厚さT1は、1.5mm以下であることが好ましい。また、第2薄板25の厚さT2は、1.5mm以下であることが好ましい。第1薄板22の厚さT1、および/または、第2薄板25の厚さT2が1.5mm以下である場合、成形金型30から押圧力を受ける第1薄板22(または、第2薄板25)の形状と、プリプレグPPの形状とが互いに適合しやすい(図9(b)を参照。)。
また、成形金型30とプリプレグPPとの間に配置される薄板(第1薄板22、および/または、第2薄板25)の厚さが1.5mm以下である場合、成形金型30からプリプレグPPに、薄板(第1薄板22、および/または、第2薄板25)を介して、効率的に熱Qを伝達することができる。
一例として、図9(a)に例示されるように、第1移動金型21と第2移動金型24との間にプリプレグPPが配置された状態において、第1移動金型21および第2移動金型24のうちの少なくとも一方とプリプレグPPとの間に僅かな隙間Gが存在する場合を想定する。この場合、第1移動金型21および第2移動金型24のうちの少なくとも一方が変形しなければ、成形金型30から移動金型2に作用する押圧力が、プリプレグPPに十分に伝わらない。これに対し、第1移動金型21が厚さ1.5mm以下の第1薄板22を含む場合、当該第1薄板22の変形により、成形金型30から第1薄板22に作用する押圧力が、変形する第1薄板22を介して、好適にプリプレグPPに伝達される。また、第2移動金型24が厚さ1.5mm以下の第2薄板25を含む場合、当該第2薄板25の変形により、成形金型30から第2薄板25に作用する押圧力が、変形する第2薄板25を介して、好適にプリプレグPPに伝達される。
第1薄板22の厚さT1は、プリプレグPPの厚さT3(より具体的には、複数のプリプレグシートの積層体LB)より小さくてもよい。また、第2薄板25の厚さT2は、プリプレグPPの厚さT3(より具体的には、複数のプリプレグシートによって形成された積層体LB)より小さくてもよい。
第1薄板22、および/または、第2薄板25は、金属材料によって形成されていることが好ましい。第1薄板22が金属材料によって形成される場合、成形金型30から押圧力を受ける第1薄板22は、プリプレグPPの表面形状に適合するように変形しやすい。当該変形は、弾性変形、塑性変形、熱変形、あるいは、これらの組み合わせを含む。また、第2薄板25が金属材料によって形成される場合、成形金型30から押圧力を受ける第2薄板25は、プリプレグPPの表面形状に適合するように変形しやすい。当該変形は、弾性変形、塑性変形、熱変形、あるいは、これらの組み合わせを含む。
第1薄板22、および/または、第2薄板25の材質は、耐久性等を考慮して、鉄あるいはステンレス鋼によって構成されていてもよい。代替的に、第1薄板22、および/または、第2薄板25の材質は、熱伝導性等を考慮して、銅あるいはアルミによって構成されていてもよい。
第1薄板22、および/または、第2薄板25は、プリプレグPPの成形温度における熱伝導率が、15W/m・K以上、50W/m・K以上、あるいは、100W/m・K以上であってもよい。
図9(b)に記載において、プリプレグPPを成形する工程は、(1)薄板(22;25)が成形金型30によって押圧されることにより、薄板(22;25)が変形することと、(2)変形した薄板(22;25)がプリプレグPPに圧力Fを作用させることと、を含んでいてもよい。この場合、第1薄板22および/または第2薄板25が成形金型30によって押圧されて変形することにより、第1薄板22および/または第2薄板25の形状が、プリプレグPPの表面形状に適合する。
図4(a)に例示されるように、薄板(22;25)は、湾曲領域CRを有していてもよい。また、当該湾曲領域CRにおいて、当該薄板の長手方向軸線CLは湾曲していてもよい。
図4(a)に記載の例では、第1薄板22は、第1湾曲領域CR1を有し、当該第1湾曲領域CR1において、第1薄板22の長手方向軸線CL1は湾曲している。第1薄板22の全体が第1湾曲領域CR1によって構成されていてもよい。代替的に、第1薄板22の一部が第1湾曲領域CR1によって構成され、第1薄板22の他の一部が直線状領域によって構成されていてもよい。
図4(a)に記載の例では、第2薄板25は、第2湾曲領域CR2を有し、当該第2湾曲領域CR2において、第2薄板25の長手方向軸線CL2は湾曲している。第2薄板25の全体が第2湾曲領域CR2によって構成されていてもよい。代替的に、第2薄板25の一部が第2湾曲領域CR2によって構成され、第2薄板25の他の一部が直線状領域によって構成されていてもよい。
図3(b)に記載の例では、第1移動金型21は、三次元形状を有する第1薄板22を含み、当該第1薄板22は、プリプレグPPを介して第2移動金型24に対向する第1内面22nを有する。第1内面22nの横断面形状(換言すれば、第1薄板22の長手方向に垂直な面における第1内面22nの断面形状)は、第1薄板22の長手方向に沿って一定であってもよい。代替的に、第1内面22nの横断面形状は、第1薄板22の長手方向に沿って変化してもよい。
図3(b)に記載の例では、第1薄板22は、成形金型30によって押圧されることとなる第1外面22uを有する。第1外面22uの横断面形状(換言すれば、第1薄板22の長手方向に垂直な面における第1外面22uの断面形状)は、第1薄板22の長手方向に沿って一定であってもよい。この場合、第1方向DR1に間欠的に移送される第1薄板22の任意の領域が、成形金型30によって好適に押圧される。
図3(b)に記載の例では、第2移動金型24は、三次元形状を有する第2薄板25を含み、当該第2薄板25は、プリプレグPPを介して第1移動金型21に対向する第2外面25uを有する。第2外面25uの横断面形状(換言すれば、第2薄板25の長手方向に垂直な面における第2外面25uの断面形状)は、第2薄板25の長手方向に沿って一定であってもよい。代替的に、第2外面25uの横断面形状は、第2薄板25の長手方向に沿って変化してもよい。
図3(b)に記載の例では、第2薄板25は、成形金型30によって押圧されることとなる第2内面25nを有する。第2内面25nの横断面形状(換言すれば、第2薄板25の長手方向に垂直な面における第2内面25nの断面形状)は、第2薄板25の長手方向に沿って一定であってもよい。この場合、第1方向DR1に間欠的に移送される第2薄板25の任意の領域が、成形金型30によって好適に押圧される。
(ブロック27)
図3(a)あるいは図4(a)に例示されるように、移動金型2は、第1薄板22および第2薄板25のうちの少なくとも一方に取り付けられたブロック27を含んでいてもよい。
図3(a)あるいは図4(a)に例示されるように、移動金型2は、第1薄板22および第2薄板25のうちの少なくとも一方に取り付けられたブロック27を含んでいてもよい。
図3(a)あるいは図4(a)に記載の例では、移動金型2は、第1薄板22に取り付けられた第1ブロック27-1を含む。図3(a)あるいは、図4(a)に記載の例では、第1ブロック27-1は、第1薄板22の内側表面に取り付けられている。第1ブロック27-1および第1薄板22は、プリプレグPPの外面に対向配置される外側金型として機能する。
図3(a)に例示されるように、第1ブロック27-1は、第1ブロック27-1の長手方向に沿って、幅寸法あるいは高さ寸法が連続的に変化する部分27p-1を有していてもよい。第1ブロック27-1の表面の一部をテーパ面27t-1にすることにより、当該部分27p-1が形成されてもよい。
第1薄板22への第1ブロック27-1の取り付け方法としては、任意の公知の取り付け方法を採用することができる。第1ブロック27-1は、ボルト、ネジ等の締結部材を介して、第1薄板22に取り付けられていてもよい。代替的に、あるいは、付加的に、第1ブロック27-1は、接着または溶接によって、第1薄板22に取り付けられていてもよい。
ブロック27(例えば、第1ブロック27-1)は、金属材料によって形成されていることが好ましい。ブロック27(例えば、第1ブロック27-1)の材質は、耐久性等を考慮して、鉄あるいはステンレス鋼によって構成されていてもよい。代替的に、ブロック27(例えば、第1ブロック27-1)の材質は、熱伝導性等を考慮して、銅あるいはアルミによって構成されていてもよい。
ブロック27(例えば、第1ブロック27-1)は、プリプレグPPの成形温度における熱伝導率が、15W/m・K以上、50W/m・K以上、あるいは、100W/m・K以上の金属材料によって構成されていてもよい。
図3(a)あるいは図4(a)に記載の例では、移動金型2は、第2薄板25に取り付けられた第2ブロック27-2を含む。図3(a)あるいは、図4(a)に記載の例では、第2ブロック27-2は、第2薄板25の外側表面に取り付けられている。第2ブロック27-2および第2薄板25は、プリプレグPPの内面に対向配置される内側金型として機能する。
図3(a)に例示されるように、第2ブロック27-2は、第2ブロック27-2の長手方向に沿って、幅寸法あるいは高さ寸法が連続的に変化する部分27p-2を有していてもよい。第2ブロック27-2の表面の一部をテーパ面27t-2にすることにより、当該部分27p-2が形成されてもよい。
第2薄板25への第2ブロック27-2の取り付け方法としては、任意の公知の取り付け方法を採用することができる。第2ブロック27-2は、ボルト、ネジ等の締結部材を介して、第2薄板25に取り付けられていてもよい。代替的に、あるいは、付加的に、第2ブロック27-2は、接着または溶接によって、第2薄板25に取り付けられていてもよい。
第2ブロック27-2は、金属材料によって形成されていることが好ましい。第2ブロック27-2の材質は、耐久性等を考慮して、鉄あるいはステンレス鋼によって構成されていてもよい。代替的に、第2ブロック27-2の材質は、熱伝導性等を考慮して、銅あるいはアルミによって構成されていてもよい。第2ブロック27-2は、プリプレグPPの成形温度における熱伝導率が、15W/m・K以上、50W/m・K以上、あるいは、100W/m・K以上であってもよい。
プリプレグPPを成形する工程(第3ステップST3)は、図9(b)に例示されるように、第1薄板22および第2薄板25のうちの一方に取り付けられたブロック27、および、第1薄板22および第2薄板25のうちの他方がプリプレグPPに接触した状態で実行されてもよい。図9(b)に記載の例では、第2薄板25に取り付けられた第2ブロック27-2、および、第1薄板22がプリプレグPPに接触している。また、第2薄板25もプリプレグPPに接触している。
移動金型2が、薄板(22;25)とブロック27との組み合わせによって構成される場合、より複雑な形状のプリプレグPPを、成形金型30および移動金型2を用いて成形することができる。
図3(a)あるいは図4(a)に例示されるように、移動金型2が、薄板(22;25)とブロック27との組み合わせによって構成される場合、プリプレグPPの長手方向に沿って、幅寸法W3、高さ寸法H3、厚さT3、あるいは、屈曲角度(より具体的には、屈曲部Bにおける屈曲角度)が変化するプリプレグPPを、成形金型30を変更することなく連続的に成形することができる。
図4(a)に例示されるように、移動金型2が、曲線に沿って延在する薄板(22;25)と曲線に沿って延在するブロック27との組み合わせによって構成される場合、プリプレグPPの長手方向に沿って、曲率半径(例えば、プリプレグPPの内側側面PS1の曲率半径、あるいは、プリプレグPPの外側側面PS2の曲率半径)が変化するプリプレグPPを、成形金型30を変更することなく連続的に成形することができる。
代替的に、あるいは、付加的に、複雑な形状のプリプレグPPを成形可能とするために、第1薄板22の第1内面22nおよび第2薄板25の第2外面25uのうちの少なくとも一方の横断面形状は、移動金型2の長手方向に沿って変化していてもよい(図3(a)における厚さ変化部25cを参照。)。図3(a)に記載の例では、厚さ変化部25cの存在により、移動金型2の形状を、長手方向に沿って幅寸法W3あるいは厚さT3が変化するプリプレグPPに対応させることができる。こうして、長手方向に沿って幅寸法あるいは厚さが変化する複合材部品を製造することができる。
(成形装置3)
図5あるいは図6に記載の例では、成形装置3は、移動金型2を押圧する成形金型30と、成形金型30の移動金型2に向かう方向に移動させるプレス装置40とを有する。成形装置3は、プレス装置40および成形金型30を、移動金型2の移動軌道OBに沿って移動させる移動装置60を有していてもよい。
図5あるいは図6に記載の例では、成形装置3は、移動金型2を押圧する成形金型30と、成形金型30の移動金型2に向かう方向に移動させるプレス装置40とを有する。成形装置3は、プレス装置40および成形金型30を、移動金型2の移動軌道OBに沿って移動させる移動装置60を有していてもよい。
成形装置3(より具体的には、成形装置3の成形金型30)は、移動金型2を介して長尺のプリプレグPPを間欠的に加熱および加圧するように構成されることが好ましい。また、移送装置6(例えば、成形装置3の移動装置60)は、移動金型2および長尺のプリプレグPPを間欠的に第1方向DR1に移送するように構成されることが好ましい。図10および図11に記載の例では、長尺のプリプレグPPが、移動金型2を介して成形金型30によって間欠的に加熱および加圧され、且つ、移動金型2および長尺のプリプレグPPが間欠的に第1方向DR1に移送されることにより、長尺のプリプレグPPが連続的に成形される。
なお、移送装置6(例えば、移動装置60)がプリプレグPPを移送するストローク(換言すれば、1回の移送工程で、プリプレグPPが移動する距離)は、数mmであってもよいし、数cmであってもよい。代替的に、移送装置6(例えば、移動装置60)がプリプレグPPを移送するストロークは、成形金型30の第1方向DR1に沿う方向における長さと略等しくてもよいし、当該長さの略半分であってもよいし、当該長さの略1/3であってもよい。
また、プリプレグPPの成形時における成形金型30の温度分布は、第1方向DR1に沿って略一定であってもよい。代替的に、プリプレグPPの成形時における成形金型30の温度分布は、温度勾配を有していてもよい。例えば、成形金型30の入り口部分で余熱が行われ、成形金型30の第1方向DR1に沿う方向における中央部分で主たる成形が行われ、成形金型30の出口部分で適度な冷却が行われるように、上述の温度勾配が設定されてもよい。また、移送装置6(例えば、移動装置60)がプリプレグPPを移送するストロークが大きい場合には、プリプレグPPを成形する工程(第3ステップST3)および移送工程(第4ステップST4)を含む各サイクルにおいて、成形金型30を加熱する工程と、成形金型30の加熱を停止する工程とが設けられてもよい。
(成形金型30)
図5あるいは図6に記載の例では、複合材部品製造装置1Aは、複数の成形金型30を含む。複合材部品製造装置1Aは、移動金型2(例えば、第1移動金型21)を上方から押圧する上成形金型30-1を有していてもよく、移動金型2(例えば、第2移動金型24)を下方から押圧する下成形金型30-2を有していてもよい。代替的に、あるいは、付加的に、複合材部品製造装置1Aは、移動金型2(例えば、第1移動金型21)を側方から挟み込むように押圧する少なくとも2つの横成形金型(例えば、第1横成形金型30-3および第2横成形金型30-4)を有していてもよい。
図5あるいは図6に記載の例では、複合材部品製造装置1Aは、複数の成形金型30を含む。複合材部品製造装置1Aは、移動金型2(例えば、第1移動金型21)を上方から押圧する上成形金型30-1を有していてもよく、移動金型2(例えば、第2移動金型24)を下方から押圧する下成形金型30-2を有していてもよい。代替的に、あるいは、付加的に、複合材部品製造装置1Aは、移動金型2(例えば、第1移動金型21)を側方から挟み込むように押圧する少なくとも2つの横成形金型(例えば、第1横成形金型30-3および第2横成形金型30-4)を有していてもよい。
図9(b)に記載の例では、プリプレグPPを成形する工程(第3ステップST3)は、下成形金型30-2が、下成形金型30-2に対して第1方向DR1に相対移動可能な第2移動金型24の凹部に挿入された状態で実行されている。
成形金型30は、ヒーター等の加熱装置50を内蔵していてもよい。
図9(b)に記載の例では、上成形金型30-1は、第1加熱装置50-1を備える。第1加熱装置50-1が生成する熱は、上成形金型30-1および移動金型2(例えば、第1移動金型21)を介して、プリプレグPPに伝達される。また、下成形金型30-2は、第2加熱装置50-2を備える。第2加熱装置50-2が生成する熱は、下成形金型30-2および移動金型2(例えば、第2移動金型24)を介して、プリプレグPPに伝達される。
図9(b)に記載の例では、第1横成形金型30-3は、第3加熱装置50-3を備える。第3加熱装置50-3が生成する熱は、第1横成形金型30-3および移動金型2(例えば、第1移動金型21の第1側部)を介して、プリプレグPPに伝達される。また、第2横成形金型30-4は、第4加熱装置50-4を備える。第4加熱装置50-4が生成する熱は、第2横成形金型30-4および移動金型2(例えば、第1移動金型21の第2側部)を介して、プリプレグPPに伝達される。
(プレス装置40)
図9(b)に記載の例では、プレス装置40は、上成形金型30-1を下方に移動させることにより移動金型2(例えば、第1移動金型21の上面)を押圧する第1プレス装置40-1を有する。第1プレス装置40-1は、例えば、流体圧アクチュエータである。第1プレス装置40-1は、第1移動部41-1と、第1移動部41-1を移動させる第1駆動部42-1とを有していてもよい。
図9(b)に記載の例では、プレス装置40は、上成形金型30-1を下方に移動させることにより移動金型2(例えば、第1移動金型21の上面)を押圧する第1プレス装置40-1を有する。第1プレス装置40-1は、例えば、流体圧アクチュエータである。第1プレス装置40-1は、第1移動部41-1と、第1移動部41-1を移動させる第1駆動部42-1とを有していてもよい。
付加的に、プレス装置40は、下成形金型30-2を上方に移動させることにより移動金型2(例えば、第2移動金型24の底面)を押圧する第2プレス装置40-2を有していてもよい。第2プレス装置40-2は、例えば、流体圧アクチュエータである。第2プレス装置40-2は、第2移動部41-2と、第2移動部41-2を移動させる第2駆動部42-2とを有していてもよい。
代替的に、あるいは、付加的に、プレス装置40は、第1横成形金型30-3を移動させることにより移動金型2の第1側面(例えば、第1移動金型21の第1側面)を押圧する第3プレス装置40-3を有していてもよい。第3プレス装置40-3は、例えば、流体圧アクチュエータである。第3プレス装置40-3は、第3移動部41-3と、第3移動部41-3を移動させる第3駆動部42-3とを有していてもよい。
また、プレス装置40は、第2横成形金型30-4を移動させることにより移動金型2の第2側面(例えば、第1移動金型21の第2側面)を押圧する第4プレス装置40-4を有していてもよい。第4プレス装置40-4は、例えば、流体圧アクチュエータである。第4プレス装置40-4は、第4移動部41-4と、第4移動部41-4を移動させる第4駆動部42-4とを有していてもよい。
(移送装置6)
図5あるいは図6に記載の例では、移送装置6は、プリプレグPPが収容された移動金型2を上流から下流に移送する。図5あるいは図6に記載の例では、移送装置6は、成形金型30およびプレス装置40を移動金型2の移動軌道OBに沿って移動させる移動装置60を含む。
図5あるいは図6に記載の例では、移送装置6は、プリプレグPPが収容された移動金型2を上流から下流に移送する。図5あるいは図6に記載の例では、移送装置6は、成形金型30およびプレス装置40を移動金型2の移動軌道OBに沿って移動させる移動装置60を含む。
より具体的には、移動装置60は、成形金型30およびプレス装置40を移動金型2の移動軌道OBに沿って移動させる移動用アクチュエータ66を含む。移動用アクチュエータ66は、プレス装置40に直接的または間接的に連結されている。図5あるいは図6に記載の例では、移動用アクチュエータ66が、フレーム64を介して、プレス装置40に連結されている。
図5あるいは図6に記載の例では、移動用アクチュエータ66の伸縮部66bがフレーム64に連結され、移動用アクチュエータ66の本体部66aが、ベース62に連結されている。そして、本体部66aに対して、伸縮部66bが移動することにより、フレーム64が、ベース62に対して移動する。なお、ベース62とフレーム64との間には、ベアリング63(例えば、ボールベアリング)が配置されていることが好ましい。図5あるいは図6に記載の例では、フレーム64が、複数のベアリング63を介して、ベース62によって支持されている。代替的に、あるいは、付加的に、レール(例えば、直線状のレールまたは曲線状のレール)と、レール上を摺動するスライダーが、ベース62とフレーム64との間に配置されてもよい。
図5に記載の例では、移動装置60は、成形金型30およびプレス装置40を移動金型2の移動軌道OBに沿って移動させ、当該移動軌道OBは直線軌道である。また、図6に記載の例では、移動装置60は、成形金型30およびプレス装置40を移動金型2の移動軌道OBに沿って移動させ、当該移動軌道OBは曲線軌道である。
(ダム7)
図16に例示されるように、複合材部品製造装置1Aは、第1移動金型21と第2移動金型24との間に配置されるダム7を有していてもよい。ダム7は、プリプレグPPを成形する工程(第3ステップST3)の実行中に、第1移動金型21と第2移動金型24との間の隙間G2から、プリプレグPPから生じる軟化材料が流出するのを防止する。
図16に例示されるように、複合材部品製造装置1Aは、第1移動金型21と第2移動金型24との間に配置されるダム7を有していてもよい。ダム7は、プリプレグPPを成形する工程(第3ステップST3)の実行中に、第1移動金型21と第2移動金型24との間の隙間G2から、プリプレグPPから生じる軟化材料が流出するのを防止する。
ダム7は、プリプレグPPの第1側部P1の下方に配置される第1ダム7aと、プリプレグPPの第2側部P2の下方に配置される第2ダム7bとを含んでいてもよい。
図16に記載の例では、第2薄板25に取り付けられた第2ブロック27-2と第1薄板22との間に、第1ダム7aが配置されている。また、第1薄板22と第2薄板25との間に、第2ダム7bが配置されている。
(複合材部品の製造方法)
第1の実施形態の理解を促進するために、複合材部品の製造方法の一部の工程について、より詳細に説明する。
第1の実施形態の理解を促進するために、複合材部品の製造方法の一部の工程について、より詳細に説明する。
第1ステップST1において、プリプレグPP(より具体的には、三次元形状を有するプリプレグPP)が準備される(準備工程)。準備工程で準備されるプリプレグPPについては、詳細に説明済みであるため、当該プリプレグPPについての繰り返しとなる説明は省略する。
なお、準備工程で準備されるプリプレグPPは、横断面形状が一定のプリプレグ(換言すれば、プリプレグPPの長手方向に沿って横断面形状が変化しないプリプレグ)であってもよいし、横断面形状が非一定のプリプレグ(換言すれば、プリプレグPPの長手方向に沿って横断面形状が変化するプリプレグ)であってもよい。また、準備工程で準備されるプリプレグPPは、直線状のプリプレグであってもよいし、曲線状のプリプレグであってもよい。
図7(a)および図7(b)に例示されるように、第2ステップST2において、移動金型2にプリプレグPPが配置される(配置工程)。配置工程については、詳細に説明済みであるため、配置工程についての繰り返しとなる説明は省略する。なお、配置工程は、移動金型2とプリプレグPPとを一体化することを含むことが好ましい。当該一体化は、プリプレグPPの粘着力によって行われてもよい。
なお、分離工程(第5ステップST5)において、移動金型2からのプリプレグPPから形成された複合材部品CPの分離を容易にするために、移動金型2の表面には、セラミックコートCT等の表面処理が行われていてもよい。より具体的には、金属製の第1移動金型21の表面にセラミックコートが施され、金属製の第2移動金型24の表面にセラミックコートが施されていてもよい。
図7(c)に例示されるように、第2ステップST2(配置工程)の実行後、第3ステップST3(成形工程)の実行前に、成形装置3の成形金型30に対向する位置に、プリプレグPPおよび移動金型2が移送される。図8に例示されるように、当該移送は、移動金型2に接触する移送ローラ68を用いて行われてもよい。また、当該移送は、移動金型2がガイドレール69によって支持された状態で、移動金型2をガイドレール69に沿って移動させることを含んでいてもよい。
図9(b)に例示されるように、第3ステップST3において、プリプレグPPが成形される(成形工程)。成形工程では、プリプレグPPに圧力Fおよび熱Qが付与されることにより、プリプレグPPが成形される。図10(a)に記載の例では、成形工程は、成形金型30から、移動金型2を介して、プリプレグPPの第1領域RG1に圧力Fおよび熱Qを作用させることを含む。換言すれば、成形工程は、成形金型30が移動金型2を押圧することと、成形金型30によって押圧される移動金型2がプリプレグに圧力Fおよび熱を付与することとを含む。図10(a)に記載の例では、成形工程において、成形金型30は、プリプレグPPに直接的に接触することなく移動金型2を介してプリプレグPPを押圧する。
なお、図16に例示されるように、プリプレグPPを成形する工程は、第1移動金型21と第2移動金型24との間に、第1移動金型21と第2移動金型24との間の隙間G2から、プリプレグPPから生じる軟化材料が流出するのを防止するダム7が配置された状態で実行されてもよい。
成形工程については、詳細に説明済みであるため、成形工程についての繰り返しとなる説明は省略する。
図10に例示されるように、第4ステップST4において、プリプレグPPが移送される(移送工程)。移送工程は、(1)プリプレグPPの既成形領域M2(図10(a)に記載の例では、第1領域RG1)が移動金型2を介して成形金型30によって保持された状態で、成形金型30およびプレス装置40を第1方向DR1に移動させること(図10(a)における矢印AR1を参照。)、(2)成形金型30(例えば、上成形金型30-1等)が移動金型2から離間するように、成形金型30を移動させること(図10(b)における矢印AR2を参照。)、および、(3)成形金型30およびプレス装置40を、プリプレグPPに対して、第1方向DR1とは反対の第2方向DR2に相対移動させること(図10(c)における矢印AR3を参照。)を含んでいてもよい。移送工程の実行により、プリプレグPPおよび移動金型2は、一体的に、第1方向DR1に移動する。
移送工程については、詳細に説明済みであるため、移送工程についての繰り返しとなる説明は省略する。
第3ステップST3(成形工程)、および、第4ステップST4(移送工程)を含むサイクルは、繰り返し実行されることが好ましい。
「N」を2以上の任意の自然数と定義するとき、第3ステップST3(成形工程)、および、第4ステップST4(移送工程)を含むサイクルは、「N」回繰り返し実行されてもよい。この場合、「K」を「1」以上「N-1」以下の任意の自然数と定義するとき、「K」回目の成形工程および「K」回目の移送工程が実行された後、「K+1」回目の成形工程および「K+1」回目の移送工程が実行されることとなる。
図10(a)に記載の例では、成形工程(例えば、「K」回目の成形工程)は、成形金型30から、移動金型2の第1部分20aを介して、プリプレグPPの第1領域RG1に圧力Fおよび熱Qを作用させることを含む。プリプレグPPの第1領域RG1に圧力Fおよび熱Qを作用させることは、移動金型2の第1部分20aがプリプレグPPの第1領域RG1に接触した状態で実行される。
図10(a)に記載の例では、移動金型2の第1部分20aは、第1薄板22の一部22aと、第2薄板25の一部25aとを含む。付加的に、移動金型2の第1部分20a(換言すれば、プリプレグPPの第1領域RG1に接触する部分)は、ブロック27の一部(例えば、図9(b)における第2ブロック27-2の一部27a-2)を含んでいてもよい。
図9(b)に記載の例では、プリプレグPPの第1領域RG1に圧力Fおよび熱Qを作用させることは、第1薄板22の一部22aと、第2薄板25の一部25aと、第2ブロック27-2の一部27a-2とがプリプレグPPの第1領域RG1に接触した状態で実行されている。
図11(b)に記載の例では、成形工程(例えば、「K+1」回目の成形工程)は、プリプレグPPを移動金型2とともに移動させる工程の実行後(例えば、「K」回目の移送工程の実行後)、成形金型30から、移動金型2の第2部分20bを介して、プリプレグPPの第2領域RG2に圧力Fおよび熱Qを作用させることを含む。プリプレグPPの第2領域RG2に圧力Fおよび熱Qを作用させることは、移動金型2の第2部分20bがプリプレグPPの第2領域RG2に接触した状態で実行される。
図13に例示されるように、移動金型2の第2部分20bの横断面形状(より具体的には、移動金型2の長手方向に垂直な面における第2部分20bの断面形状)は、図9(b)における移動金型2の第1部分20aの横断面形状(より具体的には、移動金型2の長手方向に垂直な面における第1部分20aの断面形状)とは異なっていてもよい。第2部分20bの横断面形状と第1部分20aの横断面形状とが異なる場合、より複雑な形状の複合材部品が製造される。
図13に記載の例では、移動金型2の第2部分20bは、第1薄板22の他の一部22bと、第2薄板25の他の一部25bと、第1ブロック27-1の一部27b-1とを含む。換言すれば、プリプレグPPの第2領域RG2に圧力Fおよび熱Qを作用させることが、第1薄板22の他の一部22bと、第2薄板25の他の一部25bと、第1ブロック27-1の一部27b-1とがプリプレグPPの第2領域RG2に接触した状態で実行されている。
図13に例示されるように、移動金型2の第2部分20bは、第1薄板22の他の一部22bと、第2薄板25の他の一部25bと、第2ブロック27-2の他の一部27b-2とを含んでいてもよい。換言すれば、プリプレグPPの第2領域RG2に圧力Fおよび熱Qを作用させることが、第1薄板22の他の一部22bと、第2薄板25の他の一部25bと、第2ブロック27-2の他の一部27b-2とがプリプレグPPの第2領域RG2に接触した状態で実行されてもよい。
図13に記載の例では、プリプレグPPを成形する工程が、第1薄板22に取り付けられた第1ブロック27-1と、第2薄板25に取り付けられた第2ブロック27-2とによって、プリプレグPPの一部が挟まれた状態で実行されている。
プリプレグPPを成形する工程(第3ステップST3)および移送工程(第4ステップST4)を含むサイクルが複数回実行されることにより、複合材部品CPが形成される。当該複合材部品CPは、その長手方向に沿って横断面形状が一定の部品であってもよい。代替的に、図14あるいは図15に例示されるように、当該複合材部品CPは、その長手方向に沿って横断面形状(例えば、長手方向に垂直な断面における高さ寸法H4、幅寸法W4、あるいは、厚さT4)が変化する部品であってもよい。また、当該複合材部品CPは、直線状の部品であってもよいし(図14を参照。)、曲線状の部品であってもよい(図15を参照。)。更に、当該複合材部品CPが曲線状の部品である場合には、当該複合材部品CPの曲率半径は、当該複合材部品CPの長手方向に沿って変化してもよい。
図14(b)あるいは図15(b)に例示されるように、第5ステップST5において、プリプレグPPから形成された複合材部品CPが移動金型2から分離される。第5ステップST5は、分離工程である。
分離工程(第5ステップST5)は、第1移動金型21および第2移動金型24の両方から複合材部品CPを分離することを含む。移動金型2から分離された複合材部品CPに、更なる加工(例えば、切断加工、穴あけ加工等)が施されてもよい。代替的に、あるいは、付加的に、移動金型2から分離された複合材部品CPと、他の複合材部品とが積層されてもよい。例えば、第1の実施形態における複合材部品の製造方法で製造された第1の複合材部品と、第1の実施形態における複合材部品の製造方法で製造された第2の複合材部品とが積層されることにより、より肉厚の複合材部品が製造されてもよい。なお、当該第1の複合材部品と、当該第2の複合材部品との積層は、第1の実施形態における複合材部品製造装置1Aを用いて実行されてもよい。
第1の実施形態における複合材部品製造装置1A、あるいは、第1の実施形態における複合材部品の製造方法を用いて製造される複合材部品CPは、航空機用部品であってもよいし、自動車部品であってもよい。複合材部品CPの長さは、1m以上、あるいは、2m以上であってもよい。
(第2の実施形態)
図1乃至図18を参照して、第2の実施形態における複合材部品CPの製造方法および複合材部品製造装置1Bについて説明する。図17は、移動金型の温度変化の一例を示すグラフである。図18は、成形工程が実行されている様子を模式的に示す概略横断面図である。
図1乃至図18を参照して、第2の実施形態における複合材部品CPの製造方法および複合材部品製造装置1Bについて説明する。図17は、移動金型の温度変化の一例を示すグラフである。図18は、成形工程が実行されている様子を模式的に示す概略横断面図である。
図17に例示されるように、ブロック27の体積あるいは熱容量が大きい場合、ブロック27の温度上昇に遅れが生じ、プリプレグPPのうちブロック27に接する部分の熱成形(例えば、当該部分の硬化)が不十分になる可能性がある。
そこで、第2の実施形態では、ブロック27が、熱伝導率の高い材料によって構成されるか、あるいは、プリプレグPPを成形する工程(第3ステップST3)が、ブロック27が、ブロック27を直接加熱するヒーター51に接触した状態で実行される。
第2の実施形態は、上述の点を除き、第1の実施形態と同様である。第2の実施形態では、第1の実施形態と異なる点を中心に説明し、第1の実施形態において説明済みの事項についての繰り返しとなる説明は省略する。よって、第2の実施形態において明示的に説明されなかったとしても、第2の実施形態において、第1の実施形態で説明済みの事項を採用可能であることは言うまでもない。
図18に記載の例において、ブロック27(例えば、第1ブロック27-1、および/または、第2ブロック27-2)は、熱伝導率の高い材料(より具体的には、熱伝導率の高い金属)によって構成されている。
より具体的には、第1ブロック27-1、および/または、第2ブロック27-2は、プリプレグPPの成形温度における熱伝導率が、100W/m・K以上、あるいは、200W/m・K以上の金属材料によって構成されていてもよい。例えば、第1ブロック27-1、および/または、第2ブロック27-2は、銅あるいはアルミによって構成されていてもよい。
代替的に、あるいは、付加的に、図18に例示されるように、プリプレグPPを成形する工程(第3ステップST3)は、ブロック27が、ブロック27を直接加熱するヒーター51に接触した状態で実行されてもよい。ヒーター51は、ブロック27に取り付けられていてもよい。代替的に、アクチュエータによってヒーター51がブロック27に押し付けられるように構成されてもよい。
図18に記載の例では、プリプレグPPを成形する工程(第3ステップST3)において、第1ブロック27-1に第1ヒーター51a(例えば、第1ブロック27-1の長手方向に沿って延在する棒状の第1ヒーター51a)が接触している。代替的に、あるいは、付加的に、第2ブロック27-2に第2ヒーター51b(例えば、第2ブロック27-2の長手方向に沿って延在する棒状の第2ヒーター51b)が接触していてもよい。
第2の実施形態は、第1の実施形態と同様の効果を奏する。加えて、第2の実施形態では、ブロック27が無い部分とブロック27がある部分との間の温度差が小さくなる。よって、プリプレグPPのうちブロック27に接する部分の熱成形(例えば、当該部分の硬化)が不十分とならない。また、プリプレグPPから形成される複合材部品に皺が生じにくい。
本発明は上記各実施形態または各変形例に限定されず、本発明の技術思想の範囲内において、各実施形態または各変形例は適宜変形または変更され得ることが明らかである。また、各実施形態または各変形例で用いられる任意の構成要素を、他の実施形態または他の変形例に組み合わせることが可能であり、また、各実施形態または各変形例において任意の構成要素を省略することも可能である。
1、1A、1B…複合材部品製造装置、2…移動金型、3…成形装置、6…移送装置、7…ダム、7a…第1ダム、7b…第2ダム、20a…移動金型の第1部分、20b…移動金型の第2部分、21…第1移動金型、22…第1薄板、22a…第1薄板の一部、22b…第1薄板の他の一部、22n…第1薄板の第1内面、22u…第1薄板の第1外面、24…第2移動金型、25…第2薄板、25a…第2薄板の一部、25b…第2薄板の他の一部、25c…厚さ変化部、25n…第2薄板の第2内面、25u…第2薄板の第2外面、27…ブロック、27-1…第1ブロック、27-2…第2ブロック、27a-2…第2ブロックの一部、27b-1…第1ブロックの一部、27b-2…第2ブロックの他の一部、27p-1、27p-2…幅寸法あるいは高さ寸法が連続的に変化する部分、27t-1、27t-2…テーパ面、30…成形金型、30-1…上成形金型、30-2…下成形金型、30-3…第1横成形金型、30-4…第2横成形金型、40…プレス装置、40-1…第1プレス装置、40-2…第2プレス装置、40-3…第3プレス装置、40-4…第4プレス装置、41-1…第1移動部、41-2…第2移動部、41-3…第3移動部、41-4…第4移動部、42-1…第1駆動部、42-2…第2駆動部、42-3…第3駆動部、42-4…第4駆動部、50…加熱装置、50-1…第1加熱装置、50-2…第2加熱装置、50-3…第3加熱装置、50-4…第4加熱装置、51…ヒーター、51a…第1ヒーター、51b…第2ヒーター、60…移動装置、61…牽引装置、62…ベース、63…ベアリング、64…フレーム、66…移動用アクチュエータ、66a…本体部、66b…伸縮部、68…移送ローラ、69…ガイドレール、221、221a、221b…屈曲部、225…第1側壁、226…第2側壁、227…第1連結壁、251、251a、251b…屈曲部、255…第3側壁、256…第4側壁、257…第2連結壁、B…屈曲部、B1…第1屈曲部、B2…第2屈曲部、CA、CL、CL1、CL2…長手方向軸線、CP…複合材部品、CR…湾曲領域、CR1…第1湾曲領域、CR2…第2湾曲領域、CT…セラミックコート、D…凹部、G…隙間、G2…隙間、LB…積層体、M1…成形前領域、M2…既成形領域、N…母材、OB…移動軌道、P1…プリプレグの第1側部、P2…プリプレグの第2側部、PP…プリプレグ、PS…プリプレグシート、PS1…プリプレグの内側側面、PS2…プリプレグの外側側面、Pa…プリプレグの第1部分、Pb…プリプレグの第2部分、Pc…プリプレグの幅変化部、Pc1…プリプレグのテーパ形状部、Pc2…プリプレグの段差部、RF…補強素材、RF1…繊維、RG1…プリプレグの第1領域、RG2…プリプレグの第2領域
Claims (15)
- 移動金型にプリプレグを配置する工程と、
前記プリプレグを成形する工程と、
前記プリプレグを前記移動金型とともに上流から下流に移送する工程と、
前記プリプレグから形成された複合材部品を前記移動金型から分離する工程と
を具備し、
前記プリプレグを配置する工程は、第1移動金型と第2移動金型との間に前記プリプレグを配置することを含み、
前記プリプレグを成形する工程は、
成形金型から、前記移動金型を介して、前記プリプレグに圧力を作用させることと、
前記移動金型から前記プリプレグに熱を伝達させることと
を含み、
前記複合材部品を前記移動金型から分離する工程は、前記第1移動金型および前記第2移動金型の両方から前記複合材部品を分離することを含む
複合材部品の製造方法。 - 前記プリプレグは三次元形状を有し、
前記第1移動金型および前記第2移動金型のうちの少なくとも一方は、三次元形状を有する薄板を含む
請求項1に記載の複合材部品の製造方法。 - 前記薄板の厚さは、1.5mm以下である
請求項2に記載の複合材部品の製造方法。 - 前記薄板は、金属材料によって形成されている
請求項2または3に記載の複合材部品の製造方法。 - 前記プリプレグを成形する工程は、
前記薄板が前記成形金型によって押圧されることにより、前記薄板が変形することと、
変形した前記薄板が前記プリプレグに圧力を作用させることと
を含む
請求項2乃至4のいずれか一項に記載の複合材部品の製造方法。 - 前記薄板は、トラフ形状を有する
請求項2乃至5のいずれか一項に記載の複合材部品の製造方法。 - 前記薄板は湾曲領域を有し、
前記湾曲領域において、前記薄板の長手方向軸線は湾曲している
請求項2乃至6のいずれか一項に記載の複合材部品の製造方法。 - 前記第1移動金型は、三次元形状を有する第1薄板を含み、
前記第1薄板は、前記プリプレグを介して前記第2移動金型に対向する第1内面を有し、
前記第2移動金型は、三次元形状を有する第2薄板を含み、
前記第2薄板は、前記プリプレグを介して前記第1移動金型に対向する第2外面を有する
請求項2乃至7のいずれか一項に記載の複合材部品の製造方法。 - 前記移動金型は、前記第1薄板および前記第2薄板のうちの一方に取り付けられたブロックを含み、
前記プリプレグを成形する工程は、前記ブロック、および、前記第1薄板および前記第2薄板のうちの他方が前記プリプレグに接触した状態で実行される
請求項8に記載の複合材部品の製造方法。 - 前記ブロックは、前記プリプレグの成形温度における熱伝導率が100W/m・K以上の金属材料によって構成されているか、あるいは、
前記ブロックが、前記ブロックを直接加熱するヒーターに接触した状態で、前記プリプレグを成形する工程が実行される
請求項9に記載の複合材部品の製造方法。 - 前記プリプレグを成形する工程は、
前記成形金型から、前記移動金型の第1部分を介して、前記プリプレグの第1領域に圧力および熱を作用させることと、
前記プリプレグを前記移動金型とともに移動させる工程の実行後、前記成形金型から、前記移動金型の第2部分を介して、前記プリプレグの第2領域に圧力および熱を作用させることと
を含む
請求項1乃至10のいずれか一項に記載の複合材部品の製造方法。 - 前記移動金型の前記第2部分の横断面形状は、前記移動金型の前記第1部分の横断面形状とは異なる
請求項11に記載の複合材部品の製造方法。 - 前記プリプレグを成形する工程は、前記第1移動金型と前記第2移動金型との間に、前記第1移動金型と前記第2移動金型との間の隙間から軟化材料が流出するのを防止するダムが配置された状態で実行される
請求項1乃至12のいずれか一項に記載の複合材部品の製造方法。 - プリプレグを収容する移動金型と、
前記プリプレグが収容された前記移動金型を上流から下流に移送する移送装置と、
前記移動金型を介して前記プリプレグに圧力および熱を作用させる成形金型と、
前記成形金型から前記移動金型に押圧力を作用させるプレス装置と、
前記成形金型を加熱する加熱装置と
を具備し、
前記移動金型は、
第1移動金型と、
前記プリプレグを介して前記第1移動金型に対向配置される第2移動金型と
を含む
複合材部品製造装置。 - 前記第1移動金型は、三次元形状を有する第1薄板を含み、
前記第2移動金型は、三次元形状を有する第2薄板を含み、
前記第1薄板は、前記プリプレグを介して前記第2移動金型に対向する第1内面を有し、
前記第2薄板は、前記プリプレグを介して前記第1移動金型に対向する第2外面を有し、
前記移動金型は、前記第1薄板および前記第2薄板の少なくとも一方に取り付けられたブロックを含む
請求項14に記載の複合材部品製造装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/029891 WO2024029019A1 (ja) | 2022-08-04 | 2022-08-04 | 複合材部品の製造方法、および、複合材部品製造装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/029891 WO2024029019A1 (ja) | 2022-08-04 | 2022-08-04 | 複合材部品の製造方法、および、複合材部品製造装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024029019A1 true WO2024029019A1 (ja) | 2024-02-08 |
Family
ID=89848724
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/029891 WO2024029019A1 (ja) | 2022-08-04 | 2022-08-04 | 複合材部品の製造方法、および、複合材部品製造装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024029019A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07144369A (ja) * | 1993-11-25 | 1995-06-06 | Sekisui Chem Co Ltd | 繊維強化樹脂成形体の製造方法 |
JPH07148850A (ja) * | 1993-11-30 | 1995-06-13 | Sekisui Chem Co Ltd | 繊維強化樹脂成形体の製造方法 |
JP2011513085A (ja) * | 2008-02-27 | 2011-04-28 | エアバス オペラツィオンス ゲゼルシャフト ミット ベシュレンクテル ハフツング | 成形プリフォーム及び成形frp構成部品の製造方法、本方法を実行するための引き抜き成形システム及び圧縮装置 |
JP2017500231A (ja) * | 2013-12-19 | 2017-01-05 | エアバス オペレーションズ ゲゼルシャフト ミット ベシュレンクテル ハフツングAirbus Operations GmbH | 繊維強化複合材料から部品を連続的に製造する装置及び方法、並びに型セット |
JP2017501057A (ja) * | 2013-12-19 | 2017-01-12 | エアバス オペレーションズ ゲゼルシャフト ミット ベシュレンクテル ハフツングAirbus Operations GmbH | 強化繊維を含有する半製品を形成するための成形ツール、成形装置及び方法 |
WO2018220814A1 (ja) * | 2017-06-02 | 2018-12-06 | 株式会社ジャムコ | 複合材部品の製造方法、および、複合材部品製造装置 |
-
2022
- 2022-08-04 WO PCT/JP2022/029891 patent/WO2024029019A1/ja unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07144369A (ja) * | 1993-11-25 | 1995-06-06 | Sekisui Chem Co Ltd | 繊維強化樹脂成形体の製造方法 |
JPH07148850A (ja) * | 1993-11-30 | 1995-06-13 | Sekisui Chem Co Ltd | 繊維強化樹脂成形体の製造方法 |
JP2011513085A (ja) * | 2008-02-27 | 2011-04-28 | エアバス オペラツィオンス ゲゼルシャフト ミット ベシュレンクテル ハフツング | 成形プリフォーム及び成形frp構成部品の製造方法、本方法を実行するための引き抜き成形システム及び圧縮装置 |
JP2017500231A (ja) * | 2013-12-19 | 2017-01-05 | エアバス オペレーションズ ゲゼルシャフト ミット ベシュレンクテル ハフツングAirbus Operations GmbH | 繊維強化複合材料から部品を連続的に製造する装置及び方法、並びに型セット |
JP2017501057A (ja) * | 2013-12-19 | 2017-01-12 | エアバス オペレーションズ ゲゼルシャフト ミット ベシュレンクテル ハフツングAirbus Operations GmbH | 強化繊維を含有する半製品を形成するための成形ツール、成形装置及び方法 |
WO2018220814A1 (ja) * | 2017-06-02 | 2018-12-06 | 株式会社ジャムコ | 複合材部品の製造方法、および、複合材部品製造装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4867917B2 (ja) | 強化繊維成形体の製造方法および製造装置 | |
CN101583479B (zh) | 具有集成金属配件的热塑性复合零件及其制作方法 | |
JP5184542B2 (ja) | 湾曲された熱可塑性複合部品の製造方法 | |
JP3742082B2 (ja) | 曲率を有した繊維強化プラスチック部材の連続成形方法及び装置 | |
EP1894706A1 (en) | Method for continuously preforming composite material in uncured state | |
CN102781649B (zh) | 热塑性层压材料的连续模制 | |
US9096021B2 (en) | Method and shaping device for producing a composite fiber component for air and space travel | |
WO2011046137A1 (ja) | ビーム材の製造方法および製造装置 | |
JP5937894B2 (ja) | 複合材ストリンガーの連続プリフォーム装置 | |
JP6432689B2 (ja) | 複合材料の製造方法、複合材料の製造装置、複合材料用プリフォームおよび複合材料 | |
JP6411677B1 (ja) | 複合材部品の製造方法、および、複合材部品製造装置 | |
JP6641483B2 (ja) | 引抜成形品の製造装置及び製造方法 | |
JP5322594B2 (ja) | 断面の異なる複合材型材の連続成形方法 | |
EP2889126B1 (en) | Method for producing composite material mold for composite material long member | |
CN112996653B (zh) | Frp成形系统和方法 | |
WO2024029019A1 (ja) | 複合材部品の製造方法、および、複合材部品製造装置 | |
JP5435330B2 (ja) | 強化繊維複合材ビームの製造方法 | |
JP5408530B2 (ja) | 圧縮賦形装置および方法並びに繊維強化複合材料とプリフォームの製造方法 | |
JP5081034B2 (ja) | 強化繊維成形体の製造装置および製造方法 | |
EP3632642B1 (en) | Method for producing composite material component and device for producing composite material component | |
JP7340704B2 (ja) | Frp成形システムと方法 | |
JP2009226835A (ja) | 積層体の圧縮賦形装置およびプリフォームの製造方法および繊維強化複合材料の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22954008 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024538602 Country of ref document: JP Kind code of ref document: A |