WO2024027842A1 - 远程控制装置、远程系统、推注器、从机系统及注射系统 - Google Patents

远程控制装置、远程系统、推注器、从机系统及注射系统 Download PDF

Info

Publication number
WO2024027842A1
WO2024027842A1 PCT/CN2023/111333 CN2023111333W WO2024027842A1 WO 2024027842 A1 WO2024027842 A1 WO 2024027842A1 CN 2023111333 W CN2023111333 W CN 2023111333W WO 2024027842 A1 WO2024027842 A1 WO 2024027842A1
Authority
WO
WIPO (PCT)
Prior art keywords
control device
remote control
injection
mounting base
along
Prior art date
Application number
PCT/CN2023/111333
Other languages
English (en)
French (fr)
Inventor
靳阳阳
张亚东
张震
Original Assignee
苏州恒瑞宏远医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210935075.3A external-priority patent/CN115252968A/zh
Priority claimed from CN202310961636.1A external-priority patent/CN116999656A/zh
Application filed by 苏州恒瑞宏远医疗科技有限公司 filed Critical 苏州恒瑞宏远医疗科技有限公司
Priority to CN202380014054.0A priority Critical patent/CN118139662A/zh
Publication of WO2024027842A1 publication Critical patent/WO2024027842A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/20Automatic syringes, e.g. with automatically actuated piston rod, with automatic needle injection, filling automatically

Definitions

  • This application relates to the technical field of medical devices, and in particular to a remote control device, remote system, injector, slave system and injection system.
  • Existing remote control devices for injectors include a console and an execution structure.
  • the console is connected to the execution structure and remotely controls the execution structure for injection.
  • the operator controls the injection speed and injection pressure of the injector in the execution structure by controlling the speed control rocker and pressure control rocker at the console.
  • the existing remote control device can remotely control the injection pressure, it cannot accurately feedback the injection resistance of the syringe during injection.
  • the main technical problem solved by this application is to provide a remote control device and injection system that can provide real-time feedback on the injection resistance of the syringe during injection.
  • the first aspect of this application provides a remote control device, including a mounting base, a movable part, a position sensor, a force feedback component and a host controller.
  • the movable part is movably arranged on the mounting base and can move in the first direction relative to the mounting base; the position sensor is used to detect the position information of the movable part relative to the mounting base; the force feedback component is used to generate a variable size of the movable part opposite to the first direction. Adjust the feedback resistance to prevent the movable part from moving in the first direction.
  • the remote control device includes at least two resisting parts. Two conflicting parts are respectively protruding from opposite sides of the mounting base, and are respectively used for the operator's index finger and middle finger to push back in the first direction; wherein, the movable part is used for the operator's thumb to push along the first direction. Push to move relative to the mounting base in the first direction under the driving of the operator.
  • the mounting base has a cavity extending along the first direction, a part of the movable member is inserted into the cavity and slidingly cooperates with the mounting base along the first direction, and the movable member is located outside the mounting base. It is used for the operator's thumb to push along the first direction; wherein, the two resisting parts are respectively located on opposite sides of the cavity in the radial direction.
  • the movable part includes a guide part and a pushing part.
  • the guide part extends along the first direction, and one end is inserted into the cavity and slides with the mounting base along the first direction; the push part is located at the other end of the guide part and is located outside the cavity for the operator's thumb to slide along. Push in the first direction.
  • the force feedback component is provided on the mounting base.
  • the force feedback component has a moving end disposed floating along the first direction, and the moving end can generate feedback resistance to the movable part.
  • the remote control device includes an elastic member.
  • the elastic component has elasticity in the first direction, and the force is transmitted between the moving end of the force feedback component and the movable component through the elastic component.
  • two ends of the elastic member along the first direction elastically resist/connect the moving end and the movable member of the force feedback component respectively.
  • the force feedback assembly includes a lead screw motor.
  • the screw of the screw motor extends along the first direction; wherein, the host controller is connected to the screw motor, and the screw can generate feedback resistance to the movable part.
  • the force feedback assembly includes a tip.
  • the end is provided at one end of the screw to form a moving end; the screw exerts feedback resistance through the end.
  • the mounting base has a cavity extending along the first direction. At least part of the extending section of the cavity is of equal cross-section. The end is embedded in the equal-section section of the cavity and slides with the mounting base. .
  • the cross-section of the equal-section section of the cavity is rectangular.
  • the mounting base has a cavity penetrating along the first direction, the elastic member is accommodated in the cavity, and a part of the force feedback assembly is inserted into the cavity from one end of the cavity, so that the force feedback assembly
  • the moving end is located in the cavity, and a part of the movable part is inserted into the cavity from the other end of the cavity.
  • the magnitude of the feedback resistance is equal to the magnitude of the injection resistance.
  • the position sensor is a pull-rod displacement sensor.
  • the pull-rod displacement sensor has a main body and a pull rod, and the pull rod can move relative to the main body along the first direction or in the first direction; wherein, the movable member When moving along the first direction, the pull rod can be driven to move along the first direction synchronously.
  • the remote control device includes a pressure sensor.
  • the pressure sensor is used to detect the pushing force along the first direction exerted by the operator on the movable part, and send the detection result to the injector.
  • the movable part includes a main body part and a pushing part.
  • the main body is movably arranged on the mounting base and can move in the first direction relative to the mounting base;
  • the pushing portion is floatably arranged on the main body along the first direction; wherein, the pressure sensor is sandwiched between the main body and the pushing portion along the first direction. between, for detecting the pushing force along the first direction exerted by the operator on the pushing portion.
  • the remote control device includes a housing.
  • the shell is set outside the mounting base, the two resisting parts are located outside the shell and are spaced apart from the mounting base along the first direction, and the movable part is located outside the shell.
  • the remote control device includes a protective cover, which is a cylinder extending along the first direction and capable of deforming along the first direction; wherein the position sensor is a pull-rod displacement sensor, and the position sensor is a pull-rod displacement sensor.
  • the displacement sensor has a main body and a pull rod.
  • the pull rod can move relative to the main body in a first direction or in a reverse direction.
  • the main body is arranged in the shell.
  • the pull rod penetrates the side wall of the shell and is connected to the movable part.
  • the protective cover is set outside the pull rod. One end is connected to the shell, and the other end is connected to the movable part.
  • the second aspect of the embodiment of the present application provides a remote system, including any one of the above remote control devices and a host controller.
  • the host controller is respectively connected to the position sensor and the force feedback component for control based on the position information of the movable part.
  • the injector performs the injection operation, and controls the force feedback component according to the injection resistance to generate feedback resistance that matches the injection resistance.
  • the third aspect of the embodiment of the present application provides a pusher, including: a rotating motor; a push motor connected to the first output shaft of the rotating motor to rotate with the rotation of the first output shaft; a first screw rod,
  • the extension direction is the same as the extension direction of the second output shaft of the injection motor, and is connected to the second output shaft to rotate with the rotation of the second output shaft; the nut seat is sleeved on the periphery of the first screw rod.
  • the nut seat moves linearly along the first screw rod; the first push rod extends in the same direction as the first screw rod, and the first end is connected to the nut seat so that the first push rod
  • the rod moves linearly driven by the nut seat, wherein the second end of the first push rod is used to connect the syringe to push the syringe for injection; wherein the syringe is communicatively connected to a remote control device such as any of the above,
  • the first push rod pushes the syringe to inject according to the displacement.
  • the fourth aspect of the embodiment of the present application provides a slave system, including: a syringe according to any one of the above and a slave controller, and the slave controller is electrically connected to the syringe.
  • the fifth aspect of the embodiment of the present application provides an injection system, including: a remote system, including a host controller, a remote control device electrically connected to the host controller, and a host communication circuit, wherein the remote control device generates a signal under the operation of an operator. Electrical signal; slave system, including a slave controller and an injector connected to the slave controller and as described in any of the above, and a slave communication circuit, the slave communication circuit is electrically connected to the host communication circuit; wherein, the host After receiving the electrical signal generated by the remote control device, the controller sends the electrical signal to the slave system through the host communication circuit. After receiving the electrical signal through the slave communication circuit, the slave controller in the slave system transmits the electrical signal according to the electrical signal. The signal controls the operation of the syringe.
  • the remote control device in this application includes a mounting base, a movable part, a position sensor, a force feedback component and a host controller.
  • the movable part is movably arranged on the mounting base and can move in the first direction relative to the mounting base; the position sensor is used to detect the position information of the movable part relative to the mounting base; the force feedback component is used to generate a variable size of the movable part opposite to the first direction. Adjust the feedback resistance to prevent the movable part from moving in the first direction.
  • the remote control device can provide real-time feedback on the injection resistance of the injector during injection, allowing the operator to accurately control the injection pressure.
  • Figure 1 is a schematic structural diagram of an embodiment of the injection system of the present application.
  • Figure 2 is a three-dimensional structural diagram of an embodiment of the remote control device of the present application.
  • Figure 3 is a schematic three-dimensional structural diagram of the mounting base in the remote control device shown in Figure 2 from a first angle;
  • Figure 4 is a schematic three-dimensional structural diagram of the mounting base in the remote control device shown in Figure 2 from a second angle;
  • Figure 5 is a cross-sectional view of Figure 2;
  • Figure 6 is an enlarged view of partial view A in Figure 5;
  • Figure 7 is an enlarged view of the right end in Figure 5;
  • Figure 8 is a schematic three-dimensional structural diagram of the housing of the movable part in an embodiment of the remote control device of the present application.
  • Figure 9 is a three-dimensional structural diagram of an embodiment of the remote control device of the present application.
  • Figure 10 is a schematic structural diagram of another embodiment of the remote control device of the present application.
  • Figure 11 is a schematic structural diagram of an embodiment of the injector of the present application.
  • Figure 12 is a schematic structural diagram of another embodiment of the injection system of the present application.
  • Figure 13 is a schematic structural diagram of another embodiment of the injection system of the present application.
  • interventional embolization is the most important treatment method.
  • This treatment method requires medical staff to deliver embolization materials to the diseased site through various catheters under the guidance of X-rays to complete the occlusion of the diseased blood vessels.
  • the materials used in interventional embolization include solid embolization materials and liquid embolization materials.
  • Non-adhesive liquid embolization materials have good dispersion and can be injected uniformly and fill the target blood vessels, reducing the possibility of vessel recanalization and obtaining permanent embolization. .
  • non-adhesive liquid embolization materials can completely fill the malformation mass and drainage veins, reach the real embolization focus, and cure the disease.
  • this treatment method has been greatly developed.
  • interventional embolization has become the preferred treatment method for dural arteriovenous fistulas.
  • interventional embolization has been used as surgical resection and radiotherapy in the past.
  • Preoperative auxiliary means have gradually become a deterministic curative treatment method.
  • the cure rate of simple embolization can reach more than 96%.
  • most low-grade and some high-grade cerebral arteriovenous malformations can be treated simply through embolization. Cured by interventional embolization. Therefore, embolization using non-adhesive liquid embolization materials has become the most important treatment method for rich blood vessel lesions of the head and face.
  • Injecting embolic materials requires the surgeon to use a slow and steady injection rate. Too fast a rate can lead to vasospasm or vascular necrosis. In the traditional injection method, the surgeon can only push the embolization material through thumb pressure. This method cannot accurately control the injection rate and is prone to the problem of too fast injection rate, which affects the treatment effect.
  • the injection should be stopped immediately.
  • the microcatheter cannot be unclogged by increasing the injection pressure. Blindly increasing the injection pressure may cause the microcatheter to rupture or embolize non-target areas.
  • Existing remote control devices for injectors include a console and an execution structure.
  • the console is connected to the execution structure and remotely controls the execution structure for injection.
  • the operator controls the injection speed and injection pressure of the injector in the execution structure by controlling the speed control rocker and pressure control rocker at the console.
  • the existing remote control device can remotely control the injection pressure, it cannot accurately feedback the injection resistance of the syringe during injection.
  • this application provides an injection system.
  • the injector 1000 is used to inject the target liquid.
  • the first force sensor 105 is used to detect the injection resistance of the injector 1000 during the injection process.
  • the first force sensor 105 is a pressure sensor.
  • the first force sensor 105 is used as a component of the injector 1000, that is, the injector 1000 itself can detect the injection resistance during the injection process.
  • the first force sensor 105 may be provided independently of the syringe 1000, and in this case, the remote control device 200 is connected to the syringe 1000 and the first force sensor 105 respectively.
  • the operator controls the injector 1000 through the remote control device 200 to perform the injection operation.
  • the remote control device 200 can generate feedback resistance that matches the injection resistance, so that the operator can accurately control the action of the injector 1000.
  • the injection system is used in interventional embolization therapy.
  • the injector 1000 is arranged in the isolation room 4000, and the operator and the remote control device 200 are located outside the isolation room 4000.
  • Isolation chamber 4000 can shield radiation.
  • the operator operates the remote control device 200 to control the injector 1000 to inject embolic material into the patient's body.
  • the injection system can avoid long-term exposure of operators to radioactive radiation during surgical treatment and protects the safety of operators.
  • the remote control device 200 can provide real-time feedback on the injection resistance of the injector 1000 during injection, allowing the operator to accurately control the injection pressure.
  • the remote control device is introduced in detail below.
  • Figure 2 is a three-dimensional structural diagram of an embodiment of the remote control device of the present application.
  • the remote control device includes a mounting base 4, a movable part 30, a position sensor 3, a force feedback component 40 and a host controller 310.
  • the movable component 30 is movably arranged on the mounting base 4 and can move relative to the mounting base 4 along the first direction D1.
  • the position sensor 3 is used to detect the position information of the movable component 30 relative to the mounting base 4 .
  • the force feedback component 40 is used to generate an adjustable feedback resistance to the movable part 30 that is opposite to the first direction D1 to prevent the movable part 30 from moving in the first direction D1.
  • the host controller 310 is control-connected to the injector 1000, the first force sensor 105, the position sensor 3 and the force feedback component 40 respectively.
  • the host controller 310 may be a computer, and the connection method between the host controller 310 and the position sensor 3 and the force feedback component 40 includes a wired connection or a wireless connection.
  • the host controller 310 is used to control the injector 1000 to perform the injection operation based on the position information of the movable member 30, and to control the force feedback component 40 based on the injection resistance to generate feedback resistance that matches the injection resistance.
  • the operator squeezes the movable part 30 (generating injection pressure), and the position sensor 3 sends the position information of the movable part 30 to the host controller 310.
  • the host controller 310 controls the injector 1000 to perform injection work with the same displacement.
  • the injector 1000 feeds back the injection resistance generated when injecting medicine into the patient's body to the host controller 310.
  • the host controller 310 controls the force feedback component 40 according to the injection resistance to generate feedback resistance that matches the injection resistance. Therefore, the remote control device can provide real-time feedback on the injection resistance of the injector 1000 during injection, allowing the operator to accurately control the injection pressure.
  • Figures 3 and 4 are respectively schematic three-dimensional structural diagrams of the first and second angles of the mounting base 4 in the remote control device shown in Figure 2.
  • the remote control device includes at least two resistance portions 401 (the number of resistance portions 401 in FIG. 3 is two).
  • the two resisting portions 401 are respectively protruding from opposite sides of the mounting base 4 and are respectively used for the operator's index finger and middle finger to push back in the first direction D1. Specifically, two resistance portions 401 are respectively provided on the side of the mounting base 4 close to the movable member 30 .
  • the movable member 30 is used for the operator's thumb to push along the first direction D1 so as to move relative to the mounting base 4 along the first direction D1 under the driving of the operator.
  • the operator can operate with one hand, like operating a conventional syringe, with the index finger and middle finger holding the two resisting parts 401 of the mounting base 4, and the thumb squeezing the movable member 30, so that the movable member 30 moves along the first direction D1.
  • FIG. 5 is a cross-sectional view of FIG. 2
  • FIG. 6 is an enlarged view of partial view A in FIG. 5 .
  • the mounting base 4 has a cavity 403 extending along the first direction D1.
  • a part of the movable member 30 is inserted into the cavity 403 and slides with the mounting base 4 along the first direction D1.
  • the portion of the movable member 30 located outside the mounting base 4 is used for the operator's thumb to push along the first direction D1.
  • the two conflicting parts 401 are respectively located on opposite sides of the cavity 403 in the radial direction.
  • the mounting base 4 and the two resisting parts 401 generally form a syringe shape, thereby making the remote control device further resemble a conventional syringe.
  • the movable member 30 includes a guide portion 11 and a pushing portion 14 .
  • the guide portion 11 extends along the first direction D1, with one end inserted into the cavity 403 and slidingly matched with the mounting base 4 along the first direction D1.
  • a guide bush 60 is provided in the cavity 403 of the mounting base 4 .
  • the guide bush 60 is circumferentially fixed by the flat key 20 installed in the keyway 402 , and the guide bush 60 is axially fixed by the retaining ring 10 .
  • the guide part 11 is a guide rod, and the guide rod is sleeved in the guide sleeve 60 .
  • the guide part 11 and the guide sleeve 60 can be commercially available products.
  • the pushing portion 14 is located at the other end of the guide portion 11 and outside the cavity, and is used for the operator's thumb to push along the first direction D1. The operator's thumb presses the pushing portion 14 to move the guide portion 11 in the first direction D1.
  • the force feedback component 40 is provided on the mounting base 4 . In this way, the remote control device is compact.
  • the force feedback component 40 has a moving end floating along the first direction D1 , and the moving end can generate feedback resistance to the movable component 30 .
  • the moving end of the force feedback component 40 can move along the first direction D1 and the reverse direction of the first direction D1.
  • the operator exerts a push force to the left on the movable part 30 , and the moving end (end 5 ) of the force feedback assembly 40 generates feedback resistance to the movable part 30 to the right.
  • the pushing force is greater than the feedback resistance, causing the movable member 30 to move to the left (move along the first direction D1), thereby controlling the injector 1000 to perform the injection operation.
  • the force feedback component 40 generates feedback resistance with a certain hysteresis.
  • the remote control device includes an elastic member 6 .
  • the elastic member 6 has elasticity in the first direction D1, and the force is transmitted between the moving end of the force feedback assembly 40 and the movable member 30 through the elastic member 6.
  • the elastic member 6 may be a compression spring.
  • the specific arrangement of the elastic member 6 is as follows: In one embodiment, the two ends of the elastic member 6 along the first direction D1 respectively elastically resist/connect the moving end of the force feedback assembly 40 and the movable member 30 . That is, in the working state, the elastic member 6 is in a compressed state, or in a stretched state. In the illustrated embodiment, two ends of the elastic member 6 along the first direction D1 elastically resist the moving end of the force feedback assembly 40 and the movable member 30 respectively.
  • the force feedback assembly 40 includes a lead screw motor 2 .
  • the screw motor 2 is optionally a commercially available product. Screw motors are also called electric screw rods, electric push rods, push rod motors, electric cylinders and linear actuators.
  • the screw motor is an electric drive device that converts the rotational motion of the motor into the linear reciprocating motion of the push rod.
  • the screw 1 of the screw motor 2 extends along the first direction D1.
  • the host controller 310 is connected to the screw motor 2 for control, and the screw 1 can generate feedback resistance to the movable part 30 .
  • the host controller 310 controls the screw motor 2 to adjust the torque in real time, and the torque is converted into motor thrust through the screw 1 .
  • the force feedback assembly 40 includes a tip 5 .
  • the end 5 is provided at one end of the screw 1 to form the above-mentioned moving end. Among them, the screw 1 exerts feedback resistance through the end 5.
  • the mounting base 4 has a cavity 403 extending along the first direction D1. At least part of the extension section of the cavity 403 is The end head 5 is of equal cross-section and is embedded in the equal-section section of the cavity 403 and is in sliding fit with the mounting base 4 .
  • the left and right ends of the cavity 403 in FIG. 5 have different cross-sections, and the distance from the left end to the left end is an equal cross-section.
  • the end head 5 and the mounting base 4 are slidably matched along the first direction D1 to ensure that the end head 5 moves stably.
  • the cross-section of the equal cross-section section of the cavity 403 is rectangular. Therefore, it is limited that the end head 5 only has the degree of freedom in the first direction D1 or the reverse direction of the first direction D1, that is, the end head 5 will not rotate with the first direction D1 as the axis.
  • both the mounting base 4 and the end head 5 are made of engineering plastics.
  • engineering plastics are light in weight and high in strength; on the other hand, they have a small friction coefficient, which reduces the resistance when the end head 5 moves relative to the mounting base 4 .
  • the mounting base 4 has a cavity 403 penetrating along the first direction D1, the elastic member 6 is accommodated in the cavity 403, and a part of the force feedback assembly 40 is inserted into the cavity 403 from one end of the cavity, so that The moving end of the force feedback component 40 is located in the cavity 403 , and a part of the movable member 30 is inserted into the cavity 403 from the other end of the cavity 403 .
  • the moving end of the force feedback assembly 40 and the moving end of the movable member 30 are respectively inserted from opposite ends of the cavity of the mounting base 4 and move within the cavity.
  • the feedback resistance of the force feedback component 40 matches the injection resistance.
  • Feedback resistance can reflect changes in injection resistance. In one application scenario, during the injection process, the feedback resistance becomes significantly larger, which can remind the operator that there is an abnormality and the injection should be stopped.
  • the ratio between the feedback resistance of the force feedback component 40 and the injection resistance can be set according to requirements.
  • the feedback resistance of the feedback component is equal to the injection resistance of the injector 1000 .
  • the feedback resistance of the feedback component may be greater or smaller than the injection resistance of the injector 1000 .
  • the position sensor 3 is a pull rod displacement sensor.
  • the tie rod displacement sensor is optionally a commercially available product.
  • a tie rod displacement sensor has a main body and a tie rod. The main body is arranged on the mounting base 4.
  • the pull rod can move relative to the main body along the first direction D1 or the reverse direction of the first direction D1.
  • the movable member 30 moves along the first direction D1, it can drive the pull rod to move along the first direction D1 synchronously.
  • the outer surface of the mounting base 4 is provided with a first positioning surface 404 and a second positioning surface 405.
  • the first positioning surface 404 and the second positioning surface 405 are used to fix the position of the tie rod displacement sensor.
  • the pull rod of the pull rod displacement sensor is connected to the movable part 30. When the operator squeezes the movable part 30, the movable part 30 drives the pull rod to move, so that the pull rod displacement sensor collects the displacement signal of the movable part 30.
  • the remote control device includes a pressure sensor 17 .
  • the pressure sensor 17 is used to detect the pushing force along the first direction D1 exerted by the operator on the movable member 30 and send the detection result to the injector 1000 .
  • the injector 1000 generates a matching injection pressure based on the pushing force detected by the pressure sensor 17 .
  • Figure 7 is an enlarged view of the right end in Figure 2.
  • Figure 8 is a three-dimensional structural diagram of the housing 18 of the movable component 30 in an embodiment of the remote control device of the present application.
  • the movable component 30 includes a main body part 50 and a pushing part 14 .
  • the main body 50 is movably installed on the mounting base 4 and can move relative to the mounting base 4 along the first direction D1.
  • the pushing portion 14 is disposed on the main body portion 50 so as to be floatable along the first direction D1.
  • the pressure sensor 17 is sandwiched between the main body 50 and the pushing portion 14 along the first direction D1 for detecting the pushing force along the first direction D1 exerted by the operator on the pushing portion 14 .
  • the main body 50 includes a guide portion 11 , an extension rod 12 , a shaft retaining ring 13 , an outer cover 15 , a force sensor transition ring 16 , a housing 18 and a fastener 19 .
  • the guide portion 11 extends along the first direction D1 , and the left end of the guide portion 11 is inserted into the mounting base 4 .
  • the housing 18 is detachably provided at the right end of the guide portion 11 through a fastener 19 . Fasteners 19 may be screws.
  • the housing 18 is provided with a first groove 180 and a second groove 181 .
  • the extension rod 12 is parallel to the guide portion 11 and is spaced apart from the guide portion 11 .
  • the left end of the extension rod 12 is connected to the position sensor 3, and the right end is connected to the housing 18 through the shaft retaining ring 13.
  • the extension rod 12 has a hollow structure and is connected with the second groove 181 .
  • the pressure sensor 17 is placed in the first groove 180, and the cable of the pressure sensor 17 can be led out through the second groove 181 and the cavity of the extension rod 12 to prevent the cable from being exposed.
  • the force sensor transition ring 16 is disposed in the first groove 180 and is annular.
  • the pushing portion 14 passes through the central area of the force sensor transition ring 16 to contact the pressure sensor 17 .
  • the outer cover 15 covers the first groove 180 and the second groove 181 of the housing 18 . A part of the pushing portion 14 is protruding outside the outer cover 15 for the operator to push.
  • FIG. 9 is a schematic three-dimensional structural diagram of an embodiment of the remote control device of the present application.
  • the remote control device includes a housing 7 that is waterproof and dustproof, thereby improving the service life of the remote control device.
  • the shell 7 is set outside the mounting base 4 .
  • the housing 7 can be used to protect other components of the remote control device.
  • the two resisting parts 401 are located outside the housing 7 and are spaced apart from the mounting base 4 along the first direction D1.
  • the gap between the resisting portion 401 and the housing 7 is used to accommodate the operator's index finger and middle finger.
  • the movable part 30 is located outside the housing 7 .
  • the mounting base 4 is generally in the shape of a strip extending along the first direction D1.
  • the force feedback component 40 is disposed at the left end of the mounting base 4
  • the resistance portion 401 is disposed at the right end of the mounting base 4
  • the movable component 30 is disposed at the right end of the mounting base 4 .
  • the housing 7 is placed outside the mounting base 4 and the force feedback component 40 , and the right end of the mounting base 4 is exposed from the housing 7 .
  • the remote control device further includes a protective cover 9 .
  • the protective cover 9 is a cylinder extending along the first direction D1 and can be deformed along the first direction.
  • the protective cover 9 can be a bellows.
  • the position sensor 3 is a pull-rod displacement sensor.
  • the pull-rod displacement sensor has a main body and a pull rod.
  • the pull rod can move relative to the main body along the first direction D1 or in the reverse direction of the first direction D1.
  • the main body is arranged in the housing 7, and the pull rod penetrates the housing 7. side wall and connected with the movable part 30.
  • the protective cover 9 is placed outside the pull rod, with one end connected to the housing 7 and the other end connected to the movable part 30 .
  • the first step first connect the guide part 11 to the mounting base 4 through the flat key 20 and the retaining ring 10, and then connect the right end of the guide part 11 to the housing 18 through the fastener 19. Then the displacement sensor 3 is connected to the extension rod 12. The displacement sensor 3 is positioned and installed on the upper surface of the mounting base 4. The protective cover 9 is inserted into the extension rod 12 and then connected to the housing 18. Then, the pressure sensor 17 is embedded in the first groove 180 of the housing 18, the force sensor transition ring 16 and the pushing portion 14 are installed into the first groove 180 one by one, and the gland 15 is installed on the housing 18. Right side surface.
  • the second step is to assemble the relevant parts of the screw motor 2. Connect the elastic member 6 to the end 5, and then connect the end 5 to the right end of the screw 1.
  • the operating principle of the remote control device When working, the operator holds the two resisting parts 401 with the index finger and middle finger just like operating a conventional syringe, and squeezes the pushing part 14 in the movable part 30 with the thumb and pushes it to the left. At this time, the displacement sensor 3 on the mounting base 4 will feedback the position information to the injector 1000 in real time, and the injector 1000 will inject medicine with equal displacement. There is resistance when injecting medicine, and this resistance value will be fed back to the remote control device in real time. At this time, the operator can adjust the thumb squeezing force to achieve the required thrust value.
  • the exposed front end of the remote control device is very similar to a conventional syringe.
  • the operator can operate the remote control device just like a conventional syringe, which better meets the ergonomic characteristics and meets the operator's operational convenience.
  • the screw 1, the end 5, the elastic member 6, the flat key 20, the retaining ring 10, the guide part 11 and other parts are all installed in the mounting base 4, and the pushing part 14, the force sensor transition ring 16, the pressure sensor 17 and other parts are all installed in the mounting base 4. It is installed inside the housing 18 and has high integration level.
  • a shell 7 and a protective cover 9 are also provided, which can achieve waterproof and dustproof functions and improve the service life of the remote control device.
  • One end of the cavity 403 of the mounting base 4 is a through hole with a quadrilateral cross-section.
  • the end head 5 also has a quadrilateral outline, which can realize the guidance and positioning of the end head 5 and the mounting base 4.
  • Both the housing 18 and the mounting base 4 are made of engineering plastic material, which is light in weight and relatively high in strength. Since the friction coefficient of engineering plastic is very small, the friction force is very small when pushing. The characteristics of light weight and low resistance are conducive to the convenience of manual operation. sex and comfort.
  • the mounting base 4 in the remote control device includes a linear guide 206
  • the movable member 30 includes a second push rod 207
  • the position sensor 3 includes a position ruler 205 and a position sensor read head 204
  • force feedback The assembly 40 includes a force-controlled motor 210, a second screw rod 202, and a screw nut 203.
  • the second push rod 207 is slidably disposed on the linear guide rail 206; the position ruler 205 is fixed on the linear guide rail 206; the position sensor reading head 204 is fixed on the second push rod 207; wherein, when the second push rod 207 is on When the user slides on the linear guide 206 under the operation, the position sensor read head 204 reads the information on the position ruler 205 and generates an electrical signal carrying the displacement of the second push rod 207 .
  • the position sensor read head 204 is fixed on the second push rod 207 by adhesion or other means.
  • the position sensor read head 204 includes a grating read head, a magnetic read head, etc. Taking the grating read head as an example, when the second push rod 207 slides on the linear guide rail 206, the position ruler 205 will form Moiré fringes to produce alternating light and dark.
  • the photoelectric signal is converted into an electrical pulse signal, and is displayed on the grating read head. is displayed, at this time, the electrical signal of the displacement of the second push rod 207 can be measured, and this electrical signal is the first displacement of the user's hand.
  • the remote control device further includes a force control motor 210, a second screw rod 202, a screw nut 203 and a second force sensor 208.
  • the force control motor 210 is electrically connected to the host controller 310.
  • the force-controlled motor 210 is a motor capable of outputting torque, and this application does not limit its type.
  • the extension direction of the second screw rod 202 is the same as the extension direction of the third output shaft (not shown) of the force control motor 210 and is connected to the third output shaft.
  • the second screw rod 202 can be connected to the third output shaft through a coupling. Output shaft connection.
  • the screw nut 203 is sleeved on the periphery of the second screw 202 and connected to the first end of the second push rod 207.
  • the screw nut 203 performs linear motion relative to the third output shaft. , thereby driving the second push rod 207 to move linearly.
  • the screw nut 203 and the first end of the second push rod 207 can be fixedly connected by screws.
  • the screw nut 203 will move linearly along the screw rod and pass through the connection with the second push rod 207.
  • the connection drives the second push rod 207 to move linearly.
  • the second force sensor 208 is disposed on the second end of the second push rod 207 and is used to collect the second pressure value exerted by the user on the second push rod 207 .
  • the present invention has the characteristics of high integration, good operability, high cost performance, and convenient disassembly and assembly.
  • the injection volume and injection thrust of the injector 1000 can be remotely controlled through the difference in displacement and force output by the remote control device. At the same time, the injection volume and injection thrust of the injector 1000 can be fed back to the remote control device in real time, thus improving the efficiency of diagnosis and treatment.
  • the accuracy and work efficiency greatly improve the safety of medical staff and meet the high-efficiency injection operation of 1000 injectors.
  • the injector 1000 includes a rotating motor 106, an injection motor 100, a first screw rod 103, a nut seat 102 and a first push rod 104.
  • the injection motor 100 and the first push rod of the rotating motor 106 An output shaft 1061 is connected to rotate with the rotation of the first output shaft 1061 .
  • the injection motor 100 can be provided with a power shaft 120 connected to the first output shaft 1061 of the rotating motor 106 through a coupling 108, and the first push rod 104 can also be connected to the power shaft of the injection motor 100 through a coupling. 120 is connected, so that when the rotating motor 106 rotates, it can drive the power shaft 120 and the first push rod 104 to rotate. Since the first push rod 104 is connected to the syringe, the function of mixing the injection material in the syringe is realized.
  • the injection motor 100 is a motor capable of providing propulsion power, and this application does not limit its type.
  • the injector 1000 further includes a transmission gear 101 that can adjust the transmission speed ratio and torque between the first output shaft 1061 and the power shaft 120 .
  • the extension direction of the first screw rod 103 is the same as the extension direction of the second output shaft 110 of the injection motor 100, and is connected to the second output shaft 110 to rotate with the rotation of the second output shaft 110; the nut seat 102 is sleeved on the periphery of the first screw rod 103.
  • the nut seat 102 moves linearly along the first screw rod 103.
  • the first screw rod 103 is connected to the second output shaft 110 of the injection motor 100 through a gear connection, a planetary gear connection, etc., and the first screw rod 103 rotates as the second output shaft 110 rotates.
  • the first screw rod 103 can be threadedly connected to the nut seat 102, and the nut seat 102 moves axially along the thread on the first screw rod 103.
  • the extension direction of the first push rod 104 is the same as the extension direction of the first screw rod 103, and the first end 1041 is connected to the nut seat 102, so that the first push rod 104 is driven by the nut seat 102 to perform linear motion.
  • the second end 1042 of the first push rod 104 is used to connect the syringe to push the syringe for injection.
  • the first push rod 104 has two opposite ends.
  • the first end 1041 is fixedly connected to the nut seat 102 through screws and other structures, so that the first push rod 104 can move linearly synchronously with the nut seat 102;
  • the second end 1042 is To connect the syringe, the first push rod 104 pushes the syringe for injection, and the first push rod 104 can complete operations such as forward push, retreat, and pause under the operation of the staff.
  • the operator can choose to turn on and off the injection and mixing functions.
  • the injection motor 100 moves alone, that is, only the second output shaft 110 rotates
  • the first push rod 104 produces linear motion, and only injection is realized.
  • the rotating motor 106 moves alone, that is, only the first output shaft 1061 rotates
  • the first push rod 104 produces a rotating motion, and only the mixing function is realized
  • the rotating motor 106 and the injection motor 100 move at the same time, that is, the second
  • the output shaft 110 rotates and the first output shaft 1061 rotates at the same time, and the first push rod 104 produces linear motion and rotational motion at the same time, thereby achieving the effect of mixing while injecting.
  • the injection device 1000 of the present application includes a rotating motor 106, an injection motor 100, a first screw rod 103, a nut seat 102 and a first push rod 104.
  • the injection motor 100 can drive the first push rod.
  • 104 performs linear motion
  • the first push rod 104 is connected to the syringe
  • the push motor 100 can make the syringe complete the injection
  • the rotating motor 106 can drive the first push rod 104 to rotate, thereby mixing the injection material in the syringe. Therefore, the push rod of the present application
  • the injector 1000 can complete injection and mixing of injected materials at the same time, eliminating the need to perform injection and mixing operations separately, improving injection efficiency and ensuring the uniformity of injected materials.
  • the rotating motor 106, the injection motor 100, and the first push rod 104 are arranged in sequence along a straight line.
  • the rotating motor 106 transmits rotational kinetic energy through the first output shaft 1061 through the power shaft 120 of the injection motor 100 to
  • the first push rod 104 and the injection motor 100 drive the first push rod 104 to move linearly.
  • the rotation motor 106, the injection motor 100 and the first push rod 104 are arranged sequentially along the linear direction to reduce transmission losses and improve transmission efficiency.
  • the rotating motor 106, the injection motor 100, and the first push rod 104 may not be arranged along a straight line, but may have a certain angle difference.
  • the syringe 1000 further includes a first force sensor 105 disposed on the second end of the first push rod 104 for collecting the first pressure value in the syringe.
  • the first force sensor 105 includes but is not limited to a pressure force sensor and a strain force sensor.
  • the first force sensor 105 can be disposed on the second end 1042 of the first push rod 104 through bonding or other methods.
  • the sensor 105 can measure the first pressure value in the syringe, provide pressure information to the staff, and avoid errors caused by excessive injection pressure.
  • the injector 1000 further includes a first gear 1011 and a second gear 1012.
  • the first gear 1011 is sleeved on the periphery of the second output shaft 110; the second gear 1012 is sleeved on the first lead screw 103.
  • the second gear 1012 meshes with the first gear 1011 to realize the connection between the first screw rod 103 and the second output shaft 110 .
  • the power of the second output shaft 110 is transmitted to the first screw rod 103, so that the first screw rod 103 rotates with the rotation of the first output shaft 1061.
  • a chain drive, a crank connecting rod, and other structures may be selected to realize the connection between the first screw rod 103 and the second output shaft 110 .
  • the injector 1000 further includes a coupling 108, a harmonic reducer 107 and a bearing 109.
  • the coupling 108 connects the first output shaft 1061 and the injector motor 100; the harmonic reducer 107 connects the coupling.
  • the device 108 and the first output shaft 1061; the bearing 109 connects the coupling 108 and the injection motor 100.
  • the coupling 108 is generally installed at the connection point of the two shafts.
  • the coupling 108 connects the first output shaft 1061 and the power shaft 120 of the injection motor 100 so that the two shafts can effectively It is connected to the ground and transmits power at the same time, and can play a buffering and shock-absorbing role for the rotating motor 106.
  • the harmonic reducer 107 is a reduction device that can adjust the transmission speed ratio of the rotating electrical machine 106 and has the characteristics of high precision and compact structure. In other embodiments, it can also be a planetary reducer. Bearing 109 is used to fix and support bolus motor 100.
  • the injection device 1000 further includes a first encoder (not shown) and a first position sensor (not shown).
  • the first encoder is provided on the injection motor 100 and is used to collect data from the injection motor. 100 rotation signal to determine the linear motion distance of the nut seat 102; the first position sensor is provided on the nut seat 102 for collecting the linear motion distance of the nut seat 102.
  • the first encoder collects the rotation signal of the injection motor 100, and combined with the transmission speed ratio between the injection motor 100 and the first screw rod 103, the linear motion distance of the nut seat 102 can be calculated.
  • the first position sensor can be a sensor such as a grating or a magnetic grating, or it can be a sliding rheostat, and can calculate the linear movement distance of the nut seat 102.
  • the injection system 3000 includes a remote system 300 and a slave system 400.
  • the remote system 300 includes a host controller 310 and a remote control device 200 and a host communication circuit 320 that are electrically connected to the host controller 310.
  • the remote control device 200 generates electrical signals under the operation of the operator.
  • the electrical signals generated by the remote control device 200 include pressure signals, displacement signals, etc.
  • the slave system 400 includes a slave controller 410 and the injector 1000 and slave communication circuit 420 connected to the slave controller 410 as in any of the above embodiments.
  • the slave communication circuit 420 communicates with the host.
  • Circuit 320 is electrically connected.
  • the host controller 310 After receiving the electrical signal generated by the remote control device 200, the host controller 310 sends the electrical signal to the slave system 400 through the host communication circuit 320.
  • the slave controller 410 in the slave system 400 communicates through the slave system.
  • the circuit 420 controls the operation of the injector 1000 according to the electrical signal.
  • the remote system 300 can be placed outside the operating room, and the slave system 400 can be placed inside the operating room.
  • the remote system 300 and the slave system 400 complete signal transmission with the host communication circuit 320 through the slave communication circuit 420.
  • the slave communication circuit 420 and the host communication circuit 320 may be wired communication or wireless communication.
  • the host controller 310 and the slave controller 410 may perform functions such as logic control, data calculation, communication processing, and human-computer interaction.
  • the injection system 3000 of the present application includes a remote system 300 and a slave system 400.
  • the remote control device 200 generates electrical signals such as pressure and displacement under the operation of the operator, and sends them to the slave machine through the host communication circuit 320.
  • System 400 after the slave controller 410 in the slave system 400 receives the electrical signal through the slave communication circuit 420, it controls the operation of the injector 1000 according to the electrical signal, so that the operator can operate outside the operating room and the operator can The operation intention is transmitted to the injector 1000 of the slave machine.
  • the electrical signal generated by the remote control device 200 carries the operator's hand displacement information; in response to determining based on the electrical signal that the operator's hand displacement change rate does not exceed the first threshold, the host controller 310 will The electrical signal is sent to the slave system 400, otherwise the electrical signal is ignored.
  • the electrical signal generated by the remote control device 200 carries information about the pressure applied by the operator on the remote control device 200; in response to determining based on the electrical signal that the change rate of the pressure applied by the operator on the remote control device 200 does not exceed the second threshold, the slave controller 410 sends the electrical signal to the slave system 400, otherwise the electrical signal is ignored.
  • the hand displacement change rate and the pressure information exerted by the operator on the remote control device 200 can reflect whether the operator has problems such as hand shaking.
  • the host ignores the electrical signal, that is, the host controller 310 filters out the hand movement change rate and the pressure information exerted by the operator on the remote control device 200 and does not send it to the slave system 400, so that the slave controller 410 does not operate, which can effectively filter out the operator's hand Shake to make the injected material more even.
  • the electrical signal generated by the remote control device 200 carries the first displacement of the operator's hand; after receiving the electrical signal, the slave controller 410 generates the second displacement according to the preset displacement ratio, and then The operation of the injector 1000 is controlled so that the displacement of the first push rod 104 is the second displacement, where the ratio of the second displacement to the first displacement is the displacement ratio.
  • the displacement ratio is explained from the following examples. If the displacement ratio is equal to 1, the first displacement is 10mm, and the injector 1000 produces the same second displacement of 10mm; if the displacement ratio is equal to 2, the first displacement is 10mm, and the second displacement is 5mm; if the displacement ratio is equal to 0.5, the first displacement is 10mm, and the second displacement is 20mm. Staff can modify the displacement ratio at any time according to the application scenario to meet various work requirements. This application does not limit the displacement ratio.
  • the syringe 1000 further includes a first force sensor 105 disposed on the second end of the first push rod 104 for collecting a first pressure value in the syringe, wherein, from After receiving the first pressure value, the machine controller 410 sends the first pressure value to the remote system through the slave communication circuit 420 .
  • the first force sensor 105 includes but is not limited to a pressure force sensor and a strain force sensor.
  • the first force sensor 105 can measure the first pressure value in the syringe and provide pressure information to the staff.
  • the host controller 310 receives the first pressure value through the host communication circuit 320, if it is determined that the difference between the first pressure value and the pushing force is greater than the difference threshold, the screw motor 2 is driven to rotate, and finally the guide part 11 Perform linear motion.
  • the slave controller 410 when the slave controller 410 detects that the rotation rate of the rotating motor 106 reaches the first rate threshold, it drives the rotating motor 106 to reduce the rotation rate;
  • the host controller 310 detects that the rotation speed of the screw motor 2 reaches the second speed threshold, it drives the screw motor 2 to reduce the rotation speed.
  • encoders may be provided on the rotating motor 106 and the screw motor 2 respectively for collecting the rotation rates of the rotating motor 106 and the screw motor 2 .
  • the slave controller 410 drives the rotating motor 106 to reduce the rotation rate; or, when the rotation rate of the screw motor 2 reaches the second speed threshold, the host controller drives the screw motor 2 Reduce the rotation rate; or, the rotation rate of the rotating motor 106 reaches the first speed threshold and the rotation rate of the screw motor 2 reaches the second speed threshold, the slave controller 410 drives the rotating motor 106 to reduce the rotation rate, and the host controller drives the screw motor 2 to reduce the rotation rate.
  • Lever motor 2 reduces the rotation rate.
  • the injection system 3000 also includes: the host power cord 111 provides a network power connection for the remote system 300, the host power adapter 222 converts the network power into direct current to provide power for various parts of the remote system 300, and the slave power cord 55 is a slave power cord.
  • the machine system 400 provides a network power connection.
  • the slave cart 1120 includes a power box, a cart base, casters and a column, which can connect to the network power supply, realize power management and move the position of the injector 1000.
  • the injector 1000 uses an extension arm 1100 For fixation, the extension arm 1100 is fixed on the slave cart 1120.
  • the extension arm 1100 can hover at any position to fix the injection cable connected to the injector 1000 and adjust the injection position.

Landscapes

  • Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

本申请涉及医疗器械技术领域,提供了一种远程控制装置、远程系统、推注器、从机系统及注射系统。远程控制装置包括安装座、活动件、位置传感器、力反馈组件以及主机控制器。活动件活动设置于安装座,能够相对安装座沿第一方向移动;位置传感器用于检测活动件相对安装座的位置信息;力反馈组件用于对活动件产生与第一方向相反的、大小可调节的反馈阻力,以阻碍活动件沿第一方向移动。由此,远程控制装置可以实时反馈推注器注射时的注射阻力,使得操作人员能够精准控制注射压力。

Description

远程控制装置、远程系统、推注器、从机系统及注射系统 【技术领域】
本申请涉及医疗器械技术领域,特别是涉及一种远程控制装置、远程系统、推注器、从机系统及注射系统。
【背景技术】
在介入栓塞治疗中,为保证栓塞材料仅向目标区域弥散,防止出现异位栓塞带来的精神系统并发症,液体栓塞材料的注射必须全程在X线监视下进行。
现有的用于推注器的远程控制装置包括控制台和执行结构,控制台与执行结构连接并远程控制执行结构进行注射。操作人员在控制台处通过控制速度控制摇杆和压力控制摇杆,控制执行结构中推注器的注射速度和注射压力。现有远程控制装置虽可以远程控制注射压力,但是不能精确反馈推注器注射时的注射阻力。
【发明内容】
有鉴于此,本申请主要解决的技术问题是提供一种远程控制装置及注射系统,可实时反馈推注器注射时的注射阻力。
为解决上述技术问题,本申请第一方面提供一种远程控制装置,包括安装座、活动件、位置传感器、力反馈组件以及主机控制器。活动件活动设置于安装座,能够相对安装座沿第一方向移动;位置传感器用于检测活动件相对安装座的位置信息;力反馈组件用于对活动件产生与第一方向相反的、大小可调节的反馈阻力,以阻碍活动件沿第一方向移动。
在本申请的一些实施例中,远程控制装置包括至少两个抵触部。两个抵触部分别凸设于安装座的相对两侧,分别用于供操作人员的食指、中指沿第一方向的反向推抵;其中,活动件用于供操作人员的拇指沿第一方向推抵,以在操作人员的驱动下沿第一方向相对安装座移动。
在本申请的一些实施例中,安装座具有沿第一方向延伸的空腔,活动件的一部分插设于空腔内并与安装座沿第一方向滑动配合,活动件位于安装座以外的部分用于供操作人员的拇指沿第一方向推抵;其中,两个抵触部分别位于空腔径向的相对两侧。
在本申请的一些实施例中,活动件包括导向部和推抵部。导向部沿第一方向延伸,一端插设于空腔内并与安装座沿第一方向滑动配合;推抵部位于导向部的另一端,且位于空腔外,用于供操作人员的拇指沿第一方向推抵。
在本申请的一些实施例中,力反馈组件设置于安装座。
在本申请的一些实施例中,力反馈组件具有沿第一方向浮动设置的移动端,移动端能够对活动件产生反馈阻力。
在本申请的一些实施例中,远程控制装置包括弹性件。弹性件在第一方向具有弹性,力反馈组件的移动端和活动件之间通过弹性件传递作用力。
在本申请的一些实施例中,弹性件沿第一方向的两端分别弹性抵顶/连接力反馈组件的移动端和活动件。
在本申请的一些实施例中,力反馈组件包括丝杠电机。丝杠电机的丝杠沿第一方向延伸;其中,主机控制器与丝杠电机控制连接,丝杠能够对活动件产生反馈阻力。
在本申请的一些实施例中,力反馈组件包括端头。端头设置于丝杠的一端,形成移动端;其中,丝杠通过端头施加反馈阻力。
在本申请的一些实施例中,安装座具有沿第一方向延伸的空腔,空腔的至少部分延伸路段为等截面,端头嵌设于空腔的等截面路段中,与安装座滑动配合。
在本申请的一些实施例中,空腔的等截面路段的横截面为矩形。
在本申请的一些实施例中,安装座具有沿第一方向贯穿的空腔,弹性件容置于空腔中,力反馈组件的一部分自空腔的一端插入空腔,以使得力反馈组件的移动端位于空腔中,活动件的一部分自空腔另一端插入空腔。
在本申请的一些实施例中,反馈阻力的大小等于注射阻力的大小。
在本申请的一些实施例中,位置传感器为拉杆式位移传感器,拉杆式位移传感器具有主体和拉杆,拉杆能够相对主体沿所述第一方向或所述第一方向反向移动;其中,活动件沿第一方向移动时,能够带动拉杆同步地沿第一方向移动。
在本申请的一些实施例中,远程控制装置包括压力传感器。压力传感器用于检测活动件受到的操作人员施加的沿第一方向的推抵力,并将检测结果发送至推注器。
在本申请的一些实施例中,活动件包括主体部和推抵部。主体部活动设置于安装座,能够相对安装座沿第一方向移动;推抵部沿第一方向可浮动地设置于主体部;其中,压力传感器沿第一方向夹设于主体部和推抵部之间,用于检测推抵部受到的操作人员施加的沿第一方向的推抵力。
在本申请的一些实施例中,远程控制装置包括外壳。其中,外壳套设于安装座外,两个抵触部位于外壳外,且与安装座沿第一方向间隔设置,活动件位于外壳外。
在本申请的一些实施例中,远程控制装置包括防护罩,防护罩为沿所述第一方向延伸的筒体,且能够沿第一方向变形;其中,位置传感器为拉杆式位移传感器,拉杆式位移传感器具有主体和拉杆,拉杆能够相对主体沿第一方向或第一方向反向移动,主体设置于外壳内,拉杆贯穿外壳的侧壁,并与活动件连接,防护罩套设于拉杆外,一端连接外壳,另一端连接活动件。
本申请实施例第二方面提供一种远程系统,包括上述任一项的远程控制装置和主机控制器,主机控制器分别与位置传感器以及力反馈组件控制连接,用于依据活动件的位置信息控制推注器进行注射作业,以及依据注射阻力控制力反馈组件产生与注射阻力大小相匹配的反馈阻力。
本申请实施例第三方面提供一种推注器,包括:旋转电机;推注电机,与旋转电机的第一输出轴连接,以随着第一输出轴的旋转而旋转;第一丝杆,延伸方向与推注电机的第二输出轴的延伸方向相同,且与第二输出轴连接,以随着第二输出轴的旋转而旋转;螺母座,套设在第一丝杆的外围,当第一丝杆旋转时,螺母座沿着第一丝杆进行直线运动;第一推杆,延伸方向与第一丝杆的延伸方向相同,且第一端与螺母座连接,以使第一推杆在螺母座的带动下进行直线运动,其中,第一推杆的第二端用于连接注射器,以推动注射器进行注射;其中,推注器与如上述任一项的远程控制装置通信连接,在活动件相对安装座沿第一方向产生位移后,第一推杆根据位移推动注射器注射。
本申请实施例第四方面提供一种从机系统,包括:如上述任一项的推注器和从机控制器,从机控制器与推注器电连接。
本申请实施例第五方面提供一种注射系统,包括:远程系统,包括主机控制器以及与主机控制器电连接的远程控制装置、主机通信电路,其中,远程控制装置在操作人员的操作下产生电信号;从机系统,包括从机控制器以及与从机控制器连接的且如上述任一项的推注器、从机通信电路,从机通信电路与主机通信电路电连接;其中,主机控制器在接收到远程控制装置产生的电信号后,将电信号通过主机通信电路发送给从机系统,从机系统中的从机控制器在通过从机通信电路接收到电信号后,根据电信号控制推注器工作。
本申请的有益效果是:区别于现有技术,本申请中的远程控制装置,包括安装座、活动件、位置传感器、力反馈组件以及主机控制器。活动件活动设置于安装座,能够相对安装座沿第一方向移动;位置传感器用于检测活动件相对安装座的位置信息;力反馈组件用于对活动件产生与第一方向相反的、大小可调节的反馈阻力,以阻碍活动件沿第一方向移动。由此, 远程控制装置可以实时反馈推注器注射时的注射阻力,使得操作人员能够精准控制注射压力。
【附图说明】
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1是本申请注射系统一实施例的结构示意图;
图2是本申请远程控制装置一实施例的三维结构示意图;
图3是图2所示远程控制装置中安装座的第一角度的三维结构示意图;
图4是图2所示远程控制装置中安装座的第二角度的三维结构示意图;
图5是图2的剖视图;
图6是图5中局部视图A的放大图;
图7是图5中右端的放大图;
图8是本申请远程控制装置一实施例中活动件中壳体的三维结构示意图;
图9是本申请远程控制装置一实施例的三维结构示意图;
图10是本申请远程控制装置另一实施例的结构示意图;
图11是本申请推注器一实施方式的结构示意图;
图12是本申请注射系统另一实施方式的结构示意图;
图13是本申请注射系统另一实施方式的结构示意图。
【具体实施方式】
为使本申请的上述目的、特征和优点能够更为明显易懂,下面结合附图,对本申请的具体实施方式做详细的说明。可以理解的是,此处所描述的具体实施例仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
以脑血管畸形为代表的头面部血管畸形或富血管肿瘤性疾病是临床常见的富血运病变疾病,介入栓塞治疗是其最重要的治疗手段。这种治疗方式需要医务人员在X射线引导下,通过各种导管,将栓塞材料输送到病变部位完成病变血管堵塞。介入栓塞使用的材料包括固体栓塞材料和液体栓塞材料,其中非黏附性液体栓塞材料具有很好的弥散性,可以被均一地注射并充盈目标血管,降低血管再通的可能性,获得永久性栓塞。对于脑血管畸形,非黏附性液体栓塞材料可以完全充满畸形团和引流静脉,到达真正栓塞病灶,治愈病变的目的。近二十年来,随着栓塞材料、神经介入技术以及神经影像学的不断进步,这一治疗方法更是得到了极大的发展。在脑血管畸形方面,介入栓塞治疗已经成为硬脑膜动静脉瘘的首选治疗方法,而对于脑动静脉畸形,随着非粘附栓塞材料的推广应用,介入栓塞治疗从以往作为手术切除和放射治疗的术前辅助手段,逐渐成为确定性的治愈性治疗方法,对于选择性病例,单纯栓塞的治愈率可以到达96%以上,目前大部分低级别以及部分高级别的脑动静脉畸形患者可以单纯通过介入栓塞获得治愈。因此,采用非黏附性液体栓塞材料栓塞已经成为头面部富血运病变的最主要治疗手段。
为了保证栓塞材料仅向目标区域弥散,防止出现异位栓塞带来的神经系统并发症,液体栓塞材料的注射必须全程在X线监视下进行。现阶段,由于设备的限制,术者和助手必须全程在导管室暴露在X线下进行注射,即在注射同时,进行X线透视,通过观察屏幕上显示的栓塞材料走向,并通过眼手配合,控制是否继续注射以及注射的速度和方式。超剂量的X线辐射会导致从业人员出现晶状体、腺体和血液系统发生病理改变,严重影响从业人员的健康。 虽然行业协会、医疗机构和介入医生对于辐射损耗越来越重视,也更加重视对于辐射防护的投入,但是,由于缺乏有效的替代设备,无法使术者脱离长时间X线暴露的环境,辐射安全达标率仍然很低。
注射栓塞材料要求术者使用缓慢稳定的注射速率,速率过快会导致血管痉挛或脉管坏死。传统注射方式中,术者只能通过拇指压力推注栓塞材料,这种方式无法精确控制注射速率,容易出现注射速率过快的问题,影响治疗效果。
推注栓塞材料的过程中,如果发现阻力增加应该立即停止注射,不能通过增加注射压力来疏通微导管,盲目增加注射压力会导致微导管破裂或栓塞非目标区域。
现有的用于推注器的远程控制装置包括控制台和执行结构,控制台与执行结构连接并远程控制执行结构进行注射。操作人员在控制台处通过控制速度控制摇杆和压力控制摇杆,控制执行结构中推注器的注射速度和注射压力。现有远程控制装置虽可以远程控制注射压力,但是不能精确反馈推注器注射时的注射阻力。
为使得远程控制装置可以实时反馈推注器注射时的注射阻力,使得操作人员能够精准控制注射压力,本申请提供了一种注射系统。
请参阅图1和图11,图中虚线表示控制连接。
推注器1000用于注射目标液体。第一力传感器105用于检测推注器1000注射过程中的注射阻力。在一实施例中,第一力传感器105为压力传感器。在一实施例中,第一力传感器105作为推注器1000的一个部件,也即推注器1000自身能够检测注射过程中的注射阻力。在其他实施例中,第一力传感器105可以独立于推注器1000设置,此时远程控制装置200分别与推注器1000和第一力传感器105控制连接。
操作人员通过远程控制装置200控制推注器1000进行注射作业。其中,远程控制装置200能够产生与注射阻力大小相匹配的反馈阻力,使得操作人员能够精准控制推注器1000动作。
在一应用场景中,注射系统应用于介入栓塞治疗。推注器1000设置在隔离室4000内,操作人员和远程控制装置200位于隔离室4000外。隔离室4000能够屏蔽辐射。操作人员操作远程控制装置200控制推注器1000向患者体内注射栓塞材料。注射系统能够避免手术治疗时操作人员长期暴露在放射性辐射的环境内,保护了操作人员的安全。远程控制装置200可以实时反馈推注器1000注射时的注射阻力,使得操作人员能够精准控制注射压力。
下面详细介绍远程控制装置。
请参阅图2和图12,图2是本申请远程控制装置一实施例的三维结构示意图。
远程控制装置包括安装座4、活动件30、位置传感器3、力反馈组件40以及主机控制器310。
活动件30活动设置于安装座4,能够相对安装座4沿第一方向D1移动。
位置传感器3用于检测活动件30相对安装座4的位置信息。
力反馈组件40用于对活动件30产生与第一方向D1相反的、大小可调节的反馈阻力,以阻碍活动件30沿第一方向D1移动。
主机控制器310分别与推注器1000、第一力传感器105、位置传感器3以及力反馈组件40控制连接。具体地,主机控制器310可以为计算机,主机控制器310与位置传感器3、力反馈组件40之间的连接方式包括有线连接或无线连接。
主机控制器310用于依据活动件30的位置信息控制推注器1000进行注射作业,以及依据注射阻力控制力反馈组件40产生与注射阻力大小相匹配的反馈阻力。
具体地,操作人员挤压活动件30(产生注射压力),位置传感器3将活动件30的位置信息发送给主机控制器310,主机控制器310控制推注器1000做等同位移的注药工作,推注器1000将向患者体内注药时产生的注射阻力反馈给主机控制器310,主机控制器310依据注射阻力控制力反馈组件40产生与注射阻力大小相匹配的反馈阻力。由此,远程控制装置可以实时反馈推注器1000注射时的注射阻力,使得操作人员能够精准控制注射压力。
请一并参阅图3和图4,图3和图4分别是图2所示远程控制装置中安装座4的第一角度、第二角度的三维结构示意图。
在一实施例中,远程控制装置至少包括两个抵触部401(图3中抵触部401的数量为两个)。
两个抵触部401分别凸设于安装座4的相对两侧,分别用于供操作人员的食指、中指沿第一方向D1的反向推抵。具体地,两个抵触部401分设置在安装座4上靠近活动件30的一侧。
其中,活动件30用于供操作人员的拇指沿第一方向D1推抵,以在操作人员的驱动下沿第一方向D1相对安装座4移动。
操作人员可以单手操作,像操作常规注射器一样,食指和中指把住安装座4的两个抵触部401,拇指挤压活动件30,使得活动件30沿第一方向D1移动。
请一并参阅图5和图6,图5是图2的剖视图,图6是图5中局部视图A的放大图。
在一实施例中,安装座4具有沿第一方向D1延伸的空腔403。活动件30的一部分插设于空腔403内并与安装座4沿第一方向D1滑动配合,活动件30位于安装座4以外的部分用于供操作人员的拇指沿第一方向D1推抵。其中,两个抵触部401分别位于空腔403径向的相对两侧。安装座4与两个抵触部401大体上形成针筒形状,由此,使得远程控制装置更进一步地类似常规注射器。
在一实施例中,活动件30包括导向部11和推抵部14。
导向部11沿第一方向D1延伸,一端插设于空腔403内并与安装座4沿第一方向D1滑动配合。具体地,安装座4的空腔403内设置有导套60。导套60通过安装在键槽402内的平键20实现周向固定,导套60通过挡圈10进行轴向固定。导向部11为导向杆,导向杆套设于导套60内。导向部11和导套60可采用市售产品。
推抵部14位于导向部11的另一端,且位于空腔外,用于供操作人员的拇指沿第一方向D1推抵。操作人员的拇指挤压推抵部14,使导向部11沿第一方向D1移动。
请参阅图5,在一实施例中,力反馈组件40设置于安装座4。如此,远程控制装置结构紧凑。
请参阅图5,在一实施例中,力反馈组件40具有沿第一方向D1浮动设置的移动端,移动端能够对活动件30产生反馈阻力。力反馈组件40的移动端能够沿第一方向D1和第一方向D1的反向移动。
具体地,在图5中,操作人员对活动件30产生向左的推抵力,力反馈组件40的移动端(端头5)对活动件30产生向右的反馈阻力。推抵力大于反馈阻力,使得活动件30向左移动(沿第一方向D1移动),从而控制推注器1000进行注射作业。
在一些情况下,力反馈组件40产生反馈阻力具有一定的滞后,为解决该问题,在一实施例中,远程控制装置包括弹性件6。
弹性件6在第一方向D1具有弹性,力反馈组件40的移动端和活动件30之间通过弹性件6传递作用力。具体地,弹性件6可以是压缩弹簧。通过设置弹性件6,使得反馈阻力与弹力的合力实时与大拇指挤压力达到平衡。
弹性件6的具体设置方式如下:在一实施例中,弹性件6沿第一方向D1的两端分别弹性抵顶/连接力反馈组件40的移动端和活动件30。即在工作状态下,弹性件6处于被压缩状态,或者,处于被拉伸状态。在图示实施例中,弹性件6沿第一方向D1的两端分别弹性抵顶力反馈组件40的移动端和活动件30。
在一实施例中,力反馈组件40包括丝杠电机2。丝杠电机2可选地为市售产品。丝杠电机又称电动丝杆、电动推杆、推杆电机、电动缸及线性致动器。丝杠电机是一种将电动机的旋转运动转变为推杆的直线往复运动的电力驱动装置。
丝杠电机2的丝杠1沿第一方向D1延伸。
其中,主机控制器310与丝杠电机2控制连接,丝杠1能够对活动件30产生反馈阻力。
具体地,主机控制器310接收到推注器1000向患者体内注药时的注射阻力后,控制丝杠电机2实时调节扭矩,扭矩通过丝杠1转换成电机推力。
在一实施例中,力反馈组件40包括端头5。端头5设置于丝杠1的一端,形成上述的移动端。其中,丝杠1通过端头5施加反馈阻力。
请一并参阅图4,为确保力反馈组件40的移动端的移动稳定性,在一实施例中,安装座4具有沿第一方向D1延伸的空腔403,空腔403的至少部分延伸路段为等截面,端头5嵌设于空腔403的等截面路段中,与安装座4滑动配合。在图示实施例中,空腔403在图5中的左右两端横截面不同,其中,从左端起的一端距离均为等截面。
端头5与安装座4沿第一方向D1滑动配合,确保端头5稳定移动。
在一实施例中,空腔403的等截面路段的横截面为矩形。由此,限定了端头5仅具有第一方向D1或第一方向D1的反向的自由度,即端头5不会以第一方向D1为轴线转动。
在一实施例中,安装座4和端头5均采用工程塑料材质。工程塑料一方面质量轻、强度高,另一方面摩擦系数小,降低了端头5相对安装座4移动时的阻力。
在一实施例中,安装座4具有沿第一方向D1贯穿的空腔403,弹性件6容置于空腔403中,力反馈组件40的一部分自空腔的一端插入空腔403,以使得力反馈组件40的移动端位于空腔403中,活动件30的一部分自空腔403另一端插入空腔403。具体地,力反馈组件40的移动端与活动件30的移动端分别从安装座4空腔的相对两端插入,在空腔内移动。由此,提高了远程控制装置的集成度,减小了体积。
本申请中,力反馈组件40的反馈阻力与注射阻力大小相匹配。反馈阻力能够反应注射阻力的变化。在一应用场景中,注射过程中,反馈阻力明显变大,可提醒操作人员存在异常,应停止注射。
力反馈组件40的反馈阻力与注射阻力大小的比例可依据需求设定。在一实施例中,反馈组件的反馈阻力的大小等于推注器1000的注射阻力的大小。在其它实施例中,反馈组件的反馈阻力的大小也可以大于或小于推注器1000的注射阻力的大小。
请参阅图2和图4,在一实施例中,位置传感器3为拉杆式位移传感器。拉杆式位移传感器可选地为市售产品。拉杆式位移传感器具有主体和拉杆。主体设置于安装座4。拉杆能够相对主体沿第一方向D1或第一方向D1的反向移动。其中,活动件30沿第一方向D1移动时,能够带动拉杆同步地沿第一方向D1移动。
具体地,图示实施例中,安装座4外表面设有第一定位面404和第二定位面405,通过第一定位面404与第二定位面405固定拉杆式位移传感器的位置。拉杆式位移传感器的拉杆与活动件30连接,操作人员挤压活动件30,活动件30带动拉杆移动,使拉杆式位移传感器采集到活动件30的位移信号。
请参阅图5,在一实施例中,远程控制装置包括压力传感器17。
压力传感器17用于检测活动件30受到的操作人员施加的沿第一方向D1的推抵力,并将检测结果发送至推注器1000。推注器1000依据压力传感器17检测到的推抵力,产生相匹配的注射压力。
请一并参阅图7和图8,图7是图2中右端的放大图,图8是本申请远程控制装置一实施例中活动件30中壳体18的三维结构示意图。
在一实施例中,活动件30包括主体部50和推抵部14。
主体部50活动设置于安装座4,能够相对安装座4沿第一方向D1移动。
推抵部14沿第一方向D1可浮动地设置于主体部50。
其中,压力传感器17沿第一方向D1夹设于主体部50和推抵部14之间,用于检测推抵部14受到的操作人员施加的沿第一方向D1的推抵力。
具体地,图示实施例中,主体部50包括导向部11、延长杆12、轴用挡圈13、外盖15、力传感器过渡环16、壳体18以及紧固件19。
导向部11沿第一方向D1延伸,导向部11的左端插设于安装座4内。壳体18通过紧固件19可拆卸地设置于导向部11的右端。紧固件19可以是螺钉。壳体18设有第一凹槽180和第二凹槽181。延长杆12平行于导向部11,并与导向部11间隔设置。延长杆12的左端与位置传感器3连接,右端通过轴用挡圈13与壳体18连接。延长杆12为中空结构,并与第二凹槽181连通。压力传感器17放置在第一凹槽180内,压力传感器17的线缆可以通过第二凹槽181、延长杆12的空腔引出,以防止线缆外露。力传感器过渡环16设置于第一凹槽180内,为环状,推抵部14穿过力传感器过渡环16的中央区域接触压力传感器17。外盖15封盖于壳体18的第一凹槽180和第二凹槽181。推抵部14的一部分凸设于外盖15外,以供操作人员推抵。
请参阅图9,图9是本申请远程控制装置一实施例的三维结构示意图。
在一实施例中,远程控制装置包括外壳7,防水防尘,提高远程控制装置的使用寿命。
外壳7套设于安装座4外。外壳7可用来防护远程控制装置中的其它部件。两个抵触部401位于外壳7外,且与安装座4沿第一方向D1间隔设置。抵触部401与外壳7之间的间隙用来容置操作人员的食指和中指。活动件30位于外壳7外。
具体地,安装座4大体上为沿第一方向D1延伸的长条状。力反馈组件40设置于安装座4的左端,抵触部401设置于安装座4的右端,活动件30设置于安装座4的右端。外壳7套设于安装座4、力反馈组件40外,安装座4的右端露出于外壳7。
在一实施例中,远程控制装置还包括防护罩9。防护罩9为沿第一方向D1延伸的筒体,且能够沿第一方向变形。防护罩9可以为波纹管。
其中,位置传感器3为拉杆式位移传感器,拉杆式位移传感器具有主体和拉杆,拉杆能够相对主体沿第一方向D1或第一方向D1的反向移动,主体设置于外壳7内,拉杆贯穿外壳7的侧壁,并与活动件30连接。防护罩9套设于拉杆外,一端连接外壳7,另一端连接活动件30。
请参阅图5,远程控制装置一实施例的具体装配流程:
第一步,首先通过平键20和挡圈10把导向部11与安装座4相连,再把导向部11右端通过紧固件19与壳体18连接。然后将位移传感器3和延长杆12相连接,位移传感器3定位安装于安装座4上表面,把防护罩9套入延长杆12再与壳体18相连接。紧接着把压力传感器17嵌装于壳体18的第一凹槽180内,逐一把力传感器过渡环16、推抵部14装入第一凹槽180内,将压盖15安装于壳体18右侧表面。
第二步,把丝杠电机2相关零件进行装配。把弹性件6与端头5相连接,再把端头5连接在丝杠1的右端。
第三步,把组装好的零部件与丝杠电机2部件相连,最后装上外壳7。由于零件较少,每部分相互独立而不干涉,拆装时比较方便。
远程控制装置的运作原理:工作时,操作人员就像操作常规注射器一样,通过食指和中指把住两个抵触部401,大拇指挤压活动件30中的推抵部14并向左推动,此时安装座4上面的位移传感器3会把位置信息实时反馈到推注器1000,推注器1000做相等位移注药工作。注药时有阻力,这个阻力值会实时反馈到远程控制装置,此时操作人员通过调节大拇指挤压力,达到所需的推力值。
远程控制装置的有益效果:
远程控制装置的前端外露部分与常规注射器很相似,操作人员可以像操作常规注射器一样操作远程控制装置,更好地符合人机工程特性,满足操作人员的操作便利性。
丝杠1、端头5、弹性件6、平键20、挡圈10、导向部11等零件均装在安装座4内,推抵部14、力传感器过渡环16、压力传感器17等零件均装在壳体18内部,集成度高。另外,还设有外壳7和防护罩9,可以达到防水防尘的作用,提高了远程控制装置的寿命。
安装座4的空腔403一端为横截面为四边形的通孔,端头5也是四边形轮廓,能实现端头5和安装座4的导向定位。
壳体18和安装座4均采用的是工程塑料材质,质量轻且强度相对高,由于工程塑料摩擦系数很小,在推动时摩擦力很小,质量轻、阻力小的特点利于人手操作的便利性和舒适性。
参阅图10,在另一实施例中远程控制装置中的安装座4包括直线导轨206,活动件30包括第二推杆207,位置传感器3包括位置尺条205和位置传感器读头204,力反馈组件40包括力控电机210、第二丝杆202、丝杆螺母203。
具体地,第二推杆207滑动设置在直线导轨206上;位置尺条205固定在直线导轨206上;位置传感器读头204固定在第二推杆207上;其中,当第二推杆207在用户的操作下在直线导轨206上滑动时,位置传感器读头204读取位置尺条205上的信息,生成携带有第二推杆207位移的电信号。
具体地,位置传感器读头204通过粘接等方式固定在第二推杆207上,位置传感器读头204包括光栅读头、磁性读头等。以光栅读头为例,当第二推杆207在直线导轨206上滑动时,位置尺条205会形成莫尔条纹产生亮暗交替变换,光电信号转换成电脉冲信号,并在光栅读头上显示出来,此时可测量出第二推杆207位移的电信号,此电信号即用户手部的第一位移。
远程控制装置进一步包括力控电机210、第二丝杆202、丝杆螺母203和第二力传感器208,力控电机210与主机控制器310电连接。力控电机210是能输出力矩的电机,本申请对其类型不做限定。
其中,第二丝杆202延伸方向与力控电机210的第三输出轴(图未示)的延伸方向相同,且与第三输出轴连接,第二丝杆202可以通过联轴器与第三输出轴连接。
其中,丝杆螺母203套设在第二丝杆202的外围,且与第二推杆207的第一端连接,当第三输出轴旋转时,丝杆螺母203相对第三输出轴进行直线运动,进而带动第二推杆207进行直线运动。丝杆螺母203与第二推杆207的第一端可以通过螺丝固定连接,在第三输出轴旋转时,丝杆螺母203会沿着丝杆进行直线运动,并通过与第二推杆207的连接,带动第二推杆207进行直线运动。
其中,第二力传感器208设置在第二推杆207的第二端上,用于采集用户施加在第二推杆207上的第二压力值。
本发明的大部分零件是标准外购件,机加工零件少,由于外购件货期短,价格低廉,可靠性已经被厂家验证,可以大大缩短研发周期和生产周期,提高整体性价比和可靠性。
以上诸多陈述可知,本发明具有集成度高、操作性好、性价比高、拆装方便的特点。通过远程控制装置输出的位移和力的不同远程操作推注器1000的注射量和注射推力,同时推注器1000的注射量和注射推力又能实时的反馈到远程控制装置,从而提高了诊疗的准确性和工作效率,大大提高了医护人员的安全性,满足了高效率的推注器1000注射作业。
参阅图11,在一实施例中,推注器1000包括旋转电机106、推注电机100、第一丝杆103、螺母座102和第一推杆104,推注电机100与旋转电机106的第一输出轴1061连接,以随着第一输出轴1061的旋转而旋转。
具体地,推注电机100可以设置一根动力轴120通过联轴器108与旋转电机106的第一输出轴1061连接,第一推杆104也可以通过联轴器与推注电机100的动力轴120连接,从而旋转电机106旋转时,可以带动动力轴120和第一推杆104旋转,由于第一推杆104连接注射器,使得实现注射器中注射材料混匀的功能。其中,推注电机100是能够提供推进动力的电机,本申请对其类型不做限定。
在其他实施例中,推注器1000还包括传动齿轮101,传动齿轮101可以调节第一输出轴1061和动力轴120之间的传动速比和扭矩。
其中,第一丝杆103的延伸方向与推注电机100的第二输出轴110的延伸方向相同,且与第二输出轴110连接,以随着第二输出轴110的旋转而旋转;螺母座102套设在第一丝杆103的外围,当第一丝杆103旋转时,螺母座102沿着第一丝杆103进行直线运动。
其中,第一丝杆103与推注电机100的第二输出轴110连接,连接方式例如齿轮连接,行星轮连接等,第一丝杆103随着所述第二输出轴110的旋转而旋转。第一丝杆103可以与螺母座102螺纹连接,螺母座102沿着第一丝杆103上的螺纹轴向运动。
其中,第一推杆104的延伸方向与第一丝杆103的延伸方向相同,且第一端1041与螺母座102连接,以使第一推杆104在螺母座102的带动下进行直线运动,其中,第一推杆104的第二端1042用于连接注射器,以推动注射器进行注射。
其中,第一推杆104具有相对设置的两端,第一端1041通过螺丝等结构与螺母座102固定连接,以使第一推杆104能够与螺母座102同步直线运动;第二端1042用于连接注射器,第一推杆104推动注射器进行注射,并且第一推杆104在工作人员的操作下可以完成前推、后退、停顿等操作。
可以理解的是,操作人员可以选择注射和混匀功能的开启和关闭,例如当推注电机100单独运动时,即仅第二输出轴110旋转,第一推杆104产生直线运动,仅实现注射功能;当旋转电机106单独运动时,即仅第一输出轴1061旋转,第一推杆104产生旋转运动,仅实现混匀功能;当旋转电机106和推注电机100同时运动时,即第二输出轴110旋转和第一输出轴1061旋转同时旋转,第一推杆104同时产生直线运动和旋转运动,从而实现边注射边混匀的效果。
从上述内容可以看出,本申请的推注器1000包括旋转电机106、推注电机100、第一丝杆103、螺母座102和第一推杆104,推注电机100能够带动第一推杆104进行直线运动,第一推杆104和注射器连接,推注电机100能使注射器完成注射,旋转电机106能够带动第一推杆104旋转,从而使注射器中注射材料混匀,因此本申请的推注器1000能够同时完成注射和注射材料的混匀,无需分开进行注射和混匀两个操作,提高注射效率,确保注射材料的均匀性。
在一实施例中,旋转电机106、推注电机100、第一推杆104沿着直线方向依次排列,旋转电机106通过第一输出轴1061将旋转动能通过推注电机100的动力轴120传递给第一推杆104,推注电机100带动第一推杆104直线运动,旋转电机106、推注电机100、第一推杆104沿着直线方向依次排列可以减少传动损耗,提高传递效率。
在其他实施例中,旋转电机106、推注电机100、第一推杆104可以不沿着直线方向排列,而是有一定的角度差。
在一实施例中,推注器1000进一步包括第一力传感器105,第一力传感器105设置在第一推杆104的第二端上,用于采集注射器中的第一压力值。
具体地,第一力传感器105包括但不限于压力式力传感器和应变式力传感器,第一力传感器105可以通过粘结等方式设置在第一推杆104的第二端1042上,第一力传感器105能够测量注射器中的第一压力值,给工作人员提供压力信息,避免注射压力过高造成失误。
在一实施例中,推注器1000进一步包括第一齿轮1011和第二齿轮1012,第一齿轮1011套设在第二输出轴110的外围;第二齿轮1012套设在第一丝杆103第一端的外围,第二齿轮1012与第一齿轮1011啮合,以实现第一丝杆103与第二输出轴110的连接。
具体地,通过第二齿轮1012与第一齿轮1011啮合,实现了第二输出轴110的动力传输到第一丝杆103,使第一丝杆103随着第一输出轴1061的旋转而旋转。
在其他实施例中,可以选择链条传动、曲柄连杆等结构以实现第一丝杆103与第二输出轴110的连接。
在一实施例中,推注器1000进一步包括联轴器108、谐波减速器107和轴承109,联轴器108连接第一输出轴1061与推注电机100;谐波减速器107连接联轴器108与第一输出轴1061;轴承109连接联轴器108与推注电机100。
具体地,联轴器108一般安装在两个轴的连接点处,在本实施例中,联轴器108连接第一输出轴1061与推注电机100的动力轴120,使两个轴能够有效地连接并同时传递动力,并能够对旋转电机106起到缓冲和减震作用。
其中,谐波减速器107是一种减速装置,能够调节旋转电机106的传动速比,并具有高精度、结构紧凑等特点。在其他实施例中,还可以是行星减速器。轴承109用于固定和支撑推注电机100。
在一实施例中,推注器1000进一步包括第一编码器(图未示)和第一位置传感器(图未示),第一编码器设置在推注电机100上,用于采集推注电机100的转动信号,以确定螺母座102的直线运动距离;第一位置传感器设置在螺母座102上,用于采集螺母座102的直线运动距离。
具体地,第一编码器采集推注电机100的转动信号,再结合推注电机100与第一丝杆103之间的传动速比,可以计算出螺母座102的直线运动距离。第一位置传感器可以是光栅、磁栅等传感器,也可以是滑动变阻器,可以计算得到螺母座102的直线运动距离。
可以理解的是,通过比较第一编码器计算的螺母座102直线运动距离和第一位置传感器采集的螺母座102直线运动距离,可以对推注电机100推动螺母座102直线运动的距离进行校验,提高螺母座102的运动精准度。
参阅图12,在一实施例中,注射系统3000包括远程系统300和从机系统400,远程系统300包括主机控制器310以及与主机控制器310电连接的远程控制装置200、主机通信电路320,其中,远程控制装置200在操作人员的操作下产生电信号。其中,远程控制装置200产生的电信号包括压力信号、位移信号等。
其中,从机系统400包括从机控制器410以及与从机控制器410连接的且如上述任一项实施例中的推注器1000、从机通信电路420,从机通信电路420与主机通信电路320电连接。
其中,主机控制器310在接收到远程控制装置200产生的电信号后,将电信号通过主机通信电路320发送给从机系统400,从机系统400中的从机控制器410在通过从机通信电路420接收到电信号后,根据电信号控制推注器1000工作。
具体地,远程系统300可以放置于手术室外部,从机系统400可以放置于手术室内,远程系统300和从机系统400通过从机通信电路420与主机通信电路320完成信号传输,从机通信电路420与主机通信电路320可以是有线通信,也可以是无线通信,主机控制器310和从机控制器410可以进行逻辑控制、数据运算、通信处理和人机交互等功能。
从上述内容可以看出,本申请的注射系统3000包括远程系统300和从机系统400,远程控制装置200在操作人员的操作下产生压力、位移等电信号,通过主机通信电路320发送给从机系统400,从机系统400中的从机控制器410通过从机通信电路420接收到电信号后,根据电信号控制推注器1000工作,从而可以使操作人员在手术室外操作,并把操作人员的操作意图传输到从机的推注器1000。
在一实施例中,远程控制装置200产生的电信号携带有操作人员的手部位移信息;响应于根据电信号确定操作人员的手部位移变化率不超过第一阈值时,主机控制器310将电信号发送给从机系统400,否则忽略电信号。
和/或,远程控制装置200产生的电信号携带有操作人员施加在远程控制装置200上的压力信息;响应于根据电信号确定操作人员施加在远程控制装置200上的压力变化率不超过第二阈值,从机控制器410将电信号发送给从机系统400,否则忽略电信号。
具体地,考虑到手部动作精度无法达到机械的精密程度,当需要高精度微量注射栓塞材料时,手部动作的生理极限无法满足高精确的注射。手部位移变化率和操作人员施加在远程控制装置200上的压力信息能够反应操作人员是否有手部抖动等问题,也就是说当手部位移变化率超过第一阈值,或操作人员施加在远程控制装置200上的压力信息超过第二阈值,或手部位移变化率超过第一阈值且操作人员施加在远程控制装置200上的压力信息超过第二阈值时,主机忽略电信号,即主机控制器310将手部位移变化率和操作人员施加在远程控制装置200上的压力信息过滤掉,不发送给从机系统400,从而从机控制器410不进行操作,能够有效地滤除操作人员手部抖动,使注射材料更均匀。
在一实施例中,远程控制装置200产生的电信号携带有操作人员手部的第一位移;从机控制器410在接收到电信号后,根据预设的位移比例,生成第二位移,进而控制推注器1000中工作,以使第一推杆104运动的位移为第二位移,其中,第二位移与第一位移的比例为位移比例。
具体地,从以下实施例对位移比例进行解释。如果位移比例等于1,第一位移是10mm,推注器1000产生相同的第二位移10mm;如果位移比例等于2,第一位移是10mm,第二位移5mm;如果位移比例等于0.5,第一位移是10mm,第二位移20mm。工作人员根据应用场景随时修改位移比例,满足多种工作要求,本申请对此位移比例不做限定。
在一实施例中,推注器1000进一步包括第一力传感器105,第一力传感器105设置在第一推杆104的第二端上,用于采集注射器中的第一压力值,其中,从机控制器410在接收到第一压力值后,将第一压力值通过从机通信电路420发送给远程系统。
具体地,第一力传感器105包括但不限于压力式力传感器和应变式力传感器,第一力传感器105能够测量注射器中的第一压力值,给工作人员提供压力信息。
其中,当主机控制器310通过主机通信电路320接收到第一压力值后,若确定第一压力值与推抵力的差值大于差值阈值,则驱动丝杠电机2旋转,最终使导向部11进行直线运动。
在一实施例中,当从机控制器410侦测到旋转电机106的旋转速率达到第一速率阈值时,驱动旋转电机106降低旋转速率;
和/或,当主机控制器310侦测到丝杠电机2的旋转速率达到第二速率阈值时,驱动丝杠电机2降低旋转速率。
具体地,可以分别在旋转电机106和丝杠电机2上设置编码器,用于采集旋转电机106和丝杠电机2的旋转速率。当旋转电机106的旋转速率达到第一速度阈值时,从机控制器410驱动旋转电机106降低旋转速率;或,丝杠电机2的旋转速率达到第二速率阈值时,主机控制器驱动丝杠电机2降低旋转速率;或,旋转电机106的旋转速率达到第一速度阈值且丝杠电机2的旋转速率达到第二速率阈值,从机控制器410驱动旋转电机106降低旋转速率,主机控制器驱动丝杠电机2降低旋转速率。通过设置第一速度阈值和第二速度阈值,可以使旋转电机106和丝杠电机2满足安全速率,提高安全性,第一速度阈值和第二速度阈值可以相同,也可以不同。
参阅图13,注射系统3000中还包括:主机电源线111为远程系统300提供网电源连接,主机电源适配器222将网电源转为直流电为远程系统300各部分提供电能,从机电源线55为从机系统400提供网电源连接,从机推车1120包括电源箱、推车底座、脚轮和立柱,可连接网电源、实现电源管理和推注器1000位置的移动,推注器1000用伸展臂1100进行固定,伸展臂1100固定在从机推车1120上,伸展臂1100可以在任意位置悬停,可固定推注器1000连接的注射走线并实现注射位置的调整。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (32)

  1. 一种远程控制装置,其中,包括:
    安装座;
    活动件,所述活动件活动设置于所述安装座,能够相对所述安装座沿第一方向移动;
    位置传感器,所述位置传感器用于检测所述活动件相对所述安装座的位置信息;
    力反馈组件,所述力反馈组件用于对所述活动件产生与所述第一方向相反的、大小可调节的反馈阻力,以阻碍所述活动件沿所述第一方向移动。
  2. 根据权利要求1所述的远程控制装置,其中,包括:
    至少两个抵触部,两个所述抵触部分别凸设于所述安装座的相对两侧,分别用于供操作人员的食指、中指沿所述第一方向的反向推抵;
    其中,所述活动件用于供操作人员的拇指沿所述第一方向推抵,以在操作人员的驱动下沿所述第一方向相对所述安装座移动。
  3. 根据权利要求2所述的远程控制装置,其中,
    所述安装座具有沿所述第一方向延伸的空腔,所述活动件的一部分插设于所述空腔内并与所述安装座沿所述第一方向滑动配合,所述活动件位于所述安装座以外的部分用于供操作人员的拇指沿所述第一方向推抵;
    其中,两个所述抵触部分别位于所述空腔径向的相对两侧。
  4. 根据权利要求3所述的远程控制装置,其中,所述活动件包括:
    导向部,所述导向部沿所述第一方向延伸,一端插设于所述空腔内并与所述安装座沿所述第一方向滑动配合;
    推抵部,所述推抵部位于所述导向部的另一端,且位于所述空腔外,用于供操作人员的拇指沿所述第一方向推抵。
  5. 根据权利要求1所述的远程控制装置,其中,
    所述力反馈组件设置于所述安装座。
  6. 根据权利要求1所述的远程控制装置,其中,
    所述力反馈组件具有沿所述第一方向浮动设置的移动端,所述移动端能够对所述活动件产生所述反馈阻力。
  7. 根据权利要求6所述的远程控制装置,其中,包括:
    弹性件,所述弹性件在所述第一方向具有弹性,所述力反馈组件的所述移动端和所述活动件之间通过所述弹性件传递作用力。
  8. 根据权利要求7所述的远程控制装置,其中,
    所述弹性件沿所述第一方向的两端分别弹性抵顶/连接所述力反馈组件的所述移动端和所述活动件。
  9. 根据权利要求6所述的远程控制装置,其中,所述力反馈组件包括:
    丝杠电机,所述丝杠电机的丝杠沿所述第一方向延伸。
  10. 根据权利要求9所述的远程控制装置,其中,所述力反馈组件包括:
    端头,所述端头设置于所述丝杠的一端,形成所述移动端;
    其中,所述丝杠通过所述端头施加所述反馈阻力。
  11. 根据权利要求10所述的远程控制装置,其中,
    所述安装座具有沿所述第一方向延伸的空腔,所述空腔的至少部分延伸路段为等截面,所述端头嵌设于所述空腔的等截面路段中,与所述安装座滑动配合。
  12. 根据权利要求11所述的远程控制装置,其中,
    所述空腔的等截面路段的横截面为矩形。
  13. 根据权利要求8所述的远程控制装置,其中,
    所述安装座具有沿所述第一方向贯穿的空腔,所述弹性件容置于所述空腔中,所述力反馈组件的一部分自所述空腔的一端插入所述空腔,以使得所述力反馈组件的移动端位于所述空腔中,所述活动件的一部分自所述空腔另一端插入所述空腔。
  14. 根据权利要求1所述的远程控制装置,其中,
    所述反馈阻力的大小等于进行注射作业时的注射阻力的大小。
  15. 根据权利要求1所述的远程控制装置,其中,
    所述位置传感器为拉杆式位移传感器,所述拉杆式位移传感器具有主体和拉杆,所述拉杆能够相对所述主体沿所述第一方向或所述第一方向的反向移动;
    其中,所述活动件沿所述第一方向移动时,能够带动所述拉杆同步地沿所述第一方向移动。
  16. 根据权利要求1所述的远程控制装置,其中,包括:
    压力传感器,所述压力传感器用于检测所述活动件受到的操作人员施加的沿所述第一方向的推抵力,并将检测结果发送至推注器。
  17. 根据权利要求16所述的远程控制装置,其中,所述活动件包括:
    主体部,所述主体部活动设置于所述安装座,能够相对所述安装座沿第一方向移动;
    推抵部,所述推抵部沿所述第一方向可浮动地设置于所述主体部;
    其中,所述压力传感器沿所述第一方向夹设于所述主体部和所述推抵部之间,用于检测所述推抵部受到的操作人员施加的沿所述第一方向的推抵力。
  18. 根据权利要求3所述的远程控制装置,其中,包括:
    外壳;
    其中,所述外壳套设于所述安装座外,两个所述抵触部位于所述外壳外,且与所述安装座沿所述第一方向间隔设置,所述活动件位于所述外壳外。
  19. 根据权利要求18所述的远程控制装置,其中,包括:
    防护罩,所述防护罩为沿所述第一方向延伸的筒体,且能够沿所述第一方向变形;
    其中,所述位置传感器为拉杆式位移传感器,所述拉杆式位移传感器具有主体和拉杆,所述拉杆能够相对所述主体沿所述第一方向或所述第一方向的反向移动,所述主体设置于所述外壳内,所述拉杆贯穿所述外壳的侧壁,并与活动件连接,所述防护罩套设于所述拉杆外,一端连接所述外壳,另一端连接所述活动件。
  20. 一种远程系统,其中,包括:
    如权利要求1至19任一项所述的远程控制装置和主机控制器,所述主机控制器分别与所述位置传感器以及所述力反馈组件控制连接,用于依据所述活动件的所述位置信息控制所述推注器进行注射作业,以及依据注射阻力控制所述力反馈组件产生与所述注射阻力大小相匹配的所述反馈阻力。
  21. 一种推注器,其中,所述推注器包括:
    旋转电机;
    推注电机,与所述旋转电机的第一输出轴连接,以随着所述第一输出轴的旋转而旋转;
    第一丝杆,延伸方向与所述推注电机的第二输出轴的延伸方向相同,且与所述第二输出轴连接,以随着所述第二输出轴的旋转而旋转;
    螺母座,套设在所述第一丝杆的外围,当所述第一丝杆旋转时,所述螺母座沿着所述第一丝杆进行直线运动;
    第一推杆,延伸方向与所述第一丝杆的延伸方向相同,且第一端与所述螺母座连接,以使所述第一推杆在所述螺母座的带动下进行直线运动,其中,所述第一推杆的第二端用于连接注射器,以推动所述注射器进行注射;
    其中,所述推注器与如权利要求1至19任一项所述的远程控制装置通信连接,在所述活动件相对所述安装座沿所述第一方向产生位移后,所述第一推杆根据所述位移推动所述注射器注射。
  22. 根据权利要求21所述的推注器,其中,
    所述旋转电机、所述推注电机、所述第一推杆沿着直线方向依次排列。
  23. 根据权利要求21所述的推注器,其中,所述推注器进一步包括:
    第一力传感器,设置在所述第一推杆的第二端上,用于采集所述注射器中的第一压力值。
  24. 根据权利要求21所述的推注器,其中,所述推注器进一步包括:
    第一齿轮,套设在所述第二输出轴的外围;
    第二齿轮,套设在所述第一丝杆第一端的外围,所述第二齿轮与所述第一齿轮啮合,以实现所述第一丝杆与所述第二输出轴的连接。
  25. 根据权利要求21所述的推注器,其中,所述推注器进一步包括:
    联轴器,连接所述第一输出轴与所述推注电机;
    谐波减速器,连接所述联轴器与所述第一输出轴;
    轴承,连接所述联轴器与所述推注电机。
  26. 根据权利要求21所述的推注器,其中,所述推注器进一步包括:
    第一编码器,设置在所述推注电机上,用于采集所述推注电机的转动信号,以确定所述螺母座的直线运动距离;
    第一位置传感器,设置在所述螺母座上,用于采集所述螺母座的直线运动距离。
  27. 一种从机系统,其中,包括:
    如权利要求21至26任一项所述的推注器和从机控制器,所述从机控制器与所述推注器电连接。
  28. 一种注射系统,其中,包括:
    远程系统,包括主机控制器以及与所述主机控制器电连接的远程控制装置、主机通信电路,其中,所述远程控制装置在操作人员的操作下产生电信号;
    从机系统,包括从机控制器以及与所述从机控制器连接的且如权利要求21至26任一项所述的推注器、从机通信电路,所述从机通信电路与所述主机通信电路电连接;
    其中,所述主机控制器在接收到所述远程控制装置产生的电信号后,将所述电信号通过所述主机通信电路发送给所述从机系统,所述从机系统中的所述从机控制器在通过所述从机通信电路接收到所述电信号后,根据所述电信号控制所述推注器工作。
  29. 根据权利要求28所述的注射系统,其中,所述远程控制装置产生的所述电信号携带有操作人员的手部位移信息;
    响应于根据所述电信号确定操作人员的手部位移变化率不超过第一阈值时,所述主机控制器将所述电信号发送给所述从机系统,否则忽略所述电信号;
    和/或,所述远程控制装置产生的所述电信号携带有操作人员施加在所述远程控制装置上的压力信息;
    响应于根据所述电信号确定操作人员施加在所述远程控制装置上的压力变化率不超过第二阈值,所述从机控制器将所述电信号发送给所述从机系统,否则忽略所述电信号。
  30. 根据权利要求28所述的注射系统,其中,所述远程控制装置产生的所述电信号携带有操作人员手部的第一位移;
    所述从机控制器在接收到所述电信号后,根据预设的位移比例,生成第二位移,进而控制所述推注器中工作,以使所述第一推杆运动的位移为所述第二位移,其中,所述第二位移与所述第一位移的比例为所述位移比例。
  31. 根据权利要求28所述的注射系统,其中,所述远程控制装置包括:
    安装座;
    活动件,所述活动件活动设置于所述安装座,能够相对所述安装座沿第一方向移动;
    位置传感器,所述位置传感器用于检测所述活动件相对所述安装座的位置信息;
    力反馈组件,所述力反馈组件用于对所述活动件产生与所述第一方向相反的、大小可调节的反馈阻力,以阻碍所述活动件沿所述第一方向移动;
    压力传感器,所述压力传感器用于检测所述活动件受到的操作人员施加的沿所述第一方向的推抵力,并将检测结果发送至所述推注器;
    所述推注器进一步包括:
    第一力传感器,设置在所述第一推杆的第二端上,用于采集所述注射器中的第一压力值,其中,所述从机控制器在接收到所述第一压力值后,将所述第一压力值通过所述从机通信电路发送给所述远程系统;
    其中,当所述主机控制器通过所述主机通信电路接收到所述第一压力值后,若确定所述第一压力值与所述推抵力的差值大于差值阈值,则驱动所述远程控制装置运动。
  32. 根据权利要求31所述的注射系统,其中,当所述从机控制器侦测到所述旋转电机的旋转速率达到第一速率阈值时,驱动所述旋转电机降低旋转速率;
    和/或,当所述主机控制器侦测到所述丝杠电机的旋转速率达到第二速率阈值时,驱动所述丝杠电机降低旋转速率。
PCT/CN2023/111333 2022-08-05 2023-08-04 远程控制装置、远程系统、推注器、从机系统及注射系统 WO2024027842A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380014054.0A CN118139662A (zh) 2022-08-05 2023-08-04 远程控制装置、远程系统、推注器、从机系统及注射系统

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210935075.3A CN115252968A (zh) 2022-08-05 2022-08-05 远程控制装置及注射系统
CN202210935075.3 2022-08-05
CN202310961636.1A CN116999656A (zh) 2023-08-01 2023-08-01 推注器及注射系统
CN202310961636.1 2023-08-01

Publications (1)

Publication Number Publication Date
WO2024027842A1 true WO2024027842A1 (zh) 2024-02-08

Family

ID=89848557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/111333 WO2024027842A1 (zh) 2022-08-05 2023-08-04 远程控制装置、远程系统、推注器、从机系统及注射系统

Country Status (2)

Country Link
CN (1) CN118139662A (zh)
WO (1) WO2024027842A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118045249A (zh) * 2024-04-02 2024-05-17 蚌埠医科大学 一种可提供力反馈的远程注射装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2757772A1 (fr) * 1996-12-31 1998-07-03 Karcher Gilles Injecteur a telecommande pour interventions medicales
KR20130043404A (ko) * 2011-10-20 2013-04-30 사회복지법인 삼성생명공익재단 시린지 펌프를 흔들기 위한 장치
CN104220110A (zh) * 2012-04-12 2014-12-17 株式会社根本杏林堂 搅拌用注入装置
US20150209515A1 (en) * 2012-09-24 2015-07-30 AngioDynamlcs, Inc. Power Injector Device and Method of Use
CN109009444A (zh) * 2018-08-23 2018-12-18 广州医科大学附属第医院 一种电磁式力反馈穿刺手术辅助装置及机器人穿刺系统
CN115252968A (zh) * 2022-08-05 2022-11-01 苏州恒瑞宏远医疗科技有限公司 远程控制装置及注射系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2757772A1 (fr) * 1996-12-31 1998-07-03 Karcher Gilles Injecteur a telecommande pour interventions medicales
KR20130043404A (ko) * 2011-10-20 2013-04-30 사회복지법인 삼성생명공익재단 시린지 펌프를 흔들기 위한 장치
CN104220110A (zh) * 2012-04-12 2014-12-17 株式会社根本杏林堂 搅拌用注入装置
US20150209515A1 (en) * 2012-09-24 2015-07-30 AngioDynamlcs, Inc. Power Injector Device and Method of Use
CN109009444A (zh) * 2018-08-23 2018-12-18 广州医科大学附属第医院 一种电磁式力反馈穿刺手术辅助装置及机器人穿刺系统
CN115252968A (zh) * 2022-08-05 2022-11-01 苏州恒瑞宏远医疗科技有限公司 远程控制装置及注射系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118045249A (zh) * 2024-04-02 2024-05-17 蚌埠医科大学 一种可提供力反馈的远程注射装置

Also Published As

Publication number Publication date
CN118139662A (zh) 2024-06-04

Similar Documents

Publication Publication Date Title
CN110200700B (zh) 一种血管介入手术机器人和设备
WO2024027842A1 (zh) 远程控制装置、远程系统、推注器、从机系统及注射系统
CN105662588B (zh) 一种主从式微创血管介入手术远程操作系统
CN107374739B (zh) 一种介入手术机器人从端装置及其控制方法
CN107374738B (zh) 一种介入手术机器人从端及其移动平台
CN110801571B (zh) 介入栓塞手术导丝导管操纵装置
CN101791233B (zh) 基于力反馈的遥控手术装置
JP2023510978A (ja) ガイドワイヤーカテーテルの推進抵抗フィードバックを備えた血管介入ロボットの操作ハンドル
CN105662586A (zh) 一种导管导丝协同推送的介入手术机器人及其控制方法
CN211024680U (zh) 一种介入栓塞手术导丝导管操纵装置
CN208893426U (zh) 一种导丝辅助夹紧装置
CN105796179A (zh) 一种主从介入手术机器人从端操作装置及其控制方法
CN109044533A (zh) 泌尿外科微创介入手术机器人
CN109481022A (zh) 一种主从操作血管介入手术机器人的主手端操作机构
CN218923443U (zh) 一种用于注射泵的远程遥控注射装置及注射系统
CN115252968A (zh) 远程控制装置及注射系统
CN103584918A (zh) 遥控介入机器人系统
CN208725873U (zh) 操控导管-导丝的血管介入手术机器人从手
CN109620368A (zh) 一种基于ct引导下的智能介入穿刺装置
CN116212199A (zh) 一种用于血管介入手术的力反馈主端装置
CN108433912A (zh) 一种可实现多运动模式的病床用踝关节康复系统
CN211044621U (zh) 一种基于血管介入手术训练系统的手控操作装置
CN216628700U (zh) 血管腔内介入手术机器人的导丝导管控制及力反馈装置
CN114795461B (zh) 一种血管介入机器人位姿调节助力用半自动机械臂
CN115670629A (zh) 骨水泥注入机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849546

Country of ref document: EP

Kind code of ref document: A1