WO2024027722A1 - 一种助剂母粒及其应用 - Google Patents

一种助剂母粒及其应用 Download PDF

Info

Publication number
WO2024027722A1
WO2024027722A1 PCT/CN2023/110615 CN2023110615W WO2024027722A1 WO 2024027722 A1 WO2024027722 A1 WO 2024027722A1 CN 2023110615 W CN2023110615 W CN 2023110615W WO 2024027722 A1 WO2024027722 A1 WO 2024027722A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
melting point
additive
masterbatch
tert
Prior art date
Application number
PCT/CN2023/110615
Other languages
English (en)
French (fr)
Inventor
王金龙
张恩玉
魏新
杨金兴
安平
罗海
Original Assignee
天津利安隆新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津利安隆新材料股份有限公司 filed Critical 天津利安隆新材料股份有限公司
Publication of WO2024027722A1 publication Critical patent/WO2024027722A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/014Stabilisers against oxidation, heat, light or ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K15/00Anti-oxidant compositions; Compositions inhibiting chemical change
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone

Definitions

  • This application relates to the technical field of polymer materials, specifically to an additive masterbatch and its application.
  • UV absorbers include benzophenones, benzotriazoles, triazines, etc.
  • UV absorbers function as light stabilizers by absorbing harmful UV light and converting it into heat release.
  • Hindered amine light stabilizers first form active free radicals themselves, which further capture free radicals generated by material degradation due to aging, and then play the role of light stabilizers.
  • Hindered amine light stabilizers are an important development in polymer light stabilization and are widely used in general plastics, engineering plastics, coatings, adhesives, rubber and other fields.
  • hindered amine light stabilizers Although the application effect of hindered amine light stabilizers is excellent, some hindered amine light stabilizers have low melting points, making it difficult to feed materials during use.
  • the solution is to prepare such low melting point hindered amine light stabilizers into additive master batches. particles to facilitate mixing and processing with polymer materials.
  • the additive masterbatch prepared above contains additive components with low melting points, which causes agglomeration problems during storage, transportation and subsequent use, affecting the normal use of downstream customers. Take 2,2,6,6-tetramethyl-4-piperidine stearate (UV-3853) as an example.
  • the melting point of this product is only about 28°C, and it appears white to light yellow waxy or oily at room temperature, as shown above.
  • this product is usually prepared into masterbatch for customer use.
  • the prepared masterbatch has agglomeration problems during storage, transportation and subsequent use.
  • the current mainstream solutions in the anti-aging additive industry mainly include the following: (1) Use some other processing aids, such as foaming agents and adsorbent to improve the coating performance of the PP carrier on the light stabilizer UV-3853, thereby achieving the purpose of inhibiting the precipitation of the light stabilizer UV-3853; however, due to the introduction of a certain proportion of adsorbent and foaming agent in this method , which may have some adverse effects on the processing of polymer materials, such as compatibility issues. (2) Use foamed polypropylene as a carrier to absorb the 3853 liquid through the foamed polypropylene, thereby improving the precipitation of the light stabilizer 3853.
  • foaming agents and adsorbent to improve the coating performance of the PP carrier on the light stabilizer UV-3853, thereby achieving the purpose of inhibiting the precipitation of the light stabilizer UV-3853; however, due to the introduction of a certain proportion of adsorbent and foaming agent in this method , which may have some adverse effects on the
  • patent CN108137863A discloses 3853PP5 produced using multi-stage extruder co-extrusion technology. A layer of sheath is extruded on the surface to achieve the wrapping effect. However, since the cutting surface of the cutter cannot be protected, in practice There will still be precipitation and agglomeration during application.
  • the main purpose of this application is to provide an additive masterbatch and its application to solve the problems in the prior art that the low melting point additive masterbatch is easy to agglomerate and the process is complex.
  • an additive masterbatch is provided, the raw materials of which include a resin base material, a high melting point additive and a low melting point additive; wherein the melting point of the high melting point additive is >40°C.
  • the melting point of low melting point additives is ⁇ 40°C.
  • the low melting point additive is a liquid or paste at room temperature, or a solid with a melting point ⁇ 40°C; preferably, the melting point of the high melting point additive is greater than 80°C, more preferably greater than 100°C, further preferably greater than 150°C, More preferably, it is greater than 200°C.
  • the low-melting-point additive is a weather-resistant additive with a melting point ⁇ 40°C, preferably a light stabilizer with a melting point ⁇ 40°C; preferably, the light stabilizer is a hindered amine light stabilizer and/or an ultraviolet absorber, more preferably It is a hindered amine light stabilizer or its combination.
  • the hindered amine light stabilizer or its composition is selected from the group consisting of bis(2,2,6,6-tetramethyl-4-piperidyl) sebacate and tert-butyl hydroperoxide and octyl hydroperoxide.
  • the ultraviolet absorber is selected from the group consisting of benzotriazole ultraviolet absorbers, cyanoacrylate ultraviolet absorbers, benzamidine ultraviolet absorbers, benzophenone ultraviolet absorbers, and hydroxyphenyl triazines.
  • the high melting point additive is an organic and/or inorganic substance, preferably the high melting point additive is a polymer material additive; more preferably, the high melting point additive is a polymer material organic additive with a relative molecular mass greater than 500, further Preferably, it is a polymer material organic additive with a relative molecular mass greater than 600; further preferably, the high melting point additive is selected from tris[2.4-di-tert-butylphenyl]phosphite, 1,3,5-tris(3,5- Di-tert-butyl-4-hydroxybenzyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione, 1,3,5-trimethyl-2,4 , one or more of 6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)benzene and polyethylene wax; preferably, the resin matrix is a thermoplastic resin; more preferably, the thermoplastic resin is selected from polyolefins , polyester
  • the raw materials of the polymer material additive masterbatch include 30 to 70 parts of resin base material, 0.1 to 30 parts of high melting point additives, and 30 to 70 parts of low melting point additives; more preferably , in parts by weight, the raw materials of the polymer material additive masterbatch include 30 to 70 parts of resin base material, 1 to 25 parts of high melting point additives and 30 to 70 parts of low melting point additives; further preferably, according to In parts by weight, the raw materials of the polymer material additive masterbatch include 40 to 60 parts of resin base material, 1 to 20 parts of high melting point additives, and 40 to 60 parts of low melting point additives; further preferably, the high melting point additives
  • the weight ratio of the additive to the low-melting point additive is 1:3 to 15, most preferably 1:5 to 15.
  • the low melting point additives are 2,2,6,6-tetramethyl-4-piperidine stearate, 2,2,6,6-tetramethyl-4-piperidine stearate and One or more mixtures of n-hexadecane 3,5-di-tert-butyl-4-hydroxybenzoate
  • the resin base material is polyethylene or polypropylene
  • the high melting point additive is tris[2.4-di-tert-butyl Phosphite, 1,3,5-tris(3,5-di-tert-butyl-4-hydroxybenzyl)-1,3,5-triazine-2,4,6(1H,3H , one of 5H)-triketone, 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)benzene, polyethylene wax, or variety;
  • the auxiliary masterbatch includes: 1 to 20 parts of tris[2.4-di-tert-butylphenyl]phosphite, 30 to 50 parts of 2,2,6,6-tetramethyl-4-piperidine stearyl acid ester and 30 to 50 parts of polypropylene resin; or 1 to 20 parts of 1,3,5-tris(3,5-di-tert-butyl-4-hydroxybenzyl)-1,3,5-triazine-2 , 4,6(1H,3H,5H)-triketone, 30 to 50 parts of 2,2,6,6-tetramethyl-4-piperidine stearate and 30 to 50 parts of polypropylene resin; or 1 ⁇ 20 parts of 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)benzene, 30 ⁇ 50 parts of 2,2,6,6- Tetramethyl-4-piperidine stearate and 30 to 50 parts of polypropylene resin; or
  • the polymer material additive masterbatch is formed through screw extrusion, granulation, drying, and cooling of raw materials in sequence.
  • underwater granulation is used for granulation, and the operating temperature is 190 to 230°C.
  • the particle size of the polymer material additive masterbatch is 1 to 5 mm.
  • an application of the above-mentioned additive masterbatch in polymer materials is also provided.
  • This application effectively solves the problems of low-melting point additive masterbatch being easy to stick and agglomerate, and the preparation process being complicated.
  • the additive masterbatch prepared by this application is not easy to agglomerate, and can be achieved by using only common equipment and processes for preparing masterbatch. The operation is simple and can prepare additive masterbatch products with different particle sizes.
  • Figure 1 shows a product photo of a large particle additive masterbatch prepared according to an embodiment of the present application
  • Figure 2 shows a product photo of a small particle auxiliary masterbatch prepared according to an embodiment of the present application
  • Figure 3 shows photos of the additive masterbatch prepared in Example 1 of the present application, where (a) is a photo before the test, and (b) is a photo after the test;
  • Figure 4 shows photos of the additive masterbatch prepared in Example 2 of the present application, where (a) is a photo before the test, and (b) is a photo after the test;
  • Figure 5 shows photos of the additive masterbatch prepared in Example 3 of the present application, where (a) is a photo before the test, and (b) is a photo after the test;
  • Figure 6 shows photos of the additive masterbatch prepared in Example 4 of the present application, where (a) is a photo before the test, and (b) is a photo after the test;
  • Figure 7 shows photos of the additive masterbatch prepared in Example 5 of the present application, where (a) is a photo before the test, and (b) is a photo after the test;
  • Figure 8 shows photos of the additive masterbatch prepared in Example 6 of the present application, where (a) is a photo before the test, and (b) is a photo after the test;
  • Figure 9 shows photos of the additive masterbatch prepared in Example 7 of the present application, where (a) is a photo before the test, and (b) is a photo after the test;
  • Figure 10 shows photos of the additive masterbatch prepared in Example 8 of the present application, where (a) is a photo before the test, and (b) is a photo after the test;
  • Figure 11 shows photos of the additive masterbatch prepared in Example 9 of the present application, where (a) is a photo before the test, and (b) is a photo after the test;
  • Figure 12 shows photos of the additive masterbatch prepared in Example 10 of the present application, where (a) is a photo before the test, and (b) is a photo after the test;
  • Figure 13 shows photos of the additive masterbatch prepared in Example 11 of the present application, where (a) is a photo before the test, (b) is a photo after the test;
  • Figure 14 shows photos of the additive masterbatch prepared in Example 12 of the present application, where (a) is a photo before the test, and (b) is a photo after the test;
  • Figure 15 shows photos of the additive masterbatch prepared in Example 13 of the present application, where (a) is a photo before the test, and (b) is a photo after the test;
  • Figure 16 shows photos of the additive masterbatch in Comparative Example 1 after testing
  • Figure 17 shows photos of the additive masterbatch in Comparative Example 2 after testing
  • Figure 18 shows photos of the additive masterbatch in Comparative Example 3, where (a) is the product at the beginning of production, (b) is the product after 5 minutes of production, and (c) is the untested product.
  • an additive masterbatch is provided, the raw materials of which include a resin base material, a high melting point additive and a low melting point additive; wherein, the melting point of the high melting point additive is >40°C, and the melting point of the low melting point additive is The melting point of the agent is ⁇ 40°C.
  • Low melting point additives are easy to precipitate in the masterbatch resin base material. In addition to its low melting point, it is also related to the poor compatibility between the two. It is difficult for the resin base material to fully wrap the surface of the low melting point additive. When the temperature rises, precipitation problems occur due to the melting of low-melting point additives or increased fluidity, especially near the surface of the masterbatch, where the precipitation problem is more obvious.
  • the additive masterbatch provided by this application, in addition to the resin base material and low melting point additives, the raw materials also introduce high melting point additives with a melting point of >40°C. During the preparation process of the masterbatch, the raw materials usually undergo screw extrusion, granulation, drying, cooling and other steps.
  • the above-mentioned high melting point additives introduced in this application can be used together with the low melting point additives during the screw extrusion and granulation stages of the masterbatch. Together with the additives, they are first uniformly melted and dispersed in the resin substrate. Then as the processing temperature drops, the high-melting-point additives will solidify first and wrap around the surface of the low-melting-point additives, forming a protective barrier, thereby effectively inhibiting the additive masterbatch. Adhesion and agglomeration problems during subsequent transportation and use.
  • the additive masterbatch provided in this application can use conventional granulation processes. It should be noted that the inventor of the present application has found through research that masterbatch granulation also has certain requirements for particle size. Generally, it needs to be prepared into large particles or small particles to meet different downstream material addition requirements.
  • the particle size of small particle masterbatch Usually it is (2 ⁇ 1) ⁇ (2 ⁇ 1)mm, and the particle size of large particle masterbatch is usually (4 ⁇ 1) ⁇ (4 ⁇ 1)mm.
  • the material melt has greater strength and can form a greater melt pressure, which ensures that it can pass through the small hole die smoothly to form small-sized masterbatch particles, and the masterbatch
  • the grain shape is round and full, with good fluidity. Therefore, the polymer material additive masterbatch in this application has an adjustable particle size range, is relatively wide, and has good molding performance.
  • the formed large particle masterbatch and small particle masterbatch are shown in Figure 1 and Figure 2 respectively.
  • the low melting point additive of the present application is a liquid or paste at room temperature, or a solid with a melting point ⁇ 40°C.
  • the melting point of the high melting point additive is greater than 80°C, more preferably greater than 100°C, further preferably greater than 150°C, further preferably greater than 200°C.
  • the above-mentioned low-melting point additive is a weather-resistant additive with a melting point ⁇ 40°C, and preferably a light stabilizer with a melting point ⁇ 40°C.
  • the light stabilizer is a hindered amine light stabilizer and/or an ultraviolet absorber, more preferably a hindered amine light stabilizer or a combination thereof.
  • hindered amine light stabilizers include but are not limited to the reaction of di(2,2,6,6-tetramethyl-4-piperidyl) sebacate with tert-butyl hydroperoxide and octane Product (UV-123), 2,2,6,6-tetramethyl-4-piperidine stearate (UV-3853), bis(1,2,2,6,6,-pentamethyl- Mixture of 4-piperidinyl)sebearate and mono(1,2,2,6,6,-pentamethyl-4-piperidyl)sebearate (UV-292), bis(2, One or more of 2,6,6-tetramethyl-1-undecyloxy-4-yl)-carbonate;
  • UV absorbers include but are not limited to benzotriazole UV absorbers, Cyanoacrylate UV absorbers, benzamidine UV absorbers, benzophenone UV absorbers, hydroxyphenyltriazine UV absorbers, oxalanilide UV absorbers or salicylate UV absorbers One
  • composition of the hindered amine light stabilizer and ultraviolet absorber is 2,2,6,6-tetramethyl-4-piperidine stearate (UV-3853) and 3,5-di-tert-butyl- Mixture (UV-3808) of n-hexadethyl 4-hydroxybenzoate (UV2908).
  • the high melting point additive is an organic substance and/or an inorganic substance, and preferably the high melting point additive is a polymer material additive.
  • the use of polymer material additives can have better dispersion and compatibility in the resin matrix, and can form a better coating of low melting point additives based on a lower dosage, making the masterbatch anti-caking. Better ability.
  • the high melting point additive is a polymer material organic additive with a relative molecular mass greater than 500. Select the above-mentioned organic additives for polymer materials, which can precipitate to the surface of the masterbatch along with the melted low melting point additives during the granulation process during the preparation of the masterbatch.
  • this application even utilizes the precipitation performance of high-melting-point additives to fully precipitate the high-melting-point additives during the granulation process of the masterbatch preparation process, thereby allowing them to more fully condense during the subsequent cooling process. And coated around the precipitated low melting point additives to better inhibit agglomeration after masterbatch molding.
  • the use of high melting point additives with a relative molecular weight greater than 500 can better promote the prevention of adhesion and agglomeration of the final masterbatch product. More preferably, the high melting point additive is a polymer material organic additive with a relative molecular mass greater than 600.
  • the high melting point additive is selected from tris[2.4-di-tert-butylphenyl]phosphite (antioxidant 168, melting point is 183-187°C), 1,3,5-tris (3,5-di-tert-butyl-4-hydroxybenzyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione (antioxidant 3114, melting point 218 -223°C), 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)benzene (antioxidant 330, melting point is 240-245 °C), one or more of polyethylene wax (melting point 90-120 °C).
  • these high melting point additives can form masterbatch together with the above low melting point additives, which will not affect the later application of the masterbatch, and can even play a better anti-aging effect.
  • the use of functional additives antioxidant 168, antioxidant 330 and antioxidant 3114 can not only prevent the precipitation of low melting point additives, but also have an anti-aging effect when used in resin substrates.
  • the addition ratio of the above-mentioned high melting point additives does not need to be too large to effectively solve the problem of masterbatch agglomeration.
  • the resin matrix described in this application can be adjusted according to the use environment of the additive masterbatch. If the additive masterbatch needs to be added to the polypropylene resin system, the resin matrix can be selected as polypropylene resin; if the additive masterbatch needs When added to the polyethylene resin system, polyethylene resin can be used as the resin matrix.
  • the resin matrix is a thermoplastic resin.
  • thermoplastic resin can be directly used as a component of plastic products during subsequent processing (even if it is different from the component of the product, since the amount of additive masterbatch is often small, it will not have other effects on the performance of the plastic product). On the other hand, it can also It can act as a better first barrier to melted low melting point additives.
  • the resin matrix is a thermoplastic resin; further preferably, the thermoplastic resin is selected from the group consisting of polyolefin, polyester, polyether, polyketone, polyamide, polyurethane, polystyrene, high-impact styrene, polyacrylate, and polymethacrylate.
  • polyacetal polyacrylonitrile, polybutadiene, acrylonitrile-butadiene-phenyltriene terpolymer, styrene-acrylonitrile copolymer, acrylate-styrene-acrylonitrile terpolymer, cellulose Acetate butyrate, cellulose polymer, polyimide, polyamideimide, polyetherimide, polyphenylene sulfide, polyphenylene ether, polysulfone, polyethersulfone, polyvinyl chloride, polycarbonate , polyoxymethylene, one or more of ethylene-vinyl acetate polymers.
  • the resin matrix is polyolefin.
  • polyolefin as the resin base material has greater universality, and the above-mentioned high melting point additives can better improve the overall performance of the masterbatch.
  • the polyolefin is selected from polypropylene and/or polyethylene.
  • the raw materials of the auxiliary masterbatch include 30 to 70 parts of the resin base material (for example, it can be 30 parts, 32 parts, 35 parts, 40 parts, 42 parts, 44 parts , 45 parts, 46 parts, 48 parts, 50 parts, 52 parts, 55 parts, 58 parts, 60 parts, 65 parts, 70 parts), 0.1 to 30 parts of high melting point additives (for example, it can be 0.1 part, 0.2 part , 0.5 parts, 0.8 parts, 1 part, 2 parts, 3 parts, 5 parts, 6 parts, 8 parts, 10 parts, 12 parts, 15 parts, 16 parts, 18 parts, 20 parts, 24 parts, 28 parts, 30 parts) and 30 to 70 parts of low melting point additives (for example, it can be 30 parts, 32 parts, 35 parts, 40 parts, 42 parts, 44 parts, 45 parts, 46 parts, 48 parts, 50 parts, 52 parts, 55 parts parts, 58 parts, 60 parts, 65 parts, 70 parts); more preferably, in parts by weight, the raw materials of the additive masterbatch
  • the raw materials of the polymer material additive masterbatch include 40 to 60 parts of resin base material, 1 to 20 parts of high melting point additives and 40 to 60 parts of low melting point additives.
  • the weight ratio of the high melting point additive to the low melting point additive is 1:3-15, most preferably 1:5-15. Controlling the dosage of each component within the above range can effectively suppress problems such as agglomeration and increase the amount of low melting point additives as much as possible.
  • the low melting point additive is 2,2,6,6-tetramethyl-4-piperidine stearate, 2,2,6,6-tetramethyl-4-piperidine One or more mixtures of hexadecyl stearate and 3,5-di-tert-butyl-4-hydroxybenzoate
  • the resin base material is polyethylene or polypropylene
  • high melting point additives It is tris[2.4-di-tert-butylphenyl]phosphite (antioxidant 168), 1,3,5-tris(3,5-di-tert-butyl-4-hydroxybenzyl)-1,3, 5-Triazine-2,4,6(1H,3H,5H)-trione (antioxidant 3114), 1,3,5-trimethyl-2,4,6-tris(3,5-di One or more of tert-butyl-4-hydroxybenzyl)benzene (antioxidant 330) and polyethylene wax.
  • the additive masterbatch includes:
  • the granulation process of the masterbatch in this application can adopt conventional methods in this field.
  • the auxiliary masterbatch is formed by screw extrusion, granulation, drying, and cooling from raw materials in sequence.
  • underwater granulation is used for granulation, and the operating temperature is 190 to 230°C.
  • the particle size of the polymer material additive masterbatch of the present application can be adjusted as needed, and the preferred particle size is 1 to 5 mm.
  • the substrate of polymer material includes but is not limited to polyolefin, polyvinyl chloride, polyacetal, polyamide, styrene polymer, polyurethane, ABS resin, etc.
  • Specific polymer material products include but are not limited to plastic products, thermoplastic elastomer products, rubber products, coatings, adhesives, etc.
  • the additive masterbatch of this application has high melting point additives as a protective layer.
  • the prepared additive masterbatch has no agglomeration at all even in storage and transportation environments where high temperatures or high and low temperatures alternate;
  • an automatic weight loss scale is used to add PP resin and antioxidant 168 to the twin-screw extruder according to the proportions in Table 1 below, and UV-3853 liquid is added to the twin-screw extruder using a liquid metering pump. After screw extrusion (see Table 2 for the extrusion process), after water-cooling pelletizing, drying, and cooling, masterbatch with a particle size of 3.5 to 5 mm is obtained.
  • the masterbatch products were tested for 24 hours and 50°C in a beaker with a 500G weight. The results are shown in the table below.
  • the photos before and after the test are shown in Figure 3 below. (a) is the photo before the test and (b) is the photo after the test. photo.
  • Example 1 The only difference between this embodiment and Example 1 is that: the component proportions are shown in Table 3, the extrusion process uses a small-diameter die (see Table 4 for the extrusion process), and the prepared masterbatch has a particle size of 1.0 to 2.5 mm.
  • the masterbatch products were tested for 24 hours and 50°C in a beaker with a 500G weight. The results are shown in the table below.
  • the photos before and after the test are shown in Figure 4 below. (a) is the photo before the test and (b) is the photo after the test. photo.
  • Example 1 The only difference between this embodiment and Example 1 is that: the component proportions are shown in Table 5, the extrusion process is shown in Table 6, and the particle size of the prepared masterbatch is 3.5 to 5 mm.
  • the masterbatch products were tested for 24 hours and 50°C in a beaker with a 500G weight. The results are shown in the table below.
  • the photos before and after the test are shown in Figure 5 below. (a) is the photo before the test and (b) is the photo after the test. photo.
  • Example 1 The only difference between this embodiment and Example 1 is that the component proportions are shown in Table 7, the extrusion process is shown in Table 8, and the particle size of the prepared masterbatch is 3.5 to 5 mm.
  • the masterbatch products were tested for fluidity level in a beaker with a 500G weight for 24 hours at 50°C. The results are shown in the table below.
  • the photos before and after the test are shown in Figure 6 below. (a) is the photo before the test and (b) is the photo after the test. photo.
  • Example 1 The only difference between this embodiment and Example 1 is that: the component proportions are shown in Table 9, the extrusion process is shown in Table 10, and the prepared masterbatch has a particle size of 1.0 to 2.5 mm.
  • the masterbatch products were tested for 24 hours and 50°C in a beaker with a 500G weight. The results are shown in the table below.
  • the photos before and after the test are shown in Figure 7 below. (a) is the photo before the test and (b) is the photo after the test. photo.
  • Example 1 The only difference between this embodiment and Example 1 is that the component proportions are shown in Table 11, the extrusion process is shown in Table 12, and the prepared masterbatch has a particle size of 1.0 to 2.5 mm.
  • the masterbatch products were tested for 24 hours and 50°C in a beaker with a 500G weight. The results are shown in the table below.
  • the photos before and after the test are shown in Figure 8 below. (a) is the photo before the test and (b) is the photo after the test. photo.
  • Example 1 The only difference between this embodiment and Example 1 is that the component proportions are shown in Table 13, the extrusion process is shown in Table 14, and the prepared masterbatch has a particle size of 1.0 to 2.5 mm.
  • the masterbatch products were tested for 24 hours and 50°C in a beaker with a 500G weight. The results are shown in the table below.
  • the photos before and after the test are shown in Figure 9 below. (a) is the photo before the test and (b) is the photo after the test. photo.
  • Example 1 The only difference between this embodiment and Example 1 is that: the component ratio is shown in Table 15, the extrusion process is shown in Table 16, and the particle size of the prepared masterbatch is 3.5 to 5 mm.
  • the masterbatch products were tested for 24 hours and 50°C in a beaker with a 500G weight. The results are shown in the table below.
  • the photos before and after the test are shown in Figure 10 below. (a) is the photo before the test and (b) is the photo after the test. photo.
  • Example 1 The only difference between this embodiment and Example 1 is that the component proportions are shown in Table 17, the extrusion process is shown in Table 18, and the particle size of the prepared masterbatch is 3.5 to 5 mm.
  • the masterbatch products were tested for 24 hours and 50°C in a beaker with a 500G weight. The results are shown in the table below.
  • the photos before and after the test are shown in Figure 11 below. (a) is the photo before the test and (b) is the photo after the test. photo.
  • Example 1 The only difference between this embodiment and Example 1 is that the component proportions are shown in Table 19, the extrusion process is shown in Table 20, and the prepared masterbatch has a particle size of 1.0 to 2.5 mm.
  • the masterbatch products were tested for 24 hours and 50°C in a beaker with a 500G weight. The results are shown in the table below.
  • the photos before and after the test are shown in Figure 12 below. (a) is the photo before the test and (b) is the photo after the test. photo.
  • Example 2 The only difference between this embodiment and Example 1 is that the component proportions are shown in Table 21, the extrusion process is shown in Table 22, and the prepared masterbatch has a particle size of 1.0 to 2.5 mm.
  • the masterbatch products were tested for fluidity level in a beaker with a 500G weight for 24 hours at 50°C. The results are shown in the table below.
  • the photos before and after the test are shown in Figure 13 below. (a) is the photo before the test and (b) is the photo after the test. photo.
  • Example 2 The only difference between this embodiment and Example 1 is that the component proportions are shown in Table 23, the extrusion process is shown in Table 24, and the prepared masterbatch has a particle size of 1.0 to 2.5 mm.
  • the masterbatch products were tested for fluidity level in a beaker with a 500G weight for 24 hours at 50°C. The results are shown in the table below.
  • the photos before and after the test are shown in Figure 14 below. (a) is the photo before the test and (b) is the photo after the test. photo.
  • Example 1 The only difference between this embodiment and Example 1 is that: the component proportions are shown in Table 25, the extrusion process is shown in Table 26, and the particle size of the prepared masterbatch is 1.0 to 2.5 mm.
  • the masterbatch products were tested for 24 hours and 50°C in a beaker with a 500G weight. The results are shown in the table below.
  • the photos before and after the test are shown in Figure 15 below. (a) is the photo before the test and (b) is the photo after the test. photo.
  • UV-3853 PP masterbatch product 1 (UV-3853 weight content 50%) was tested for fluidity level in a beaker with a 500G weight for 24 hours at 50°C. The photo is shown in Figure 16.
  • the above-mentioned products use co-extrusion technology to form a protective sheath on the surface of ordinary masterbatch products.
  • the cut surface is not protected by the sheath when the cutter is pelletizing, and the color is very dark and light yellow, and there is still agglomeration.
  • UV-3853 PP masterbatch product 2 (UV-3853 weight content 50%), the foamed product has fluidity level 4, the masterbatch product is tested for 24h, 50°C beaker plus 500G weight fluidity level , the photo is shown in Figure 17, which is seriously agglomerated.
  • the product (UV-3853 weight content 50%) prepared according to the method of CN 113462079 A was found during the production process because the material is thin and the melt pressure is small. It is difficult to form a pressure difference during granulation. It can only be guaranteed for the first 5 minutes. The particles are relatively normal, but flaky particles will appear later with serious tailing. Moreover, because the material is thin, it is easy to pop out and block the die, resulting in low material utilization and low product yield.
  • the photos of the product produced at the beginning, the product produced after 5 minutes, and the product after testing are shown in Figure 18. Picture (a) is the product at the beginning of production, picture (b) is the product after 5 minutes of production, and picture (c) ) is an untested product photo as shown in Figure 18.
  • the low melting point additive masterbatch produced by this application has a very good anti-caking effect. It was baked in a forced air convection oven at 50°C for 24 hours, and no adhesion and caking was observed.
  • the additive masterbatch produced in this application has a simple production method, stable process, high output, wide application range for equipment, low cost, and no use risks for back-end customers, and has extremely high market competitiveness in domestic and foreign markets.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

一种助剂母粒及其应用。该助剂母粒的原料包括树脂基材、高熔点助剂及低熔点助剂;其中,高熔点助剂的熔点>40℃,低熔点助剂的熔点≤40℃。助剂母粒有效解决了低熔点助剂母粒易粘连结块、制备工艺复杂、成型困难等问题,提供的助剂母粒不易结块,且只需利用母粒制备的常用工艺即可制备,成型简单且能够制备成不同粒径的母粒。

Description

一种助剂母粒及其应用
本申请是以CN申请号为202210940265.4,申请日为2022年08月05日的中国申请为基础,并主张其优先权,该CN申请的公开内容再次作为整体引入本申请中。
技术领域
本申请涉及高分子材料技术领域,具体而言,涉及一种助剂母粒及其应用。
背景技术
高分子材料长期暴露在日光下,由于吸收了紫外线的能量发生老化降解,导致材料出现变色、龟裂、机械性能、电性能下降等老化现象,从而无法继续使用,这种过程称为光老化。
在高分子材料生产过程中加入光稳定剂能有效减缓上述光老化反应。
目前光稳定剂的品种主要包括紫外线吸收剂和受阻胺类光稳定剂。紫外线吸收剂包括二苯甲酮类、苯并三唑类、三嗪类等,紫外线吸收剂通过将有害的紫外光吸收后转换成热量释放的方式发挥光稳定剂作用。受阻胺类光稳定剂是通过首先自身形成活性自由基,该活性自由基进一步去捕获材料因老化降解生成的自由基,进而发挥光稳定剂作用。受阻胺类光稳定剂是聚合物光稳定化的重要进展,广泛应用于通用塑料、工程塑料、涂料、粘合剂、橡胶等领域。
虽然受阻胺类光稳定剂的应用效果优异,但是部分受阻胺类光稳定剂的熔点较低,在使用过程投料困难,解决的办法将此类低熔点受阻胺类光稳定剂制备成助剂母粒,以方便和高分子材料混合、加工。但上述所制备的助剂母粒由于含有低熔点的助剂组分,在储存、运输以及后续使用时有结块问题,影响下游客户的正常使用。以2,2,6,6-四甲基-4-哌啶硬脂酸酯(UV-3853)为例,本品熔点只有28℃左右,室温下呈现白色至浅黄色蜡状或油状,如上所述,本品通常是制备成母粒供客户使用,所制备的母粒在储存、运输以及后续使用过程存在结块问题。
针对上述低熔点助剂母粒出现的技术问题,以UV-3853为例,目前抗老化助剂行业主流的解决思路主要有以下几种:(1)使用一些其他加工助剂,比如发泡剂和吸附剂,来改善PP载体对光稳定剂UV-3853的包覆性能,从而达到抑制光稳定剂UV-3853析出的目的;然而,该方法中由于引入了一定比例的吸附剂和发泡剂,可能会对高分子材料加工过程中产生一些不利的影响,比如相容性问题等。(2)使用发泡的聚丙烯作为载体,通过发泡聚丙烯吸收3853液体,从而达到改善光稳定剂3853析出的目的。该方法生产成本高,生产效率低下,且对加工工艺的要求高,不具备成本优势。(3)表面添加保护层,例如专利CN108137863A公开了采用多段挤出机共挤技术制得的3853PP5,是利用表面再挤一层护套达到包裹效果,但是由于切刀切割面无法保护,在实际应用中还是会有析出结块现象。
除了UV-3853以外,其他低熔点助剂母粒也存在上述制备困难,母粒粘连性大的问题。
有鉴于此,特提出本申请。
发明内容
本申请的主要目的在于提供一种助剂母粒及其应用,以解决现有技术中低熔点助剂母粒易结块、工艺复杂等问题。
为了实现上述目的,根据本申请的一个方面,提供了一种助剂母粒,其原料包括树脂基材、高熔点助剂及低熔点助剂;其中,高熔点助剂的熔点>40℃,低熔点助剂的熔点≤40℃。
进一步地,低熔点助剂在室温下为液体或膏体,或者为熔点≤40℃的固体;优选地,高熔点助剂的熔点大于80℃,更优选大于100℃,进一步优选大于150℃,进一步优选大于200℃。
进一步地,低熔点助剂为熔点≤40℃的耐候助剂,优选为熔点≤40℃的光稳定剂;优选地,光稳定剂为受阻胺类光稳定剂和/或紫外线吸收剂,更优选为受阻胺类光稳定剂或其组合物。
进一步地,所述受阻胺类光稳定剂或其组合物选自癸二酸二(2,2,6,6-四甲基-4-哌啶基)酯与叔丁基过氧化氢与辛烷的反应产物、2,2,6,6-四甲基-4-哌啶硬脂酸酯、双(1,2,2,6,6,-五甲基-4-哌啶基)葵二酸酯与单(1,2,2,6,6,-五甲基-4-哌啶基)葵二酸酯的混合物、双(2,2,6,6-四甲基-1-十一烷氧基-4-基)-碳酸酯2,2,6,6-四甲基-4-哌啶硬脂酸酯与3,5-二叔丁基-4-羟基苯甲酸正十六酯的混合物中的一种或多种。
进一步地,紫外线吸收剂选自苯并三氮唑类紫外线吸收剂、氰基丙烯酸酯类紫外线吸收剂、苯甲脒类紫外线吸收剂、二苯甲酮类紫外线吸收剂、羟苯基三嗪类紫外线吸收剂、草酰苯胺类紫外线吸收剂或水杨酸酯类紫外线吸收剂中的一种或多种;更优选地,紫外线吸收剂选自3-(3-(2H-苯并三唑-2-基)-5-叔丁基--4-羟基苯基)丙酸甲酯和PEG 300的反应产物、3,5-二叔丁基-4-羟基苯甲酸十六烷基酯、2-氰基-3,3-二苯基丙烯酸-2′-乙基己酯、N-(乙氧基羰基苯基)-N′-甲基-N′-苯基甲脒中的一种或多种。
进一步地,高熔点助剂为有机物和/或无机物,优选高熔点助剂为高分子材料助剂;更优选地,高熔点助剂为相对分子质量大于500的高分子材料有机助剂,进一步优选为相对分子质量大于600的高分子材料有机助剂;进一步优选高熔点助剂选自三[2.4-二叔丁基苯基]亚磷酸酯、1,3,5-三(3,5-二叔丁基-4-羟基苄基)-1,3,5-三嗪-2,4,6(1H,3H,5H)-三酮、1,3,5-三甲基-2,4,6-三(3,5-二叔丁基-4-羟基苄基)苯、聚乙烯蜡中的一种或多种;优选地,树脂基体为热塑性树脂;更优选热塑性树脂选自聚烯烃、聚酯、聚醚、聚酮、聚酰胺、聚氨酯、聚苯乙烯、高抗冲击苯乙烯、聚丙烯酸酯、聚甲基丙烯酸酯、聚缩醛、聚丙烯腈、聚丁二烯、丙烯腈-丁二烯-苯三烯三聚物、苯乙烯-丙烯腈共聚物、丙烯酸酯-苯乙烯-丙烯腈三聚物、纤维素乙酸丁酸酯、纤维素聚合物、聚酰亚胺、聚酰胺酰亚胺、聚醚酰亚胺、聚苯硫醚、聚苯醚、聚砜、聚醚砜、聚氯乙烯、聚碳酸酯、聚甲醛、乙烯-乙酸乙烯酯聚合物中的一种或多种;更优选地,树脂基体为聚烯烃;进一步优选地,聚烯烃选自聚丙烯和/或聚乙烯。
进一步地,按照重量份计,高分子材料助剂母粒的原料包括30~70份的树脂基材、0.1~30份的高熔点助剂及30~70份的低熔点助剂;更优选地,按照重量份计,高分子材料助剂母粒的原料包括30~70份的树脂基材、1~25份的高熔点助剂及30~70份的低熔点助剂;进一步优选地,按照重量份计,高分子材料助剂母粒的原料包括40~60份的树脂基材、1~20份的高熔点助剂及40~60份的低熔点助剂;进一步优选地,高熔点助剂与低熔点助剂的重量比为1∶3~15,最优选1∶5~15。
进一步地,低熔点助剂为2,2,6,6-四甲基-4-哌啶硬脂酸酯、2,2,6,6-四甲基-4-哌啶硬脂酸酯与3,5-二叔丁基-4-羟基苯甲酸正十六酯的混合物中的一种或多种,树脂基材为聚乙烯或聚丙烯,高熔点助剂为三[2.4-二叔丁基苯基]亚磷酸酯、1,3,5-三(3,5-二叔丁基-4-羟基苄基)-1,3,5-三嗪-2,4,6(1H,3H,5H)-三酮、1,3,5-三甲基-2,4,6-三(3,5-二叔丁基-4-羟基苄基)苯、聚乙烯蜡中的一种或多种;
优选地,助剂母粒包括:1~20份三[2.4-二叔丁基苯基]亚磷酸酯、30~50份2,2,6,6-四甲基-4-哌啶硬脂酸酯和30~50份聚丙烯树脂;或1~20份1,3,5-三(3,5-二叔丁基-4-羟基苄基)-1,3,5-三嗪-2,4,6(1H,3H,5H)-三酮、30~50份2,2,6,6-四甲基-4-哌啶硬脂酸酯和30~50份聚丙烯树脂;或1~20份1,3,5-三甲基-2,4,6-三(3,5-二叔丁基-4-羟基苄基)苯、30~50份2,2,6,6-四甲基-4-哌啶硬脂酸酯和30~50份聚丙烯树脂;或0.1~10份三[2.4-二叔丁基苯基]亚磷酸酯、0.1~10份1,3,5-三甲基-2,4,6-三(3,5-二叔丁基-4-羟基苄基)苯、30~50份2,2,6,6-四甲基-4-哌啶硬脂酸酯和30-50份聚丙烯树脂;或0.1~10份三[2.4-二叔丁基苯基]亚磷酸酯、0.1~10份1,3,5-三(3,5-二叔丁基-4-羟基苄基)-1,3,5-三嗪-2,4,6(1H,3H,5H)-三酮、30~50份2,2,6,6-四甲基-4-哌啶硬脂酸酯和30~50份聚丙烯树脂;或0.1~10份聚乙烯蜡、0.1~10份1,3,5-三(3,5-二叔丁基-4-羟基苄基)-1,3,5-三嗪-2,4,6(1H,3H,5H)-三酮和/或三[2.4-二叔丁基苯基]亚磷酸酯和/或1,3,5-三甲基-2,4,6-三(3,5-二叔丁基-4-羟基苄基)苯、30~50份2,2,6,6-四甲基-4-哌啶硬脂酸酯和30~50份聚丙烯树脂。
进一步地,高分子材料助剂母粒经由原料依次通过螺杆挤出、制粒、干燥、冷却形成,优选制粒采用水下切粒,其操作温度为190~230℃。
进一步地,高分子材料助剂母粒的粒径为1~5mm。
根据本申请的另一方面,还提供了一种上述助剂母粒在高分子材料中的应用。
本申请有效解决了低熔点助剂母粒易粘连结块、制备工艺复杂等问题,本申请制备的助剂母粒不易结块,且只需利用制备母粒的常用设备、工艺即可实现,操作简单且能够制备不同粒径的助剂母粒产品。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了根据本申请一种实施方式中制备的大颗粒助剂母粒的产品照片;
图2示出了根据本申请一种实施方式中制备的小颗粒助剂母粒的产品照片;
图3示出了本申请实施例1制备的助剂母粒的照片,其中(a)为测试前的照片,(b)为测试后的照片;
图4示出了本申请实施例2制备的助剂母粒的照片,其中(a)为测试前的照片,(b)为测试后的照片;
图5示出了本申请实施例3制备的助剂母粒的照片,其中(a)为测试前的照片,(b)为测试后的照片;
图6示出了本申请实施例4制备的助剂母粒的照片,其中(a)为测试前的照片,(b)为测试后的照片;
图7示出了本申请实施例5制备的助剂母粒的照片,其中(a)为测试前的照片,(b)为测试后的照片;
图8示出了本申请实施例6制备的助剂母粒的照片,其中(a)为测试前的照片,(b)为测试后的照片;
图9示出了本申请实施例7制备的助剂母粒的照片,其中(a)为测试前的照片,(b)为测试后的照片;
图10示出了本申请实施例8制备的助剂母粒的照片,其中(a)为测试前的照片,(b)为测试后的照片;
图11示出了本申请实施例9制备的助剂母粒的照片,其中(a)为测试前的照片,(b)为测试后的照片;
图12示出了本申请实施例10制备的助剂母粒的照片,其中(a)为测试前的照片,(b)为测试后的照片;
图13示出了本申请实施例11制备的助剂母粒的照片,其中(a)为测试前的照片,(b)为测试后的照片;
图14示出了本申请实施例12制备的助剂母粒的照片,其中(a)为测试前的照片,(b)为测试后的照片;
图15示出了本申请实施例13制备的助剂母粒的照片,其中(a)为测试前的照片,(b)为测试后的照片;
图16示出了对比例1中的助剂母粒测试后的照片;
图17示出了对比例2中的助剂母粒测试后的照片;
图18示出了对比例3中的助剂母粒的照片,其中(a)为生产刚开始的产品,(b)为生产5分钟后的产品,(c)为未经测试的产品。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
正如背景技术部分所记载的,低熔点助剂母粒易粘连结块。现有技术的解决思路包括引入可吸附低熔点助剂的组分降低助剂的析出进而降低母粒粘连结块风险,或者通过母粒表面再挤一层护套实现抗粘连结块效果。现有方案或是引入非常规吸附剂,或是制备工艺复杂,实现困难。本申请在此背景下提供了一种更简单、更有效的解决方案,完全解决了助剂母粒易粘连结块问题,同时所提供的助剂母粒制备工艺简单。
在本申请典型的实施方式中,提供了一种助剂母粒,其原料包括树脂基材、高熔点助剂及低熔点助剂;其中,高熔点助剂的熔点>40℃,低熔点助剂的熔点≤40℃。
低熔点助剂在母粒树脂基材中容易析出,除了其熔点较低以外,也和二者之间的相容性较差有关,树脂基材很难充分包裹在低熔点助剂表面,在温度升高时,因低熔点助剂的融化或者流动性升高,发生析出问题,尤其是在靠近母粒表层的位置,析出问题更加明显。而本申请提供的助剂母粒,其原料除了树脂基材和低熔点助剂之外,还引入了熔点>40℃的高熔点助剂。母粒的制备过程中,原料通常都会经历螺杆挤出、制粒、干燥、冷却等步骤,本申请所引入的上述高熔点助剂能够在母粒经螺杆挤出、制粒阶段随低熔点助剂一起,首先均匀熔融分散于树脂基材中,随后因加工温度下降,高熔点助剂则会率先凝固并包裹在低熔点助剂表面,形成一层保护屏障,从而有效抑制助剂母粒在后续运输、使用过程中的粘连结块问题。
除此之外,本申请提供的助剂母粒使用常规制粒工艺即可。且需要说明的是,本申请发明人经研究发现,母粒制粒对于粒径也有一定要求,一般需要制备成大颗粒或小颗粒满足不同的下游材料添加需求,小颗粒母粒的粒径尺寸通常为(2±1)×(2±1)mm,大颗粒母粒的粒径尺寸通常为(4±1)×(4±1)mm。本申请的原料在制粒过程中因物料熔体具有较大的强度,能形成较大熔体压力,保证了其能够顺利穿过小孔模头从而形成小粒径的母粒颗粒,且母粒形态圆润饱满,流动性佳。因此,本申请的高分子材料助剂母粒粒度范围可调,较为宽泛,成型性能良好,形成的大颗粒母粒和小颗粒母粒分别如图1和图2所示。
高熔点助剂和低熔点助剂熔点差异越大,越有利于高熔点助剂在低熔点助剂表面形成保护膜,对于母粒的防结块粘连具有更好的促进作用。在一种优选的实施方式中,本申请的低熔点助剂在室温下为液体或膏体,或者为熔点≤40℃的固体。高熔点助剂的熔点大于80℃,更优选大于100℃,进一步优选大于150℃,进一步优选大于200℃。
优选地,上述低熔点助剂为熔点≤40℃的耐候助剂,优选为熔点≤40℃的光稳定剂。本申请更适用于上述低熔点助剂,在改善其母粒结块等问题方面具有更加突出的效果。优选地,光稳定剂为受阻胺类光稳定剂和/或紫外线吸收剂,更优选为受阻胺类光稳定剂或其组合物。
示例性地,受阻胺类光稳定剂包括但不限于癸二酸二(2,2,6,6-四甲基-4-哌啶基)酯与叔丁基过氧化氢与辛烷的反应产物(UV-123)、2,2,6,6-四甲基-4-哌啶硬脂酸酯(UV-3853)、双(1,2,2,6,6,-五甲基-4-哌啶基)葵二酸酯与单(1,2,2,6,6,-五甲基-4-哌啶基)葵二酸酯的混合物(UV-292)、双(2,2,6,6-四甲基-1-十一烷氧基-4-基)-碳酸酯中的一种或多种;紫外线吸收剂包括但不限于苯并三氮唑类紫外线吸收剂、氰基丙烯酸酯类紫外线吸收剂、苯甲脒类紫外线吸收剂、二苯甲酮类紫外线吸收剂、羟苯基三嗪类紫外线吸收剂、草酰苯胺类紫外线吸收剂或水杨酸酯类紫外线吸收剂中的一种或多种;更优选地,紫外线吸收剂选自3-(3-(2H-苯并三唑-2-基)-5-叔丁基--4-羟基苯基)丙酸甲酯和PEG 300的反应产物(UV-1130)、3,5-二叔丁基-4-羟基苯甲酸十六烷基酯(UV-2908)、2-氰基-3,3-二苯基丙烯酸-2′-乙基己酯(UV-3039)、N-(乙氧基羰基苯基)-N′-甲基-N′-苯基甲脒(UV-1)中的一种或多种。所述受阻胺光稳定剂和紫外线吸收剂的组合物为2,2,6,6-四甲基-4-哌啶硬脂酸酯(UV-3853)与3,5-二叔丁基-4-羟基苯甲酸正十六酯(UV2908)的混合物(UV-3808)。
在一种优选的实施方式中,高熔点助剂为有机物和/或无机物,优选所述高熔点助剂为高分子材料助剂。使用高分子材料助剂在树脂基体中能够具有更好的分散性和相容性,能够在较低用量的基础上形成对低熔点助剂的更好的包覆,使得母粒的防结块能力更佳。更优选地,所述高熔点助剂为相对分子质量大于500的高分子材料有机助剂。选择上述高分子材料有机助剂,其能够在母粒制备过程中,在制粒工序中随着融化的低熔点助剂一起向母粒表面析出。值得说明的是,本申请甚至利用了高熔点助剂这样的析出性能,使其在母粒制备过程的制粒工序中充分析出高熔点助剂,从而使其在随后的冷却过程中更充分凝结并包覆于周围析出的低熔点助剂周围,以便在母粒成型之后更好地抑制结块。使用相对分子量大于500的高熔点助剂,对于防止最终母粒产品的粘连、结块具有更好的促进作用。更优选地,高熔点助剂为相对分子质量大于600的高分子材料有机助剂。
在一种优选的实施方式中,高熔点助剂选自三[2.4-二叔丁基苯基]亚磷酸酯(抗氧剂168,熔点为183-187℃)、1,3,5-三(3,5-二叔丁基-4-羟基苄基)-1,3,5-三嗪-2,4,6(1H,3H,5H)-三酮(抗氧剂3114,熔点为218-223℃)、1,3,5-三甲基-2,4,6-三(3,5-二叔丁基-4-羟基苄基)苯(抗氧剂330,熔点为240-245℃)、聚乙烯蜡(熔点为90-120℃)中的一种或多种。这几种高熔点助剂除了能够更好地发挥以上析出、包裹作用以外,与上述低熔点助剂共同形成母粒,也不会影响后期母粒的应用,甚至能够发挥更好的防老化作用。尤其是,使用功能性助剂抗氧剂168、抗氧剂330和抗氧剂3114,不但可以起到防止低熔点助剂析出的功能,在用于树脂基材时还具有抗老化的作用。此外,上述高熔点助剂的添加比例无需太多,即可有效解决母粒结块问题。
本申请所述树脂基体可以根据助剂母粒的使用环境进行调整,如该助剂母粒需要添加入聚丙烯树脂体系中,则树脂基体可选用为聚丙烯树脂;如该助剂母粒需要添加入聚乙烯树脂体系中,则树脂基体可选用聚乙烯树脂。优选地,树脂基体为热塑性树脂。热塑性树脂一方面能够在后续加工时直接作为塑料制品成分(即使和制品成分不同,因助剂母粒的加入量往往较少,也不会对塑料制品的性能造成其他影响),另一方面也能够起到对熔化的低熔点助剂更好的第一层屏障作用。
更优选树脂基体为热塑性树脂;进一步优选热塑性树脂选自聚烯烃、聚酯、聚醚、聚酮、聚酰胺、聚氨酯、聚苯乙烯、高抗冲击苯乙烯、聚丙烯酸酯、聚甲基丙烯酸酯、聚缩醛、聚丙烯腈、聚丁二烯、丙烯腈-丁二烯-苯三烯三聚物、苯乙烯-丙烯腈共聚物、丙烯酸酯-苯乙烯-丙烯腈三聚物、纤维素乙酸丁酸酯、纤维素聚合物、聚酰亚胺、聚酰胺酰亚胺、聚醚酰亚胺、聚苯硫醚、聚苯醚、聚砜、聚醚砜、聚氯乙烯、聚碳酸酯、聚甲醛、乙烯-乙酸乙烯酯聚合物中的一种或多种。
更优选地,树脂基体为聚烯烃。采用聚烯烃作为树脂基材,其普适性更强,上述高熔点助剂与之配合能够更好地改善母粒的综合性能。进一步优选地,聚烯烃选自聚丙烯和/或聚乙烯。
在一种优选的实施方式中,按照重量份计,助剂母粒的原料包括30~70份的树脂基材(比如可以为30份、32份、35份、40份、42份、44份、45份、46份、48份、50份、52份、55份、58份、60份、65份、70份)、0.1~30份的高熔点助剂(比如可以为0.1份、0.2份、0.5份、0.8份、1份、2份、3份、5份、6份、8份、10份、12份、15份、16份、18份、20份、24份、28份、30份)及30~70份的低熔点助剂(比如可以为30份、32份、35份、40份、42份、44份、45份、46份、48份、50份、52份、55份、58份、60份、65份、70份);更优选地,按照重量份计,助剂母粒的原料包括30~70份的树脂基材、1~25份的高熔点助剂及30~70份的低熔点助剂。进一步优选地,按照重量份计,高分子材料助剂母粒的原料包括40~60份的树脂基材、1~20份的高熔点助剂及40~60份的低熔点助剂。进一步优选地,高熔点助剂与低熔点助剂的重量比为1∶3~15,最优选1∶5~15。将各组分用量控制在上述范围内,能够在有效抑制结块等问题的基础上,尽量提高低熔点助剂添加量。
在一种优选的实施方式中,低熔点助剂为2,2,6,6-四甲基-4-哌啶硬脂酸酯、2,2,6,6-四甲基-4-哌啶硬脂酸酯与3,5-二叔丁基-4-羟基苯甲酸正十六酯的混合物中的一种或多种,所述树脂基材为聚乙烯或聚丙烯,高熔点助剂为三[2.4-二叔丁基苯基]亚磷酸酯(抗氧剂168)、1,3,5-三(3,5-二叔丁基-4-羟基苄基)-1,3,5-三嗪-2,4,6(1H,3H,5H)-三酮(抗氧剂3114)、1,3,5-三甲基-2,4,6-三(3,5-二叔丁基-4-羟基苄基)苯(抗氧剂330)、聚乙烯蜡中的一种或多种。按照以上方式将高熔点助剂与低熔点助剂及树脂基材进行复配,形成的母粒的防粘连结块性能更佳,且助剂本身的抗老化性能也有更好的表现。
示例性地,助剂母粒包括:
1~20份三[2.4-二叔丁基苯基]亚磷酸酯、30~50份2,2,6,6-四甲基-4-哌啶硬脂酸酯和30~50份聚丙烯树脂;或
1~20份1,3,5-三(3,5-二叔丁基-4-羟基苄基)-1,3,5-三嗪-2,4,6(1H,3H,5H)-三酮、30~50份2,2,6,6-四甲基-4-哌啶硬脂酸酯和30~50份聚丙烯树脂;或
1~20份1,3,5-三甲基-2,4,6-三(3,5-二叔丁基-4-羟基苄基)苯、30~50份2,2,6,6-四甲基-4-哌啶硬脂酸酯和30~50份聚丙烯树脂;或
0.1~10份三[2.4-二叔丁基苯基]亚磷酸酯、0.1~10份1,3,5-三甲基-2,4,6-三(3,5-二叔丁基-4-羟基苄基)苯、30~50份2,2,6,6-四甲基-4-哌啶硬脂酸酯和30-50份聚丙烯树脂;或
0.1~10份三[2.4-二叔丁基苯基]亚磷酸酯、0.1~10份1,3,5-三(3,5-二叔丁基-4-羟基苄基)-1,3,5-三嗪-2,4,6(1H,3H,5H)-三酮、30~50份2,2,6,6-四甲基-4-哌啶硬脂酸酯和30~50份聚丙烯树脂;或
0.1~10份聚乙烯蜡、0.1~10份1,3,5-三(3,5-二叔丁基-4-羟基苄基)-1,3,5-三嗪-2,4,6(1H,3H,5H)-三酮和/或三[2.4-二叔丁基苯基]亚磷酸酯和/或1,3,5-三甲基-2,4,6-三(3,5-二叔丁基-4-羟基苄基)苯、30~50份2,2,6,6-四甲基-4-哌啶硬脂酸酯和30~50份聚丙烯树脂。。
如前文所述,本申请中母粒的制粒工艺采用本领域常规方式即可,比如,助剂母粒经由原料依次通过螺杆挤出、制粒、干燥、冷却形成。优选制粒采用水下切粒,其操作温度为190~230℃。
本申请高分子材料助剂母粒的粒度可根据需要调控,优选其粒径为1~5mm。
此外,本申请还提供了上述助剂母粒在高分子材料中的应用,因该助剂母粒防结块性能优,也有利于高分子材料加工过程中母粒的分散相容。具体地,高分子材料的基材包括但不限于聚烯烃、聚氯乙烯、聚缩醛、聚酰胺、苯乙烯类聚合物、聚氨酯、ABS树脂等。具体的高分子材料制品包括但不限于塑料制品、热塑性弹性体制品、橡胶制品、涂料、粘合剂等。
总之,本申请操作工艺简单,设备适用面广,生产稳定,产品质量及外观和其他相比有以下优势:
(1)本申请的助剂母粒有高熔点助剂作为保护层,所制备的助剂母粒即使在高温或高低温交替出现的储存、运输环境中完全没有结块现象;
(2)本申请的助剂母粒制备工艺简单,工业化易于批量化生产,稳定性高;且不影响下游材料的加工;
(3)本申请可制备大颗粒和小颗粒的产品,经24h、50℃烧杯加500G砝码流动性等级测试,本申请的助剂母粒结块流动性均为1-2级,满足下游材料加工的多样化需求。
以下结合具体实施例对本申请作进一步详细描述,这些实施例不能理解为限制本申请所要求保护的范围。
实施例1
本实施例使用自动计量失重称,按照下表1中的比例向双螺杆挤出机中加入PP树脂、抗氧剂168,利用液体计量泵向双螺杆挤出机中加入UV-3853液体,在进行螺杆挤出后(挤出工艺见表2),经过水冷切粒、干燥、冷却,得到粒径在3.5~5mm的母粒。
表1
表2
对母粒产品进行24h、50℃烧杯加500G砝码流动性等级测试,结果见下表,测试前后照片分别见下图3,其中(a)为测试前的照片,(b)为测试后的照片。
实施例2
本实施例与实施例1的区别仅在于:组分比例见表3,挤出过程采用小口径模头(挤出工艺见表4),制备的母粒粒径在1.0~2.5mm。
表3
表4
对母粒产品进行24h、50℃烧杯加500G砝码流动性等级测试,结果见下表,测试前后照片分别见下图4,其中(a)为测试前的照片,(b)为测试后的照片。
实施例3
本实施例与实施例1的区别仅在于:组分比例见表5,挤出工艺见表6,制备的母粒粒径在3.5~5mm。
表5
表6
对母粒产品进行24h、50℃烧杯加500G砝码流动性等级测试,结果见下表,测试前后照片分别见下图5,其中(a)为测试前的照片,(b)为测试后的照片。
实施例4
本实施例与实施例1的区别仅在于:组分比例见表7,挤出工艺见表8,制备的母粒粒径在3.5~5mm。
表7
表8
对母粒产品进行24h、50℃烧杯加500G砝码流动性等级测试,结果见下表,测试前后照片分别见下图6,其中(a)为测试前的照片,(b)为测试后的照片。
实施例5
本实施例与实施例1的区别仅在于:组分比例见表9,挤出工艺见表10,制备的母粒粒径在1.0~2.5mm。
表9
表10
对母粒产品进行24h、50℃烧杯加500G砝码流动性等级测试,结果见下表,测试前后照片分别见下图7,其中(a)为测试前的照片,(b)为测试后的照片。
实施例6
本实施例与实施例1的区别仅在于:组分比例见表11,挤出工艺见表12,制备的母粒粒径在1.0~2.5mm。
表11
表12
对母粒产品进行24h、50℃烧杯加500G砝码流动性等级测试,结果见下表,测试前后照片分别见下图8,其中(a)为测试前的照片,(b)为测试后的照片。
实施例7
本实施例与实施例1的区别仅在于:组分比例见表13,挤出工艺见表14,制备的母粒粒径在1.0~2.5mm。
表13
表14
对母粒产品进行24h、50℃烧杯加500G砝码流动性等级测试,结果见下表,测试前后照片分别见下图9,其中(a)为测试前的照片,(b)为测试后的照片。
实施例8
本实施例与实施例1的区别仅在于:组分比例见表15,挤出工艺见表16,制备的母粒粒径在3.5~5mm。
表15
表16
对母粒产品进行24h、50℃烧杯加500G砝码流动性等级测试,结果见下表,测试前后照片分别见下图10,其中(a)为测试前的照片,(b)为测试后的照片。
实施例9
本实施例与实施例1的区别仅在于:组分比例见表17,挤出工艺见表18,制备的母粒粒径在3.5~5mm。
表17
表18
对母粒产品进行24h、50℃烧杯加500G砝码流动性等级测试,结果见下表,测试前后照片分别见下图11,其中(a)为测试前的照片,(b)为测试后的照片。
实施例10
本实施例与实施例1的区别仅在于:组分比例见表19,挤出工艺见表20,制备的母粒粒径在1.0~2.5mm。
表19
表20
对母粒产品进行24h、50℃烧杯加500G砝码流动性等级测试,结果见下表,测试前后照片分别见下图12,其中(a)为测试前的照片,(b)为测试后的照片。
实施例11
本实施例与实施例1的区别仅在于:组分比例见表21,挤出工艺见表22,制备的母粒粒径在1.0~2.5mm。
表21
表22
对母粒产品进行24h、50℃烧杯加500G砝码流动性等级测试,结果见下表,测试前后照片分别见下图13,其中(a)为测试前的照片,(b)为测试后的照片。
实施例12
本实施例与实施例1的区别仅在于:组分比例见表23,挤出工艺见表24,制备的母粒粒径在1.0~2.5mm。
表23
表24
对母粒产品进行24h、50℃烧杯加500G砝码流动性等级测试,结果见下表,测试前后照片分别见下图14,其中(a)为测试前的照片,(b)为测试后的照片。
实施例13
本实施例与实施例1的区别仅在于:组分比例见表25,挤出工艺见表26,制备的母粒粒径在1.0~2.5mm。
表25
表26
对母粒产品进行24h、50℃烧杯加500G砝码流动性等级测试,结果见下表,测试前后照片分别见下图15,其中(a)为测试前的照片,(b)为测试后的照片。
对比例1
市售UV-3853的PP母粒产品1(UV-3853重量含量50%),对母粒产品进行24h、50℃烧杯加500G砝码流动性等级测试,照片如图16所示。
上述产品是利用共挤技术在普通母粒产品表面形成一层保护套,然而在切刀切粒时的切面是没有护套保护的,且颜色很深为淡黄色仍然会有结块现象。
对比例2
市售UV-3853的PP母粒产品2(UV-3853重量含量50%),发泡制得的产品流动性4级,对母粒产品进行24h、50℃烧杯加500G砝码流动性等级测试,照片如图17所示,严重结块。
对比例3
按照CN 113462079 A的方法制得的产品(UV-3853重量含量50%),生产过程中发现因物料较稀,熔体压力小,在制粒是很难形成压力差,只能保证前5分钟颗粒相对正常,之后会出现片状的颗粒且拖尾严重,而且因物料较稀,容易冒料和堵塞模头,造成物料利用率低,产品的成品率低。开始生产的产品、5分钟后生产的产品,以及经测试后的产品照片如图18,其中图(a)为生产刚开始的产品、图(b)为生产5分钟后的产品、图(c)为未经测试的产品照片如图18所示。
该配方制得的产品虽然不结块,但是因物料流动性接近于纯蜡融化后的状态,树脂极低的含量导致母粒没有强度、拖尾严重、规整性差并且密度很小,母粒加工困难且机器适应性差,批量稳定生产有很大难度。此外,本母粒加工使用过程会存在强度过低和产品开裂的风险。因物料特性,本工艺不能制得小颗粒产品。
以上实施例和对比例母粒制得后观察外观,并计算成品率(合格产品量/投料量),结果见表27。
以上各实施例和对比例母粒产品进行24h、50℃烧杯加500G砝码流动性等级测试,具体操作如下:
1、在烧杯中放入50g母粒,在粉末或颗粒上放一个罐子(圆形不锈钢片),在罐子上放一个500g的砝码;
2、将烧杯放在50℃的强制空气烤箱中24小时(对于每一次温度暴露,使用一个新的样本);
3、取出后冷却至室温两小时;
4、使用下面的分级系统对样品的结块、阻塞、脆性和流动特性进行分级:
等级1-自由流动;
等级2-一些块状,容易破碎(易碎);
等级3-大部分是块状的,通过一些努力就能分解(比较易碎);
等级4-大部分块不分裂;
等级5-熔融固体;
结果如下表27:
表27

通过以上结果可以看出:本申请制作的低熔点助剂母粒,抗结块效果很好,放在50℃的强制空气对流烘箱中烘烤24小时,未观察到任何粘连结块的现象。
且本申请的助剂母粒生产方法简单、工艺稳定、产量高、对设备适用范围广、成本低廉,且后端客户无任何使用风险,在国内外市场上有极高的市场竞争力。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种助剂母粒,其特征在于,所述助剂母粒的原料包括树脂基材、高熔点助剂及低熔点助剂;其中,所述高熔点助剂的熔点>40℃,所述低熔点助剂的熔点≤40℃。
  2. 根据权利要求1所述的助剂母粒,其特征在于,所述低熔点助剂在室温下为液体或膏体,或者为熔点≤40℃的固体;优选地,所述高熔点助剂的熔点大于80℃,更优选大于100℃,进一步优选大于150℃,进一步优选大于200℃。
  3. 根据权利要求1或2所述的助剂母粒,其特征在于,所述低熔点助剂为熔点≤40℃的耐候助剂,优选为熔点≤40℃的光稳定剂;
    优选地,所述光稳定剂为受阻胺类光稳定剂和/或紫外线吸收剂,更优选为所述受阻胺类光稳定剂或其组合物。
  4. 根据权利要求3所述的助剂母粒,其特征在于,所述受阻胺类光稳定剂或其组合物选自癸二酸二(2,2,6,6-四甲基-4-哌啶基)酯与叔丁基过氧化氢与辛烷的反应产物、2,2,6,6-四甲基-4-哌啶硬脂酸酯、双(1,2,2,6,6,-五甲基-4-哌啶基)葵二酸酯与单(1,2,2,6,6,-五甲基-4-哌啶基)葵二酸酯的混合物、双(2,2,6,6-四甲基-1-十一烷氧基-4-基)-碳酸酯2,2,6,6-四甲基-4-哌啶硬脂酸酯与3,5-二叔丁基-4-羟基苯甲酸正十六酯的混合物中的一种或多种。
  5. 根据权利要求3所述的助剂母粒,其特征在于,所述紫外线吸收剂选自苯并三氮唑类紫外线吸收剂、氰基丙烯酸酯类紫外线吸收剂、苯甲脒类紫外线吸收剂、二苯甲酮类紫外线吸收剂、羟苯基三嗪类紫外线吸收剂、草酰苯胺类紫外线吸收剂或水杨酸酯类紫外线吸收剂中的一种或多种;更优选地,所述紫外线吸收剂选自3-(3-(2H-苯并三唑-2-基)-5-叔丁基--4-羟基苯基)丙酸甲酯和PEG 300的反应产物、3,5-二叔丁基-4-羟基苯甲酸十六烷基酯、2-氰基-3,3-二苯基丙烯酸-2′-乙基己酯、N-(乙氧基羰基苯基)-N′-甲基-N′-苯基甲脒中的一种或多种。
  6. 根据权利要求1至4中任一项所述的助剂母粒,其特征在于,所述高熔点助剂为有机物和/或无机物,优选所述高熔点助剂为高分子材料助剂;更优选地,所述高熔点助剂为相对分子质量大于500的高分子材料有机助剂,进一步优选为相对分子质量大于600的高分子材料有机助剂;进一步优选所述高熔点助剂选自三[2.4-二叔丁基苯基]亚磷酸酯、1,3,5-三(3,5-二叔丁基-4-羟基苄基)-1,3,5-三嗪-2,4,6(1H,3H,5H)-三酮、1,3,5-三甲基-2,4,6-三(3,5-二叔丁基-4-羟基苄基)苯、聚乙烯蜡中的一种或多种;
    优选地,所述树脂基体为热塑性树脂;更优选所述热塑性树脂选自聚烯烃、聚酯、聚醚、聚酮、聚酰胺、聚氨酯、聚苯乙烯、高抗冲击苯乙烯、聚丙烯酸酯、聚甲基丙烯酸酯、聚缩醛、聚丙烯腈、聚丁二烯、丙烯腈-丁二烯-苯三烯三聚物、苯乙烯-丙烯腈共聚物、丙烯酸酯-苯乙烯-丙烯腈三聚物、纤维素乙酸丁酸酯、纤维素聚合物、聚酰亚胺、聚酰胺酰亚胺、聚醚酰亚胺、聚苯硫醚、聚苯醚、聚砜、聚醚砜、聚氯乙烯、聚碳酸酯、聚甲醛、乙烯-乙酸乙烯酯聚合物中的一种或多种;
    更优选地,所述树脂基体为所述聚烯烃;进一步优选地,所述聚烯烃选自聚丙烯和/或聚乙烯。
  7. 根据权利要求1至6中任一项所述的助剂母粒,其特征在于,按照重量份计,所述助剂母粒的原料包括30~70份的所述树脂基材、0.1~30份的所述高熔点助剂及30~70份的所述低熔点助剂;
    更优选地,按照重量份计,所述助剂母粒的原料包括30~70份的所述树脂基材、1~25份的所述高熔点助剂及30~70份的所述低熔点助剂;
    进一步优选地,按照重量份计,所述助剂母粒的原料包括40~60份的所述树脂基材、1~20份的所述高熔点助剂及40~60份的所述低熔点助剂;
    进一步优选地,所述高熔点助剂与所述低熔点助剂的重量比为1∶3~15,最优选1∶5~15。
  8. 根据权利要求1至7中任一项所述的助剂母粒,其特征在于,所述低熔点助剂为2,2,6,6-四甲基-4-哌啶硬脂酸酯、2,2,6,6-四甲基-4-哌啶硬脂酸酯与3,5-二叔丁基-4-羟基苯甲酸正十六酯的混合物中的一种或多种,所述树脂基材为聚乙烯或聚丙烯,所述高熔点助剂为三[2.4-二叔丁基苯基]亚磷酸酯、1,3,5-三(3,5-二叔丁基-4-羟基苄基)-1,3,5-三嗪-2,4,6(1H,3H,5H)-三酮、1,3,5-三甲基-2,4,6-三(3,5-二叔丁基-4-羟基苄基)苯、聚乙烯蜡中的一种或多种;
    优选地,所述助剂母粒包括:
    1~20份三[2.4-二叔丁基苯基]亚磷酸酯、30~50份2,2,6,6-四甲基-4-哌啶硬脂酸酯和30~50份聚丙烯树脂;或
    1~20份1,3,5-三(3,5-二叔丁基-4-羟基苄基)-1,3,5-三嗪-2,4,6(1H,3H,5H)-三酮、30~50份2,2,6,6-四甲基-4-哌啶硬脂酸酯和30~50份聚丙烯树脂;或
    1~20份1,3,5-三甲基-2,4,6-三(3,5-二叔丁基-4-羟基苄基)苯、30~50份2,2,6,6-四甲基-4-哌啶硬脂酸酯和30~50份聚丙烯树脂;或
    0.1~10份三[2.4-二叔丁基苯基]亚磷酸酯、0.1~10份1,3,5-三甲基-2,4,6-三(3,5-二叔丁基-4-羟基苄基)苯、30~50份2,2,6,6-四甲基-4-哌啶硬脂酸酯和30-50份聚丙烯树脂;或
    0.1~10份三[2.4-二叔丁基苯基]亚磷酸酯、0.1~10份1,3,5-三(3,5-二叔丁基-4-羟基苄基)-1,3,5-三嗪-2,4,6(1H,3H,5H)-三酮、30~50份2,2,6,6-四甲基-4-哌啶硬脂酸酯和30~50份聚丙烯树脂;或
    0.1~10份聚乙烯蜡、0.1~10份1,3,5-三(3,5-二叔丁基-4-羟基苄基)-1,3,5-三嗪-2,4,6(1H,3H,5H)-三酮和/或三[2.4-二叔丁基苯基]亚磷酸酯和/或1,3,5-三甲基-2,4,6-三(3,5-二叔丁基-4-羟基苄基)苯、30~50份2,2,6,6-四甲基-4-哌啶硬脂酸酯和30~50份聚丙烯树脂。
  9. 根据权利要求1至9中任一项所述的助剂母粒,其特征在于,所述助剂母粒经由所述原料依次通过螺杆挤出、制粒、干燥、冷却形成,优选所述制粒采用水下切粒,其操作温度为190~230℃;优选地,所述高分子材料助剂母粒的粒径为1~5mm。
  10. 一种权利要求1至9中任一项所述的助剂母粒在高分子材料中的应用。
PCT/CN2023/110615 2022-08-05 2023-08-01 一种助剂母粒及其应用 WO2024027722A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210940265.4 2022-08-05
CN202210940265.4A CN117551318A (zh) 2022-08-05 2022-08-05 一种助剂母粒及其应用

Publications (1)

Publication Number Publication Date
WO2024027722A1 true WO2024027722A1 (zh) 2024-02-08

Family

ID=89815365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110615 WO2024027722A1 (zh) 2022-08-05 2023-08-01 一种助剂母粒及其应用

Country Status (2)

Country Link
CN (1) CN117551318A (zh)
WO (1) WO2024027722A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0982356A2 (en) * 1998-08-28 2000-03-01 Clariant Finance (BVI) Limited Improved stabilized coatings
CN104114616A (zh) * 2012-02-01 2014-10-22 株式会社Adeka 树脂添加剂母料
CN110041616A (zh) * 2019-04-29 2019-07-23 宿迁联盛科技股份有限公司 一种防析出光稳定剂3853母粒及其制备方法
CN110776688A (zh) * 2019-11-14 2020-02-11 东莞市恒彩塑胶颜料有限公司 一种抗氧抗uv的色母粒及其制备方法
US20200165430A1 (en) * 2017-07-26 2020-05-28 Ineos Styrolution Group Gmbh Scratch-resistant styrene copolymer composition containing amide wax
CN111675885A (zh) * 2020-06-22 2020-09-18 宿迁联宏新材料有限公司 一种pet防光老化耐候母粒及其制备方法
CN113736177A (zh) * 2021-09-30 2021-12-03 江门市严恩化工科技有限公司 一种耐候母粒uv-7308pp5及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0982356A2 (en) * 1998-08-28 2000-03-01 Clariant Finance (BVI) Limited Improved stabilized coatings
CN104114616A (zh) * 2012-02-01 2014-10-22 株式会社Adeka 树脂添加剂母料
US20200165430A1 (en) * 2017-07-26 2020-05-28 Ineos Styrolution Group Gmbh Scratch-resistant styrene copolymer composition containing amide wax
CN110041616A (zh) * 2019-04-29 2019-07-23 宿迁联盛科技股份有限公司 一种防析出光稳定剂3853母粒及其制备方法
CN110776688A (zh) * 2019-11-14 2020-02-11 东莞市恒彩塑胶颜料有限公司 一种抗氧抗uv的色母粒及其制备方法
CN111675885A (zh) * 2020-06-22 2020-09-18 宿迁联宏新材料有限公司 一种pet防光老化耐候母粒及其制备方法
CN113736177A (zh) * 2021-09-30 2021-12-03 江门市严恩化工科技有限公司 一种耐候母粒uv-7308pp5及其制备方法和应用

Also Published As

Publication number Publication date
CN117551318A (zh) 2024-02-13

Similar Documents

Publication Publication Date Title
CN106589514B (zh) 一种光稳定剂组合物母粒及其制备方法和应用
CN102234417B (zh) 户外通信柜用pc/abs合金
JP6872048B2 (ja) 封入安定剤組成物
CN109294225B (zh) 一种双向拉伸聚酰胺薄膜功能母料及其制备方法
CN113736177B (zh) 一种耐候母粒uv-7308pp5及其制备方法和应用
CN110041616B (zh) 一种防析出光稳定剂3853母粒及其制备方法
WO2008033410A1 (en) High concentration pelletized additive concentrates for polymer
CN109836667A (zh) 一种聚乙烯开口剂母粒组合物的制作工艺
BR112015000600B1 (pt) pellet misto
CN107936495B (zh) 一种抗紫外高阻水pbat薄膜及其制备方法
WO2024027722A1 (zh) 一种助剂母粒及其应用
JPS621734A (ja) ポリマ−類の難燃剤として安定化されかつ担持された赤リン
CN110791031A (zh) 一种低硬度溴化丁基橡胶聚丙烯热塑性弹性体
CN111251494B (zh) 一种低熔点耐候助剂母粒的制备方法
CA2598102C (en) Use of silicon oxide compounds as free-flow agents in the production of solid polyvinyl acetate resins
JP3480064B2 (ja) ポリプロピレン系樹脂組成物
CN106589453B (zh) 一种光稳定剂组合物及其制备方法
Colbeaux et al. Compatibilization of a polyolefin blend through covalent and ionic coupling of grafted polypropylene and polyethylene. II. Morphology
CN113462079B (zh) 一种防析出和起霜的光稳定剂3853母粒及制备方法
CN112831067B (zh) 一种改性耐候母粒及其制备方法与应用
CN111073122B (zh) 一种聚乙烯组合物及其制备方法
CN114957842B (zh) 医用低气味组合物以及医用低气味薄膜材料及其制备方法
CA1203341A (en) Polymers characterized by 1,3-imidazolidine-1,3-diyl rings plasticized with phosphate esters
CN104448573A (zh) 一种低voc聚丙烯组合物及其制备方法
JP2004035625A (ja) 4−メチル−1−ペンテン系重合体の樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849428

Country of ref document: EP

Kind code of ref document: A1