WO2024027645A1 - 减反射膜及其制备方法和应用 - Google Patents

减反射膜及其制备方法和应用 Download PDF

Info

Publication number
WO2024027645A1
WO2024027645A1 PCT/CN2023/110224 CN2023110224W WO2024027645A1 WO 2024027645 A1 WO2024027645 A1 WO 2024027645A1 CN 2023110224 W CN2023110224 W CN 2023110224W WO 2024027645 A1 WO2024027645 A1 WO 2024027645A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
absorption
film
refractive index
reflection film
Prior art date
Application number
PCT/CN2023/110224
Other languages
English (en)
French (fr)
Inventor
陈小群
金跃红
谭造时
Original Assignee
蓝思科技(长沙)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蓝思科技(长沙)有限公司 filed Critical 蓝思科技(长沙)有限公司
Publication of WO2024027645A1 publication Critical patent/WO2024027645A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0089Reactive sputtering in metallic mode
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/003Light absorbing elements

Definitions

  • the present invention relates to the technical field of display devices, and in particular to an anti-reflection film and its preparation method and application.
  • the window area (VA) and the ink area (VA) of the product should be adjusted when the screen is turned off.
  • BM or other materials to achieve a consistent visual effect and a good one-piece black effect.
  • the first object of the present invention is to provide an anti-reflective film that not only has good absorption, but also ensures high resistance performance, and can achieve an all-black effect without affecting the touch function. Effect.
  • the second object of the present invention is to provide a method for preparing an anti-reflective film.
  • the third object of the present invention is to provide an application of an anti-reflective film.
  • the anti-reflective film can be widely used in the preparation process of a touch screen integrated black display device.
  • the invention provides an anti-reflective film, which includes a base material and an absorption film layer plated on the base material;
  • the absorption film layer includes at least one absorption layer made of TixSiyN material, at least one low refractive index layer and at least one high refractive index layer that are alternately stacked;
  • the thickness of the absorption film layer is 100-1000nm, and the total thickness of the absorption layer made of TixSiyN material in the absorption film layer is ⁇ 55nm, and is not 0nm.
  • the absorption layer made of TixSiyN material has an absorptivity of 0-50% in the visible light range, and a surface resistance of >100M ⁇ / cm2 ;
  • the number of film system layers of the absorption film layer is ⁇ 5 layers;
  • the thickness of a single layer of the absorption layer made of TixSiyN material in the absorption film layer is 1 to 55 nm, preferably 5 to 20 nm, and more preferably 7 to 10 nm.
  • the material of the high refractive index layer is at least one of TiO 2 , Nb 2 O 5 , Si 3 N 4 , Al 2 O 3 and AlN, preferably Si 3 N 4 ;
  • the material of the low refractive index layer is at least one of SiO 2 , MgF 2 and NaF, preferably SiO 2 .
  • the anti-reflection film also includes an optional fluoride layer, which is disposed on the absorption film layer of the anti-reflection film and is not in contact with the absorption layer made of Tix Si y N material. set up.
  • the invention provides a method for preparing the above-mentioned anti-reflection film, which method includes the following steps:
  • the preparation method further includes the step of plating a fluoride layer on the anti-reflective film.
  • the plating method includes physical vapor deposition or chemical vapor deposition, preferably any one of ion plating, thermal evaporation or sputtering deposition in physical vapor deposition;
  • the absorption layer in the absorption film layer made of Ti ICP power is 1 ⁇ 5KW
  • N2 flow is 50 ⁇ 500sccm
  • coating time is 50 ⁇ 300S.
  • the temperature of the coating is 50-240°C, and the coating time is 10-60 minutes;
  • the substrate is aluminosilicate glass.
  • the invention provides an application of the above-mentioned anti-reflection film in the preparation of a touch screen integrated black display device.
  • the anti-reflection film provided by the invention includes a base material and an absorption film layer plated on the base material; wherein the absorption film layer includes at least one layer of alternately stacked layers made of Ti x Si y N material.
  • the prepared absorption layer includes at least one low-refractive index layer and at least one high-refractive index layer; the thickness of the absorption film layer is 100-1000 nm, and the absorption film layer is composed of Ti x Si y N
  • the total thickness of the absorption layer made of the material is ⁇ 55nm, and is not 0nm.
  • the absorption layer made of the above-mentioned Ti y
  • the invention provides a method for preparing an anti-reflective film.
  • the preparation method is as follows: providing a base material, and then alternately plating a high refractive index layer, a low refractive index layer and an absorption layer made of Tix Si y N material on the base material. , to prepare an anti-reflective film; the above preparation method has the advantages of simple processing technology and easy operation.
  • the anti-reflection film provided by the present invention can be widely used in the preparation process of touch screen integrated black display devices.
  • Figure 1 is a schematic structural diagram of an anti-reflection film provided in Embodiment 1 of the present invention.
  • an anti-reflective film includes a base material and an absorption film layer plated on the base material;
  • the absorption film layer includes at least one absorption layer made of TixSiyN material, at least one low refractive index layer and at least one high refractive index layer that are alternately stacked;
  • the thickness of the absorption film layer is 100-1000nm, and the total thickness of the absorption layer made of TixSiyN material in the absorption film layer is ⁇ 55nm, and is not 0nm.
  • the anti-reflection film provided by the invention includes a base material and an absorption film layer plated on the base material; wherein the absorption film layer includes at least one layer of alternately stacked layers made of Ti x Si y N material.
  • the prepared absorption layer includes at least one low refractive index layer and at least one high refractive index layer; the thickness of the absorption film layer is 100-1000nm, and the absorption film layer is made of Ti x Si y N material The total thickness of the absorption layer obtained is ⁇ 55nm, and is not 0nm.
  • the absorption layer made of the above- mentioned Ti The total thickness of the absorption layer made of x Si y N material, as well as the settings of the low refractive index layer and the high refractive index layer, ensure the performance of high surface resistance, thereby enabling the above-mentioned anti-reflection film of the present application to have good absorption while , also has high surface resistance performance, and can achieve the effect of one-piece black without affecting the touch function.
  • the existing technology often uses TiN/other metal nitride absorbing materials combined with low reflection (AR) film systems.
  • AR films containing TiN or other metal nitrides have stable and large absorption (absorption rate of 20nm film thickness >5%, the thicker the film thickness, the greater the absorption) for light with a wavelength of 380nm-740nm (bandwidth is wide enough) performance, but TiN or other metal nitrides are limited by material surface resistance ( ⁇ 1M ⁇ /cm 2 ), causing the installed touch function to fail.
  • TiN and SiN to make it.
  • Ti x Si y N material this material has relatively stable and large enough absorption in the visible light range (absorption rate of 20nm film thickness >5%), and the surface resistance is also greater than 100M ⁇ /cm 2 , thereby achieving the one-piece black effect. At the same time, it has excellent High resistance performance.
  • the absorption layer made of TixSiyN material has an absorption rate of 0-50% in the visible light range and a surface resistance of >100M ⁇ / cm2 ;
  • the above-mentioned absorption layer made of TixSiyN material has an absorption rate of 0-50% in the visible light range and a surface resistance of >100M ⁇ /cm 2 , which can fully meet the touch requirements of the touch screen.
  • the normal surface resistance of the control function needs to be >100M ⁇ / cm2 .
  • the absorption rate in the visible light range is also good, which can meet the process requirements of one-piece black.
  • R/T is the reflectivity/transmittance corresponding to the film system
  • L is the optical loss
  • A is the absorption rate
  • the capacitive touch screen Take the capacitive touch screen as an example.
  • the human body acts as a conductor.
  • weak current flows from the four sides or four corner electrodes.
  • the controller obtains the touch point position through precise calculation of the four current ratios.
  • the touch panel resistance is >100M ⁇ . /cm 2 , the resistance is large enough to ensure good touch function.
  • the Ti x Si y N material has good high resistance performance and absorbs >5% when the film thickness is 20nm, and the absorption is large enough.
  • the absorption film layer also includes at least one low refractive index layer and at least one high refractive index layer;
  • the low refractive index layer, the high refractive index layer and the absorption layer made of TixSiyN material are stacked alternately.
  • the above-mentioned absorption film layer includes at least one layer of low refractive index layer a, at least one layer of high refractive index layer b and one/multiple layers of absorption layer c, which can be arbitrarily formed into different structures such as abcba/ababcb/ababcbca/babca/bababca.
  • the low-fold and high-fold or high-fold and low-fold alternately laminated film systems achieve anti-reflection effects.
  • the absorption layer c can be located on any layer of the absorption film layer, which can achieve both the requirement of one-piece black and good large-scale effect. resistance properties.
  • the number of film layers of the absorption film layer is ⁇ 5 layers
  • the thickness of a single layer of the absorption layer made of TixSiyN material in the absorption film layer is 1 to 55 nm, preferably 5 to 20 nm, and more preferably 7 to 10 nm.
  • the thickness of a single absorption layer made of TixSiyN material in the above-mentioned absorption film layer is 1 to 55nm.
  • the resistance of the anti-reflection film is determined by the entire film.
  • the resistance of the anti-reflection film is determined by the total thickness of the multi-layer absorption film layer.
  • the material of the high refractive index layer is at least one of TiO 2 , Nb 2 O 5 , Si 3 N 4 , Al 2 O 3 and AlN, preferably Si 3 N 4 ;
  • the material of the low refractive index layer is at least one of SiO 2 , MgF 2 and NaF, preferably SiO 2 .
  • the anti-reflective film further includes optional fluorine layer, the fluoride layer is arranged on the absorption film layer of the anti-reflection film, and is not arranged in contact with the absorption layer made of TixSiyN material.
  • the fluoride layer also known as the AF layer, or Anti-Figerprint thin-film in English, mainly uses fluoride to be hydrophobic and oleophobic to prevent surface contamination of the touch screen.
  • the absorption layer is not set on the top layer because the combination of Ti x Si y N and AF film is not good, but it does not rule out that the touch screen does not use AF film, so the absorption layer is set on the outermost layer of the anti-reflection film.
  • a preparation method of the above-mentioned anti-reflection film includes the following steps:
  • the preparation method further includes the step of plating a fluoride layer on the anti-reflective film;
  • the invention provides a method for preparing an anti-reflective film.
  • the preparation method is as follows: providing a base material, providing the base material, and then alternately plating a high refractive index layer, a low refractive index layer and a layer made of Ti x Si y N material on the base material.
  • the obtained absorption layer is used to prepare an anti-reflective film; the above preparation method has the advantages of simple processing technology and easy operation.
  • the preparation method further includes the step of plating a fluoride layer on the anti-reflective film.
  • the plating method includes physical vapor deposition or chemical vapor deposition, preferably any one of ion plating, thermal evaporation or sputtering deposition in physical vapor deposition;
  • the absorption layer in the absorption film layer made of Ti ICP power is 1 ⁇ 5KW
  • N2 flow is 50 ⁇ 500sccm
  • coating time is 50 ⁇ 300S.
  • the Ti/Si ratio in the above-mentioned absorption layer made of Ti x Si y N material is mainly determined by target power, ICP power, gas flow, thickness, etc., and the Ti target ratio increases As the coating time increases, the absorption increases and the resistance decreases.
  • the temperature of the coating is 50-240°C, and the coating time is 10-60 minutes;
  • the substrate is aluminosilicate glass.
  • an application of the above-mentioned anti-reflection film is used in preparing a touch screen integrated black display device.
  • the anti-reflection film provided by the present invention can be widely used in the preparation process of touch screen integrated black display devices.
  • An anti-reflective film which includes a base material, an absorption film layer and a fluoride layer from bottom to top;
  • Figure 1 is a schematic structural diagram of the anti-reflection film of this embodiment.
  • the structure of the anti-reflection film is as follows: the base material is soda-lime glass; the absorption film layer is stacked from bottom to top, including a low refractive index layer, a high refractive index layer, a low refractive index layer, and a high refractive index layer. index layer, absorption layer and low refractive index layer; the fluoride layer is arranged with the outermost layer of the anti-reflection film; wherein, the low refractive layer is made of SiO 2 , the high refractive layer is made of Si 3 N 4 , and the absorption layer is made of Ti x Si y N, the thickness of the absorption layer Ti x Si y N can be selected from 1 to 55nm.
  • Base material soda-lime glass (1.1mm);
  • AF layer fluoride layer (5nm).
  • the preparation method of the anti-reflection film includes:
  • Ion source cleaning Clean the soda-lime glass substrate, surface bombard the glass substrate in a vacuum state, Ar gas is used as the sputtering gas, the ion source power is 2kW, and the time can be controlled between 60-300s.
  • (2) AR film coating Sputter on the glass substrate in order to form a low refractive index layer, a high refractive index layer, a low refractive index layer, a high refractive index layer, an absorption layer and a low refractive index layer.
  • the Si power When using the low refractive index layer, set the Si power to 15kW*3, the O2 flow to 800sccm, the coating time to be proportional to the film layer, and the ICP to be 2kW*4.
  • the Si power When using the high refractive index layer, set the Si power to 15kW*3, the N2 flow rate to 500sccm, the coating time to be proportional to the film layer, and the ICP to be 2kW*4.
  • the specific color difference testing data are as follows:
  • BM Ink is the ink number
  • AR is the anti-reflective film system number
  • L is the brightness
  • a is the color (red-green phase)
  • b is the color (yellow-blue phase)
  • ⁇ E represents the color difference value between the window area and the ink area, and generally requires ⁇ E ⁇ 2:
  • ⁇ E Sqrt((L BM -L VA ) 2 +(a BM -a VA ) 2 +(b BM -b VA ) 2 );
  • An anti-reflective film includes a base material and an absorption film layer;
  • the structure and thickness of the anti-reflection film are as follows:
  • Base material soda-lime glass (0.8mm);
  • the preparation method of the anti-reflection film includes:
  • (2) AR film coating Sputter on the glass substrate in order to form a low refractive index layer, a high refractive index layer, a low refractive index layer, a high refractive index layer, an absorption layer and a low refractive index layer.
  • the Ti power When sputtering the absorber layer, set the Ti power to 10kW, the Si power to 5.5kW*3, the N2 flow rate to 140sccm, the coating time to 70S, and the ICP to 2kW*4.
  • the x value is 0.14, The y value is 0.86.
  • the specific color difference testing data are as follows:
  • the test surface resistance is 230M ⁇ /cm 2 , which meets the good touch function. .
  • An anti-reflective film which includes a base material, an absorption film layer and a fluoride layer from bottom to top;
  • the structure and thickness of the anti-reflection film are as follows:
  • the preparation method of the anti-reflection film includes:
  • (2) AR film coating Sputter on the glass substrate in order to form a low refractive index layer, a high refractive index layer, a low refractive index layer, a high refractive index layer, an absorption layer and a low refractive index layer.
  • the Ti power When sputtering the absorber layer, set the Ti power to 10kW, the Si power to 5.5kW*3, the N2 flow rate to 140sccm, the coating time to 70S, and the ICP to 2kW*4.
  • the x value is 0.14, and the y value is 0.86.
  • the specific color difference testing data are as follows:
  • the window area (VA) of the D34-AR film system is more yellowish-green
  • the ink area (BM) G55 is more blue-green
  • G13 is more green
  • G79 is more gray.
  • the test surface resistance is 135M ⁇ /cm 2 , which meets the good touch function.
  • An anti-reflective film which includes a base material, an absorption film layer and a fluoride layer from bottom to top;
  • the structural layer of the anti-reflection film is the same as that of Embodiment 1;
  • Embodiment 1 adjusts the total thickness of the anti-reflection film, the thickness of the absorption layer TixSiyN , and the x and y values of the TixSiyN material; in addition, That's right
  • the color difference and surface resistance of the anti-reflection films prepared in each embodiment were tested, as follows:
  • the anti-reflection film of the present application is an anti-reflection film made in the range of a total thickness of 100 to 1000 nm, and the total thickness of the absorption layer made of Tix Si y N material in the absorption film layer is ⁇ 55 nm, Its surface resistance is greater than 100 (M ⁇ /cm2), which can fully meet the requirements of touch screens, and the color difference is less than 2, which has a good one-piece black effect.
  • An anti-reflective film which includes a base material, an absorption film layer and a fluoride layer from bottom to top;
  • the structural layer of the anti-reflection film is the same as that of Embodiment 1;
  • Embodiment 1 adjusts the total thickness of the anti-reflection film, the thickness of the absorption layer TixSiyN , and the x and y values of the TixSiyN material; in addition, The color difference and surface resistance of the anti-reflection films prepared in each embodiment were also tested, as follows:
  • An anti-reflective film which includes a base material, an absorption film layer and a fluoride layer from bottom to top;
  • the structural layer of the anti-reflection film is the same as that of Embodiment 1;
  • Embodiment 1 adjusts the total thickness of the anti-reflection film, the thickness of the absorption layer TixSiyN , and the x and y values of the TixSiyN material; in addition, The color difference and surface resistance of the anti-reflection films prepared in each embodiment were also tested, as follows:
  • the anti-reflection film of the present application including an absorption layer made of Ti x Si y N material not only has good absorption in the visible light region, but also has high surface resistance; at the same time, This application ensures the performance of high surface resistance by setting the thickness of the anti-reflection film and the total thickness of the absorption layer made of TixSiyN material in the absorption film layer, thereby making the above-mentioned anti-reflection film of this application have good performance While absorbing, it also has high surface resistance performance, which can achieve an all-in-one black effect without affecting the touch function.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明提供了一种减反射膜及其制备方法和应用,涉及一体黑显示器件技术领域。所述减反射膜包括基材以及镀载在基材上的吸收膜层;其中,所述吸收膜层包括交替层叠设置的至少一层由TixSiyN材料制得的吸收层,至少一层的低折射率层和至少一层的高折射率层;所述吸收膜层的厚度为100~1000nm,所述吸收膜层中由TixSiyN材料制得的吸收层的总厚度≤55nm,且不为0nm。上述TixSiyN材料制得的吸收层不但在可见光区具有很好的吸收,同时还具有较高的面电阻;此外本申请通过减反射膜的厚度以及吸收膜层中由TixSiyN材料制得的吸收层的总厚度设置,使本申请减反射膜在具有良好的吸收的同时,还具备高面阻性能。

Description

减反射膜及其制备方法和应用 技术领域
本发明涉及显示器件技术领域,尤其是涉及一种减反射膜及其制备方法和应用。
背景技术
随着科学技术的发展和人类文明的进步,触摸显示屏的应用越来越广泛,人们对显示屏也有着越来越高的要求,需要产品在息屏时视窗区(VA)与油墨区(BM)或其它材料的非视窗区达到一致的视觉效果,达到良好的一体黑效果。
为减少油墨区与视窗区的颜色差异,现有技术也出现了一些利用金属氮化物吸收材料制得的减反射膜产品,但现有的金属氮化物吸收材料往往存在面电阻较小或吸光率较差的问题,例如TiN吸收材料的面电阻仅为<1MΩ/cm2,而触摸显示屏的触控功能正常面电阻需>100MΩ/cm2(即单位cm2面积条件下的电阻阻抗需>100MΩ),很难将其应用于触屏膜。
因此,研究开发一种具有较佳的光吸收率和面电阻的减反射膜,以应用于触屏一体黑显示器件,变得十分必要和迫切。
有鉴于此,特提出本发明。
发明内容
本发明的第一目的在于提供一种减反射膜,所述减反射膜在具有良好的吸收的同时,又保证了高阻性能,在不影响触控功能基础上能够很好的达到一体黑的效果。
本发明的第二目的在于提供一种减反射膜的制备方法。
本发明的第三目的在于提供一种减反射膜的应用,减反射膜可以广泛应用于触屏一体黑显示器件的制备过程中。
为了实现本发明的上述目的,特采用以下技术方案:
本发明提供的一种减反射膜,所述减反射膜包括基材以及镀载在基材上的吸收膜层;
所述吸收膜层包括交替层叠设置的至少一层由TixSiyN材料制得的吸收层,至少一层的低折射率层和至少一层的高折射率层;
所述吸收膜层的厚度为100~1000nm,所述吸收膜层中由TixSiyN材料制得的吸收层的总厚度≤55nm,且不为0nm。
进一步的,所述由TixSiyN材料制得的吸收层在可见光范围内的吸收率为0~50%,面电阻>100MΩ/cm2
优选地,TixSiyN结构式中:0<x<0.19,0.81<y<1,x+y=1;
更优选地,TixSiyN结构式中:0.08<x<0.16,0.84<y<0.92,x+y=1。
进一步的,所述吸收膜层的膜系层数≥5层;
优选地,所述吸收膜层中单层由TixSiyN材料制得的吸收层的厚度为1~55nm,优选为5~20nm,更优选为7~10nm。
进一步的,所述高折射率层的材质为TiO2、Nb2O5、Si3N4、Al2O3和AlN中的至少一种,优选为Si3N4
优选地,所述低折射率层的材质为SiO2、MgF2和NaF中的至少一种,优选为SiO2
进一步的,所述减反射膜还包括任选的氟代物层,所述氟代物层设置于减反射膜的吸收膜层上,且不与由TixSiyN材料制得的吸收层相接触设置。
本发明提供的一种上述减反射膜的制备方法,所述制备方法包括以下步骤:
提供基材,随后在基材上交替镀高折射率层、低折射率层和由TixSiyN材料制得的吸收层,制得减反射膜;
任选地,所述制备方法还包括将氟代物层镀载于减反射膜上的步骤。
进一步的,所述镀载的方法包括物理气相沉积或化学气相沉积,优选为物理气相沉积中的离子镀、热蒸发或溅射沉积中的任意一种;
优选地,所述吸收膜层中的由TixSiyN材料制得的吸收层由溅射沉积法制得;所述溅射沉积法中Ti功率为8~20KW,Si功率为2~15KW,icp功率1~5KW,N2流量为50~500sccm,镀膜时间为50~300S。
进一步的,所述镀膜的温度为50-240℃,镀膜的时间为10-60min;
优选地,所述基材为铝硅酸盐玻璃。
本发明提供的一种上述减反射膜在制备触屏一体黑显示器件中的应用。
与现有技术相比,本发明的有益效果为:
本发明提供的减反射膜,所述减反射膜包括基材以及镀载在基材上的吸收膜层;其中,所述吸收膜层包括交替层叠设置的至少一层由TixSiyN材料制得的吸收层,至少一层的低折射率层和至少一层的高折射率层;所述吸收膜层的厚度为100~1000nm,所述所述吸收膜层中由TixSiyN材料制得的吸收层的总厚度≤55nm,且不为0nm。上述TixSiyN材料制得的吸收层不但在可见光区具有很好的吸收,同时还具有较高的面电阻;同时,本申请通过减反射膜的厚度以及吸收膜层中由TixSiyN材料制得的吸收层的总厚度, 以及低折射率层、高折射率层的设置,保证了高面阻的性能,进而使本申请上述减反射膜在具有良好的吸收的同时,还具备高面阻性能,在不影响触控功能基础上能够很好的达到一体黑的效果。
本发明提供的减反射膜的制备方法,所述制备方法为:提供基材,随后在基材上交替镀高折射率层、低折射率层和由TixSiyN材料制得的吸收层,制得减反射膜;上述制备方法具有加工工艺简单,易于操作的优势。
本发明提供的上述减反射膜可以广泛应用于触屏一体黑显示器件的制备过程中。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例1提供的减反射膜结构示意图。
具体实施方式
下面将结合实施例对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
根据本发明的一个方面,一种减反射膜,所述减反射膜包括基材以及镀载在基材上的吸收膜层;
所述吸收膜层包括交替层叠设置的至少一层由TixSiyN材料制得的吸收层,至少一层的低折射率层和至少一层的高折射率层;
所述吸收膜层的厚度为100~1000nm,所述吸收膜层中由TixSiyN材料制得的吸收层的总厚度≤55nm,且不为0nm。
本发明提供的减反射膜,所述减反射膜包括基材以及镀载在基材上的吸收膜层;其中,所述吸收膜层包括交替层叠设置的至少一层由TixSiyN材料制得的吸收层,至少一层的低折射率层和至少一层的高折射率层;所述吸收膜层的厚度为100~1000nm,所述吸收膜层中由TixSiyN材料制得的吸收层的总厚度≤55nm,且不为0nm。本申请上述TixSiyN材料制得的吸收层不但在可见光区具有很好的吸收,同时还具有较高的面电阻;同时,本申请通过减反射膜的厚度以及吸收膜层中由TixSiyN材料制得的吸收层的总厚度,以及低折射率层、高折射率层的设置,保证了高面阻的性能,进而使本申请上述减反射膜在具有良好的吸收的同时,还具备高面阻性能,在不影响触控功能基础上能够很好的达到一体黑的效果。
需要说明的是,为减少视窗区与非视窗区的视觉差异(以下称为“断差”),现有技术中往往使用含TiN/其他金属氮化物吸收材料搭配低反射(AR)膜系,含有TiN或其它金属氮化物的AR膜系对380nm-740nm波长的光线(带宽足够宽)具有平稳且较大(20nm膜厚的吸收率>5%,膜厚越厚,吸收越大)的吸收性能,但TiN或其它金属氮化物受材料面电阻制约(<1MΩ/cm2)导致装机触控功能失效。申请人通过长期的研究发现,Si由于短波光线吸收大,进而可见光吸收率差,很难用于减反射膜,但其绝缘性能较好,因此,申请人将TiN与SiN的混合创造性的制得TixSiyN材料,该材料在可见光范围内具有较平稳且足够大的吸收(20nm膜厚的吸收率>5%),同时面电阻亦大于100MΩ/cm2,进而在达到一体黑效果的同时兼具优良的 高阻性能。
在本发明的一种优选实施方式中,所述由TixSiyN材料制得的吸收层在可见光范围内的吸收率为0~50%,面电阻>100MΩ/cm2
作为一种优选的实施方式,上述由TixSiyN材料制得的吸收层在可见光范围内的吸收率为0~50%,面电阻>100MΩ/cm2,可充分满足触摸显示屏的触控功能正常面电阻需>100MΩ/cm2的要求,同时在可见光范围内的吸收率也较佳可以满足一体黑的工艺要求。
在上述优选实施方式中,TixSiyN结构式中:0<x<0.19,0.81<y<1,x+y=1。
优选地,TixSiyN结构式中:0.08<x<0.16,0.84<y<0.92,x+y=1;
需要说明的是,TixSiyN中,Ti/Si比例是影响吸收的主要因素,根据能量守恒定律:
R+T+L=1   式(1)
L=A+S   式(2)
其中,R/T为膜系对应的反射率/透射率,L为光学损耗,A为吸收率,S为散射率。因为光学薄膜的散射损耗比较小,S<1%;这里对散射损耗不进行考量,则有L=A,即
R+T+A=1   式(3)。
以电容式触摸屏为例,人体作为导体,按压屏幕时,微弱的电流从四条边或四个角电极流出,控制器通过对四个电流比例的精密计算从而得到触摸点位置,触摸面板电阻>100MΩ/cm2,电阻足够大可以保证良好的触摸功能,TixSiyN材料具有良好的高阻性能且在膜厚20nm时吸收>5%,吸收足够大。
定义势透过率Ψ为一束透过膜系的光能量透过率T与进入膜系能量(1-R)比值,综合能量守恒定律式(1)-式(3)得出:
A=(1-R)(1-Ψ)   式(4)
当R为定值时,吸收A与透射T成反比,因此加入TixSiyN材料使得膜系透过率降低,即视窗区与油墨区差异减小,一体黑效果佳。
同时,需要说明的是,所述吸收膜层还包括至少一层的低折射率层和至少一层的高折射率层;
所述低折射率层、高折射率层和由TixSiyN材料制得的吸收层交替层叠设置。
优选地,上述吸收膜层至少包括一层低折射率层a,至少一层高折射率层b再搭配一层/多层吸收层c,可任意构成abcba/ababcb/ababcbca/babca/bababca等不同的低折高折或高折低折交替层叠膜系实现减反射的效果,所述吸收层c可位于吸收膜层的任意层,均可实现在满足一体黑的要求的同时兼具良好的大电阻性能。
在本发明的一种优选实施方式中,所述吸收膜层的膜系层数≥5层;
优选地,所述吸收膜层中单层由TixSiyN材料制得的吸收层的厚度为1~55nm,优选为5~20nm,更优选为7~10nm。
作为一种优选的实施方式,上述吸收膜层中单层由TixSiyN材料制得的吸收层的厚度为1~55nm,当电阻率固定,吸收层厚度增加,电阻减小。而当吸收层的厚度大于55nm时,电阻过低可能导致触控功能失效。同时需要说明的是,减反射膜的电阻由整个膜决定,当吸收膜层为多层时,决定减反射膜电阻的是多层吸收膜层的总厚度。
在本发明的一种优选实施方式中,所述高折射率层的材质为TiO2、Nb2O5、Si3N4、Al2O3和AlN中的至少一种,优选为Si3N4
优选地,所述低折射率层的材质为SiO2、MgF2和NaF中的至少一种,优选为SiO2
在本发明的一种优选实施方式中,所述减反射膜还包括任选的氟代物 层,所述氟代物层设置于减反射膜的吸收膜层上,且不与由TixSiyN材料制得的吸收层相接触设置。
需要说明的是,所述氟代物层,又称AF层,英文全称为Anti-Figerprint thin-film,主要是利用氟化物来疏水疏油,防止触摸屏表面污染。吸收层不设置在顶层是因为TixSiyN与AF膜结合效果不好,但是不排除触摸屏没有使用AF膜,将吸收层设置在减反射膜的最外层。
根据本发明的一个方面,一种上述减反射膜的制备方法,所述制备方法包括以下步骤:
提供基材,随后在基材上交替镀高折射率层、低折射率层和由TixSiyN材料制得的吸收层,制得减反射膜;
任选地,所述制备方法还包括将氟代物层镀载于减反射膜上的步骤;
本发明提供的减反射膜的制备方法,所述制备方法为:提供基材,提供基材,随后在基材上交替镀高折射率层、低折射率层和由TixSiyN材料制得的吸收层,制得减反射膜;上述制备方法具有加工工艺简单,易于操作的优势。
任选地,所述制备方法还包括将氟代物层镀载于减反射膜上的步骤。
在本发明的一种优选实施方式中,所述镀载的方法包括物理气相沉积或化学气相沉积,优选为物理气相沉积中的离子镀、热蒸发或溅射沉积中的任意一种;
优选地,所述吸收膜层中的由TixSiyN材料制得的吸收层由溅射沉积法制得;所述溅射沉积法中Ti功率为8~20KW,Si功率为2~15KW,icp功率1~5KW,N2流量为50~500sccm,镀膜时间为50~300S。
作为一种优选的实施方式,上述由TixSiyN材料制得的吸收层中的Ti/Si比例主要由靶材功率、ICP功率、气体流量、厚度等共同决定,Ti靶比例增 加,电阻增加,吸收减小;镀膜时间增加,吸收增加,电阻减小。
在本发明的一种优选实施方式中,所述镀膜的温度为50-240℃,镀膜的时间为10-60min;
优选地,所述基材为铝硅酸盐玻璃。
根据本发明的一个方面,一种上述减反射膜在制备触屏一体黑显示器件中的应用。
本发明提供的上述减反射膜可以广泛应用于触屏一体黑显示器件的制备过程中。
下面将结合实施例对本发明的技术方案进行进一步地说明。
实施例1
一种减反射膜,所述减反射膜由下至上依次包括基材、吸收膜层和氟代物层;
图1为本实施例减反射膜的结构示意图。
由图1可知,减反射膜结构如下:所述基材为钠钙玻璃;所述吸收膜层从下到上依次层叠设置的低折射率层、高折射率层、低折射率层、高折射率层、吸收层和低折射率层;所述氟代物层设置与减反射膜的最外层;其中,低折射层选用SiO2,高折射层选用Si3N4,吸收层选用TixSiyN,吸收层TixSiyN厚度可选自1~55nm。
具体结构和厚度如下:
基材:钠钙玻璃(1.1mm);
低折射层:SiO2(75nm);
高折射层:Si3N4(25nm);
低折射层:SiO2(52nm);
高折射层:Si3N4(130nm);
吸收层:TixSiyN(9nm);
低折射层:SiO2(90nm);
AF层:氟代物层(5nm)。
所述减反射膜的制备方法包括:
(1)离子源清洁:对钠钙玻璃基材进行清洁,在真空状态下对玻璃基材进行表面轰击,Ar气作为溅射气体,离子源功率为2kW,时间可控制在60-300s。
(2)镀AR膜:在玻璃基材上按顺序溅射形成低折射率层、高折射率层、低折射率层、高折射率层、吸收层和低折射率层。
所述溅射吸收层时,设定Ti功率为10kW,Si功率为5.5kW*3,N2流量为140sccm,镀膜时间为70S,ICP为2kW*4,得到的TixSiyN中,x值为0.14,y值为0.86。
所述低折射率层时,设定Si功率为15kW*3,O2流量为800sccm,镀膜时间与膜层成正比,ICP为2kW*4。
所述高折射率层时,设定Si功率为15kW*3,N2流量为500sccm,镀膜时间与膜层成正比,ICP为2kW*4。
(3)镀AF:将氟化物在400℃下蒸镀600s获得,厚度为10nm左右。
(4)静置:将得到的膜系堆叠结构静置3h,得到减反射膜。
效果检测:
申请人对上述减反射膜进行性能检测,具体色差检测数据如下:
表中参数:BM Ink为油墨编号,AR为减反射膜系编号,L为亮度,a 为颜色(红绿色相),b为颜色(黄蓝色相),ΔE表示视窗区与油墨区颜色差异值,一般要求ΔE<2:
ΔE的计算公式如下:
ΔE=Sqrt((LBM-LVA)2+(aBM-aVA)2+(bBM-bVA)2);
由上表数据可见,贴合后产品视窗区(VA区)与油墨区(BM区)差异较小,ΔE=0.77。据观察颜色偏中性,大小角度都呈现中性,呈现良好的一体黑效果,测试面电阻为2.85×103MΩ/cm2,满足良好的触控功能。
实施例2
一种减反射膜,所述减反射膜包括基材和吸收膜层;
所述减反射膜的结构与厚度如下:
基材:钠钙玻璃(0.8mm);
低折射层:SiO2(25nm);
高折射层:Si3N4(32.7nm);
低折射层:SiO2(75nm);
高折射层:Si3N4(32nm);
吸收层:TixSiyN(12nm);
高折射层:Si3N4(53.5nm);
吸收层:TixSiyN(10nm);
低折射层:SiO2(85.5nm)。
所述减反射膜的制备方法包括:
(1)离子源清洁:同实施例1。
(2)镀AR膜:在玻璃基材上按顺序溅射形成低折射率层、高折射率层、低折射率层、高折射率层、吸收层和低折射率层。
所述溅射吸收层时,设定Ti功率为10kW,Si功率为5.5kW*3,N2流量为140sccm,镀膜时间为70S,ICP为2kW*4,得到的TixSiyN中,x值为0.14, y值为0.86。
(3)静置:将得到的膜系堆叠结构静置3h,得到减反射膜。
效果检测:
申请人对上述减反射膜进行性能检测,具体色差检测数据如下:
结果表明,ΔE=1.09,贴合后效果视窗区与油墨区颜色差异小,贴合后颜色微蓝,可根据不同要求进行优化调试,测试面电阻为230MΩ/cm2,满足良好的触控功能。
实施例3
一种减反射膜,所述减反射膜由下至上依次包括基材、吸收膜层和氟代物层;
所述减反射膜的结构与厚度如下:
低折射层:SiO2(22.85nm);
高折射层:Si3N4(15.72nm);
低折射层:SiO2(36.52nm);
吸收层:TixSiyN(12.5nm);
低折射层:SiO2(121.3nm);
高折射层:Si3N4(13.55nm);
低折射层:SiO2(45.2m);
吸收层:TixSiyN(8.3nm);
高折射层:Si3N4(67nm);
吸收层:TixSiyN(10nm);
低折射层:SiO2(89.95nm)。
所述减反射膜的制备方法包括:
(1)离子源清洁:同实施例1。
(2)镀AR膜:在玻璃基材上按顺序溅射形成低折射率层、高折射率层、低折射率层、高折射率层、吸收层和低折射率层。
所述溅射吸收层时,设定Ti功率为10kW,Si功率为5.5kW*3,N2流量为140sccm,镀膜时间为70S,ICP为2kW*4,得到的TixSiyN中,x值为0.14,y值为0.86。
(3)静置:同实施例1。
效果检测:
申请人对上述减反射膜进行性能检测,具体色差检测数据如下:
由上图可得,D34-AR膜系贴合后视窗区(VA)偏黄绿色,油墨区(BM)G55偏蓝绿,G13偏绿,G79偏灰色,一体黑效果更佳,ΔE=0.8,测试面电阻为135MΩ/cm2,满足良好的触控功能。
实施例4~12
一种减反射膜,所述减反射膜由下至上依次包括基材、吸收膜层和氟代物层;
所述减反射膜的结构层次同实施例1;
相对于实施例1的区别在于,本实施例对实施方式中的减反射膜总厚度、吸收层TixSiyN的厚度,TixSiyN材料的x、y值进行了调整;此外,还对 各实施例制得的减反射膜色差和面电阻进行了检测,具体如下:
由上述可知,本申请减反射膜在总厚度为100~1000nm,所述吸收膜层中由TixSiyN材料制得的吸收层的总厚度≤55nm的范围内制得的减反射膜,其面电阻均大于100(MΩ/cm2)能充分满足触屏的要求,且色差小于2,具有很好的一体黑效果。
实施例13~15
一种减反射膜,所述减反射膜由下至上依次包括基材、吸收膜层和氟代物层;
所述减反射膜的结构层次同实施例1;
相对于实施例1的区别在于,本实施例对实施方式中的减反射膜总厚度、吸收层TixSiyN的厚度,TixSiyN材料的x、y值进行了调整;此外,还对各实施例制得的减反射膜色差和面电阻进行了检测,具体如下:

由上述可知,当本申请减反射膜中TixSiyN材料的x、y值不在“0<x<0.19,0.81<y<1,x+y=1”的范围内时,面电阻偏小,难以满足触摸显示屏的要求。
对比例1~5
一种减反射膜,所述减反射膜由下至上依次包括基材、吸收膜层和氟代物层;
所述减反射膜的结构层次同实施例1;
相对于实施例1的区别在于,本实施例对实施方式中的减反射膜总厚度、吸收层TixSiyN的厚度,TixSiyN材料的x、y值进行了调整;此外,还对各实施例制得的减反射膜色差和面电阻进行了检测,具体如下:

由上述可知,当减反射膜总膜厚过厚或过薄时,反射/亮度高,颜色难以控制,一体黑效果差;同时当TixSiyN膜厚大于55时,电阻偏小,触控功能失灵;而当y=0时,TixSiyN相当于TiN材料,电阻偏小,触控功能失效。
综上,由上述检测可知,由本申请包含有由TixSiyN材料制得的吸收层的减反射膜,不但在可见光区具有很好的吸收,同时还具有较高的面电阻;同时,本申请通过减反射膜的厚度以及吸收膜层中由TixSiyN材料制得的吸收层的总厚度设置,保证了高面阻的性能,进而使本申请上述减反射膜在具有良好的吸收的同时,还具备高面阻性能,在不影响触控功能基础上能够很好的达到一体黑的效果。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种减反射膜,其特征在于,所述减反射膜包括基材以及镀载在基材上的吸收膜层;
    所述吸收膜层包括交替层叠设置的至少一层由TixSiyN材料制得的吸收层,至少一层的低折射率层和至少一层的高折射率层;
    所述吸收膜层的厚度为100~1000nm,所述吸收膜层中由TixSiyN材料制得的吸收层的总厚度≤55nm,且不为0nm。
  2. 根据权利要求1所述的减反射膜,其特征在于,所述由TixSiyN材料制得的吸收层在可见光范围内的吸收率为0~50%,面电阻>100MΩ/cm2
    优选地,TixSiyN结构式中:0<x<0.19,0.81<y<1,x+y=1;
    更优选地,TixSiyN结构式中:0.08<x<0.16,0.84<y<0.92,x+y=1。
  3. 根据权利要求1所述的减反射膜,其特征在于,所述吸收膜层的膜系层数≥5层。
  4. 根据权利要求1所述的减反射膜,其特征在于,所述吸收膜层中单层由TixSiyN材料制得的吸收层的厚度为1~55nm,优选为5~20nm,更优选为7~10nm。
  5. 根据权利要求1所述的减反射膜,其特征在于,所述高折射率层的材质为TiO2、Nb2O5、Si3N4、Al2O3和AlN中的至少一种,优选为Si3N4
    优选地,所述低折射率层的材质为SiO2、MgF2和NaF中的至少一种,优选为SiO2
  6. 根据权利要求1所述的减反射膜,其特征在于,所述减反射膜还包括任选的氟代物层,所述氟代物层设置于减反射膜的吸收膜层上,且不与由TixSiyN材料制得的吸收层相接触设置。
  7. 一种根据权利要求1~6任一项所述的减反射膜的制备方法,其特征在于,所述制备方法包括以下步骤:
    提供基材,随后在基材上交替镀高折射率层、低折射率层和由TixSiyN材料制得的吸收层,制得减反射膜;
    任选地,所述制备方法还包括将氟代物层镀载于减反射膜上的步骤。
  8. 根据权利要求7所述的减反射膜的制备方法,其特征在于,所述镀载的方法包括物理气相沉积或化学气相沉积,优选为物理气相沉积中的离子镀、热蒸发或溅射沉积中的任意一种;
    优选地,所述吸收膜层中的由TixSiyN材料制得的吸收层由溅射沉积法制得;所述溅射沉积法中Ti功率为8~20KW,Si功率为2~15KW,icp功率1~5KW,N2流量为50~500sccm,镀膜时间为50~300S。
  9. 根据权利要求7所述的减反射膜的制备方法,其特征在于,所述镀膜的温度为50-240℃,镀膜的时间为10-60min;
    优选地,所述基材为铝硅酸盐玻璃。
  10. 一种根据权利要求1~6任一项所述的减反射膜在制备触屏一体黑显示器件中的应用。
PCT/CN2023/110224 2022-08-01 2023-07-31 减反射膜及其制备方法和应用 WO2024027645A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210917348.1 2022-08-01
CN202210917348.1A CN115113305A (zh) 2022-08-01 2022-08-01 减反射膜及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2024027645A1 true WO2024027645A1 (zh) 2024-02-08

Family

ID=83334815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110224 WO2024027645A1 (zh) 2022-08-01 2023-07-31 减反射膜及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN115113305A (zh)
WO (1) WO2024027645A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115113305A (zh) * 2022-08-01 2022-09-27 蓝思科技(长沙)有限公司 减反射膜及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005010225A1 (en) * 2003-07-25 2005-02-03 Antoine Bittar Solar selective surface coatings, materials for use therein and a method of producing same
CN103383155A (zh) * 2013-06-21 2013-11-06 中国科学院上海技术物理研究所 Ti合金氮化物选择性吸收膜系及其制备方法
CN103411335A (zh) * 2013-07-30 2013-11-27 中国科学院上海技术物理研究所 辐射吸收层基于混合物的选择性吸收膜系
CN103753897A (zh) * 2014-01-13 2014-04-30 福耀玻璃工业集团股份有限公司 一种宽角度宽带减反射镀膜玻璃
CN210626697U (zh) * 2019-09-06 2020-05-26 苏州胜利精密制造科技股份有限公司 一体黑镀膜盖板
CN115113305A (zh) * 2022-08-01 2022-09-27 蓝思科技(长沙)有限公司 减反射膜及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103029371A (zh) * 2012-12-31 2013-04-10 郭射宇 一种太阳能选择性吸收膜及其制备方法
JP2020067582A (ja) * 2018-10-25 2020-04-30 日東電工株式会社 反射防止フィルム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005010225A1 (en) * 2003-07-25 2005-02-03 Antoine Bittar Solar selective surface coatings, materials for use therein and a method of producing same
CN103383155A (zh) * 2013-06-21 2013-11-06 中国科学院上海技术物理研究所 Ti合金氮化物选择性吸收膜系及其制备方法
CN103411335A (zh) * 2013-07-30 2013-11-27 中国科学院上海技术物理研究所 辐射吸收层基于混合物的选择性吸收膜系
CN103753897A (zh) * 2014-01-13 2014-04-30 福耀玻璃工业集团股份有限公司 一种宽角度宽带减反射镀膜玻璃
CN210626697U (zh) * 2019-09-06 2020-05-26 苏州胜利精密制造科技股份有限公司 一体黑镀膜盖板
CN115113305A (zh) * 2022-08-01 2022-09-27 蓝思科技(长沙)有限公司 减反射膜及其制备方法和应用

Also Published As

Publication number Publication date
CN115113305A (zh) 2022-09-27

Similar Documents

Publication Publication Date Title
US5728456A (en) Methods and apparatus for providing an absorbing, broad band, low brightness, antireflection coating
EP2747093B1 (en) Conductive structure and method for manufacturing same
TWI545595B (zh) 導電結構體及其製造方法
WO2024027645A1 (zh) 减反射膜及其制备方法和应用
JP2000356706A (ja) 光吸収性反射防止体とその製造方法
JPH0414761B2 (zh)
CA2593990A1 (en) Coated article with low-e coating including ir reflecting layer(s) and corresponding method
TW201007777A (en) Conducting film or electrode with improved optical and electrical performance
JP2001249221A (ja) 透明積層体とその製造方法およびプラズマデイスプレイパネル用フイルタ
CN102200657A (zh) 带遮光膜的玻璃基板及液晶显示装置
JPH07502840A (ja) 向上した電極を含む光変調装置
JP2509215B2 (ja) 反射防止能を有する透明導電性フイルム
JP2001209038A (ja) 液晶表示素子用基板
US5858519A (en) Absorbing anti-reflection coatings for computer displays
JPH02245702A (ja) 反射防止膜及びその製作方法
CN1442872A (zh) 多层纳米透明导电膜及其制备方法
JP2011138135A (ja) 透明導電膜及びそれを含むディスプレイフィルタ
JP3190240B2 (ja) 光吸収性反射防止体とその製造方法
US11345631B2 (en) Functional building material for door and window
WO2020103206A1 (zh) 一种偏振无关的滤光片
CN111766655B (zh) 一种超宽通带短波通滤光膜及其制备方法
JP3135010B2 (ja) 導電性反射防止膜
JPS63131101A (ja) 多層反射防止膜
CN104691040B (zh) 减反射膜、其制备方法及减反射玻璃
KR102020990B1 (ko) 스마트 윈도우용 투명전극필름, 이의 제조방법 및 이를 포함하는 pdlc 스마트 윈도우

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849352

Country of ref document: EP

Kind code of ref document: A1