WO2024027629A1 - 传输信息的方法和相关装置 - Google Patents

传输信息的方法和相关装置 Download PDF

Info

Publication number
WO2024027629A1
WO2024027629A1 PCT/CN2023/110175 CN2023110175W WO2024027629A1 WO 2024027629 A1 WO2024027629 A1 WO 2024027629A1 CN 2023110175 W CN2023110175 W CN 2023110175W WO 2024027629 A1 WO2024027629 A1 WO 2024027629A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
resources
reference signal
sidelink
communication device
Prior art date
Application number
PCT/CN2023/110175
Other languages
English (en)
French (fr)
Inventor
黎超
薛丽霞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024027629A1 publication Critical patent/WO2024027629A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink

Definitions

  • the embodiments of the present application relate to the field of communication technology, and more specifically, to methods and related devices for transmitting information.
  • LBS location based services
  • GNSS Global navigation satellite system
  • the embodiments of the present application provide a method and related devices for transmitting information, which can simplify the resource determination scheme and facilitate the implementation of communication equipment.
  • embodiments of the present application provide a method for transmitting information, including: a first communication device receiving at least one first message, each of the at least one first messages including a first sidelink control information and a first sidelink positioning reference signal; the first communication device includes at least one first sidelink control information and/or at least one first sidelink positioning reference signal according to the at least one first message. , determine candidate resources for a second message, where the second message includes second sidelink control information and a second sidelink positioning reference signal; the first communication device sends the second message according to the candidate resource.
  • the first communication device may determine the candidate resource based on the sidelink control information and the sidelink positioning reference signal received in at least one first message, and use the candidate resource in the second message based on the candidate resource.
  • the second sidelink control information and the second sidelink positioning reference signal are sent.
  • the first communication device simultaneously determines resources for transmitting the second sidelink control information and resources for transmitting the second sidelink positioning reference signal according to the received message. This can simplify the resource determination scheme and facilitate the implementation of communication equipment.
  • the first communication device determines the first side link control information and/or the at least one first side link control information included in the at least one first message.
  • the downlink positioning reference signal determines the candidate resource of the second message, including: the first communication device performs M sidelink control channels and/or M first sidelink positioning references within the first time window. The signal is measured to determine the first resource.
  • the first resource includes a resource whose signal quality is higher than the signal quality threshold.
  • the M first sidelink control information is carried on the M sidelink control channels respectively.
  • the at least One first sidelink control information includes the M pieces of first sidelink control information, and the at least one first sidelink positioning reference signal includes the M pieces of first sidelink positioning reference signals, and M is Positive integer; the first communication device determines the candidate resource according to the first resource, the candidate resource is located within the second time window, and the second time window is located after the first time window.
  • the first communication device can determine the information to be sent in the following time window (i.e., the second time window) based on the information received in the previous time window (i.e., the first time window). resource. In this way, the first communication device can plan resources in advance.
  • the first communication device determines the candidate resource according to the first resource, including: the first communication device determines the candidate resource according to the M first side links channel control information to determine the reservation period; the first communication device The equipment determines a second resource based on the first resource and the reservation period, and the second resource is located within the second time window; the first communication equipment excludes the second resource to obtain the candidate resource.
  • the first resource is determined based on the information received within the first time window. Therefore, the time domain resource corresponding to the first resource is located within the first time window.
  • the first communication device can determine the resources to be reserved within the second time window (that is, the second resources) by determining the reservation period and the first resources. The first communication device then excludes these resources, and the remaining resources are those that can be used to send the second message.
  • the second sidelink control information includes indication information of the second reservation period.
  • the second reservation period is determined according to any one of the following methods: high-level indication information of the first communication device; the second side link QoS parameters of the road positioning reference signal; the moving speed of the first communication device; the positioning algorithm used by the first communication device; the type of synchronization source; the priority; and the degree of congestion on the resource pool.
  • the first communication device determines the reservation period information used to send the sidelink positioning reference signal, so that the second communication device can make effective resource selection based on this confirmation. And determined according to the above method, the accuracy of the positioning reference signal reservation period can be improved and the positioning performance can be improved.
  • the second reservation period is determined according to at least one of the following ways: the first communication device obtains first configuration information, where the configuration information includes: Mp reservation periods, where Mp is a positive integer, and the value or value set of the Mp reservation periods is determined by any of the following methods: the second sidelink positioning reference signal QoS parameter; The moving speed of the first communication device; the positioning algorithm used by the first communication device; the type of synchronization source; the priority; and the degree of congestion on the resource pool.
  • the first communication device determines the reservation period information used to send the sidelink positioning reference signal.
  • the value or value range of the reservation period is determined according to the above-mentioned first configuration information method, which can improve the positioning reference signal.
  • the accuracy of the reservation period improves positioning performance.
  • the positioning algorithm includes one or more of the following: a positioning algorithm based on round-trip delay difference; a positioning algorithm based on angle of arrival; a positioning algorithm based on departure angle Positioning algorithm; Positioning algorithm based on carrier phase.
  • the first communication device determines the reservation period information used to send the sidelink positioning reference signal and determines it according to the positioning algorithm, which can improve the accuracy of the reservation period of the positioning reference signal and improve positioning performance.
  • the method further includes: the first communication device determining a second resource based on the first resource, the reservation period, and the second reservation period. , the second reservation period is included in the second sidelink control information.
  • the first communication device determines the candidate resource for sending the sidelink positioning reference signal according to the first reservation period and the second reservation period, so that the second communication device can perform effective operation based on this confirmation. Resource selection.
  • the first communication device positions M sidelink control channels and/or M first sidelinks within the first time window.
  • Measuring the reference signals to determine the first resource includes: the first communication device measuring the M first sidelink positioning reference signals to obtain a first measurement result, where the first measurement result includes M 1 references The signal quality of the signal resources.
  • the M 1 reference signal resources respectively carry M 1 first sidelink positioning reference signals among the M first sidelink positioning reference signals. M 1 is less than or equal to M. Positive integer; the first communication device determines the first resource according to the first signal quality threshold and the first measurement result.
  • the first resource includes a first reference signal resource and a control channel resource corresponding to the first reference signal resource.
  • the first reference signal resource is a reference signal resource whose signal quality is higher than the first signal quality threshold among the M 1 reference signal resources.
  • the first communication device may only need to measure the signal quality of the sidelink positioning reference signal, filter out the reference signal resources that need to be included in the first resource (that is, the resources that need to be excluded), and then use the filtered reference signal resources to And the corresponding relationship determines the corresponding sidelink control channel resources.
  • These sidelink control channel resources are also resources that need to be excluded.
  • the first communication device may determine the sidelink control channel resources that need to be included in the first resource (that is, the sidelink control channel resources that need to be excluded) without measuring the sidelink control channel. downlink control channel resources). In this way, the number of signals (channels) that the first communication device needs to measure can be reduced, thereby saving computing resources of the first communication device and reducing the burden and energy consumption of the first communication device.
  • the first communication device excludes the second resource and obtains the candidate resource, including: the first communication device excludes the third resource and the second resource. , the candidate resource is obtained, the third resource is located in the second time window, the third resource includes resources of multiple sidelink control channels, and the time-frequency resources of the multiple sidelink control channels are the same.
  • the above technical solution further excludes sidelink control channel resources with the same time-frequency resources from the second time window.
  • the signal quality of the reference signal resources corresponding to these sidelink control channel resources is lower than the first signal quality threshold, since these sidelink control channel resources use the same time-frequency resources, it is possible to send information on these resources. There will be interference. Therefore, by excluding these resources from the candidate resources, more "clean" resources can be obtained, thereby reducing possible interference when sending the second information.
  • the first communication device excludes the second resource and obtains the candidate resource, including: the first communication device excludes the second resource and obtains X 1 Sidelink control channel resources and X 2 reference signal resources, wherein each of the X 2 reference signal resources corresponds to at least one of the X 1 sidelink control channel resources, and the X 2 reference signal resources have different frequency domain resources, and X 1 and X 2 are positive integers; the first communication device determines the candidate resource based on X 1 sidelink control channel resources and X 2 reference signal resources, and The candidate resources include X 2 sidelink control channel resources and the X 2 reference signal resources, and the X 2 sidelink control channel resources correspond to the X 2 reference signal resources one-to-one.
  • the sidelink positioning reference signal is sent based on frequency division and code division resources. Therefore, it may happen that multiple sidelink control channel resources correspond to reference signal resources having the same frequency domain resource. Since the sidelink positioning reference signal supports both frequency division and code division, the number of optional resources can be increased, thereby increasing system capacity. For reference signal resources, multiple sidelink control channel resources corresponding to each frequency domain resource are reserved, so multiple positioning reference signals with the same frequency domain resource may appear within the second time window. Sending information on these resources may cause interference. Therefore, if only one sidelink control channel resource corresponding to the frequency domain resource of the same reference signal resource is reserved, cleaner resources can be obtained, thereby reducing possible interference when sending the second information.
  • the first communication device positions M sidelink control channels and/or M first sidelinks within the first time window.
  • Measuring the reference signal to determine the first resource includes: the first communication device measuring the M sidelink control channels to obtain a second measurement result, wherein the second measurement result includes the M sidelink control channels The signal quality of M 2 sidelink control channels in the control channel, where M 2 is a positive integer less than or equal to M; the first communication device determines the first communication device based on the second signal quality threshold and the second measurement result.
  • the first resource includes a first sidelink control channel resource and a reference signal resource corresponding to the first sidelink control channel resource
  • the first sidelink control channel resource is the M 2 Resources of the sidelink control channel whose signal quality is higher than the second signal quality threshold in the sidelink control channel.
  • the first communication device may only need to measure the signal quality of the sidelink control channel, filter out the sidelink control channel resources that need to be included in the first resource (that is, the resources that need to be excluded), and then based on the filtered out
  • the sidelink control channel resources and corresponding relationships determine corresponding reference signal resources, and these reference signal resources are also resources that need to be excluded.
  • the first communication device may determine the reference signal resources that need to be included in the first resource (that is, the reference signals that need to be excluded) without measuring the first sidelink positioning reference signal. resource). In this way, the number of signals (channels) that the first communication device needs to measure can be reduced, thereby saving computing resources of the first communication device and reducing the burden and energy consumption of the first communication device.
  • the first communication device excludes the second resource and obtains the candidate resource, including: the first communication device excludes the fourth resource and the second resource. , the candidate resource is obtained, the fourth resource includes at least two sidelink control channel resources whose signal quality is lower than the second signal quality threshold, and the time-frequency resources of the at least two sidelink control channel resources are the same.
  • the above technical solution further excludes sidelink control channel resources with the same time-frequency resources from the second time window. Although the signal quality of these sidelink control channel resources is lower than the second signal quality threshold, since these sidelink control channel resources use the same time-frequency resources, sending information on these resources may cause interference. Therefore, by excluding these resources from the candidate resources, more "clean" resources can be obtained, thereby reducing possible interference when sending the second information.
  • the first communication device positions M sidelink control channels and/or M first sidelinks within the first time window.
  • Measuring reference signals to determine the first resource includes: the first communication device measuring the M sidelink control channels and the M first sidelink positioning reference signals to obtain a third measurement result, in which The third measurement result includes the signal quality of M 3 sidelink control channels and the signal quality of M 4 reference signal resources among the M sidelink control channels, and the M 4 reference signal resources are respectively carried Among the M first sidelink positioning reference signals, M 4 first sidelink positioning reference signals, M 3 and M 4 are positive integers less than or equal to M; the first communication device is based on the third The measurement result, the third signal quality threshold and the fourth signal quality threshold are used to determine the first resource.
  • the first communication device determines the first resource based on the third measurement result, the third signal quality threshold, and the fourth signal quality threshold, including: The first communication device determines a second sidelink control channel resource based on the signal quality of the M 3 sidelink control channels and the third signal quality threshold, and the second sidelink control channel resource is the Among the M 3 sidelink control channels, sidelink control channel resources whose signal quality is higher than the third signal quality threshold; the first communication device is based on the signal quality of the M 4 reference signal resources and the fourth signal
  • the quality threshold determines a second reference signal resource, which is a reference signal resource among the M 4 reference signal resources whose signal quality is higher than the fourth signal quality threshold; the first communication device determines The resources include the second sidelink control channel resource and the second reference signal resource.
  • the first communication device can determine the sidelink control channel resources that need to be excluded based on one threshold, and determine the reference signal resources that need to be excluded based on another threshold.
  • the first communication device may respectively exclude sidelink control channel resources and reference signal resources according to two thresholds. In this way, the first communication device can determine the resources that need to be excluded without knowing the correspondence between the sidelink control channel resources and the reference signal resources.
  • the method further includes: the first communication device determining a reference signal resource corresponding to the second sidelink control channel resource; the first communication device The first resources determined by the device also include reference signal resources corresponding to the second sidelink control channel resources.
  • the resources that need to be excluded determined by the first communication device include not only the reference signal resources and sidelink control channel resources whose signal quality is lower than the threshold, but also include the resources corresponding to the sidelink control channel resources. Reference signal resources. In this way, the resources among the candidate resources that can be used to send the sidelink positioning reference signal will be "cleaner", thereby reducing the possibility of interference when sending the second sidelink positioning reference signal.
  • the method further includes: the first communication device determining a sidelink control channel resource corresponding to the second reference signal resource; the first communication device The first resources determined by the device also include sidelink control channel resources corresponding to the second reference signal resources.
  • the resources that need to be excluded determined by the first communication device not only include reference signal resources and sidelink control channel resources whose signal quality is lower than the threshold, but also include sidelinks corresponding to the reference signal resources. Control channel resources.
  • the resources among the candidate resources that can be used to send the sidelink control channel are "cleaner", thereby reducing the possibility of interference when sending the second sidelink control information.
  • the method further includes: the first communication device determining a reference signal resource corresponding to the second sidelink control channel resource; the first communication device The device determines a sidelink control channel resource corresponding to the second reference signal resource; the first resource determined by the first communication device further includes: a reference signal resource corresponding to the second sidelink control channel resource, and, sidelink control channel resources corresponding to the second reference signal resource.
  • the resources that need to be excluded determined by the first communication device not only include reference signal resources and sidelink control channel resources whose signal quality is lower than the threshold, but also include sidelinks corresponding to the reference signal resources.
  • Control channel resources and reference signal resources corresponding to the sidelink control channel resources are "cleaner", thereby reducing possible interference when sending the second information.
  • the first communication device determines the second resource according to the first resource and the reservation period, including: the first communication device determines the second resource according to the second The sidelink control channel resources, the reference signal resources corresponding to the second sidelink control channel resources and the reservation period determine the first resource set within the second time window; the first communication device determines the first resource set according to the The second reference signal resource, the sidelink control channel resource corresponding to the second reference signal resource and the reservation period, determine the second resource set within the second time window; the first communication device determines the second resource set The two resources include the first resource set and the second resource set.
  • the method further includes: when the first communication device determines that the number of candidate resources is less than a candidate resource threshold, determining that the candidate resources include a third Resource set, the third resource set is determined based on the first resource set and/or the second resource set.
  • the resources themselves or the resources corresponding to the resources included in the first resource set and the second resource set The signal quality of the source is below the signal quality threshold. Therefore, compared to the resources included in the first resource, the resources included in the first resource set and the second resource set are “cleaner”. When the number of candidate resources does not meet the candidate resource threshold, these relatively "clean" resources are returned first. In this way, possible interference when sending the second information can be reduced.
  • the third resource set is at least one of the following: the first resource set, the second resource set, the first resource set and the third resource set.
  • the first communication device positions M sidelink control channels and/or M first sidelinks within the first time window.
  • Measuring the reference signal to determine the first resource includes: the first communication device measuring the M sidelink control channels to obtain a fourth measurement result, where the fourth measurement result includes the M sidelinks The signal quality of M 5 sidelink control channels in the control channel, where M 5 is a positive integer less than or equal to M; the first communication device determines the third signal quality threshold based on the fifth signal quality threshold and the fourth measurement result.
  • Sidelink control channel resources and third reference signal resources, wherein the third sidelink control channel resource is the sidelink whose signal quality is higher than the fifth signal quality threshold among the M 5 sidelink control channels.
  • the third reference signal resource is a reference signal resource corresponding to the third sidelink control channel resource; the first communication device responds to the M first reference signal resources based on the third reference signal resource.
  • the M 6 first sidelink positioning reference signals in the sidelink positioning reference signals are measured to obtain the signal quality of the M 6 reference signal resources, wherein the M 6 reference signal resources respectively carry the M 6th Side link positioning reference signal, the M 6 reference signal resources do not include the third reference signal resource, M 6 is a positive integer less than M; the first communication device is based on the sixth signal quality threshold and the M 6 Determine the fourth reference signal resource and the fourth sidelink control channel resource based on the signal quality of the reference signal resource, where the fourth reference signal resource is the signal quality among the M 6 reference signal resources that is higher than the sixth signal quality threshold.
  • the fourth sidelink control channel resource is a resource of the sidelink control channel corresponding to the fourth reference signal resource; the first resource determined by the first communication device includes: the third Sidelink control channel resources, the third reference signal resource, the fourth sidelink control channel resource and the fourth reference signal resource.
  • the first communication device can filter out the sidelink control channel resources that need to be included in the first resource (that is, the resources that need to be excluded) based on the signal quality of the sidelink control channel, and then based on the filtered sidelink control channel resources.
  • the link control channel resources and corresponding relationships determine the corresponding reference signal resources, and these reference signal resources are also resources that need to be excluded. When filtering reference signal resources that need to be excluded based on another threshold, there is no need to measure the signal quality of the excluded reference signal resources again.
  • the resources that need to be excluded determined by the first communication device not only include reference signal resources and sidelink control channel resources whose signal quality is higher than the threshold, but also include sidelink control channel resources corresponding to the reference signal resources.
  • Link control channel resources and reference signal resources corresponding to the sidelink control channel resources are "cleaner", thereby reducing possible interference when sending the second information.
  • the signal quality of the i-th reference signal resource among the M reference signal resources is based on the M first sidelink positioning
  • the energy sum of the REs occupied by the i-th first sidelink positioning reference signal in the reference signal is determined.
  • the resources of the i-th first sidelink positioning reference signal in each symbol are T ⁇ N REs.
  • the sidelink control channel resources include frequency domain resources and/or sequence parameters of the sidelink control channel
  • the reference signal resources include the Frequency domain resources and/or sequence parameters of the sidelink positioning reference signal
  • the first communication device controls M sidelink control channels and/or M first sidelinks within the first time window.
  • the method further includes: the first communication device obtaining indication information, the indication information being used to instruct the first communication device to measure at least one of the following information: the M sides Downlink control channel, the M first sidelink positioning reference signals.
  • the indication information when the total number of resources of the sidelink control channel is greater than the total number of resources of the sidelink positioning reference signal, the indication information is Instructing the first communication device to measure the M first sidelink positioning reference signals; when the total number of resources of the sidelink control channel is less than the total number of resources of the sidelink positioning reference signals Next, the indication information is used to instruct the first communication device to measure the M sidelink control channels.
  • the total number of resources of the sidelink control channel may be predefined, preconfigured, or configured by a network device.
  • the total number of resources of the sidelink positioning reference signal may be predefined, preconfigured, or configured by a network device.
  • the signal quality threshold (for example, the first signal quality threshold, the second signal quality threshold, the third signal quality threshold, and the fourth signal quality threshold) may be a predetermined value. Defined, preconfigured, or configured by a network device.
  • the first communications device may send the second sidelink control information and the second sidelink positioning reference signal on the same time slot.
  • the second sidelink control information is located before the second sidelink positioning reference signal.
  • the resource of the first sidelink control information is related to the resource of the first sidelink positioning reference signal.
  • the resources of the first sidelink control information are related to the resources of the first sidelink positioning reference signal, including: the first side
  • the resources of the downlink positioning reference signal are indicated by indication information, and the first sidelink control information includes the indication information; or the resources of the first sidelink positioning reference signal are indicated by the first sidelink control information.
  • the frequency domain resources and/or sequence parameters are determined.
  • the first sidelink control information may be carried by a sidelink control channel. Therefore, the first sidelink control information may be a resource of a sidelink control channel.
  • the sequence parameter of the sidelink control channel may include a cyclic shift CS value of the sidelink control channel, a root sequence index of the sidelink control channel, or an orthogonal sequence index of the sidelink control channel .
  • the first communication device measures the M first sidelink positioning reference signals within the first time window, including: the first A communication device determines a first sequence according to a first sequence identifier; the first communication device measures the M first sidelink positioning reference signals according to the first sequence.
  • the communication device that sends the first sidelink positioning reference signal may not want the first communication device to obtain the sequence it uses to generate the first sidelink positioning reference signal. Therefore, in the above technical solution, the first communication device can use a sequence identifier (that is, the first sequence identifier) to generate a sequence (that is, the first sequence), and use the sequence to measure M first side links Signal quality of the positioning reference signal. This allows the communication device that receives the first sidelink positioning reference signal to perform measurement and exclusion operations during resource selection without knowing the sequence used by the first sidelink positioning reference signal. Thus, the privacy of the communication device that sends the first sidelink positioning reference signal is guaranteed.
  • the first sequence identifier is a sequence identifier used to generate the second sidelink positioning reference signal; or, the first sequence identifier is a predetermined sequence identifier.
  • a sequence identifier that is defined, preconfigured, or configured by signaling.
  • the first communication device may use its own sequence identifier to generate the second sidelink positioning reference signal to generate the first sequence. In this way, the first communication device can determine whether the resources reserved by other communication devices are suitable for use by the first communication device from the perspective of its own transmission, thereby selecting low-interference resources.
  • the first communication device may determine the first sequence using a sequence identifier that is predefined, preconfigured, or configured by signaling. The signaling may be sent by network equipment or other equipment. This identifier may be an identifier that can reflect the signal quality of the first sidelink positioning reference signal sent by other communication devices. The first communication device uses the sequence determined by the sequence identifier to measure the first sidelink positioning reference signal and can also select low-interference resources.
  • the third communication device may select an identifier corresponding to a sequence that can reflect the signal quality of the reference signal resource of the sidelink positioning reference signal it sends, and send the sequence identifier to the first communication device. .
  • the first communication device The equipment uses the sequence determined by the sequence identifier to measure the signal quality obtained by the first sidelink positioning reference signal, which can reflect the signal quality of the reference signal resource of the sidelink positioning reference signal sent by the third communication device, thereby Low-interference resources can be selected.
  • the first communication device obtains M second sequence identifiers, including: the first communication device determines the M-th sequence identifiers based on the M pieces of sequence identifier information. Two sequence identifications, the M sequence identification information respectively comes from the M third communication devices, the i-th sequence identification information in the M sequence identification information includes the i-th second sequence identification, or the M The i-th sequence identification information in the sequence identification information includes index i, which is the index of the i-th second sequence identification in the sequence identification set.
  • the sequence identification set is predefined, preconfigured or configured by signaling. of.
  • the third communication device may directly send the sequence identifier to the first communication device.
  • the third communication device can determine a sequence identifier different from the sequence identifier used to generate the first sidelink positioning reference signal by itself, and send the sequence identifier to the first communication device.
  • the third communication device may send the index corresponding to the sequence identifier to the first communication device.
  • the length of the index can be less than the length of the sequence identifier.
  • the length of the sequence identifier may be 12 bits, and the length of the index may be 4 bits. This can reduce the signaling length required to indicate the sequence identifier and thereby save signaling overhead.
  • the frequency domain resources used by the first communication device to measure the first sidelink positioning reference signal can be the same as the frequency domain resources used to receive the first sidelink positioning reference signal, so that the measured signal quality can be Reflect the signal quality of the reference signal resources used to carry the first sidelink positioning reference signal, thereby selecting low-interference resources.
  • embodiments of the present application provide a method for transmitting information, including: a second communication device monitors a second message when receiving a resource set, where the second message includes second sidelink control information and a second sidelink the second communication device receives the second message on a candidate resource, the candidate resource is determined by at least one first sidelink control information and/or at least one first sidelink positioning reference signal , the received resource set includes the candidate resource.
  • the candidate resources are determined based on the sidelink control information and the sidelink positioning reference signal received in at least one first message.
  • the second communication device can receive the second message at the candidate resource. This can simplify the resource determination scheme and facilitate the implementation of communication equipment.
  • the candidate resource is determined based on a first resource, where the first resource includes a resource whose signal quality is higher than a signal quality threshold.
  • the candidate resources do not include second resources located within the second time window, and the second resources are determined based on the first resources.
  • the second sidelink control information includes indication information of the second reservation period.
  • the second reservation period is determined according to any one of the following methods: high-level indication information of the first communication device; the second side link QoS parameters of the road positioning reference signal; the moving speed of the first communication device; the positioning algorithm used by the first communication device; the type of synchronization source; the priority; and the degree of congestion on the resource pool.
  • the reservation period information used by the sidelink positioning reference signal is used to facilitate the second communication device to perform effective resource selection based on this confirmation. And determined according to the above method, the accuracy of the positioning reference signal reservation period can be improved and the positioning performance can be improved.
  • the second reservation period is determined according to at least one of the following ways: the first communication device obtains first configuration information, where the configuration information includes: Mp reservation periods, where Mp is a positive integer, and the value or value set of the Mp reservation periods is determined by any of the following methods: the second sidelink positioning reference signal QoS parameter; The moving speed of the first communication device; the positioning algorithm used by the first communication device; the type of synchronization source; the priority; and the degree of congestion on the resource pool.
  • the reservation period information used by the sidelink positioning reference signal, the value or value range of the reservation period is determined according to the above-mentioned first configuration information method, which can improve the accuracy of the reservation period of the positioning reference signal. , improve positioning performance.
  • the positioning algorithm includes one or more of the following: Positioning algorithm based on round-trip delay difference; positioning algorithm based on angle of arrival; positioning algorithm based on departure angle; positioning algorithm based on carrier phase.
  • the reservation period information used in the sidelink positioning reference signal is determined according to the positioning algorithm, which can improve the accuracy of the reservation period of the positioning reference signal and improve positioning performance.
  • the method further includes: the first communication device determining a second resource based on the first resource, the reservation period, and the second reservation period. , the second reservation period is included in the second sidelink control information.
  • the first communication device determines the candidate resource for sending the sidelink positioning reference signal according to the first reservation period and the second reservation period, so that the second communication device can perform effective operation based on this confirmation. Resource selection.
  • the first resource includes a first reference signal resource and a sidelink control channel resource corresponding to the first reference signal resource.
  • the first reference signal resource is a reference signal resource whose signal quality is higher than the first signal quality threshold among the M 1 reference signal resources, M 1 is a positive integer, and the M 1 first sidelinks in the at least one first sidelink positioning reference signal The positioning reference signals are respectively carried on the M 1 reference signal resources.
  • the candidate resources do not include a third resource
  • the third resource is located within the second time window
  • the third resource includes a plurality of side chains.
  • the time-frequency resources of the multiple side link control channels are the same.
  • the above technical solution further excludes sidelink control channel resources with the same time-frequency resources from the second time window.
  • the signal quality of the reference signal resources corresponding to these sidelink control channel resources is lower than the first signal quality threshold, since these sidelink control channel resources use the same time-frequency resources, it is possible to send information on these resources. There will be interference. Therefore, by excluding these resources from the candidate resources, "cleaner" resources can be obtained, thereby reducing possible interference when receiving the second information.
  • the candidate resources include X 2 sidelink control channel resources and X 2 reference signal resources, and the X 2 sidelink control channels
  • the resource corresponds one-to-one to the X 2 reference signal resources.
  • the frequency domain resources of the X 2 reference signal resources are different, and X 2 is a positive integer.
  • the sidelink positioning reference signal is sent based on frequency division and code division resources. Therefore, it may happen that multiple sidelink control channel resources correspond to reference signal resources having the same frequency domain resource. Since the sidelink positioning reference signal supports both frequency division and code division, the number of optional resources can be increased, thereby increasing system capacity. For reference signal resources, multiple sidelink control channel resources corresponding to each frequency domain resource are reserved, so multiple positioning reference signals with the same frequency domain resource may appear within the second time window. Sending information on these resources may cause interference. Therefore, if only one sidelink control channel resource corresponding to the frequency domain resource of the same reference signal resource is reserved, cleaner resources can be obtained, thereby reducing possible interference when receiving the second information.
  • the first resource includes a first sidelink control channel resource and a resource corresponding to the first sidelink control channel resource.
  • reference signal resources the first sidelink control channel resource is a resource of a sidelink control channel whose signal quality is higher than the second signal quality threshold among the M 2 sidelink control channels, and the at least one first M 2 first sidelink control information in one side of the sidelink control information are respectively carried on the M 2 sidelink control channels, and M 2 is a positive integer.
  • the sidelink control channel resources that need to be included in the first resource can be screened out (that is, the resources that need to be excluded), and then the corresponding reference signal resources can be determined based on the screened out sidelink control channel resources and the corresponding relationships.
  • Reference signal resources are also resources that need to be excluded.
  • the reference signal resources that need to be included in the first resource can be determined without measuring the first sidelink positioning reference signal.
  • the candidate resource does not include a fourth resource
  • the fourth resource includes at least two sidelink control channel resources whose signal quality is lower than the second signal quality threshold, and the time-frequency resources of the at least two sidelink control channel resources are the same.
  • the above technical solution further excludes sidelink control channel resources with the same time-frequency resources from the second time window. Although the signal quality of these sidelink control channel resources is lower than the second signal quality threshold, since these sidelink control channel resources use the same time-frequency resources, sending information on these resources may cause interference. Therefore, by excluding these resources from the candidate resources, "cleaner" resources can be obtained, thereby reducing possible interference when receiving the second information.
  • the first resource includes a second sidelink control channel resource and a second reference signal resource
  • the second sidelink control channel resource is Among M 3 sidelink control channels, sidelink control channel resources whose signal quality is higher than the third signal quality threshold
  • the second reference signal resource is M 4 reference signal resources whose signal quality is higher than the fourth signal quality Threshold reference signal resources
  • the M 3 first sidelink control information in the at least one first sidelink control information are respectively carried on the M 3 sidelink control channels
  • the at least one first sidelink control information The M 4 first sidelink positioning reference signals among the downlink positioning reference signals are respectively carried on the M 4 reference signal resources, and M 3 and M 4 are positive integers.
  • the sidelink control channel resources that need to be excluded can be determined based on one threshold, and the reference signal resources that need to be excluded can be determined based on another threshold.
  • sidelink control channel resources and reference signal resources can be excluded respectively according to two thresholds. In this way, resources that need to be excluded can be determined without knowing the correspondence between the sidelink control channel resources and the reference signal resources.
  • the first resource further includes a reference signal resource corresponding to the second sidelink control channel resource.
  • the determined resources that need to be excluded include not only reference signal resources and sidelink control channel resources whose signal quality is lower than the threshold, but also reference signal resources corresponding to the sidelink control channel resources. In this way, the resources among the candidate resources that can be used to send the sidelink positioning reference signal will be "cleaner", thereby reducing the possibility of interference when receiving the second sidelink positioning reference signal.
  • the first resource further includes a sidelink control channel resource corresponding to the second reference signal resource.
  • the determined resources that need to be excluded include not only the reference signal resources and sidelink control channel resources whose signal quality is lower than the threshold, but also the sidelink control channel resources corresponding to the reference signal resources.
  • the resources among the candidate resources that can be used to send the sidelink control channel are "cleaner", thereby reducing possible interference when receiving the second sidelink control information.
  • the first resource further includes: a reference signal resource corresponding to the second sidelink control channel resource, and The sidelink control channel resource corresponding to the resource.
  • the determined resources that need to be excluded include not only the reference signal resources and sidelink control channel resources whose signal quality is lower than the threshold, but also the sidelink control channel resources corresponding to the reference signal resources and the sidelink control channel resources corresponding to the reference signal resources.
  • Reference signal resources corresponding to the sidelink control channel resources are "cleaner", thereby reducing possible interference when receiving the second information.
  • the second resource includes a first resource set and a second resource set, and the first resource set is based on the second sidelink control channel resource.
  • the reference signal resource corresponding to the second sidelink control channel resource and the reservation period are determined, the second resource set is determined based on the second reference signal resource, the sidelink corresponding to the second reference signal resource
  • the link control channel resources and the reservation period are determined.
  • the candidate resources include a third resource set, and the third resource set is determined based on the first resource set and/or the second resource set.
  • the third resource set is at least one of the following: the first resource set, the second resource set, the first resource set and the third resource set.
  • the first resource includes: a third sidelink control channel resource, a third reference signal resource, a fourth sidelink control channel resource, and The fourth reference signal resource, wherein the third sidelink control channel resource is the resource of the sidelink control channel whose signal quality is higher than the fifth signal quality threshold among the M 5 sidelink control channels, the The third reference signal resource is a reference signal resource corresponding to the third sidelink control channel resource; the first communication device According to the third reference signal resource, the fourth reference signal resource is a reference signal resource whose signal quality is higher than the sixth signal quality threshold among M 6 reference signal resources, and the fourth sidelink control channel resource is related to the The resources of the sidelink control channel corresponding to the fourth reference signal resource.
  • the M 6 reference signal resources respectively carry the M 6 first sidelink positioning references among the M first sidelink positioning reference signals. signal, the M 6 reference signal resources do not include the third reference signal resource.
  • M 5 is a positive integer less than or equal to M
  • M 5 is a positive integer less than or equal to M
  • M 6 is a positive integer less than M.
  • the sidelink control channel resources that need to be excluded can be screened out based on a threshold, and then the corresponding reference signal resources can be determined based on the screened out sidelink control channel resources and their corresponding relationships.
  • Reference signal resources are also resources that need to be excluded. In this way, when filtering out reference signal resources that need to be excluded based on another threshold, there is no need to compare the signal quality of the excluded reference signal resources with the threshold.
  • the resources that need to be excluded also include the sidelink control channel resources corresponding to the reference signal resources, and the sidelink control channel resources corresponding to the sidelink control channel.
  • the reference signal resource corresponding to the resource are "cleaner", thereby reducing possible interference when sending the second information.
  • the signal quality of the i-th reference signal resource among the signal qualities of the M reference signal resources is based on the M first sidelink positioning
  • the energy sum of the REs occupied by the i-th first sidelink positioning reference signal in the reference signal is determined.
  • the resources of the i-th first sidelink positioning reference signal in each symbol are T ⁇ N REs.
  • T REs there is one RE occupied by the i-th first sidelink positioning reference signal in each N RE.
  • the sidelink control channel resources include frequency domain resources and/or sequence parameters of the sidelink control channel
  • the reference signal resources include the Frequency domain resources and/or sequence parameters of the sidelink positioning reference signal
  • the signal quality thresholds may be predetermined. Defined, preconfigured, or configured by a network device.
  • the first communications device may send the second sidelink control information and the second sidelink positioning reference signal on the same time slot.
  • the second sidelink control information is located before the second sidelink positioning reference signal.
  • the resource of the first sidelink control information is related to the resource of the first sidelink positioning reference signal.
  • the resources of the first sidelink control information are related to the resources of the first sidelink positioning reference signal, including: the first side
  • the resources of the downlink positioning reference signal are indicated by indication information, and the first sidelink control information includes the indication information; or the resources of the first sidelink positioning reference signal are indicated by the first sidelink control information.
  • the frequency domain resources and/or sequence parameters are determined.
  • the first sidelink control information may be carried by a sidelink control channel. Therefore, the first sidelink control information may be a resource of a sidelink control channel.
  • the sequence parameter of the sidelink control channel may include a cyclic shift CS value of the sidelink control channel, a root sequence index of the sidelink control channel, or an orthogonal sequence index of the sidelink control channel .
  • embodiments of the present application provide a communication device, which includes a module for implementing the first aspect or any possible implementation of the first aspect.
  • embodiments of the present application provide a communication device that includes a module for implementing the second aspect or any possible implementation manner of the second aspect.
  • inventions of the present application provide a communication device.
  • the communication device includes a processor.
  • the processor is configured to execute a computer program stored in a memory, so that the communication device executes the first aspect or any one of the first aspects. Possible implementations.
  • the communication device further includes a memory.
  • inventions of the present application provide a communication device.
  • the communication device includes a processor.
  • the processor is configured to execute a computer program stored in a memory, so that the communication device executes the second aspect or any one of the second aspects. Possible implementations.
  • the communication device further includes a memory.
  • inventions of the present application provide a chip system.
  • the chip system includes a logic circuit.
  • the logic circuit is coupled to an input/output interface and transmits data through the input/output interface to perform the first aspect or the first aspect. any possible implementation.
  • inventions of the present application provide a chip system.
  • the chip system includes a logic circuit that is coupled to an input/output interface and transmits data through the input/output interface to perform the second aspect or the second aspect. any possible implementation.
  • embodiments of the present application provide a computer-readable storage medium that stores program code.
  • the computer storage medium When the computer storage medium is run on a computer, it causes the computer to execute the first aspect or the first aspect. any possible implementation.
  • embodiments of the present application provide a computer-readable storage medium.
  • the computer-readable storage medium stores program codes.
  • the computer storage medium When the computer storage medium is run on a computer, it causes the computer to execute the second aspect or the second aspect. any possible implementation.
  • inventions of the present application provide a computer program product.
  • the computer program product includes: computer program code.
  • the computer program code When the computer program code is run on a computer, it causes the computer to execute the first aspect or the first aspect. Any possible implementation.
  • inventions of the present application provide a computer program product.
  • the computer program product includes: computer program code.
  • the computer program code When the computer program code is run on a computer, it causes the computer to execute the second aspect or the second aspect. Any possible implementation.
  • Figure 1 is a schematic diagram of an application scenario 100 involved in this application.
  • Figure 2 is a schematic diagram of an application scenario 200 involved in this application.
  • Figure 3 is a schematic diagram showing the occupation of frequency domain resources.
  • Figure 4 is a schematic diagram of resources occupied by downlink positioning reference signals.
  • Figure 5 is a schematic diagram of resources occupied by uplink positioning reference signals.
  • Figure 6 is a schematic flow chart of a method for transmitting information according to an embodiment of the present application.
  • Figure 7 shows a schematic diagram of the first time window and the second time window.
  • Figure 8 is a schematic diagram of code division of the sidelink positioning reference signal when N is less than M.
  • Figure 9 is a schematic diagram where N is greater than M and the sidelink control channel is code divided.
  • Figure 10 shows a schematic diagram of resources occupied by the sidelink control channel and the sidelink positioning reference signal.
  • Figure 11 is a schematic structural block diagram of a communication device according to an embodiment of the present application.
  • Figure 12 is a schematic structural block diagram of another communication device according to an embodiment of the present application.
  • Figure 13 is a structural block diagram of a communication device provided according to an embodiment of the present application.
  • a and/or B can mean: only A exists, only B exists, and A and B exist simultaneously. , where A and B can be singular or plural.
  • the character "/” generally indicates that the related objects are in an "or” relationship.
  • sequence numbers of each process below do not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not constitute any limitation on the implementation process of the embodiment of the present application. For example, in the embodiments of this application, words such as “301”, “401”, and “501” are only used for convenience of description and do not limit the order of execution steps.
  • for indicating may include for direct indicating and for indirect indicating.
  • indication information When describing that certain indication information is used to indicate A, it may include that the indication information directly indicates A or indirectly indicates A, but it does not mean that the indication information must carry A.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • Wi-MAX global interoperability for microwave access
  • 5G fifth generation
  • 5G new air interface
  • new radio, NR new radio, NR
  • future sixth generation 6th generation, 6G
  • Satellite communication systems include satellite base stations and terminal equipment. The satellite base station provides communication services to terminal equipment. Satellite base stations can also communicate with base stations.
  • Satellites can serve as base stations and terminal equipment.
  • satellites can refer to unmanned aerial vehicles, hot air balloons, low-orbit satellites, medium-orbit satellites, high-orbit satellites, etc. Satellites can also refer to non-ground base stations or non-ground equipment.
  • the terminal device can be a device that provides voice/data connectivity to users, such as a handheld device with a wireless connection function, a vehicle-mounted device, etc.; it can be a device in the Internet of Vehicles communication, such as a communication terminal mounted on a vehicle, a roadside device, etc. Unit (road side unit, RSU); it can be a communication terminal carried on a drone; it can also be a terminal device in an Internet of Things (IoT) system.
  • Terminal equipment can also be called user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user Agent or user device, etc.
  • UE user equipment
  • terminal devices include but are not limited to: mobile phones, tablets, laptops, PDAs, mobile Internet devices (MID), wearable devices, and virtual reality (VR) devices.
  • augmented reality (AR) equipment wireless terminals in industrial control (industrial control), terminals in vehicle-to-everything (V2X), wireless terminals in self-driving (self-driving), Wireless terminals in remote medical surgery, wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, smart home ) in wireless terminals, cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (personal digital assistants, PDAs), devices with wireless Handheld devices with communication functions, computing devices or other processing devices connected to wireless modems, wearable devices, terminal devices in 5G networks or terminal devices in future evolved public land mobile communication networks (public land mobile network, PLMN), etc. , the embodiments of this application do not limit the specific form of the terminal device.
  • the device used to implement the functions of the terminal device in the embodiment of the present application may be a terminal device; it may also be a device that can support the terminal device to implement the function, such as a chip system.
  • the device can be installed in a terminal device or used in conjunction with the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the technical solutions in the embodiments of this application can also be applied to access network equipment.
  • the access network device may be a device capable of connecting a terminal device to a wireless network.
  • the access network equipment may also be called a radio access network (radio access network, RAN) node, radio access network equipment, or network equipment.
  • the access network device may be a base station.
  • the base station in the embodiment of the present application can broadly cover various names as follows, or be replaced with the following names, such as: Node B (NodeB), evolved NodeB (eNB), next generation base station (next generation NodeB) , gNB), relay station, access point, transmission point (transmitting and receiving point, TRP), transmitting point (TP), master station (master eNodeB, MeNB), secondary station (secondary eNodeB, SeNB), multi-standard Wireless (multi standard radio, MSR) node, home base station, network controller, access node, wireless node, access point (AP), transmission node, transceiver node, base band unit (BBU), radio remote unit (remote radio unit (RRU), active antenna unit (AAU), remote radio head (RRH), central unit (CU), distributed unit (DU), positioning node, etc.
  • NodeB Node B
  • eNB evolved NodeB
  • next generation NodeB next generation NodeB
  • gNB next generation base station
  • relay station access
  • the base station may be a macro base station, a micro base station, a relay node, a donor node or the like, or a combination thereof.
  • a base station may also refer to a communication module, modem or chip used in the aforementioned equipment or devices.
  • the base station can also be a network-side device in the 6G network, a device that assumes the base station function in the future communication system, etc.
  • Base stations can support networks with the same or different access technologies.
  • Base stations can be fixed or mobile.
  • a helicopter or drone may be configured to act as a mobile base station, and one or more cells may move based on the mobile base station's location.
  • a helicopter or drone may be configured to serve as a device that communicates with another base station.
  • the positioning management device is a device used by the network side to determine the positioning information of the terminal device.
  • the location management device can be a location management function (LMF) entity, an evolved serving mobile location center (E-SMLC), or other devices that can be used to determine the location information of the terminal device.
  • LMF location management function
  • E-SMLC evolved serving mobile location center
  • FIG. 1 is a schematic diagram of an application scenario 100 involved in this application.
  • the application scenario 100 mainly involves a sidelink (SL) positioning scenario, which may include a terminal device 110 , a terminal device 120 and a positioning management device 130 .
  • the terminal device 110 may be a terminal device to be located, and the terminal device 120 may be another terminal device or a roadside unit. It should be understood that in this positioning scenario, positioning can be performed between the terminal device 110 and the terminal device 120 through a direct communication interface (ie, PC5 interface).
  • a direct communication interface ie, PC5 interface
  • the terminal device 110 has at least two antennas, and the terminal device 120 also has at least two antennas.
  • the terminal device 120 sends a reference signal to the terminal device 110 on at least two antennas, and the terminal device 110 receives the reference signal on at least two antennas and completes the measurement of the reference signal.
  • the terminal device 110 may determine the position and/or attitude of the terminal device 110 based on the measurement information.
  • the terminal device may send the measured information to the terminal device 120, and the terminal device 120 determines the position and/or attitude of the terminal device 110 based on the received measurement information.
  • the terminal device may send the measured information to the positioning management device 130, and the positioning management device 130 determines the position and/or attitude of the terminal device 110 based on the received measurement information.
  • the terminal device 110 has at least two antennas, and the terminal device 120 may be composed of at least two terminal devices. At least two terminal devices included in the terminal device 120 respectively send reference signals to the terminal device 110 on the same antenna. The terminal device 110 can receive the reference signals on different antennas and complete the measurement of the reference signals.
  • the terminal device 110 may determine the position and/or attitude of the terminal device 110 based on the measurement information.
  • the terminal device may send the measured information to the terminal device 120, and the terminal device 120 determines the position and/or attitude of the terminal device 110 based on the received measurement information.
  • the terminal device may send the measured information to the positioning management device 130, and the positioning management device 130 determines the position and/or attitude of the terminal device 110 based on the received measurement information.
  • the terminal device 110 has at least two antennas, and the terminal device 120 also has at least two antennas.
  • the terminal device 110 sends a reference signal to the terminal device 120 on at least two antennas, and the terminal device 120 receives the reference signal on at least two antennas and completes the measurement of the reference signal.
  • the terminal device 120 may determine the position and/or attitude of the terminal device 110 based on the measurement information.
  • the terminal device 120 may send the measured information to the terminal device 110, and the terminal device 110 determines the position and/or attitude of the terminal device 110 based on the received measurement information.
  • the terminal device may send the measured information to the positioning management device 130, and the positioning management device 130 determines the position and/or attitude of the terminal device 110 based on the received measurement information.
  • the terminal device 110 has at least two antennas, and the terminal device 120 may be composed of at least two terminal devices.
  • the terminal device 110 sends a reference signal to the terminal device 120 on at least two antennas.
  • the at least two terminal devices included in the terminal device 120 respectively receive the reference signal on the same antenna and complete the measurement of the reference signal.
  • any device included in the terminal device 120 or at least two devices included in the terminal device 120 can determine the position and/or attitude of the terminal device 110 based on the measurement information.
  • At least two terminal devices of the terminal device 120 may send the measured information to the terminal device 110, and the terminal device 110 determines the position and/or attitude of the terminal device 110 based on the received measurement information.
  • At least two terminal devices of the terminal devices 120 can send the measured information to the positioning management device 130, and the positioning management device 130 determines the position and/or attitude of the terminal device 110 based on the received measurement information.
  • the terminal device 110 has at least two antennas, and the terminal device 120 has only one antenna.
  • the terminal device 110 sends a reference signal to the terminal device 120 on at least two antennas, and the terminal device 120 receives the reference signal on the same antenna and completes the measurement of the reference signal.
  • the terminal device 120 may determine the position and/or attitude of the terminal device 110 based on the measurement information.
  • the terminal device 120 may send the measured information to the terminal device 110, and the terminal device 110 determines the position and/or attitude of the terminal device 110 based on the received measurement information.
  • the terminal device may send the measured information to the positioning management device 130, and the positioning management device 130 determines the position and/or attitude of the terminal device 110 based on the received measurement information.
  • FIG. 2 is a schematic diagram of an application scenario 200 involved in this application.
  • the application scenario 200 mainly involves a cellular positioning scenario, and the application scenario 200 may include a terminal device 210 , an access network device 220 and a positioning management device 230 .
  • the terminal device 210 may be a terminal device to be located, and the access network device 220 may be an anchor device (that is, the location of the access network device 220 is known). It should be understood that in this positioning scenario, positioning can be performed between the terminal device 210 and the access network device 220 through a cellular communication interface (ie, Uu interface).
  • a cellular communication interface ie, Uu interface
  • the terminal device 210 has at least two antennas, and the access network device 220 also has at least two antennas.
  • the access network device 220 sends reference signals to the terminal device 210 on at least two antennas.
  • the terminal device 210 receives the reference signals on at least two antennas and completes the measurement of the reference signals.
  • the terminal device 210 can send the measured information to positioning management.
  • Device 230, the positioning management device 230 determines the position and/or attitude of the terminal device 210 according to the received measurement information.
  • the terminal device 210 can also determine the position and/or attitude of the terminal device 210 by itself based on the measured information.
  • the terminal device 210 may also send the measured information to the access network device 220, and the access network device 220 may determine the position and/or attitude of the terminal device 210 based on the received measurement information.
  • the terminal device 210 has at least two antennas, and the access network device 220 may be composed of at least two access network devices. At least two access network devices included in the access network device 220 respectively send reference signals to the terminal device 210 on the same antenna. The terminal device 210 can receive the reference signals on different antennas and complete the measurement of the reference signals. The terminal device 210 may send the measured information to the positioning management device 230, and the positioning management device 230 determines the position and/or attitude of the terminal device 210 based on the received measurement information. The terminal device 210 can also determine the position and/or attitude of the terminal device 210 by itself based on the measured information. The terminal device 210 may also send the measured information to the access network device 220, and the access network device 220 may determine the position and/or attitude of the terminal device 210 based on the received measurement information.
  • the terminal device 210 has at least two antennas, and the access network device 220 also has at least two antennas.
  • the terminal device 210 sends a reference signal to the access network device 220 on at least two antennas, and the access network device 220 receives the reference signal on at least two antennas and completes the measurement of the reference signal.
  • the access network device 220 may send the measured information to the positioning management device 230, and the positioning management device 230 determines the position and/or attitude of the terminal device 210 based on the received measurement information.
  • the access network device 220 can also determine the position and/or attitude of the terminal device 210 by itself based on the measured information.
  • the access network device 220 may also send the measured information to the terminal device 210, and the access network device 220 may determine the position and/or attitude of the terminal device 210 based on the received measurement information.
  • the terminal device 210 has at least two antennas, and the access network device 220 may be composed of at least two access network devices.
  • the terminal device 210 sends reference signals to the access network device 220 on at least two antennas.
  • the at least two access network devices included in the access network device 220 receive the reference signals on the same antenna respectively and complete the measurement of the reference signals.
  • the access network device 220 may send the measured information to the positioning management device 230, and the positioning management device 230 determines the position and/or attitude of the terminal device 210 based on the received measurement information.
  • the access network device 220 can also determine the position and/or attitude of the terminal device 210 by itself based on the measured information.
  • the access network device 220 may also send the measured information to the terminal device 210, and the access network device 220 may determine the position and/or attitude of the terminal device 210 based on the received measurement information.
  • the terminal device 210 has at least two antennas, and the access network device 220 has only one antenna. end The terminal device 210 sends a reference signal to the access network device 220 on at least two antennas, and the access network device 220 receives the reference signal on the same antenna and completes the measurement of the reference signal.
  • the access network device 220 may send the measured information to the positioning management device 230, and the positioning management device 230 determines the position and/or attitude of the terminal device 210 based on the received measurement information.
  • the access network device 220 can also determine the position and/or attitude of the terminal device 210 by itself based on the measured information.
  • the access network device 220 may also send the measured information to the terminal device 210, and the access network device 220 may determine the position and/or attitude of the terminal device 210 based on the received measurement information.
  • each device in Figures 1 and 2 can be physical antennas at multiple different locations on the device, or they can be virtual antennas composed of the movement of a certain antenna on the device, or a combination of the two. , this application does not limit this.
  • the application scenarios shown in Figures 1 and 2 are only exemplary illustrations and should not impose any restrictions on this application.
  • Signal quality is a physical quantity or measurement index used to measure the strength, energy, power, etc., of the received, detected, or estimated signal on a specific resource or reference signal, and reflects the quality of the received signal.
  • the signal quality of the reference signal resource includes any one or more of the following: reference signal received power (RSRP), reference signal received quality (RSRQ), received signal strength Any one or more of received signal strength indication (RSSI), and signal to interference plus noise ratio (SINR).
  • SINR refers to the ratio of the strength of the received useful signal to the strength of the received interference signal (noise and interference).
  • the above signal quality may be the quality of the physical layer.
  • physical layer RSRP such as L1-RSRP
  • physical layer RSRQ such as L1-RSRQ
  • physical layer RSSI such as L1-RSSI
  • physical layer SINR such as L1-SINR
  • channel busy ratio channel busy ratio, CBR
  • channel occupancy ratio channel occupancy ratio, CR
  • the signal quality measured for the sidelink-physical reference signal can be RSSI, RSRP, or RSRQ, which can be expressed as: PRS-RSSI, PRS-RSRP or PRS respectively. -RSRQ.
  • the signal quality measured for the physical side link control channel can be RSSI, RSRP, or RSRQ, which can be expressed as: PSCCH-RSSI, PSCCH-RSRP or PSCCH-RSRQ respectively.
  • the congestion level usually uses CR or CBR to describe the usage or occupancy of the resource pool.
  • CBR refers to: at time slot n, the proportion or part of the S-RSSI measured on the sub-channel in the resource pool in the time slot where the defined measurement window is located exceeds the configured threshold value.
  • the CBR can be measured for different channels to obtain the CBR of the corresponding channel.
  • the CBR of the PSSCH is obtained;
  • the physical sidelink control channel (PSCCH) is obtained;
  • the sidelink control channel (physical sidelink feedback channel, PSFCH) is measured to obtain the CBR of PSFCH.
  • PSCCH For PSCCH, only the locations where the resource pools of PSCCH and PSSCH are not adjacent in the frequency domain are measured. During measurement, the bandwidth of PSCCH is fixed to 2 PRBs.
  • CR refers to the value obtained by dividing the number of channels used for transmission by the total configured sub-channels at time slot n.
  • the number of channels used for transmission may be the sum of the number of sub-channels used for transmission before time slot n, and/or the number of sub-channels scheduled for transmission after time slot n.
  • the number of total configured sub-channels may be the number of sub-channels in the measurement window before time slot n, or the number of sub-channels in the measurement window after time slot n.
  • the measurement window before time slot n can be [n-a,n-1]
  • the measurement window after time slot n can be [n,n+b]
  • the total number of configured sub-channels is [n-a,n+ b] The total number of sub-channels configured on.
  • time slot n For example, for time slot n, assume that the total number of sub-channels used for transmission on time slot [na, n-1] is S1, and the sub-channels scheduled for transmission on time slot [n, n+b] The total number S2, the total number S of sub-channels configured on the time slot [na,n+b], then the CR measured at time slot n is (S1+S2)/S.
  • the total number of sub-channels scheduled for transmission on [n+1, n+b] is actually the sub-channel occupied by future transmission, which can be determined based on the number of sub-channels detected on time slot n.
  • Retransmission statistics indicated by the scheduling assignment (SA) indication information is indicated.
  • the total number of sub-channels configured on the time slot [n-500, n+499] S 1000*20
  • QoS Quality of service
  • QoS includes one or more of priority information, delay information, reliability information, and data packet size.
  • QoS is usually used to characterize the service requirements or requirements of a business, message or data.
  • the UE may send multiple services at the same time, and the priorities of the multiple services may be different. Therefore, the priority of the UE can also be described as the service priority of the UE.
  • the service priority of the UE is specifically the transmission priority of the UE (transmission priority).
  • Business priority can also be called L1 priority (L1 priority), physical layer priority, priority carried in sidelink control information (SCI), physical sidelink shared channel associated with SCI side link share channel, PSSCH) corresponding priority, transmission priority, priority for transmitting PSSCH, priority for resource selection, priority of logical channel, and the highest priority of the logical channel.
  • L1 priority L1 priority
  • SCI sidelink control information
  • PSSCH physical sidelink shared channel associated with SCI side link share channel
  • the priority level and the priority value may have a certain corresponding relationship. For example, the higher the priority level, the lower the priority value, or the lower the priority level, the lower the priority value. For example, the higher the priority level, the lower the priority value.
  • the priority value range can be an integer from 1 to 8 or an integer from 0 to 7. If the priority value range is 1-8, then a priority value of 1 represents the highest level of priority.
  • a synchronization source is a timing reference source used to achieve synchronization.
  • the type of synchronization source includes at least one of the following: a global navigation satellite system GNSS, a terminal device synchronized to the GNSS, a network device, a terminal device, etc.
  • the positioning algorithm is an algorithm used to realize positioning functions such as ranging and angle measurement. Specifically, it may include: a positioning algorithm based on round-trip delay difference; a positioning algorithm based on angle of arrival; a positioning algorithm based on departure angle; and a positioning algorithm based on carrier phase.
  • Data or information can be carried through time-frequency resources.
  • time-frequency resources may include one or more time domain units (or may also be called time units).
  • a time domain unit can be a symbol, or a mini-slot, or a slot, or a partial slot, or a subframe, or a radio frame ( frame), etc.
  • time-frequency resources may include one or more frequency domain units.
  • a frequency domain unit can be a resource element (RE), or a resource block (RB), or a subchannel (subchannel), or a resource pool (resource pool), or a bandwidth (bandwidth) , or a bandwidth part (BWP), or a carrier (carrier), or a channel (channel), or an interlace RB, etc.
  • a time slot is the most basic time domain resource unit for one transmission.
  • the time slot includes: a complete time slot, a mini time slot, a partial time slot, or a sub-time slot composed of one or more OFDM symbols.
  • a time slot can also be a set of one or more symbols.
  • a time slot may also include a set of one or more OFDM symbols, for example, the number of one or more is 1, 2, 3, 4, 6, 7, 12 or 14, etc.
  • the duration of the time slot can be related to the subcarrier spacing. For example, when the subcarrier spacing is 15kHz, the duration of a time slot is 1 millisecond (ms); when the subcarrier spacing is 30kHz, the duration of a time slot is 0.5ms; when the subcarrier spacing is 60kHz, the duration of a time slot is 0.25ms.
  • time slot in the embodiment of this application may include any one of a time slot, a mini-time slot, a partial time slot, and a complete time slot.
  • GP symbols may or may not be included at this time. of. This application does not limit this.
  • the slot may include a final null symbol.
  • the slot may not include the last null symbol.
  • frequency domain resources may be RB sets (RB sets), sub-channels, interlaces, PRBs or REs.
  • An RB set may include multiple RBs or multiple subchannels.
  • Interleaved frequency domain resource blocks may also be referred to as interlace.
  • An interlace may include multiple discrete frequency domain resources (or, in other words, discontinuous frequency domain resources), where the frequency domain intervals between adjacent discrete frequency domain resources are equal.
  • a subchannel refers to a unit of frequency domain resources formed by multiple consecutive RBs.
  • the number of consecutive RBs included in the subchannel may be configured by signaling or may be predefined. For example, the number of RBs included in the subchannel is an integer such as 10, 12, 15, 20, or 25.
  • an interlace includes multiple RBs, and several RBs not used for transmission are highlighted at equal intervals between the RBs.
  • one interlace occupies 10 RBs, and only one RB out of every 10 RBs is used for transmission, and the remaining ones are not used for transmission by the first device.
  • one interlace can occupy a total of 5 RBs numbered 0, 10, 20, 30, and 40, and the remaining RBs are left empty for transmission.
  • the sequence can be a random sequence or a low peak-to-average ratio sequence.
  • the optional random sequence may be an m sequence, a Gold sequence, etc., and this application does not limit this.
  • the low peak-to-average ratio sequence can be a binomial sequence, a 4-phase sequence, or a ZC sequence. These sequences have the advantage of good peak-to-average ratio and low correlation performance.
  • the ZC sequence refers to a Zadoff–Chu sequence, or a zero-correlation sequence.
  • N C 1600
  • the initial value of the second m sequence x 2 (n) is:
  • mod is the modulo operation
  • mod2 means the remainder of the logarithm divided by 2.
  • the ZC sequence also known as Zadoff–Chu, Frank–Zadoff–Chu (FZC) sequence or Chu sequence, is one of the perfect sequences. This sequence has ideal periodic autocorrelation properties.
  • the main parameters for generating a ZC sequence include one or more of the root sequence number of the sequence, the cyclic shift value and the orthogonal cover code.
  • the sequence used in this application can be a pseudo-random sequence, a ZC sequence, or other low peak ratio sequence (such as a positive integer with a length of not less than 6 defined in the LTE or NR Rel-15 protocol).
  • the ZC sequence can be defined by the following formula:
  • base sequence It can be generated as follows:
  • Reference signal a physical signal carrying a sequence sent to achieve a specific function.
  • reference signals such as sidelink-physcial reference signal (SL-PRS).
  • RS is a physical signal generated by mapping a specific sequence to the corresponding time-frequency resource according to the pre-transmitted resource mapping method.
  • reference signals There are different types of reference signals depending on the function.
  • the reference signal When the reference signal is used to send feedback information, it may be a demodulation reference signal used to carry feedback information, or it may be a sequence directly used to carry feedback information. Mainly refers to the parameters that transmit feedback information for data.
  • the device that sends the reference signal may be a first device that sends feedback information, a second device that sends first data, or a device that performs measurements or provides a synchronization source.
  • Reference signals have the following uses: used for data demodulation, carrying information, and performing channel state information (CSI), radio resource management (RRM) or radio link monitoring (RLM) measurements. , synchronization, phase noise tracking, etc.
  • CSI channel state information
  • RRM radio resource management
  • RLM radio link monitoring
  • the reference signal When the reference signal carries feedback information, it can be carried by a sequence or by using control information coded bits in the feedback channel.
  • the reference signal may be a demodulation reference signal (DMRS) used by a physical sidelink shared channel (PSSCH), or may be a physical sidelink control channel (physical sidelink control channel). , PSCCH); when the reference channel performs CSI, RRM or RLM measurements, the reference signal can be RS, or channel sounding reference signal (sounding reference signal, SRS), or CSI-RS, etc.; when the reference signal performs synchronization, the reference signal It may be a reference signal used by a physical sidelink broadcast channel (PSBCH), etc.
  • PSBCH physical sidelink broadcast channel
  • FIG. 3 is a schematic diagram showing the occupation of frequency domain resources.
  • Frequency domain resource occupation methods can be divided into interleaving-based discrete mapping structures and continuous mapping results
  • FIG. 3 shows the structure of 2-symbol frequency domain continuous mapping.
  • FIG. 3 shows the structure of one-symbol frequency domain interleaving.
  • FIG. 3 shows the structure of 1-symbol frequency domain continuous mapping.
  • the frequency domain resource bandwidth occupied by the information can be frequency domain resources, K is a number greater than 0, Is a positive integer greater than or equal to 1.
  • the number of symbols occupied by information is 1, and K is equal to 2.
  • the number of symbols occupied by information is 2, and K is equal to 1.
  • the number of symbols occupied by information is 4, and K is equal to 1/2.
  • GP symbols refer to empty symbols or guard symbols.
  • GP symbols can be used for transceiver conversion, beam scanning, radio frequency or antenna switching, etc.
  • the GP symbol can be located in the middle of the time slot or at the last symbol of the time slot. This application does not limit this.
  • Code resources also called sequence resources, correspond to sequences generated according to sequence parameters.
  • the parameters of the sequence include the starting position of the sequence, the length of the sequence, and the initial value of the sequence.
  • the sequence parameters include root sequences, cyclic shifts (Cyclic shift, CS) or orthogonal cover codes (Orthogonal Cover Code, OCC), etc.
  • the initial value of the sequence means that for a random sequence (such as Gold sequence, m sequence), the initial value of the sequence is the initial value of the shift register that generates the sequence.
  • Different initial values of the sequence can also be associated with different indices. Different indexes are used to indicate different initial values or parameters used to generate the initial values. For example, multiple IDs are indicated through signaling configuration and provisioning: ⁇ N ID-1 , N ID-2 ,..., N ID-M ⁇ . Optionally, these IDs are used to generate an initial value for a random sequence. These IDs of initial values used to generate random sequences can be called sequence identifiers (IDs). M indexes can be set, and M indexes correspond to M IDs one-to-one, so that the corresponding IDs can be found through the indexes. Similarly, information such as CS values can also be indicated through indexes.
  • IDs sequence identifiers
  • the CS value pairs can be ⁇ 0, 3, 6, 9 ⁇ . If there are four sequence indexes that can be used for sidelink positioning reference signals, then these four CSs can correspond to four respectively. index. For example, a CS value of 0 corresponds to index 0, a CS value of 3 corresponds to index 1, a CS value of 6 corresponds to index 2, and a CS value of 9 corresponds to index 3. These indexes may be called sequence indexes.
  • the sequence index can also be used as sequence information.
  • the orthogonal sequence in this application, may be an orthogonal cover code (Orthogonal Cover Code, OCC).
  • OCC Orthogonal Cover Code
  • the index of the orthogonal sequence is the index of the OCC.
  • OCC is usually used for sequence transmission or data transmission. By using different OCCs, multiple reference signals or data can be transmitted on the same time-frequency resource.
  • the information is configured may mean that the network device configures the information in the resource pool. In the absence of network conditions, this information can be preconfigured. Information that is a preset value can be understood as being preset in the device.
  • the identification of the terminal device is an identification used to indicate, identify or correspond to the corresponding terminal equipment.
  • the terminal device may be an index or number used to uniquely identify the terminal device.
  • This identification can be signaling configured, preconfigured, or predefined.
  • the identification of the terminal device is any of the following: the terminal's medium access control (MAC) address, subscriber identity module (SIM) card number, international mobile equipment identification number (international mobile equipment identification number) identity, IMEI), etc.
  • MAC medium access control
  • SIM subscriber identity module
  • IMEI international mobile equipment identification number
  • the identification of the terminal device may also be an identification used to indicate, identify or correspond to the corresponding terminal device during transmission.
  • This identification can be signaling configured, preconfigured, or predefined. For example: IP address, network temporary identifier (RNTI), source identifier of the sending device, and destination identifier of the receiving device.
  • the source identifier of the sending device may be an identifier associated with a specific service or message to be sent.
  • the destination identifier of the receiving device may be an identifier associated with a specific service or message to be received.
  • a reference signal is mapped on every N resources, and no reference signal is mapped on the other N-1 resources.
  • This mapping method of frequency domain resources is called comb.
  • the value of N in the comb teeth is called the size of the comb teeth.
  • the size of the comb teeth can also be expressed as Comb-N.
  • the comb teeth can also be described as: the resources in each symbol are Y REs among Y ⁇ N resource elements (REs), and each N RE There is a reference signal inside, M is a number greater than zero, and N is a positive integer. In this way, the N REs can be used by different communication devices respectively.
  • REs resource elements
  • the optional K value is determined by the bandwidth of the frequency domain resource where the reference signal is located, such as the bandwidth of the resource pool, the bandwidth of the carrier, the bandwidth of the BWP, etc.
  • the reference signal in the comb tooth state from the frequency domain perspective, there are a total of N orthogonal frequency domain resources used for the reference signal.
  • the parameter signal when the parameter signal is mapped in one of the N REs, there may be mapping positions of N different frequency domain resources of the reference signal.
  • the resources of the downlink positioning reference signal (or uplink positioning reference signal) in each symbol are Y REs among Y ⁇ N resource elements (REs), and there is a downlink positioning reference signal (or Uplink positioning reference signal), Y is a number greater than zero, and N is a positive integer. In this way, the N REs can be used by different communication devices respectively.
  • Figure 4 is a schematic diagram of resources occupied by downlink positioning reference signals. As shown in Figure 4, the time-frequency resources occupied by the downlink positioning reference signal are mapped in a comb shape.
  • Figure 4 shows the time-frequency mapping patterns of the downlink positioning reference signal when the comb size (comb size) is 2, 4, 6 and 12 respectively.
  • a communication device can map the downlink positioning reference signal in a manner that every 2 REs map 1 RE.
  • the mapping interval of the downlink positioning reference signal in the frequency domain is 2.
  • Figure 5 is a schematic diagram of resources occupied by uplink positioning reference signals.
  • (g) in Figure 5 shows the time-frequency mapping pattern of the uplink positioning reference signal when the comb tooth size is 4 and occupies 8 symbols.
  • (j) in Figure 5 shows the time-frequency mapping pattern of the uplink positioning reference signal when the comb tooth size is 8 and occupies 12 symbols.
  • the communication devices (such as the first communication device and the second communication device) referred to in the embodiments of this application may be terminal devices, network devices (such as access network devices), or positioning management devices, etc.; the communication devices
  • the device may also be a component in the above-mentioned device (such as a chip, a chip system and/or a circuit, etc.).
  • Figure 6 is a schematic flow chart of a method for transmitting information according to an embodiment of the present application.
  • the first communication device receives at least one first message, each of the at least one first message including first sidelink control information and a first sidelink positioning reference signal.
  • the first communication device determines candidate resources for the second message based on at least one first sidelink control information and/or at least one first sidelink positioning reference signal included in the at least one first message.
  • the second message includes second sidelink control information and a second sidelink positioning reference signal.
  • the first communication device sends the second message according to the candidate resource.
  • the second communication device may monitor the second message on the receiving resource set, where the second message includes the second sidelink control information and the second sidelink positioning reference signal; and receive the second message on the candidate resource.
  • the candidate resource is determined by at least one first sidelink control information and/or at least one first sidelink positioning reference signal, and the received resource set includes the candidate resource.
  • the second sidelink control information is located before the second sidelink positioning reference signal.
  • the first sidelink control information carried by the same first information is located before the first sidelink positioning reference signal.
  • the second sidelink control information and the second sidelink positioning reference signal are sent on the same time slot.
  • the first sidelink control information and the first sidelink positioning reference signal carried by the same first information are received in the same time slot.
  • the first communication device may receive the at least one first message within the first time window.
  • the candidate resource may be located within the second time window.
  • the second time window is later than the first time window.
  • the first communication device may measure M sidelink control channels and/or M first sidelink positioning reference signals within the first time window to obtain the first resource.
  • the first resources include resources whose signal quality is higher than a signal quality threshold. M is a positive integer.
  • the signal quality threshold may be preset or preconfigured, or may be configured by a network device.
  • the M pieces of first sidelink control information are respectively carried on the M pieces of sidelink control channels.
  • the at least one first sidelink control information may include the M pieces of first sidelink control information.
  • the at least one first sidelink positioning reference signal may include the M first sidelink positioning reference signals.
  • the M first sidelink control information and the M first sidelink positioning reference signals may respectively come from the M first information, and the at least one first information includes the M first information.
  • the i-th first sidelink control information among the M pieces of first sidelink control information comes from the i-th first information among the M pieces of first information
  • measuring the sidelink control channel used to carry the first sidelink control information is sometimes referred to as “measuring the first sidelink control information”.
  • the sidelink control channel resource is a resource used to transmit the sidelink control channel
  • the reference signal resource is a resource used to transmit the sidelink positioning reference signal.
  • the sidelink control channel resources include frequency domain resources and/or code resources of the sidelink control channel
  • the reference signal resources include frequency domain resources and/or code resources of the sidelink positioning reference signal.
  • the frequency domain resource of the sidelink control channel may be an interleaving number or a sub-channel number of the sidelink control channel.
  • the code resource of the sidelink control channel may be an orthogonal code sequence index of the sidelink control channel.
  • the frequency domain resource of the sidelink positioning reference signal may be the offset value (offset) of the RE occupied by the sidelink positioning reference signal.
  • the code resource of the sidelink positioning reference signal may be an orthogonal sequence index of the sidelink positioning reference signal.
  • the code resource of the sidelink positioning reference signal may also be information used to determine the sidelink positioning reference signal, such as a cyclic shift value, a root sequence index, or used to generate a sidelink positioning reference signal.
  • the sequence initial value parameter may be used to determine the sidelink positioning reference signal, such as a cyclic shift value, a root sequence index, or used to generate a sidelink positioning reference signal.
  • the at least one first information has a total of M 0 first information, and M 0 is a positive integer.
  • the first communications device may measure the first sidelink control information and/or the first sidelink positioning reference signal for each first information received within the first time window. to determine the first resource.
  • M is equal to M 0 .
  • the first communication device may only measure the periodic first message without measuring the periodic first message.
  • some of the M 0 first messages received by the first communication device within the first time window may be temporary messages, while other messages may be periodic messages.
  • M is smaller than M 0 .
  • the first communication device may only measure periodic first messages whose reserved periods fall within the second time window. In other words, even if the first messages are periodic messages but the reservation period is outside the second time window, the first communication device may not measure these first messages.
  • the M 0 first messages received by the first communication device within the first time window may all be periodic messages, but the reserved periods of some of the first messages do not fall within the second time window, and the other part of the first messages do not fall within the second time window.
  • the reservation period of a message falls within the second time window.
  • the first communication device may only measure periodic first messages whose reserved period falls within the second time window. In this case, M is smaller than M 0 .
  • all messages received by the first communication device within the first time window may be periodic messages and the reserved resources fall within the second time window.
  • M is also equal to M 0 .
  • Figure 7 shows a schematic diagram of the first time window and the second time window.
  • the starting time of the first time window is T 0 and the ending time of the first time window is T 1 ; the starting time of the second time window is T 3 and the ending time of the second time window is T 4 .
  • the duration of the interval between T 1 and T 2 is D 1
  • the duration of the interval between T 3 and T 2 is D 2 .
  • D 1 can be a number greater than or equal to 0.
  • the first communication device receives three first messages.
  • these three first messages may be called message msg 1 , message msg 2 and message msg 3 respectively.
  • Message msg 1 and message msg 2 are periodic messages, and message msg 1 and message msg 2 will appear again in the second time window; message msg 3 is not a periodic message. Therefore, the first communication device may only measure the sidelink control information and/or the sidelink positioning reference information in the message msg 1 and the message msg 2 . It can be seen that in this case, the number of first messages received by the first communication device is greater than the number that needs to be measured.
  • the first resource may include at least one sidelink positioning reference signal resource and/or at least one reference signal resource.
  • the first resource may be:
  • the first resource only includes one sidelink control channel resource
  • the first resource only includes one reference signal resource
  • the first resource includes at least two sidelink control channel resources but does not include reference signal resources;
  • the first resource includes at least two reference signal resources, but does not include sidelink control channel resources;
  • the first resource includes a sidelink control channel resource and a reference signal resource
  • the first resource includes at least two sidelink control channel resources and at least two reference signal resources.
  • the first communication device determines the candidate resource according to the first resource, including: the first communication device determines the reservation period according to the M pieces of first sidelink control information. ; The first communication device determines a second resource based on the first resource and the reservation period, and the second resource is located within the second time window; the first communication device excludes the second resource to obtain the candidate resource.
  • some of the first messages received by the first communication device may be periodic.
  • the first communication device may determine the period of each of the periodically sent first messages based on the information carried by the first sidelink control information for indicating the period. These periods can be called reserved periods. Assuming that the M pieces of first information are all periodic messages, the first communication device can determine the i-th based on the first sidelink control information carried by the i-th first message among the M pieces of first information. The reservation period for the first message.
  • the first resource is determined by the first communication device based on information received within the first time window. Therefore, the time domain resource of the first resource is located within the time window.
  • the first communication device can determine which resources in which second time windows will be reserved based on the first resource and the reservation period. These resources that will be reserved are the second resources.
  • the frequency code resource of the second resource is the same as the first resource, but the time domain resource of the first resource is located in the first time window, and the time domain resource of the second resource is located in the second time window.
  • the first communication device may directly exclude the second resource within the second time window to obtain the candidate resource.
  • the first communication device can determine that message msg 1 and message msg 2 are periodic messages based on the information carried in the control information of message msg 1 and message msg 2 , and determine that message msg 1 and message msg 2 reservation period. Assume that the first communication device determines, based on the measurement results of message msg 1 and message msg 2 , that the first resource includes the sidelink control channel resource of message msg 1 and Reference signal resources. Then, the first communication device can determine the resources occupied by the message msg 1 in the second time unit based on the first resources and the reservation period. The resources occupied by message msg 1 in the second time unit are the second resources.
  • the first communication device can exclude the second resource from the resources included in the second time unit, and the remaining resources are candidate resources that can send the second message. It can be seen that although message msg 2 is also a periodic message and will also appear repeatedly in the second time unit, because message msg 2 does not belong to the first resource (in other words, the signal quality of message msg 2 is less than the signal quality threshold ), then the resources of message msg 2 in the second time window can also belong to candidate resources.
  • the second sidelink control information includes indication information of the second reservation period.
  • the second reservation period may be a period for sending sidelink control information (sidelink control information, SCI) and/or the second sidelink positioning reference signal in the PSCCH within the second time window.
  • the second reservation period is determined according to any one or more of the following methods: high-layer indication information of the first communication device; the second sidelink positioning reference signal QoS Parameters; the moving speed of the first communication device; the positioning algorithm used by the first communication device; the type of synchronization source; the priority; and the degree of congestion on the resource pool.
  • different speeds correspond to different reservation periods.
  • the higher the speed the smaller the reservation period. This can better ensure positioning performance in high-speed moving scenarios.
  • the speed can be divided into different levels. The higher the speed, the smaller the period value corresponding to the speed level. On the contrary, the bigger it is.
  • the second reservation period is determined according to the following method: the first communication device obtains first configuration information, the configuration information includes: Mp reservation periods, where Mp is a positive integer, the The value or value set of Mp reservation periods is determined by any one or more of the following methods: the second sidelink positioning reference signal QoS parameter; the moving speed of the first communication device; the The positioning algorithm used by the first communication device; the type of synchronization source; the priority; and the degree of congestion on the resource pool.
  • different speeds correspond to different reservation periods.
  • the greater the speed the smaller the value of the corresponding reservation period. This can better ensure positioning performance in high-speed moving scenarios.
  • the positioning algorithm includes one or more of the following: a positioning algorithm based on round-trip delay difference; a positioning algorithm based on angle of arrival; a positioning algorithm based on departure angle; a positioning algorithm based on carrier phase Location Algorithm.
  • the period may be longer than for a delay difference-based positioning algorithm. This can better ensure the performance of the positioning algorithm based on delay difference.
  • the method further includes: the first communication device determines a second resource based on the first resource, the reservation period, and the second reservation period, and the second reservation period includes in the second sidelink control information.
  • the resources that need to be excluded are not only the reserved receiving resources whose signal quality is higher than the threshold, but also the reserved sending resources that need to be excluded.
  • the first communication device obtains indication information, the indication information is used to instruct the first communication device to measure at least one of the following information: the M sidelink control channels, the M first Sidelink positioning reference signal.
  • the first communication device can determine according to the indication information whether to measure only the M sidelink control channels, only the M first sidelink positioning reference signals, or the M sidelink Both the control channel and the M first sidelink positioning reference signals need to be measured.
  • the indication information may be predefined, preconfigured, or configured.
  • the indication information may be determined by the first communication device.
  • N PRS the total number of resources of the sidelink positioning reference signal on each time slot
  • N PSCCH the total number of resources of the sidelink control channel on each time slot. If N PRS is smaller than N PSCCH , then only the M first sidelink positioning reference signals can be measured; if N PRS is larger than N PSCCH , then only the M sidelink control channels can be measured.
  • N PRS and N PSCCH may be predefined, preconfigured or configured.
  • the M sidelink control channels and the M first sidelink positioning reference signals have a corresponding relationship.
  • the corresponding relationship between the sidelink control channel and the first sidelink positioning reference signal may be determined based on information associated with the sidelink control channel.
  • the information includes at least one of the following information: frequency domain resources of the sidelink positioning reference signal and sequence parameters of the sidelink positioning reference signal.
  • the information associated with the sidelink control channel may include: the information is carried by the sidelink control channel, and/or the information is carried by frequency domain resources and/or orthogonal resources of the sidelink control channel. Sequence index determined. That is to say, in some embodiments, the first communication device may directly send information carrying frequency domain resources of the sidelink positioning reference signal and/or sequence parameters of the sidelink positioning reference signal.
  • the receiving end ie, the second communication device
  • the second communications device may determine the information based on received resources of the sidelink control channel.
  • the first communication device controls M sidelink control channels and/or M first sidelink control channels within the first time window.
  • Measuring link positioning reference signals to determine the first resource includes: the first communication device measuring the M first sidelink positioning reference signals to obtain a first measurement result, where the first measurement result includes M The signal quality of 1 reference signal resource.
  • the M 1 reference signal resources respectively carry M 1 first sidelink positioning reference signals among the M first sidelink positioning reference signals. M 1 is less than or A positive integer equal to M; the first communication device determines the first resource according to the first signal quality threshold and the first measurement result.
  • the first resource includes a first reference signal resource and a first reference signal resource corresponding to the first reference signal resource. Control channel resources, the first reference signal resources are reference signal resources whose signal quality is higher than the first signal quality threshold among the M 1 reference signal resources.
  • the first reference signal resource may include one reference signal resource or may include multiple reference signal resources.
  • the first communication device may only measure the signal quality of the sidelink positioning reference signal to determine the first resource. Specifically, the first communication device selects reference signal resources whose signal quality is higher than the signal quality threshold based on the measurement results; then, based on the corresponding relationship between the sidelink control channel resources and the reference signal resources, determines the Sidelink control channel resources corresponding to the filtered reference signal resources; finally, the first resource is obtained, which includes reference signal resources with signal quality higher than the signal quality threshold (i.e., first reference signal resources) and corresponding sidelink control channel resources.
  • the signal quality threshold i.e., first reference signal resources
  • the number of offset values (offset) of the RE can be recorded as N, and the number of interleaving or frequency domain sub-channels can be recorded as M.
  • N can also be the comb size.
  • M and N can be preconfigured, predefined, or configured by the network device.
  • the reference signal resource may be associated with the sidelink control resource, and the index and/or sequence index of the reference signal resource may be determined according to the frequency domain resource index of the sidelink control channel.
  • the index of the frequency domain resource of the sidelink control channel may be the index of the lowest (or highest) PRB that occupies resources, or the index of the lowest (or highest) subchannel that occupies resources for PSCCH, or the lowest (or highest) index that occupies resources for PSCCH. ) index for frequency domain interleaving.
  • the index of the frequency domain resource of the reference signal resource and the sequence index of the reference signal resource are determined based on the index of the frequency domain resource of the sidelink control channel and the N.
  • i SL-PRS_RE-offset represents the frequency domain resource index of the reference signal resource
  • i PSSCH represents the index of the frequency domain resource of the sidelink control channel
  • i SL-PRS_seq-index represents the sequence of the reference signal resource.
  • Index, N is the number of offset values of RE (that is, the number of frequency domain resources used for sidelink positioning reference signals).
  • is an offset value, and ⁇ can be a positive integer greater than or equal to 0 and less than or equal to N-1.
  • floor() means rounding down.
  • can be preconfigured, predefined, or configured by the network device.
  • i SL-PRS_RE-offset represents the frequency domain resource index of the reference signal resource
  • i PSSCH represents the index of the frequency domain resource of the sidelink control channel
  • i SL-PRS_seq-index represents the sequence of the reference signal resource.
  • Index, N is the number of offset values of RE (that is, the number of frequency domain resources used for sidelink positioning reference signals).
  • floor() means rounding down.
  • the first communication device may first determine the reference signal resource corresponding to each sidelink control channel resource according to Formula 1-1 and Formula 1-2, or based on Formula 1-3 or Formula 1-4. In other words, the first communication device may first determine the sidelink control channel resources and reference signal resources according to Formula 1-1 and Formula 1-2, or according to Formula 1-3 or Formula 1-4. Correspondence. After the reference signal resource measurement is completed and the first reference signal resource is determined, the sidelink control channel resource corresponding to the first reference signal resource is determined according to the predetermined correspondence relationship.
  • Figure 8 is a schematic diagram of code division of the sidelink positioning reference signal when N is less than M. As shown in Figure 8, M is equal to 10, N is equal to 4 and the sequence number of the sidelink positioning reference signal is equal to 3. In this case, there are a total of 10 candidate control resources and a total of 12 candidate reference signal resources, and each candidate control resource corresponds to a candidate reference signal resource.
  • the first communication device can determine the corresponding relationship between PSCCH and SL-PRS as shown in Figure 8 according to Formula 1-3 or Formula 1-4. Assume that the first communication device determines that the first resource includes a reference signal resource with an RE offset value of 0 and a sequence index of 2. Then, the first communication device can determine the frequency domain based on the corresponding relationship between the sidelink control channel resources and the reference signal resources. The resource of the sidelink control channel with resource index 8 also belongs to the first resource.
  • the index of the frequency domain resource of the reference signal resource and/or the sequence index of the reference signal resource is based on the index of the frequency domain resource of the sidelink control channel and the sidelink Determined by the orthogonal sequence index of the channel control channel.
  • the index of the frequency domain resource of the reference signal resource and the sequence index of the reference signal resource are based on the index of the frequency domain resource of the sidelink control channel, and the sidelink control channel the orthogonal sequence index, the number M of orthogonal frequency domain resources of the sidelink control channel and the N.
  • each of the N reference signal resources corresponds to K ⁇ M one control resource and one candidate control resource.
  • i SL-PRS_RE-offset represents the index of the frequency domain resource of the reference signal resource
  • i OCC represents the orthogonal sequence index of the sidelink control channel
  • i interlace represents the frequency domain resource of the sidelink control channel.
  • the index of N is the number of offset values of the RE (that is, the number of frequency domain resources used for the sidelink positioning reference signal)
  • M is the number of orthogonal frequency domain resources of the sidelink control channel.
  • i interlace 0,1,...,M-1
  • i OCC 0,1,...,K-1
  • K is the number of orthogonal sequences of the sidelink control channel.
  • is an offset value, and ⁇ can be a positive integer greater than or equal to 0 and less than or equal to N-1.
  • the offset value ⁇ may not be introduced when determining the index of the frequency domain resource of the reference signal resource.
  • i SL-PRS_RE-offset represents the index of the frequency domain resource of the reference signal resource
  • i OCC represents the orthogonal sequence index of the sidelink control channel
  • i interlace represents the frequency domain resource of the sidelink control channel.
  • the index of , N is the offset value (offset) number of the RE
  • M is the number of orthogonal frequency domain resources of the sidelink control channel.
  • i interlace 0,1,...,M-1
  • i OCC 0,1,...,K-1
  • K is the number of orthogonal sequences of the sidelink control channel.
  • the first communication device may first determine the reference signal corresponding to each sidelink control channel resource according to Formula 1-5 and Formula 1-6, or based on Formula 1-7 or Formula 1-8. resource.
  • the first communication device can first determine the correspondence between the sidelink control channel resource and the reference signal resource according to Formula 1-5 and Formula 1-6, or according to Formula 1-7 or Formula 1-8. relation. After the reference signal resource measurement is completed and the first reference signal resource is determined, the sidelink control channel resource corresponding to the first reference signal resource is determined according to the predetermined correspondence relationship.
  • Figure 9 is a schematic diagram where N is greater than M and the sidelink control channel is code divided. As shown in Figure 9, M is equal to 5, N is equal to 8 and K is equal to 2. In this case, there are 10 candidate sidelink control channel resources and 8 candidate reference signal resources, and each candidate reference signal resource corresponds to a candidate control resource.
  • the resources of the sidelink control channel and the reference signal resources are determined according to the resource index.
  • the resource index simultaneously indicates the resources and reference signal resources of the sidelink control channel.
  • the maximum value for this resource index is predefined, preconfigured, or configured by the network device.
  • the resource index may be indicated by second indication information, and the second indication information is carried by the sidelink control channel.
  • the resources of the sidelink control channel include frequency domain resources of the sidelink control channel and sequence parameters of the sidelink control channel;
  • the reference signal resources include the sidelink positioning reference signal.
  • the frequency domain resources and the sequence parameters of the sidelink positioning reference signal are the resources of the sidelink control channel.
  • fPSCCH is the frequency domain resource index of the sidelink control channel
  • i index is the resource index
  • n OCC is the orthogonal sequence index of the sidelink control channel
  • floor() means rounding down.
  • f RE is the index of the second frequency domain resource
  • i index is the resource index
  • n seq is the index of the second sequence
  • floor() means rounding down.
  • the first communication device may determine the resource corresponding to the first reference signal resource based on the resource index used to determine the first reference signal resource. sidelink control channel resources.
  • Figure 10 shows a schematic diagram of resources occupied by the sidelink control channel and the sidelink positioning reference signal.
  • M is equal to 5
  • N is equal to 4
  • Ko is equal to 3
  • Ks is equal to 3.
  • Ko is the sequence number Ko of the sidelink control channel
  • Ks is the sequence number Ks of the sidelink positioning reference signal.
  • the index of the frequency domain resource of the sidelink control channel can be determined based on the resource index, the number M of frequency domain orthogonal resources of the sidelink control channel and a piece of reference information,
  • the reference information may be one or more of the identification of the first communication device, the identification of the second communication device and the offset value.
  • f PSCCH is the frequency domain resource index used to send the sidelink control channel
  • i index is the resource index
  • ID S is all or part of the bits of the identification of the first communication device
  • ID D is the second communication device. All or part of the bits of the device identification
  • is an offset value
  • can be a positive integer greater than or equal to 0 and less than or equal to M-1.
  • can be predefined, preconfigured, or configured by the network device.
  • the frequency domain resource of the sidelink positioning reference signal can be determined based on the resource index, the frequency domain orthogonal resource number N of the sidelink positioning reference signal and a reference information, and the reference information can be the first One or more of the identification of the communication device, the identification of the second communication device and the offset value.
  • f RE is the index of the second frequency domain resource
  • i index is the resource index
  • ID S is all or part of the bits of the identification of the first communication device
  • ID D is all or part of the identification of the second communication device.
  • Bit is an offset value
  • can be a positive integer greater than or equal to 0 and less than or equal to N-1.
  • can be predefined, preconfigured, or configured by the network device.
  • the method of using formulas 1-13 to 1-25 to determine the sidelink control channel resources corresponding to the reference signal frequency domain resources is the same as using formulas 1-9 and 1-11 to determine the sidelink control corresponding to the reference signal frequency domain resources.
  • the method of channel resources is the same and will not be described again for the sake of brevity.
  • the reference signal frequency domain resources and sidelink control channel resources can also be determined by the frequency code index.
  • i PRS is the frequency code index of the sidelink positioning reference signal
  • i PSCCH is the sidelink control channel.
  • the frequency code index then in Figure 10, the range of i PRS is 0 to 14, and the range of i PSCCH is 0 to 11.
  • i PRS is the resource index of the sidelink positioning reference signal
  • i PSCCH is the resource index of the sidelink control channel
  • N PRS is the total number of resources of the sidelink positioning reference signal
  • the first communication device can first determine the corresponding relationship between i PRS and i PSCCH according to Formula 1-26 to Formula 1-32. Then, when the reference signal resource included in the first resource is determined, the link control channel resource corresponding to the reference signal resource is determined according to the determined correspondence relationship.
  • Link control channel resource iPSCCH 0 resource.
  • the first communication device can determine the reference signal resource and the sidelink control channel resource in advance. Correspondence between link control channel resources. In this way, after the first communication device determines the reference signal resource included in the first resource, it can determine the sidelink control channel resource corresponding to the reference resource according to the corresponding relationship.
  • M 1 is a positive integer less than or equal to M. That is to say, in some embodiments, the number of signal quality reference resources included in the first measurement result may be equal to or smaller than the number of measured first sidelink positioning reference signals.
  • the first communication device may put the measurement results of each of the M first sidelink positioning reference signals into the first measurement Results are in progress.
  • M equals M 1 .
  • the first communication device may delete part (for example, one, two or even more) of the measurement results.
  • the first measurement results only include measurement results that have not been deleted.
  • M 1 is smaller than M.
  • the first communication device obtains the signal quality of the M reference signal resources after measuring the M first sidelink positioning reference signals.
  • the first communication device may determine one or more signal quality measurement results among the signal qualities of the M reference signal resources that have better or best signal quality. And get 1 measurement result of MM that is not excluded.
  • the first communication device may consider that resources corresponding to one or more signal qualities with the lowest or lower quality among the M signal qualities are resources that do not need to be excluded. Therefore, the first communication device can exclude these signal qualities from the measured signal quality of the M reference signal resources, and the signal quality of the remaining M 1 reference signal resources is the signal quality included in the first measurement result.
  • the signal quality of the i-th reference signal resource among the M reference signal resources is based on the i-th first sidelink among the M first sidelink positioning reference signals.
  • the energy and energy of the REs occupied by the positioning reference signal are determined.
  • the signal quality of the i-th reference signal resource is the energy sum of the REs occupied by the i-th first sidelink positioning reference signal.
  • the signal quality of the i-th reference signal resource is obtained by multiplying the energy sum of the REs occupied by the i-th first sidelink positioning reference signal and a coefficient.
  • the signal quality of the i-th reference signal resource can satisfy the following formula:
  • RSSI PRS,comb-j represents the signal quality of the reference signal resource occupying the first sidelink positioning reference signal of the jth RE in every N REs.
  • K is the bandwidth of the resource pool, and the unit is resource block (RB), sub-channel or interleaving.
  • Comb-j means that the i-th reference signal resource occupies the j-th RE in every N REs, and b j means Normalization coefficient, such as 1, 1/N, N, etc.
  • a j,k in Equation 2-1 is the signal or the amplitude of the signal detected on the j-th RE located on the k-th RB, sub-channel or interlace occupied by the i-th first sidelink positioning reference signal.
  • the resources in the second time window may include third resources in addition to the second resources that need to be excluded.
  • the third resource includes resources of multiple sidelink control channels, and the time-frequency resources of the multiple sidelink control channels are the same.
  • the first communications device may also exclude the third resource from the second time window.
  • the remaining sidelink control channel resources in the second time window may also include: a first control channel resource set and a second control channel resource set.
  • the q-th sidelink control channel resource among the P sidelink control channel resources included in the first control channel resource set has Nq corresponding sidelink control channel resources in the second control channel resource set.
  • the qth sidelink control channel resource and the Nq corresponding sidelink control channel resources have the same time-frequency resources and different orthogonal sequences.
  • the first communication device may also exclude sidelink control channel resources included in the second control resource set.
  • the sidelink control channel resources included in the third resource or the second control resource set are used as candidate resources.
  • the REs with RE offset values 0 to 7 can be called PRS resources 0 to PRS resources 7 respectively; the sideline control channel resources with frequency code indexes 0 to 7 can be called PRS resources 0 to 7 respectively. They are: control channel resource 0 to control channel resource 7.
  • PRS resource 0 corresponds to control channel resource 0
  • PRS resource 1 corresponds to control channel resource 1, and so on.
  • the first communication device receives the first sidelink positioning reference signal (which may be respectively referred to as positioning reference signal) at PRS resource 0, PRS resource 1, PRS resource 2, PRS resource 5 and PRS resource 6 on time slot n. 0.
  • Positioning reference signal 1 positioning reference signal 2, positioning reference signal 5 and positioning reference signal 6.
  • Positioning reference signal 0 is received on PRS resource 0, and positioning reference signal 1 is received on PRS resource 1.
  • the first communication device did not use PRS resource 3, PRS resource 4, or PRS resource 7 within the first time period. and information is received on the control channel resources corresponding to these PRSs.
  • the first communication device measures the signal quality of positioning reference signal 0, positioning reference signal 1, positioning reference signal 2, positioning reference signal 5 and positioning reference signal 6 and the signal quality of these positioning reference signals is less than the first signal quality. Threshold. Then, the first communication device may determine that the first resource does not include PRS resource 0, PRS resource 1, PRS resource 2, PRS resource 5, and PRS resource 6.
  • the first communication device Since the first communication device does not receive information in PRS resource 3, PRS resource 4, and PRS resource 7, the first communication device can confirm that PRS resource 3, PRS resource 4, and PRS resource 7 in the second time window are also available. of.
  • PRS resource 0, PRS resource 1, PRS resource 2, PRS resource 5 and PRS resource 6 and the corresponding control channel resources are reserved in the second time window, but due to the positioning reference signal 0, positioning reference signal 1 , the signal quality of positioning reference signal 2, positioning reference signal 5 and positioning reference signal 6 is less than the first signal quality threshold, therefore PRS resource 0, PRS resource 1, PRS resource 2, PRS resource 5 and PRS resource 6 and the corresponding control channel
  • the resource does not belong to the first resource that needs to be excluded; and PRS resource 3, PRS resource 4, PRS resource 7 and the corresponding control channel resource are not reserved in the second time window.
  • the control channel resources 0 to 7 can be divided into the following sets:
  • Set S A1 contains control channel resource 3 and control channel resource 4.
  • the two control channel resources are not reserved within the second time window, and the control channel resource using the same frequency domain resource as the two control channel resources is not reserved within the second time window.
  • the sidelink control channel resources included in the set S A1 are not reserved within the second time window, and the sidelink control channel resources included in the set S A1 use the same frequency domain resources. Control channel resources are also not reserved within the second time window.
  • Set S A2 contains control channel resources 7 .
  • control channel resource 2 and control channel resource 7 use the same frequency domain resource, and control channel resource 2 has been reserved in the second time window.
  • the frequency code resources of the sidelink control channel resources included in the set S A2 are not reserved in the second time window, but are used with the sidelink control channel resources included in the set S A2 Sidelink control channel resources of the same frequency domain resources are reserved in the second time window.
  • Set S A3 contains control channel resources 2.
  • control channel resource 2 and control channel resource 7 use the same frequency domain resource.
  • Control channel resource 2 has been reserved in the second time window, but uses the same frequency domain resource as control channel resource 2.
  • the control channel resource 7 is not reserved within the second time window.
  • the frequency code resources of the sidelink control channel resources included in the set S A3 are reserved in the second time window, but use the same frequency domain resources as the sidelink control channel resources included in the set S A3
  • the sidelink control channel resources are not reserved within the second time window.
  • Set S A4 contains control channel resources 0, 1, 5, and 7.
  • Control channel resource 0 and control channel resource 5 are both reserved within the second time window, and the frequency domain resources of control channel resource 0 and control channel resource 5 are the same.
  • control channel resource 1 and control channel resource 7 are both reserved within the second time window, and the frequency domain resources of control channel resource 1 and control channel resource 7 are the same.
  • the frequency code resources of the sidelink control channel resources included in the set S A4 are reserved within the second time window, and use the same frequency domain resources as the sidelink control channel resources included in the set S A4
  • the sidelink control channel resources are also reserved within the second time window.
  • control channel resources using the same frequency domain resources included in the set S A4 also have the same time domain resources
  • these sidelink control channel resources with time domain resources are the third resources.
  • control channels 0, 1, 5, and 7 as an example, if the time domain resources of control channel resource 0 and control channel resource 5 are also the same, the time domain resources of control channel resource 1 and control channel resource 7 are also the same. Then it can be considered that the third resource includes control channel resources 0, 1, 5, and 7.
  • the third resource may also include reference signal resources corresponding to multiple sidelink control channel resources. Taking Figure 9 as an example, the third resource may also include PRS resources 0, 1, 5, and 7.
  • control channel resources included in set S A3 may also be excluded from the candidate resources.
  • the candidate resources may not include control channel resources included in the set S A3 .
  • the reference signal resources corresponding to the control channel resources included in the set S A3 may also be excluded.
  • the candidate resources may not include reference signal resource resources corresponding to the control channel resources included in the set S A3 .
  • control channel resources included in the set S A2 may also be excluded from the candidate resources.
  • the candidate resources may not include control channel resources included in the set S A2 .
  • the reference signal resources corresponding to the control channel resources included in the set S A2 may also be excluded.
  • the candidate resources may not include reference signal resource resources corresponding to the control channel resources included in the set S A2 .
  • Set S A1 contains resources that can be considered the cleanest resources. Therefore, the first communication device can exclude the second resources, the resources included in the set S A2 , the resources included in the set S A3 , and the resources included in the set S A4 to obtain candidate resources. In this case, the candidate resources may only include resources included in the set S A1 .
  • the first communication device may add the resources included in the set S A2 to the candidate resources.
  • the first communication device may add the resources included in the set S A3 to the candidate resources.
  • the first communication device may add resources included in set S A4 to the candidate resources.
  • the first communication device can increase the first signal quality threshold.
  • the first signal quality threshold redetermines the first resource.
  • the candidate resource threshold may be predefined, preconfigured, or configured.
  • the candidate resource threshold can be expressed as Th*M total .
  • Th is a real number greater than 0 and less than 1.
  • the first communication device excludes the second resource and obtains the candidate resource, including: the first communication device excludes the second resource and obtains X 1 sidelink control channel resources and X 2 references signal resources, where among the X 2 reference signal resources Each reference signal resource corresponds to at least one of the X 1 sidelink control channel resources, and the frequency domain resources of the X 2 reference signal resources are different, and X 1 and X 2 are positive integers; the first communication device
  • the candidate resource is determined based on X 1 sidelink control channel resources and X 2 reference signal resources.
  • the candidate resource includes X 2 sidelink control channel resources and the X 2 reference signal resources.
  • the X 2 The sidelink control channel resources correspond to the X 2 reference signal resources one-to-one.
  • the first sidelink positioning reference signal resources with frequency code indexes from 0 to 11 can be respectively called: positioning reference signal resource 0 to positioning reference signal resource 11; the frequency domain
  • the sidelink control channel resources with resource indexes from 0 to 9 are respectively called: control channel resource 0 to control channel resource 9. It is assumed that the signal quality of the positioning reference signal 0 to the positioning reference signal 11 (that is, the positioning reference signal received on the positioning reference signal resource 0 to the positioning reference resource 11) is less than the first signal quality threshold. Then the resources from positioning reference signal resource 0 to positioning reference signal resource 11 and the corresponding resources from control channel resource 0 to control channel resource 9 do not belong to the first resource.
  • control channel resources 0 to 9 respectively correspond to positioning reference signal resources 0 to 9, where the positioning reference corresponding to control channel resource 0, control channel resource 4 and control channel resource 8
  • the RE offset values of the signals are the same (all are 0); the RE offset values of the positioning reference signals corresponding to control channel resource 1, control channel resource 5 and control channel resource 9 are the same (all are 1); control channel resource 2 and control
  • the RE offset values of the positioning reference signals corresponding to channel resource 6 are the same (all 3); the RE offset values of the positioning reference signals corresponding to control channel resource 1, control channel resource 3 and control channel resource 7 are the same (all 4).
  • the frequency domain resource of one reference signal resource that is, the RE offset value
  • one control channel resource may be selected from multiple control channel resources, and the remaining control channel resources may be excluded from the candidate resources.
  • control channel resource 0 control channel resource 1 and control channel resource 3 can be selected as candidate resources, and control channel resources 4 to 9 are excluded from the candidate resources.
  • the candidate resources include control channel resources 0 to 3 and corresponding positioning reference signal resources 0 to 3 . If the number of resources contained in the candidate resources is less than the candidate resource threshold, the excluded control channel resources can be added to the candidate resources; if the number of candidate resources is still less than the candidate resource threshold after adding the excluded control channel resources, the number of candidate resources can be increased. a first signal quality threshold, and re-determine the first resource according to the improved first signal quality threshold.
  • the first communication device measures M sidelink control channels and/or M first sidelink positioning reference signals within the first time window, and determines the first Resources include: the first communication device measures the M sidelink control channels and obtains a second measurement result, wherein the second measurement result includes M 2 sidelinks among the M sidelink control channels.
  • the signal quality of the downlink control channel where M 2 is a positive integer less than or equal to M; the first communication device determines the first resource according to the second signal quality threshold and the second measurement result, and the first resource includes The first sidelink control channel resource and the reference signal resource corresponding to the first sidelink control channel resource, the first sidelink control channel resource is the signal in the M 2 sidelink control channels Resources of the sidelink control channel whose quality is higher than the second signal quality threshold.
  • the first sidelink control channel resource may include one sidelink control channel resource or may include multiple sidelink control channel resources.
  • the first communication device may only measure the signal quality of the sidelink control channel to determine the first resource. Specifically, the first communication device selects sidelink control channels whose signal quality is higher than the signal quality threshold based on the measurement results; then, based on the corresponding relationship between the sidelink control channel resources and the reference signal resources, Determine the reference signal resource corresponding to the filtered sidelink control channel; finally obtain the first resource, which includes the sidelink control channel whose signal quality is higher than the signal quality threshold (i.e., the first side downlink control channel resources) and corresponding reference signal resources.
  • the signal quality threshold i.e., the first side downlink control channel resources
  • the first communication device determines the specific implementation manner of the reference signal resource corresponding to the first sidelink control channel resource and the first communication device determines the specific implementation manner of the sidelink control channel resource corresponding to the first reference signal resource. Similar, for the sake of brevity, they will not be repeated here.
  • M 2 is a positive integer less than or equal to M. That is to say, in some embodiments, the number of signal qualities of sidelink control channels included in the second measurement result may be equal to, or may be smaller than, the number of measured sidelink control channels.
  • the first communication device may put the measurement result of each of the M sidelink control channels into the second measurement result.
  • M equals M 2 .
  • the first communication device may delete part (for example, one, two or even more) of the measurement results. Only undeleted measurement results are included in the second measurement result.
  • M2 is smaller than M.
  • the first communication device obtains the signal quality of the M sidelink control channels after measuring the M sidelink control channels.
  • the first communication device may determine that the signal quality is better among the signal qualities of the M sidelink control channels. or the best one or more signal quality measurements. And get 2 measurement results of MM that are not excluded.
  • the first communication device may consider that resources corresponding to one or more signal qualities with the lowest or lower quality among the M signal qualities are resources that do not need to be excluded. Therefore, the first communication device can exclude these signal qualities from the measured signal qualities of the M sidelink control channels, and the signal quality of the remaining M 1 sidelink control channels is the second measurement result. Included signal quality.
  • the first communication device excludes the second resource to obtain the candidate resource, including: the first communication device excludes the fourth resource and the second resource to obtain the candidate resource, and the fourth resource includes low signal quality.
  • At least two sidelink control channel resources at the second signal quality threshold, the time-frequency resources of the at least two sidelink control channel resources are the same.
  • the fourth resource is similar to the third resource in the above embodiment.
  • the difference from the third resource is that the signal quality of the sidelink control channel included in the fourth resource is lower than the second quality threshold.
  • the specific method of determining the fourth resource please refer to the above embodiment of determining the third resource. For the sake of brevity, details will not be described here.
  • the first communication device measures M sidelink control channels and/or M first sidelink positioning reference signals within the first time window, and determines the first Resources include: the first communication device measures the M sidelink control channels and the M first sidelink positioning reference signals to obtain a third measurement result, wherein the third measurement result includes the M The signal quality of M 3 sidelink control channels and the signal quality of M 4 reference signal resources among the M sidelink control channels, and the M 4 reference signal resources respectively carry the M first sidelinks.
  • M 3 and M 4 are positive integers less than or equal to M; the first communication device uses the third measurement result, the third signal quality threshold and The fourth signal quality threshold determines the first resource.
  • the relationship between the signal quality of the M sidelink control channels and the M 3 sidelink control channels can be referred to the signal quality of the M sidelink control channels and the M 2 sidelink control channels in the above embodiment.
  • the relationship between the signal quality of the M first sidelink positioning reference signals and M 4 reference signal resources can be referred to the M first sidelink positioning reference signals and M 1 reference signals in the above embodiment.
  • the relationship between resource signal quality will not be described here for the sake of brevity.
  • the first communication device determines the first resource according to the third measurement result, the third signal quality threshold and the fourth signal quality threshold, including: the first communication device determines the first resource according to the M The signal quality of the three sidelink control channels and the third signal quality threshold determine the second sidelink control channel resource.
  • the second sidelink control channel resource is the M 3 sidelink control channels.
  • the first communication device determines the second reference signal based on the signal quality of the M 4 reference signal resources and the fourth signal quality threshold resource, the second reference signal resource is a reference signal resource whose signal quality is higher than the fourth signal quality threshold among the M 4 reference signal resources; the first resource determined by the first communication device includes the second side link channel control channel resources and the second reference signal resources.
  • the second reference signal resource may include one reference signal resource or may include multiple reference signal resources.
  • the second sidelink control channel resource may include one sidelink control channel resource or may include multiple sidelink control channel resources.
  • the first communication device determines the specific implementation of the reference signal resource corresponding to the second sidelink control channel resource and the first communication device determines the specific implementation of the sidelink control channel resource corresponding to the first reference signal resource.
  • the method is similar; the first communication device determines the specific implementation manner of the sidelink control channel resource corresponding to the second reference signal resource and the first communication device determines the sidelink control channel resource corresponding to the first reference signal resource.
  • the specific implementation methods are similar, and for the sake of simplicity, they will not be repeated here.
  • the sidelink control channel and the sidelink positioning reference signal are respectively measured, and the control channel resources and reference signal resources included in the first resource are determined according to respective thresholds.
  • the first communication device can separately measure the sidelink control channel and the sidelink positioning reference signal, and determine the sidelink control included in the first resource according to respective thresholds, channel resources and reference signal resources, then the first communication device does not need to determine the reference signal resources corresponding to the sidelink control channel resources according to the above formula 1-1 to formula 1-32.
  • the first communication device can determine the corresponding relationship between the sidelink control channel resources and the reference signal resources by itself, and send the information containing the reference signal resources to the receiving end device through the corresponding sidelink control channel.
  • the receiving device can determine the reference signal resources based on the received information.
  • the method further includes: the first communication device determining a reference signal resource corresponding to the second sidelink control channel resource; the first resource determined by the first communication device further Includes reference signal resources corresponding to the second sidelink control channel resources.
  • the reference signal resources corresponding to the second sidelink control channel resources are further determined, and these resources are added to the first resources. That is to say, the first resource in the above embodiment includes: Two sidelink control channel resources, a second reference signal resource, and a reference signal resource corresponding to the second sidelink control channel resource.
  • the method further includes: the first communication device determining a sidelink control channel resource corresponding to the second reference signal resource; the first resource determined by the first communication device further Includes sidelink control channel resources corresponding to the second reference signal resource.
  • the sidelink control channel resources corresponding to the second reference signal resource are further determined, and these resources are added to the first resource. That is to say, the first resources in the above embodiment include: second sidelink control channel resources, second reference signal resources, and sidelink control channel resources corresponding to the second reference signal resources.
  • the method further includes: the first communication device determining a reference signal resource corresponding to the second sidelink control channel resource; the first communication device determining a reference signal resource corresponding to the second reference signal The sidelink control channel resource corresponding to the resource; the first resource determined by the first communication device also includes: a reference signal resource corresponding to the second sidelink control channel resource, and, corresponding to the second reference signal The sidelink control channel resource corresponding to the resource.
  • the sidelink control channel resources corresponding to the second reference signal resource are further determined, and these resources are added to the first resource; and after determining the second side link control channel resource, After the downlink reference resources are obtained, the reference signal resources corresponding to the second sidelink control channel resources are further determined, and these resources are added to the first resources.
  • the first resource in the above embodiment includes: the second sidelink control channel resource, the second reference signal resource, the sidelink control channel resource corresponding to the second reference signal resource, and the sidelink control channel resource corresponding to the second reference signal resource. Reference signal resources corresponding to the second sidelink control channel resources.
  • the set S B-1 is a set containing the second sidelink control channel resources
  • the set S B-2 is a set containing the second reference signal resources
  • the set S B-3 is a set containing the second reference signal resources.
  • the set of reference signal resources corresponding to the sidelink control channel resources, the set S B-4 is a set including the sidelink control channel resources corresponding to the second reference signal resource.
  • the sidelink control channel resources included in set S B-1 correspond to the reference signal resources included in set S B-3
  • the reference signal resources included in set S B-2 correspond to the sidelink control channel resources included in set S B-4.
  • the first communication device may determine the first resource set S1 within the second time window based on the set SB-1 , the set SB-3 and the reservation period.
  • the frequency code resources of the resources included in the first resource set S1 are the same as the frequency code resources of the resources included in the set S B-1 and the set S B-3 .
  • the first communication device may determine the second resource set S2 within the second time window according to the set SB-2 , the set SB-4 and the reservation period.
  • the frequency code resources of the resources included in the second resource set S2 are the same as the frequency code resources of the resources included in the set S B-2 and the set S B-4 .
  • the second resource determined by the first communication device includes the first resource set S1 and the second resource set S2.
  • the first communication device may determine the third resource set S3 according to the first resource set S1 and/or the second resource set S2, and add the third resource set Resources in S3 are added to this candidate threshold.
  • the third resource set S3 may be any one of the following: the first resource set S1, the second resource set S2, the first resource set S1 and the second resource set S2 The union of the first resource set S1 and the second resource set S2 minus the intersection of the first resource set S1 and the second resource set S2.
  • the first communication device measures M sidelink control channels and/or M first sidelink positioning reference signals within the first time window, and determines the first resource, including: The first communication device measures the M sidelink control channels and obtains a fourth measurement result, wherein the fourth measurement result includes M 5 sidelink control among the M sidelink control channels.
  • the third sidelink control channel resource is a sidelink control channel resource whose signal quality is higher than the fifth signal quality threshold among the M 5 sidelink control channels, and the third reference signal resource is the reference signal resource corresponding to the third sidelink control channel resource; the first communication device, based on the third reference signal resource, locates the M 6th M first sidelink positioning reference signals.
  • the sidelink positioning reference signal is measured to obtain the signal quality of M 6 reference signal resources, where the M 6 reference signal resources respectively carry the M 6 first sidelink positioning reference signals, and the M 6 first sidelink positioning reference signals are
  • the reference signal resource does not include the third reference signal resource, and M 6 is a positive integer less than M; the first communication device determines the fourth reference signal resource according to the sixth signal quality threshold and the signal quality of the M 6 reference signal resources.
  • the fourth reference signal resource is a reference signal resource whose signal quality is higher than the sixth signal quality threshold among the M 6 reference signal resources, and the fourth sidelink control The channel resource is a sidelink control channel resource corresponding to the fourth reference signal resource;
  • the first resource determined by the first communication device includes: the third sidelink control channel resource, the third reference signal resource , the fourth sidelink control channel resource and the fourth reference signal resource.
  • M is equal to 5, that is, there are 5 sidelink control channels and 5 first sidelink positioning reference signals.
  • these five sidelink control channels can be called sidelink control channel 1 to sidelink control channel 5 respectively, and these five first sidelink positioning reference signals are called sidelink control channels respectively.
  • the five first sidelink positioning reference signals are respectively carried by five reference signal resources.
  • these five reference signal resources are called reference signal resources 1 to reference signal resources 5.
  • the resources of the five sidelink control channels correspond to the five reference signal resources one-to-one, that is, the resources of the sidelink control channel 1
  • the resource corresponds to reference signal resource 1
  • the resource of sidelink control channel 2 corresponds to reference signal resource 2, and so on.
  • the fourth measurement includes the signal quality of the 5 sidelink control channels. It is assumed that the signal quality of the sidelink control channel 1 is higher than the fifth signal quality threshold. Then the first communication device may determine that the third sidelink control channel resource includes the resource of the sidelink control channel 1, and determine that the third reference signal resource includes the reference signal resource 1. Then, the first communication device can measure the sidelink control channel 2 to the sidelink control channel 5 to obtain the signal quality of the reference signal resources of the reference signal resource 2 to the reference signal resource 5 . It is assumed that the signal quality of reference signal resource 2 and reference signal resource 3 is higher than the sixth signal quality threshold.
  • the first communication device may determine that the fourth reference signal resource includes reference signal resource 2 and reference signal resource 3, and determine that the fourth sidelink control channel resource includes sidelink control channel 2 and sidelink control channel 2.
  • Line control channel 3 resources resources.
  • the first resources determined by the first communication device include: resources of sidelink control channel 1, resources of sidelink control channel 2, resources of sidelink control channel 3, reference signal resource 1, reference Signal resource 2 and reference signal resource 3.
  • the first communication device can first screen out unqualified sidelink control channel resources according to the fifth signal quality threshold, and then determine the corresponding reference signal resources; and then can only measure the remaining sidelinks.
  • the signal quality of the path positioning reference signal is determined, and non-compliant reference signal resources are screened out according to the sixth signal quality threshold, and then the corresponding side link control channel resources are determined.
  • the first communication device may measure both the M sidelink control channels and the M first sidelink positioning reference signals, but when comparing with the sixth signal quality threshold, only Reference signal resources whose signal quality of the corresponding sidelink control channel is less than the fifth signal quality threshold are used for comparison.
  • the above-mentioned 5 sidelink control channels and 5 first sidelink positioning reference signals are also used.
  • the first communication device can measure 5 sidelink control channels and 5 first sidelink positioning reference signals to obtain the signal quality of the 5 sidelink control channels and the signal quality of the 5 reference signal resources.
  • the first communication device compares the signal quality of the five sidelink control channels with the fifth signal quality threshold, and determines that the signal quality of the sidelink control signal 1 is higher than the fifth signal quality threshold. Since the sidelink control channel 1 corresponding to the reference signal resource 1 has been excluded, there is no need to compare the reference signal resource 1 when comparing with the sixth signal quality threshold. Therefore, it is only necessary to compare the signal quality of reference signal resources 2 to 5 with the sixth signal quality threshold.
  • the first communication device may measure M first sidelink positioning reference signals according to a sequence. Specifically, the first communication device may measure the received M first sidelink positioning reference signals, and the sequence used for measurement is the sequence. For ease of description, this sequence may be called the first sequence. As mentioned above, sequences are generated from sequence identifiers. For convenience of description, the identifier used to generate the first sequence may be called a first sequence identifier.
  • the first sequence identifier may be a sequence identifier used to generate the second sidelink positioning reference signal.
  • the first communication device may use the sequence identifier used to generate the sidelink positioning reference signal sent by itself to generate a sequence for measuring the M first sidelink positioning reference signals (i.e., the first sequence).
  • the initial value c init of the random sequence satisfies the following formula:
  • N ID is the first sequence identifier
  • the initial value c init of the random sequence satisfies the following formula:
  • n ID is the first sequence identifier
  • the initial value c init of the random sequence satisfies the following formula:
  • the first sequence identifier may be predefined, preconfigured, or a sequence identifier configured by signaling.
  • the signaling can come from network equipment or other communication equipment.
  • the first communication device may generate a sequence for measuring M first sidelink positioning reference signals (ie, the first sequence) according to a sequence identifier that is predefined, preconfigured, or configured by signaling. .
  • the first communication device may measure the M first sidelink positioning reference signals according to M sequences respectively.
  • these M sequences may be called M second sequences.
  • the M second sequences are respectively determined based on the M second sequence identifiers.
  • the i-th second sequence among the M second sequences is determined based on the i-th second sequence identifier among the M second sequence identifiers.
  • the first communication device may obtain the M second sequence identifiers from M third communication devices.
  • the M first sidelink positioning reference signals are respectively sent by the M third communication devices.
  • the first communication device can obtain the i-th second sequence identifier indicated by the i-th third communication device among the M third communication devices; and determine the i-th second sequence identifier based on the i-th second sequence identifier.
  • i second sequence measure the i-th second sidelink positioning reference signal among the M first sidelink positioning reference signals according to the i-th second sequence, and obtain the i-th second sidelink positioning reference signal used to carry the i-th The signal quality of the reference signal resource of the second sidelink positioning reference signal.
  • the first communication device may obtain M pieces of sequence identification information, and determine the M second sequence identifications based on the M pieces of sequence identification information.
  • the M sequence identification information comes from M third communication devices respectively.
  • the i-th sequence identification information among the M pieces of sequence identification information comes from the i-th third communication device among the M third communication devices.
  • the i-th sequence identifier is different from the sequence identifier used by the i-th third communication device to generate the sidelink positioning reference signal, but the sidelink generated by the i-th second sequence determined based on the i-th sequence identifier
  • the signal quality of the reference signal resources of the link positioning reference signal can reflect the signal quality of the reference signal resources of the sidelink positioning reference signal generated by the i-th third communication device. For example, assuming that the signal quality of the reference signal resource of the sidelink positioning reference signal generated according to the sequence determined by the sequence identifier is Q ref , the i-th third communication device generates the reference signal resource of the sidelink positioning reference signal.
  • the signal quality is Q rel
  • Q ref and Q rel can have the following relationship: Q ref ⁇ Q rel , or the difference between Q ref and Q rel is a preset value, or the value of Q ref is Q rel one-half of the value, etc.
  • the sequence identification information may directly include the second sequence identification.
  • the i-th sequence identification information includes the i-th second sequence identification among the M second sequence identifications. In this way, the first communication device can directly determine that the i-th second sequence identifier is the sequence identifier carried in the sequence identifier information.
  • the i-th sequence identification information including the second sequence identification may be a sequence identification determined by the i-th third communication device among the M third communication devices.
  • the i-th sequence identifier may be a sequence identifier selected by the i-th third communication device from a sequence identifier set.
  • the set of sequence identifiers may be predefined, preconfigured, or configured by signaling.
  • the set of sequence identifiers may include the M second sequence identifiers.
  • the i-th third communication device selects a sequence identifier from the M second sequence identifiers that best reflects the signal quality of its sidelink positioning reference signal, and sends the selected sequence identifier to the i-th third communication device. 1. Communication equipment.
  • each second sequence identifier in the set of sequence identifiers may also include an index.
  • the set of sequence identifiers may include the M second sequence identifiers and M indexes.
  • the M indexes correspond to the M second sequence identifiers one-to-one.
  • the third communication device may directly send the index corresponding to the determined second sequence identifier to the first communication device.
  • the sequence identification information may include an index, and the first communication device may determine the sequence identification corresponding to the index from the sequence identification set according to the index in the sequence identification information.
  • the m-th sequence identification information among the M sequence identification information includes index i
  • the index i is the index of the i-th second sequence identification among the M second sequence identifications in the sequence identification set.
  • the first communication device can determine the i-th second sequence identifier from the sequence identifier set according to index i.
  • the frequency domain resources when the first communication device measures the first sidelink positioning reference signal are determined based on the frequency domain resources of the first sidelink positioning reference signal. of.
  • the first communication device at the first time On the frequency domain resource i within the window, the i-th first sidelink positioning reference signal among the M first sidelink positioning reference signals is measured, where the frequency domain resource i is measured according to the first
  • the frequency domain resource i is a frequency domain resource for the first communication device to receive the i-th first sidelink positioning reference signal.
  • the starting position of the frequency domain resource i is the same as the starting position of the frequency domain resource used by the first communication device to receive the i-th first sidelink positioning reference signal, and the The size of the frequency domain resource i is the same as the frequency domain bandwidth through which the first communication device sends the second sidelink positioning reference signal.
  • FIG 11 is a schematic structural block diagram of a communication device according to an embodiment of the present application.
  • the communication device 1100 shown in Figure 11 includes: a processing module 1101, a sending module 1102 and a receiving module 1103.
  • the processing module 1101 can be implemented by a processor
  • the sending module 1102 can be implemented by a transmitter
  • the receiving module 1103 can be implemented by a receiver.
  • the communication device 1100 can implement the functions of the first communication device in the above embodiment.
  • the receiving module 1103 is configured to receive at least one first message, each of the at least one first message including first sidelink control information and a first sidelink positioning reference signal.
  • the processing module 1101 is configured to determine candidate resources for the second message based on at least one first sidelink control information and/or at least one first sidelink positioning reference signal included in the at least one first message.
  • the message includes second sidelink control information and a second sidelink positioning reference signal.
  • the sending module 1102 is configured to send the second message according to the candidate resource.
  • processing module 1101 the sending module 1102 and the receiving module 1103 can be referred to the above embodiments, and will not be described again for the sake of brevity.
  • FIG 12 is a schematic structural block diagram of another communication device according to an embodiment of the present application.
  • the communication device 1200 shown in Figure 12 includes: a monitoring module 1201 and a receiving module 1202.
  • the monitoring module 1201 can be implemented by a receiver
  • the receiving module 1202 can be implemented by a receiver.
  • the communication device 1200 can implement the functions of the second communication device in the above embodiment.
  • the monitoring module 1201 is configured to monitor the second message in the receiving resource set, where the second message includes the second sidelink control information and the second sidelink positioning reference signal.
  • the receiving module 1202 is configured to receive the second message on a candidate resource, the candidate resource being determined by at least one first sidelink control information and/or at least one first sidelink positioning reference signal, the receiving resource The set includes this candidate resource.
  • monitoring module 1201 and the receiving module 1202 can be referred to the above embodiments, and will not be described again for the sake of brevity.
  • FIG. 13 is a structural block diagram of a communication device provided according to an embodiment of the present application.
  • the communication device 1300 shown in Figure 13 includes a processor 1301.
  • the processor 1301 can be used to process communication protocols and communication data, control the communication device, execute software programs, process data of software programs, etc.
  • the communication device 1300 may also include a memory 1302.
  • Memory 1302 is mainly used to store software programs and data.
  • the communication device 1300 may also include a transceiver 1303.
  • a transceiver may also be called a transceiver unit, a transceiver, a transceiver device, etc.
  • the components used to implement the receiving function in the transceiver 1303 can be regarded as receiving modules, and the components used to implement the transmitting function in the transceiver 1303 can be regarded as transmitting modules, that is, the transceiver 1303 includes a receiving module and a transmitting module.
  • the receiving module may sometimes also be called a receiver, receiver, or receiving circuit.
  • the sending module can sometimes also be called a transmitter, transmitter or transmitting circuit.
  • the communication device 1300 may be a terminal device or a device for a terminal device (such as a chip, a circuit, etc.).
  • the communication device 1300 may be a network device or a device for a network device (such as a chip, a circuit, etc.).
  • the communication device 1300 may also include a radio frequency circuit and an antenna.
  • Radio frequency circuits are mainly used for conversion of baseband signals and radio frequency signals and processing of radio frequency signals.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • the antenna and radio frequency circuit with transceiver functions can be regarded as the transceiver 1303 of the communication device 1300 .
  • the communication device 1300 may also include an input and output interface.
  • the input and output interface can be used to obtain data and send the obtained data to the processor 1301 and/or the memory 1302.
  • the input and output interface can also be used to send data generated by the processor 1301 to other devices.
  • FIG. 13 For ease of illustration, only one memory and processor are shown in Figure 13. In an actual product, there may be one or more processors and one or more memories. Memory can also be called storage media or storage devices. The memory may be provided independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the processor 1301, the memory 1302 and the transceiver 1303 communicate with each other through internal connection paths to transfer control and/or data information. Number
  • the methods disclosed in the above embodiments of the present application can be applied to the processor 1301 or implemented by the processor 1301.
  • the processor 1301 may be an integrated circuit chip with signal processing capabilities.
  • each step of the above method can be completed by instructions in the form of hardware integrated logic circuits or software in the processor 1301 .
  • the processor described in each embodiment of the present application can be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), or a field programmable gate array (field programmable gate array). , FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • Software modules can be located in random access memory (random access memory, RAM), flash memory, read-only memory (read-only memory, ROM), programmable read-only memory or electrically erasable programmable memory, registers, etc. that are mature in this field. in the storage medium.
  • the storage medium is located in the memory, and the processor reads the instructions in the memory and completes the steps of the above method in combination with its hardware.
  • the memory 1302 may store instructions for performing the method performed by the first communication device in the above method.
  • the processor 1301 can execute instructions stored in the memory 1302 in combination with other hardware (such as the transceiver 903) to complete the steps performed by the first communication device in the above method.
  • other hardware such as the transceiver 903
  • the processor 1301 may be coupled to a memory that stores instructions for performing the method performed by the first communication device in the above method.
  • the memory 1302 may store instructions for performing the method performed by the second communication device in the above method.
  • the processor 1301 can execute instructions stored in the memory 1302 in combination with other hardware (such as the transceiver 903) to complete the steps performed by the second communication device in the above method.
  • other hardware such as the transceiver 903
  • the processor 1301 may be coupled to a memory that stores instructions for performing the method performed by the second communication device in the above method.
  • Embodiments of the present application also provide a chip system, which includes a logic circuit that is coupled to an input/output interface and transmits data through the input/output interface.
  • the chip system can execute the method of the first communication device in the above method embodiment.
  • Embodiments of the present application also provide a computer-readable storage medium on which instructions are stored. When the instructions are executed, the method of the first communication device in the above method embodiment is executed.
  • Embodiments of the present application also provide a computer program product containing instructions that, when executed, execute the method of the first communication device in the above method embodiment.
  • Embodiments of the present application also provide a chip system, which includes a logic circuit that is coupled to an input/output interface and transmits data through the input/output interface.
  • the chip system can execute the method of the second communication device in the above method embodiment.
  • Embodiments of the present application also provide a computer-readable storage medium on which instructions are stored. When the instructions are executed, the method of the second communication device in the above method embodiment is executed.
  • Embodiments of the present application also provide a computer program product containing instructions that, when executed, execute the method of the second communication device in the above method embodiment.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separate.
  • the components shown as units may be Or it may not be a physical unit, that is, it may be located in one place, or it may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in various embodiments of the present application can be integrated into one processing module, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种传输信息的方法和相关装置,该方法包括:第一通信设备接收至少一个第一消息,该至少一个第一消息中的每个第一消息包括第一侧行链路控制信息和第一侧行链路定位参考信号;该第一通信设备根据至少一个第一侧行链路控制信息和/或至少一个第一侧行链路定位参考信号,确定第二消息的候选资源,该第二消息包括第二侧行链路控制信息和第二侧行链路定位参考信号;该第一通信设备根据该候选资源发送该第二消息。上述技术方案中,可以简化第二消息的资源确定方案,便于通信设备实现。

Description

传输信息的方法和相关装置
本申请要求于2022年08月03日提交中国专利局、申请号为202210925952.9、申请名称为“一种资源选择方法和装置”的中国专利申请的优先权;本申请要求于2022年08月12日提交中国专利局、申请号为202210969018.7、申请名称为“传输信息的方法和相关装置”的中国专利申请的优先权;本申请要求于2023年4月7日提交中国专利局,申请号为202310410103.4、申请名称为“传输信息的方法和相关装置”的中国专利申请的优先权,上述全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,更具体地,涉及传输信息的方法和相关装置。
背景技术
在日常生活和应用中,位置信息成为了越来越重要的基础信息。导航服务、基于位置服务(location based services,LBS)等应用都需要根据用户的位置信息为用户提供相应的服务。
全球导航卫星系统(global navigation satellite system,GNSS)是目前常用的确定位置信息的方案。GNSS的定位精度可能无法满足一些对精度要求较高的应用的需求。
为了解决这一问题,业界提出了利用侧行链路定位技术。但是如何选择用于传输侧行链路定位参考信号的资源是业界关注的问题。
发明内容
本申请实施例提供一种传输信息的方法和相关装置,可以简化资源确定方案,便于通信设备实现。
第一方面,本申请实施例提供一种传输信息的方法,包括:第一通信设备接收至少一个第一消息,该至少一个第一消息中的每个第一消息包括第一侧行链路控制信息和第一侧行链路定位参考信号;该第一通信设备根据该至少一个第一消息包括的至少一个第一侧行链路控制信息和/或至少一个第一侧行链路定位参考信号,确定第二消息的候选资源,该第二消息包括第二侧行链路控制信息和第二侧行链路定位参考信号;该第一通信设备根据该候选资源发送该第二消息。
上述技术方案中,该第一通信设备可以基于在至少一个第一消息中接收到的侧行链路控制信息和侧行链路定位参考信号,确定候选资源,并根据该候选资源在第二消息中发送第二侧行链路控制信息和第二侧行链路定位参考信号。换句话说,该第一通信设备根据接收到的消息同时确定用于发送第二侧行链路控制信息的资源和用于发送第二侧行链路定位参考信号的资源。这样可以简化资源确定方案,便于通信设备实现。
结合第一方面,在第一方面的一种可能的实现方式中,该第一通信设备根据该至少一个第一消息包括的至少一个第一侧行链路控制信息和/或至少一个第一侧行链路定位参考信号,确定第二消息的候选资源,包括:该第一通信设备在第一时间窗内对M个侧行链路控制信道和/或M个第一侧行链路定位参考信号进行测量,确定第一资源,该第一资源包括信号质量高于信号质量门限的资源,M个第一侧行链路控制信息分别承载在该M个侧行链路控制信道上,该至少一个第一侧行链路控制信息包括该M个第一侧行链路控制信息,该至少一个第一侧行链路定位参考信号包括该M个第一侧行链路定位参考信号,M为正整数;该第一通信设备根据该第一资源,确定该候选资源,该候选资源位于第二时间窗内,该第二时间窗位于该第一时间窗之后。
上述技术方案中,该第一通信设备可以根据前一时间窗(即该第一时间窗)内接收到的信息为确定在后面的时间窗(即第二时间窗)内发送的信息所使用的资源。这样,该第一通信设备可以提前进行资源规划。
结合第一方面,在第一方面的一种可能的实现方式中,该第一通信设备根据该第一资源,确定该候选资源,包括:该第一通信设备根据该M个第一侧行链路控制信息,确定预留周期;该第一通信设 备根据该第一资源和该预留周期,确定第二资源,该第二资源位于该第二时间窗内;该第一通信设备排除该第二资源,得到该候选资源。
上述技术方案中,第一资源是根据第一时间窗内接收到的信息确定的。因此,该第一资源对应的时域资源是位于第一时间窗内的。上述技术方案中,该第一通信设备可以通过确定预留周期和第一资源,确定出第二时间窗内被预留的资源(即第二资源)。然后该第一通信设备排除这些资源,剩下的资源就是可以用于发送该第二消息的资源了。
结合第一方面,在第一方面的一种可能的实现方式中,该第二侧行链路控制信息包括第二预留周期的指示信息。
结合第一方面,在第一方面的一种可能的实现方式中,该第二预留周期根据以下中的任意一种方式确定:该第一通信设备的高层指示信息;该第二侧行链路定位参考信号QoS参数;该第一通信设备的移动速度;该第一通信设备使用的定位算法;同步源的类型;优先级;资源池上的拥塞程度。
上述技术方案中,第一通信设备确定发送侧行链路定位参考信号所使用的预留周期信息,以便于第二通信设备根据这个确认来进行有效的资源选择。并且根据上述方式确定的,可以提高定位参考信号预留周期的准确度,提升定位性能。
结合第一方面,在第一方面的一种可能的实现方式中,该第二预留周期根据以下方式中的至少一种确定:该第一通信设备获取第一配置信息,该配置信息包括:Mp个预留周期,该Mp为正整数,该Mp个预留周期的取值或取值集合,以由下中的任意一种方式确定:该第二侧行链路定位参考信号QoS参数;该第一通信设备的移动速度;该第一通信设备使用的定位算法;同步源的类型;优先级;资源池上的拥塞程度。
上述技术方案中,第一通信设备确定发送侧行链路定位参考信号所使用的预留周期信息,预留周期的取值或取值范围根据上述第一配置信息方式确定,可以提高定位参考信号预留周期的准确度,提升定位性能。
结合第一方面,在第一方面的一种可能的实现方式中,该定位算法包括以下中的一种或多种:基于往返时延差的定位算法;基于到达角的定位算法;基于离开角的定位算法;基于载波相位的定位算法。
上述技术方案中,第一通信设备确定发送侧行链路定位参考信号所使用的预留周期信息,根据定位算法确定,可以提高定位参考信号预留周期的准确度,提升定位性能。
结合第一方面,在第一方面的一种可能的实现方式中,该方法还包括:该第一通信设备根据该第一资源、该预留周期、该第二预留周期,确定第二资源,该第二预留周期包含于所述第二侧行链路控制信息。
上述技术方案中,第一通信设备根据第一预留周期,以及第二预留周期,确定出发送侧行链路定位参考信号的候选资源,以便于第二通信设备根据这个确认来进行有效的资源选择。
结合第一方面,在第一方面的一种可能的实现方式中,该第一通信设备在第一时间窗内对M个侧行链路控制信道和/或M个第一侧行链路定位参考信号进行测量,确定第一资源,包括:该第一通信设备对该M个第一侧行链路定位参考信号进行测量,得到第一测量结果,其中该第一测量结果包括M1个参考信号资源的信号质量,该M1个参考信号资源分别承载该M个第一侧行链路定位参考信号中的M1个第一侧行链路定位参考信号,M1是小于或等于M的正整数;该第一通信设备根据第一信号质量门限和该第一测量结果,确定该第一资源,该第一资源包括第一参考信号资源以及与该第一参考信号资源对应的控制信道资源,该第一参考信号资源是该M1个参考信号资源中信号质量高于该第一信号质量门限的参考信号资源。
上述技术方案中,由于侧行链路控制信道资源与参考信号资源是有对应关系的。因此,该第一通信设备可以只需要测量侧行链路定位参考信号的信号质量,筛选出第一资源需要包括的参考信号资源(即需要被排除的资源),然后根据筛选出的参考信号资源以及对应关系确定对应的侧行链路控制信道资源,这些侧行链路控制信道资源也是需要被排除的资源。换句话说,上述技术方案中,该第一通信设备可以不需要对侧行链路控制信道进行测量,就可以确定第一资源需要包括的侧行链路控制信道资源(即需要被排除的侧行链路控制信道资源)。这样,可以减少该第一通信设备需要测量的信号(信道)数目,从而节省该第一通信设备的运算资源,降低该第一通信设备的负担和能耗。
结合第一方面,在第一方面的一种可能的实现方式中,该第一通信设备排除该第二资源,得到该候选资源,包括:该第一通信设备排除第三资源和该第二资源,得到该候选资源,该第三资源位于该第二时间窗内,该第三资源包括多个侧行链路控制信道的资源,该多个侧行链路控制信道的时频资源相同。
上述技术方案进一步从第二时间窗内排除了时频资源相同的侧行链路控制信道资源。虽然这些侧行链路控制信道资源对应的参考信号资源的信号质量低于第一信号质量门限,但是由于这些侧行链路控制信道资源使用的时频资源相同,那么在这些资源上发送信息可能会收到干扰。因此,将这些资源排除在候选资源之外,可以得到更加“干净”的资源,从而降低发送第二信息时可能受到干扰的情况发生。
结合第一方面,在第一方面的一种可能的实现方式中,该第一通信设备排除该第二资源,得到该候选资源,包括:该第一通信设备排除第二资源,得到X1个侧行链路控制信道资源和X2个参考信号资源,其中该X2个参考信号资源中的每个参考信号资源与该X1个侧行链路控制信道资源中的至少一个对应,且该X2个参考信号资源的频域资源不同,X1和X2是正整数;该第一通信设备根据X1个侧行链路控制信道资源和X2个参考信号资源,确定该候选资源,该候选资源包括X2个侧行链路控制信道资源与该X2个参考信号资源,该X2个侧行链路控制信道资源与该X2个参考信号资源一一对应。
上述技术方案中,侧行链路定位参考信号是基于频分和码分资源发送的。因此,可能出现多个侧行链路控制信道资源对应具有相同频域资源的参考信号资源的情况发生。由于侧行链路定位参考信号同时支持频分和码分,可以提升可选资源的数量,从而提升系统容量。对于参考信号资源而言,每个频域资源对应的多个侧行链路控制信道资源都保留,那么该第二时间窗内可能出现多个具有相同频域资源的定位参考信号。那么在这些资源上发送信息可能会收到干扰。因此,如果将对应相同参考信号资源的频域资源的侧行链路控制信道资源只保留一个,那么可以得到更加“干净”的资源,从而降低发送第二信息时可能受到干扰的情况发生。
结合第一方面,在第一方面的一种可能的实现方式中,该第一通信设备在第一时间窗内对M个侧行链路控制信道和/或M个第一侧行链路定位参考信号进行测量,确定第一资源,包括:该第一通信设备对该M个侧行链路控制信道进行测量,得到第二测量结果,其中该第二测量结果包括该M个侧行链路控制信道中的M2个侧行链路控制信道的信号质量,该M2是小于或等于M的正整数;该第一通信设备根据第二信号质量门限和该第二测量结果,确定该第一资源,该第一资源包括第一侧行链路控制信道资源以及与该第一侧行链路控制信道资源对应的参考信号资源,该第一侧行链路控制信道资源是该M2个侧行链路控制信道中信号质量高于该第二信号质量门限的侧行链路控制信道的资源。
上述技术方案中,由于侧行链路控制信道资源与参考信号资源是有对应关系的。因此,该第一通信设备可以只需要测量侧行链路控制信道的信号质量,筛选出第一资源需要包括的侧行链路控制信道资源(即需要被排除的资源),然后根据筛选出的侧行链路控制信道资源以及对应关系确定对应的参考信号资源,这些参考信号资源也是需要被排除的资源。换句话说,上述技术方案中,该第一通信设备可以不需要对第一侧行链路定位参考信号进行测量,就可以确定第一资源需要包括的参考信号资源(即需要被排除的参考信号资源)。这样,可以减少该第一通信设备需要测量的信号(信道)数目,从而节省该第一通信设备的运算资源,降低该第一通信设备的负担和能耗。
结合第一方面,在第一方面的一种可能的实现方式中,该第一通信设备排除该第二资源,得到该候选资源,包括:该第一通信设备排除第四资源和该第二资源,得到该候选资源,该第四资源包括信号质量低于该第二信号质量门限的至少两个侧行链路控制信道资源,该至少两个侧行链路控制信道资源的时频资源相同。
上述技术方案进一步从第二时间窗内排除了时频资源相同的侧行链路控制信道资源。虽然这些侧行链路控制信道资源的信号质量低于第二信号质量门限,但是由于这些侧行链路控制信道资源使用的时频资源相同,那么在这些资源上发送信息可能会收到干扰。因此,将这些资源排除在候选资源之外,可以得到更加“干净”的资源,从而降低发送第二信息时可能受到干扰的情况发生。
结合第一方面,在第一方面的一种可能的实现方式中,该第一通信设备在第一时间窗内对M个侧行链路控制信道和/或M个第一侧行链路定位参考信号进行测量,确定第一资源,包括:该第一通信设备对该M个侧行链路控制信道和该M个第一侧行链路定位参考信号进行测量,得到第三测量结果,其 中该第三测量结果包括该M个侧行链路控制信道中的M3个侧行链路控制信道的信号质量和M4个参考信号资源的信号质量,该M4个参考信号资源分别承载该M个第一侧行链路定位参考信号中的M4个第一侧行链路定位参考信号,M3和M4是小于或等于M的正整数;该第一通信设备根据该第三测量结果、第三信号质量门限和第四信号质量门限,确定该第一资源。
结合第一方面,在第一方面的一种可能的实现方式中,该第一通信设备根据该第三测量结果、第三信号质量门限和第四信号质量门限,确定该第一资源,包括:该第一通信设备根据该M3个侧行链路控制信道的信号质量和该第三信号质量门限,确定第二侧行链路控制信道资源,该第二侧行链路控制信道资源是该M3个侧行链路控制信道中信号质量高于该第三信号质量门限的侧行链路控制信道资源;该第一通信设备根据该M4个参考信号资源的信号质量和该第四信号质量门限,确定第二参考信号资源,该第二参考信号资源是该M4个参考信号资源中信号质量高于该第四信号质量门限的参考信号资源;该第一通信设备确定的该第一资源包括该第二侧行链路控制信道资源和该第二参考信号资源。
利用上述技术方案,该第一通信设备可以根据一个门限确定需要排除的侧行链路控制信道资源,根据另一个门限确定需要排除的参考信号资源。换句话说,该第一通信设备可以根据两个门限分别排除侧行链路控制信道资源和参考信号资源。这样,该第一通信设备可以在不知道侧行链路控制信道资源和参考信号资源的对应关系的情况下,就可以确定出需要被排除的资源。
结合第一方面,在第一方面的一种可能的实现方式中,该方法还包括:该第一通信设备确定与该第二侧行链路控制信道资源对应的参考信号资源;该第一通信设备确定的该第一资源还包括与该第二侧行链路控制信道资源对应的参考信号资源。
上述技术方案中,该第一通信设备确定的需要被排除的资源不仅包括信号质量低于门限的参考信号资源和侧行链路控制信道资源,还包括与该侧行链路控制信道资源对应的参考信号资源。这样候选资源中能够用于发送侧行链路定位参考信号的资源就更加“干净”,从而减少发送第二侧行链路定位参考信号时可能受到干扰的情况发生。
结合第一方面,在第一方面的一种可能的实现方式中,该方法还包括:该第一通信设备确定与该第二参考信号资源对应的侧行链路控制信道资源;该第一通信设备确定的该第一资源还包括与该第二参考信号资源对应的侧行链路控制信道资源。
上述技术方案中,该第一通信设备确定的需要被排除的资源不仅包括信号质量低于门限的参考信号资源和侧行链路控制信道资源,还包括与该参考信号资源对应的侧行链路控制信道资源。这样候选资源中能够用于发送侧行链路控制信道的资源就更加“干净”,从而减少发送第二侧行链路控制信息时可能受到干扰的情况发生。
结合第一方面,在第一方面的一种可能的实现方式中,该方法还包括:该第一通信设备确定与该第二侧行链路控制信道资源对应的参考信号资源;该第一通信设备确定与该第二参考信号资源对应的侧行链路控制信道资源;该第一通信设备确定的该第一资源还包括:与该第二侧行链路控制信道资源对应的参考信号资源,和,与该第二参考信号资源对应的侧行链路控制信道资源。
上述技术方案中,该第一通信设备确定的需要被排除的资源不仅包括信号质量低于门限的参考信号资源和侧行链路控制信道资源,还包括与该参考信号资源对应的侧行链路控制信道资源以及与该侧行链路控制信道资源对应的参考信号资源。这样候选资源中能够用于发送侧行链路控制信道的资源和能够用于发送侧行链路定位参考信号的资源就更加“干净”,从而减少发送第二信息时可能受到干扰的情况发生。
结合第一方面,在第一方面的一种可能的实现方式中,该第一通信设备根据该第一资源和该预留周期,确定第二资源,包括:该第一通信设备根据该第二侧行链路控制信道资源、与该第二侧行链路控制信道资源对应的参考信号资源和该预留周期,在该第二时间窗内确定第一资源集;该第一通信设备根据该第二参考信号资源、与该第二参考信号资源对应的侧行链路控制信道资源和该预留周期,在该第二时间窗内确定第二资源集;该第一通信设备确定的该第二资源包括该第一资源集和该第二资源集。
结合第一方面,在第一方面的一种可能的实现方式中,该方法还包括:该第一通信设备在确定在该候选资源数目小于候选资源门限的情况下,确定该候选资源包括第三资源集,该第三资源集是根据该第一资源集和/或该第二资源集确定的。第一资源集合第二资源集包含的资源本身或者资源对应的资 源的信号质量都是低于信号质量门限的。因此,相对于第一资源包括的资源,第一资源集合和第二资源集合包括的资源更加“干净”。在候选资源数目不满足候选资源门限的时候优先返回这些较为“干净”的资源。这样,可以减少发送第二信息时可能受到干扰的情况发生。
结合第一方面,在第一方面的一种可能的实现方式中,该第三资源集是以下中的至少一个:该第一资源集,该第二资源集,该第一资源集与该第二资源集的并集,或者,该第一资源集与该第二资源集的并集减去该第一资源集与该第二资源集的交集。
结合第一方面,在第一方面的一种可能的实现方式中,该第一通信设备在第一时间窗内对M个侧行链路控制信道和/或M个第一侧行链路定位参考信号进行测量,确定第一资源,包括:该第一通信设备对该M个侧行链路控制信道进行测量,得到第四测量结果,其中该第四测量结果包括该M个侧行链路控制信道中的M5个侧行链路控制信道的信号质量,该M5是小于或等于M的正整数;该第一通信设备根据第五信号质量门限和该第四测量结果,确定第三侧行链路控制信道资源和第三参考信号资源,其中该第三侧行链路控制信道资源是该M5个侧行链路控制信道中信号质量高于该第五信号质量门限的侧行链路控制信道的资源,该第三参考信号资源是与该第三侧行链路控制信道资源对应的参考信号资源;该第一通信设备根据该第三参考信号资源,对该M个第一侧行链路定位参考信号中的M6个第一侧行链路定位参考信号进行测量,得到M6个参考信号资源的信号质量,其中该M6个参考信号资源分别承载该M6个第一侧行链路定位参考信号,该M6个参考信号资源不包括该第三参考信号资源,M6是小于M的正整数;该第一通信设备根据第六信号质量门限和该M6个参考信号资源的信号质量,确定第四参考信号资源和第四侧行链路控制信道资源,其中该第四参考信号资源是该M6个参考信号资源中信号质量高于该第六信号质量门限的参考信号资源,该第四侧行链路控制信道资源是与该第四参考信号资源对应的侧行链路控制信道的资源;该第一通信设备确定的该第一资源包括:该第三侧行链路控制信道资源、该第三参考信号资源、该第四侧行链路控制信道资源和该第四参考信号资源。
上述技术方案中,由于侧行链路控制信道资源与参考信号资源是有对应关系的。因此,该第一通信设备可以通过侧行链路控制信道的信号质量,筛选出第一资源需要包括的侧行链路控制信道资源(即需要被排除的资源),然后根据筛选出的侧行链路控制信道资源以及对应关系确定对应的参考信号资源,这些参考信号资源也是需要被排除的资源。在根据另一个门限筛选需要排除的参考信号资源时,就不需要再次测量已经排除的参考信号资源的信号质量。这样,可以减少该第一通信设备需要测量的信号(信道)数目,从而节省该第一通信设备的运算资源,降低该第一通信设备的负担和能耗。此外,上述技术方案中,该第一通信设备确定的需要被排除的资源不仅包括信号质量高于门限的参考信号资源和侧行链路控制信道资源,还包括与该参考信号资源对应的侧行链路控制信道资源以及与该侧行链路控制信道资源对应的参考信号资源。这样候选资源中能够用于发送侧行链路控制信道的资源和能够用于发送侧行链路定位参考信号的资源就更加“干净”,从而减少发送第二信息时可能受到干扰的情况发生。
结合第一方面,在第一方面的一种可能的实现方式中,该M个参考信号资源的信号质量中的第i个参考信号资源的信号质量是根据该M个第一侧行链路定位参考信号中第i个第一侧行链路定位参考信号占用的RE的能量和确定的,该第i个第一侧行链路定位参考信号在每个符号中的资源是T×N个RE中的T个RE,每N个RE里面有一个该第i个第一侧行链路定位参考信号占用的RE,T是大于零的数,该N是正整数,i=1,…,M。
结合第一方面,在第一方面的一种可能的实现方式中,该侧行链路控制信道资源包括该侧行链路控制信道的频域资源和/或序列参数,该参考信号资源包括该侧行链路定位参考信号的频域资源和/或序列参数。
结合第一方面,在第一方面的一种可能的实现方式中,在该第一通信设备在第一时间窗内对M个侧行链路控制信道和/或M个第一侧行链路定位参考信号进行测量,确定第一资源之前,该方法还包括:该第一通信设备获取指示信息,该指示信息用于指示该第一通信设备测量以下信息中的至少一种:该M个侧行链路控制信道,该M个第一侧行链路定位参考信号。
结合第一方面,在第一方面的一种可能的实现方式中,在侧行链路控制信道的总资源数多于侧行链路定位参考信号的总资源数的情况下,该指示信息用于指示该第一通信设备测量该M个第一侧行链路定位参考信号;在该侧行链路控制信道的总资源数少于该侧行链路定位参考信号的总资源数的情况 下,该指示信息用于指示该第一通信设备测量该M个侧行链路控制信道。
结合第一方面,在第一方面的一种可能的实现方式中,该侧行链路控制信道的总资源数可以是预定义、预配置或由网络设备配置的。
结合第一方面,在第一方面的一种可能的实现方式中,该侧行链路定位参考信号的总资源数以是预定义、预配置或由网络设备配置的。
结合第一方面,在第一方面的一种可能的实现方式中,信号质量门限(例如第一信号质量门限、第二信号质量门限、第三信号质量门和第四信号质量门限)可以是预定义、预配置或者由网络设备配置的。
结合第一方面,在第一方面的一种可能的实现方式中。该第一通信设备可以在同一时隙上发送该第二侧行链路控制信息和该第二侧行链路定位参考信号。
结合第一方面,在第一方面的一种可能的实现方式中,该第二侧行链路控制信息位于该第二侧行链路定位参考信号之前。
结合第一方面,在第一方面的一种可能的实现方式中,该第一侧行链路控制信息的资源与该第一侧行链路定位参考信号的资源相关。
结合第一方面,在第一方面的一种可能的实现方式中,该第一侧行链路控制信息的资源与该第一侧行链路定位参考信号的资源相关,包括:该第一侧行链路定位参考信号的资源由指示信息指示,该第一侧行链路控制信息包括该指示信息;或者该第一侧行链路定位参考信号的资源由该第一侧行链路控制信息的频域资源和/或序列参数确定。第一侧行链路控制信息可以由侧行链路控制信道承载。因此,第一侧行链路控制信息可以是侧行链路控制信道的资源。
侧行链路控制信道的序列参数可以包括该侧行链路控制信道的循环移位CS值、该侧行链路控制信道的根序列索引、或者该侧行链路控制信道的正交序列索引。
结合第一方面,在第一方面的一种可能的实现方式中,该第一通信设备在该第一时间窗内对该M个第一侧行链路定位参考信号进行测量,包括:该第一通信设备根据第一序列标识确定第一序列;该第一通信设备根据该第一序列,对该M个第一侧行链路定位参考信号进行测量。
出于隐私保护等原因,发送该第一侧行链路定位参考信号的通信设备可能不希望该第一通信设备获取到其用于生成该第一侧行链路定位参考信号的序列。因此,上述技术方案中,该第一通信设备可以使用一个序列标识(即该第一序列标识)生成一个序列(即该第一序列),并使用该序列来测量M个第一侧行链路定位参考信号的信号质量。这样可以使得接收第一侧行链路定位参考信号的通信设备,在不需要知道第一侧行链路定位参考信号使用的序列的条件下,也可以在进行资源选择时的测量、排除操作。从而使得发送该第一侧行链路定位参考信号的通信设备的隐私得到保证。
结合第一方面,在第一方面的一种可能的实现方式中,该第一序列标识是用于生成该第二侧行链路定位参考信号的序列标识;或者,该第一序列标识是预定义、预配置或由信令配置的序列标识。
上述一个技术方案中,该第一通信设备可以使用自己生成该第二侧行链路定位参考信号的序列标识来生成该第一序列。这样,该第一通信设备可以从自己传输的角度确定其他通信设备预留的资源是否适合该第一通信设备来使用,从而选择出低干扰的资源。上述另一个技术方案中,该第一通信设备可以用预定义、预配置或者由信令配置的序列标识来确定该第一序列。该信令可以是网络设备或者其他设备发送的。这个标识可以是能够反映出其他通信设备发送的第一侧行链路定位参考信号的信号质量的标识。该第一通信设备使用该序列标识确定的序列来测量第一侧行链路定位参考信号也可以选择出低干扰的资源。
结合第一方面,在第一方面的一种可能的实现方式中,该第一通信设备在该第一时间窗内对该M个第一侧行链路定位参考信号进行测量,包括:该第一通信设备获取M个第二序列标识,该M个第二序列标识分别由M个第三通信设备指示,该M个第一侧行链路定位参考信号分别来自于该M个第三通信设备;该第一通信设备根据该M个第二序列标识中的第i个第二序列标识,确定M个第二序列中的第i个第二序列,i=1,…,M;该第一通信设备根据该M个第二序列中的第i个第二序列,对该M个第一侧行链路定位参考信号中的第i个第一侧行链路定位参考信号进行测量。
上述技术方案中,该第三通信设备可以选择能够反映出其发送的侧行链路定位参考信号的参考信号资源的信号质量的序列对应的标识,并将该序列标识发送给该第一通信设备。这样,该第一通信设 备使用该序列标识确定的序列来测量第一侧行链路定位参考信号得到的信号质量,可以反映出该第三通信设备发送的侧行链路定位参考信号的参考信号资源的信号质量,从而可以选择出低干扰的资源。
结合第一方面,在第一方面的一种可能的实现方式中,该第一通信设备获取M个第二序列标识,包括:该第一通信设备根据M个序列标识信息,确定该M个第二序列标识,该M个序列标识信息分别来自于该M个第三通信设备,该M个序列标识信息中的第i个序列标识信息包括该第i个第二序列标识,或者,该M个序列标识信息中的第i个序列标识信息包括索引i,该索引i是该第i个第二序列标识在序列标识集合中的索引,该序列标识集合是预定义、预配置或由信令配置的。
上述一个技术方案中,该第三通信设备可以直接将序列标识发送给该第一通信设备。在此情况下,该第三通信设备可以自行确定一个与其生成第一侧行链路定位参考信号的序列标识不同的序列标识,并将该序列标识发送给该第一通信设备。上述另一个技术方案中,该第三通信设备可以将序列标识对应的索引发送给该第一通信设备。该索引的长度可以小于该序列标识的长度。例如该序列标识的长度可以是12比特,而该索引的长度可以是4比特。这样可以减少指示序列标识需要的信令长度从而节省信令开销。
结合第一方面,在第一方面的一种可能的实现方式中,该第一通信设备在该第一时间窗内对该M个第一侧行链路定位参考信号进行测量,包括:该第一通信设备在该第一时间窗内的频域资源i上,对该M个第一侧行链路定位参考信号中的第i个第一侧行链路定位参考信号进行测量,其中该频域资源i是该第一通信设备接收该第i个第一侧行链路定位参考信号的频域资源,i=1,…,M。
上述技术方案中,该第一通信设备测量第一侧行链路定位参考信号的频域资源可以与接收该第一侧行链路定位参考信号的频域资源相同,这样测量出的信号质量可以反映出用于承载该第一侧行链路定位参考信号的参考信号资源的信号质量,从而选择出低干扰的资源。
第二方面,本申请实施例提供一种传输信息的方法,包括:第二通信设备在接收资源集监测第二消息,该第二消息包括第二侧行链路控制信息和第二侧行链路定位参考信号;该第二通信设备在候选资源上接收该第二消息,该候选资源是由至少一个第一侧行链路控制信息和/或至少一个第一侧行链路定位参考信号确定的,该接收资源集包括该候选资源。
上述技术方案中,候选资源基于在至少一个第一消息中接收到的侧行链路控制信息和侧行链路定位参考信号确定。第二通信设备可以在该候选资源接收该第二消息。这样可以简化资源确定方案,便于通信设备实现。
结合第二方面,在第二方面的一种可能的实现方式中,该候选资源是根据第一资源确定的,该第一资源包括信号质量高于信号质量门限的资源。
结合第二方面,在第二方面的一种可能的实现方式中,该候选资源不包括位于该第二时间窗内的第二资源,该第二资源是根据该第一资源确定的。
结合第二方面,在第二方面的一种可能的实现方式中,该第二侧行链路控制信息包括第二预留周期的指示信息。
结合第二方面,在第二方面的一种可能的实现方式中,该第二预留周期根据以下中的任意一种方式确定:该第一通信设备的高层指示信息;该第二侧行链路定位参考信号QoS参数;该第一通信设备的移动速度;该第一通信设备使用的定位算法;同步源的类型;优先级;资源池上的拥塞程度。
上述技术方案中,侧行链路定位参考信号所使用的预留周期信息,以便于第二通信设备根据这个确认来进行有效的资源选择。并且根据上述方式确定的,可以提高定位参考信号预留周期的准确度,提升定位性能。
结合第二方面,在第二方面的一种可能的实现方式中,该第二预留周期根据以下方式中的至少一种确定:该第一通信设备获取第一配置信息,该配置信息包括:Mp个预留周期,该Mp为正整数,该Mp个预留周期的取值或取值集合,以由下中的任意一种方式确定:该第二侧行链路定位参考信号QoS参数;该第一通信设备的移动速度;该第一通信设备使用的定位算法;同步源的类型;优先级;资源池上的拥塞程度。
上述技术方案中,侧行链路定位参考信号所使用的预留周期信息,预留周期的取值或取值范围根据上述第一配置信息方式确定,可以提高定位参考信号预留周期的准确度,提升定位性能。
结合第二方面,在第二方面的一种可能的实现方式中,该定位算法包括以下中的一种或多种:基 于往返时延差的定位算法;基于到达角的定位算法;基于离开角的定位算法;基于载波相位的定位算法。
上述技术方案中,侧行链路定位参考信号所使用的预留周期信息,根据定位算法确定,可以提高定位参考信号预留周期的准确度,提升定位性能。
结合第二方面,在第二方面的一种可能的实现方式中,该方法还包括:该第一通信设备根据该第一资源、该预留周期、该第二预留周期,确定第二资源,该第二预留周期包含于所述第二侧行链路控制信息。
上述技术方案中,第一通信设备根据第一预留周期,以及第二预留周期,确定出发送侧行链路定位参考信号的候选资源,以便于第二通信设备根据这个确认来进行有效的资源选择。
结合第二方面,在第二方面的一种可能的实现方式中,第一资源包括第一参考信号资源以及与该第一参考信号资源对应的侧行链路控制信道资源,该第一参考信号资源是M1个参考信号资源中信号质量高于第一信号质量门限的参考信号资源,M1是正整数,该至少一个第一侧行链路定位参考信号中的M1个第一侧行链路定位参考信号分别承载在该M1个参考信号资源。
上述技术方案中,由于侧行链路控制信道资源与参考信号资源是有对应关系的。因此,可以只需要筛选出第一资源需要包括的参考信号资源(即需要被排除的资源),然后根据筛选出的参考信号资源以及对应关系确定对应的侧行链路控制信道资源,这些侧行链路控制信道资源也是需要被排除的资源。换句话说,上述技术方案中,可以不需要对侧行链路控制信道进行测量,就可以确定第一资源需要包括的侧行链路控制信道资源(即需要被排除的侧行链路控制信道资源)。
结合第二方面,在第二方面的一种可能的实现方式中,该候选资源还不包括第三资源,该第三资源位于该第二时间窗内,该第三资源包括多个侧行链路控制信道的资源,该多个侧行链路控制信道的时频资源相同。
上述技术方案进一步从第二时间窗内排除了时频资源相同的侧行链路控制信道资源。虽然这些侧行链路控制信道资源对应的参考信号资源的信号质量低于第一信号质量门限,但是由于这些侧行链路控制信道资源使用的时频资源相同,那么在这些资源上发送信息可能会收到干扰。因此,将这些资源排除在候选资源之外,可以得到更加“干净”的资源,从而降低接收第二信息时可能受到干扰的情况发生。
结合第二方面,在第二方面的一种可能的实现方式中,该候选资源包括X2个侧行链路控制信道资源与X2个参考信号资源,该X2个侧行链路控制信道资源与该X2个参考信号资源一一对应,该X2个参考信号资源的频域资源不同,X2是正整数。
上述技术方案中,侧行链路定位参考信号是基于频分和码分资源发送的。因此,可能出现多个侧行链路控制信道资源对应具有相同频域资源的参考信号资源的情况发生。由于侧行链路定位参考信号同时支持频分和码分,可以提升可选资源的数量,从而提升系统容量。对于参考信号资源而言,每个频域资源对应的多个侧行链路控制信道资源都保留,那么该第二时间窗内可能出现多个具有相同频域资源的定位参考信号。那么在这些资源上发送信息可能会收到干扰。因此,如果将对应相同参考信号资源的频域资源的侧行链路控制信道资源只保留一个,那么可以得到更加“干净”的资源,从而降低接收第二信息时可能受到干扰的情况发生。
结合第二方面,在第二方面的一种可能的实现方式中,该第一资源,该第一资源包括第一侧行链路控制信道资源以及与该第一侧行链路控制信道资源对应的参考信号资源,该第一侧行链路控制信道资源是M2个侧行链路控制信道中信号质量高于该第二信号质量门限的侧行链路控制信道的资源,该至少一个第一侧行链路控制信息中的M2个第一侧行链路控制信息分别承载在该M2个侧行链路控制信道,M2是正整数。
上述技术方案中,由于侧行链路控制信道资源与参考信号资源是有对应关系的。因此,可以筛选出第一资源需要包括的侧行链路控制信道资源(即需要被排除的资源),然后根据筛选出的侧行链路控制信道资源以及对应关系确定对应的参考信号资源,这些参考信号资源也是需要被排除的资源。换句话说,上述技术方案中,不需要对第一侧行链路定位参考信号进行测量,就可以确定第一资源需要包括的参考信号资源(即需要被排除的参考信号资源)。
结合第二方面,在第二方面的一种可能的实现方式中,该候选资源还不包括第四资源,该第四资 源包括信号质量低于该第二信号质量门限的至少两个侧行链路控制信道资源,该至少两个侧行链路控制信道资源的时频资源相同。
上述技术方案进一步从第二时间窗内排除了时频资源相同的侧行链路控制信道资源。虽然这些侧行链路控制信道资源的信号质量低于第二信号质量门限,但是由于这些侧行链路控制信道资源使用的时频资源相同,那么在这些资源上发送信息可能会收到干扰。因此,将这些资源排除在候选资源之外,可以得到更加“干净”的资源,从而降低接收第二信息时可能受到干扰的情况发生。
结合第二方面,在第二方面的一种可能的实现方式中,该第一资源包括第二侧行链路控制信道资源和第二参考信号资源,该第二侧行链路控制信道资源是M3个侧行链路控制信道中信号质量高于第三信号质量门限的侧行链路控制信道资源,该第二参考信号资源是M4个参考信号资源中信号质量高于第四信号质量门限的参考信号资源,该至少一个第一侧行链路控制信息中的M3个第一侧行链路控制信息分别承载在该M3个侧行链路控制信道,该至少一个第一侧行链路定位参考信号中的M4个第一侧行链路定位参考信号分别承载在该M4个参考信号资源,M3和M4是正整数。
利用上述技术方案,可以根据一个门限确定需要排除的侧行链路控制信道资源,根据另一个门限确定需要排除的参考信号资源。换句话说,可以根据两个门限分别排除侧行链路控制信道资源和参考信号资源。这样,可以在不知道侧行链路控制信道资源和参考信号资源的对应关系的情况下,就可以确定出需要被排除的资源。
结合第二方面,在第二方面的一种可能的实现方式中,该第一资源还包括与该第二侧行链路控制信道资源对应的参考信号资源。
上述技术方案中,确定的需要被排除的资源不仅包括信号质量低于门限的参考信号资源和侧行链路控制信道资源,还包括与该侧行链路控制信道资源对应的参考信号资源。这样候选资源中能够用于发送侧行链路定位参考信号的资源就更加“干净”,从而减少接收第二侧行链路定位参考信号时可能受到干扰的情况发生。
结合第二方面,在第二方面的一种可能的实现方式中,该第一资源还包括与该第二参考信号资源对应的侧行链路控制信道资源。
上述技术方案中,确定的需要被排除的资源不仅包括信号质量低于门限的参考信号资源和侧行链路控制信道资源,还包括与该参考信号资源对应的侧行链路控制信道资源。这样候选资源中能够用于发送侧行链路控制信道的资源就更加“干净”,从而减少接收第二侧行链路控制信息时可能受到干扰的情况发生。
结合第二方面,在第二方面的一种可能的实现方式中,该第一资源还包括:与该第二侧行链路控制信道资源对应的参考信号资源,和,与该第二参考信号资源对应的侧行链路控制信道资源。
上述技术方案中,确定的需要被排除的资源不仅包括信号质量低于门限的参考信号资源和侧行链路控制信道资源,还包括与该参考信号资源对应的侧行链路控制信道资源以及与该侧行链路控制信道资源对应的参考信号资源。这样候选资源中能够用于发送侧行链路控制信道的资源和能够用于发送侧行链路定位参考信号的资源就更加“干净”,从而减少接收第二信息时可能受到干扰的情况发生。
结合第二方面,在第二方面的一种可能的实现方式中,该第二资源包括第一资源集和第二资源集,该第一资源集是根据该第二侧行链路控制信道资源、与该第二侧行链路控制信道资源对应的参考信号资源和该预留周期确定的,该第二资源集是根据该第二参考信号资源、与该第二参考信号资源对应的侧行链路控制信道资源和该预留周期确定的。
结合第二方面,在第二方面的一种可能的实现方式中,该候选资源包括第三资源集,该第三资源集是根据该第一资源集和/或该第二资源集确定的。
结合第二方面,在第二方面的一种可能的实现方式中,该第三资源集是以下中的至少一个:该第一资源集,该第二资源集,该第一资源集与该第二资源集的并集,或者,该第一资源集与该第二资源集的并集减去该第一资源集与该第二资源集的交集。
结合第二方面,在第二方面的一种可能的实现方式中,该第一资源包括:第三侧行链路控制信道资源、第三参考信号资源、第四侧行链路控制信道资源和第四参考信号资源,其中,该第三侧行链路控制信道资源是M5个侧行链路控制信道中信号质量高于该第五信号质量门限的侧行链路控制信道的资源,该第三参考信号资源是与该第三侧行链路控制信道资源对应的参考信号资源;该第一通信设备 根据该第三参考信号资源,该第四参考信号资源是M6个参考信号资源中信号质量高于该第六信号质量门限的参考信号资源,该第四侧行链路控制信道资源是与该第四参考信号资源对应的侧行链路控制信道的资源,该M6个参考信号资源分别承载该M个第一侧行链路定位参考信号中的M6个第一侧行链路定位参考信号,该M6个参考信号资源不包括该第三参考信号资源M5是小于或等于M的正整数,该M5是小于或等于M的正整数,M6是小于M的正整数。
上述技术方案中,由于侧行链路控制信道资源与参考信号资源是有对应关系的。因此,可以根据一个门限筛选出需要排除的侧行链路控制信道资源(即需要被排除的资源),然后根据筛选出的侧行链路控制信道资源以及对应关系确定对应的参考信号资源,这些参考信号资源也是需要被排除的资源。这样,在根据另一个门限来筛选出需要被排除的参考信号资源时就可以不需要将已经排除掉参考信号资源的信号质量与该门限来比较。此外,除了根据门限筛选出的参考信号资源和侧行线路控制信道资源以外,需要排除的资源还包括与该参考信号资源对应的侧行链路控制信道资源、以及与该侧行链路控制信道资源对应的参考信号资源。这样候选资源中能够用于发送侧行链路控制信道的资源和能够用于发送侧行链路定位参考信号的资源就更加“干净”,从而减少发送第二信息时可能受到干扰的情况发生。
结合第二方面,在第二方面的一种可能的实现方式中,该M个参考信号资源的信号质量中的第i个参考信号资源的信号质量是根据该M个第一侧行链路定位参考信号中第i个第一侧行链路定位参考信号占用的RE的能量和确定的,该第i个第一侧行链路定位参考信号在每个符号中的资源是T×N个RE中的T个RE,每N个RE里面有一个该第i个第一侧行链路定位参考信号占用的RE,T是大于零的数,该N是正整数,i=1,…,M。
结合第二方面,在第二方面的一种可能的实现方式中,该侧行链路控制信道资源包括该侧行链路控制信道的频域资源和/或序列参数,该参考信号资源包括该侧行链路定位参考信号的频域资源和/或序列参数。
结合第二方面,在第二方面的一种可能的实现方式中,信号质量门限(例如第一信号质量门限、第二信号质量门限、第三信号质量门和第四信号质量门限)可以是预定义、预配置或者由网络设备配置的。
结合第二方面,在第二方面的一种可能的实现方式中。该第一通信设备可以在同一时隙上发送该第二侧行链路控制信息和该第二侧行链路定位参考信号。
结合第二方面,在第二方面的一种可能的实现方式中,该第二侧行链路控制信息位于该第二侧行链路定位参考信号之前。
结合第二方面,在第二方面的一种可能的实现方式中,该第一侧行链路控制信息的资源与该第一侧行链路定位参考信号的资源相关。
结合第二方面,在第二方面的一种可能的实现方式中,该第一侧行链路控制信息的资源与该第一侧行链路定位参考信号的资源相关,包括:该第一侧行链路定位参考信号的资源由指示信息指示,该第一侧行链路控制信息包括该指示信息;或者该第一侧行链路定位参考信号的资源由该第一侧行链路控制信息的频域资源和/或序列参数确定。第一侧行链路控制信息可以由侧行链路控制信道承载。因此,第一侧行链路控制信息可以是侧行链路控制信道的资源。
侧行链路控制信道的序列参数可以包括该侧行链路控制信道的循环移位CS值、该侧行链路控制信道的根序列索引、或者该侧行链路控制信道的正交序列索引。
第三方面,本申请实施例提供一种通信设备,该通信设备包括用于实现第一方面或第一方面的任一种可能的实现方式的模块。
第四方面,本申请实施例提供一种通信设备,该通信设备包括用于实现第二方面或第二方面的任一种可能的实现方式的模块。
第五方面,本申请实施例提供一种通信装置,该通信装置包括处理器,该处理器用于执行存储器中存储的计算机程序,以使得该通信装置执行第一方面或第一方面的任一种可能的实现方式。
结合第五方面,在第五方面的一种可能的实现方式中,该通信装置还包括存储器。
第六方面,本申请实施例提供一种通信装置,该通信设备包括处理器,该处理器用于执行存储器中存储的计算机程序,以使得该通信装置执行第二方面或第二方面的任一种可能的实现方式。
结合第六方面,在第六方面的一种可能的实现方式中,该通信装置还包括存储器。
第七方面,本申请实施例提供一种芯片系统,该芯片系统包括逻辑电路,该逻辑电路用于与输入/输出接口耦合,通过该输入/输出接口传输数据,以执行第一方面或第一方面任一种可能的实现方式。
第八方面,本申请实施例提供一种芯片系统,该芯片系统包括逻辑电路,该逻辑电路用于与输入/输出接口耦合,通过该输入/输出接口传输数据,以执行第二方面或第二方面的任一种可能的实现方式。
第九方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质存储有程序代码,当该计算机存储介质在计算机上运行时,使得计算机执行如第一方面或第一方面的任一种可能的实现方式。
第十方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质存储有程序代码,当该计算机存储介质在计算机上运行时,使得计算机执行如第二方面或第二方面的任一种可能的实现方式。
第十一方面,本申请实施例提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行如第一方面或第一方面的任一种可能的实现方式。
第十二方面,本申请实施例提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行如第二方面或第二方面的任一种可能的实现方式。
附图说明
图1是本申请涉及的应用场景100的示意图。
图2是本申请涉及的应用场景200的示意图。
图3是示出了频域资源的占用示意图。
图4是下行定位参考信号占用的资源的示意图。
图5是上行定位参考信号占用的资源的示意图。
图6是根据本申请实施例提供的一种传输信息的方法的示意性流程图。
图7示是第一时间窗和第二时间窗的示意图。
图8是N小于M且侧行链路定位参考信号进行码分的示意图。
图9是N大于M且侧行链路控制信道进行码分的示意图。
图10示出了侧行链路控制信道和侧行链路定位参考信号占用的资源示意图。
图11是根据本申请实施例提供一种通信设备的示意性结构框图。
图12是根据本申请实施例提供另一通信设备的示意性结构框图。
图13是根据本申请实施例提供的一种通信装置的结构框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”和“该”旨在包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。还应当理解,在本申请以下各实施例中,“至少一个”、“至少一项”、“一个或多个”是指一个、两个或两个以上。“第一”、“第二”以及各种数字编号只是为了描述方便进行的区分,并不用来限制本申请实施例的范围。“和/或”,用于描述对应对象的对应关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或复数。字符“/”一般表示前后关联对象是一种“或”的关系。下文各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。例如,本申请实施例中,“301”、“401”、“501”等字样仅为了描述方便作出的标识,并不是对执行步骤的次序进行限定。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。本申请中,“示例性的”或者“例如”等词用于表示作例 子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。在本申请实施例中,“当……时”、“在……的情况下”、“若”以及“如果”等描述均指在某种客观情况下设备会做出相应的处理,并非是限定时间,且也不要求设备在实现时一定要有判断的动作,也不意味着存在其它限定。
在本申请中,“用于指示”可以包括用于直接指示和用于间接指示。当描述某一指示信息用于指示A时,可以包括该指示信息直接指示A或间接指示A,而并不代表该指示信息中一定携带有A。在本申请实施例中,“当……时”、“在……的情况下”、“若”以及“如果”等描述均指在某种客观情况下设备会做出相应的处理,并非是限定时间,且也不要求设备在实现时一定要有判断的动作,也不意味着存在其它限定。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,Wi-MAX)通信系统、第五代(5th generation,5G)系统或新空口(new radio,NR)、未来的第六代(6th generation,6G)系统、星间通信和卫星通信等非陆地通信网络(non-terrestrial network,NTN)系统。卫星通信系统包括卫星基站以及终端设备。该卫星基站为终端设备提供通信服务。卫星基站也可以与基站进行通信。卫星可作为基站,也可作为终端设备。其中,卫星可以是指无人机,热气球,低轨卫星,中轨卫星,高轨卫星等。卫星也可以是指非地面基站或非地面设备等。
本申请的实施例可以应用于终端设备。终端设备可以是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等;可以是车联网通信中的设备,例如车辆上载的通信终端、路边单元(road side unit,RSU);可以是无人机上载有的通信终端;还可以是物联网(internet of things,IoT)系统中的终端设备。终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
示例性的,终端设备包括但不限于:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、车辆外联(vehicle-to-everything,V2X)中的终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对终端设备的具体形式不作限定。
本申请实施例中用于实现终端设备的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片系统。该装置可以被安装在终端设备中或者和终端设备匹配使用。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
本申请实施例中的技术方案还可以应用于接入网设备。接入网设备可以是能够将终端设备接入到无线网络的设备。该接入网设备还可以称为无线接入网(radio access network,RAN)节点、无线接入网设备、网络设备。示例性的,该接入网设备可以是基站。
本申请实施例中的基站可以广义的覆盖如下中的各种名称,或与如下名称进行替换,比如:节点B(NodeB)、演进型基站(evolved NodeB,eNB)、下一代基站(next generation NodeB,gNB)、中继站、接入点、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、主站(master eNodeB,MeNB)、辅站(secondary eNodeB,SeNB)、多制式无线(multi standard radio, MSR)节点、家庭基站、网络控制器、接入节点、无线节点、接入点(access point,AP)、传输节点、收发节点、基带单元(base band unit,BBU)、射频拉远单元(remote radio unit,RRU)、有源天线单元(active antenna unit,AAU)、射频头(remote radio head,RRH)、中心单元(central unit,CU)、分布式单元(distributed unit,DU)、定位节点等。基站可以是宏基站、微基站、中继节点、施主节点或类似物,或其组合。基站还可以指用于设置于前述设备或装置内的通信模块、调制解调器或芯片。基站还可以是6G网络中的网络侧设备、未来的通信系统中承担基站功能的设备等。基站可以支持相同或不同接入技术的网络。
基站可以是固定的,也可以是移动的。例如,直升机或无人机可以被配置成充当移动基站,一个或多个小区可以根据该移动基站的位置移动。在其他示例中,直升机或无人机可以被配置成用作与另一基站通信的设备。
定位管理设备是网络侧用于确定终端设备的定位信息的设备。定位管理设备可以为位置管理功能(location management function,LMF)实体、演进服务移动位置中心(evolved serving mobile location center,E-SMLC)或其他可用于确定终端设备的定位信息的设备。
本申请的实施例对接入网设备所采用的具体技术和具体设备形态不作限定。
为便于理解本申请实施例,首先,以图1和图2为例,对本申请实施例适用的应用场景进行说明。
图1是本申请涉及的应用场景100的示意图。如图1所示,应用场景100主要涉及的是侧行链路(sidelink,SL)定位场景,该定位场景可以包括终端设备110、终端设备120和定位管理设备130。其中,终端设备110可以为待定位终端设备,终端设备120可以是其他终端设备,也可以是路边单元。应理解,在该定位场景下,终端设备110和终端设备120之间可以通过直连通信接口(即PC5接口)进行定位。
在一种可能的实现方式中,终端设备110具有至少两个天线,终端设备120也具有至少两个天线。终端设备120在至少两个天线上向终端设备110发送参考信号,终端设备110在至少两个天线上接收参考信号并完成参考信号的测量。
在一些实施例中,终端设备110可以根据测量信息确定终端设备110的位置和/或姿态。
在一些实施例中,终端设备可以测量得到的信息发送给终端设备120,终端设备120根据接收到的测量信息确定终端设备110的位置和/或姿态。
在一些实施例中,终端设备可以测量得到的信息发送给定位管理设备130,定位管理设备130根据接收到的测量信息确定终端设备110的位置和/或姿态。
在一种可能的实现方式中,终端设备110具有至少两个天线,终端设备120可以由至少两个终端设备组成。终端设备120包括的至少两个终端设备分别在各自的同一个天线上向终端设备110发送参考信号,终端设备110可以在不同的天线上接收参考信号并完成参考信号的测量。
在一些实施例中,终端设备110可以根据测量信息确定终端设备110的位置和/或姿态。
在一些实施例中,终端设备可以测量得到的信息发送给终端设备120,终端设备120根据接收到的测量信息确定终端设备110的位置和/或姿态。
在一些实施例中,终端设备可以测量得到的信息发送给定位管理设备130,定位管理设备130根据接收到的测量信息确定终端设备110的位置和/或姿态。
在一种可能的实现方式中,终端设备110具有至少两个天线,终端设备120也具有至少两个天线。终端设备110在至少两个天线上向终端设备120发送参考信号,终端设备120在至少两个天线上接收参考信号并完成参考信号的测量。
在一些实施例中,终端设备120可以根据测量信息确定终端设备110的位置和/或姿态。
在一些实施例中,终端设备120可以测量得到的信息发送给终端设备110,终端设备110根据接收到的测量信息确定终端设备110的位置和/或姿态。
在一些实施例中,终端设备可以测量得到的信息发送给定位管理设备130,定位管理设备130根据接收到的测量信息确定终端设备110的位置和/或姿态。
在一种可能的实现方式中,终端设备110具有至少两个天线,终端设备120可以由至少两个终端设备组成。终端设备110在至少两个天线上向终端设备120发送参考信号,终端设备120包括的至少两个终端设备分别在同一个天线上接收参考信号并完成参考信号的测量。
在一些实施例中,终端设备120包括的任一个设备或者终端设备120包括的至少两个设备均可以根据测量信息确定终端设备110的位置和/或姿态。
在一些实施例中,终端设备120的至少两个终端设备均可以测量得到的信息发送给终端设备110,终端设备110根据接收到的测量信息确定终端设备110的位置和/或姿态。
在一些实施例中,终端设备120的至少两个终端设备均可以测量得到的信息发送给定位管理设备130,定位管理设备130根据接收到的测量信息确定终端设备110的位置和/或姿态。
在一种可能的实现方式中,终端设备110具有至少两个天线,终端设备120只有一个天线。终端设备110在至少两个天线上向终端设备120发送参考信号,终端设备120在同一个天线上接收参考信号并完成参考信号的测量。
在一些实施例中,终端设备120可以根据测量信息确定终端设备110的位置和/或姿态。
在一些实施例中,终端设备120可以测量得到的信息发送给终端设备110,终端设备110根据接收到的测量信息确定终端设备110的位置和/或姿态。
在一些实施例中,终端设备可以测量得到的信息发送给定位管理设备130,定位管理设备130根据接收到的测量信息确定终端设备110的位置和/或姿态。
图2是本申请涉及的应用场景200的示意图。如图2所示,应用场景200主要涉及的是蜂窝定位场景,该应用场景200可以包括终端设备210、接入网设备220和定位管理设备230。其中,终端设备210可以为待定位终端设备,接入网设备220可以作为锚点设备(即接入网设备220位置已知)。应理解,在该定位场景下,终端设备210和接入网设备220之间可以通过蜂窝通信接口(即Uu接口)进行定位。
在一种可能的实现方式中,终端设备210具有至少两个天线,接入网设备220也具有至少两个天线。接入网设备220在至少两个天线上向终端设备210发送参考信号,终端设备210在至少两个天线上接收参考信号并完成参考信号的测量终端设备210可以将测量得到的信息发送给定位管理设备230,定位管理设备230根据接收到的测量信息确定终端设备210的位置和/或姿态。终端设备210也可以自行根据测量到的信息确定终端设备210的位置和/或姿态。终端设备210也可以将测量到的信息发送给接入网设备220,接入网设备220可以根据接收到的测量信息确定终端设备210的位置和/或姿态。
在一种可能的实现方式中,终端设备210具有至少两个天线,接入网设备220可以由至少两个接入网设备组成。接入网设备220包括的至少两个接入网设备分别在各自的同一个天线上向终端设备210发送参考信号,终端设备210可以在不同的天线上接收参考信号并完成参考信号的测量。终端设备210可以将测量得到的信息发送给定位管理设备230,定位管理设备230根据接收到的测量信息确定终端设备210的位置和/或姿态。终端设备210也可以自行根据测量到的信息确定终端设备210的位置和/或姿态。终端设备210也可以将测量到的信息发送给接入网设备220,接入网设备220可以根据接收到的测量信息确定终端设备210的位置和/或姿态。
在一种可能的实现方式中,终端设备210具有至少两个天线,接入网设备220也具有至少两个天线。终端设备210在至少两个天线上向接入网设备220发送参考信号,接入网设备220在至少两个天线上接收参考信号并完成参考信号的测量。接入网设备220可以将测量得到的信息发送给定位管理设备230,定位管理设备230根据接收到的测量信息确定终端设备210的位置和/或姿态。接入网设备220也可以自行根据测量到的信息确定终端设备210的位置和/或姿态。接入网设备220也可以将测量到的信息发送给终端设备210,接入网设备220可以根据接收到的测量信息确定终端设备210的位置和/或姿态。
在一种可能的实现方式中,终端设备210具有至少两个天线,接入网设备220可以由至少两个接入网设备组成。终端设备210在至少两个天线上向接入网设备220发送参考信号,接入网设备220包括的至少两个接入网设备分别在同一个天线上接收参考信号并完成参考信号的测量。接入网设备220可以将测量得到的信息发送给定位管理设备230,定位管理设备230根据接收到的测量信息确定终端设备210的位置和/或姿态。接入网设备220也可以自行根据测量到的信息确定终端设备210的位置和/或姿态。接入网设备220也可以将测量到的信息发送给终端设备210,接入网设备220可以根据接收到的测量信息确定终端设备210的位置和/或姿态。
在一种可能的实现方式中,终端设备210具有至少两个天线,接入网设备220只有一个天线。终 端设备210在至少两个天线上向接入网设备220发送参考信号,接入网设备220在同一个天线上接收参考信号并完成参考信号的测量。接入网设备220可以将测量得到的信息发送给定位管理设备230,定位管理设备230根据接收到的测量信息确定终端设备210的位置和/或姿态。接入网设备220也可以自行根据测量到的信息确定终端设备210的位置和/或姿态。接入网设备220也可以将测量到的信息发送给终端设备210,接入网设备220可以根据接收到的测量信息确定终端设备210的位置和/或姿态。
应理解,图1和图2中各设备涉及的多个天线可以是设备上多个不同位置上的物理天线,也可以是设备上由某一个天线运动构成的虚拟天线,或者是二者的结合,本申请对此不作限定。此外,图1和图2所示的应用场景仅为示例性说明,不应对本申请产生任何限制。
为了便于更好地理解本申请的技术方案,对本申请技术方案涉及的一些相关技术进行介绍。
1,信号质量
信号质量,或者参考信号的质量是用来测量特定资源或参考信号上,接收、检测或估计到的信号的强度、能量、功率等,反映接收信号好坏程度的物理量或测量指标。
可选地,参考信号资源的信号质量包括以下中的任意一种或多种:参考信号接收功率(reference signal received power,RSRP)、参考信号接收质量(reference signal received quality,RSRQ)、接收信号强度指示(received signal strength indication,RSSI),以及信号与干扰加噪声比(signal to interference plus noiserRatio,SINR)中的任意一种或多种。SINR是指接收到的有用信号的强度与接收到的干扰信号(噪声和干扰)的强度的比值。可选的,上述信号质量可以为物理层的质量。例如,物理层的RSRP(如L1-RSRP)、物理层的RSRQ(如L1-RSRQ)、物理层的RSSI(如L1-RSSI),以及物理层的SINR(如L1-SINR)、信道忙碌比(channel busy ratio,CBR)、信道占用比(channel occupancy ratio,CR)等。
可选地,对于侧行链路定位参考信号(sidelink–physical reference signal,SL-PRS)测量的信号质量,可以是RSSI、RSRP、RSRQ,可分别表示为:PRS-RSSI,PRS-RSRP或PRS-RSRQ。
可选地,对于物理侧行链路控制信道(physical sidelink control channel,PSCCH)测量的信号质量,可以是RSSI、RSRP、RSRQ,可分别表示为:PSCCH-RSSI,PSCCH-RSRP或PSCCH-RSRQ。
2,拥塞程度
在sidelink中,拥塞程度通常使用CR或CBR来对资源池的使用或占用情况进行描述。
CBR是指:在时隙n时,在定义的测量窗所在的时隙上的资源池中的子信道上测量得到的S-RSSI超过配置的门限值的比例或部分。可选的,测量窗的大小可以为[n-a,n-b],a和b的为非负整数。例如,a=100,b=1。
可选地,CBR可以是针对不同的信道进行测量,得到相应信道的CBR。例如,对物理侧行共享信道(physical sidelink shared channel,PSSCH)进行测量,则得到PSSCH的CBR;对物理侧行控制信道(physical sidelink control channel,PSCCH)进行测量,则得到PSCCH的CBR;对物理侧行控制信道(physical sidelink feedback channel,PSFCH)进行测量,则得到PSFCH的CBR。
对于PSSCH,假设在一个资源池中每个时隙上有20个子信道,则时隙n之前的100个时隙(时隙[n-100,n-1])的测量窗上共有100*20=2000个子信道。如果测量到时隙n之前的前100个时隙上有1200个子信道的RSSI超过网络设备配置的门限值,则在时隙n时刻测量的CBR为1200/(100*20)=0.6。
对于PSCCH,则只测量PSCCH与PSSCH的资源池在频域不相邻的位置。测量时,PSCCH的带宽固定为2个PRB。
CR是指:在时隙n时,用于传输的信道数量除以总的配置的子信道得到的值。可选的,用于传输的信道数量可以是在时隙n之前用于传输的子信道,和/或,在时隙n之后被调度用于传输的子信道数量之和。对应的,总配置的子信道的数量可以是在时隙n之前的测量窗中的,也可以是时隙n之后的测量窗中的子信道的数量。例如,时隙n之前的测量窗可以是[n-a,n-1],时隙n之后的测量窗可以是[n,n+b],总的配置的子信道数量即为[n-a,n+b]上配置的子信道总数量。
示例性地,对于时隙n,假设在时隙[n-a,n-1]上用于传输的子信道总数量S1,在时隙[n,n+b]上被调度用于传输的子信道总数量S2,在时隙[n-a,n+b]上配置的子信道总数量S,则在时隙n时刻测量的CR为(S1+S2)/S。
需要说明的是,在[n+1,n+b]上的被调度的用于传输的子信道总数量,实际为未来的传输占用的子信道,其可以根据在时隙n上检测到的调度分配(scheduling assignment,SA)的指示信息指示的重传来统计。
例如:对于时隙n,在时隙[n-500,n-1]上用于传输的子信道总数量S1=2000,在时隙[n,n+499]上被调度用于传输的子信道总数量S2=1000,在时隙[n-500,n+499]上配置的子信道总数量S=1000*20,则在时隙n时刻测量的CR为(2000+1000)/20000=0.15。
3,服务质量
服务质量(Quality of service:QoS)包括优先级信息、时延信息、可靠性信息、数据包的大小中的一种或多种。QoS通常用来表征一种业务、消息或数据对服务的要求或需求。
4,优先级
UE可能同时发送了多个业务,多个业务的优先级可能不一样。因此,UE的优先级也可以描述为UE的业务优先级。UE的业务优先级具体而言是UE的发送优先级(transmission priority)。
业务优先级,还可以称为L1优先级(L1 priority)、物理层优先级、侧行链路控制信息(sidelink control information,SCI)中携带的优先级、SCI关联的物理侧行共享信道(physical side link share channel,PSSCH)对应的优先级、发送优先级、发送PSSCH的优先级、用于资源选择的优先级、逻辑信道的优先级、逻辑信道的最高等级的优先级。
其中,优先级等级与优先级数值可具有某种对应关系,例如优先级等级越高对应的优先级数值越低,或者优先级等级越低对应的优先级数值越低。以优先级等级越高对应的优先级数值越低为例,优先级数值取值范围可以为1-8的整数或者0-7的整数。若以优先级数值取值范围为1-8,则优先级的值为1时代表最高等级的优先级。
5,同步源的类型
同步源是用以实现同步时使用的定时参考源。同步源的类型包括以下中的至少一种:全球导航卫星系统GNSS、同步到所述GNSS的终端装置、网络设备、终端设备等。
6,定位算法
定位算法是用以实现测距、测角等的定位功能的算法。具体地,可以包括:基于往返时延差的定位算法;基于到达角的定位算法;基于离开角的定位算法;基于载波相位的定位算法。
7,时域单元和频域单元
数据或信息可以通过时频资源来承载。
在时域上,时频资源可以包括一个或多个时域单元(或者,也可以称为时间单位)。一个时域单位可以是一个符号,或者一个迷你时隙(mini-slot),或者一个时隙(slot),或者部分时隙(partial slot),或者一个子帧(subframe),或者一个无线帧(frame),等等。
在频域上,时频资源可以包括一个或多个频域单元。一个频域单元可以是一个资源单元(resource element,RE),或者一个资源块(resource block,RB),或者一个子信道(subchannel),或者一个资源池(resource pool),或者一个带宽(bandwidth),或者一个带宽部分(bandwidth part,BWP),或者一个载波(carrier),或者一个信道(channel),或者一个交错(interlace)RB等。
本申请实施例中,时隙是一次传输的最基本的时域资源单位。可选地,时隙包括:完整时隙、迷你时隙、部分时隙、或一个或多个OFDM符号组成的子时隙。可选地,时隙也可以是一个或多个符号的集合。例如一个时隙内还可以包括一个或多个OFDM符号组成的集合,例如所述一个或多个的数量为1、2、3、4、6、7、12或14等。
另外,时隙的时长可以与子载波间隔相关。例如,子载波间隔为15kHz时,一个时隙的时长为1毫秒(ms);子载波间隔为30kHz时,一个时隙的时长为0.5ms;子载波间隔为60kHz时,一个时隙的时长为0.25ms。同理可推,子载波间隔为15*2u时,一个时隙的时长为2-ums,u=0,1,2,…。
为了便于描述,本申请实施例中的所称的时隙可以包括时隙、迷你时隙、或者部分时隙、完整时隙中的任一。
可选地,对于一个时隙中,如果在时隙的中间或时隙的最后一个符号中存在一个或多个GP符号时,此时可以是包括这些GP符号的,也是可以不包括这些GP符号的。本申请对此不做限定。
可选地,在本申请实施例中,作为撰写的表述方式。在一种表述中,时隙可以包括最后的空符号。 可选的,在另一种表述中,时隙可以不包括最后的空符号。
本申请的各个实施例中,频域资源可以是RB集合(RB set)、子信道、交织(interlace)、PRB或RE。RB set可以包括多个RB或多个子信道(subchannel)。交织频域资源块也可以简称为interlace。一个interlace可以包括多个离散的频域资源(或者说,不连续的频域资源),其中相邻的离散的频域资源之间的频域间隔相等。可选地,子信道是指包括连续的多个RB所形成的频域资源的单位。可选的,子信道中包括的连续RB的数量,可以是信令配置的,也可以是预定义的。例如,子信道中包括的RB数量为10,12,15,20,或25等整数。可选的,一个interlace包括多个RB,RB之间又等间隔地突出若干个不用于传输的RB。例如,一个interlace占10个RB,每10个RB中仅一个RB用于传输,余下的不用于第一设备的传输。例如,假设RB set或资源池上有50个RB,一个interlace可以占用编号为0,10,20,30,40的共5个RB,其余RB空出来不做传输。
8,序列:
在本申请中,序列可以是随机序列,也可以是低峰均比序列。可选的随机序列可以是m序列,也可以是Gold序列等,本申请对此不做限制。低峰均比序列可以是按二项序列,或者4相序列,还可以是ZC序列。这些序列具有峰均比低相关性能好的优点。可选地,ZC序列是指Zadoff–Chu序列,或者零相关(Zero-Correlation)序列。
在本申请中,一种31比特的Gold序列的示例如下:
例如,对于长度为31位的移位寄存器,输出的随机序列长度为MPN,n=0,1,...,MPN-1;随机序列c(n)可以通过以下方式生成:
c(n)=(x1(n+NC)+x2(n+Nc))mod 2
x1(n+31)=(x1(n+3)+x1(n))mod 2
x2(n+31)=(x2(n+3)+x2(n+2)+x2(n+1)+x2(n))mod 2
其中,NC=1600,一个m序列x1(n)的初始值可以为:x1(0)=1,x1(n)=0,n=1,2,…,30。
第二个m序列x2(n)的初始值为:
其中,mod为取模操作,mod2表示对数除以2求余。根据确定的第一序列c(n)的初始值cinit,可以确定第一序列c(n)。
ZC序列,也称为Zadoff–Chu,Frank–Zadoff–Chu(FZC)序列或者Chu序列,是完美序列中的一种。这个序列具有理想的周期自相关特性。生成ZC序列的主要参数有序列的根序列号,循环移位值和正交覆盖码中的一种或多种。本申请使用的序列,可以是伪随机序列,ZC序列,或其他低峰值比的序列(如LTE或NR Rel-15协议中定义的长度为不小于6的正整数)。
可选地,ZC序列可通过如下公式定义:
其中,为参考信号序列,α为序列的循环移位值,u和v是生成基序列的参数。基序列可以按如下方式生成:

其中,
9,参考信号,为实现特定功能而发送承载序列的物理信号。
在本申请中,会涉及到参考信号(reference signal:RS),如侧行链路定位参考信号(sidelink–physcial reference signal,SL-PRS)。RS是将特定的序列,按预射的资源映射方式,映射到相应时频资源上后生成的物理信号。
根据功能不同,有不同类型的参考信号。当参考信号用于发送反馈信息时,可以是用于承载反馈信息的解调参考信号,也可以是直接用来承载反馈信息的序列。主要指传输针对数据的反馈信息的参 考信号,发送参考信号的设备可以为发送反馈信息的第一设备,可以为发送第一数据的第二设备,也可以为进行测量或提供同步源的设备。参考信号有以下用途:用于数据解调、承载信息,进行信道状态信息(channel state information,CSI)、无线资源管理(radio resource management,RRM)或无线链路监控(radio link monitoring,RLM)测量、同步、相位噪声跟踪等。参考信号在承载反馈信息时,可以是用序列承载,也可以是用反馈信道中的控制信息编码比特来承载。具体地,参考信号可以为物理侧行链路共享信道(physical sidelink shared channel,PSSCH)使用的解调参考信号(demodulation reference signal,DMRS),可以为物理侧行链路控制信道(physical sidelink control channel,PSCCH);参考信道在进行CSI、RRM或RLM测量时,参考信号可以为RS,或信道探测参考信号(sounding reference signal,SRS),或CSI-RS等;参考信号在进行同步时,参考信号可以为物理侧行链路广播信道(physical sidelink broadcast channel,PSBCH)使用的参考信号等。
图3是示出了频域资源的占用示意图。频域资源的占用方式可以分为基于交织的离散映射结构以及连续映射结果
图3中的(a)示出了2符号频域交织的结构。
图3中的(b)示出了2符号的频域连续映射的结构。
图3中的(c)示出了1符号的频域交织的结构。
图3中的(d)示出了1符号的频域连续映射的结构。
信息占用的频域资源带宽可以是为个频域资源,K为大于0的数,为大于或等于1的正整数。例如,信息占用符号数为1,K等于2。又如,信息占用符号数为2,K等于1。又如,信息占用符号数为4,K等于1/2。
如上所述,如果待传输的信息占用符号数为2,则K等于1。由此可见,在等于1的情况下,如果信息占用的频域资源是基于交织的离散映射,那么该信息的频域资源的结构如图3中的(a)所示;如果信息占用的频域资源是频域连续映射,那么该信息的频域资源的结构如图3中的(b)所示。
如果待传输的信息占用符号数为1,则K等于2。由此可见,在等于1的情况下,如果信息占用的频域资源是基于交织的离散映射,那么该信息的频域资源的结构如图3中的(c)所示;如果信息占用的频域资源是频域连续映射,那么该信息的频域资源的结构如图3中的(d)所示。
10,保护间隔(guard period,GP)
GP符号指空符号或保护符号(guard symbol)。可选地,GP符号可用于做收发转换、波束扫描、射频或天线的切换等。可选的,GP符号可以位于时隙的中间,也可以位于时隙的最后一个符号。本申请对此不做限制。
11,码资源,又称为序列资源,对应按序列参数生成的序列。
对于随机序列,序列的参数包括序列的开始位置,序列的长度,序列的初始值。对于低蜂均比序列(例如ZC(Zadoff–Chu)序列),序列的参数包括根序列、循环移位(Cyclic shift,CS)或正交覆盖码(Orthogonal Cover Code,OCC)等。
序列的初始值,指对于随机序列(如Gold序列,m序列)来说,序列的初始值为生成序列的移位寄存器的初始值。
序列的不同的初始值还可以与不同的索引相关联。不同的索引用于指示不同的初始值或者用于生成初始值的参数。例如,通过信令配置、预配指示了多个ID:{NID-1,NID-2,…,NID-M}。可选地,这些ID用于生成随机序列的初始值。这些用于生成随机序列的初始值的ID可以称为序列标识(identifier,ID)。可以设置M个索引,M个索引与M个ID一一对应,这样就可以通过索引找到对应的ID。类似的,CS值等信息也可以通过索引指示。例如,假设有四组序列,CS值对可以为{0,3,6,9},如果可用于侧行链路定位参考信号的序列索引共有四个,那么这四个CS可以分别对应四个索引。例如,CS值0对应于索引0,CS值3对应于索引1,CS值6对应于索引2,CS值9对应于索引3。这些索引可以称为序列索引。序列索引也可以作为序列信息。
12,正交序列索引
正交序列,在本申请中,可以是正交覆盖码(Orthogonal Cover Code,OCC)。正交序列的索引即为OCC的索引。OCC通常用于序列传输或者数据传输。通过使用不同的OCC,可以实现在同一个时频资源上传输多个参考信号或数据。
13,信息是配置的可以是指是指网络设备将该信息配置在资源池上。在无网络条件下,该信息可以是预配置的。信息是预设值的可以理解为预先设置在设备中的。
14,终端装置的标识
终端装置的标识,是用以指示、识别或对应到相应的终端设备的标识。例如,终端装置可以是用以唯一识别终端设备的索引或编号。这个标识可以是信令配置的、预配置的,或者预定义的。作为示例,终端装置的标识为以下任一项:终端的媒体接入控制(medium access control,MAC)地址,用户身份识别模块(subscriber identity module,SIM)卡号,国际移动设备识别码(international mobile equipment identity,IMEI)等。
可选地,终端装置的标识,也可以是用以指示、识别或对应到相应的终端设备传输时的标识。这个标识可以是信令配置的、预配置的,或者预定义的。例如:IP地址,网络临时标识符(radio network temporary identifier,RNTI),发送设备的源标识,接收设备的目的标识。可选的,发送设备的源标识,可以是关联到特定待发送的业务或消息的标识。可选的,接收设备的目的标识,可以是关联到特定待接收的业务或消息的标识。
15,梳齿(comb)
信号在映射到相应的符号上时,在相应的频域资源上,每N个资源上映射一个参考信号,其他的N-1个资源上不映射参考信号。这种频域资源的映射方式称之为梳齿。其中梳齿中N的数值,称之为梳齿的大小。在本实施例中梳齿的大小也可以表示为Comb-N。
可选地,在一定大小的频域带宽上,梳齿还可以描述为:在每个符号中的资源是Y×N个资源元(resource element,RE)中的Y个RE,每N个RE里面有一个参考信号,M是大于零的数,N是正整数。这样,该N个RE可以分别由不用的通信设备使用。
可选的,假设频域带宽上有K个PRB,则Y的大小为:Nre_rb*K/N,其中Nre_rb表示一个PRB中的RE数量,例如Nre_rb=12。可选的K的值是由参考信号所在的频域资源的带宽确定的,如资源池的带宽、载波的带宽、BWP的带宽等。
可选地,针对梳齿状态的参考信号,从频域上看,共有N个正交的频域资源,用于参考信号。
可选地,当参数信号在N个RE中之一映射时,可以有N个不同的参考信号的频域资源的映射位置。
例如,在图4中Comb-2,表示N=2,每2个RE上会映射一个定位参考信号。例如,在图3中Comb-4,表示N=4,每4个RE上会映射一个定位参考信号。可选的,对于频域带宽上有106个PRB的情形,对于Comb-2,Y=6*106,对于Comb-3,Y=3*106。
下行定位参考信号(或上行定位参考信号)在每个符号中的资源是Y×N个资源元(resource element,RE)中的Y个RE,每N个RE里面有一个下行定位参考信号(或上行定位参考信号),Y是大于零的数,N是正整数。这样,该N个RE可以分别由不用的通信设备使用。
图4是下行定位参考信号占用的资源的示意图。如图4所示的下行定位参考信号占用的时频资源是梳齿(comb)状映射的。
图4分别示出了下行定位参考信号在梳齿大小(comb size)分别为2、4、6和12时的时频映射图样。
如图4所示,在梳齿大小为2的情况下,在每个符号上,一个通信设备可以以每2个RE映射1个RE的方式映射下行定位参考信号。换句话说,在梳齿大小为2的情况下,下行定位参考信号在频域上的映射间隔是2。
图5是上行定位参考信号占用的资源的示意图。
图5中的(a)示出了上行定位参考信号在梳齿大小为2且占用1个符号时的时频映射图样。
图5中的(b)示出了上行定位参考信号在梳齿大小为2且占用2个符号时的时频映射图样。
图5中的(c)示出了上行定位参考信号在梳齿大小为4且占用2个符号时的时频映射图样。
图5中的(d)示出了上行定位参考信号在梳齿大小为2且占用4个符号时的时频映射图样。
图5中的(e)示出了上行定位参考信号在梳齿大小为4且占用4个符号时的时频映射图样。
图5中的(f)示出了上行定位参考信号在梳齿大小为8且占用1个符号时的时频映射图样。
图5中的(g)示出了上行定位参考信号在梳齿大小为4且占用8个符号时的时频映射图样。
图5中的(h)示出了上行定位参考信号在梳齿大小为8且占用8个符号时的时频映射图样。
图5中的(i)示出了上行定位参考信号在梳齿大小为4且占用12个符号时的时频映射图样。
图5中的(j)示出了上行定位参考信号在梳齿大小为8且占用12个符号时的时频映射图样。
本申请实施例中所称的通信设备(例如第一通信设备和第二通信设备)可以是终端设备,也可以是网络设备(例如接入网设备),也可以是定位管理设备等;该通信设备也可以是上述设备中的部件(例如芯片、芯片系统和/或电路等)。
图6是根据本申请实施例提供的一种传输信息的方法的示意性流程图。
601,第一通信设备接收至少一个第一消息,该至少一个第一消息中的每个第一消息包括第一侧行链路控制信息和第一侧行链路定位参考信号。
602,该第一通信设备根据该至少一个第一消息包括的至少一个第一侧行链路控制信息和/或至少一个第一侧行链路定位参考信号,确定第二消息的候选资源,该第二消息包括第二侧行链路控制信息和第二侧行链路定位参考信号。
603,该第一通信设备根据该候选资源发送该第二消息。
相应的,第二通信设备可以在接收资源集监测第二消息,该第二消息包括第二侧行链路控制信息和第二侧行链路定位参考信号;在候选资源上接收该第二消息,该候选资源是由至少一个第一侧行链路控制信息和/或至少一个第一侧行链路定位参考信号确定的,该接收资源集包括该候选资源。
可选的,在一些实施例中,该第二侧行链路控制信息位于该第二侧行链路定位参考信号之前。类似的,同一个第一信息携带的第一侧行链路控制信息位于第一侧行链路定位参考信号之前。
可选的,在一些实施例中,第二侧行链路控制信息和第二侧行链路定位参考信号是在同一时隙上发送的。类似的,同一个第一信息携带的第一侧行链路控制信息和第一侧行链路定位参考信号是在同一个时隙上接收到的。
可选的,在一些实施例中,该第一通信设备可以是在第一时间窗内接收该至少一个第一消息。该候选资源可以位于第二时间窗内。该第二时间窗晚于第一时间窗。
在一些实施例中,该第一通信设备可以在该第一时间窗内对M个侧行链路控制信道和/或M个第一侧行链路定位参考信号进行测量,得到第一资源。该第一资源包括信号质量高于信号质量门限的资源。M是正整数。
在一些实施例中,该信号质量门限可以是预设的,也可以是预配置的,或者,也可以是由网络设备配置的。
M个第一侧行链路控制信息分别承载在该M个侧行链路控制信道上。该至少一个第一侧行链路控制信息可以包括该M个第一侧行链路控制信息。该至少一个第一侧行链路定位参考信号可以包括该M个第一侧行链路定位参考信号。
可选的,该M个第一侧行链路控制信息和该M个第一侧行链路定位参考信号可以分别来自于M个第一信息,该至少一个第一信息包括该M个第一信息。换句话说,该M个第一侧行链路控制信息中的第i个第一侧行链路控制信息来自于M个第一信息中的第i个第一信息,该M个第一侧行链路定位参考信号中的第i个第一侧行链路定位参考信号来自于第i个第一信息,i=1,…,M。
为了便于描述,本申请实施例中有时将“测量用于承载第一侧行链路控制信息的侧行链路控制信道”简称为“测量第一侧行链路控制信息”。
侧行链路控制信道资源是用于传输侧行链路控制信道的资源,参考信号资源是用于传输侧行链路定位参考信号的资源。该侧行链路控制信道资源包括该侧行链路控制信道的频域资源和/或码资源,该参考信号资源包括该侧行链路定位参考信号的频域资源和/或码资源。
在一些实施例中,该侧行链路控制信道的频域资源可以是侧行链路控制信道的交织编号或子信道编号。该侧行链路控制信道的码资源可以是该侧行链路控制信道的正交码序列索引。该侧行链路定位参考信号的频域资源可以是该侧行链路定位参考信号占用的RE的偏移值(offset)。该侧行链路定位参考信号的码资源可以是该侧行链路定位参考信号的正交序列索引。该侧行链路定位参考信号的码资源也可以是用于确定该侧行链路定位参考信号的信息,例如循环移位值、根序列索引、或者,用于生成侧行链路定位参考信号的序列初始值的参数。
为了便于描述,以下假设该至少一个第一信息共有M0个第一信息,M0是正整数。
在一些实施例中,该第一通信设备可以对在第一时间窗内接收到的每个第一信息的第一侧行链路控制信息和/或第一侧行链路定位参考信号进行测量,以确定该第一资源。在此情况下,M是等于M0
在另一些实施例中,该第一通信设备可以仅对周期性的第一消息进行测量,而不测量费周期性的第一消息。例如,该第一通信设备在第一时间窗内接收到的M0个第一消息中的部分消息可能是临时消息,而另外一些消息是周期性的消息。在此情况下,M小于M0
在另一些实施例中,该第一通信设备可以仅测量预留周期落入第二时间窗内的周期性的第一消息。换句话说,即使第一消息是周期性消息,但是预留周期在第二时间窗之外,该第一通信设备也可以不测量这些第一消息。例如,该第一通信设备在第一时间窗内接收到的M0个第一消息可能都是周期性消息,但是部分第一消息的预留周期没有落入第二时间窗内,另一部分第一消息的预留周期落入第二时间窗内。在此情况下,该第一通信设备可以仅对预留周期落入第二时间窗内的周期性的第一消息进行测量。在此情况下,M小于M0
在另一些实施例中,该第一通信设备在第一时间窗内接收到的所有消息可能都是周期性消息且预留的资源都落入第二时间窗内。这种情况下M也是等于M0
图7示是第一时间窗和第二时间窗的示意图。
如图7所示,第一时间窗的起始时刻是T0,第一时间窗的结束时刻是T1;第二时间窗的起始时刻是T3,第二时间窗的结束时刻是T4。T1与T2间隔的时长为D1,T3与T2间隔时长是D2。D1可以是大于或等于0的数。D2可以是大于或等于0的数。可以理解,如果D1等于0,那么T1=T2;类似的,如果D2等于0,那么T3=T2
如图7所示,假设,在第一时间窗内,第一通信设备接收到了三个第一消息。为了便于区分,这三个第一消息可以分别称为消息msg1,消息msg2和消息msg3。消息msg1和消息msg2是周期性消息,并且消息msg1和消息msg2会在第二时间窗内再次出现;消息msg3不是周期性消息。因此,该第一通信设备可以只对消息msg1和消息msg2中的侧行链路控制信息和/或侧行链路定位参考信息进行测量。可以看出,在此情况下,该第一通信设备接收到的第一消息数量大于需要测量的数量。
该第一资源可以包括至少一个侧行链路定位参考信号资源和/或至少一个参考信号资源。换句话说,第一资源可能会出现以下情况:
情况1,第一资源仅包括一个侧行链路控制信道资源;
情况2,第一资源仅包括一个参考信号资源;
情况3,第一资源包括至少两个侧行链路控制信道资源但不包括参考信号资源;
情况4,第一资源包括至少两个参考信号资源,但不包括侧行链路控制信道资源;
情况5,该第一资源包括一个侧行链路控制信道资源和一个参考信号资源;
情况6,第一资源包括至少两个侧行链路控制信道资源以及至少两个参考信号资源。
可选的,在一些实施例中,该第一通信设备根据该第一资源,确定该候选资源,包括:该第一通信设备根据该M个第一侧行链路控制信息,确定预留周期;该第一通信设备根据该第一资源和该预留周期,确定第二资源,该第二资源位于该第二时间窗内;该第一通信设备排除该第二资源,得到该候选资源。
如上所述,该第一通信设备接收到的一些第一消息可能是周期性的。该第一通信设备可以根据第一侧行链路控制信息携带的用于指示周期的信息确定这些周期性发送的第一消息中的每个第一消息的周期。这些周期就可以称为预留周期。假设M个第一信息都是周期性的消息,那么该第一通信设备可以根据M个第一信息中的第i个第一消息携带的第一侧行链路控制信息,确定出第i个第一消息的预留周期。该第一资源是该第一通信设备根据在第一时间窗内接收到的信息确定的。因此,该第一资源的时域资源是位于时间窗内的。该第一通信设备可以根据该第一资源和该预留周期判断出哪些第二时间窗内的哪些资源会被预留。这些会被预留的资源就是该第二资源。第二资源的频码资源与第一资源相同,但是第一资源的时域资源是位于第一时间窗内,第二资源的时域资源位于第二时间窗内。
在一些实施例中,该第一通信设备可以直接排除第二时间窗内的第二资源,得到该候选资源。
还以图7为例,该第一通信设备可以根据消息msg1和消息msg2的控制信息中携带的信息,确定消息msg1和消息msg2是周期性消息,且确定消息msg1和消息msg2的预留周期。假设该第一通信设备根据消息msg1和消息msg2的测量结果,确定第一资源包括消息消息msg1的侧行链路控制信道资源和 参考信号资源。那么,该第一通信设备可以根据该第一资源和预留周期,确定出消息msg1在第二时间单元中所占用的资源。消息msg1在第二时间单元中所占用的资源就是第二资源。该第一通信设备可以从第二时间单元包含资源中排除该第二资源,剩余的资源就是可以发送第二消息的候选资源。可以看出,虽然消息msg2也是周期性消息并且也会在第二时间单元中重复出现,但是由于消息msg2不属于该第一资源(换句话说,消息msg2的信号质量小于信号质量门限),那么消息msg2在第二时间窗内的资源也可以属于候选资源。
可选的,在一些实施例中,该第二侧行链路控制信息包括第二预留周期的指示信息。该第二预留周期可以是第二时间窗内发送PSCCH中的侧行链路侧行链路控制信息(sidelink control information,SCI)和/或第二侧行链路定位参考信号的周期。
可选的,在一些实施例中,该第二预留周期根据以下中的任意一种或多种方式确定:该第一通信设备的高层指示信息;该第二侧行链路定位参考信号QoS参数;该第一通信设备的移动速度;该第一通信设备使用的定位算法;同步源的类型;优先级;资源池上的拥塞程度。可选地,不同的速度对应不同的预留周期。可选地,速度越大预留周期越小。这样可以更好地保证高速移动场景下的定位性能。可选地,可以将速度分成不同的等级,速度越高的速度等级对应的周期值越小。反之越大。
可选的,在一些实施例中,该第二预留周期根据以下方式确定:该第一通信设备获取第一配置信息,该配置信息包括:Mp个预留周期,该Mp为正整数,该Mp个预留周期的取值或取值集合,以由下中的任意一种或多种方式确定:该第二侧行链路定位参考信号QoS参数;该第一通信设备的移动速度;该第一通信设备使用的定位算法;同步源的类型;优先级;资源池上的拥塞程度。可选地,不同的速度对应不同的预留周期。可选地,速度越大,对应的预留周期的值越小。这样可以更好地保证高速移动场景下的定位性能。
可选的,在一些实施例中,该定位算法包括以下中的一种或多种:基于往返时延差的定位算法;基于到达角的定位算法;基于离开角的定位算法;基于载波相位的定位算法。可选地,例如基于角度定位的算法,周期可以比基于时延差的定位算法的周期更长。从而可以更好地保证基于时延差的定位算法的性能。
可选的,在一些实施例中,该方法还包括:该第一通信设备根据该第一资源、该预留周期、该第二预留周期,确定第二资源,该第二预留周期包含于所述第二侧行链路控制信息。换句话说,在此情况下,需要排除的资源不仅是信号质量高于门限的预留的接收资源,还需要排除预留的发送资源。
在一些实施例中,该第一通信设备获取指示信息,该指示信息用于指示该第一通信设备测量以下信息中的至少一种:该M个侧行链路控制信道,该M个第一侧行链路定位参考信号。换句话说,该第一通信设备可以根据该指示信息确定是只测量M个侧行链路控制信道,还是只测量M个第一侧行链路定位参考信号,还是该M个侧行链路控制信道和该M个第一侧行链路定位参考信号都需要测量。
在一些实施例中,该指示信息可以是预定义、预配置或者配置的。
在另一些实施例中,该指示信息可以是该第一通信设备确定的。为了便于描述,以下将每个时隙上的侧行链路定位参考信号的总资源数标记为NPRS,将每个时隙上的侧行链路控制信道的总资源数记为NPSCCH。如果NPRS小于NPSCCH,那么可以只测量M个第一侧行链路定位参考信号;如果NPRS大于NPSCCH,那么可以只测量该M个侧行链路控制信道。
NPRS和NPSCCH可以是预定义、预配置或者配置的。
该M个侧行链路控制信道和M个第一侧行链路定位参考信号是有对应关系的。侧行线路控制信道和第一侧行链路定位参考信号的对应关系可以根据一个与侧行链路控制信道相关联的信息确定。该信息包括以下信息中的至少一个:侧行链路定位参考信号的频域资源、该侧行链路定位参考信号的序列参数。该信息与该侧行链路控制信道相关联可以包括:该信息由该侧行链路控制信道承载,和/或,该信息由该侧行链路控制信道的频域资源和/或正交序列索引确定。也就是说,在一些实施例中,该第一通信设备可以直接发送携带有该侧行链路定位参考信号的频域资源和/或该侧行链路定位参考信号的序列参数的信息。接收端(即该第二通信设备)可以根据接收到的信息,确定该侧行链路定位参考信号的频域资源和/或该侧行链路定位参考信号的序列参数。在另一些实施例中,该第二通信设备可以根据接收到的侧行链路控制信道的资源来确定该信息。
在一些实施例中,该第一通信设备在第一时间窗内对M个侧行链路控制信道和/或M个第一侧行 链路定位参考信号进行测量,确定第一资源,包括:该第一通信设备对该M个第一侧行链路定位参考信号进行测量,得到第一测量结果,其中该第一测量结果包括M1个参考信号资源的信号质量,该M1个参考信号资源分别承载该M个第一侧行链路定位参考信号中的M1个第一侧行链路定位参考信号,M1是小于或等于M的正整数;该第一通信设备根据第一信号质量门限和该第一测量结果,确定该第一资源,该第一资源包括第一参考信号资源以及与该第一参考信号资源对应的控制信道资源,该第一参考信号资源是该M1个参考信号资源中信号质量高于该第一信号质量门限的参考信号资源。该第一参考信号资源可以包括一个参考信号资源,也可以包括多个参考信号资源。
换句话说,上述实施例中,该第一通信设备可以仅测量侧行链路定位参考信号的信号质量来确定出第一资源。具体地,该第一通信设备向根据该测量结果,筛选出信号质量高于信号质量门限的参考信号资源;然后,再根据侧行链路控制信道资源和参考信号资源的对应关系,确定出与筛选出的参考信号资源相对应的侧行链路控制信道资源;最后得到该第一资源,该第一资源包括信号质量高于信号质量门限的参考信号资源(即第一参考信号资源)和对应的侧行链路控制信道资源。
为了便于描述可以将RE的偏移值(offset)数记为N,将交织数或频域子信道数记为M。N也可以是梳齿大小(comb size)。M和N可以是预配置、预定义或者网络设备配置的。
在一些实施例中,参考信号资源与侧行链路控制资源相关联可以是,参考信号资源的索引和/或序列索引可以根据侧行链路控制信道的频域资源索引确定。
侧行链路控制信道的频域资源的索引可以是占用资源的最低(或最高)PRB的索引、或PSCCH占用资源的最低(或最高)子信道的索引、或PSCCH占用资源的最低(或最高)频域交织的索引。
可选的,在一些实施例中,参考信号资源的频域资源的索引和该参考信号资源的序列索引是根据该侧行链路控制信道的频域资源的索引和该N确定的。
可选的,在一些实施例中,参考信号资源的频域资源索引和该参考信号资源的序列索引可以满足以下公式:
iSL-PRS_RE-offset=(iPSCCH+Δ)mod N       (公式1-1)
iSL-PRS_seq-index=floor(iPSCCH/N)      (公式1-2)
其中,iSL-PRS_RE-offset表示该参考信号资源的频域资源索引,iPSSCH表示该侧行链路控制信道的频域资源的索引,iSL-PRS_seq-index表示该该参考信号资源的序列索引,N是RE的偏移值数(即可用于侧行链路定位参考信号的频域资源数)。Δ是一个偏移值,Δ可以取大于或等于0且小于或等于N-1的正整数。floor()表示向下取整。Δ可以是预配置、预定义或者网络设备配置的。
在一些实施例中,参考信号资源的频域资源索引和该参考信号资源的序列索引可以满足以下公式:
iSL-PRS_RE-offset=iPSCCHmod N       (公式1-3)
iSL-PRS_seq-index=floor(iPSCCH/N)      (公式1-4)
其中,iSL-PRS_RE-offset表示该参考信号资源的频域资源索引,iPSSCH表示该侧行链路控制信道的频域资源的索引,iSL-PRS_seq-index表示该该参考信号资源的序列索引,N是RE的偏移值数(即可用于侧行链路定位参考信号的频域资源数)。floor()表示向下取整。
该第一通信设备可以先根据公式1-1和公式1-2,或者,向根据公式1-3或公式1-4,确定出每个侧行链路控制信道资源对应的参考信号资源。换句话说,该第一通信设备可以先根据公式1-1和公式1-2,或者,向根据公式1-3或公式1-4,确定出侧行链路控制信道资源和参考信号资源的对应关系。在完成参考信号资源测量并确定出第一参考信号资源后,根据事先确定出的对应关系,确定与第一参考信号资源对应的侧行链路控制信道资源。
图8是N小于M且侧行链路定位参考信号进行码分的示意图。如图8所示,M等于10,N等于4且侧行链路定位参考信号的序列数等于3。在此情况下,候选控制资源一共有10个,候选参考信号资源一共有12个,每个候选控制资源对应于一个候选参考信号资源。
例如,该第一通信设备可以根据公式公式1-3或公式1-4确定出如图8所示的PSCCH和SL-PRS的对应关系。假设该第一通信设备确定该第一资源中包括RE偏移值为0,序列索引为2的参考信号资源。那么,该第一通信设备可以根据侧行链路控制信道资源和参考信号资源的对应关系,确定出频域 资源索引为8的侧行链路控制信道的资源也属于第一资源。
可选的,在一些实施例中,该参考信号资源的频域资源的索引和/或该参考信号资源的序列索引是根据该侧行链路控制信道的频域资源的索引和该侧行链路控制信道的正交序列索引确定的。
可选的,在一些实施例中,参考信号资源的频域资源的索引和该参考信号资源的序列索引是根据该侧行链路控制信道的频域资源的索引,该侧行链路控制信道的正交序列索引,该侧行链路控制信道的正交频域资源数M和该N。
如果N大于M且侧行链路控制信道进行码分得到K个正交序列且K×M大于或等于N,那么可以出现该N个参考信号资源中的每个参考信号资源对应于K×M个控制资源一个候选控制资源。在此情况下,该参考信号资源的频域资源的索引可以满足以下公式:
iSL-PRS_RE-offset=(iPSCCH+Δ)mod N        (公式1-5)
iPSCCH=iOCC*M+iinterlace      (公式1-6)
其中,iSL-PRS_RE-offset表示该参考信号资源的频域资源的索引,iOCC表示该侧行链路控制信道的正交序列索引,iinterlace表示该侧行链路控制信道的频域资源的索引,N是RE的偏移值数(即可用于侧行链路定位参考信号的频域资源数),M是侧行链路控制信道的正交频域资源数。iinterlace=0,1,…,M-1,iOCC=0,1,…,K-1,K是侧行链路控制信道的正交序列数。Δ是一个偏移值,Δ可以取大于或等于0且小于或等于N-1的正整数。
在一些实施例中,在确定该参考信号资源的频域资源的索引时也可以不引入偏移值Δ。在此情况下,该参考信号资源的频域资源的索引可以满足以下公式:
iSL-PRS_RE-offset=iPSCCHmod N      (公式1-7)
iPSCCH=iOCC*M+iinterlace      (公式1-8)
其中,iSL-PRS_RE-offset表示该参考信号资源的频域资源的索引,iOCC表示该侧行链路控制信道的正交序列索引,iinterlace表示该侧行链路控制信道的频域资源的索引,N是RE的偏移值(offset)数,M是侧行链路控制信道的正交频域资源数。iinterlace=0,1,…,M-1,iOCC=0,1,…,K-1,K是侧行链路控制信道的正交序列数。
类似的,该第一通信设备可以先根据公式1-5和公式1-6,或者,向根据公式1-7或公式1-8,确定出每个侧行链路控制信道资源对应的参考信号资源。换句话说,该第一通信设备可以先公式1-5和公式1-6,或者,向根据公式1-7或公式1-8,确定出侧行链路控制信道资源和参考信号资源的对应关系。在完成参考信号资源测量并确定出第一参考信号资源后,根据事先确定出的对应关系,确定与第一参考信号资源对应的侧行链路控制信道资源。
图9是N大于M且侧行链路控制信道进行码分的示意图。如图9所示,M等于5,N等于8且K等于2。在此情况下,候选侧行链路控制信道资源一共有10个,候选参考信号资源一共有8个,每个候选参考信号资源对应于一个候选控制资源。
例如,该第一通信设备可以根据公式公式1-7或公式1-8确定出如图8所示的PSCCH和SL-PRS的对应关系。假设该第一通信设备确定第一资源包含iSL-PRS_RE-offset=2的参考信号资源。那么,该第一通信设备可以根据侧行链路控制信道资源和参考信号资源的对应关系,确定出iOCC=0且iinterlace=2的侧行链路控制信道的资源也属于第一资源。
在一些实施例中,该侧行链路控制信道的资源和参考信号资源是根据资源索引确定的。
该资源索引同时指示该侧行链路控制信道的资源和参考信号资源。该资源索引的最大值是预定义、预配置或由网络设备配置的。该资源索引可以由第二指示信息指示,该第二指示信息由该侧行链路控制信道承载。
可选的,该侧行链路控制信道的资源包括该侧行链路控制信道的频域资源和该侧行链路控制信道的序列参数;该参考信号资源包括该侧行链路定位参考信号的频域资源和该侧行链路定位参考信号的序列参数。
例如,在一些实施例中,该侧行链路控制信道的频域资源的索引和该侧行链路控制信道的正交序列索引可以满足以下公式:
fPSCCH=iindexmod M      (公式1-9)
nOCC=floor(iindex/M)         (公式1-10)
其中fPSCCH是该侧行链路控制信道的频域资源索引,iindex是该资源索引,nOCC是该该侧行链路控制信道的正交序列索引,floor()表示向下取整。
侧行链路定位参考信号的频域资源和该侧行链路定位参考信号的序列索引可以满足以下公式:
fRE=iindexmod N        (公式1-11)
nseq=floor(iindex/N)      (公式1-12)
其中fRE是第二频域资源的索引,iindex是该资源索引,nseq第二序列的索引,floor()表示向下取整。
在一些实施例中,该第一通信设备可以在完成参考信号资源测量并确定出第一参考信号资源后,根据用于确定该第一参考信号资源的资源索引,确定与第一参考信号资源对应的侧行链路控制信道资源。
图10示出了侧行链路控制信道和侧行链路定位参考信号占用的资源示意图。如图10所示,M等于5,N等于4,Ko等于3,Ks等于3。Ko是侧行链路控制信道的序列数Ko,Ks是侧行链路定位参考信号的序列数Ks。
以图10为例,该第一通信设备根据iindex确定的参考信号资源是nsequ=0,fRE=0的资源,根据同一个iindex确定的是nOCC=0,fPSCCH=0的侧行链路控制信道资源。假设该第一通信设备确定第一资源包含nsequ=0,fRE=0的资源,那么该第一通信设备可以根据同一个iindex确定出第一资源包含nOCC=0,fPSCCH=0的侧行链路控制信道资源。
又如,在另一些实施例中,该侧行链路控制信道的频域资源的索引可以根据该资源索引,该侧行链路控制信道的频域正交资源数M和一个参考信息确定,该参考信息可以是该第一通信设备的标识、第二通信设备的标识和偏移值中的一个或多个。换句话说,该侧行链路控制信道的频域资源的索引可以满足以下公式中的任一个:
fPSCCH=(iindex+Δ)mod M      (公式1-13)
fPSCCH=(iindex+IDS)mod M       (公式1-14)
fPSCCH=(iindex+Δ+IDS)mod M          (公式1-15)
fPSCCH=(iindex+IDD)mod M       (公式1-16)
fPSCCH=(iindex+Δ+IDD)mod M        (公式1-17)
fPSCCH=(iindex+IDS+IDD)mod M        (公式1-18)
fPSCCH=(iindex+Δ+IDS+IDD)mod M         (公式1-19)
其中fPSCCH是用于发送该侧行链路控制信道的频域资源索引,iindex是该资源索引,IDS是该第一通信设备的标识的全部或部分比特,IDD是该第二通信设备的标识的全部或部分比特,Δ是一个偏移值,Δ可以取大于或等于0且小于或等于M-1的正整数。Δ可以是预定义、预配置,或者网络设备配置的。
类似的,侧行链路定位参考信号的频域资源可以根据该资源索引,该侧行链路定位参考信号的频域正交资源数N和一个参考信息确定,该参考信息可以是该第一通信设备的标识、第二通信设备的标识和偏移值中的一个或多个。换句话说,该第二频域资源的索引可以满足以下公式中的任一个:
fRE=(iindex+IDS)mod N       (公式1-20)
fRE=(iindex+Δ+IDS)mod N         (公式1-21)
fRE=(iindex+IDD)mod N       (公式1-22)
fRE=(iindex+Δ+IDD)mod N        (公式1-23)
fRE=(iindex+IDs+IDD)mod N        (公式1-24)
fRE=(iindex+Δ+IDs+IDD)mod N       (公式1-25)
其中fRE是该第二频域资源的索引,iindex是该资源索引,IDS是该第一通信设备的标识的全部或部分比特,IDD是该第二通信设备的标识的全部或部分比特,Δ是一个偏移值,Δ可以取大于或等于0且小于或等于N-1的正整数。Δ可以是预定义、预配置,或者网络设备配置的。
利用公式1-13至1-25确定参考信号频域资源对应的侧行链路控制信道资源的方式与利用公式1-9和公式1-11确定参考信号频域资源对应的侧行链路控制信道资源的方式相同,为了简洁在此就不再赘述。
此外,参考信号频域资源和侧行链路控制信道资源还可以通过频码索引确定,假设iPRS是该侧行链路定位参考信号的频码索引,iPSCCH是该侧行链路控制信道的频码索引,那么那么在图10中iPRS的范围是0到14,iPSCCH的范围是0到11。iPRS和iPSCCH满足以下关系:公式中的任一个:
iPRS=(iPSCCH+Δ)mod NPRS,         (公式1-26)
iPRS=(iPSCCH+Δ+IDS)mod NPRS,        (公式1-27)
iPRS=(iPSCCH+Δ+IDD)mod NPRS,        (公式1-28)
iPRS=(iPSCCH+Δ+IDS+IDD)mod NPRS,          (公式1-29)
iPRS=(iPSCCH+IDS)mod NPRS,       (公式1-30)
iPRS=(iPSCCH+IDD)mod NPRS,       (公式1-31)
iPRS=(iPSCCH+IDS+IDD)mod NPRS,         (公式1-32)
其中iPRS是该侧行链路定位参考信号的资源索引,iPSCCH是该侧行链路控制信道的资源索引,NPRS是该侧行链路定位参考信号的资源总数。
可以看出,该第一通信设备可以先根据公式1-26至公式1-32确定出iPRS和iPSCCH的对应关系。然后,在确定出第一资源包括的参考信号资源的情况下,根据确定出的对应关系,确定该参考信号资源对应的链路控制信道资源。
还以图10为例,假设该第一通信设备确定出第一资源包括的iPRS=0的参考信号资源的情况下,那么该第一通信设备可以根据对应关系确定出该参考信号资源对应的链路控制信道资源iPSCCH=0的资源。
如果参考信号资源和侧行链路控制信道资源的对应关系是包含该参考信号资源的信息由该侧行链路控制信道承载的方式,那么该第一通信设备可以事先确定参考信号资源和侧行链路控制信道资源的对应关系。这样,在该第一通信设备确定出第一资源包含的参考信号资源之后,可以根据该对应关系,确定出与该参考资源对应的侧行链路控制信道资源。
如上所述,M1是小于或等于M的正整数。也就是说,在一些实施例中,第一测量结果包含的参考资源的信号质量数目可以等于也可以小于测量的第一侧行链路定位参考信号数。
例如,在一些实施例中,该第一通信设备可以将该M个第一侧行链路定位参考信号中的每个第一侧行链路定位参考信号的测量结果都放入该第一测量结果中。在此情况下,M等于M1
又如,在另一些实施例中,该第一通信设备在对M个第一侧行链路定位参考信号进行测量后,可以删除部分(例如一个、两个甚至更多)的测量结果。该第一测量结果中只包括未删除的测量结果。在此情况下,M1小于M。例如,该第一通信设备在对M个第一侧行链路定位参考信号进行测量后,得到M个参考信号资源的信号质量。该第一通信设备可以确定出M个参考信号资源的信号质量中信号质量较好或最好的一个或多个信号质量的测量结果。及得到未被排除的M-M1个测量结果。换句话说,该第一通信设备可以认为M个信号质量中质量最低或较低的一个或多个信号质量对应的资源是不需要被排除的资源。因此该第一通信设备可以将这些信号质量从测得的M个参考信号资源的信号质量中排除,剩下的M1个参考信号资源的信号质量就是该第一测量结果所包括的信号质量
在一些实施例中,该M个参考信号资源的信号质量中的第i个参考信号资源的信号质量是根据该M个第一侧行链路定位参考信号中第i个第一侧行链路定位参考信号占用的RE的能量和确定的,该第i个第一侧行链路定位参考信号在每个符号中的资源是T×N个RE中的T个RE,每N个RE里面有一 个该第i个第一侧行链路定位参考信号占用的RE,T是大于零的数,该N是正整数,i=1,…,M。
例如,在一些实施例中,第i个参考信号资源的信号质量是第i个第一侧行链路定位参考信号占用的RE的能量和。
又如,在一些实施例中,第i个参考信号资源的信号质量是第i个第一侧行链路定位参考信号占用的RE的能量和与一个系数相乘得到的。
例如,第i个参考信号资源的信号质量可以满足以下公式:
其中,RSSIPRS,comb-j表示占用的是每N个RE中的第j个RE的第一侧行链路定位参考信号的参考信号资源的信号质量。K为资源池的带宽,单位为资源块(resource block,RB)、子信道或交织,comb-j表示第i个参考信号资源占用的是每N个RE中的第j个RE,bj表示归一化系数,如1,1/N,N等。可选的,公式2-1中的N是第一侧行链路定位参考信号配置的梳齿大小,如Comb-4时,b=0.25,或者,b=4。公式2-1中的aj,k是第i个第一侧行链路定位参考信号占用的位于第k个RB、子信道或交织上的第j个RE上检测到信号或信号的幅度。
可选的,在一些实施例中,第二时间窗内的资源除了需要排除的第二资源以外,还可能会包括第三资源。该第三资源包括多个侧行链路控制信道的资源,该多个侧行链路控制信道的时频资源相同。第一通信设备还可以从第二时间窗内排除该第三资源。
可选的,在一些实施例中,在排除第二资源后,第二时间窗内剩余的侧行链路控制信道资源还可以包括:第一控制信道资源集合和第二控制信道资源集合。第一控制信道资源集合包括的P个侧行链路控制信道资源中的第q个侧行链路控制信道资源在第二控制信道资源集合中有Nq个对应的侧行链路控制信道资源,第q个侧行链路控制信道资源和Nq个对应的侧行链路控制信道资源的时频资源相同且正交序列不同。该第一通信设备还可以排除第二控制资源集合包含的侧行链路控制信道资源。
可选的,在一些实施例中,当第二时间窗内的候选资源数量小于预设门限值时,将第三资源或第二控制资源集合包含的侧行链路控制信道资源作为候选资源。
以图9为例,为了便于描述,可以分别将RE偏移值为0至7的RE称为PRS资源0至PRS资源7;将频码索引为0至7的侧行线路控制信道资源分别称为:控制信道资源0至控制信道资源7。如图9所示,PRS资源0对应于控制信道资源0,PRS资源1对应于控制信道资源1,以此类推。假设,第一通信设备在时隙n上的PRS资源0、PRS资源1、PRS资源2、PRS资源5和PRS资源6接收到了第一侧行链路定位参考信号(可以分别称为定位参考信号0、定位参考信号1、定位参考信号2、定位参考信号5和定位参考信号6,定位参考信号0是在PRS资源0上接收的,定位参考信号1是在PRS资源1上接收的,以此类推)并在这些PRS资源对应的控制信道资源上接收到了对应的第一侧行链路控制信道,该第一通信设备在第一时间段内没有在PRS资源3、PRS资源4、PRS资源7以及和这些PRS对应的控制信道资源上接收到信息。假设,该第一通信设备测量了定位参考信号0、定位参考信号1、定位参考信号2、定位参考信号5和定位参考信号6的信号质量且这些定位参考信号的信号质量都小于第一信号质量门限。那么,该第一通信设备可以确定第一资源不包括PRS资源0、PRS资源1、PRS资源2、PRS资源5和PRS资源6。由于该第一通信设备没有在PRS资源3、PRS资源4、PRS资源7接收到信息,因此第一通信设备可以确认在第二时间窗内的PRS资源3、PRS资源4、PRS资源7也是可用的。换句话说,PRS资源0、PRS资源1、PRS资源2、PRS资源5和PRS资源6和对应的控制信道资源在第二时间窗内被预留,但是由于定位参考信号0、定位参考信号1、定位参考信号2、定位参考信号5和定位参考信号6的信号质量小于第一信号质量门限,因此PRS资源0、PRS资源1、PRS资源2、PRS资源5和PRS资源6和对应的控制信道资源不属于需要被排除的第一资源;而PRS资源3、PRS资源4、PRS资源7和对应的控制信道资源在第二时间窗内没有被预留。在此情况下,根据控制信道资源0至控制信道资源7占用的频码资源,可以将控制信道资源0至控制信道资源7分为以下几个集合:
集合SA1包含控制信道资源3和控制信道资源4。这两个控制信道资源在第二时间窗内没有被预留,并且与者两个控制信道资源使用相同的频域资源的控制信道资源在第二时间窗内也没有被预留。换句 话说,集合SA1包含的侧行链路控制信道资源在第二时间窗内没有被预留,并且与集合SA1包含的侧行链路控制信道资源使用相同的频域资源的侧行链路控制信道资源在第二时间窗内也没有被预留。
集合SA2包含控制信道资源7。参考图9和以上假设,控制信道资源2与控制信道资源7使用相同的频域资源,控制信道资源2在第二时间窗内已经被预留了。换句话说,换句话说,集合SA2包含的侧行链路控制信道资源的频码资源在第二时间窗内没有被预留,但是与集合SA2包含的侧行链路控制信道资源使用相同的频域资源的侧行链路控制信道资源在第二时间窗内被预留。
集合SA3包含控制信道资源2。参考图9和以上假设,控制信道资源2与控制信道资源7使用相同的频域资源,控制信道资源2在第二时间窗内已经被预留了,但是与控制信道资源2使用相同频域资源的控制信道资源7在第二时间窗内没有被预留。换句话说,集合SA3包含的侧行链路控制信道资源的频码资源在第二时间窗内被预留,但是与集合SA3包含的侧行链路控制信道资源使用相同的频域资源的侧行链路控制信道资源在第二时间窗内没有被预留。
集合SA4包含控制信道资源0,1,5,7。控制信道资源0和控制信道资源5在第二时间窗内都被预留,且控制信道资源0和控制信道资源5的频域资源相同。类似的,控制信道资源1和控制信道资源7在第二时间窗内都被预留,且控制信道资源1和控制信道资源7的频域资源相同。换句话说,集合SA4包含的侧行链路控制信道资源的频码资源在第二时间窗内被预留,且与集合SA4包含的侧行链路控制信道资源使用相同的频域资源的侧行链路控制信道资源在第二时间窗内也被预留。
如果集合SA4中包含的多个使用相同频域资源的侧行链路控制信道资源的时域资源也相同,那么这些具有时域资源的侧行链路控制信道资源就是第三资源。还以控制信道0,1,5,7为例,如果控制信道资源0和控制信道资源5的时域资源也相同,控制信道资源1和控制信道资源7的时域资源也相同。那么可以认为第三资源包含控制信道资源0,1,5,7。
在一些实施例中该第三资源还可以包括与多个侧行链路控制信道资源对应的参考信号资源。还以图9为例,第三资源还可以包括PRS资源0,1,5,7。
在一些实施例中,集合SA3包含的控制信道资源也可以被排除在候选资源之外。换句话说,该候选资源可以不包括集合SA3包含的控制信道资源。
在一些实施例中,集合SA3包含的控制信道资源对应的参考信号资源也可以被排除。换句话说,该候选资源可以不包括集合SA3包含的控制信道资源对应的参考信号资源资源。
在一些实施例中,集合SA2包含的控制信道资源也可以被排除在候选资源之外。换句话说,该候选资源可以不包括集合SA2包含的控制信道资源。
在一些实施例中,集合SA2包含的控制信道资源对应的参考信号资源也可以被排除。换句话说,该候选资源可以不包括集合SA2包含的控制信道资源对应的参考信号资源资源。
集合SA1包含的资源可以认为是最干净的资源。因此,第一通信设备可以排除第二资源、集合SA2包含的资源,集合SA3包含的资源和集合SA4包含的资源,得到候选资源。在此情况下,候选资源可以只包括集合SA1包含的资源。
如果候选资源数目小于一个候选资源门限,那么该第一通信设备可以将集合SA2包含的资源添加到候选资源中。
如果将集合SA2包含的资源添加到候选资源后,候选资源数目仍小于该候选资源门限,那么该第一通信设备可以将集合SA3包含的资源添加到候选资源中。
如果将集合SA2和集合SA3包含的资源都添加到候选资源后,候选资源数目仍小于该候选资源门限,那么该第一通信设备可以将集合SA4包含的资源添加到候选资源中。
如果将集合SA2,集合SA3和集合SA4包含的资源都添加到候选资源后,候选资源数目仍小于该候选资源门限,那么该第一通信设备可以提升第一信号质量门限,根据提升后的第一信号质量门限重新确定第一资源。
可选的,该候选资源门限可以是预定义、预配置或者配置的。
可选的,假设总的候选资源表示为Mtotal,则候选资源门限可以表述为Th*Mtotal。其中,Th为大于0小于1的实数。Th的值是可配置的,或预定义的。例如Th=0.2,0.4,0.5等。
在一些实施例中,该第一通信设备排除该第二资源,得到该候选资源,包括:该第一通信设备排除第二资源,得到X1个侧行链路控制信道资源和X2个参考信号资源,其中该X2个参考信号资源中的 每个参考信号资源与该X1个侧行链路控制信道资源中的至少一个对应,且该X2个参考信号资源的频域资源不同,X1和X2是正整数;该第一通信设备根据X1个侧行链路控制信道资源和X2个参考信号资源,确定该候选资源,该候选资源包括X2个侧行链路控制信道资源与该X2个参考信号资源,该X2个侧行链路控制信道资源与该X2个参考信号资源一一对应。
以图8为例,为了便于描述,可以分别将频码索引为0至11的第一侧行链路定位参考信号资源分别称为:定位参考信号资源0至定位参考信号资源11;将频域资源索引为0至9的侧行线路控制信道资源分别称为:控制信道资源0至控制信道资源9。假设定位参考信号0至定位参考信号11(即在定位参考信号资源0至定位参考资源11上接收到的定位参考信号)的信号质量都小于第一信号质量门限。那么定位参考信号资源0至定位参考信号资源11的资源和对应的控制信道资源0至控制信道资源9的资源都不属于第一资源。
如图8所示,控制信道资源0至控制信道资源9分别对应于定位参考信号资源0至定位参考信号资源9,其中,控制信道资源0、控制信道资源4和控制信道资源8对应的定位参考信号的RE偏移值相同(都是0);控制信道资源1、控制信道资源5和控制信道资源9对应的定位参考信号的RE偏移值相同(都是1);控制信道资源2和控制信道资源6对应的定位参考信号的RE偏移值相同(都是3);控制信道资源1、控制信道资源3和控制信道资源7对应的定位参考信号的RE偏移值相同(都是4)。换句话说,图8中,一个参考信号资源的频域资源(即RE偏移值)可以对应多个控制信道资源。在此情况下,可以从多个控制信道资源中选出一个控制信道资源,并将剩下的控制信道资源排除在候选资源之外。还以图8为例,可以选择控制信道资源0、控制信道资源1和控制信道资源3作为候选资源,将控制信道资源4至9源排除在候选资源之外。这样该候选资源包括控制信道资源0至控制信道资源3以及对应的定位参考信号资源0至定位参考信号资源3。如果候选资源包含的资源数目小于候选资源门限,那么可以将排除的控制信道资源添加到候选资源中;如果添加了排除的控制信道资源之后,候选资源数目仍小于该候选资源门限,则可以提升该第一信号质量门限,并根据提升后的第一信号质量门限重新确定该第一资源。
可选的,在一些实施例中,该第一通信设备在第一时间窗内对M个侧行链路控制信道和/或M个第一侧行链路定位参考信号进行测量,确定第一资源,包括:该第一通信设备对该M个侧行链路控制信道进行测量,得到第二测量结果,其中该第二测量结果包括该M个侧行链路控制信道中的M2个侧行链路控制信道的信号质量,该M2是小于或等于M的正整数;该第一通信设备根据第二信号质量门限和该第二测量结果,确定该第一资源,该第一资源包括第一侧行链路控制信道资源以及与该第一侧行链路控制信道资源对应的参考信号资源,该第一侧行链路控制信道资源是该M2个侧行链路控制信道中信号质量高于该第二信号质量门限的侧行链路控制信道的资源。该第一侧行链路控制信道资源可以包括一个侧行链路控制信道资源,也可以包括多个侧行链路控制信道资源。
换句话说,上述实施例中,该第一通信设备可以仅测量侧行链路控制信道的信号质量来确定出第一资源。具体地,该第一通信设备向根据该测量结果,筛选出信号质量高于信号质量门限的侧行链路控制信道;然后,再根据侧行链路控制信道资源和参考信号资源的对应关系,确定出与筛选出的侧行链路控制信道相对应的参考信号资源;最后得到该第一资源,该第一资源包括信号质量高于信号质量门限的侧行链路控制信道(即第一侧行链路控制信道资源)和对应的参考信号资源。
该第一通信设备确定该第一侧行链路控制信道资源对应的参考信号资源的具体实现方式与该第一通信设备确定第一参考信号资源对应的侧行链路控制信道资源的具体实现方式类似,为了简洁,在此就不再赘述。
如上所述,M2是小于或等于M的正整数。也就是说,在一些实施例中,第二测量结果包含的侧行链路控制信道的信号质量数目可以等于,也可以小于测量的侧行链路控制信道数。
例如,在一些实施例中,该第一通信设备可以将该M个侧行链路控制信道中的每个侧行链路控制信道的测量结果都放入该第二测量结果中。在此情况下,M等于M2
又如,在另一些实施例中,该第一通信设备在对M个侧行链路控制信道进行测量后,可以删除部分(例如一个、两个甚至更多)的测量结果。该第二测量结果中只包括未删除的测量结果。在此情况下,M2小于M。例如,该第一通信设备在对M个侧行链路控制信道进行测量后,得到M个侧行链路控制信道的信号质量。该第一通信设备可以确定出M个侧行链路控制信道的信号质量中信号质量较好 或最好的一个或多个信号质量的测量结果。及得到未被排除的M-M2个测量结果。换句话说,该第一通信设备可以认为M个信号质量中质量最低或较低的一个或多个信号质量对应的资源是不需要被排除的资源。因此该第一通信设备可以将这些信号质量从测得的M个侧行链路控制信道的信号质量中排除,剩下的M1个侧行链路控制信道的信号质量就是该第二测量结果所包括的信号质量。
可选的,该第一通信设备排除该第二资源,得到该候选资源,包括:该第一通信设备排除第四资源和该第二资源,得到该候选资源,该第四资源包括信号质量低于该第二信号质量门限的至少两个侧行链路控制信道资源,该至少两个侧行链路控制信道资源的时频资源相同。
该第四资源与上述实施例中第三资源类似,与第三资源的区别在于第四资源包括的侧行链路控制信道的信号质量低于第二质量门限。确定第四资源的具体方式可以参见上述确定第三资源的实施例,为了简洁,在此就不再赘述。
可选的,在一些实施例中,该第一通信设备在第一时间窗内对M个侧行链路控制信道和/或M个第一侧行链路定位参考信号进行测量,确定第一资源,包括:该第一通信设备对该M个侧行链路控制信道和该M个第一侧行链路定位参考信号进行测量,得到第三测量结果,其中该第三测量结果包括该M个侧行链路控制信道中的M3个侧行链路控制信道的信号质量和M4个参考信号资源的信号质量,该M4个参考信号资源分别承载该M个第一侧行链路定位参考信号中的M4个第一侧行链路定位参考信号,M3和M4是小于或等于M的正整数;该第一通信设备根据该第三测量结果、第三信号质量门限和第四信号质量门限,确定该第一资源。
M个侧行链路控制信道和M3个侧行链路控制信道的信号质量的关系可以参考上述实施例中M个侧行链路控制信道和M2个侧行链路控制信道的信号质量的,以及该M个第一侧行链路定位参考信号和M4个参考信号资源的信号质量的关系可以参考上述实施例中M个第一侧行链路定位参考信号和M1个参考信号资源的信号质量的关系,为了简洁在此就不再赘述。
可选的,在一些实施例中,该第一通信设备根据该第三测量结果、第三信号质量门限和第四信号质量门限,确定该第一资源,包括:该第一通信设备根据该M3个侧行链路控制信道的信号质量和该第三信号质量门限,确定第二侧行链路控制信道资源,该第二侧行链路控制信道资源是该M3个侧行链路控制信道中信号质量高于该第三信号质量门限的侧行链路控制信道资源;该第一通信设备根据该M4个参考信号资源的信号质量和该第四信号质量门限,确定第二参考信号资源,该第二参考信号资源是该M4个参考信号资源中信号质量高于该第四信号质量门限的参考信号资源;该第一通信设备确定的该第一资源包括该第二侧行链路控制信道资源和该第二参考信号资源。该第二参考信号资源可以包括一个参考信号资源,也可以包括多个参考信号资源。该第二侧行链路控制信道资源可以包括一个侧行链路控制信道资源,也可以包括多个侧行链路控制信道资源。
该第一通信设备确定该第二侧行链路控制信道资源对应的参考信号资源的具体实现方式以及与该第一通信设备确定第一参考信号资源对应的侧行链路控制信道资源的具体实现方式类似;该第一通信设备确定该第二参考信号资源对应的侧行链路控制信道资源的具体实现方式以及与该第一通信设备确定第一参考信号资源对应的侧行链路控制信道资源的具体实现方式类似,为了简洁,在此就不再赘述。
上述实施例分别对侧行链路控制信道和侧行链路定位参考信号进行测量,并分别根据各自的门限确定出第一资源包括的控制信道资源和参考信号资源。
在一些实施例中,如果该第一通信设备可以分别对侧行链路控制信道和侧行链路定位参考信号进行测量,并分别根据各自的门限确定出第一资源包括的侧行链路控制信道资源和参考信号资源,那么该第一通信设备可以不需要按照上述公式1-1至公式1-32的方式确定和侧行链路控制信道资源对应的参考信号资源。该第一通信设备可以自行决定侧行链路控制信道资源和参考信号资源的对应关系,并将包含该参考信号资源的信息通过对应的侧行链路控制信道发送给接收端设备。接收端设备可以根据接收到的信息确定参考信号资源。
可选的,在一些实施例中,该方法还包括:该第一通信设备确定与该第二侧行链路控制信道资源对应的参考信号资源;该第一通信设备确定的该第一资源还包括与该第二侧行链路控制信道资源对应的参考信号资源。
上述实施例在确定出第二侧行链路参考资源之后,又进一步确定了与第二侧行链路控制信道资源对应的参考信号资源,并将这些资源加入第一资源中。也就是说,上述实施例中的第一资源包括:第 二侧行链路控制信道资源,第二参考信号资源,以及与该第二侧行链路控制信道资源对应的参考信号资源。
可选的,在一些实施例中,该方法还包括:该第一通信设备确定与该第二参考信号资源对应的侧行链路控制信道资源;该第一通信设备确定的该第一资源还包括与该第二参考信号资源对应的侧行链路控制信道资源。
上述实施例在确定出第二参考信号资源之后,又进一步确定了与第二参考信号资源对应的侧行链路控制信道资源,并将这些资源加入第一资源中。也就是说,上述实施例中的第一资源包括:第二侧行链路控制信道资源,第二参考信号资源,以及与该第二参考信号资源对应的侧行链路控制信道资源。
可选的,在一些实施例中,该方法还包括:该第一通信设备确定与该第二侧行链路控制信道资源对应的参考信号资源;该第一通信设备确定与该第二参考信号资源对应的侧行链路控制信道资源;该第一通信设备确定的该第一资源还包括:与该第二侧行链路控制信道资源对应的参考信号资源,和,与该第二参考信号资源对应的侧行链路控制信道资源。
上述实施例在确定出第二参考信号资源之后,又进一步确定了与第二参考信号资源对应的侧行链路控制信道资源,并将这些资源加入第一资源中;并且在确定出第二侧行链路参考资源之后,又进一步确定了与第二侧行链路控制信道资源对应的参考信号资源,并将这些资源加入第一资源中。也就是说,上述实施例中的第一资源包括:第二侧行链路控制信道资源,第二参考信号资源,与该第二参考信号资源对应的侧行链路控制信道资源,以及与该第二侧行链路控制信道资源对应的参考信号资源。
为了便于描述,以下假设集合SB-1是包含第二侧行链路控制信道资源的集合,集合SB-2是包含该第二参考信号资源的集合,集合SB-3是包含第二侧行链路控制信道资源对应的参考信号资源的集合,集合SB-4是包含该第二参考信号资源对应的侧行链路控制信道资源的集合。
可以看出,集合SB-1包含的侧行链路控制信道资源与集合SB-3包含的参考信号资源对应,集合SB-2包含的参考信号资源与集合SB-4包含的侧行链路控制信道资源对应。在此情况下,第一通信设备可以根据集合SB-1,集合SB-3和该预留周期,在该第二时间窗内确定第一资源集S1。第一资源集S1包含的资源的频码资源与集合SB-1和集合SB-3包含的资源的频码资源相同。第一通信设备可以根据集合SB-2,集合SB-4和该预留周期,在该第二时间窗内确定第二资源集S2。第二资源集S2包含的资源的频码资源与集合SB-2和集合SB-4包含的资源的频码资源相同。该第一通信设备确定的该第二资源包括该第一资源集S1和该第二资源集S2。
如果该第一通信设备确定候选资源数小于候选资源门限,那么该第一通信设备可以根据第一资源集S1和/或第二资源集S2确定第三资源集S3,并将该第三资源集S3中的资源加入该候选门限。
例如,在一些实施例中,该第三资源集S3可以是以下中的任一种:该第一资源集S1,该第二资源集S2,该第一资源集S1与该第二资源集S2的并集,或者,该第一资源集S1与该第二资源集S2的并集减去该第一资源集S1与该第二资源集S2的交集。
在一些实施例中,该第一通信设备在第一时间窗内对M个侧行链路控制信道和/或M个第一侧行链路定位参考信号进行测量,确定第一资源,包括:该第一通信设备对该M个侧行链路控制信道进行测量,得到第四测量结果,其中该第四测量结果包括该M个侧行链路控制信道中的M5个侧行链路控制信道的信号质量,该M5是小于或等于M的正整数;该第一通信设备根据第五信号质量门限和该第四测量结果,确定第三侧行链路控制信道资源和第三参考信号资源,其中该第三侧行链路控制信道资源是该M5个侧行链路控制信道中信号质量高于该第五信号质量门限的侧行链路控制信道资源,该第三参考信号资源是与该第三侧行链路控制信道资源对应的参考信号资源;该第一通信设备根据该第三参考信号资源,对该M个第一侧行链路定位参考信号中的M6个第一侧行链路定位参考信号进行测量,得到M6个参考信号资源的信号质量,其中该M6个参考信号资源分别承载该M6个第一侧行链路定位参考信号,该M6个参考信号资源不包括该第三参考信号资源,M6是小于M的正整数;该第一通信设备根据第六信号质量门限和该M6个参考信号资源的信号质量,确定第四参考信号资源和第四侧行链路控制信道资源,其中该第四参考信号资源是该M6个参考信号资源中信号质量高于该第六信号质量门限的参考信号资源,该第四侧行链路控制信道资源是与该第四参考信号资源对应的侧行链路控制信道资源;该第一通信设备确定的该第一资源包括:该第三侧行链路控制信道资源、该第三参考信号资源、该第四侧行链路控制信道资源和该第四参考信号资源。
例如,假设M等于5,即有5个侧行链路控制信道和5个第一侧行链路定位参考信号。便于描述,可以将这个5个侧行链路控制信道分别称为侧行链路控制信道1至侧行链路控制信道5,将这5个第一侧行链路定位参考信号分别称为侧行链路定位参考信号1至侧行链路定位参考信号5。5个第一侧行链路定位参考信号分别由5个参考信号资源承载。同样,将这个5个参考信号资源称为参考信号资源1至参考信号资源5。5个侧行链路控制信道的资源与5个参考信号资源一一对应,即侧行链路控制信道1的资源对应于参考信号资源1,侧行链路控制信道2的资源对应于参考信号资源2,以此类推。假设该第四测量结果包括5个侧行链路控制信道的信号质量。假设侧行链路控制信道1的信号质量高于该第五信号质量门限。那么该第一通信设备可以确定第三侧行链路控制信道资源包括侧行链路控制信道1的资源,确定第三参考信号资源包括参考信号资源1。然后,该第一通信设备可以测量侧行链路控制信道2至侧行链路控制信道5,得到参考信号资源2至参考信号资源5的参考信号资源的信号质量。假设参考信号资源2和参考信号资源3的信号质量高于该第六信号质量门限。在此情况下,该第一通信设备可以确定该第四参考信号资源包括参考信号资源2和参考信号资源3,确定该第四侧行链路控制信道资源包括侧行链路控制信道2和侧行线路控制信道3的资源。这样,该第一通信设备确定的第一资源包括:侧行链路控制信道1的资源,侧行链路控制信道2的资源,侧行链路控制信道3的资源,参考信号资源1,参考信号资源2和参考信号资源3。
上述技术方案中,该第一通信设备可以先根据第五信号质量门限筛选出不符合的侧行链路控制信道的资源,然后确定出对应的参考信号资源;然后可以只测量剩余的侧行链路定位参考信号的信号质量,并根据第六信号质量门限筛选出不符合的参考信号资源,然后确定出对应的侧行链路控制信道的资源。
在另一些实施例中,该第一通信设备可以对M个侧行链路控制信道和M个第一侧行链路定位参考信号都进行测量,但是在与第六信号质量门限比较时,只使用对应的侧行链路控制信道的信号质量小于该第五信号质量门限的参考信号资源来比较。
还以上述5个侧行链路控制信道和5个第一侧行链路定位参考信号。该第一通信设备可以测量5个侧行链路控制信道和5个第一侧行链路定位参考信号,得到5个侧行链路控制信道的信号质量和5个参考信号资源的信号质量。该第一通信设备将5个侧行链路控制信道的信号质量与该第五信号质量门限比较,确定侧行链路控制信号1的信号质量高于该第五信号质量门限。由于参考信号资源1对应的侧行链路控制信道1已经被排除,所以在与第六信号质量门限进行比较时就不需要比较参考信号资源1了。因此只需要将参考信号资源2至参考信号资源5的信号质量与该第六信号质量门限进行比较就可以。
可选的,在一些实施例中,该第一通信设备可以根据一个序列,对M个第一侧行链路定位参考信号进行测量。具体地,该第一通信设备可以对接收到的M个第一侧行链路定位参考信号进行测量,测量使用的序列就是该序列。为了便于描述,这个序列可以称为第一序列。如上所述,序列是根据序列标识生成的。为了便于描述,用于生成该第一序列的标识可以称为第一序列标识。
在一些实施例中,该第一序列标识可以是用于生成该第二侧行链路定位参考信号的序列标识。换句话说,该第一通信设备可以使用用于生成自己发送的侧行链路定位参考信号的序列标识来生成用于测量M个第一侧行链路定位参考信号的序列(即该第一序列)。
示例性地,在一些实施例中,随机序列的初始值cinit满足以下公式:
其中表示时隙中的符号数,表示子帧中的时隙数,l表示时隙中OFDM的符号数,m为整数,NID为第一序列标识。
在另一些实施例中,随机序列的初始值cinit满足以下公式:
其中表示时隙中的符号数,表示子帧中的时隙数,l表示时隙中OFDM的符号数,m为整数,nID为第一序列标识。
在另一些实施例中,随机序列的初始值cinit满足以下公式:
其中表示时隙中的符号数,表示子帧中的时隙数,l表示时隙中OFDM的符号数,m为整数,为第一序列标识。
在另一些实施例中,该第一序列标识可以是预定义、预配置或者是由信令配置的序列标识。该信令可以来自于网络设备或者其他通信设备。换句话说,该第一通信设备可以根据预定义、预配置或者是由信令配置的序列标识来生成用于测量M个第一侧行链路定位参考信号的序列(即该第一序列)。
在另一些实施例中,该第一通信设备可以根据M个序列分别对该M个第一侧行链路定位参考信号进行测量。例如,该第一通信设备可以根据M个序列中的第i个序列,对M个第一侧行链路定位参考信号中的第i个第一侧行链路定位参考信号进行测量,i=1,…,M。为了便于描述,这M个序列可以称为M个第二序列。该M个第二序列分别是根据M个第二序列标识确定的。该M个第二序列中的第i个第二序列是根据该M个第二序列标识中的第i个第二序列标识确定的。该第一通信设备可以从M个第三通信设备获取该M个第二序列标识。该M个第一侧行链路定位参考信号分别是由该M个第三通信设备发送的。换句话说,该第一通信设备可以获取由该M个第三通信设备中的第i个第三通信设备指示的第i个第二序列标识;根据该第i个第二序列标识,确定第i个第二序列;根据第i个第二序列,对M个第一侧行链路定位参考信号中的第i个第二侧行链路定位参考信号进行测量,得到用于承载第i个第二侧行链路定位参考信号的参考信号资源的信号质量。
在一些实施例中,该第一通信设备可以获取M个序列标识信息,并根据该M个序列标识信息确定该M个第二序列标识。
该M个序列标识信息分别来自于M个第三通信设备。换句话说,该M个序列标识信息中的第i个序列标识信息来自于该M个第三通信设备中的第i个第三通信设备。
该第i个序列标识与该第i个第三通信设备用于生成侧行链路定位参考信号的序列标识不同,但是根据该第i个序列标识确定的第i个第二序列生成的侧行链路定位参考信号的参考信号资源的信号质量能够反映该第i个第三通信设备生成侧行链路定位参考信号的参考信号资源的信号质量。例如,假设根据该序列标识确定的序列生成的侧行链路定位参考信号的参考信号资源的信号质量为Qref,该第i个第三通信设备生成侧行链路定位参考信号的参考信号资源的信号质量为Qrel,那么Qref和Qrel可以是以下关系:Qref≈Qrel,或者,Qref和Qrel的差是一个预设值,或者,Qref的取值是Qrel取值的二分之一等。
在一些实施例中,该序列标识信息中可以直接包括第二序列标识。换句话说,该第i个序列标识信息中包括该M个第二序列标识中的第i个第二序列标识。这样,该第一通信设备可以直接确定第i个第二序列标识是该序列标识信息中携带的序列标识。
例如,在一些实施例中,该第i个序列标识信息中包括第二序列标识可以是由该M个第三通信设备中的第i个第三通信设备可以自行确定一个序列标识。
在另一些实施例中,该第i个序列标识可以是该第i个第三通信设备从序列标识集合中选择的一个序列标识。该序列标识集合可以是预定义、预配置或由信令配置的。该序列标识集合可以包括该M个第二序列标识。该第i个第三通信设备从该M个第二序列标识中选择出一个最能反映出其侧行链路定位参考信号的信号质量的序列标识,并将选择出的序列标识发送给该第一通信设备。
在一些实施例中,该序列标识集合中的每个第二序列标识还可以包括一个索引。换句话说,该序列标识集合可以包括该M个第二序列标识和M个索引。该M个索引和该M个第二序列标识一一对应。在此情况下,该第三通信设备可以直接将确定的第二序列标识对应的索引发送给该第一通信设备。换句话说,该序列标识信息中可以包括索引,该第一通信设备可以根据该序列标识信息中的索引,从该序列标识集合中确定与该索引对应的序列标识。例如,该M个序列标识信息中的第m个序列标识信息中包括索引i,索引i是M个第二序列标识中的第i个第二序列标识在该序列标识集合中的索引。这样,该第一通信设备可以根据索引i,从该序列标识集合中确定该第i个第二序列标识。
可选的,在一些实施例中,该第一通信设备对该第一侧行链路定位参考信号测量时的频域资源是根据接收该第一侧行链路定位参考信号的频域资源确定的。换句话说,该第一通信设备在该第一时间 窗内的频域资源i上,对该M个第一侧行链路定位参考信号中的第i个第一侧行链路定位参考信号进行测量,其中该频域资源i是根据该第一通信设备接收该第i个第一侧行链路定位参考信号的频域资源确定的,i=1,…,M。例如,在一些实施例中,该频域资源i是该第一通信设备接收该第i个第一侧行链路定位参考信号的频域资源。又如,在另一些实施例中,该频域资源i的起始位置与该第一通信设备接收该第i个第一侧行链路定位参考信号的频域资源的起始位置相同,该频域资源i的大小与该第一通信设备发送该第二侧行链路定位参考信号的频域带宽相同。
图11是根据本申请实施例提供一种通信设备的示意性结构框图。如图11所示的通信设备1100包括:处理模块1101、发送模块1102和接收模块1103。处理模块1101可以由处理器实现,发送模块1102可以由发送器实现,接收模块1103可以由接收器实现。通信设备1100可以实现上述实施例中第一通信设备的功能。
接收模块1103,用于接收至少一个第一消息,该至少一个第一消息中的每个第一消息包括第一侧行链路控制信息和第一侧行链路定位参考信号。
处理模块1101用于根据该至少一个第一消息包括的至少一个第一侧行链路控制信息和/或至少一个第一侧行链路定位参考信号,确定第二消息的候选资源,该第二消息包括第二侧行链路控制信息和第二侧行链路定位参考信号。
发送模块1102,用于根据该候选资源发送该第二消息。
处理模块1101,发送模块1102和接收模块1103的具体功能和有益效果可以参见上述实施例,为了简洁在此就不再赘述。
图12是根据本申请实施例提供另一通信设备的示意性结构框图。图如12所示的通信设备1200包括:监测模块1201和接收模块1202。监测模块1201可以由接收器实现,接收模块1202可以由接收机实现实现。通信设备1200可以实现上述实施例中第二通信设备的功能。
监测模块1201用于在接收资源集监测第二消息,该第二消息包括第二侧行链路控制信息和第二侧行链路定位参考信号。
接收模块1202用于在候选资源上接收该第二消息,该候选资源是由至少一个第一侧行链路控制信息和/或至少一个第一侧行链路定位参考信号确定的,该接收资源集包括该候选资源。
监测模块1201和接收模块1202的具体功能和有益效果可以参见上述实施例,为了简洁在此就不再赘述。
图13是根据本申请实施例提供的一种通信装置的结构框图。如图13所示的通信装置1300包括处理器1301,处理器1301可以用于对通信协议以及通信数据进行处理,以及对通信装置进行控制,执行软件程序,处理软件程序的数据等。
可选的,通信装置1300还可以包括存储器1302。存储器1302主要用于存储软件程序和数据。
可选的,通信装置1300还可以包括收发器1303。收发器也可以称为收发单元、收发机、收发装置等。可选的,可以将收发器1303中用于实现接收功能的器件视为接收模块,将收发器1303中用于实现发送功能的器件视为发送模块,即收发器1303包括接收模块和发送模块。接收模块有时也可以称为接收机、接收器、或接收电路等。发送模块有时也可以称为发射机、发射器或者发射电路等。
可选的,通信装置1300可以是终端设备或者用于终端设备的装置(例如芯片、电路等)。
可选的,通信装置1300可以是网络设备或者用于网络设备的装置(例如芯片、电路等)。
若通信装置1300为终端设备或网络设备,则通信装置1300还可以包括射频电路、天线。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。可以将具有收发功能的天线和射频电路视为通信装置1300的收发器1303。
若通信装置1300为用于终端设备或网络设备的装置(例如芯片、电路等),则通信装置1300还可以包括输入输出接口。该输入输出接口可以用于获取数据,并将获取到的数据发送至处理器1301和/或存储器1302。该输入输出接口还可以用于将处理器1301生成数据发送至其他装置。
为便于说明,图13中仅示出了一个存储器和处理器。在实际的产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
处理器1301、存储器1302和收发器1303之间通过内部连接通路互相通信,传递控制和/或数据信 号
上述本申请实施例揭示的方法可以应用于处理器1301中,或者由处理器1301实现。处理器1301可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1301中的硬件的集成逻辑电路或者软件形式的指令完成。
本申请各实施例所述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read-only memory,ROM)、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的指令,结合其硬件完成上述方法的步骤。
可选的,在一些实施例中,存储器1302可以存储用于执行上述方法中第一通信设备执行的方法的指令。处理器1301可以执行存储器1302中存储的指令结合其他硬件(例如收发器903)完成上述方法中第一通信设备执行的步骤。处理器1301具体工作过程和有益效果可以参见上述方法实施例中的描述。若通信装置1300中没有设置存储器1302,则处理器1301可以耦合至一个存储用于执行如上述方法中第一通信设备执行的方法的指令的存储器。
可选的,在一些实施例中,存储器1302可以存储用于执行上述方法中第二通信设备执行的方法的指令。处理器1301可以执行存储器1302中存储的指令结合其他硬件(例如收发器903)完成上述方法中第二通信设备执行的步骤。处理器1301具体工作过程和有益效果可以参见上述方法实施例中的描述。若通信装置1300中没有设置存储器1302,则处理器1301可以耦合至一个存储用于执行如上述方法中第二通信设备执行的方法的指令的存储器。
本申请实施例还提供一种芯片系统,该芯片系统包括逻辑电路,该逻辑电路用于与输入/输出接口耦合,通过该输入/输出接口传输数据。该芯片系统可以执行上述方法实施例中第一通信设备的方法。
本申请实施例还提供一种计算机可读存储介质,其上存储有指令,该指令被执行时执行上述方法实施例中第一通信设备的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被执行时执行上述方法实施例中第一通信设备的方法。
本申请实施例还提供一种芯片系统,该芯片系统包括逻辑电路,该逻辑电路用于与输入/输出接口耦合,通过该输入/输出接口传输数据。该芯片系统可以执行上述方法实施例中第二通信设备的方法。
本申请实施例还提供一种计算机可读存储介质,其上存储有指令,该指令被执行时执行上述方法实施例中第二通信设备的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被执行时执行上述方法实施例中第二通信设备的方法。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是 或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (47)

  1. 一种传输信息的方法,其特征在于,包括:
    第一通信设备接收至少一个第一消息,所述至少一个第一消息中的每个第一消息包括第一侧行链路控制信息和第一侧行链路定位参考信号;
    所述第一通信设备根据所述至少一个第一消息包括的至少一个第一侧行链路控制信息和/或至少一个第一侧行链路定位参考信号,确定第二消息的候选资源,所述第二消息包括第二侧行链路控制信息和第二侧行链路定位参考信号;
    所述第一通信设备根据所述候选资源发送所述第二消息。
  2. 根据权利要求1所述的方法,其特征在于,所述第一通信设备根据所述至少一个第一消息包括的至少一个第一侧行链路控制信息和/或至少一个第一侧行链路定位参考信号,确定第二消息的候选资源,包括:
    所述第一通信设备在第一时间窗内对M个侧行链路控制信道和/或M个第一侧行链路定位参考信号进行测量,确定第一资源,所述第一资源包括信号质量高于信号质量门限的资源,M个第一侧行链路控制信息分别承载在所述M个侧行链路控制信道上,所述至少一个第一侧行链路控制信息包括所述M个第一侧行链路控制信息,所述至少一个第一侧行链路定位参考信号包括所述M个第一侧行链路定位参考信号,M为正整数;
    所述第一通信设备根据所述第一资源,确定所述候选资源,所述候选资源位于第二时间窗内,所述第二时间窗位于所述第一时间窗之后。
  3. 根据权利要求2所述的方法,其特征在于,所述第一通信设备根据所述第一资源,确定所述候选资源,包括:
    所述第一通信设备根据所述M个第一侧行链路控制信息,确定预留周期;
    所述第一通信设备根据所述第一资源和所述预留周期,确定第二资源,所述第二资源位于所述第二时间窗内;
    所述第一通信设备排除所述第二资源,得到所述候选资源。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第一通信设备在第一时间窗内对M个侧行链路控制信道和/或M个第一侧行链路定位参考信号进行测量,确定第一资源,包括:
    所述第一通信设备对所述M个第一侧行链路定位参考信号进行测量,得到第一测量结果,其中所述第一测量结果包括M1个参考信号资源的信号质量,所述M1个参考信号资源分别承载所述M个第一侧行链路定位参考信号中的M1个第一侧行链路定位参考信号,M1是小于或等于M的正整数;
    所述第一通信设备根据第一信号质量门限和所述第一测量结果,确定所述第一资源,所述第一资源包括第一参考信号资源以及与所述第一参考信号资源对应的侧行链路控制信道资源,所述第一参考信号资源是所述M1个参考信号资源中信号质量高于所述第一信号质量门限的参考信号资源。
  5. 根据权利要求3所述的方法,其特征在于,所述第一通信设备排除所述第二资源,得到所述候选资源,包括:
    所述第一通信设备排除第三资源和所述第二资源,得到所述候选资源,所述第三资源位于所述第二时间窗内,所述第三资源包括多个侧行链路控制信道的资源,所述多个侧行链路控制信道的时频资源相同。
  6. 根据权利要求3所述的方法,其特征在于,所述第一通信设备排除所述第二资源,得到所述候选资源,包括:
    所述第一通信设备排除第二资源,得到X1个侧行链路控制信道资源和X2个参考信号资源,其中所述X2个参考信号资源中的每个参考信号资源与所述X1个侧行链路控制信道资源中的至少一个对应,且所述X2个参考信号资源的频域资源不同,X1和X2是正整数;
    所述第一通信设备根据X1个侧行链路控制信道资源和X2个参考信号资源,确定所述候选资源,所述候选资源包括X2个侧行链路控制信道资源与所述X2个参考信号资源,所述X2个侧行链路控制信道资源与所述X2个参考信号资源一一对应。
  7. 根据权利要求2或3所述的方法,其特征在于,所述第一通信设备在第一时间窗内对M个侧行链路控制信道和/或M个第一侧行链路定位参考信号进行测量,确定第一资源,包括:
    所述第一通信设备对所述M个侧行链路控制信道进行测量,得到第二测量结果,其中所述第二测量结果包括所述M个侧行链路控制信道中的M2个侧行链路控制信道的信号质量,所述M2是小于或等于M的正整数;
    所述第一通信设备根据第二信号质量门限和所述第二测量结果,确定所述第一资源,所述第一资源包括第一侧行链路控制信道资源以及与所述第一侧行链路控制信道资源对应的参考信号资源,所述第一侧行链路控制信道资源是所述M2个侧行链路控制信道中信号质量高于所述第二信号质量门限的侧行链路控制信道的资源。
  8. 根据权利要求7所述的方法,其特征在于,所述第一通信设备排除所述第二资源,得到所述候选资源,包括:
    所述第一通信设备排除第四资源和所述第二资源,得到所述候选资源,所述第四资源包括信号质量低于所述第二信号质量门限的至少两个侧行链路控制信道资源,所述至少两个侧行链路控制信道资源的时频资源相同。
  9. 根据权利要求2或3所述的方法,其特征在于,所述第一通信设备在第一时间窗内对M个侧行链路控制信道和/或M个第一侧行链路定位参考信号进行测量,确定第一资源,包括:
    所述第一通信设备对所述M个侧行链路控制信道和所述M个第一侧行链路定位参考信号进行测量,得到第三测量结果,其中所述第三测量结果包括所述M个侧行链路控制信道中的M3个侧行链路控制信道的信号质量和M4个参考信号资源的信号质量,所述M4个参考信号资源分别承载所述M个第一侧行链路定位参考信号中的M4个第一侧行链路定位参考信号,M3和M4是小于或等于M的正整数;
    所述第一通信设备根据所述第三测量结果、第三信号质量门限和第四信号质量门限,确定所述第一资源。
  10. 根据权利要求9所述的方法,其特征在于,所述第一通信设备根据所述第三测量结果、第三信号质量门限和第四信号质量门限,确定所述第一资源,包括:
    所述第一通信设备根据所述M3个侧行链路控制信道的信号质量和所述第三信号质量门限,确定第二侧行链路控制信道资源,所述第二侧行链路控制信道资源是所述M3个侧行链路控制信道中信号质量高于所述第三信号质量门限的侧行链路控制信道资源;
    所述第一通信设备根据所述M4个参考信号资源的信号质量和所述第四信号质量门限,确定第二参考信号资源,所述第二参考信号资源是所述M4个参考信号资源中信号质量高于所述第四信号质量门限的参考信号资源;
    所述第一通信设备确定的所述第一资源包括所述第二侧行链路控制信道资源和所述第二参考信号资源。
  11. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    所述第一通信设备确定与所述第二侧行链路控制信道资源对应的参考信号资源;
    所述第一通信设备确定的所述第一资源还包括与所述第二侧行链路控制信道资源对应的参考信号资源。
  12. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    所述第一通信设备确定与所述第二参考信号资源对应的侧行链路控制信道资源;
    所述第一通信设备确定的所述第一资源还包括与所述第二参考信号资源对应的侧行链路控制信道资源。
  13. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    所述第一通信设备确定与所述第二侧行链路控制信道资源对应的参考信号资源;
    所述第一通信设备确定与所述第二参考信号资源对应的侧行链路控制信道资源;
    所述第一通信设备确定的所述第一资源还包括:与所述第二侧行链路控制信道资源对应的参考信号资源,和,与所述第二参考信号资源对应的侧行链路控制信道资源。
  14. 根据权利要求13所述的方法,其特征在于,所述第一通信设备根据所述第一资源和所述预留周期,确定第二资源,包括:
    所述第一通信设备根据所述第二侧行链路控制信道资源、与所述第二侧行链路控制信道资源对应的参考信号资源和所述预留周期,在所述第二时间窗内确定第一资源集S1;
    所述第一通信设备根据所述第二参考信号资源、与所述第二参考信号资源对应的侧行链路控制信道资源和所述预留周期,在所述第二时间窗内确定第二资源集S2;
    所述第一通信设备确定的所述第二资源包括所述第一资源集S1和所述第二资源集S2。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    所述第一通信设备在确定在所述候选资源数目小于候选资源门限的情况下,确定所述候选资源包括第三资源集S3,所述第三资源集S3是根据所述第一资源集S1和/或所述第二资源集S2确定的。
  16. 根据权利要求15所述的方法,其特征在于,所述第三资源集S3是以下中的至少一个:
    所述第一资源集S1,
    所述第二资源集S2,
    所述第一资源集S1与所述第二资源集S2的并集,或者,
    所述第一资源集S1与所述第二资源集S2的并集减去所述第一资源集S1与所述第二资源集S2的交集。
  17. 根据权利要求4至6、9至16中任一项所述的方法,其特征在于,
    所述M个参考信号资源的信号质量中的第i个参考信号资源的信号质量是根据所述M个第一侧行链路定位参考信号中第i个第一侧行链路定位参考信号占用的RE的能量和确定的,所述第i个第一侧行链路定位参考信号在每个符号中的资源是T×N个RE中的T个RE,每N个RE里面有一个所述第i个第一侧行链路定位参考信号占用的RE,T是大于零的数,所述N是正整数,i=1,…,M。
  18. 根据权利要求4至17中任一项所述的方法,其特征在于,所述侧行链路控制信道资源包括所述侧行链路控制信道的频域资源和/或序列参数,所述参考信号资源包括所述侧行链路定位参考信号的频域资源和/或序列参数。
  19. 根据权利要求2至18中任一项所述的方法,其特征在于,在所述第一通信设备在第一时间窗内对M个侧行链路控制信道和/或M个第一侧行链路定位参考信号进行测量,确定第一资源之前,所述方法还包括:
    所述第一通信设备获取指示信息,所述指示信息用于指示所述第一通信设备测量以下信息中的至少一种:所述M个侧行链路控制信道,所述M个第一侧行链路定位参考信号。
  20. 根据权利要求19所述的方法,其特征在于,在侧行链路控制信道的总资源数多于侧行链路定位参考信号的总资源数的情况下,所述指示信息用于指示所述第一通信设备测量所述M个第一侧行链路定位参考信号;
    在所述侧行链路控制信道的总资源数少于所述侧行链路定位参考信号的总资源数的情况下,所述指示信息用于指示所述第一通信设备测量所述M个侧行链路控制信道。
  21. 根据权利要求2至6,9至20中任一项所述的方法,其特征在于,所述第一通信设备在所述第一时间窗内对所述M个第一侧行链路定位参考信号进行测量,包括:
    所述第一通信设备根据第一序列标识确定第一序列;
    所述第一通信设备根据所述第一序列,对所述M个第一侧行链路定位参考信号进行测量。
  22. 根据权利要求21所述的方法,其特征在于,所述第一序列标识是用于生成所述第二侧行链路定位参考信号的序列标识;或者,
    所述第一序列标识是预定义、预配置或由信令配置的序列标识。
  23. 根据权利要求2至6,9至20中任一项所述的方法,其特征在于,所述第一通信设备在所述第一时间窗内对所述M个第一侧行链路定位参考信号进行测量,包括:
    所述第一通信设备获取M个第二序列标识,所述M个第二序列标识分别由M个第三通信设备指示,所述M个第一侧行链路定位参考信号分别来自于所述M个第三通信设备;
    所述第一通信设备根据所述M个第二序列标识中的第i个第二序列标识,确定M个第二序列中的第i个第二序列,i=1,…,M;
    所述第一通信设备根据所述M个第二序列中的第i个第二序列,对所述M个第一侧行链路定位参考信号中的第i个第一侧行链路定位参考信号进行测量。
  24. 根据权利要求23所述的方法,其特征在于,所述第一通信设备获取M个第二序列标识,包括:
    所述第一通信设备根据M个序列标识信息,确定所述M个第二序列标识,所述M个序列标识信息分别来自于所述M个第三通信设备,
    所述M个序列标识信息中的第i个序列标识信息包括所述第i个第二序列标识,或者,
    所述M个序列标识信息中的第i个序列标识信息包括索引i,所述索引i是所述第i个第二序列标识在序列标识集合中的索引,所述序列标识集合是预定义、预配置或由信令配置的。
  25. 根据权利要求2至6,9至24中任一项所述的方法,其特征在于,所述第一通信设备在所述第一时间窗内对所述M个第一侧行链路定位参考信号进行测量,包括:
    所述第一通信设备在所述第一时间窗内的频域资源i上,对所述M个第一侧行链路定位参考信号中的第i个第一侧行链路定位参考信号进行测量,其中所述频域资源i是所述第一通信设备接收所述第i个第一侧行链路定位参考信号的频域资源,i=1,…,M。
  26. 一种传输信息的方法,其特征在于,包括:
    第二通信设备在接收资源集监测第二消息,所述第二消息包括第二侧行链路控制信息和第二侧行链路定位参考信号;
    所述第二通信设备在候选资源上接收所述第二消息,所述候选资源是由至少一个第一侧行链路控制信息和/或至少一个第一侧行链路定位参考信号确定的,所述接收资源集包括所述候选资源。
  27. 根据权利要求26所述的方法,其特征在于,所述候选资源是根据第一资源确定的,所述第一资源包括信号质量高于信号质量门限的资源。
  28. 根据权利要求27所述的方法,其特征在于,所述候选资源不包括位于所述第二时间窗内的第二资源,所述第二资源是根据所述第一资源确定的。
  29. 根据权利要求27或28所述的方法,其特征在于,第一资源包括第一参考信号资源以及与所述第一参考信号资源对应的侧行链路控制信道资源,所述第一参考信号资源是M1个参考信号资源中信号质量高于第一信号质量门限的参考信号资源,M1是正整数,所述至少一个第一侧行链路定位参考信号中的M1个第一侧行链路定位参考信号分别承载在所述M1个参考信号资源。
  30. 根据权利要求28所述的方法,其特征在于,所述候选资源还不包括第三资源,所述第三资源位于所述第二时间窗内,所述第三资源包括多个侧行链路控制信道的资源,所述多个侧行链路控制信道的时频资源相同。
  31. 根据权利要求28所述的方法,其特征在于,所述候选资源包括X2个侧行链路控制信道资源与X2个参考信号资源,所述X2个侧行链路控制信道资源与所述X2个参考信号资源一一对应,所述X2个参考信号资源的频域资源不同,X2是正整数。
  32. 根据权利要求27或28所述的方法,其特征在于,所述第一资源,所述第一资源包括第一侧行链路控制信道资源以及与所述第一侧行链路控制信道资源对应的参考信号资源,所述第一侧行链路控制信道资源是M2个侧行链路控制信道中信号质量高于所述第二信号质量门限的侧行链路控制信道的资源,所述至少一个第一侧行链路控制信息中的M2个第一侧行链路控制信息分别承载在所述M2个侧行链路控制信道,M2是正整数。
  33. 根据权利要求32所述的方法,其特征在于,所述候选资源还不包括第四资源,所述第四资源包括信号质量低于所述第二信号质量门限的至少两个侧行链路控制信道资源,所述至少两个侧行链路控制信道资源的时频资源相同。
  34. 根据权利要求27或28所述的方法,其特征在于,所述第一资源包括第二侧行链路控制信道资源和第二参考信号资源,所述第二侧行链路控制信道资源是M3个侧行链路控制信道中信号质量高于第三信号质量门限的侧行链路控制信道资源,所述第二参考信号资源是M4个参考信号资源中信号质量高于第四信号质量门限的参考信号资源,所述至少一个第一侧行链路控制信息中的M3个第一侧行链路控制信息分别承载在所述M3个侧行链路控制信道,所述至少一个第一侧行链路定位参考信号中的M4个第一侧行链路定位参考信号分别承载在所述M4个参考信号资源,M3和M4是正整数。
  35. 根据权利要求34所述的方法,其特征在于,所述第一资源还包括与所述第二侧行链路控制信道资源对应的参考信号资源。
  36. 根据权利要求34所述的方法,其特征在于,所述第一资源还包括与所述第二参考信号资源对应的侧行链路控制信道资源。
  37. 根据权利要求34所述的方法,其特征在于,所述第一资源还包括:与所述第二侧行链路控制信道资源对应的参考信号资源,和,与所述第二参考信号资源对应的侧行链路控制信道资源。
  38. 根据权利要求37所述的方法,所述第二资源包括第一资源集和第二资源集,所述第一资源集是根据所述第二侧行链路控制信道资源、与所述第二侧行链路控制信道资源对应的参考信号资源和所述预留周期确定的,所述第二资源集是根据所述第二参考信号资源、与所述第二参考信号资源对应的侧行链路控制信道资源和所述预留周期确定的。
  39. 根据权利要求38所述的方法,其特征在于,所述候选资源包括第三资源集,所述第三资源集S3是根据所述第一资源集S1和/或所述第二资源集S2确定的。
  40. 根据权利要求39所述的方法,其特征在于,所述第三资源集是以下中的至少一个:
    所述第一资源集S1,
    所述第二资源集S2,
    所述第一资源集S1与所述第二资源集S2的并集,或者,
    所述第一资源集S1与所述第二资源集S2的并集减去所述第一资源集S1与所述第二资源集S2的交集。
  41. 根据权利要求29至31、34至40中任一项所述的方法,其特征在于,
    所述M个参考信号资源的信号质量中的第i个参考信号资源的信号质量是根据所述M个第一侧行链路定位参考信号中第i个第一侧行链路定位参考信号占用的RE的能量和确定的,所述第i个第一侧行链路定位参考信号在每个符号中的资源是T×N个RE中的T个RE,每N个RE里面有一个所述第i个第一侧行链路定位参考信号占用的RE,T是大于零的数,所述N是正整数,i=1,…,M。
  42. 一种通信设备,其特征在于,所述通信设备包括:
    用于执行根据权利要求1至25中任一项所述的方法的模块;或者
    用于执行根据权利要求26至41中任一项所述方法的模块。
  43. 一种通信装置,其特征在于,包括:处理器;
    所述处理器,用于执行存储器中存储的计算机程序,以使得所述通信装置执行权利要求1至25中任一项所述的通信方法,或者,以使得所述通信装置执行权利要求26至41中任一项所述的通信方法。
  44. 根据权利要求43所述的装置,其特征在于,还包括所述存储器。
  45. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述计算机指令在计算机上运行时,使得所述计算机执行如权利要求1至25中任一项所述的方法,或者,使得所述计算机执行如权利要求26至41中任一项所述的方法。
  46. 一种芯片系统,其特征在于,所述芯片系统包括逻辑电路,所述逻辑电路用于与输入/输出接口耦合,通过所述输入/输出接口传输数据,以执行如权利要求1至25中任一项所述的方法,或者,以执行如权利要求26至41中任一项所述的方法。
  47. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行如权利要求1至25中任一项所述的方法,或者,使得计算机执行如权利要求26至41中任一项所述的方法。
PCT/CN2023/110175 2022-08-03 2023-07-31 传输信息的方法和相关装置 WO2024027629A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202210925952 2022-08-03
CN202210925952.9 2022-08-03
CN202210969018 2022-08-12
CN202210969018.7 2022-08-12
CN202310410103.4A CN117527171A (zh) 2022-08-03 2023-04-07 传输信息的方法和相关装置
CN202310410103.4 2023-04-07

Publications (1)

Publication Number Publication Date
WO2024027629A1 true WO2024027629A1 (zh) 2024-02-08

Family

ID=89763248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110175 WO2024027629A1 (zh) 2022-08-03 2023-07-31 传输信息的方法和相关装置

Country Status (2)

Country Link
CN (1) CN117527171A (zh)
WO (1) WO2024027629A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109792721A (zh) * 2016-08-09 2019-05-21 松下电器(美国)知识产权公司 用于v2x传输的改进的无线电资源选择和感测
CN111865505A (zh) * 2019-04-30 2020-10-30 中国移动通信有限公司研究院 一种资源选择方法及设备
US20210014848A1 (en) * 2019-10-04 2021-01-14 Alexei Davydov Ue configured for joint activation of tci states and spatial relation info on multiple component carriers
WO2021031043A1 (zh) * 2019-08-16 2021-02-25 华为技术有限公司 一种通信方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109792721A (zh) * 2016-08-09 2019-05-21 松下电器(美国)知识产权公司 用于v2x传输的改进的无线电资源选择和感测
CN111865505A (zh) * 2019-04-30 2020-10-30 中国移动通信有限公司研究院 一种资源选择方法及设备
WO2021031043A1 (zh) * 2019-08-16 2021-02-25 华为技术有限公司 一种通信方法及装置
US20210014848A1 (en) * 2019-10-04 2021-01-14 Alexei Davydov Ue configured for joint activation of tci states and spatial relation info on multiple component carriers

Also Published As

Publication number Publication date
CN117527171A (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
US11134476B2 (en) Method for information transmission, base station, and user equipment
CN108347778B (zh) 通信方法及装置
WO2018141272A1 (zh) 终端、网络设备和通信方法
US20230217445A1 (en) Sidelink communication method, terminal device and network device
CN110832899A (zh) 在无线通信系统中操作终端以进行v2x通信的方法以及使用该方法的终端
US20090323602A1 (en) Efficient bandwith request for broadband wireless networks
CN115553005A (zh) 侧行反馈资源配置方法、终端设备和网络设备
KR20070045743A (ko) 멀티 홉 무선 이동 통신 시스템에서 데이터 송수신 방법
CN110267226B (zh) 信息发送的方法和装置
CN110637500A (zh) 在无线通信系统中基于竞争发送上行链路数据的方法和设备
WO2011137754A1 (zh) 一种信号的传输方法、装置和系统
WO2021204128A1 (zh) 一种传输块尺寸确定方法及装置
US20210160030A1 (en) Method for allocating resources for base station terminal in wireless communication system, and communication apparatus utilizing said method
EP3211959B1 (en) Method, apparatus, and computer program product for establishing a mix of d2d direct and cellular communication links between two devices for interaction
WO2022011699A1 (zh) 一种通信方法及侧行设备
US20230345426A1 (en) Resource determination method, first terminal device, and second terminal device
CN112887074B (zh) 信息发送方法、装置、终端、接入网设备及系统
CN115136523A (zh) 反馈资源的确定方法和装置
CN112351451A (zh) 波束失败恢复方法及装置
CN111757375A (zh) 无线通信的方法、终端设备、接入网设备
WO2024027629A1 (zh) 传输信息的方法和相关装置
EP3739833B1 (en) Data transmission method and device
WO2024027763A1 (zh) 传输侧行链路定位参考信号的方法和相关装置
KR20220104740A (ko) 기준 시그널링 설계 및 구성을 위한 시스템 및 방법
CN112583554B (zh) 通信方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849337

Country of ref document: EP

Kind code of ref document: A1