WO2024027348A1 - 用于塔式起重机的控制方法、处理器、装置及塔式起重机 - Google Patents

用于塔式起重机的控制方法、处理器、装置及塔式起重机 Download PDF

Info

Publication number
WO2024027348A1
WO2024027348A1 PCT/CN2023/100105 CN2023100105W WO2024027348A1 WO 2024027348 A1 WO2024027348 A1 WO 2024027348A1 CN 2023100105 W CN2023100105 W CN 2023100105W WO 2024027348 A1 WO2024027348 A1 WO 2024027348A1
Authority
WO
WIPO (PCT)
Prior art keywords
tower crane
hoisting
motor
lifting
torque
Prior art date
Application number
PCT/CN2023/100105
Other languages
English (en)
French (fr)
Inventor
郑捷
全廷立
刘嘉喆
王�锋
Original Assignee
中联重科建筑起重机械有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中联重科建筑起重机械有限责任公司 filed Critical 中联重科建筑起重机械有限责任公司
Publication of WO2024027348A1 publication Critical patent/WO2024027348A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/22Control systems or devices for electric drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/16Applications of indicating, registering, or weighing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/48Automatic control of crane drives for producing a single or repeated working cycle; Programme control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/88Safety gear
    • B66C23/90Devices for indicating or limiting lifting moment
    • B66C23/905Devices for indicating or limiting lifting moment electrical

Definitions

  • This application relates to the field of construction machinery, and specifically to a control method, processor, device, tower crane and storage medium for a tower crane.
  • Tower crane is a material transportation machinery widely used in construction sites. It is a rotary crane with a boom mounted on the upper part of the tower. It has a large working space and is mainly used for vertical and horizontal transportation of materials and installation of building components in house construction. It consists of three parts: metal structure, working mechanism and electrical system.
  • the method to prevent a tower crane from overturning is to set a torque limiter inside the tower crane.
  • the limiter contains a micro switch.
  • the micro switch When the torque of the tower crane exceeds the preset value in the torque limiter, In the case of torque, the micro switch will be triggered to generate a switching signal.
  • This switch signal will be input to the PLC and generate an output that cuts off the rising signal of the frequency converter.
  • the rising signal of the frequency converter is cut off, the frequency converter will decelerate to a stop and the lifting mechanism will stop running.
  • the above switching signal is transmitted from the torque limiter to the electric hoisting inverter, which belongs to the signal transmission process of different parts of the tower crane. This process uses three different electrical components to control the movement of the hoisting mechanism.
  • the purpose of the embodiments of the present application is to provide a control method, processor, device, tower crane and storage medium for a tower crane.
  • the first aspect of this application provides a control method for a tower crane.
  • the tower crane includes a hoisting mechanism, a hoisting inverter and a motor.
  • the hoisting inverter is used to control the starting or closing of the motor.
  • the motor Used to pull the lifting mechanism to perform lifting operations, including:
  • the torque of the motor is obtained in real time through the lifting frequency converter
  • the hoisting inverter When the hoisting inverter detects that the torque is greater than the torque limit value, the hoisting inverter stops output and causes the motor to stop running to control the hoisting mechanism to stop rising.
  • the tower crane also includes an input device.
  • Obtaining the equipment parameters of the tower crane includes: obtaining the model selection instruction triggered by the user through the input device; determining the model of the tower crane according to the model selection instruction; and obtaining it from the database. Device parameters corresponding to the model.
  • determining the maximum hoisting weight of the tower crane at the current amplitude includes: obtaining a performance curve corresponding to the model.
  • the performance curve is based on the amplitude of the tower crane and the maximum hoisting weight at each amplitude. Generated; determine the maximum lifting weight of the tower crane at the current amplitude based on the performance curve.
  • the equipment parameters include the drum radius R of the tower crane, the hoisting magnification c of the hoisting mechanism, the transmission ratio i of the hoisting mechanism, and the friction torque T of the hoisting mechanism.
  • the maximum hoisting weight Determining the motor's torque limit value and equipment parameters includes: calculating the motor's torque limit value according to formula (1):
  • T max is the torque limit value
  • G max is the maximum hoisting weight
  • s is the preset protection coefficient, which is used to limit the hoisting weight of the tower crane.
  • obtaining the current amplitude of the tower crane includes: obtaining the current amplitude through an amplitude acquisition device; the amplitude acquisition device includes an absolute value encoder, an analog potentiometer, a tensile sensor, a laser range finder, and a linear ruler. At least one of.
  • a second aspect of the present application provides a processor configured to execute the above control method for a tower crane.
  • a third aspect of this application provides a control device for a tower crane, including the above processor.
  • the fourth aspect of this application provides a tower crane, including: a lifting mechanism for performing lifting operations; a lifting frequency converter for controlling the start or shutdown of a motor; a motor for pulling the lifting mechanism to perform lifting operations; and a control device for a tower crane as described above.
  • the tower crane further includes an input device for receiving the user's model selection instruction.
  • a fifth aspect of the present application provides a machine-readable storage medium having instructions stored on the machine-readable storage medium. When executed by a processor, the instructions cause the processor to be configured to perform the control for a tower crane according to the above. method.
  • the equipment parameters and current amplitude of the tower crane are obtained; the maximum hoisting weight of the tower crane at the current amplitude is determined; the motor is determined based on the maximum hoisting weight and equipment parameters.
  • Torque limit value during the lifting operation of the tower crane, the torque of the motor is obtained in real time through the hoisting inverter; when the hoisting inverter detects that the torque is greater than the torque limit value, the hoisting inverter
  • the stop output of the controller causes the motor to stop running to control the lifting mechanism to stop rising. This method can be used when the tower crane lifts heavy objects.
  • the hoisting inverter that controls the motor will immediately stop output and stop the lifting mechanism to continue lifting heavy objects.
  • the hoisting inverter is shut down through signal transmission between different parts, which reduces the transmission time of the switch signal and reduces the need for protective measures. execution time, thereby reducing tower overhead Risk of the heavy machine overturning.
  • Figure 1 schematically shows a structural block diagram of a tower crane according to an embodiment of the present application.
  • Figure 2 schematically shows a structural block diagram of a tower crane according to another embodiment of the present application.
  • Figure 3 schematically shows a flow chart of a control method for a tower crane according to an embodiment of the present application.
  • Figure 4 schematically shows a tower crane performance curve according to an embodiment of the present application.
  • Figure 5 schematically shows an internal structure diagram of a computer device according to an embodiment of the present application.
  • a tower crane 100 is provided as shown in Figure 1.
  • the tower crane 100 includes:
  • Lifting mechanism 104 is used to perform lifting operations.
  • the hoisting frequency converter 102 is used to control the starting or shutting down of the motor.
  • Motor 103 is used to pull the lifting mechanism to perform lifting operations.
  • a control device 101 for a tower crane including a processor configured to perform a control method for a tower crane.
  • the tower crane 200 further includes an input device 201 for receiving the user's model selection instruction and transmitting it to the tower crane control device 101 .
  • FIG. 3 schematically shows a flow chart of a control method for a tower crane according to an embodiment of the present application.
  • a control method for a tower crane including the following steps:
  • Tower crane is a kind of engineering machinery commonly used by construction units. It is mainly used to assist in the transportation and transfer of heavy objects during the construction process.
  • the lifting mechanism is an important component of the tower crane. It is used to lift heavy objects from the ground to a certain height to assist other mechanisms in transferring heavy objects.
  • the hoisting inverter is an electrical device that can control the motor. When the motor needs to rotate to pull other mechanisms to move, the hoisting inverter outputs a voltage signal of a certain frequency to start the motor's rotation; it stops when the motor needs to stop. Outputs a signal to stop the motor from rotating. After receiving the voltage signal from the lifting inverter, the motor starts to rotate and pulls the lifting mechanism to perform corresponding lifting work.
  • the control device of the tower crane includes a processor, which is used to control the tower crane to perform lifting work and execute the control method for the tower crane in any of the following embodiments.
  • the processor can determine the maximum lifting weight of the tower crane at the current amplitude.
  • the torque limit value of the motor is determined based on the maximum hoisting weight and equipment parameters and sent to the frequency converter.
  • the hoisting inverter obtains the torque of the motor in real time.
  • the hoisting inverter detects that the torque is greater than the torque limit value, the hoisting inverter stops output and causes the motor to stop running to control the hoisting mechanism to stop rising.
  • Amplitude refers to the distance between the tower crane's rotation axis and the hook centerline.
  • the maximum lifting weight of the tower crane will change.
  • the equipment parameters of the tower crane refer to the parameters inherent to the tower crane after leaving the factory.
  • the hoisting inverter can determine whether the tower crane is greater than the torque limit value at the current amplitude based on the current output torque of the motor. When it is determined that the output torque of the motor is greater than the torque limit value at the current amplitude, the hoisting inverter will immediately stop the voltage output. When there is no voltage input, the motor will decelerate and stop running, thereby controlling the lifting mechanism to stop rising.
  • the hoisting inverter controlling the motor will immediately stop the output, stop the lifting mechanism and continue to lift the heavy object.
  • the hoisting inverter is shut down through signal transmission between different parts. The above method reduces the transmission time of the switch signal, thereby reducing protection measures, thus reducing the risk of the tower crane overturning.
  • the tower crane further includes an input device.
  • Obtaining the equipment parameters of the tower crane includes: obtaining the model selection instruction triggered by the user through the input device; determining the model of the tower crane according to the model selection instruction; and obtaining the equipment parameters corresponding to the model from the database.
  • Tower cranes include many models, and different models of tower cranes have different equipment parameters.
  • the input device refers to a device that can be used by the user to issue instructions to the processor according to actual conditions. It can be any one of a touch screen, a key screen, and a computer terminal including a mouse and keyboard.
  • the control device used for tower cranes includes a memory, database data is stored in the memory, and equipment parameters of various types of tower cranes are stored in the database.
  • the processor can obtain the tower crane model selected by the user. According to the selection instruction, the equipment parameters corresponding to the model can be found from the database, and then the maximum hoisting weight and motor torque limit value under the range can be determined to control the crane hoisting. Hook lifting.
  • determining the maximum lifting weight of the tower crane at the current amplitude includes: obtaining a performance curve corresponding to the model.
  • the performance curve is generated based on the amplitude of the tower crane and the maximum lifting weight at each amplitude. ; Determine the maximum lifting weight of the tower crane at the current amplitude based on the performance curve.
  • the database stores the performance curve corresponding to each tower crane model.
  • the abscissa of the curve is the amplitude, and the ordinate is the maximum hoisting weight.
  • Each amplitude in the curve corresponds to a maximum hoisting weight.
  • the maximum lifting capacity of the tower crane is affected by the mechanical structure of the tower crane. Due to structural limitations, the tower crane is at risk of overturning when lifting objects exceeding its maximum lifting weight. When the amplitude of the tower crane increases, the maximum lifting weight decreases. From this curve, the processor can obtain the maximum lifting weight of this type of tower crane at each amplitude.
  • the abscissa is the width of the tower crane, in meters
  • the ordinate is the maximum lifting weight of the tower crane, in tons.
  • the maximum hoisting weight is 3 tons when the amplitude is greater than 10 meters and less than or equal to 25 meters.
  • the maximum lifting weight decreases as the amplitude increases.
  • the maximum lifting weight is 1 ton.
  • the performance curve is stored in the database, and the processor can confirm the maximum hoisting weight value at the current amplitude based on the current amplitude and performance curve of the crane.
  • the equipment parameters include the drum radius R of the tower crane, the hoisting magnification c of the hoisting mechanism, the transmission ratio i of the hoisting mechanism, and the friction torque T of the hoisting mechanism. Determining the torque limit value of the motor based on the maximum hoisting weight and equipment parameters includes: Calculating the torque limit value of the motor according to formula (1):
  • T max is the torque limit value
  • G max is the maximum hoisting weight
  • s is the preset protection coefficient, which is used to limit the hoisting weight of the tower crane.
  • the drum is used in the lifting mechanism of the tower crane to support the movement of the lifting wire rope.
  • the drum radius and hoisting mechanism transmission ratio are obtained from the factory instructions of the tower crane.
  • the lifting magnification is the same as the number of wire ropes in the hook moving pulley system.
  • the friction torque of the hoisting mechanism refers to the torque lost between the motor output and the final lifting of the heavy object due to dynamic friction of various components in the hoisting mechanism.
  • the friction torque of the hoisting mechanism of the same model of tower crane is the same.
  • obtaining the current amplitude of the tower crane includes: obtaining the current amplitude through an amplitude acquisition device; the amplitude acquisition device includes an absolute value encoder, an analog potentiometer, a tensile sensor, a laser rangefinder, and a linear ruler. At least one. You can use any of the above amplitude acquisition devices to obtain the current amplitude of the tower crane.
  • the absolute encoder can be set on the luffing mechanism. When the tower crane performs luffing motion, the absolute encoder can obtain the luffing length of the luffing mechanism, thereby determining the current amplitude of the tower crane.
  • the analog potentiometer and tension sensor convert the moving distance of the luffing car on the luffing mechanism into a voltage signal. This signal is transmitted to the processor to obtain the current amplitude of the tower crane.
  • the laser range finder and linear ruler can obtain the current amplitude of the tower crane, convert it into a digital signal and transmit it to the processor.
  • the processor can read the digital signal and confirm the current amplitude.
  • Figure 3 is a schematic flowchart of a control method for a tower crane in one embodiment. It should be understood that although the various steps in the flowchart of FIG. 3 are shown in sequence as indicated by arrows, these steps are not necessarily executed in the order indicated by arrows. Unless explicitly stated in this article, there is no strict order restriction on the execution of these steps, and these steps can be executed in other orders. Furthermore, at least one of the components in Figure 3 Sub-steps can include multiple sub-steps or multiple stages. These sub-steps or stages are not necessarily executed at the same time, but can be executed at different times. The order of execution of these sub-steps or stages is not necessarily sequential. , but may be performed in turn or alternately with other steps or sub-steps of other steps or at least part of the stages.
  • the processor determines the current amplitude of the tower crane by obtaining the absolute value encoder on the luffing mechanism, and confirms the equipment of the tower crane by obtaining the user's tower crane model selection instruction on the touch screen. parameter. After confirming the above equipment parameters and current amplitude, the maximum lifting weight of the tower crane at this amplitude can be determined through the performance curve in the equipment parameters, and then the torque limit value of this type of tower crane at the current amplitude can be confirmed, and the The torque limit value is sent to the hoisting inverter. In the process of lifting the hoisted load off the ground, the motor output torque increases.
  • the hoisting inverter stops output, causing the motor to stop running.
  • the motor stops running, causing the tower crane's hoisting mechanism to stop rising, effectively reducing the risk of the tower crane overturning.
  • the hoisting inverter controlling the motor will immediately stop output and stop the lifting mechanism to continue lifting heavy objects.
  • the hoisting inverter is shut down through signal transmission between different parts, which reduces the transmission time of the switch signal and reduces the number of protective measures. execution time, thereby reducing the risk of the tower crane tipping over.
  • the control device of the tower crane includes a processor and a memory.
  • the processor contains a kernel, and the kernel retrieves the corresponding program unit from the memory.
  • One or more kernels can be set, and the control method for the tower crane can be implemented by adjusting the kernel parameters.
  • Memory may include non-permanent memory in computer-readable media, random access memory (RAM) and/or non-volatile memory, such as read-only memory (ROM) or flash memory (flash RAM).
  • RAM random access memory
  • ROM read-only memory
  • flash RAM flash memory
  • An embodiment of the present application provides a storage medium on which a program is stored.
  • the program is executed by a processor, the above control method for a tower crane is implemented.
  • An embodiment of the present application provides a processor, which is used to run a program, wherein when the program is run, the above control method for a tower crane is executed.
  • a computer device is provided.
  • the computer device may be a terminal, and its internal structure diagram may be shown in Figure 5 .
  • the computer equipment includes a processor A01, a network interface A02, a display screen A04, an input device A05 and a memory (not shown in the figure) connected through a system bus.
  • the processor A01 of the computer device is used to provide computing and control capabilities.
  • the memory of the computer device includes internal memory A03 and non-volatile storage medium A06.
  • the non-volatile storage medium A06 stores an operating system B01 and a computer program B02.
  • the internal memory A03 provides an environment for the execution of the operating system B01 and the computer program B02 in the non-volatile storage medium A06.
  • the network interface A02 of the computer device is used to communicate with external terminals through a network connection.
  • the computer program when executed by the processor A01, implements a control method for a tower crane.
  • the display screen A04 of the computer device may be a liquid crystal display or an electronic ink display.
  • the input device A05 of the computer device may be a touch layer covered on the display screen, or may be a button, trackball or touch screen provided on the shell of the computer device.
  • a control panel can also be an external keyboard, trackpad, or mouse.
  • FIG. 5 is only a block diagram of a partial structure related to the solution of the present application, and does not constitute a limitation on the computer equipment to which the solution of the present application is applied.
  • the specific computer equipment can May include more or fewer parts than shown, or combine certain parts, or have a different arrangement of parts.
  • the embodiment of the present application provides a device.
  • the device includes a processor, a memory, and a program stored in the memory and executable on the processor.
  • the processor executes the program, it implements the following steps: before the tower crane performs the lifting operation, obtain The equipment parameters and current amplitude of the tower crane; determine the maximum lifting weight of the tower crane at the current amplitude; determine the torque limit value of the motor based on the maximum lifting weight and equipment parameters; during the lifting operation of the tower crane , obtain the torque of the motor in real time through the hoisting inverter; when the hoisting inverter detects that the torque is greater than the torque limit value, the hoisting inverter stops output and causes the motor to stop running to control the hoisting mechanism to stop rising. .
  • the tower crane also includes an input device.
  • Obtaining the equipment parameters of the tower crane includes: obtaining a model selection instruction triggered by the user through the input device; determining the model of the tower crane according to the model selection instruction; obtaining the model of the tower crane from the database. Equipment parameters corresponding to the model.
  • determining the maximum lifting weight of the tower crane at the current amplitude includes: obtaining a performance curve corresponding to the model.
  • the performance curve is generated based on the amplitude of the tower crane and the maximum lifting weight at each amplitude. ; Determine the maximum lifting weight of the tower crane at the current amplitude based on the performance curve.
  • the equipment parameters include the drum radius R of the tower crane, the hoisting magnification c of the hoisting mechanism, the transmission ratio i of the hoisting mechanism, and the friction torque T of the hoisting mechanism.
  • the equipment parameters to determine the torque limit value of the motor include: calculating the torque limit value of the motor according to formula (1):
  • T max is the torque limit value
  • G max is the maximum hoisting weight
  • s is the preset protection coefficient, which is used to limit the hoisting weight of the tower crane.
  • obtaining the current amplitude of the tower crane includes: obtaining the current amplitude through an amplitude acquisition device; the amplitude acquisition device includes an absolute value encoder, an analog potentiometer, a tensile sensor, a laser rangefinder, and a linear ruler. At least one.
  • the application also provides a computer program product, which, when executed on a data processing device, is suitable for executing a program initialized with the following method steps: before the tower crane performs a lifting operation, obtain the equipment parameters and current amplitude of the tower crane ; Determine the maximum hoisting weight of the tower crane at the current amplitude; determine the torque limit value of the motor based on the maximum hoisting weight and equipment parameters; during the lifting operation of the tower crane, obtain the motor in real time through the hoisting inverter torque; when the hoisting inverter detects that the torque is greater than the torque limit value, the hoisting inverter stops output and causes the motor to stop running to control the hoisting mechanism to stop rising.
  • the tower crane also includes an input device.
  • Obtaining the equipment parameters of the tower crane includes: obtaining a model selection instruction triggered by the user through the input device; determining the model of the tower crane according to the model selection instruction; obtaining the model of the tower crane from the database. Equipment parameters corresponding to the model.
  • determining the maximum lifting weight of the tower crane at the current amplitude includes: obtaining a performance curve corresponding to the model.
  • the performance curve is generated based on the amplitude of the tower crane and the maximum lifting weight at each amplitude. ; Determine the maximum lifting weight of the tower crane at the current amplitude based on the performance curve.
  • the equipment parameters include the drum radius R of the tower crane, the hoisting magnification c of the hoisting mechanism, the transmission ratio i of the hoisting mechanism, and the friction torque T of the hoisting mechanism.
  • the equipment parameters to determine the torque limit value of the motor include: calculating the torque limit value of the motor according to formula (1):
  • T max is the torque limit value
  • G max is the maximum hoisting weight
  • s is the preset protection coefficient, which is used to limit the hoisting weight of the tower crane.
  • obtaining the current amplitude of the tower crane includes: obtaining the current amplitude through an amplitude acquisition device; the amplitude acquisition device includes an absolute value encoder, an analog potentiometer, a tensile sensor, a laser rangefinder, and a linear ruler. At least one.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.
  • a computing device includes one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
  • processors CPUs
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • Memory may include non-volatile memory in computer-readable media, random access memory (RAM), and/or non-volatile memory in the form of read-only memory (ROM) or flash memory (flashRAM). Memory is an example of a computer-readable medium.
  • RAM random access memory
  • ROM read-only memory
  • flashRAM flash memory
  • Computer-readable media includes both persistent and non-volatile, removable and non-removable media that can be implemented by any method or technology for storage of information.
  • Information may be computer-readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), and read-only memory.
  • PRAM phase change memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • RAM random access memory
  • read-only memory read-only memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory or other memory technology
  • compact disc read-only memory CD-ROM
  • DVD digital versatile disc
  • Magnetic cassettes tape magnetic disk storage or other magnetic A storage device or any other non-transmission medium that can be used to store information that can be accessed by a computing device.
  • computer-readable media does not include transitory media, such as modulated data signals and carrier waves.
  • first position and second position are two different positions, and the first feature “on”, “above” and “above” the second feature include the first feature on the second feature. Directly above and diagonally above, or simply means that the level of the first feature is higher than that of the second feature. “Below”, “under” and “under” the first feature is the second feature includes the first feature being directly below and diagonally below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • connection should be understood in a broad sense.
  • connection or integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • connection or integral connection
  • connection or integral connection
  • connection can be a mechanical connection or an electrical connection
  • it can be a direct connection or an indirect connection through an intermediate medium
  • it can be an internal connection between two components.
  • specific meanings of the above terms in the present invention can be understood on a case-by-case basis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control And Safety Of Cranes (AREA)

Abstract

本申请实施例提供一种用于塔式起重机的控制方法、处理器、装置及塔式起重机。方法包括:在塔式起重机执行起吊操作之前,获取塔式起重机的设备参数和当前幅度;确定在当前幅度下塔式起重机的最大吊载重量;根据最大吊载重量和设备参数确定电机的转矩限制值;在塔式起重机执行起吊操作的过程中,通过起升变频器实时获取电机的转矩;在通过起升变频器检测到转矩大于转矩限制值的情况下,起升变频器停止输出使得电机停止运行,以控制起升机构停止上升。

Description

用于塔式起重机的控制方法、处理器、装置及塔式起重机
相关申请的交叉引用
本申请要求2022年08月02日提交的中国专利申请202210921316.9的权益,该申请的内容通过引用被合并于本文。
技术领域
本申请涉及工程机械领域,具体涉及一种用于塔式起重机的控制方法、处理器、装置、塔式起重机以及存储介质。
背景技术
塔式起重机是建筑工地应用广泛的物料运输机械,臂架装在塔身上部的旋转型起重机。作业空间大,主要用于房屋建筑施工中物料的垂直和水平输送及建筑构件的安装。由金属结构、工作机构和电气系统三部分组成。
现有技术中,塔式起重机防止倾翻的方法为:在塔式起重机内部设置力矩限位器,限位器中包含有微动开关,在塔式起重机力矩超过力矩限位器中的预设力矩的情况下,会触发微动开关产生开关信号。该开关信号会输入至PLC中,产生切断变频器上升信号的输出。在变频器上升信号被切断,变频器就会减速停止,起升机构停止运行。上述开关信号从力矩限位器传输至电起升变频器属于塔式起重机的不同部位的信号传输过程,该过程经过了三种不同的电气元件来控制起升机构运动,在起升机构低速运行时需要数百微秒的执行时间。在塔式起重机处于高速、重负载的工况下,需要数秒来停止起升。在被吊负载与地面固定或严重超载的情况下,即使数百微秒的执行时间,也会导致负载倍数增加,超过塔式起重机结构的负载承受极限,容易引发塔式起重机倾翻事故。
发明内容
本申请实施例的目的是提供一种用于塔式起重机的控制方法、处理器、装置、塔式起重机以及存储介质。
为了实现上述目的,本申请第一方面提供一种用于塔式起重机的控制方法,塔式起重机包括起升机构、起升变频器以及电机,起升变频器用于控制电机的启动或关闭,电机用于牵引起升机构执行起吊操作,方法包括:
在塔式起重机执行起吊操作之前,获取塔式起重机的设备参数和当前幅度;
确定在当前幅度下塔式起重机的最大吊载重量;
根据最大吊载重量和设备参数确定电机的转矩限制值;
在塔式起重机执行起吊操作的过程中,通过起升变频器实时获取电机的转矩;
在通过起升变频器检测到转矩大于转矩限制值的情况下,起升变频器停止输出使得电机停止运行,以控制起升机构停止上升。
在本申请实施例中,塔式起重机还包括输入设备,获取塔式起重机的设备参数包括:获取用户通过输入设备触发的型号选择指令;根据型号选择指令确定塔式起重机的型号;从数据库中获取与型号对应的设备参数。
在本申请实施例中,确定在当前幅度下塔式起重机的最大吊载重量包括:获取与型号对应的性能曲线,性能曲线是根据塔式起重机的幅度以及在每个幅度下的最大吊载重量生成的;根据性能曲线确定在当前幅度下塔式起重机的最大吊载重量。
在本申请实施例中,设备参数包括塔式起重机的卷筒半径R、起升机构的起升倍率c、起升机构的传动比i以及起升机构的摩擦转矩T,根据最大吊载重量和设备参数确定电机的转矩限制值包括:根据公式(1)计算电机的转矩限制值:
其中,Tmax为转矩限制值,Gmax为最大吊载重量,s为预设保护系数,用于限制塔式起重机的吊载重量。
在本申请实施例中,获取塔式起重机的当前幅度包括:通过幅度采集设备获取当前幅度;幅度采集设备包括绝对值编码器、模拟量电位器、拉伸传感器、激光测距仪、直线尺中的至少一者。
本申请第二方面提供一种处理器,被配置成执行上述的用于塔式起重机的控制方法。
本申请第三方面提供一种用于塔式起重机的控制装置,包括上述处理器。
本申请第四方面提供一种塔式起重机,包括:起升机构,用于执行起吊操作;起升变频器,用于控制电机的启动或关闭;电机,用于牵引起升机构执行起吊操作;以及上述的用于塔式起重机的控制装置。
本申请实施例中,塔式起重机还包括输入设备,用于接收用户的型号选择指令。
本申请第五方面提供一种机器可读存储介质,该机器可读存储介质上存储有指令,该指令在被处理器执行时使得处理器被配置成执行根据上述的用于塔式起重机的控制方法。
通过上述技术方案,在塔式起重机执行起吊操作之前,获取塔式起重机的设备参数和当前幅度;确定在当前幅度下塔式起重机的最大吊载重量;根据最大吊载重量和设备参数确定电机的转矩限制值;在塔式起重机执行起吊操作的过程中,通过起升变频器实时获取电机的转矩;在通过起升变频器检测到转矩大于转矩限制值的情况下,起升变频器停止输出使得电机停止运行,以控制起升机构停止上升。此方法可以在塔式起重机提升重物时,在电机输出转矩超过转矩限制值的情况下,控制电机的起升变频器会立即停止输出,停止起升机构继续起吊重物。相较于现有技术检测吊钩承载重量确认是否超过最大承载重量的技术方案,通过不同部位之间的信号传输来关闭起升变频器,减少了开关信号的传输时间,则减少了保护措施的执行时间,从而降低了塔式起 重机发生倾翻的风险。
附图说明
图1示意性示出了根据本申请实施例的塔式起重机结构框图。
图2示意性示出了根据本申请另一实施例的塔式起重机结构框图。
图3示意性示出了根据本申请实施例的用于塔式起重机的控制方法的流程示意图。
图4示意性示出了根据本申请实施例的塔式起重机性能曲线图。
图5示意性示出了根据本申请实施例的计算机设备的内部结构图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请实施例,并不用于限制本申请实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
在一个实施例中,如图1所示提供了一种塔式起重机100,该塔式起重机100包括:
起升机构104,用于执行起吊操作。
起升变频器102,用于控制电机的启动或关闭。
电机103,用于牵引起升机构执行起吊操作。
以及用于塔式起重机的控制装置101,包括处理器,该处理器被配置成执行一种用于塔式起重机的控制方法。
在一个实施例中,如图2所示塔式起重机200还包括输入设备201,用于接收用户的型号选择指令,并传递给塔式起重机控制装置101。
图3示意性示出了根据本申请实施例的用于塔式起重机的控制方法的流程示意图。如图3所示,在本申请一实施例中,提供了一种用于塔式起重机的控制方法,包括以下步骤:
S302,在塔式起重机执行起吊操作之前,获取塔式起重机的设备参数和当前幅度;
S304,确定在当前幅度下塔式起重机的最大吊载重量;
S306,根据最大吊载重量和设备参数确定电机的转矩限制值;
S308,在塔式起重机执行起吊操作的过程中,通过起升变频器实时获取电机的转矩;
S310,在通过起升变频器检测到转矩大于转矩限制值的情况下,起升变频器停止输出使得电机停止运行,以控制起升机构停止上升。
塔式起重机是施工单位常用的一种工程机械,其主要用于施工过程中协助重物的运输转移。起升机构是塔式起重机的重要组成机构,用于将重物从地面起升至一定高度,以协助其他机构转移重物。起升变频器是可以控制电机的电气装置,当电机需要旋转以牵引其他机构进行运动的情况下,起升变频器输出一定频率的电压信号以启动电机旋转运动;在需要电机停止的情况下停止输出信号,以使电机停止旋转。电机在接收到起升变频器的电压信号之后,开始旋转,牵引起升机构进行相应的起吊工作。塔式起重机的控制装置包括处理器,该处理器用于控制塔式起重机进行起吊工作,并执行下述任意一实施例中的用于塔式起重机的控制方法。
在本申请中,为了防止塔式起重机发生倾翻。塔式起重机在起吊操作之前,处理器可以确定在当前幅度下塔式起重机的最大吊载重量。根据该最大吊载重量和设备参数确定电机的转矩限制值并发送给变频器。在塔式起重机执行起吊操作的过程中,起升变频器实时获取电机的转矩。在起升变频器检测到转矩大于转矩限制值的情况下,起升变频器停止输出使得电机停止运行,以控制起升机构停止上升。幅度是指塔式起重机回转轴线至吊钩中心线之间的距离,当塔式起重机的幅度增大至一定值时,塔式起重机的最大吊载重量会改变。塔式起重机的设备参数是指塔式起重机出厂后所固有的参数。在将吊载吊离地面的过程中,牵引塔式起重机起升机构的电机的转矩也会提升。起升变频器可以根据电机当前的输出转矩,来判断塔式起重机是否大于当前幅度下的转矩限制值。在确定电机的输出转矩大于当前幅度下的转矩限制值的情况下,起升变频器会立即停止电压输出。电机在没有电压输入的情况下,会减速停止运行,进而控制起升机构停止上升。
通过上述方法可以在塔式起重机提升重物时,在电机输出转矩超过转矩限制值的情况下,控制电机的起升变频器会立即停止输出,停止起升机构继续起吊重物。相较于现有技术检测吊钩承载重量确认是否超过最大承载重量的技术方案,通过不同部位之间的信号传输来关闭起升变频器,上述方法减少了开关信号的传输时间,也就减少了保护措施的执行时间,从而降低了塔式起重机发生倾翻的风险。
在一个实施例中,塔式起重机还包括输入设备。获取塔式起重机的设备参数包括:获取用户通过输入设备触发的型号选择指令;根据型号选择指令确定塔式起重机的型号;从数据库中获取与型号对应的设备参数。塔式起重机包含多种型号,不同型号的塔式起重机设备参数不同。输入设备指的是可以被用户根据实际情况发出指令给处理器的设备,可以是触摸屏、按键屏、包含鼠标键盘的计算机终端中的任意一者。用于塔式起重机的控制装置中包含有存储器,数据库数据存储于存储器中,数据库中存储有各类塔式起重机的设备参数。处理器可以获取到用户选择的塔式起重机型号,根据该选择指令可以从数据库里找到该型号对应的设备参数,进而确定该幅度下的最大吊载重量和电机转矩限制值,以控制起重机吊钩的升降。
在一个实施例中,确定在当前幅度下塔式起重机的最大吊载重量包括:获取与型号对应的性能曲线,性能曲线是根据塔式起重机的幅度以及在每个幅度下的最大吊载重量生成的;根据性能曲线确定在当前幅度下塔式起重机的最大吊载重量。数据库存储有每个塔式起重机型号对应的性能曲线,该曲线横坐标为幅度,纵坐标为最大吊载重量,曲线中每个幅度对应一个最大吊载重量。塔式起重机的最大吊载重量受到塔式起重机的机械结 构所限制,当起吊超过自身最大起吊重量的重物时,塔式起重机存在发生倾翻的风险。当塔式起重机的幅度增大时,最大起吊重量会减小。处理器从该曲线可以得到该型号的塔式起重机在每个幅度下的最大吊载重量。
在一个实施例中,如图4所示,为H5610-5型号的塔式起重机在装载56米臂架的情况下的性能曲线。其中,横坐标为塔式起重机的幅度,单位为米,纵坐标为塔式起重机的最大吊载重量,单位为吨。如图4所示,可以确定,在塔式起重机的幅度大于10米且小于或等于25米的情况下,塔式起重机的最大起吊重量不变。在塔式起重机幅度大于25米且小于56米的情况下,塔式起重机的最大吊载重量下降。由于机械结构限制,在塔式起重机幅度小于10米的情况下,无法吊载重物。从图4所示的性能曲线可以得到,该型号塔式起重机装在56米臂架的情况下,在幅度大于10米且小于或等于25米的情况下,最大吊载重量为3吨。在幅度大于25米且小于56米的情况下,最大吊载重量随幅度增长而减小,在幅度为56米的最大幅度下,最大起重量为1吨。该性能曲线存储于数据库中,处理器可以根据起重机的当前幅度和性能曲线,确认当前幅度下的最大吊载重量值。
在一个实施例中,设备参数包括塔式起重机的卷筒半径R、起升机构的起升倍率c、起升机构的传动比i以及起升机构的摩擦转矩T。根据最大吊载重量和设备参数确定电机的转矩限制值包括:根据公式(1)计算电机的转矩限制值:
其中,Tmax为转矩限制值,Gmax为最大吊载重量,s为预设保护系数,用于限制塔式起重机的吊载重量。卷筒用于塔式起重机起升机构中用于支撑起升钢丝绳的运动。卷筒半径、起升机构传动比由塔式起重机的出厂说明书得到。起升倍率与吊钩动滑轮系统的钢丝绳数量相同。起升机构摩擦转矩是指起升机构中由于各部件动摩擦导致的电机输出到最终重物起升之间损失的转矩,同一型号的塔式起重机起升机构摩擦转矩相同。在得到以上设备参数和塔式起重机当前幅度的情况下,处理器可以确定电机的转矩限制值。
在一个实施例中,获取塔式起重机的当前幅度包括:通过幅度采集设备获取当前幅度;幅度采集设备包括绝对值编码器、模拟量电位器、拉伸传感器、激光测距仪、直线尺中的至少一者。可以采用上述任意一种幅度采集设备获取到塔式起重机的当前幅度。绝对值编码器可以设置在变幅机构上,在塔式起重机进行变幅运动时,绝对值编码器可以获取到变幅机构的变幅长度,进而确定塔式起重机的当前幅度。模拟量电位器和拉伸传感器是将变幅机构上的变幅小车移动距离转换为电压大小的信号,该信号传输至处理器即可得到塔式起重机的当前幅度。激光测距仪和直线尺可以获取塔式起重机当前幅度,转换为数字信号传输至处理器,处理器可以读取该数字信号,确认当前幅度。
图3为一个实施例中用于塔式起重机的控制方法的流程示意图。应该理解的是,虽然图3的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图3中的至少一部 分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
在一个具体的实施例中,处理器通过获取变幅机构上的绝对值编码器确定塔式起重机的当前幅度,通过获取触控屏上用户的塔式起重机型号选择指令,确认塔式起重机的设备参数。在确认上述设备参数和当前幅度之后,可以通过设备参数中的性能曲线确定该幅度下的塔式起重机最大起吊重量,进而确认该型号塔式起重机在当前幅度下的转矩限制值,并将该转矩限制值发送给起升变频器。在将吊载吊离地面的过程中,电机输出转矩随之增大。当电机的输出转矩大于上述电机转矩限制值的情况下,起升变频器停止输出,使得电机停止运行。电机停止运行,使得塔式起重机的起升机构停止上升,有效降低了塔式起重机发生倾翻的风险。
采用上述方法,可以在获取到塔式起重机当前幅度和设备参数的情况下,确认当前幅度下的最大吊载重量,进而确认牵引该塔式起重机起升机构的电机的转矩限制值。在塔式起重机提升重物时,在电机输出转矩超过转矩限制值的情况下,控制电机的起升变频器会立即停止输出,停止起升机构继续起吊重物。相较于现有技术检测吊钩承载重量确认是否超过最大承载重量的技术方案,通过不同部位之间的信号传输来关闭起升变频器,减少了开关信号的传输时间,也就减少了保护措施的执行时间,从而降低了塔式起重机发生倾翻的风险。
在一个实施例中,塔式起重机的控制装置包括处理器和存储器,处理器中包含内核,由内核去存储器中调取相应的程序单元。内核可以设置一个或以上,通过调整内核参数来实现用于塔式起重机的控制方法。
存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM),存储器包括至少一个存储芯片。
本申请实施例提供了一种存储介质,其上存储有程序,该程序被处理器执行时实现上述用于塔式起重机的控制方法。
本申请实施例提供了一种处理器,该处理器用于运行程序,其中,该程序运行时执行上述用于塔式起重机的控制方法。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是终端,其内部结构图可以如图5所示。该计算机设备包括通过系统总线连接的处理器A01、网络接口A02、显示屏A04、输入装置A05和存储器(图中未示出)。其中,该计算机设备的处理器A01用于提供计算和控制能力。该计算机设备的存储器包括内存储器A03和非易失性存储介质A06。该非易失性存储介质A06存储有操作系统B01和计算机程序B02。该内存储器A03为非易失性存储介质A06中的操作系统B01和计算机程序B02的运行提供环境。该计算机设备的网络接口A02用于与外部的终端通过网络连接通信。该计算机程序被处理器A01执行时以实现一种用于塔式起重机的控制方法。该计算机设备的显示屏A04可以是液晶显示屏或者电子墨水显示屏,该计算机设备的输入装置A05可以是显示屏上覆盖的触摸层,也可以是计算机设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。
本领域技术人员可以理解,图5中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
本申请实施例提供了一种设备,设备包括处理器、存储器及存储在存储器上并可在处理器上运行的程序,处理器执行程序时实现以下步骤:在塔式起重机执行起吊操作之前,获取塔式起重机的设备参数和当前幅度;确定在当前幅度下塔式起重机的最大吊载重量;根据最大吊载重量和设备参数确定电机的转矩限制值;在塔式起重机执行起吊操作的过程中,通过起升变频器实时获取电机的转矩;在通过起升变频器检测到转矩大于转矩限制值的情况下,起升变频器停止输出使得电机停止运行,以控制起升机构停止上升。
在一个实施例中,塔式起重机还包括输入设备,获取塔式起重机的设备参数包括:获取用户通过输入设备触发的型号选择指令;根据型号选择指令确定塔式起重机的型号;从数据库中获取与型号对应的设备参数。
在一个实施例中,确定在当前幅度下塔式起重机的最大吊载重量包括:获取与型号对应的性能曲线,性能曲线是根据塔式起重机的幅度以及在每个幅度下的最大吊载重量生成的;根据性能曲线确定在当前幅度下塔式起重机的最大吊载重量。
在一个实施例中,设备参数包括塔式起重机的卷筒半径R、起升机构的起升倍率c、起升机构的传动比i以及起升机构的摩擦转矩T,根据最大吊载重量和设备参数确定电机的转矩限制值包括:根据公式(1)计算电机的转矩限制值:
其中,Tmax为转矩限制值,Gmax为最大吊载重量,s为预设保护系数,用于限制塔式起重机的吊载重量。
在一个实施例中,获取塔式起重机的当前幅度包括:通过幅度采集设备获取当前幅度;幅度采集设备包括绝对值编码器、模拟量电位器、拉伸传感器、激光测距仪、直线尺中的至少一者。
本申请还提供了一种计算机程序产品,当在数据处理设备上执行时,适于执行初始化有如下方法步骤的程序:在塔式起重机执行起吊操作之前,获取塔式起重机的设备参数和当前幅度;确定在当前幅度下塔式起重机的最大吊载重量;根据最大吊载重量和设备参数确定电机的转矩限制值;在塔式起重机执行起吊操作的过程中,通过起升变频器实时获取电机的转矩;在起升变频器检测到转矩大于转矩限制值的情况下,起升变频器停止输出使得电机停止运行,以控制起升机构停止上升。
在一个实施例中,塔式起重机还包括输入设备,获取塔式起重机的设备参数包括:获取用户通过输入设备触发的型号选择指令;根据型号选择指令确定塔式起重机的型号;从数据库中获取与型号对应的设备参数。
在一个实施例中,确定在当前幅度下塔式起重机的最大吊载重量包括:获取与型号对应的性能曲线,性能曲线是根据塔式起重机的幅度以及在每个幅度下的最大吊载重量生成的;根据性能曲线确定在当前幅度下塔式起重机的最大吊载重量。
在一个实施例中,设备参数包括塔式起重机的卷筒半径R、起升机构的起升倍率c、起升机构的传动比i以及起升机构的摩擦转矩T,根据最大吊载重量和设备参数确定电机的转矩限制值包括:根据公式(1)计算电机的转矩限制值:
其中,Tmax为转矩限制值,Gmax为最大吊载重量,s为预设保护系数,用于限制塔式起重机的吊载重量。
在一个实施例中,获取塔式起重机的当前幅度包括:通过幅度采集设备获取当前幅度;幅度采集设备包括绝对值编码器、模拟量电位器、拉伸传感器、激光测距仪、直线尺中的至少一者。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flashRAM)。存储器是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁 性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个......”限定的要素,并不排除在包括要素的过程、方法、商品或者设备中还存在另外的相同要素。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、仅用于描述目的,而不能理解为指示或暗示相对重要性。其中,术语“第一位置”和“第二位置”为两个不同的位置,而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
以上仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (10)

  1. 一种用于塔式起重机的控制方法,其特征在于,所述塔式起重机包括起升机构、起升变频器以及电机,所述起升变频器用于控制所述电机的启动或关闭,所述电机用于牵引所述起升机构执行起吊操作,所述方法包括:
    在所述塔式起重机执行起吊操作之前,获取所述塔式起重机的设备参数和当前幅度;
    确定在所述当前幅度下所述塔式起重机的最大吊载重量;
    根据所述最大吊载重量和所述设备参数确定所述电机的转矩限制值;
    在所述塔式起重机执行所述起吊操作的过程中,通过所述起升变频器实时获取所述电机的转矩;
    在通过所述起升变频器检测到所述转矩大于所述转矩限制值的情况下,所述起升变频器停止输出使得所述电机停止运行,以控制所述起升机构停止上升。
  2. 根据权利要求1所述的用于塔式起重机的控制方法,其特征在于,所述塔式起重机还包括输入设备,获取所述塔式起重机的设备参数包括:
    获取用户通过所述输入设备触发的型号选择指令;
    根据所述型号选择指令确定所述塔式起重机的型号;
    从数据库中获取与所述型号对应的设备参数。
  3. 根据权利要求2所述的用于塔式起重机的控制方法,其特征在于,所述确定在所述当前幅度下所述塔式起重机的最大吊载重量包括:
    获取与所述型号对应的性能曲线,所述性能曲线是根据塔式起重机的幅度以及在每个幅度下的最大吊载重量生成的;
    根据所述性能曲线确定在所述当前幅度下所述塔式起重机的最大吊载重量。
  4. 根据权利要求1所述的用于塔式起重机的控制方法,其特征在于,所述设备参数包括所述塔式起重机的卷筒半径R、所述起升机构的起升倍率c、所述起升机构的传动比i以及所述起升机构的摩擦转矩T,所述根据所述最大吊载重量和所述设备参数确定所述电机的转矩限制值包括:根据公式(1)计算所述电机的转矩限制值:
    其中,Tmax为所述转矩限制值,Gmax为最大吊载重量,s为预设保护系数,用于限制所述塔式起重机的吊载重量。
  5. 根据权利要求1至4中任意一项所述的用于塔式起重机的控制方法,其特征在于,获取所述塔式起重机的当前幅度包括:
    通过幅度采集设备获取当前幅度;
    所述幅度采集设备包括绝对值编码器、模拟量电位器、拉伸传感器、激光测距仪、直线尺中的至少一者。
  6. 一种处理器,其特征在于,被配置成执行根据权利要求1至5中任意一项所述的用于塔式起重机的控制 方法。
  7. 一种用于塔式起重机的控制装置,其特征在于,包括根据权利要求6所述的处理器。
  8. 一种塔式起重机,其特征在于,包括:
    起升机构,用于执行起吊操作;
    起升变频器,用于控制电机的启动或关闭;
    所述电机,用于牵引所述起升机构执行起吊操作;以及
    根据权利要求7所述的用于塔式起重机的控制装置。
  9. 根据权利要求8所述的塔式起重机,其特征在于,所述塔式起重机还包括输入设备,用于接收用户的型号选择指令。
  10. 一种机器可读存储介质,该机器可读存储介质上存储有指令,其特征在于,该指令在被处理器执行时使得所述处理器被配置成执行根据权利要求1至5中任一项所述的用于塔式起重机的控制方法。
PCT/CN2023/100105 2022-08-02 2023-06-14 用于塔式起重机的控制方法、处理器、装置及塔式起重机 WO2024027348A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210921316.9A CN115385247A (zh) 2022-08-02 2022-08-02 用于塔式起重机的控制方法、处理器、装置及塔式起重机
CN202210921316.9 2022-08-02

Publications (1)

Publication Number Publication Date
WO2024027348A1 true WO2024027348A1 (zh) 2024-02-08

Family

ID=84119277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100105 WO2024027348A1 (zh) 2022-08-02 2023-06-14 用于塔式起重机的控制方法、处理器、装置及塔式起重机

Country Status (2)

Country Link
CN (1) CN115385247A (zh)
WO (1) WO2024027348A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115385247A (zh) * 2022-08-02 2022-11-25 中联重科建筑起重机械有限责任公司 用于塔式起重机的控制方法、处理器、装置及塔式起重机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001253547A (ja) * 2000-03-14 2001-09-18 Ishikawajima Harima Heavy Ind Co Ltd 電動バケットエレベータの過負荷保護方法及び装置
CN2592616Y (zh) * 2002-12-31 2003-12-17 三一重工股份有限公司 塔式起重机运行监控装置
CN202449771U (zh) * 2011-11-21 2012-09-26 江麓机电科技有限公司 塔机智能监控系统
CN102701081A (zh) * 2012-05-16 2012-10-03 苏州汇川技术有限公司 变频器超载保护系统及方法
CN104817018A (zh) * 2015-03-20 2015-08-05 成都千秋科技有限公司 一种以矢量变压变频变频器为电源的变力臂起重机控制方法
CN115385247A (zh) * 2022-08-02 2022-11-25 中联重科建筑起重机械有限责任公司 用于塔式起重机的控制方法、处理器、装置及塔式起重机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001253547A (ja) * 2000-03-14 2001-09-18 Ishikawajima Harima Heavy Ind Co Ltd 電動バケットエレベータの過負荷保護方法及び装置
CN2592616Y (zh) * 2002-12-31 2003-12-17 三一重工股份有限公司 塔式起重机运行监控装置
CN202449771U (zh) * 2011-11-21 2012-09-26 江麓机电科技有限公司 塔机智能监控系统
CN102701081A (zh) * 2012-05-16 2012-10-03 苏州汇川技术有限公司 变频器超载保护系统及方法
CN104817018A (zh) * 2015-03-20 2015-08-05 成都千秋科技有限公司 一种以矢量变压变频变频器为电源的变力臂起重机控制方法
CN115385247A (zh) * 2022-08-02 2022-11-25 中联重科建筑起重机械有限责任公司 用于塔式起重机的控制方法、处理器、装置及塔式起重机

Also Published As

Publication number Publication date
CN115385247A (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
WO2024027348A1 (zh) 用于塔式起重机的控制方法、处理器、装置及塔式起重机
WO2018056026A1 (ja) 電動ウインチ装置
US8669724B2 (en) Method and apparatus for load dependent speed control of a motor
JP2011057329A (ja) エレベータの制御装置及びその制御方法
CN112436775B (zh) 吊车钢绳消谐控制方法、装置、设备、储存介质及终端
CN110844810A (zh) 塔式起重机负载力矩保护方法及设备
CN114033564A (zh) 一种发动机转速控制方法、装置、系统及存储介质
JP6169936B2 (ja) インバータ装置
CN115353005B (zh) 基于起升重量的起重机恒功率起升速度控制方法和系统
WO2023201868A1 (zh) 用于塔机的控制方法、装置、控制器、塔机及存储介质
CN114132852B (zh) 起重设备的安全控制方法及系统
EP1611045B1 (en) Method for controlling spreader in crane
CN111634817B (zh) 用于起升机构的宽调速比控制方法、系统及起升机构
CN103935894A (zh) 一种起重机抓斗动态称重保护方法
CN114275679B (zh) 用于起重设备的控制方法、控制器、控制装置和起重设备
CN114132853B (zh) 起重设备的安全控制方法及系统
JP7438925B2 (ja) クレーン、及びクレーンの制御方法
CN116395550A (zh) 塔机吊钩位置展示方法、系统、装置、存储介质和处理器
CN113753751B (zh) 用于起重机防摇控制的方法、控制器、装置及起重机
CN114421840A (zh) 用于塔机的控制方法、装置、控制器、塔机及存储介质
CN114684708A (zh) 抓斗控制系统、方法、起重机及计算机可读存储介质
CN117213677A (zh) 用于计算塔机运行档位的转矩系数的方法、装置及控制器
CN116281610A (zh) 一种塔机限位方法、控制系统及存储介质
CN117068972A (zh) 带有移动平衡重的塔机力矩调平方法、装置、介质及设备
CN117342444A (zh) 用于确定吊物自身垂直高度的方法、控制器及塔机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849058

Country of ref document: EP

Kind code of ref document: A1