WO2024027142A1 - 定位校准方法及设备、存储介质 - Google Patents

定位校准方法及设备、存储介质 Download PDF

Info

Publication number
WO2024027142A1
WO2024027142A1 PCT/CN2023/078464 CN2023078464W WO2024027142A1 WO 2024027142 A1 WO2024027142 A1 WO 2024027142A1 CN 2023078464 W CN2023078464 W CN 2023078464W WO 2024027142 A1 WO2024027142 A1 WO 2024027142A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
compensation data
lane
internet
data
Prior art date
Application number
PCT/CN2023/078464
Other languages
English (en)
French (fr)
Inventor
曾慧鹏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2024027142A1 publication Critical patent/WO2024027142A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/23Testing, monitoring, correcting or calibrating of receiver elements
    • G01S19/235Calibration of receiver components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement

Definitions

  • This application relates to the field of vehicle navigation technology, in particular to a positioning calibration method, equipment, and storage medium.
  • V2X Vehicle-To-Everything
  • GNSS Global Navigation Satellite System
  • GNSS is difficult to achieve sub-meter accuracy.
  • RTK real-time kinematic
  • Embodiments of the present application provide a positioning calibration method, equipment, and storage medium.
  • embodiments of the present application provide a positioning method.
  • the method includes: obtaining the navigation information and the Internet of Vehicles map information of the vehicle; and obtaining the location of the vehicle based on the obtained navigation information and the Internet of Vehicles map information.
  • the road information corresponding to the position; the movement trajectory information of the vehicle is obtained according to the navigation information; the position compensation data is obtained according to the road information, the movement trajectory information, and the Internet of Vehicles map information.
  • embodiments of the present application provide an electronic device, including: a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • the processor executes the computer program, the first Positioning calibration methods in aspects.
  • embodiments of the present application provide a computer-readable storage medium that stores computer-executable instructions.
  • the computer executes the computer program, the positioning calibration method in the first aspect is implemented.
  • Figure 1 is a system architecture diagram provided by an embodiment of the present application.
  • Figure 2 is a flow chart of a positioning calibration method provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of a lane positioning error scenario provided by an embodiment of the present application.
  • Figure 4 is a flow chart of the Internet of Vehicles positioning correction algorithm provided by an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a positioning device provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a positioning calibration device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • words such as setting, installation, and connection should be understood in a broad sense. Those skilled in the art can reasonably determine the meaning of the above words in the embodiments of this application based on the specific content of the technical solution. specific meaning.
  • words such as “further”, “exemplarily” or “optionally” are used as examples, illustrations or illustrations, and should not be interpreted as being more preferable or better than other embodiments or designs.
  • the use of the words “further,” “exemplarily,” or “optionally” is intended to present the relevant concepts in a concrete manner.
  • the embodiments of the present application can be applied to vehicle-mounted terminals, vehicle-mounted units and other vehicle-mounted equipment.
  • the embodiments of this application are not specifically limited.
  • V2X In actual V2X scenarios, inaccurate positioning is often found.
  • the inherent properties of GNSS determine that positioning based only on GNSS will be interfered by changes in the real-time environment such as weather and reflection, resulting in an error of more than 3 meters in the actual calculated sensory coordinates.
  • the vehicle is actually running in the left turn lane, but the GNSS data will be incorrectly calibrated to the straight lane, seriously affecting the lane judgment of the Internet of Vehicles system in the V2X scenario, and then affecting the traffic light alarm, V2V (vehicle to vehicle, vehicle Vehicle information interaction) collision warning, left turn warning and other related scenes that rely heavily on lanes.
  • V2V vehicle to vehicle, vehicle Vehicle information interaction
  • Embodiments of the present application provide a positioning calibration method, equipment, and storage media.
  • Road information and motion trajectory information are obtained through navigation information and Internet of Vehicles map information, thereby achieving auxiliary positioning calibration, improving positioning accuracy, and diversifying application scenarios.
  • This solution can also achieve accurate positioning of vehicles on the road without RTK. It is not only low cost, but also has diversified application scenarios.
  • Figure 1 is a system architecture diagram of a positioning calibration method provided by an embodiment of the present application.
  • the system architecture may include, but is not limited to, a GNSS module 110, a V2X map module 120, a calibration module 130, an event triggering module 140 and a compensation database 150.
  • the GNSS module 110 communicates with the calibration module 130 and the event triggering module 140 respectively.
  • the GNSS module 110 is configured to obtain navigation information, extract relevant information and send it to the calibration module 130 and the event triggering module 140 .
  • the V2X map module 120 communicates with the calibration module 130 and the event trigger module 140 respectively.
  • the V2X map module 120 is configured to obtain the Internet of Vehicles map information, extract relevant information and send it to the calibration module 130 and the event trigger module 140 .
  • the calibration module 130 is in communication connection with the compensation database 150.
  • the calibration module 130 is configured to analyze and calibrate the current vehicle positioning position according to the received navigation information and the Internet of Vehicles map information, and send the generated position compensation data to the compensation database 150.
  • the compensation database 150 is in communication connection with the event triggering module 140 , and the compensation database 150 is configured to send the position compensation data generated by calibration to the event triggering module 140 .
  • the event triggering module 140 is configured to receive navigation information, Internet of Vehicles map information, and location compensation data, and trigger corresponding scene events based on relevant information.
  • the Internet of Vehicles map information may include lane-level high-precision maps.
  • the calibration module 130 is configured to obtain road information based on the received navigation information and Internet of Vehicles map information, where the road information includes information related to the lane where the current vehicle is located, such as which lane the lane is. Lane, whether it is a left turn lane, a straight lane, or a right turn lane.
  • the calibration module 130 is also configured to obtain motion trajectory information based on the navigation information.
  • the calibration module 130 determines and calibrates the vehicle position based on road information and motion trajectory information, and generates position compensation information.
  • the calibration module 130 after determining that the vehicle needs to be calibrated, obtains the lane data of the currently positioned lane based on the current navigation information; the calibration module 130 then obtains the lane data of the actual lane where the vehicle is located based on the vehicle's motion trajectory information.
  • Lane data Based on the currently positioned lane data and the actual lane data, confirm the corresponding lanes in the Internet of Vehicles map information, and calculate the position based on the relative distance, direction and other data between each lane provided by the Internet of Vehicles map information. Compensation Information.
  • This embodiment solution does not require the support of RTK technology. It uses GNSS technology and V2X lane-level high-precision maps to correct and compensate the vehicle position while only using GNSS technology. It requires low computing power, reduces costs, and alleviates low cost. Cost-effective V2X terminals rely on RTK technology.
  • FIG. 2 is a flow chart of a positioning calibration method provided by an embodiment of the present application. As shown in Figure 2, this precise positioning method can be used in vehicle-mounted units or vehicle-mounted terminals. In the embodiment of FIG. 2 , the positioning method may include but is not limited to step S1000, step S2000, step S3000 and step S4000.
  • Step S1000 Obtain the vehicle's navigation information and Internet of Vehicles map information.
  • the navigation information is determined from the GNSS positioning data collected by the GNSS module, and the Internet of Vehicles map information is extracted from the lane-level high-precision map in V2X; the navigation information can include the position of the moving device at a certain time, the driving distance of the moving device, The driving path of the moving device, the driving mode of the moving device, the longitude, latitude, altitude and other information of the moving device.
  • the sports device may include, but is not limited to, vehicles such as cars, smart cars, trucks, etc., and may also be other vehicles or sports devices with relatively fixed driving path rules. In the specific embodiments of the present application, for convenience of description, a vehicle is taken as an example for description.
  • lane-level high-precision maps can be obtained through RSU (Road Side Unit) or through PC5 communication protocol broadcast distribution or any other suitable method.
  • lane-level high-precision maps can also be pre-set in vehicle-mounted units, vehicle-mounted terminals, or other portable V2X devices.
  • Step S2000 Obtain road information corresponding to the location of the vehicle based on the obtained navigation information and Internet of Vehicles map information.
  • the road information can include information about the lane where the current vehicle is located, such as which lane the corresponding lane is and whether the corresponding lane is uphill. Or downhill, corresponding to the lane capacity of the lane, such as whether the lane is a straight lane, a left turn lane, a right turn lane or a U-turn lane, etc.
  • Step S3000 Obtain the movement trajectory information of the vehicle according to the navigation information.
  • the motion trajectory information is used to represent the driving trajectory of the vehicle in the current time period or a certain time period.
  • the vehicle's movement trajectory information in the current time period or historical time period can be generated, such as the vehicle turning left, turning right, making a U-turn, going straight, going uphill, downhill, etc.
  • Step S4000 Obtain position compensation data based on road information, motion trajectory information, and Internet of Vehicles map information.
  • step S4000 includes at least but is not limited to the following steps:
  • Positioning information is obtained based on the compensated navigation information and Internet of Vehicles map information.
  • the position compensation information may include the offset distance and offset direction between the lane where the vehicle is currently positioned and the lane where the vehicle should actually be.
  • the road information includes lane driving direction information
  • the motion trajectory information includes the driving direction information of the moving device
  • step S4000 may include but is not limited to the following steps:
  • the position compensation data is calculated based on the first lane data and the second lane data.
  • the lane driving direction information represents the correct driving direction of the vehicle in the lane, such as turning right, turning left, going straight, making a U-turn, etc.
  • the lane driving direction information of the lane is obtained based on the road information, and the driving trajectory of the vehicle that meets the lane capabilities of the current lane is obtained.
  • the movement trajectory obtained based on the navigation information is matched with the driving trajectory corresponding to the lane where the current positioning is located.
  • the current vehicle positioning information is determined to be accurate.
  • the vehicle is in the straight lane, and the vehicle's driving trajectory is to turn right, but the straight lane cannot turn right.
  • the driving trajectory does not match the current lane capability; then at this time There is a deviation in positioning and calibration is required.
  • the first lane data corresponding to the lane is obtained based on the Internet of Vehicles map.
  • the first lane data includes the location of the corresponding lane on the Internet of Vehicles map. Multiple continuous coordinates that constitute the lane; extract the vehicle's driving trajectory in the current time period based on the navigation information, obtain the driving direction information of the lane, and confirm the lane matching the driving direction information in the Internet of Vehicles map based on the driving direction information.
  • the Internet of Vehicles map obtains the second lane data corresponding to the lane.
  • the second lane data includes the multiple continuous coordinates of the corresponding lane that constitute the lane in the Internet of Vehicles map. Based on the first lane data and the second lane data, the distance between the two lanes is calculated. The distance and relative direction are obtained to obtain the position compensation data.
  • the position compensation data includes at least one of the following: direction data; distance data.
  • the lane that matches the motion trajectory and the corresponding road information are confirmed in the lane-level high-precision map of the Internet of Vehicles, that is, the lane information should be in.
  • the Internet of Vehicles map contains the distance and relative position relationship between the lanes
  • the distance between the lane that should be in the lane and the currently positioned lane and/or the current positioning can be calculated through the Internet of Vehicles map.
  • the lane corresponds to the offset direction of the lane; position compensation data is obtained based on the distance and/or offset direction between the lane that should be in the lane and the currently positioned lane.
  • the currently positioned lane is calibrated so that the GNSS is positioned on the correct lane.
  • the calibration can be compensated in the transverse direction of the lane as a compensation dimension. After subsequent compensation in multiple dimensions is continued on other lanes, the entire plane coordinates from longitude and latitude can be compensated.
  • the lane where vehicle 100 is located and the corresponding driving trajectory are obtained from the current positioning of GNSS
  • the lane where vehicle 200 is located is the lane where it should be.
  • the vehicle is traveling in On the straight lane, but the driving trajectory obtained based on GNSS is a right turn, so the lane the vehicle should actually be in should be a right turn lane.
  • the straight lane is offset laterally to the right compared with the right-turn lane, and the distance between the straight lane and the right-turn lane, which is the offset distance, can be obtained.
  • the positioning is calibrated according to the offset direction and offset distance so that the vehicle is positioned in the correct lane.
  • step S4000 includes: calculating position compensation data based on road information, motion trajectory information, Internet of Vehicles map information, and historical compensation data, where the historical compensation data is one of the following: positions obtained in the past time Compensation data.
  • the position compensation data After obtaining the position compensation data according to the expected lane information and the current lane information, the position compensation data can also be stored in the compensation database. Understandably, after obtaining the position compensation data, the position compensation data can be stored in the compensation database at the same time, and directly sent to the event triggering module to trigger scene events; the position compensation data can also be stored in the compensation database, and then triggered by the event.
  • the trigger module is called as needed.
  • position compensation data is obtained based on road information, movement trajectory information, Internet of Vehicles map information, and historical compensation data, including: calculating current compensation data based on road information, movement trajectory information, and Internet of Vehicles map information. ; Calculate position compensation data based on current compensation data and historical compensation data.
  • current compensation data and historical compensation data are aggregated and averaged to obtain average compensation data; position compensation data is confirmed based on the average compensation data.
  • calibrating the vehicle position based on the position compensation data includes: obtaining multiple position compensation data from the compensation database; summarizing and averaging the multiple position compensation data to obtain average position compensation data; based on the average position The compensation data calibrates the vehicle position.
  • compensation data is needed to trigger V2X scene events
  • multiple compensation data in a nearby time period can be selected to aggregate and average, thereby improving compensation accuracy and reducing errors and interference factors.
  • historical compensation data is obtained based on at least one of the following:
  • the storage time of each position compensation data stored in the compensation database is recorded; when the storage time exceeds the threshold, the corresponding position compensation data is deleted.
  • the position compensation data stored in the compensation database it is judged whether the offset distance of the position compensation data exceeds the distance threshold. If it exceeds the distance threshold, it can be confirmed that the position compensation data is an error caused by GNSS data errors and other circumstances. Positioning deviations within the normal orientation have no reference value and can be deleted.
  • the corresponding data when the position compensation data is stored in the compensation database, the corresponding data is tagged to record the time of storage.
  • the existence time of the corresponding position compensation data in the compensation database can be obtained based on the time tag. It is understood that the storage time of the position compensation data in the compensation database can also be recorded and obtained in any other suitable manner, which is not specifically limited in this application.
  • GNSS navigation information will also change.
  • the GNSS positioning may be accurate and no longer offset after a period of time, or the offset direction and offset distance may change. Therefore, by deleting the compensation database, it may exist for more than Threshold data can ensure the timeliness of position compensation data and reduce the memory requirements of the compensation database.
  • position compensation data is obtained based on road information, motion trajectory information, and Internet of Vehicles map information, including: position compensation data is obtained based on road information, motion trajectory information, Internet of Vehicles map information, and user feedback information.
  • user feedback information can also be received, such as which lane is the correct lane for current driving, the current driving status, etc., the user feedback position data is obtained, and the positioning is calibrated based on the user feedback position data, and the obtained Position compensation data is more accurate and reduces errors. It is understandable that the information fed back by the user can be obtained through the system initiating interaction with the user, or it can be proactive feedback by the user when he or she discovers a deviation in positioning.
  • the confidence of the corresponding position compensation data is increased; when the user feedback position compensation data is wrong, the confidence of the corresponding position compensation data is reduced.
  • user reminder information is generated based on the lane information and the user is reminded through the UI interface. For example, if the current driving trajectory is a left turn, the system should generate a user reminder message based on the lane information and display it on the vehicle tablet, such as "Are you turning left in the left turn lane?"
  • the confidence level of the corresponding position compensation data is increased; if the user feedback is "no", the confidence level of the corresponding position compensation data is reduced.
  • high-confidence position compensation data is selected for calibration or event triggering, thereby reducing errors and improving calibration accuracy.
  • users can respond to user reminder messages and interact through voice feedback or clicks on the UI interface; the above interaction methods are exemplary and are not specifically limited in the application.
  • FIG. 4 is a flow chart of an Internet of Vehicles positioning correction algorithm provided by an embodiment of the present application. As shown in Figure 4:
  • V2X scene data thread collects GNSS data and V2X map data and enters the corresponding database queue respectively; among them, V2X map data includes lane-level high-precision map data.
  • the correction thread monitors the database in real time. Based on GNSS data and V2X map data, the driving direction of the current vehicle's positioning lane can be obtained. Based on the historical GNSS data, the vehicle's movement trajectory can be obtained, such as going straight, turning left, turning right, making a U-turn, etc.
  • the correction thread Based on the V2X map, the correction thread confirms that the movement trajectory of the vehicle passing through the intersection does not match the driving direction of the lane, then confirms the correct lane from the V2X map based on the movement trajectory of the vehicle, and locates the lane based on the correct lane and the current vehicle.
  • the offset direction and offset distance are used for position calibration, the compensation direction and compensation distance are recorded, and written into the GNSS compensation database. After confirming that the movement trajectory of the vehicle passing through the intersection matches the driving direction of the lane, it is judged that the lane positioned by GNSS is accurate and no compensation is required.
  • the V2X scene thread triggers a lane-level event based on the corresponding GNSS data and V2X map data.
  • the GNSS compensation database collects compensation data from at least one GNSS and eliminates data that exceeds a threshold based on timeliness. For example, compensation data that exceeds 2 hours will be discarded.
  • the V2X scene thread obtains the corresponding GNSS data, map data and compensation data from the V2X map database, GNSS database and GNSS compensation database, and correctly triggers relevant lane-level events based on the GNSS data, map data and compensation data. If there are multiple GNSS compensation data, the data can be aggregated and averaged to improve the compensation accuracy and reduce errors and interference factors.
  • Figure 5 is a schematic structural diagram of a positioning device provided by an embodiment of the present application.
  • the precise positioning device provided by the embodiment of the present application can execute the precise positioning method provided by the embodiment of the present application, and has the corresponding functional modules and technical effects of the execution method.
  • the device can be implemented through software, hardware, or a combination of software and hardware, and includes: an acquisition module 300, a processing module 400, and a calibration module 500.
  • the acquisition module 300 is configured to acquire navigation information and Internet of Vehicles map information.
  • the processing module 400 is configured to at least one of the following: obtain road information based on navigation information and Internet of Vehicles map information; obtain motion trajectory information based on navigation information.
  • the positioning module 500 is configured to obtain positioning information based on road information, movement trajectory information, navigation information, and Internet of Vehicles map information.
  • the processing module 400 is further configured to: confirm lane driving direction information based on road information; confirm vehicle driving direction information based on motion trajectory information.
  • the positioning module 500 is also configured to compare the lane traveling direction with the vehicle traveling direction, and calibrate the vehicle position according to the Internet of Vehicles map information when the lane traveling direction does not match the vehicle traveling direction.
  • the positioning device is also provided with a compensation storage module, and the compensation storage module is configured to store the position compensation information generated by the positioning module 500 .
  • the positioning device is also provided with an interactive module, wherein the interactive module is configured to: generate user reminder information based on the lane information that should be in the lane; and add the corresponding location after receiving feedback from the user confirming the user reminder information. The confidence of the compensation data; when receiving feedback from the user denying the user reminder information, the confidence of the corresponding position compensation data is reduced.
  • Figure 6 is a schematic structural diagram of a positioning and calibration device provided by an embodiment of the present application.
  • the positioning calibration device provided by the embodiment of the present application can execute the positioning calibration method provided by the embodiment of the present application, and has the corresponding functional modules and technical effects of the execution method.
  • the device can be implemented through software, hardware, or a combination of software and hardware, and includes: an acquisition module 600, a processing module 700, and a compensation module 800.
  • the acquisition module 600 is set to at least one of the following: obtaining geographical location information and Internet of Vehicles map information, wherein the geographical location information is obtained through the global navigation satellite system; obtaining movement trajectory information, wherein the movement trajectory information is obtained through the global navigation satellite system .
  • the processing module 700 is configured to obtain road information based on geographical location information and Internet of Vehicles information.
  • the compensation module 800 is configured to obtain position compensation information based on road information and motion trajectory information.
  • the processing module 700 is further configured to: confirm lane driving direction information based on road information; confirm vehicle driving direction information based on motion trajectory information.
  • the compensation module 800 is also configured to compare the lane traveling direction with the vehicle traveling direction, and calibrate the vehicle position according to the Internet of Vehicles map information when the lane traveling direction does not match the vehicle traveling direction.
  • the positioning calibration device is also provided with a compensation storage module, and the compensation storage module is configured to store the position compensation information generated by the compensation module 800 .
  • the positioning calibration device is also provided with an interactive module, wherein the interactive module is configured to: generate user reminder information based on the lane information that should be in the lane; upon receiving feedback from the user confirming the user reminder information, add the corresponding The confidence of the position compensation data; when receiving feedback from the user denying the user reminder information, the confidence of the corresponding position compensation data is reduced.
  • FIG. 7 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the device includes a memory 1100, a processor 1200, and a communication device 1300.
  • the number of memories 1100 and processors 1200 can be one or more.
  • one memory 1100 and one processor 1200 are taken as an example.
  • the memory 1100 and processor 1200 in the device can be connected through a bus or other means.
  • Figure 7 Take the example of connecting via a bus.
  • the memory 1100 can be used to store software programs, computer-executable programs and modules, such as program instructions/modules corresponding to the positioning calibration method provided in any embodiment of the present application.
  • the processor 1200 implements the above positioning calibration method by running software programs, instructions and modules stored in the memory 1110 .
  • the memory 1100 may mainly include a program storage area and a data storage area, where the program storage area may store an operating system and at least one application program required for a function.
  • the memory 1100 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • memory 1100 may include memory located remotely from processor 1200, and these remote memories may be connected to the device through a network. Examples of the above-mentioned networks include but are not limited to the Internet, intranets, local area networks, mobile communication networks and combinations thereof.
  • the communication device 1300 is configured to perform information transceiver communication according to the control of the processor 1200 .
  • the communication device 1300 includes a receiver 1310 and a transmitter 1320.
  • the receiver 1310 is a module or device combination in an electronic device that receives data.
  • the transmitter 1320 is a module or device combination in an electronic device that transmits data.
  • An embodiment of the present application also provides a computer-readable storage medium that stores computer-executable instructions.
  • the computer-executable instructions are used to execute the positioning calibration method provided in any embodiment of the present application.
  • the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may consist of several physical components. Components execute cooperatively. Some or all of the physical components may be implemented as software executed by a processor, such as a central processing unit, a digital signal processor, or a microprocessor, or as hardware, or as an integrated circuit, such as an application specific integrated circuit . Such software may be distributed on computer-readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • computer storage media includes volatile and nonvolatile media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. removable, removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, Digital Versatile Disk (DVD) or other optical disk storage, magnetic cassettes, tapes, disk storage or other magnetic storage devices, or may Any other medium used to store the desired information and that can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .
  • a component may be, but is not limited to, a process, processor, object, executable file, thread of execution, program or computer running on a processor.
  • applications running on the computing device and the computing device may be components.
  • One or more components can reside in a process or thread of execution, and the component can be localized on one computer or distributed between 2 or more computers. Additionally, these components can execute from various computer-readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more data packets (eg, data from two components interacting with another component, such as a local system, a distributed system, or a network, such as the Internet, which interacts with other systems via signals) Communicate through local or remote processes.
  • data packets eg, data from two components interacting with another component, such as a local system, a distributed system, or a network, such as the Internet, which interacts with other systems via signals

Abstract

本申请实施例提供了一种定位校准方法及设备、存储介质。方法包括:获取车辆的导航信息与车联网地图信息(S1000);根据所获取的所述导航信息与所述车联网地图信息,获取得到所述车辆所在位置对应的道路信息(S2000);根据所述导航信息得到所述车辆的运动轨迹信息(S3000);根据所述道路信息、所述运动轨迹信息、所述车联网地图信息,得到位置补偿数据(S4000)。

Description

定位校准方法及设备、存储介质
相关申请的交叉引用
本申请基于申请号为202210934487.5、申请日为2022年8月4日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及车载导航技术领域,尤其是一种定位校准方法及设备、存储介质。
背景技术
车联网(Vehicle-To-Everything,V2X)是智能交通运输中一个重要环节,也是未来智能交通运输系统的关键技术。在智能交通运输系统中,交通工具的定位和导航尤为重要。例如,在V2X对交通工具定位至少需要达到车道级定位。这对全球导航卫星系统(Global Navigation Satellite System,GNSS)提高了较高的要求。
相关技术中,GNSS难以达到亚米级的精度。也有相关技术利用实时动态(Real time kinematic,RTK)技术,提升定位精度,但这不仅大大提高了成本,同时RTK的算力有限,其应用也受到限制。如何提高定位精度,使用场景多元化,是当下亟待讨论的问题。
发明内容
本申请实施例提供一种定位校准方法及设备、存储介质。
第一方面,本申请实施例提供一种定位方法,所述方法包括:获取车辆的导航信息与车联网地图信息;根据所获取的导航信息与所述车联网地图信息,获取得到所述车辆所在位置对应的道路信息;根据所述导航信息得到所述车辆的运动轨迹信息;根据所述道路信息、所述运动轨迹信息、所述车联网地图信息,得到位置补偿数据。
第二方面,本申请实施例提供一种电子设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如第一方面中的定位校准方法。
第三方面,本申请实施例提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行所述计算机程序时实现如第一方面中的定位校准方法。
附图说明
图1为本申请一实施例提供的一种系统架构图;
图2为本申请一实施例提供的定位校准方法的流程图;
图3为本申请一实施例提供的车道定位错误场景的示意图;
图4为本申请一实施例提供的车联网定位纠偏算法的流程图;
图5为本申请一实施例提供的一种定位装置的结构示意图;
图6为本申请一实施例提供的一种定位校准装置的结构示意图;
图7为本申请一实施例提供的一种电子设备结构示意图。
具体实施方式
为了使本申请的目的、技术方法及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于流程图中的顺序执行所示出或描述的步骤。说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请实施例的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本申请实施例中的具体含义。本申请实施例中,“进一步地”、“示例性地”或者“可选地”等词用于表示作为例子、例证或说明,不应被解释为比其它实施例或设计方案更优选或更具有优势。使用“进一步地”、“示例性地”或者“可选地”等词旨在以具体方式呈现相关概念。
本申请实施例可以应用于车载终端、车载单元等车载设备上。本申请实施例并不具体限定。
在实际的V2X场景中,经常会发现定位不准的问题,GNSS的固有属性决定了仅依据GNSS定位会受到天气、反射等实时环境的变化干扰,导致实际计算的感知坐标有3米以上的误差。例如,车辆实际运行在左转车道上,但是GNSS的数据会错误的标定为直行车道上,严重影响V2X场景中,车联网系统对车道的判断,继而影响红绿灯告警,V2V(vehicle to vehicle,车对车信息交互)碰撞预警,左转预警等相关对车道依赖比较大的场景运行。
本申请实施例提供了一种定位校准方法及设备、存储介质,通过导航信息、车联网地图信息得到道路信息和运动轨迹信息,进而实现辅助定位校准,提高定位精度,使应用场景多元化。本方案还可以在没有RTK的场景下,实现车辆在道路上的准确定位,不仅成本低,且应用场景多元化。
下面结合附图,阐述本申请实施例。
图1是本申请一实施例提供的定位校准方法的系统架构图。如图1所示,该系统架构可以包括,但不限于,GNSS模块110、V2X地图模块120、校准模块130、事件触发模块140和补偿数据库150。
GNSS模块110分别与校准模块130和事件触发模块140进行通信连接,GNSS模块110被设置为获取导航信息,并提取相关信息发送给校准模块130和事件触发模块140。
V2X地图模块120分别与校准模块130和事件触发模块140进行通信连接,V2X地图模块120被设置为获取车联网地图信息,并提取相关信息发送给校准模块130和事件触发模块140。
校准模块130与补偿数据库150进行通信连接,校准模块130被设置为根据接收到的导航信息和车联网地图信息对当前车辆定位位置进行分析校准,并将生成的位置补偿数据发送至补偿数据库150。
补偿数据库150与事件触发模块140进行通信连接,补偿数据库150被设置为将校准生成的位置补偿数据发送给事件触发模块140。
事件触发模块140被设置为接收导航信息、车联网地图信息以及位置补偿数据,并根据相关信息触发对应的场景事件。
在一些可行的实施方式中,车联网地图信息可以包括车道级高精度地图。
在一些可行的实施方式中,校准模块130被设置为根据接收到的导航信息和车联网地图信息,得到道路信息,其中,道路信息包括当前车辆定位所在车道的相关信息,如该车道是第几车道,是左转车道、直行车道还是右转车道。校准模块130还被设置为根据导航信息得到运动轨迹信息。
在一些可行的实施方式中,校准模块130根据道路信息和运动轨迹信息,对车辆位置进行判断校准,并生成位置补偿信息。
在一些可行的实施方式中,校准模块130判断车辆需要进行校准后,根据当前的导航信息得到当前定位的所在车道的车道数据;校准模块130再根据车辆的运动轨迹信息,得到车辆实际所在车道的车道数据;根据当前定位的车道数据和实际所在的车道数据,在车联网地图信息中,分别确认对应的车道,根据车联网地图信息提供的各车道之间的相对距离、方向等数据计算得到位置补偿信息。
本实施例方案无需RTK技术加持,利用GNSS技术和V2X的车道级高精度地图结合,在仅采用GNSS技术的情况下,对车辆位置进行纠偏补偿,对算力要求低,降低成本,缓解了低成本的V2X终端对RTK技术的依赖。
图2是本申请一实施例提供的定位校准方法的流程图。如图2所示,该精准定位方法可用于车载单元或车载终端。在图2的实施例中,该定位方法可以包括但不限于步骤S1000、步骤S2000、步骤S3000以及步骤S4000。
步骤S1000:获取车辆的导航信息与车联网地图信息。
导航信息通过GNSS模块收集的GNSS定位数据中确定,车联网地图信息根据V2X中的车道级高精度地图中提取;其中,导航信息可以包括运动装置的在某时刻的位置,运动装置的行驶路程,运动装置的行驶路径,运动装置的行驶方式,运动装置所处的经纬度、海拔等信息。可以理解地是,运动装置可以包括但不限于,轿车、智能汽车、货车等车辆,还可以是其他具有相对固定的行驶路径规则的载具或运动装置等。本申请具体实施例中,为了方便描述,以车辆为例进行说明。
在一些可行的实施方式中,车道级高精度地图可以通过RSU(Road Side Unit,路侧单元)或者通过PC5通信协议广播分发或其他任意合适的方式获取。
在一些可行的实施方式中,车道级高精度地图还可以预先设置在车载单元、车载终端或其他便携式V2X设备中。
步骤S2000:根据所获取的导航信息与车联网地图信息,获取得到车辆所在位置对应的道路信息。
根据导航信息以及车联网地图信息,得到车辆当前定位所在道路以及对应的道路信息,其中,道路信息可以包括当前车辆所在位置的车道的相关信息,例如对应车道是第几车道,对应车道是上坡还是下坡,对应车道的车道能力,如该车道是直行车道、左转车道、右转车道或掉头车道等。
步骤S3000:根据导航信息得到车辆的运动轨迹信息。其中,运动轨迹信息用于表征车辆在当前时间段或某一时间段的行驶轨迹。
根据导航信息,可以生成车辆在当前时间段或历史时间段的运动轨迹信息,如车辆进行左转、右转、掉头、直行、上坡、下坡等。
步骤S4000:根据道路信息、运动轨迹信息、车联网地图信息,得到位置补偿数据。
在一些可行的实施方式中,步骤S4000之后至少包括但不限于以下步骤:
根据位置补偿数据对导航信息进行补偿计算,得到补偿后的导航信息;
根据补偿后的导航信息和车联网地图信息,得到定位信息。
根据道路信息、运动轨迹信息,判断车辆当前定位是否准确,是否需要进行纠偏校准,并根据纠偏校准的结果得到位置补偿数据,根据位置补偿数据确认车辆在车联网地图上的正确位置,并根据位置补偿数据对导航信息进行调整,对GNSS的定位进行校准。
其中,位置补偿信息可以包括车辆当前定位所在车道与车辆实际应在车道之间的偏移距离和偏移方向。
在一些可行的实施方式中,道路信息包括车道行驶方向信息;运动轨迹信息包括运动装置的行驶方向信息;步骤S4000可以包括但不限于以下步骤:
根据车道行驶方向信息在车联网地图信息中获取第一车道数据;
根据车辆的行驶方向信息在车联网地图信息中获取第二车道数据;
根据第一车道数据和第二车道数据计算得到位置补偿数据。
在一些实施例中,车道行驶方向信息表征了车辆在该车道的正确行驶方向,如右转、左转、直行、掉头等。获取当前定位信息对应的所在车道的道路信息后,根据道路信息得到所在车道的车道行驶方向信息,得到车辆符合当前所在车道的车道能力下的行驶轨迹。将根据导航信息得到的运动轨迹与当前定位所在车道对应的行驶轨迹进行配,在轨迹一致,运动轨迹与车道能力匹配,即车辆行驶方向与车道行驶方向一致的境况下,确定当前车辆定位信息准确,无需校准;在轨迹不一致,运动轨迹与车道能力不匹配,即车辆行驶方向与车道行驶方向不一致的情况下,确认当前车辆的定位信息错误,车道定位具有偏差,需要进行校准。
示例性地,根据导航信息和车联网地图信息得到车辆正处在直行车道上,而车辆行驶轨迹是进行右转,但是直行车道不能右转,显然行驶轨迹和当前车道能力不匹配;则此时定位出现偏差,需要进行校准。
在一些可行的实施方式中,在根据导航信息和车联网地图信息确认当前定位所在的车道后,根据车联网地图获取该车道对应的第一车道数据,第一车道数据包括对应车道在车联网地图中构成车道的多个连续坐标;根据导航信息提取得到车辆在当前时间段的行驶轨迹,得到车道的行驶方向信息,根据行驶方向信息在车联网地图中确认与该行驶方向信息匹配的车道,根据车联网地图获取该车道对应的第二车道数据,第二车道数据包括对应车道在车联网地图中构成车道的多个连续坐标;根据第一车道数据和第二车道数据,计算得到两车道之间的距离和相对方向,即得到位置补偿数据。
在一些可行的实施方式中,位置补偿数据包括至少以下之一:方向数据;距离数据。
当确认定位具有偏差需要校准后,根据运动轨迹信息,在车联网的车道级高精度地图中确认符合运动轨迹的车道以及对应的道路信息,即应在车道信息。得到应在车道信息后,由于车联网地图中包含了各车道之间的距离和相对位置关系,从而可以通过车联网地图计算得到应在车道和当前定位的车道之间的距离和/或当前定位的车道相对应在车道的偏移方向;根据得到应在车道和当前定位的车道之间的距离和/或偏移方向,得到位置补偿数据。根据得到偏移距离和/或偏移方向,对当前定位的车道进行校准,使得GNSS定位在正确的车道上。校准可以以车道横向做补偿,作为一个补偿维度,后续在其他车道上继续做多个维度的补偿后,从经纬度整个平面坐标都可以完成补偿。
示例性地,如图3所示,车辆100所在车道以及对应的行驶轨迹为GNSS当前定位得到,而车辆200所在车道为应在车道。从图中可以看出,根据GNSS当前的定位信息,车辆行驶在 直行车道上,但是根据GNSS得到的行驶轨迹却是右转,因此车辆实际应在的车道应该是右转车道。通过车联网地图信息,可以得到直行车道较右转车道是横向右偏移,同时得到直行车道与右转车道之间距离即偏移距离。根据偏移方向和偏移距离对定位进行校准,使得车辆定位处在正确的车道上。
在一些可行的实施方式中,步骤S4000包括:根据道路信息、运动轨迹信息、车联网地图信息、历史补偿数据,计算得到位置补偿数据,其中,历史补偿数据为以下之一:过往时间获取的位置补偿数据。
根据应在车道信息和当前车道信息得到位置补偿数据之后,还可以将位置补偿数据存入补偿数据库中。可以理解地,得到位置补偿数据之后,可以同时将位置补偿数据存入补偿数据库,以及直接发送给事件触发模块,进行场景事件的触发;还可以将位置补偿数据存入补偿数据库后,在由事件触发模块根据需要调取。
在一些可行的实施方式中,根据道路信息、运动轨迹信息、车联网地图信息、历史补偿数据,得到位置补偿数据,包括:根据道路信息、运动轨迹信息、车联网地图信息,计算得到当前补偿数据;根据当前补偿数据、历史补偿数据,计算得到位置补偿数据。在一些实施方式中,将当前补偿数据、历史补偿数据进行汇总平均,得到平均补偿数据;根据平均补偿数据,确认位置补偿数据。
在一些可行的实施方式中,根据位置补偿数据对车辆位置进行校准,包括:从补偿数据库中得到多个位置补偿数据;对多个位置补偿数据进行汇总平均,得到平均位置补偿数据;根据平均位置补偿数据对车辆位置进行校准。
在一些可行的实施方式中,可以周期性地进行判断是否需要进行定位校准,即判断运动和当前定位所在车道是否匹配;并将生成的补偿数据存入补偿数据库中,补偿数据库中会存有多个补偿数据。当触发V2X场景事件需要用到补偿数据时,则可以选择临近的一个时间段内的多个补偿数据进行汇总平均,从而提高补偿精度,减少误差和干扰因素。
在一些可行的实施方式中,历史补偿数据根据至少以下之一得到:
根据时间阈值,获取处于时间阈值内的历史补偿数据;
根据距离阈值,获取处于距离阈值内的历史补偿数据。
在将位置补偿数据存入补偿数据库时,记录每个存入补偿数据库的位置补偿数据的入库时间;在入库时间超过阈值的情况下,删除对应的位置补偿数据。对于存入补偿数据库的位置补偿数据,判断位置补偿数据的偏移距离是否超过距离阈值,在超过距离阈值的情况下,则可以确认该位置补偿数据是GNSS的数据错误等情况造成的误差,不属于正常方位内的定位偏差,不具备参考价值,可以进行删除。
在一些实施例中,在位置补偿数据存入补偿数据库时给对应的数据打上标签记录入库的时间,根据时间标签可以得到对应的位置补偿数据的在补偿数据库中的存在时间。可以理解地,还可以通过其他任意合适的方式记录和获取位置补偿数据在补偿数据库中的存储时间,在本申请中不做具体限定。
随着时间的推移,GNSS的导航信息也会发生变化,可能经过一段时间之后GNSS定位准确不再偏移,也可能偏移方向和偏移距离发生改变,因此,通过删除补偿数据库中存在时间超过阈值的数据,可以保证位置补偿数据的时效性,同时减少补偿数据库对内存的需求。
在一些可行的实施方式中,根据道路信息、运动轨迹信息、车联网地图信息,得到位置补偿数据,包括:根据道路信息、运动轨迹信息、车联网地图信息、用户反馈信息,得到位置补偿数据。
在定位出现偏差需要校准时,还可以接收用户反馈的信息,如当前行驶的正确车道是什么车道,当前的行驶状态等,得到用户反馈位置数据,结合用户反馈位置数据对定位进行校准,得到的位置补偿数据更加准确,减少误差。可以理解地是,用户反馈的信息可以是通过系统发起与用户的交互得到,也可以是用户在发现定位出现偏差时主动反馈。
在一些可行的实施方式中,在用户反馈位置补偿数据准确的情况下,增加对应的位置补偿数据的置信度;在用户反馈位置补偿数据错误的情况下,降低对应的位置补偿数据的置信度。
在车道出现偏差,需要进行校准的情况下,根据应在车道信息,生成用户提醒信息,并通过UI界面提醒用户。例如,当前行驶轨迹是进行左拐,应在车道信息对一个左转车道,系统根据应在车道信息生成用户提醒信息后,通过车载平板显示,如“您是否在左转车道左拐?”。
如果用户反馈“是”,则增加对应的位置补偿数据的置信度;如果用户反馈“否”,则降低对应的位置补偿数据的置信度。在一些实施例中,根据置信度,高置信度的位置补偿数据被选中以进行校准或事件触发,从而减少误差,提高校准的准确性。
在一些实施例中,用户可以通过语音反馈或者在UI界面选择点击,来回应用户提醒信息,进行交互;上述交互手段为示例性说明,在申请中不做具体限定。
图4是本申请一实施例提供的车联网定位纠偏算法的流程图。如图4所示:
V2X场景数据线程,收集GNSS数据和V2X地图数据分别进入对应数据库队列;其中,V2X地图数据包括车道级高精度地图数据。
纠偏线程实时监控数据库,根据GNSS数据和V2X地图数据可以获取当前车辆的定位车道的行驶方向,根据GNSS的历史数据得到车辆的运动轨迹,如直行、左转、右转、掉头等。
纠偏线程根据V2X地图,在确认车辆通过路口的运动轨迹和车道的行驶方向不匹配的情况下,则根据车辆的运动轨迹从V2X地图中确认正确的车道,并根据正确车道和当前车辆定位车道的偏移方向和偏移距离进行位置校准,记录补偿方向和补偿距离,并写入GNSS补偿数据库中。在确认车辆通过路口的运动轨迹和车道的行驶方向匹配的情况下,判断GNSS定位的车道准确,不需要进行补偿,此时,V2X场景线程根据对应的GNSS数据和V2X地图数据触发车道级事件。
GNSS补偿数据库收集至少一个GNSS的补偿数据,并根据时效性淘汰时间超过阈值的数据,比如将超过2小时的补偿数据进行丢弃。
V2X场景线程,从V2X地图数据库和GNSS数据库以及GNSS补偿数据库获得对应的GNSS数据、地图数据和补偿数据,并根据GNSS数据、地图数据和补偿数据正确触发相关的车道级事件。如果有多个GNSS补偿数据,可以把数据进行汇总平均,提高补偿精度,减少误差和干扰因素。
图5是本申请一实施例提供的一种定位装置的结构示意图。如图5所示,本申请实施例提供的精准定位装置可执行本申请实施例提供的精准定位方法,具备执行方法相应的功能模块和技术效果。该装置可以通过软件、硬件或者软硬结合的方式实现,包括:获取模块300、处理模块400、及校准模块500。
获取模块300,设置为获取导航信息、车联网地图信息。
处理模块400,设置为至少以下之一:根据导航信息、车联网地图信息,得到道路信息;根据导航信息得到运动轨迹信息。
定位模块500,设置为根据道路信息、运功轨迹信息、导航信息、车联网地图信息,得到定位信息。
在一些可行的实施方式中,处理模块400还设置为:根据道路信息,确认车道行驶方向信息;根据运动轨迹信息,确认车辆行驶方向信息。定位模块500还设置为,比对车道行驶方向与车辆行驶方向,在车道行驶方向与车辆行驶方向不匹配的情况下,根据车联网地图信息对车辆位置进行校准。
在一些可行的实施方式中,定位装置还设置有补偿存储模块,补偿存储模块设置为存储定位模块500生成的位置补偿信息。
在一些可行的实施方式中,定位装置还设置有交互模块,其中,交互模块设置为:根据应在车道信息生成用户提醒信息;在接收到用户确认用户提醒信息反馈的情况下,增加对应的位置补偿数据的置信度;在接收到用户否定用户提醒信息反馈的情况下,降低对应的位置补偿数据的置信度。
图6是本申请一实施例提供的一种定位校准装置的结构示意图。如图6所示,本申请实施例提供的定位校准装置可执行本申请实施例提供的定位校准方法,具备执行方法相应的功能模块和技术效果。该装置可以通过软件、硬件或者软硬结合的方式实现,包括:获取模块600、处理模块700、及补偿模块800。
获取模块600,设置为至少以下之一:获取地理位置信息、车联网地图信息,其中,地理位置信息通过全球导航卫星系统得到;获取运功轨迹信息,其中,运动轨迹信息通过全球导航卫星系统得到。
处理模块700,设置为根据地理位置信息和车联网信息,得到道路信息。
补偿模块800,设置为根据道路信息、运动轨迹信息,得到位置补偿信息。
在一些可行的实施方式中,处理模块700还设置为:根据道路信息,确认车道行驶方向信息;根据运动轨迹信息,确认车辆行驶方向信息。补偿模块800还设置为,比对车道行驶方向与车辆行驶方向,在车道行驶方向与车辆行驶方向不匹配的情况下,根据车联网地图信息对车辆位置进行校准。
在一些可行的实施方式中,定位校准装置还设置有补偿存储模块,补偿存储模块设置为存储补偿模块800生成的位置补偿信息。
在一些可行的实施方式中,定位校准装置还设置有交互模块,其中,交互模块设置为:根据应在车道信息生成用户提醒信息;在接收到用户确认用户提醒信息反馈的情况下,增加对应的位置补偿数据的置信度;在接收到用户否定用户提醒信息反馈的情况下,降低对应的位置补偿数据的置信度。
图7是本申请一实施例提供的一种电子设备结构示意图。如图7所示,该设备包括存储器1100、处理器1200、通信装置1300。存储器1100、处理器1200的数量可以是一个或多个,图7中以一个存储器1100和一个处理器1200为例;设备中的存储器1100和处理器1200可以通过总线或其他方式连接,图7中以通过总线连接为例。
存储器1100作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本申请任一实施例提供的定位校准方法对应的程序指令/模块。处理器1200通过运行存储在存储器1110中的软件程序、指令以及模块实现上述定位校准方法。
存储器1100可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序。此外,存储器1100可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件或其他非易失性固态存储器件。在一些实例中,存储器1100可包括相对于处理器1200远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
通信装置1300设置为根据处理器1200的控制进行信息收发通信。
在一实施例中,通信装置1300包括接收器1310、发送器1320。接收器1310为电子设备中进行数据接收的模块或器件组合。发送器1320为电子设备中进行数据发送的模块或器件组合。
本申请一实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,该计算机可执行指令用于执行如本申请任一实施例提供的定位校准方法。
本申请实施例描述的系统架构以及应用场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域技术人员可知,随着系统架构的演变和新应用场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、设备中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。
在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程或执行线程中,部件可位于一个计算机上或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自于自与本地系统、分布式系统或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地或远程进程来通信。
以上参照附图说明了本申请的一些实施例,并非因此局限本申请的权利范围。本领域技 术人员不脱离本申请的范围和实质内所作的任何修改、等同替换和改进,均应在本申请的权利范围之内。

Claims (12)

  1. 一种定位校准方法,包括:
    获取车辆的导航信息与车联网地图信息;
    根据所获取的所述导航信息与所述车联网地图信息,获取得到所述车辆所在位置对应的道路信息;
    根据所述导航信息得到所述车辆的运动轨迹信息;
    根据所述道路信息、所述运动轨迹信息、所述车联网地图信息,得到位置补偿数据。
  2. 根据权利要求1所述的方法,其中,在所述根据所述道路信息、所述运动轨迹信息、所述导航信息、所述车联网地图信息,得到位置补偿数据之后,包括:
    根据所述位置补偿数据、所述导航信息、所述车联网地图信息,得到定位信息。
  3. 根据权利要求1所述的方法,其中,
    所述道路信息包括车道行驶方向信息;
    所述运动轨迹信息包括车辆的行驶方向信息;
    所述根据所述道路信息、所述运动轨迹信息、所述车联网地图信息,得到位置补偿数据,包括:
    根据所述车道行驶方向信息在所述车联网地图信息中获取第一车道数据;
    根据所述车辆的行驶方向信息在所述车联网地图信息中获取第二车道数据;
    根据所述第一车道数据和所述第二车道数据计算得到位置补偿数据。
  4. 根据权利要求1或3所述的方法,其中,所述位置补偿数据包括至少以下之一:方向数据,或距离数据。
  5. 根据权利要求1所述的方法,其中,所述根据所述道路信息、所述运动轨迹信息、所述车联网地图信息,得到位置补偿数据,包括:
    根据所述道路信息、所述运动轨迹信息、所述车联网地图信息、历史补偿数据,计算得到位置补偿数据,其中,所述历史补偿数据包括过往时间获取的位置补偿数据。
  6. 根据权利要求5所述的方法,其中,所述根据所述道路信息、所述运动轨迹信息、所述车联网地图信息、历史补偿数据,计算得到位置补偿数据,包括:
    根据所述道路信息、所述运动轨迹信息、所述车联网地图信息,计算得到当前补偿数据;
    根据所述当前补偿数据、所述历史补偿数据,计算得到位置补偿数据。
  7. 根据权利要求6所述的方法,其中,所述根据所述当前补偿数据、所述历史补偿数据,计算得到位置补偿数据,包括:
    将所述当前补偿数据、历史补偿数据进行汇总平均,得到平均补偿数据;
    根据所述平均补偿数据,确认位置补偿数据。
  8. 根据权利要求5所述的方法,其中,所述历史补偿数据根据至少以下之一得到:
    根据时间阈值,获取处于所述时间阈值内的历史补偿数据;或
    根据距离阈值,获取处于所述距离阈值内的历史补偿数据。
  9. 根据权利要求1所述的方法,其中,所述根据所述道路信息、所述运动轨迹信息、所述车联网地图信息,得到位置补偿数据,包括:
    根据所述道路信息、所述运动轨迹信息、所述车联网地图信息、用户反馈信息,计算得到位置补偿数据。
  10. 根据权利要求9所述的方法,还包括:
    在用户反馈信息位置补偿数据准确的情况下,增加对应的位置补偿数据的置信度;
    在用户反馈信息位置补偿数据错误的情况下,降低对应的位置补偿数据的置信度。
  11. 一种电子设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,当所述处理器执行所述计算机程序时,实现如权利要求1至10任一项所述的定位校准方法。
  12. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行所述计算机程序时实现如权利要求1至10任一项所述的定位校准方法。
PCT/CN2023/078464 2022-08-04 2023-02-27 定位校准方法及设备、存储介质 WO2024027142A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210934487.5 2022-08-04
CN202210934487.5A CN115267840A (zh) 2022-08-04 2022-08-04 定位校准方法及设备、存储介质

Publications (1)

Publication Number Publication Date
WO2024027142A1 true WO2024027142A1 (zh) 2024-02-08

Family

ID=83749274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/078464 WO2024027142A1 (zh) 2022-08-04 2023-02-27 定位校准方法及设备、存储介质

Country Status (2)

Country Link
CN (1) CN115267840A (zh)
WO (1) WO2024027142A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115267840A (zh) * 2022-08-04 2022-11-01 中兴通讯股份有限公司 定位校准方法及设备、存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170097642A1 (en) * 2015-09-16 2017-04-06 Denso Corporation Apparatus for correcting vehicle location
CN110967035A (zh) * 2020-02-28 2020-04-07 杭州云动智能汽车技术有限公司 一种提高车载v2x车道匹配度方法
CN112363192A (zh) * 2020-09-29 2021-02-12 蘑菇车联信息科技有限公司 车道定位方法、装置、车辆、电子设备及存储介质
CN113203425A (zh) * 2020-01-15 2021-08-03 宁波吉利汽车研究开发有限公司 一种基于车路协同的车道匹配方法、装置、设备、存储介质和车辆
CN113538919A (zh) * 2019-03-11 2021-10-22 百度在线网络技术(北京)有限公司 车道偏离识别方法、装置、设备和存储介质
CN114279440A (zh) * 2021-12-07 2022-04-05 和芯星通科技(北京)有限公司 Imu定位的管理方法、装置和车载地图系统
CN115267840A (zh) * 2022-08-04 2022-11-01 中兴通讯股份有限公司 定位校准方法及设备、存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170097642A1 (en) * 2015-09-16 2017-04-06 Denso Corporation Apparatus for correcting vehicle location
CN113538919A (zh) * 2019-03-11 2021-10-22 百度在线网络技术(北京)有限公司 车道偏离识别方法、装置、设备和存储介质
CN113203425A (zh) * 2020-01-15 2021-08-03 宁波吉利汽车研究开发有限公司 一种基于车路协同的车道匹配方法、装置、设备、存储介质和车辆
CN110967035A (zh) * 2020-02-28 2020-04-07 杭州云动智能汽车技术有限公司 一种提高车载v2x车道匹配度方法
CN112363192A (zh) * 2020-09-29 2021-02-12 蘑菇车联信息科技有限公司 车道定位方法、装置、车辆、电子设备及存储介质
CN114279440A (zh) * 2021-12-07 2022-04-05 和芯星通科技(北京)有限公司 Imu定位的管理方法、装置和车载地图系统
CN115267840A (zh) * 2022-08-04 2022-11-01 中兴通讯股份有限公司 定位校准方法及设备、存储介质

Also Published As

Publication number Publication date
CN115267840A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
US9983022B2 (en) Vehicle position estimation system, device, method, and camera device
CN110687562B (zh) 一种定位方法及车载装置
CN105937912B (zh) 车辆的地图数据处理装置
US11440537B2 (en) Apparatus and method for estimating position in automated valet parking system
CN109474894B (zh) 终端定位处理方法、装置及电子设备
US20180045807A1 (en) Global Positioning System and Ultra Wide Band Universal Positioning Node Consellation integration
US20170329328A1 (en) On-vehicle control device, own vehicle position and posture specifying device, and on- vehicle display device
US20240031797A1 (en) Differential Analysis of Navigation Satellite Signals by 5G/6G Messaging
Qin et al. Vehicles on RFID: Error-cognitive vehicle localization in GPS-less environments
CN105974453A (zh) 基于智能车路协同系统的差分定位方法及智能车路协同系统
CN111739295B (zh) 一种定位方法及装置
JP2010528310A (ja) Gps誤差補正、車両追跡及びオブジェクト位置
CN110851545B (zh) 地图绘制方法、装置及设备
CN113779174B (zh) 提高路侧传感器感知精度的方法、系统、设备及介质
WO2024027142A1 (zh) 定位校准方法及设备、存储介质
US20210221390A1 (en) Vehicle sensor calibration from inter-vehicle communication
US20220357181A1 (en) Collecting user-contributed data relating to a navigable network
CN110632635A (zh) 自动驾驶车辆的定位方法、装置、电子设备及可读介质
US10982962B2 (en) V2X location accuracy enhancement
Williams et al. A qualitative analysis of vehicle positioning requirements for connected vehicle applications
CN111212375B (zh) 定位位置调整方法及其装置
Zarza et al. RIALS: RSU/INS‐aided localization system for GPS‐challenged road segments
US20230349717A1 (en) Electronic map correction method, navigation information setting method, navigation method, and apparatus
CN115240453B (zh) 自动驾驶车辆的行驶控制方法、装置、系统及电子设备
US20230115240A1 (en) Advanced driver-assistance systems feature activation control using digital map and on-board sensing to confirm safe vehicle operation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23848857

Country of ref document: EP

Kind code of ref document: A1