WO2024027008A1 - 一种共享铁塔基站供电系统的可靠性评估方法及装置 - Google Patents

一种共享铁塔基站供电系统的可靠性评估方法及装置 Download PDF

Info

Publication number
WO2024027008A1
WO2024027008A1 PCT/CN2022/123206 CN2022123206W WO2024027008A1 WO 2024027008 A1 WO2024027008 A1 WO 2024027008A1 CN 2022123206 W CN2022123206 W CN 2022123206W WO 2024027008 A1 WO2024027008 A1 WO 2024027008A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
base station
supply system
station power
condition
Prior art date
Application number
PCT/CN2022/123206
Other languages
English (en)
French (fr)
Inventor
黄欢
冯圣勇
李斌
肖艳红
刘磊
余思伍
毛先胤
曾华荣
张迅
吴建蓉
张伟
张英
李恩文
厉天威
潘锐健
范才进
李敏
Original Assignee
贵州电网有限责任公司电力科学研究院
南方电网科学研究院有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 贵州电网有限责任公司电力科学研究院, 南方电网科学研究院有限责任公司 filed Critical 贵州电网有限责任公司电力科学研究院
Publication of WO2024027008A1 publication Critical patent/WO2024027008A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06393Score-carding, benchmarking or key performance indicator [KPI] analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/068Electronic means for switching from one power supply to another power supply, e.g. to avoid parallel connection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of power supply quality assessment, and more specifically, to a reliability assessment method and device for a shared tower base station power supply system.
  • the 5G base station power supply system is mainly based on the three-level structure of wired protocol stack, wireless protocol stack and active antenna, and can process both high-real-time and low-real-time information.
  • the active antenna structure of the 5G base station power supply system uses a 64T/64R antenna array, which can expand the information capacity of the channel, but at the same time consumes more power resources, so that the power consumption of the 5G base station power supply system will increase abnormally and significantly. , causing the operating status of the 5G base station power supply system to be highly unstable.
  • base station power supply system builders are unable to evaluate the reliability of the base station power supply system when building the base station power supply system, causing the base station power supply system to face the risk of power outage, and the operation safety of the base station power supply system is low.
  • this application is proposed to provide a reliability assessment method and device for a shared tower base station power supply system to improve the operational safety of the base station power supply system and ensure the stable operation of the base station power supply system.
  • a reliability assessment method for base station power supply system including:
  • the first condition is that the external power supply line of the base station power supply system is There are two independent external power supply lines, and the voltage of the external power supply line of the base station power supply system is a preset external power supply voltage.
  • the second condition is that the average number of monthly failures of the base station power supply system is less than the preset number of failures, and The duration of each failure of the base station power supply system is not less than the preset time;
  • the base station power supply system satisfies the first condition and the second condition at the same time, calculate the remote power supply limit of the base station power supply system, and determine whether the base station power supply system satisfies the third condition or the fourth condition,
  • the third condition is that the remote power supply distance of the base station power supply system is less than the remote power supply limit
  • the fourth condition is that the base station power supply system is equipped with a first-level DC-DC power supply
  • the base station power supply system meets the third condition or the fourth condition, determine the reliability of the base station power supply system to be the first level
  • the power supply mode of the base station power supply system is direct power supply from the mains, determine whether the base station power supply system satisfies the fifth condition, the sixth condition and the seventh condition at the same time.
  • the fifth condition is that the base station power supply system is installed with It is only suitable for the transformer of the base station.
  • the sixth condition is that the base station power supply system is equipped with an uninterrupted power supply.
  • the seventh condition is that the remaining capacity of the battery of the base station power supply system after the preset operation time is greater than the limit. Value threshold, the limit threshold is:
  • Q is the limit threshold
  • K is the preset safety factor
  • I is the load discharge current of the battery
  • T is the number of hours of discharge of the battery
  • is the discharge capacity coefficient of the battery
  • t is the The ambient temperature value of the battery
  • the reliability of the base station power supply system is determined to be the first level.
  • this method also includes:
  • the reliability of the base station power supply system is determined to be the second level.
  • this method also includes:
  • the reliability of the base station power supply system is determined to be the second level.
  • this method also includes:
  • the reliability of the base station power supply system is determined to be the second level.
  • calculate the remote power supply limit of the base station power supply system including:
  • the power supply voltage of the base station power supply system the remote input voltage of the base station power supply system, and the total load power of the remote equipment of the base station power supply system
  • the resistivity of the remote power supply transmission wire of the base station power supply system determines the remote power supply limit of the base station power supply system.
  • the power supply voltage of the base station power supply system the remote input voltage of the base station power supply system, and the voltage of the remote equipment of the base station power supply system.
  • the total power of the load and the resistivity of the remote power supply transmission wire of the base station power supply system determine the remote power supply limit of the base station power supply system, including:
  • L is the remote power supply limit of the base station power supply system
  • S is the power conversion efficiency of the remote power supply line of the base station power supply system
  • U S is the power supply voltage of the base station power supply system
  • U 0 is the The remote input voltage of the base station power supply system
  • P 0 is the total load power of the remote equipment of the base station power supply system
  • is the resistivity of the remote power supply transmission wire of the base station power supply system.
  • a reliability evaluation device for a base station power supply system including:
  • the mains direct power supply judgment unit is used to judge whether the power supply mode of the base station power supply system is the mains direct power supply mode. If so, execute the first two-condition judgment unit; if not, execute the three-condition judgment unit;
  • the first dual-condition judgment unit is used to judge whether the base station power supply system satisfies the first condition and the second condition at the same time. If so, execute the second dual-condition judgment unit.
  • the first condition is external to the base station power supply system.
  • the power supply lines are two independent external power supply lines, and the voltage of the external power supply line of the base station power supply system is a preset external power supply voltage.
  • the second condition is that the average number of monthly failures of the base station power supply system is less than the preset failure times, and the duration of each failure of the base station power supply system is not less than the preset duration;
  • the second dual-condition judgment unit is used to calculate the remote power supply limit of the base station power supply system, and judge whether the base station power supply system satisfies the third condition or the fourth condition. If so, execute the first evaluation unit.
  • the third condition is that the remote power supply distance of the base station power supply system is less than the remote power supply limit
  • the fourth condition is that the base station power supply system is equipped with a first-level DC-DC power supply;
  • a first evaluation unit configured to determine that the reliability of the base station power supply system is the first level
  • a three-condition judgment unit is used to judge whether the base station power supply system satisfies the fifth condition, the sixth condition and the seventh condition at the same time. If so, execute the second evaluation unit.
  • the fifth condition is that the base station power supply system is equipped with It is only suitable for the transformer of the base station.
  • the sixth condition is that the base station power supply system is equipped with an uninterrupted power supply.
  • the seventh condition is that the remaining capacity of the battery of the base station power supply system after the preset operation time is greater than the limit. Value threshold, the limit threshold is:
  • Q is the limit threshold
  • K is the preset safety factor
  • I is the load discharge current of the battery
  • T is the number of hours of discharge of the battery
  • is the discharge capacity coefficient of the battery
  • t is the The ambient temperature value of the battery
  • the second evaluation unit is used to determine that the reliability of the base station power supply system is the first level.
  • the device also includes:
  • the third evaluation unit is configured to determine that the reliability of the base station power supply system is the second level if the judgment result of the first dual-condition judgment unit is no.
  • the device also includes:
  • the fourth evaluation unit is configured to determine that the reliability of the base station power supply system is the second level if the judgment result of the second dual-condition judgment unit is no.
  • the device also includes:
  • the fifth evaluation unit is used to determine that the reliability of the base station power supply system is the second level if the judgment result of the three-condition judgment unit is no.
  • the second dual-condition judgment unit calculates the remote power supply limit of the base station power supply system, including:
  • the second dual-condition judgment unit determines the power conversion efficiency of the remote power supply line of the base station power supply system, the power supply voltage of the base station power supply system, the remote input voltage of the base station power supply system, and the power supply voltage of the base station power supply system.
  • the total load power of the remote device and the resistivity of the remote power supply transmission wire of the base station power supply system determine the remote power supply limit of the base station power supply system.
  • the second dual-condition judgment unit is based on the power conversion efficiency of the remote power supply line of the base station power supply system, the power supply voltage of the base station power supply system, the remote input voltage of the base station power supply system, the The total load power of the remote equipment of the base station power supply system and the resistivity of the remote power supply transmission wire of the base station power supply system determine the remote power supply limit of the base station power supply system, including:
  • the second dual-condition judgment unit uses the following formula to calculate the remote power supply limit of the base station power supply system:
  • L is the remote power supply limit of the base station power supply system
  • S is the power conversion efficiency of the remote power supply line of the base station power supply system
  • U S is the power supply voltage of the base station power supply system
  • U 0 is the The remote input voltage of the base station power supply system
  • P 0 is the total load power of the remote equipment of the base station power supply system
  • is the resistivity of the remote power supply transmission wire of the base station power supply system.
  • this application analyzes whether the power supply mode of the base station power supply system is direct power supply from the mains.
  • the analysis result is not the direct power supply from the mains, it further analyzes some factors affecting the reliability of the base station power supply system.
  • the influencing factors are the external power supply line of the base station power supply system, the voltage of the external power supply line, the average number of faults per month, the duration of each fault, the remote power supply distance, whether a first-level DC-DC power supply is installed, and the power supply of the base station power supply system is obtained.
  • the reliability is the first level
  • the analysis result is direct power supply from the mains, further analyze another part of the reliability influencing factors of the base station power supply system.
  • the other reliability influencing factors are whether to install a transformer that is only suitable for the base station. , whether an uninterrupted power supply is installed, and the remaining capacity of the battery after the preset operating time, it can be concluded whether the reliability of the base station power supply system is the first level, and thus whether the base station power supply system is reliable. It can be seen that by analyzing multiple reliability influencing factors of the base station power supply system, the reliability of the base station power supply system can be effectively evaluated, and the risk of power outage faced by the base station power supply system can be accurately analyzed, thereby improving the reliability of the base station power supply system. Operational safety ensures the stable operation of the base station power supply system.
  • Figure 1 is a schematic flow chart for evaluating the reliability of a base station power supply system provided by an embodiment of the present application
  • Figure 2 is a schematic flowchart of another method for evaluating the reliability of a base station power supply system provided by an embodiment of the present application
  • Figure 3 is a schematic flowchart of another method for evaluating the reliability of a base station power supply system provided by an embodiment of the present application
  • Figure 4 is a schematic flowchart of yet another method for evaluating the reliability of a base station power supply system provided by an embodiment of the present application
  • Figure 5 is a schematic structural diagram of a device for evaluating the reliability of a base station power supply system provided by an embodiment of the present application
  • Figure 6 is a schematic structural diagram of a device for evaluating the reliability of a base station power supply system provided by an embodiment of the present application.
  • This application solution can be implemented based on a terminal with data processing capabilities, which can be a computer, server, cloud, etc.
  • the reliability evaluation method of the base station power supply system of this application may include the following steps:
  • Step S101 Determine whether the power supply mode of the base station power supply system is direct power supply from the mains. If not, step S102 is executed. If yes, step S105 is executed.
  • Step S102 Determine whether the base station power supply system satisfies the first condition and the second condition at the same time. If so, execute step S103.
  • the first condition is that the external power supply lines of the base station power supply system are two independent external power supply lines, and the voltage of the external power supply lines of the base station power supply system is a preset external power supply voltage.
  • the second condition is that the average number of monthly failures of the base station power supply system is less than the preset number of failures, and the duration of each failure of the base station power supply system is not less than the preset duration.
  • the preset external power supply voltage can represent a standard value of the voltage of the external power supply line, and the preset external power supply voltage can be customized.
  • the preset external power supply voltage value is 385V.
  • the preset number of failures can represent the maximum number of monthly average failures in the base station power supply system reliability standard.
  • the preset number of failures can be customized.
  • the preset number of failures is 3.5 times.
  • the preset time can represent the maximum duration of each fault in the base station power supply system reliability standard.
  • the preset time can be customized. For example, the preset time is 6 hours.
  • the base station power supply system only meets the necessary conditions for reliability standards when the external power supply lines of the base station power supply system are in the form of two independent circuits and the voltage of the external power supply lines is 385V.
  • the base station power supply system meets the necessary conditions for reliability standards.
  • Step S103 Calculate the remote power supply limit of the base station power supply system, and determine whether the base station power supply system meets the third condition or the fourth condition. If so, execute step S104. Whether the base station power supply system meets the third condition or the fourth condition.
  • the third condition is that the remote power supply distance of the base station power supply system is less than the remote power supply limit.
  • the fourth condition is that the base station power supply system is equipped with a primary DC-DC power supply.
  • the base station power supply system meets the necessary conditions for reliability standards.
  • Step S104 Determine the reliability of the base station power supply system to be the first level.
  • the first level can mean that the operation safety factor of the base station power supply system reaches the standard and is relatively reliable.
  • the first condition and the second condition must be met at the same time, and the third or fourth condition must be met before the base station power supply system is evaluated as relatively Solid reliability level.
  • Step S105 Determine whether the base station power supply system satisfies the fifth condition, the sixth condition and the seventh condition at the same time. If so, execute step S106.
  • the fifth condition is that the base station power supply system is equipped with a transformer that is only adapted to the base station.
  • the sixth condition is that the base station power supply system is equipped with an uninterrupted power supply.
  • the seventh condition is that the remaining capacity of the battery of the base station power supply system after a preset operating time is greater than a limit threshold.
  • the limit threshold can be expressed by the following formula:
  • Q is the limit threshold
  • K is the preset safety factor
  • I is the load discharge current of the battery
  • T is the number of hours of discharge of the battery
  • is the discharge capacity coefficient of the battery
  • t is the The ambient temperature value of the battery.
  • the uninterruptible power supply can provide power for UPS (Uninterruptible Power Supply).
  • UPS Uninterruptible Power Supply
  • the preset running time can represent the standard time for the battery of the evaluation base station power supply system to maintain the operation of the equipment.
  • the preset running time can be customized. For example, the preset running time is 6 hours.
  • the base station power supply system only meets the reliability standard when the base station power supply system is equipped with a transformer that is only suitable for the base station and a UPS power supply, and the remaining capacity of the battery after 6 hours of operation is greater than the limit threshold. necessary conditions.
  • Step S106 Determine the reliability of the base station power supply system to be the first level.
  • the fifth condition, the sixth condition and the seventh condition must be met at the same time before the base station power supply system is evaluated as a relatively reliable reliability level.
  • the reliability evaluation method of the base station power supply system analyzes whether the power supply mode of the base station power supply system is the direct power supply mode of the mains. When the analysis result is not the direct power supply mode of the mains power, it further analyzes the partial reliability of the base station power supply system.
  • the reliability influencing factors are the external power supply line of the base station power supply system, the voltage of the external power supply line, the average number of failures per month, the duration of each failure, the remote power supply distance, whether a first-level DC-DC power supply is installed, It is concluded whether the reliability of the base station power supply system is the first level, and when the analysis result is the direct power supply method of the mains, further analyze the factors affecting the reliability of another part of the base station power supply system.
  • the factors affecting the reliability of the other part of the base station power supply system are whether to install only Based on the transformer adapted to the base station, whether an uninterrupted power supply is installed, and the remaining capacity of the battery after the preset operating time, it can be concluded whether the reliability of the base station power supply system is the first level, and thus whether the base station power supply system is reliable. It can be seen that by analyzing multiple reliability influencing factors of the base station power supply system, the reliability of the base station power supply system can be effectively evaluated, and the risk of power outage faced by the base station power supply system can be accurately analyzed, thereby improving the reliability of the base station power supply system. Operational safety ensures the stable operation of the base station power supply system.
  • the reliability evaluation method of the base station power supply system may include:
  • Step S201 Determine whether the power supply mode of the base station power supply system is direct power supply from the mains. If not, step S202 is executed. If yes, step S205 is executed.
  • Step S202 Determine whether the base station power supply system satisfies the first condition and the second condition at the same time. If yes, step S203 is executed. If not, step S207 is executed.
  • Step S203 Calculate the remote power supply limit of the base station power supply system, and determine whether the base station power supply system meets the third condition or the fourth condition. If so, execute step S204.
  • Step S204 Determine the reliability of the base station power supply system to be the first level.
  • Step S205 Determine whether the base station power supply system satisfies the fifth condition, the sixth condition and the seventh condition at the same time. If yes, execute step S206.
  • Step S206 Determine the reliability of the base station power supply system to be the first level.
  • steps S201-S206 correspond to the steps S101-S106 in the foregoing embodiment. Please refer to the foregoing introduction for details and will not be repeated here.
  • Step S207 Determine the reliability of the base station power supply system to be the second level.
  • the reliability of the base station power supply system may be determined to be the second level.
  • the second level can mean that the operation safety factor of the base station power supply system does not meet the standards and is less reliable.
  • the reliability of the base station power supply system can be determined to be the second level.
  • the reliability evaluation method of the base station power supply system provided in this embodiment is based on the analysis of reliability influencing factors such as the form of the external power supply line of the base station power supply system, the voltage of the external power supply line of the base station power supply system, the number of failures and the duration of the failure of the base station power supply system. , thereby effectively evaluating the reliability of the base station power supply system and accurately analyzing the risk of power outage faced by the base station power supply system, thereby improving the operational safety of the base station power supply system and ensuring the stable operation of the base station power supply system.
  • the reliability evaluation method of the base station power supply system can include:
  • Step S301 Determine whether the power supply mode of the base station power supply system is direct power supply from the mains. If not, step S302 is executed. If yes, step S305 is executed.
  • Step S302 Determine whether the base station power supply system satisfies the first condition and the second condition at the same time. If so, execute step S303.
  • Step S303 Calculate the remote power supply limit of the base station power supply system, and determine whether the base station power supply system meets the third condition or the fourth condition. If yes, execute step S304; if not, execute step S308.
  • Step S304 Determine the reliability of the base station power supply system to be the first level.
  • Step S305 Determine whether the base station power supply system satisfies the fifth condition, the sixth condition and the seventh condition at the same time. If so, execute step S306.
  • Step S306 Determine the reliability of the base station power supply system to be the first level.
  • Step S307 Determine the reliability of the base station power supply system to be the second level.
  • steps S301-S307 correspond to the steps S201-S207 in the foregoing embodiment. Please refer to the foregoing introduction for details and will not be described again here.
  • Step S308 Determine the reliability of the base station power supply system to be the second level.
  • the base station power supply system does not meet the reliability standards at least.
  • the reliability of the power supply system of the base station can be determined to be the second level.
  • the reliability evaluation method of the base station power supply system can effectively evaluate the reliability of the base station power supply system by analyzing factors such as the remote power supply distance of the base station power supply system and the power supply of the base station power supply system. Accurately analyze the risk of power outage faced by the base station power supply system, thereby improving the operational safety of the base station power supply system and ensuring the stable operation of the base station power supply system.
  • the provided reliability evaluation method of the base station power supply system may include:
  • Step S401 Determine whether the power supply mode of the base station power supply system is direct power supply from the mains. If not, execute step S402. If yes, execute step S405.
  • Step S402 Determine whether the base station power supply system satisfies the first condition and the second condition at the same time. If so, execute step S403.
  • Step S403 Calculate the remote power supply limit of the base station power supply system, and determine whether the base station power supply system meets the third condition or the fourth condition. If yes, execute step S404; if not, execute step S408.
  • Step S404 Determine the reliability of the base station power supply system to be the first level.
  • Step S405 Determine whether the base station power supply system satisfies the fifth condition, the sixth condition and the seventh condition at the same time. If yes, step S406 is executed. If not, step S409 is executed.
  • Step S406 Determine the reliability of the base station power supply system to be the first level.
  • Step S407 Determine the reliability of the base station power supply system to be the second level.
  • Step S408 Determine the reliability of the base station power supply system to be the second level.
  • steps S401-S408 correspond to the steps S301-S308 in the foregoing embodiment. Please refer to the foregoing introduction for details and will not be repeated here.
  • Step S409 Determine the reliability of the base station power supply system to be the second level.
  • the base station power supply system does not install a transformer that is only suitable for the base station, or does not install a UPS power supply, or the remaining capacity of the battery after the preset operating time does not reach the limit threshold, then the base station power supply system does not meet the requirements of reliability.
  • the reliability of the base station power supply system can be determined to be the second level.
  • the reliability evaluation method of the base station power supply system effectively evaluates the reliability of the base station by analyzing factors such as the transformer of the base station power supply system, the power supply of the base station power supply system, and the remaining capacity of the battery after 6 hours of operation. Evaluating the reliability of the power supply system can accurately analyze the risk of power outage faced by the base station power supply system, thereby improving the operational safety of the base station power supply system and ensuring the stable operation of the base station power supply system.
  • the process of calculating the remote power supply limit of the base station power supply system mentioned in the above embodiments is introduced.
  • This process may include:
  • the power supply voltage of the base station power supply system the remote input voltage of the base station power supply system, and the total load power of the remote equipment of the base station power supply system
  • the resistivity of the remote power supply transmission wire of the base station power supply system determines the remote power supply limit of the base station power supply system.
  • the following formula can be used to calculate the remote power supply limit of the base station power supply system:
  • L is the remote power supply limit of the base station power supply system
  • S is the power conversion efficiency of the remote power supply line of the base station power supply system
  • U S is the power supply voltage of the base station power supply system
  • U 0 is the The remote input voltage of the base station power supply system
  • P 0 is the total load power of the remote equipment of the base station power supply system
  • is the resistivity of the remote power supply transmission wire of the base station power supply system.
  • the device for realizing the reliability evaluation of the power supply system of the base station provided by the embodiment of the present application is described below.
  • the device for realizing the reliability evaluation of the power supply system described below and the method for realizing the reliability evaluation of the power supply system described above can correspond to each other.
  • Figure 5 is a schematic structural diagram of a device for implementing reliability assessment of a power supply system disclosed in an embodiment of the present application.
  • the device may include:
  • the mains direct power supply judgment unit 11 is used to judge whether the power supply mode of the base station power supply system is the mains direct power supply mode. If so, execute the first two-condition judgment unit; if not, execute the three-condition judgment unit;
  • the first dual-condition judgment unit 12 is used to judge whether the base station power supply system satisfies the first condition and the second condition at the same time. If so, execute the second dual-condition judgment unit.
  • the first condition is the base station power supply system.
  • the external power supply lines are two independent external power supply lines, and the voltage of the external power supply line of the base station power supply system is a preset external power supply voltage.
  • the second condition is that the average number of monthly failures of the base station power supply system is less than the preset The number of failures, and the duration of each failure of the base station power supply system is not less than the preset time;
  • the second dual-condition judgment unit 13 is used to calculate the remote power supply limit of the base station power supply system, and judge whether the base station power supply system meets the third condition or the fourth condition. If so, execute the first evaluation unit, so The third condition is that the remote power supply distance of the base station power supply system is less than the remote power supply limit, and the fourth condition is that the base station power supply system is equipped with a primary DC-DC power supply;
  • the first evaluation unit 14 is used to determine that the reliability of the base station power supply system is the first level
  • the three-condition judgment unit 15 is used to judge whether the base station power supply system satisfies the fifth condition, the sixth condition and the seventh condition at the same time. If so, execute the second evaluation unit.
  • the fifth condition is the installation of the base station power supply system. There is a transformer that is only adapted to the base station.
  • the sixth condition is that the base station power supply system is equipped with an uninterrupted power supply.
  • the seventh condition is that the remaining capacity of the battery of the base station power supply system after the preset operating time is greater than Limit threshold, the limit threshold is:
  • Q is the limit threshold
  • K is the preset safety factor
  • I is the load discharge current of the battery
  • T is the number of hours of discharge of the battery
  • is the discharge capacity coefficient of the battery
  • t is the The ambient temperature value of the battery
  • the second evaluation unit 16 is used to determine that the reliability of the base station power supply system is the first level.
  • the device for reliability evaluation of the power supply system provided by the embodiment of the present application can be applied to equipment for reliability evaluation of the power supply system, such as terminals: mobile phones, computers, etc.
  • Figure 6 shows a block diagram of the hardware structure of the equipment for reliability evaluation of the power supply system.
  • the hardware structure of the equipment for reliability evaluation of the power supply system may include: at least one processor 1, at least one communication interface. 2. At least one memory 3 and at least one communication bus 4;
  • the number of processor 1, communication interface 2, memory 3, and communication bus 4 is at least one, and processor 1, communication interface 2, and memory 3 complete communication with each other through communication bus 4;
  • the processor 1 may be a central processing unit CPU, or an application specific integrated circuit ASIC (Application Specific Integrated Circuit), or one or more integrated circuits configured to implement embodiments of the present invention, etc.;
  • ASIC Application Specific Integrated Circuit
  • Memory 3 may include high-speed RAM memory, and may also include non-volatile memory (non-volatile memory), such as at least one disk memory;
  • the memory stores a program, and the processor can call the program stored in the memory.
  • the program is used for:
  • the first condition is that the external power supply line of the base station power supply system is There are two independent external power supply lines, and the voltage of the external power supply line of the base station power supply system is a preset external power supply voltage.
  • the second condition is that the average number of monthly failures of the base station power supply system is less than the preset number of failures, and The duration of each failure of the base station power supply system is not less than the preset time;
  • the base station power supply system satisfies the first condition and the second condition at the same time, calculate the remote power supply limit of the base station power supply system, and determine whether the base station power supply system satisfies the third condition or the fourth condition,
  • the third condition is that the remote power supply distance of the base station power supply system is less than the remote power supply limit
  • the fourth condition is that the base station power supply system is equipped with a first-level DC-DC power supply
  • the base station power supply system meets the third condition or the fourth condition, determine the reliability of the base station power supply system to be the first level
  • the power supply mode of the base station power supply system is direct power supply from the mains, determine whether the base station power supply system satisfies the fifth condition, the sixth condition and the seventh condition at the same time.
  • the fifth condition is that the base station power supply system is installed with It is only suitable for the transformer of the base station.
  • the sixth condition is that the base station power supply system is equipped with an uninterrupted power supply.
  • the seventh condition is that the remaining capacity of the battery of the base station power supply system after the preset operation time is greater than the limit. Value threshold, the limit threshold is:
  • Q is the limit threshold
  • K is the preset safety factor
  • I is the load discharge current of the battery
  • T is the number of hours of discharge of the battery
  • is the discharge capacity coefficient of the battery
  • t is the The ambient temperature value of the battery
  • the reliability of the base station power supply system is determined to be the first level.
  • Embodiments of the present application also provide a storage medium, which can store a program suitable for execution by a processor, where the program is used for:
  • the first condition is that the external power supply line of the base station power supply system is There are two independent external power supply lines, and the voltage of the external power supply line of the base station power supply system is a preset external power supply voltage.
  • the second condition is that the average number of monthly failures of the base station power supply system is less than the preset number of failures, and The duration of each failure of the base station power supply system is not less than the preset time;
  • the base station power supply system satisfies the first condition and the second condition at the same time, calculate the remote power supply limit of the base station power supply system, and determine whether the base station power supply system satisfies the third condition or the fourth condition,
  • the third condition is that the remote power supply distance of the base station power supply system is less than the remote power supply limit
  • the fourth condition is that the base station power supply system is equipped with a first-level DC-DC power supply
  • the base station power supply system meets the third condition or the fourth condition, determine the reliability of the base station power supply system to be the first level
  • the power supply mode of the base station power supply system is direct power supply from the mains, determine whether the base station power supply system satisfies the fifth condition, the sixth condition and the seventh condition at the same time.
  • the fifth condition is that the base station power supply system is installed with It is only suitable for the transformer of the base station.
  • the sixth condition is that the base station power supply system is equipped with an uninterrupted power supply.
  • the seventh condition is that the remaining capacity of the battery of the base station power supply system after the preset operation time is greater than the limit. Value threshold, the limit threshold is:
  • Q is the limit threshold
  • K is the preset safety factor
  • I is the load discharge current of the battery
  • T is the number of hours of discharge of the battery
  • is the discharge capacity coefficient of the battery
  • t is the The ambient temperature value of the battery
  • the reliability of the base station power supply system is determined to be the first level.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Power Engineering (AREA)
  • Development Economics (AREA)
  • Marketing (AREA)
  • Educational Administration (AREA)
  • Theoretical Computer Science (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Game Theory and Decision Science (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Emergency Management (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

一种共享铁塔基站供电系统的可靠性评估方法及装置,方法包括:判断基站供电系统的供电方式是否为市电直接供电方式,若否,分析基站供电系统的外部供电线路、外部供电线路的电压、月均故障次数、故障持续时间、远端供电距离、是否装有一级DC-DC电源、得出可靠性等级,若是,分析基站供电系统的是否安装专用变压器、不间断供电电源,以及蓄电池在预设运行时长后的剩余容量,得出可靠性等级,从而得出基站供电系统是否可靠。可见,通过分析基站供电系统的各种可靠性影响因素,有效地对基站供电系统的可靠性进行评估,能够准确分析出基站供电系统面临断电的风险,从而能够提高基站供电系统的运行安全性,保障基站供电系统的稳定运行。

Description

一种共享铁塔基站供电系统的可靠性评估方法及装置
本申请要求于2022年8月3日提交中国专利局、申请号为202210926869.3、发明名称为“一种基站供电系统的可靠性评估方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及供电质量评估领域,更具体的说,是涉及一种共享铁塔基站供电系统的可靠性评估方法及装置。
背景技术
随着用电量的不断提高,需要建立越来越多基站供电系统,且在互联网时代下,5G基站供电系统已成为当今基站供电系统的主流。相较于传统的4G基站供电系统,5G基站供电系统主要以有线协议栈、无线协议栈以及有源天线三级结构为主,对实时性较高和实时性较低的信息均能处理。
目前,5G基站供电系统的有源天线结构采用64T/64R天线阵列,能够扩大通道的信息容量,但与此同时会消耗较多的电力资源,以致5G基站供电系统的用电量会异常大幅增加,导致5G基站供电系统的运行状态高度不稳定。
如今,基站供电系统建设者在建设基站供电系统时,无法评估基站供电系统的可靠性,导致基站供电系统面临断电的风险,基站供电系统的运行安全性较低。
发明内容
鉴于上述问题,提出了本申请以便提供一种共享铁塔基站供电系统的可靠性评估方法及装置,以提高基站供电系统的运行安全性,保障基站供电系统的稳定运行。
为了实现上述目的,现提出具体方案如下:
一种基站供电系统的可靠性评估方法,包括:
判断基站供电系统的供电方式是否为市电直接供电方式;
若所述基站供电系统的供电方式不为市电直接供电方式,判断所述基站供电系统是否同时满足第一条件和第二条件,所述第一条件为所述基站供电系统的外部供电线路为两路独立的外部供电线路,且所述基站供电系统的外部供电线路的电压为预设外部供电电压,所述第二条件为所述基站供电系统的月均故障次数小于预设故障次数,且所述基站供电系统每次故障的持续时间不小于预设时长;
若所述基站供电系统同时满足所述第一条件和所述第二条件,计算所述基站供电系统的远端供电限值,并判断所述基站供电系统是否满足第三条件或第四条件,所述第三条件为所述基站供电系统的远端供电距离小于所述远端供电限值,所述第四条件为所述基站供电系统安装有一级DC-DC电源;
若所述基站供电系统满足所述第三条件或所述第四条件,确定所述基站供电系统的可靠性为第一等级;
若所述基站供电系统的供电方式为市电直接供电方式,判断所述基站供电系统是否同时满足第五条件、第六条件和第七条件,所述第五条件为所述基站供电系统安装有仅适配于基站的变压器,所述第六条件为所述基站供电系统安装有不间断供电电源,所述第七条件为所述基站供电系统的蓄电池在预设运行时长后的剩余容量大于限值阈值,所述限值阈值为:
Figure PCTCN2022123206-appb-000001
其中,Q为所述限值阈值,K为预设安全系数,I为所述蓄电池的负载放电电流,T为所述蓄电池放电的小时数,η为所述蓄电池的放电容量系数,t为所述蓄电池的环境温度值;
若所述基站供电系统同时满足所述第五条件、第六条件和第七条件,确定所述基站供电系统的可靠性为第一等级。
可选的,该方法还包括:
若所述基站供电系统不同时满足所述第一条件和所述第二条件,确定所述基站供电系统的可靠性为第二等级。
可选的,该方法还包括:
若所述基站供电系统同时不满足所述第三条件和所述第四条件,确定所述基站供电系统的可靠性为第二等级。
可选的,该方法还包括:
若所述基站供电系统不同时满足所述第五条件、第六条件和第七条件,确定所述基站供电系统的可靠性为第二等级。
可选的,计算所述基站供电系统的远端供电限值,包括:
根据所述基站供电系统的远端供电线路的电源转换效率、所述基站供电系统的供电电压、所述基站供电系统的远端输入电压、所述基站供电系统的远端设备的负载总功率,以及所述基站供电系统的远端供电传输导线的电阻率,确定所述基站供电系统的远端供电限值。
可选的,根据所述基站供电系统的远端供电线路的电源转换效率、所述基站供电系统的供电电压、所述基站供电系统的远端输入电压、所述基站供电系统的远端设备的负载总功率,以及所述基站供电系统的远端供电传输导线的电阻率,确定所述基站供电系统的远端供电限值,包括:
利用下式计算所述基站供电系统的远端供电限值:
Figure PCTCN2022123206-appb-000002
其中,L为所述基站供电系统的远端供电限值,S为所述基站供电系统的远端供电线路的电源转换效率,U S为所述基站供电系统的供电电压,U 0为所述基站供电系统的远端输入电压,P 0为所述基站供电系统的远端设备的负载总功率,ρ为所述基站供电系统的远端供电传输导线的电阻率。
一种基站供电系统的可靠性评估装置,包括:
市电直供判断单元,用于判断基站供电系统的供电方式是否为市电直接供电方式,若是,则执行第一双条件判断单元,若否,则执行三条件判断单元;
第一双条件判断单元,用于判断所述基站供电系统是否同时满足第一条件和第二条件,若是,则执行第二双条件判断单元,所述第一条件为所述基站供电系统的外部供电线路为两路独立的外部供电线路,且所述基站 供电系统的外部供电线路的电压为预设外部供电电压,所述第二条件为所述基站供电系统的月均故障次数小于预设故障次数,且所述基站供电系统每次故障的持续时间不小于预设时长;
第二双条件判断单元,用于计算所述基站供电系统的远端供电限值,并判断所述基站供电系统是否满足第三条件或第四条件,若是,则执行第一评估单元,所述第三条件为所述基站供电系统的远端供电距离小于所述远端供电限值,所述第四条件为所述基站供电系统安装有一级DC-DC电源;
第一评估单元,用于确定所述基站供电系统的可靠性为第一等级;
三条件判断单元,用于判断所述基站供电系统是否同时满足第五条件、第六条件和第七条件,若是,则执行第二评估单元,所述第五条件为所述基站供电系统安装有仅适配于基站的变压器,所述第六条件为所述基站供电系统安装有不间断供电电源,所述第七条件为所述基站供电系统的蓄电池在预设运行时长后的剩余容量大于限值阈值,所述限值阈值为:
Figure PCTCN2022123206-appb-000003
其中,Q为所述限值阈值,K为预设安全系数,I为所述蓄电池的负载放电电流,T为所述蓄电池放电的小时数,η为所述蓄电池的放电容量系数,t为所述蓄电池的环境温度值;
第二评估单元,用于确定所述基站供电系统的可靠性为第一等级。
可选的,该装置还包括:
第三评估单元,用于若所述第一双条件判断单元的判断结果为否,确定所述基站供电系统的可靠性为第二等级。
可选的,该装置还包括:
第四评估单元,用于若所述第二双条件判断单元的判断结果为否,确定所述基站供电系统的可靠性为第二等级。
可选的,该装置还包括:
第五评估单元,用于若所述三条件判断单元的判断结果为否,确定所 述基站供电系统的可靠性为第二等级。
可选的,所述第二双条件判断单元计算所述基站供电系统的远端供电限值,包括:
所述第二双条件判断单元根据所述基站供电系统的远端供电线路的电源转换效率、所述基站供电系统的供电电压、所述基站供电系统的远端输入电压、所述基站供电系统的远端设备的负载总功率,以及所述基站供电系统的远端供电传输导线的电阻率,确定所述基站供电系统的远端供电限值。
可选的,所述第二双条件判断单元根据所述基站供电系统的远端供电线路的电源转换效率、所述基站供电系统的供电电压、所述基站供电系统的远端输入电压、所述基站供电系统的远端设备的负载总功率,以及所述基站供电系统的远端供电传输导线的电阻率,确定所述基站供电系统的远端供电限值,包括:
所述第二双条件判断单元利用下式计算所述基站供电系统的远端供电限值:
Figure PCTCN2022123206-appb-000004
其中,L为所述基站供电系统的远端供电限值,S为所述基站供电系统的远端供电线路的电源转换效率,U S为所述基站供电系统的供电电压,U 0为所述基站供电系统的远端输入电压,P 0为所述基站供电系统的远端设备的负载总功率,ρ为所述基站供电系统的远端供电传输导线的电阻率。
借由上述技术方案,本申请通过分析基站供电系统的供电方式是否为市电直接供电方式,在分析结果不为市电直接供电方式时,进一步分析基站供电系统的部分可靠性影响因素,可靠性影响因素为基站供电系统的外部供电线路、该外部供电线路的电压、月均故障次数、每次故障的持续时间、远端供电距离、是否安装有一级DC-DC电源、得出基站供电系统的可靠性是否为第一等级,并在分析结果为市电直接供电方式时,进一步分析基站供电系统的另一部分可靠性影响因素,该另一部分可靠性影响因素为是否安装仅适配于基站的变压器、是否安装有不间断供电电源,以及蓄 电池在预设运行时长后的剩余容量,得出基站供电系统的可靠性是否为第一等级,从而得出基站供电系统是否可靠。由此可见,通过分析基站供电系统的多个可靠性影响因素,从而有效地对基站供电系统的可靠性进行评估,能够准确分析出基站供电系统面临断电的风险,从而能够提高基站供电系统的运行安全性,保障基站供电系统的稳定运行。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本申请实施例提供的一种评估基站供电系统可靠性的流程示意图;
图2为本申请实施例提供的另一种评估基站供电系统可靠性的流程示意图;
图3为本申请实施例提供的又一种评估基站供电系统可靠性的流程示意图;
图4为本申请实施例提供的再一种评估基站供电系统可靠性的流程示意图;
图5为本申请实施例提供的一种评估基站供电系统可靠性的装置结构示意图;
图6为本申请实施例提供的一种评估基站供电系统可靠性的设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没 有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请方案可以基于具备数据处理能力的终端实现,该终端可以是电脑、服务器、云端等。
接下来,结合图1所述,本申请的基站供电系统的可靠性评估方法可以包括以下步骤:
步骤S101、判断基站供电系统的供电方式是否为市电直接供电方式,若否,则执行步骤S102,若是,则执行步骤S105。
具体的,可以通过监测基站供电系统通过市电引入的方式,判断基站供电系统的供电方式是否为市电直接供电方式,也可以通过查询地网铺设的设计文件确定监测基站供电系统通过市电引入的方式,以判断基站供电系统的供电方式是否为市电直接供电方式。
步骤S102、判断所述基站供电系统是否同时满足第一条件和第二条件,若是,则执行步骤S103。
其中,所述第一条件为所述基站供电系统的外部供电线路为两路独立的外部供电线路,且所述基站供电系统的外部供电线路的电压为预设外部供电电压。所述第二条件为所述基站供电系统的月均故障次数小于预设故障次数,且所述基站供电系统每次故障的持续时间不小于预设时长。
具体的,预设外部供电电压可以表示外部供电线路的电压的标准值,预设外部供电电压可以自定义,示例如预设外部供电电压的值为385V。预设故障次数可以表示基站供电系统可靠性标准中,月均故障次数的最大值,预设故障次数可以自定义,示例如预设故障次数为3.5次。预设时长可以表示基站供电系统可靠性标准中,每次故障持续时长的最大值,预设时长可以自定义,示例如预设时长为6h。
可以理解的是,当基站供电系统的外部供电线路的形式为两路独立,且外部供电线路的电压为385V时,基站供电系统才符合可靠性标准的必要条件。与此同时,当基站供电系统的月均故障次数小于3.5次,且每次故障的持续时间小于6小时,基站供电系统才符合可靠性标准的必要条件。
步骤S103、计算所述基站供电系统的远端供电限值,并判断所述基站供电系统是否满足第三条件或第四条件,若是,则执行步骤S104。所述基站供电系统是否满足第三条件或第四条件。
其中,所述第三条件为所述基站供电系统的远端供电距离小于所述远端供电限值。所述第四条件为所述基站供电系统安装有一级DC-DC电源。
可以理解的是,当基站供电系统的远端供电距离小于所述远端供电限值,或者基站供电系统安装有一级DC-DC电源,基站供电系统符合可靠性标准的必要条件。
步骤S104、确定所述基站供电系统的可靠性为第一等级。
具体的,第一等级可以表示基站供电系统的运行安全系数达标,较为可靠。
可以理解的是,当基站供电系统的供电方式不为市电直接供电方式时,需同时满足第一条件和第二条件,还需要满足第三条件或者第四条件,基站供电系统才评估为较为可靠的可靠性等级。
步骤S105、判断所述基站供电系统是否同时满足第五条件、第六条件和第七条件,若是,则执行步骤S106。
其中,所述第五条件为所述基站供电系统安装有仅适配于基站的变压器。所述第六条件为所述基站供电系统安装有不间断供电电源。所述第七条件为所述基站供电系统的蓄电池在预设运行时长后的剩余容量大于限值阈值。
所述限值阈值可以利用下式表示:
Figure PCTCN2022123206-appb-000005
其中,Q为所述限值阈值,K为预设安全系数,I为所述蓄电池的负载放电电流,T为所述蓄电池放电的小时数,η为所述蓄电池的放电容量系数,t为所述蓄电池的环境温度值。
具体的,不间断供电电源可以为UPS(Uninterruptible Power Supply)供电电源。预设运行时长可以表示评估基站供电系统的蓄电池维持设备运行的标准时长,预设运行时长可以自定义,示例如预设运行时长为6h。
可以理解的是,当基站供电系统安装有仅适配于基站的变压器,且安装有UPS供电电源,且蓄电池在运行6小时后的剩余容量大于限值阈值时,基站供电系统才符合可靠性标准的必要条件。
步骤S106、确定所述基站供电系统的可靠性为第一等级。
可以理解的是,当基站供电系统的供电方式为市电直接供电方式时,需同时满足第五条件、第六条件和第七条件,基站供电系统才评估为较为可靠的可靠性等级。
本实施例提供的基站供电系统的可靠性评估方法,通过分析基站供电系统的供电方式是否为市电直接供电方式,在分析结果不为市电直接供电方式时,进一步分析基站供电系统的部分可靠性影响因素,可靠性影响因素为基站供电系统的外部供电线路、该外部供电线路的电压、月均故障次数、每次故障的持续时间、远端供电距离、是否安装有一级DC-DC电源、得出基站供电系统的可靠性是否为第一等级,并在分析结果为市电直接供电方式时,进一步分析基站供电系统的另一部分可靠性影响因素,该另一部分可靠性影响因素为是否安装仅适配于基站的变压器、是否安装有不间断供电电源,以及蓄电池在预设运行时长后的剩余容量,得出基站供电系统的可靠性是否为第一等级,从而得出基站供电系统是否可靠。由此可见,通过分析基站供电系统的多个可靠性影响因素,从而有效地对基站供电系统的可靠性进行评估,能够准确分析出基站供电系统面临断电的风险,从而能够提高基站供电系统的运行安全性,保障基站供电系统的稳定运行。
考虑到基站供电系统的外部供电线路的形式、基站供电系统的外部供电线路的电压、基站供电系统故障次数与故障持续时间均是基站供电系统安全稳定运行的关键因素,对基站供电系统的可靠性有所影响,本申请的 一些实施例中,参照图2,所提供的基站供电系统的可靠性评估方法可以包括:
步骤S201、判断基站供电系统的供电方式是否为市电直接供电方式,若否,则执行步骤S202,若是,则执行步骤S205。
步骤S202、判断所述基站供电系统是否同时满足第一条件和第二条件,若是,则执行步骤S203,若否,则执行步骤S207。
步骤S203、计算所述基站供电系统的远端供电限值,并判断所述基站供电系统是否满足第三条件或第四条件,若是,则执行步骤S204。
步骤S204、确定所述基站供电系统的可靠性为第一等级。
步骤S205、判断所述基站供电系统是否同时满足第五条件、第六条件和第七条件,若是,则执行步骤S206。
步骤S206、确定所述基站供电系统的可靠性为第一等级。
上述步骤S201-S206与前述实施例中步骤S101-S106一一对应,详细参照前述介绍,此处不再赘述。
步骤S207、确定所述基站供电系统的可靠性为第二等级。
具体的,当基站供电系统不满足第一条件,或基站供电系统不满足第二条件时,可以确定所述基站供电系统的可靠性为第二等级。
其中,第二等级可以表示基站供电系统的运行安全系数不达标,较不可靠。
可以理解的是,当基站供电系统的外部供电线路的形式不为两路独立,或外部供电线路的电压不为385V,或基站供电系统的月均故障次数不小于3.5次,或发生故障的持续时间不小于6小时,基站供电系统不符合可靠性标准的至少一个必要条件,那么可以确定所述基站供电系统的可靠性为第二等级。
本实施例提供的基站供电系统的可靠性评估方法,通过分析基站供电系统的外部供电线路的形式、基站供电系统的外部供电线路的电压、基站供电系统故障次数与故障持续时间这些可靠性影响因素,从而有效地对基站供电系统的可靠性进行评估,能够准确分析出基站供电系统面临断电的 风险,从而能够提高基站供电系统的运行安全性,保障基站供电系统的稳定运行。
考虑到基站供电系统的远端供电距离与基站供电系统的电源,是基站供电系统安全稳定运行的关键因素,对基站供电系统的可靠性有所影响,本申请的一些实施例中,参照图3,所提供的基站供电系统的可靠性评估方法可以包括:
步骤S301、判断基站供电系统的供电方式是否为市电直接供电方式,若否,则执行步骤S302,若是,则执行步骤S305。
步骤S302、判断所述基站供电系统是否同时满足第一条件和第二条件,若是,则执行步骤S303。
步骤S303、计算所述基站供电系统的远端供电限值,并判断所述基站供电系统是否满足第三条件或第四条件,若是,则执行步骤S304,若否,则执行步骤S308。
步骤S304、确定所述基站供电系统的可靠性为第一等级。
步骤S305、判断所述基站供电系统是否同时满足第五条件、第六条件和第七条件,若是,则执行步骤S306。
步骤S306、确定所述基站供电系统的可靠性为第一等级。
步骤S307、确定所述基站供电系统的可靠性为第二等级。
上述步骤S301-S307与前述实施例中步骤S201-S207一一对应,详细参照前述介绍,此处不再赘述。
步骤S308、确定所述基站供电系统的可靠性为第二等级。
可以理解的是,当基站供电系统的远端供电距离不小于远端供电限值,与此同时基站供电系统也没有加装一级DC-DC电源,那么基站供电系统不符合可靠性标准的至少一个必要条件,可以确定所述基站供电系统的可靠性为第二等级。
本实施例提供的基站供电系统的可靠性评估方法,通过分析基站供电系统的远端供电距离和基站供电系统的电源这些可靠性影响因素,从而有 效地对基站供电系统的可靠性进行评估,能够准确分析出基站供电系统面临断电的风险,从而能够提高基站供电系统的运行安全性,保障基站供电系统的稳定运行。
考虑到基站供电系统的变压器、基站供电系统的供电电源、蓄电池在运行6小时后的剩余容量均是基站供电系统安全稳定运行的关键因素,对基站供电系统的可靠性有所影响,本申请的一些实施例中,参照图4,所提供的基站供电系统的可靠性评估方法可以包括:
步骤S401、判断基站供电系统的供电方式是否为市电直接供电方式,若否,则执行步骤S402,若是,则执行步骤S405。
步骤S402、判断所述基站供电系统是否同时满足第一条件和第二条件,若是,则执行步骤S403。
步骤S403、计算所述基站供电系统的远端供电限值,并判断所述基站供电系统是否满足第三条件或第四条件,若是,则执行步骤S404,若否,则执行步骤S408。
步骤S404、确定所述基站供电系统的可靠性为第一等级。
步骤S405、判断所述基站供电系统是否同时满足第五条件、第六条件和第七条件,若是,则执行步骤S406,若否,则执行步骤S409。
步骤S406、确定所述基站供电系统的可靠性为第一等级。
步骤S407、确定所述基站供电系统的可靠性为第二等级。
步骤S408、确定所述基站供电系统的可靠性为第二等级。
上述步骤S401-S408与前述实施例中步骤S301-S308一一对应,详细参照前述介绍,此处不再赘述。
步骤S409、确定所述基站供电系统的可靠性为第二等级。
可以理解的是,当基站供电系统没有安装仅适配于基站的变压器,或没有安装UPS供电电源,或蓄电池在预设运行时长后的剩余容量未达限值阈值,那么基站供电系统不符合可靠性标准的至少一个必要条件,可以确定所述基站供电系统的可靠性为第二等级。
本实施例提供的基站供电系统的可靠性评估方法,通过分析基站供电系统的变压器、基站供电系统的供电电源,以及蓄电池在运行6小时后的剩余容量这些可靠性影响因素,从而有效地对基站供电系统的可靠性进行评估,能够准确分析出基站供电系统面临断电的风险,从而能够提高基站供电系统的运行安全性,保障基站供电系统的稳定运行。
在本申请的一些实施例中,对上述实施例提到的计算所述基站供电系统的远端供电限值的过程进行介绍,该过程可以包括:
根据所述基站供电系统的远端供电线路的电源转换效率、所述基站供电系统的供电电压、所述基站供电系统的远端输入电压、所述基站供电系统的远端设备的负载总功率,以及所述基站供电系统的远端供电传输导线的电阻率,确定所述基站供电系统的远端供电限值。
具体的,可以利用下式计算所述基站供电系统的远端供电限值:
Figure PCTCN2022123206-appb-000006
其中,L为所述基站供电系统的远端供电限值,S为所述基站供电系统的远端供电线路的电源转换效率,U S为所述基站供电系统的供电电压,U 0为所述基站供电系统的远端输入电压,P 0为所述基站供电系统的远端设备的负载总功率,ρ为所述基站供电系统的远端供电传输导线的电阻率。
下面对本申请实施例提供的实现基站供电系统的可靠性评估的装置进行描述,下文描述的实现供电系统的可靠性评估的装置与上文描述的实现供电系统的可靠性评估方法可相互对应参照。
参见图5,图5为本申请实施例公开的一种实现供电系统的可靠性评估的装置结构示意图。
如图5所示,该装置可以包括:
市电直供判断单元11,用于判断基站供电系统的供电方式是否为市电直接供电方式,若是,则执行第一双条件判断单元,若否,则执行三条件判断单元;
第一双条件判断单元12,用于判断所述基站供电系统是否同时满足第一条件和第二条件,若是,则执行第二双条件判断单元,所述第一条件为所述基站供电系统的外部供电线路为两路独立的外部供电线路,且所述基站供电系统的外部供电线路的电压为预设外部供电电压,所述第二条件为所述基站供电系统的月均故障次数小于预设故障次数,且所述基站供电系统每次故障的持续时间不小于预设时长;
第二双条件判断单元13,用于计算所述基站供电系统的远端供电限值,并判断所述基站供电系统是否满足第三条件或第四条件,若是,则执行第一评估单元,所述第三条件为所述基站供电系统的远端供电距离小于所述远端供电限值,所述第四条件为所述基站供电系统安装有一级DC-DC电源;
第一评估单元14,用于确定所述基站供电系统的可靠性为第一等级;
三条件判断单元15,用于判断所述基站供电系统是否同时满足第五条件、第六条件和第七条件,若是,则执行第二评估单元,所述第五条件为所述基站供电系统安装有仅适配于基站的变压器,所述第六条件为所述基站供电系统安装有不间断供电电源,所述第七条件为所述基站供电系统的蓄电池在预设运行时长后的剩余容量大于限值阈值,所述限值阈值为:
Figure PCTCN2022123206-appb-000007
其中,Q为所述限值阈值,K为预设安全系数,I为所述蓄电池的负载放电电流,T为所述蓄电池放电的小时数,η为所述蓄电池的放电容量系数,t为所述蓄电池的环境温度值;
第二评估单元16,用于确定所述基站供电系统的可靠性为第一等级。
本申请实施例提供的供电系统的可靠性评估的装置可应用于供电系统的可靠性评估的设备,如终端:手机、电脑等。可选的,图6示出了供电系统的可靠性评估的设备的硬件结构框图,参照图6,供电系统的可靠性评估的设备的硬件结构可以包括:至少一个处理器1,至少一个通信接口2,至少一个存储器3和至少一个通信总线4;
在本申请实施例中,处理器1、通信接口2、存储器3、通信总线4的数量为至少一个,且处理器1、通信接口2、存储器3通过通信总线4完成相互间的通信;
处理器1可能是一个中央处理器CPU,或者是特定集成电路ASIC(Application Specific Integrated Circuit),或者是被配置成实施本发明实施例的一个或多个集成电路等;
存储器3可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory)等,例如至少一个磁盘存储器;
其中,存储器存储有程序,处理器可调用存储器存储的程序,所述程序用于:
判断基站供电系统的供电方式是否为市电直接供电方式;
若所述基站供电系统的供电方式不为市电直接供电方式,判断所述基站供电系统是否同时满足第一条件和第二条件,所述第一条件为所述基站供电系统的外部供电线路为两路独立的外部供电线路,且所述基站供电系统的外部供电线路的电压为预设外部供电电压,所述第二条件为所述基站供电系统的月均故障次数小于预设故障次数,且所述基站供电系统每次故障的持续时间不小于预设时长;
若所述基站供电系统同时满足所述第一条件和所述第二条件,计算所述基站供电系统的远端供电限值,并判断所述基站供电系统是否满足第三条件或第四条件,所述第三条件为所述基站供电系统的远端供电距离小于所述远端供电限值,所述第四条件为所述基站供电系统安装有一级DC-DC电源;
若所述基站供电系统满足所述第三条件或所述第四条件,确定所述基站供电系统的可靠性为第一等级;
若所述基站供电系统的供电方式为市电直接供电方式,判断所述基站供电系统是否同时满足第五条件、第六条件和第七条件,所述第五条件为所述基站供电系统安装有仅适配于基站的变压器,所述第六条件为所述基站供电系统安装有不间断供电电源,所述第七条件为所述基站供电系统的蓄电池在预设运行时长后的剩余容量大于限值阈值,所述限值阈值为:
Figure PCTCN2022123206-appb-000008
其中,Q为所述限值阈值,K为预设安全系数,I为所述蓄电池的负载放电电流,T为所述蓄电池放电的小时数,η为所述蓄电池的放电容量系数,t为所述蓄电池的环境温度值;
若所述基站供电系统同时满足所述第五条件、第六条件和第七条件,确定所述基站供电系统的可靠性为第一等级。
可选的,所述程序的细化功能和扩展功能可参照上文描述。
本申请实施例还提供一种存储介质,该存储介质可存储有适于处理器执行的程序,所述程序用于:
判断基站供电系统的供电方式是否为市电直接供电方式;
若所述基站供电系统的供电方式不为市电直接供电方式,判断所述基站供电系统是否同时满足第一条件和第二条件,所述第一条件为所述基站供电系统的外部供电线路为两路独立的外部供电线路,且所述基站供电系统的外部供电线路的电压为预设外部供电电压,所述第二条件为所述基站供电系统的月均故障次数小于预设故障次数,且所述基站供电系统每次故障的持续时间不小于预设时长;
若所述基站供电系统同时满足所述第一条件和所述第二条件,计算所述基站供电系统的远端供电限值,并判断所述基站供电系统是否满足第三条件或第四条件,所述第三条件为所述基站供电系统的远端供电距离小于 所述远端供电限值,所述第四条件为所述基站供电系统安装有一级DC-DC电源;
若所述基站供电系统满足所述第三条件或所述第四条件,确定所述基站供电系统的可靠性为第一等级;
若所述基站供电系统的供电方式为市电直接供电方式,判断所述基站供电系统是否同时满足第五条件、第六条件和第七条件,所述第五条件为所述基站供电系统安装有仅适配于基站的变压器,所述第六条件为所述基站供电系统安装有不间断供电电源,所述第七条件为所述基站供电系统的蓄电池在预设运行时长后的剩余容量大于限值阈值,所述限值阈值为:
Figure PCTCN2022123206-appb-000009
其中,Q为所述限值阈值,K为预设安全系数,I为所述蓄电池的负载放电电流,T为所述蓄电池放电的小时数,η为所述蓄电池的放电容量系数,t为所述蓄电池的环境温度值;
若所述基站供电系统同时满足所述第五条件、第六条件和第七条件,确定所述基站供电系统的可靠性为第一等级。
可选的,所述程序的细化功能和扩展功能可参照上文描述。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间可以根据需要进行组合,且相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种基站供电系统的可靠性评估方法,其特征在于,包括:
    判断基站供电系统的供电方式是否为市电直接供电方式;
    若所述基站供电系统的供电方式不为市电直接供电方式,判断所述基站供电系统是否同时满足第一条件和第二条件,所述第一条件为所述基站供电系统的外部供电线路为两路独立的外部供电线路,且所述基站供电系统的外部供电线路的电压为预设外部供电电压,所述第二条件为所述基站供电系统的月均故障次数小于预设故障次数,且所述基站供电系统每次故障的持续时间不小于预设时长;
    若所述基站供电系统同时满足所述第一条件和所述第二条件,计算所述基站供电系统的远端供电限值,并判断所述基站供电系统是否满足第三条件或第四条件,所述第三条件为所述基站供电系统的远端供电距离小于所述远端供电限值,所述第四条件为所述基站供电系统安装有一级DC-DC电源;
    若所述基站供电系统满足所述第三条件或所述第四条件,确定所述基站供电系统的可靠性为第一等级;
    若所述基站供电系统的供电方式为市电直接供电方式,判断所述基站供电系统是否同时满足第五条件、第六条件和第七条件,所述第五条件为所述基站供电系统安装有仅适配于基站的变压器,所述第六条件为所述基站供电系统安装有不间断供电电源,所述第七条件为所述基站供电系统的蓄电池在预设运行时长后的剩余容量大于限值阈值,所述限值阈值为:
    Figure PCTCN2022123206-appb-100001
    其中,Q为所述限值阈值,K为预设安全系数,I为所述蓄电池的负载放电电流,T为所述蓄电池放电的小时数,η为所述蓄电池的放电容量系数,t为所述蓄电池的环境温度值;
    若所述基站供电系统同时满足所述第五条件、第六条件和第七条件,确定所述基站供电系统的可靠性为第一等级。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    若所述基站供电系统不同时满足所述第一条件和所述第二条件,确定所述基站供电系统的可靠性为第二等级。
  3. 根据权利要求1所述的方法,其特征在于,还包括:
    若所述基站供电系统同时不满足所述第三条件和所述第四条件,确定所述基站供电系统的可靠性为第二等级。
  4. 根据权利要求1所述的方法,其特征在于,还包括:
    若所述基站供电系统不同时满足所述第五条件、第六条件和第七条件,确定所述基站供电系统的可靠性为第二等级。
  5. 根据权利要求1所述的方法,其特征在于,计算所述基站供电系统的远端供电限值,包括:
    根据所述基站供电系统的远端供电线路的电源转换效率、所述基站供电系统的供电电压、所述基站供电系统的远端输入电压、所述基站供电系统的远端设备的负载总功率,以及所述基站供电系统的远端供电传输导线的电阻率,确定所述基站供电系统的远端供电限值。
  6. 根据权利要求1所述的方法,其特征在于,根据所述基站供电系统的远端供电线路的电源转换效率、所述基站供电系统的供电电压、所述基站供电系统的远端输入电压、所述基站供电系统的远端设备的负载总功率,以及所述基站供电系统的远端供电传输导线的电阻率,确定所述基站供电系统的远端供电限值,包括:
    利用下式计算所述基站供电系统的远端供电限值:
    Figure PCTCN2022123206-appb-100002
    其中,L为所述基站供电系统的远端供电限值,S为所述基站供电系统的远端供电线路的电源转换效率,U S为所述基站供电系统的供电电压,U 0为所述基站供电系统的远端输入电压,P 0为所述基站供电系统的远端设备的负载总功率,ρ为所述基站供电系统的远端供电传输导线的电阻率。
  7. 一种基站供电系统的可靠性评估装置,其特征在于,包括:
    市电直供判断单元,用于判断基站供电系统的供电方式是否为市电直 接供电方式,若是,则执行第一双条件判断单元,若否,则执行三条件判断单元;
    第一双条件判断单元,用于判断所述基站供电系统是否同时满足第一条件和第二条件,若是,则执行第二双条件判断单元,所述第一条件为所述基站供电系统的外部供电线路为两路独立的外部供电线路,且所述基站供电系统的外部供电线路的电压为预设外部供电电压,所述第二条件为所述基站供电系统的月均故障次数小于预设故障次数,且所述基站供电系统每次故障的持续时间不小于预设时长;
    第二双条件判断单元,用于计算所述基站供电系统的远端供电限值,并判断所述基站供电系统是否满足第三条件或第四条件,若是,则执行第一评估单元,所述第三条件为所述基站供电系统的远端供电距离小于所述远端供电限值,所述第四条件为所述基站供电系统安装有一级DC-DC电源;
    第一评估单元,用于确定所述基站供电系统的可靠性为第一等级;
    三条件判断单元,用于判断所述基站供电系统是否同时满足第五条件、第六条件和第七条件,若是,则执行第二评估单元,所述第五条件为所述基站供电系统安装有仅适配于基站的变压器,所述第六条件为所述基站供电系统安装有不间断供电电源,所述第七条件为所述基站供电系统的蓄电池在预设运行时长后的剩余容量大于限值阈值,所述限值阈值为:
    Figure PCTCN2022123206-appb-100003
    其中,Q为所述限值阈值,K为预设安全系数,I为所述蓄电池的负载放电电流,T为所述蓄电池放电的小时数,η为所述蓄电池的放电容量系数,t为所述蓄电池的环境温度值;
    第二评估单元,用于确定所述基站供电系统的可靠性为第一等级。
  8. 根据权利要求7所述的装置,其特征在于,还包括:
    第三评估单元,用于若所述第一双条件判断单元的判断结果为否,确定所述基站供电系统的可靠性为第二等级。
  9. 根据权利要求7所述的装置,其特征在于,还包括:
    第四评估单元,用于若所述第二双条件判断单元的判断结果为否,确定所述基站供电系统的可靠性为第二等级。
  10. 根据权利要求7所述的装置,其特征在于,还包括:
    第五评估单元,用于若所述三条件判断单元的判断结果为否,确定所述基站供电系统的可靠性为第二等级。
PCT/CN2022/123206 2022-08-03 2022-09-30 一种共享铁塔基站供电系统的可靠性评估方法及装置 WO2024027008A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210926869.3 2022-08-03
CN202210926869.3A CN115169976A (zh) 2022-08-03 2022-08-03 一种基站供电系统的可靠性评估方法及装置

Publications (1)

Publication Number Publication Date
WO2024027008A1 true WO2024027008A1 (zh) 2024-02-08

Family

ID=83476574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123206 WO2024027008A1 (zh) 2022-08-03 2022-09-30 一种共享铁塔基站供电系统的可靠性评估方法及装置

Country Status (2)

Country Link
CN (1) CN115169976A (zh)
WO (1) WO2024027008A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115169976A (zh) * 2022-08-03 2022-10-11 贵州电网有限责任公司 一种基站供电系统的可靠性评估方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103248038A (zh) * 2012-02-13 2013-08-14 中国移动通信集团甘肃有限公司 基站供电网络系统和基站应急供电方法
WO2013143261A1 (zh) * 2012-03-29 2013-10-03 中兴通讯股份有限公司 基站节电方法及装置
CN108495329A (zh) * 2018-03-29 2018-09-04 中国联合网络通信集团有限公司 一种基站可靠性的评价方法和装置
CN111953067A (zh) * 2020-08-20 2020-11-17 清华四川能源互联网研究院 基于低压直流的智能配电房+5g基站的能量信息枢纽及其可靠性与能效评价方法
CN113659699A (zh) * 2021-08-17 2021-11-16 王良根 用于基站的应急供电智能控制方法和系统
CN115169976A (zh) * 2022-08-03 2022-10-11 贵州电网有限责任公司 一种基站供电系统的可靠性评估方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103248038A (zh) * 2012-02-13 2013-08-14 中国移动通信集团甘肃有限公司 基站供电网络系统和基站应急供电方法
WO2013143261A1 (zh) * 2012-03-29 2013-10-03 中兴通讯股份有限公司 基站节电方法及装置
CN108495329A (zh) * 2018-03-29 2018-09-04 中国联合网络通信集团有限公司 一种基站可靠性的评价方法和装置
CN111953067A (zh) * 2020-08-20 2020-11-17 清华四川能源互联网研究院 基于低压直流的智能配电房+5g基站的能量信息枢纽及其可靠性与能效评价方法
CN113659699A (zh) * 2021-08-17 2021-11-16 王良根 用于基站的应急供电智能控制方法和系统
CN115169976A (zh) * 2022-08-03 2022-10-11 贵州电网有限责任公司 一种基站供电系统的可靠性评估方法及装置

Also Published As

Publication number Publication date
CN115169976A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
CN101165633B (zh) 用于电源故障预测的方法、装置和系统
US7518340B2 (en) Method and system for charge rate adjustment to enhance battery cycle life
WO2021136384A1 (zh) 用于内短路电流检测方法、装置、设备及可读存储介质
CA3032409C (en) Distributed resource electrical demand forecasting system and method
WO2023116385A1 (zh) 电源设备识别方法、电子设备及储能设备
CN102200942A (zh) 基于云计算的应用程序行为监测方法及云端服务器
WO2024027008A1 (zh) 一种共享铁塔基站供电系统的可靠性评估方法及装置
CN109391950B (zh) 终端分布的预测方法、装置、设备及介质
WO2023011066A1 (zh) 一种电池热管理系统的性能检测方法及相关设备
CN105738831A (zh) 一种移动终端的电池电量监控方法及装置
CN112287548B (zh) 基于宽带网络的配电网实时监控方法及装置
WO2022051990A1 (zh) 供电方法、装置、电子设备和可读存储介质
US20170206125A1 (en) Monitoring system, monitoring device, and monitoring program
CN114210604A (zh) 一种多特征梯次利用动力电池分选方法、装置及存储介质
CN113891336A (zh) 通信网络减频退网方法、装置、计算机设备和存储介质
EP3926453A1 (en) Partitioning method and apparatus therefor
CN117031322A (zh) 锂离子电池高自放电筛选方法、装置、电子设备及介质
CN111278039B (zh) 用户感知压抑识别方法、装置、设备及介质
CN106844160B (zh) 一种功率控制方法、装置和电子设备
CN112312480B (zh) 长期演进网络的负载均衡方法、装置和基站设备
WO2016018104A1 (en) Method and apparatus for device management based on device power information and pricing schemes
CN111308140A (zh) 一种差异式主动上报抄表的方法
CN117805663B (zh) 基于运行状态的电池测试方法、装置、设备和介质
WO2023246070A1 (zh) 异常用电站点检测方法、装置、电子设备及可读存储介质
JP2018182806A (ja) 電源システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953801

Country of ref document: EP

Kind code of ref document: A1