WO2024025376A1 - 선박 구조 - Google Patents

선박 구조 Download PDF

Info

Publication number
WO2024025376A1
WO2024025376A1 PCT/KR2023/010991 KR2023010991W WO2024025376A1 WO 2024025376 A1 WO2024025376 A1 WO 2024025376A1 KR 2023010991 W KR2023010991 W KR 2023010991W WO 2024025376 A1 WO2024025376 A1 WO 2024025376A1
Authority
WO
WIPO (PCT)
Prior art keywords
ship
propeller
inlet
attachment structure
outlet
Prior art date
Application number
PCT/KR2023/010991
Other languages
English (en)
French (fr)
Inventor
이원준
박슬기
김병주
김승종
권민재
Original Assignee
에이치디한국조선해양 주식회사
에이치디현대중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230097778A external-priority patent/KR20240015603A/ko
Application filed by 에이치디한국조선해양 주식회사, 에이치디현대중공업 주식회사 filed Critical 에이치디한국조선해양 주식회사
Publication of WO2024025376A1 publication Critical patent/WO2024025376A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B13/00Conduits for emptying or ballasting; Self-bailing equipment; Scuppers
    • B63B13/02Ports for passing water through vessels' sides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/12Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
    • B63H1/14Propellers
    • B63H1/28Other means for improving propeller efficiency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/16Arrangements on vessels of propulsion elements directly acting on water of propellers characterised by being mounted in recesses; with stationary water-guiding elements; Means to prevent fouling of the propeller, e.g. guards, cages or screens

Definitions

  • the present invention relates to ship structures.
  • a rudder is attached to the rear of the propeller, and as the rudder rotates left and right, it changes the sailing direction by controlling the direction of fluid flow.
  • fuels such as diesel and LPG are used to drive the engine, which consumes a large amount of fuel and additionally emits exhaust gases, greenhouse gases, etc., causing environmental destruction.
  • Examples of fuel-saving technology include energy-saving devices (ESDs) that improve propulsion efficiency and save fuel by changing the flow by improving the shape of the ship's stern, propeller, duct, rudder, etc. or attaching separate attachments. : Energy Saving Device), and these energy saving devices have already been applied to a significant number of ships and are in use.
  • ESDs energy-saving devices
  • the present invention was created to solve the problems of the prior art as described above.
  • the purpose of the present invention is to improve the structure of the ship, improve the propulsion efficiency of the ship, and provide a ship structure that is easy to manufacture and maintain. will be.
  • a ship structure includes the hull of a ship; and an attachment structure provided to be attached to the stern of the hull, wherein the attachment structure includes a penetrating portion provided to allow fluid to flow from one side to the other side, and the penetrating portion is an inlet formed on one side of the attachment structure. ; and an outlet formed on another side of the attachment structure behind the inlet.
  • the penetration part may guide fluid flowing into the inlet to flow into a propeller disposed at the rear of the ship through the outlet.
  • the attachment structure may be disposed in front of a rudder connected to the end of the stern of the hull.
  • the attachment structure may have a shape corresponding to a curved portion of the stern of the hull.
  • connection line where one side and the other side of the attachment structure meet may be formed at an angle so as not to be aligned with a central axis perpendicular to the propeller axis.
  • the degree to which the connection line is inclined with respect to the central axis may gradually increase as it moves upward from the axis of the propeller.
  • a portion of the attachment structure and a portion of the stern of the hull may be formed in a fit-to-fit structure.
  • a filler may be formed in the internal space of the attachment structure.
  • the internal space of the attachment structure may be formed into a honeycomb structure.
  • an opening and closing device that controls the flow of fluid may be disposed at the inlet and the outlet.
  • a spray device that sprays fluid from the penetrating portion may be disposed at the outlet, or a suction device that suctions fluid may be disposed at the inlet.
  • the inlet is provided at 20% or more and 120% or less of the radius of the propeller based on the propeller axis, and the outlet is 20% or more and 100% of the radius of the propeller based on the propeller axis. It can be prepared below.
  • the attachment structure in the attachment structure provided to be attached to the stern of the hull of a ship, includes a penetrating portion provided to allow fluid to flow from one side to the other side, and the penetrating portion includes the attachment. an inlet formed on one side of the structure; and an outlet formed on the other side of the attachment structure.
  • the ship structure according to the present invention can improve the ship's propulsion efficiency and facilitate manufacturing and maintenance by improving the ship's structure.
  • Figure 1 is a perspective view of a ship structure according to a first embodiment of the present invention.
  • Figure 2 is a side view of the ship structure according to the first embodiment of the present invention.
  • Figure 3 is a rear view of the ship structure according to the second embodiment of the present invention.
  • Figure 4 is a conceptual diagram of a concave portion in a ship structure according to an embodiment of the present invention.
  • Figure 5 is a diagram comparing the degree of improvement in the transmission horsepower required to operate a ship through CFD of the ship structure according to an embodiment of the present invention.
  • Figure 6 shows a comparison of CFD analysis results of a ship structure according to an embodiment of the present invention.
  • Figure 7 shows a comparison of CFD analysis results of a ship structure according to an embodiment of the present invention.
  • Figure 8 is a perspective view of a ship structure according to a third embodiment of the present invention.
  • Figure 9 is a perspective view of the ship structure viewed from a different direction than Figure 8.
  • Figure 10 is a side view of the ship structure of Figure 8.
  • Figure 11 is a rear view of the ship structure according to the fourth embodiment of the present invention.
  • Figure 12 is a perspective view of the ship structure of Figure 11.
  • ship (1) is an expression that encompasses marine plants such as FLNG, FSRU, etc. in addition to general merchant ships such as carriers carrying liquefied gas.
  • Figure 1 is a perspective view of a ship structure according to a first embodiment of the present invention
  • Figure 2 is a side view of a ship structure according to a first embodiment of the present invention.
  • the ship structure according to the first embodiment of the present invention may include a penetrating part 30 penetrating the stern 10.
  • the penetrating part 30 may be provided on the upper and front side of the axis of the propeller 20 and formed to penetrate the stern 10.
  • An inlet 31 is provided on one side of the stern 10 and connected to the inlet 31 on the other side. It may include an outlet (32).
  • the penetrating portion 30 may include a passage (not shown) from the inlet 31 to the outlet 32, and the passage may be comprised of one passage or multiple passages, so the number is not limited. , in the case of a plurality of passages, each passage may have a different area or shape.
  • one inlet 31 and one outlet 32 are shown, but the number and shape of the inlet 31 and outlet 32 are not limited, and can be combined with one passage or a plurality of passages. This allows ship structures of various shapes to be possible.
  • the fluid generated by the ocean current when the ship (1) is in operation or at anchor flows along the shape of the ship (1).
  • the fluid meets the penetration part 30 at the stern 10, it passes through the penetration part 30. This can be transmitted to the propeller 20.
  • the flow of fluid passing through the penetrating part 30 may vary, and when the height of the inlet 31 is higher than the height of the outlet 32 In this case, the flow of fluid passing through the penetrating part 30 flows downward, and when the height of the inlet 31 is provided relatively low, the flow of fluid passing through the penetrating part 30 flows upward.
  • the relative height and position of the inlet 31 and the outlet 32 may be set differently depending on the rotation direction of the propeller 20, etc., and generally the inlet 31 is provided higher than the outlet 32 and the penetration part ( 30) can cause the fluid to flow downward.
  • the inlet 31 is provided on the starboard side and the penetration part 30 is formed by penetrating from the starboard side to the port side, and when the propeller 20 turns left, the inlet 31 is formed.
  • the penetrating portion 30 may be formed by penetrating from the port side to the starboard side.
  • the inlet 31 may be provided at the stern 10 at the top of the shaft of the propeller 20, and the outlet 32 may be located at the rear of the inlet 31 and provided at the stern 10. Therefore, the outlet 32 may be provided closer to the propeller 20 than the inlet 31, but in order to transmit the flow of fluid discharged through the inlet 31 to the propeller 20, the inlet 31 and the propeller (20) A certain distance needs to be provided between them.
  • the area of the outlet 32 can be made smaller than the area of the inlet 31. That is, the size and area of the inlet 31 may be at least equal to or larger than the size and area of the outlet 32.
  • the fluid equation is based on the 'Bernoulli equation'. If the flow rate of the fluid passing through the penetrating part 30 is constant, the flow rate is calculated as the product of the unit area and the velocity of the fluid, so the outlet (32) has a small unit area. ), the speed of the fluid can increase.
  • the positions of the inlet 31 and the outlet 32 are provided at the stern 10 at the top of the axis of the propeller 20, as described above, but the watertight bulkhead (S.F.B.H.) provided separately at the stern 10 It can be located at the rear of.
  • Watertight Bulkhead (S.F.B.H) is a Stern Frame Bulkhead, which is a wall to prevent flooding of adjacent compartments when one compartment of the ship (1) is damaged and flooded. It can also serve as a longitudinal/transverse member. .
  • a watertight bulkhead may be provided at the bow, stern (10), engine room, etc., and in the ship structure according to the first embodiment of the present invention, an inlet (31) and an outlet ( 32) can be located. Accordingly, the inlet 31 and the outlet 32 may be provided between the watertight bulkhead provided at the stern 10 and the propeller 20.
  • the inlet 31 and the outlet 32 are provided on the upper part of the shaft of the propeller 20, but may be provided within or outside the radius (R) of the propeller 20 to transmit the flow of fluid to the propeller 20.
  • the inlet 31 may be provided at 20% or more and 120% or less of the radius of the propeller 20 based on the axis of the propeller 20, and the outlet 32 may be provided at a radius of 20% or less of the propeller 20 based on the axis of the propeller 20. It can be prepared at 20% or more and 100% or less.
  • the inlet 31 and the outlet 32 may be provided between 20% and 120% of the radius based on the axis of the propeller 20, and the size of the inlet 31 may be provided larger than the size of the outlet 32. Therefore, the height of the outlet 32 can be set to 120% or less of the radius.
  • the distance between the inlet 31 and the outlet 32 and the propeller 20 can be maintained at a certain distance, which is the distance between the stern 10 where the inlet 31 and the outlet 32 are provided and the propeller 20. It can be adjusted to maintain a certain distance.
  • the distance or length (b) between the stern 10 (hereinafter referred to as the stern 10) provided with the inlet 31 and the outlet 32 and the propeller 20 is the radius of the propeller 20. It can be calculated by measuring at a height of 70%, and can be expressed as an equation for the diameter (D) of the propeller (20), which is twice the radius of the propeller (20), and the number of fins (Z) provided on the propeller (20). .
  • the length (b) between the stern (10) and the propeller (20) is provided to be longer than (0.35 - 0.02Z)D, and can be expressed as b > (0.35 - 0.02Z)D. Therefore, the larger the diameter D of the propeller 20, the smaller the number Z of the fins provided on the propeller 20, the longer the length b between the stern 10 and the propeller 20, the longer the stern. (10) and propeller (20) can be separated.
  • Figure 2 is a side view of a ship structure according to the first embodiment of the present invention, and it can be seen that a side view of a conventional ship structure is shown in the upper left corner of Figure 2 for comparison.
  • the length (b') between the stern 10 and the propeller 20 in the conventional ship structure and the length (b') between the stern 10 and the propeller 20 in the ship structure according to the first embodiment of the present invention is different.
  • the length (b') between the stern (10) and the propeller (20) is relatively long, so that the stern (10) has a concave shape, and only the propeller (20) protrudes from the stern (10). It was possible to have the shape that came out.
  • the length (b) between the stern 10 and the propeller 20 is provided to be relatively short, and the newly formed stern 10 portion compared to the conventional ship structure An inlet 31 and an outlet 32 may be provided.
  • the length (b) between the stern 10 and the propeller 20 in the ship structure according to the first embodiment of the present invention may be provided longer than a certain distance specified in classification regulations.
  • the shapes of the inlet 31 and the outlet 32 are shown as squares, but the shapes of the inlet 31 and the outlet 32 may be non-gonal or polygonal.
  • Non-gonal refers to shapes such as circles and ovals, and polygons can refer to shapes with other angles such as triangles, squares, pentagons, trapezoids, etc.
  • the inlet 31 and the outlet 32 may have different shapes.
  • the inlet 31 may be square and the outlet 32 may be circular. If the area of the rectangular inlet 31 is larger than the area of the circular outlet 32, the flow velocity at the circular outlet 32 can be formed relatively quickly according to the 'Bernoulli equation' described above.
  • the fluid is discharged to the outlet 32 through the inlet 31 and the passage. Since the shape and speed of the fluid discharged may vary depending on the shape of the outlet 32, for example, the outlet 32 has an oval shape. Even if it is provided, the shape and speed of the discharged fluid may vary depending on the location or curvature of the oval center.
  • Figure 3 is a rear view of the ship structure according to the second embodiment of the present invention.
  • a control pin 40 is provided inside the penetrating portion 30. Although three control pins 40 are shown, this is an example and at least one control pin 40 may be provided.
  • the control pin 40 may include an internal pin (not shown) provided inside the penetrating part 30 and a protruding pin (not shown) protruding from the penetrating part 30.
  • the control pin 40 is provided with at least one internal pin and may not be provided with a protruding pin. That is, the control pin 40 exists only inside the penetrating part 30 and may be provided so as not to protrude from the penetrating part 30.
  • the internal pin may refer to a pin that is provided in a passage (not shown) of the penetrating part 30 and does not protrude from the penetrating part 30.
  • the angle and position at which the internal fins are provided may vary, but generally they can be arranged horizontally, which is the longitudinal direction of the ship, or vertically, which is the height direction.
  • the internal fin may be provided in the passage of the penetrating portion 30 between the inlet 31 and the outlet 32.
  • the size and shape of the inlet 31 and the outlet 32 may be the same, but preferably, the size of the inlet 31 may be larger than the size of the outlet 32, so the internal pin is connected to the inlet 31. It may have a shape such as a trapezoid in which the size of the direction is relatively large.
  • the internal pin is provided in the passage of the penetrating part 30, so the resistance of the fluid may not be strong, but the protruding pin protrudes from the penetrating part 30, so the fluid resistance may be strong, and may be made of a different material and shape than the internal pin. You can.
  • the protruding fins may protrude from the through portion 30 and protrude out of the inlet 31 or outlet 32.
  • the protruding pin may be provided separately from the internal pin, and may be linearly connected to the internal pin and protrude out of the inlet 31 or the outlet 32.
  • the angle of the protruding pin may be the same as or different from that of the internal pin, and whether the internal pin and the protruding pin are connected may be determined regardless of the angle.
  • each control pin 40 can be individually set at an angle to generate various fluid flows, and the penetrating portion 30 If there are a plurality of passages, the arrangement of the control pin 40 may vary for each passage.
  • the control pin can not only change the flow of fluid flowing into the inlet 31, but also control the amount of fluid flowing in through the protruding pin provided in the inlet 31 and flowing out through the protruding pin provided in the outlet 32. The amount of fluid and the fluid flow can also be adjusted.
  • the control pin 40 may be provided fixedly, and in some cases, its angle or position may be changed, and an operating device (not shown) for this may be disposed.
  • control pin 40 When the operating device is deployed, the control pin 40 can be used to block the inlet 31 or the outlet 32 to block fluid passing through the penetrating part 30, which will continue even during operation of the ship 1. You can.
  • protruding fin it may be provided to protrude out of the inlet 31 or the outlet 32, but may be located within the diameter of the propeller 20, and if it does not interfere with the fluid delivered to the propeller 20, the propeller 20 )
  • a protruding pin may be provided up to a diameter of about .
  • Figure 4 is a conceptual diagram of a concave portion 50 in a ship structure according to an embodiment of the present invention.
  • a recess 50 (recess, not shown) is provided around the inlet 31 or the outlet 32.
  • the concave portion 50 is provided to have a larger area than the shape of the inlet 31 or the outlet 32, and may have a more concave shape than the shell plate of the stern 10.
  • the concave portion 50 provided at the inlet 31 can allow the fluid flowing along the stern 10 to well collect into the inlet 31, and the concave portion 50 provided at the outlet 32 allows fluid to flow depending on its shape. can be scattered or concentrated.
  • the shape of the concave portion 50 may generally be similar to the shape of the inlet 31 and the outlet 32, but may vary. When the concave portion 50 is provided, the passage of the penetrating portion 30 may be shorter than when the concave portion 50 is not provided. That is, since the concave portion 50 is provided in a concave shape that gathers into the inlet 31 or outlet 32, the inlet 31 or outlet 32 is provided at a specific point of the concave portion 50 and is relatively It can be formed from the inside.
  • the concave portion 50 is expressed as a figure including the shape of the inlet 31 or the outlet 32, but may be located only in part of the shape of the inlet 31 or the outlet 32, and is formed by lines and points rather than a figure. It can also be formed in the form of .
  • the ship structure according to an embodiment of the present invention is provided with a penetrating part 30 and a control pin 40 that penetrate the stern 10, so it is easy to manufacture with a relatively simple structure compared to the conventional ESD and is structurally stable. It can be high, and can have at least the same amount of improvement as the conventional ESD in the amount of improvement in the transmission horsepower required to operate the ship 1.
  • the above-mentioned location limitations of the outlet 32, the inlet 31, and the control pin are only examples according to one embodiment, and may be designed to deviate from the location limitations depending on the design.
  • Figure 5 is a diagram comparing the degree of improvement in the transmission horsepower required to operate the ship (1) through CFD of the ship structure according to an embodiment of the present invention
  • Figure 6 is a diagram comparing the degree of improvement in the transmission horsepower required to operate the ship (1) through CFD of the ship structure according to an embodiment of the present invention.
  • CFD analysis results are compared and shown
  • Figure 7 shows a comparison of CFD analysis results of a ship structure according to an embodiment of the present invention.
  • FIG. 5 The figures in FIG. 5 are expressed as a ratio, with the first bar, a conventional ship (Without ESD), being prepared without ESD as 100% for comparison.
  • the second bar (With PSD) is a ship equipped with a PSD (Pre-Swirl Duct), and it can be seen that the transmission horsepower of the ship has been improved by about 3% compared to a conventional ship (Without ESD).
  • the third bar (With Intake hole) is a ship (1) provided with a penetration part (30) (Intake hole), which is a feature of the present invention.
  • the transmitted horsepower of the ship (1) is about 3%. It can be seen that there has been improvement.
  • the fourth bar is a ship equipped with FCF (Flow Control Fin), and it can be seen that the ship's transmission horsepower has been improved by about 1% compared to a conventional ship (Without ESD).
  • FCF Flow Control Fin
  • the fifth bar (With AFG) is a ship equipped with an AFG (Asymmetric Flow Generator), and it can be seen that the ship's transmission horsepower has been improved by about 2% compared to a conventional ship (Without ESD).
  • AFG Asymmetric Flow Generator
  • the third bar (With Intake hole) of the ship 1 provided with the penetration part 30 (Intake hole), which is a feature of the present invention, is similar to the second bar (With PSD), and is similar to the conventional ship (Without ESD). ), it can be seen that the transmission horsepower of the ship (1) has been improved by about 3% compared to ).
  • the second bar is a ship equipped with a PSD (Pre-Swirl Duct), which is an additional structure in which a duct is provided in front of the propeller, and the third bar (With Intake hole) is equipped with a penetration part 30, which is a feature of the present invention. Since the degree of the improved effect is the same, the ship structure of the present invention can have an improvement that is at least equal to or superior to that of the conventional ESD in the amount of improvement in the transmitted horsepower required to operate the ship (1).
  • Figures 6 and 7 are CFD analysis results for a conventional ship and a ship having the ship structure of the present invention, showing the results for n (propeller rotation speed), Q (torque), T (thrust), and Power (transmitted horsepower). It can be seen that is shown.
  • a ship (NEW) having a ship structure provided with a penetrating part 30, which is a characteristic of the present invention, is based on the same speed as a conventional ship (Existing) without a penetrating part 30, which is a characteristic of the present invention.
  • n propeller rotation speed
  • Q torque
  • Power transmitted horsepower
  • Figure 8 is a perspective view of a ship structure according to a third embodiment of the present invention.
  • Figure 9 is a perspective view of the ship structure viewed from a different direction than Figure 8.
  • Figure 10 is a side view of the ship structure of Figure 8.
  • the vessel 1 of FIGS. 8, 9, and 10 may include an attachment structure 100 in addition to the vessel 1 of FIG. 1.
  • the vessel 1 of FIGS. 8, 9, and 10 may refer to features overlapping with the vessel 1 of FIGS. 1 to 7.
  • an attachment structure 100 may be disposed on the stern 10 of the hull of the ship 1.
  • the attachment structure 100 may be provided to be attachable to the stern 10.
  • the penetrating portion 30 may be formed in an attachment structure 100 that is separate from the hull of the ship 1.
  • an attachment structure 100 may be formed separately from the hull and attachable to the stern 10.
  • the horsepower effect transmitted to the propeller 20 by the fluid passing through the penetration part 30 may be insufficient.
  • the gap between the penetrating portion 30 and the propeller 20 can be reduced even on large ships where the distance between the stern 10 and the propeller 20 is long. It can be adjusted as needed. By adjusting the gap between the penetrating part 30 and the propeller 20, the horsepower transfer effect to the propeller 20 can be increased.
  • the attachment structure 100 may be attached to the stern 10 of the hull at the front (eg, +y direction) of the rudder 60 connected to the end 12 of the stern 10 of the hull.
  • the stern 10 of the hull may include a bent portion 11 that is bent toward the front (eg, +y direction).
  • the bent portion 11 may connect a portion of the hull coupled with the rudder 60 and another portion of the hull coupled with the propeller 20.
  • the attachment structure 100 may be formed symmetrically about a central axis (C-axis in FIGS. 9 and 10) perpendicular to the propeller axis (P-axis). For example, when viewed from the rear of the ship 1, the attachment structure 100 may be formed symmetrically with respect to the central axis (C-axis).
  • the attachment structure 100 may be formed in a shape corresponding to the hull.
  • the attachment structure 100 may be formed in a streamlined shape corresponding to the hull.
  • the shape of the attachment structure 100 is not limited to this.
  • the attachment structure 100 may have a partially angled shape.
  • Attachment structure 100 may be attached to bent portion 11 .
  • the attachment structure 100 may be formed in a shape corresponding to the curved portion 11 of the stern 10 of the hull and attached to the curved portion 11.
  • the manufacturer can provide the ship owner with a ship without any sense of difference between the ship and the attachment structure 100.
  • the attachment structure 100 may have the same appearance as the hull of the ship 1.
  • an image of a single vessel 1 can be formed even though the attachment structure 100 is separately coupled to the hull.
  • the attachment structure 100 may be attached to the stern 10 of the hull by a coupling member (not shown).
  • the joining member may include at least one of a welding member, a bolting member, a riveting member, a bonding member, and a taping member.
  • the attachment structure 100 may be fitted and coupled to the hull of the ship 1.
  • a portion of the attachment structure 100 and a portion of the hull stern 10 may be formed as a fitting structure (not shown).
  • a portion of the attachment structure 100 may be formed in a negative shape, and a portion of the stern 10 of the hull may be formed in a positive shape.
  • the attachment structure 100 can be attached to the hull.
  • a portion of the attachment structure 100 may be formed in a positive shape, and a portion of the stern 10 of the hull may be formed in a negative shape.
  • the manufacturer can mount the attachment structure 100 on the ship 1 or attach the attachment structure 100 in accordance with the requirements of the ship owner. can be separated.
  • a filler may be formed in the internal space of the attachment structure 100.
  • the internal space of the attachment structure 100 may be filled with filler that provides buoyancy to the vessel 1.
  • the internal space of the attachment structure 100 may be filled with filler that does not provide buoyancy to the vessel 1.
  • the aforementioned internal space may include a space between the attachment structure 100 and the hull when the attachment structure 100 is attached to the hull.
  • a reinforcing material that supports the attachment structure may be formed in the internal space of the attachment structure 100.
  • a honeycomb structure may be formed in the internal space of the attachment structure 100.
  • Attachment structure 100 may include a penetration portion 30 .
  • the penetrating part 30 may refer to the penetrating part 30 of FIGS. 1 to 7 .
  • the penetrating portion 30 may form a flow path through which fluid can move from one side 101 of the attachment structure 100 to the other side 102.
  • the penetrating portion 30 may include an inlet 31 formed on one side 101 and an outlet 32 formed on the other side 102 at the rear of the inlet 31.
  • the penetrating part 30 can guide the fluid flowing into the inlet 31 and discharged through the outlet 32 to flow into the propeller 20 disposed at the rear of the ship 1.
  • the penetrating part 30 rather than a separate PSD (Pre-Swirl Duct) member, the problem of the propeller 20 being damaged even if it is damaged during operation due to an external impact can be prevented.
  • a separate PSD Pre-Swirl Duct
  • damage to the propeller 20 may occur as the duct is placed in an area adjacent to the propeller 20. there is.
  • the problem of the propeller 20 being damaged can be prevented as the problem of falling from the hull does not occur.
  • a conventional duct-shaped PSD may have a cantilever-shaped structure in which part of the PSD is fixed to the hull. Because it has a cantilever-shaped structure, the area where the duct is coupled to the hull is small, and the bonding force to the hull may be weak.
  • the attachment structure 100 has a large area coupled to the hull, and by having a coupling structure in which the attachment structure 100 is generally attached to the hull, structural stability can be improved.
  • the propeller 20 and the penetration part 30 can be arranged adjacent to each other.
  • the penetrating part 30 may be placed relatively closer to the propeller 20 than when the penetrating part 30 is formed in the hull.
  • the location of the penetration part 30 may be limited due to the structural stability required by the classification society, but when the penetration part 30 is formed in the attachment structure 100, the penetration part 30 is formed in the attachment structure 100. (30) may be disposed adjacent to the propeller (20).
  • Opening and closing devices that control the flow of fluid may be disposed at the inlet 31 and the outlet 32.
  • a net that controls the flow of fluid may be disposed at the inlet 31 and outlet 32.
  • An injection device that sprays the fluid of the penetrating part 30 may be disposed at the outlet 32, or a suction device may be further disposed at the inlet 31 to suck the fluid.
  • Figure 11 is a rear view of the ship structure according to the fourth embodiment of the present invention.
  • Figure 12 is a perspective view of the ship structure of Figure 11.
  • the attachment structure 100 may be biased in one direction and attached to the stern 10 of the ship 1.
  • the attachment structure 100 when viewed from the rear of the ship 1, the attachment structure 100 may be biased in one direction (eg, -x direction) and attached to the stern 10 of the ship 1.
  • connection line 103 may be formed not to be aligned with the central axis (C-axis) orthogonal to the propeller axis (P-axis).
  • the connection line 103 may be formed at an angle so as not to be aligned with the central axis (C axis) of the propeller axis (P axis).
  • connection line 103 may gradually increase as it moves upward from the propeller axis (P-axis).
  • the degree to which the connection line 103 is inclined from the central axis (C axis) is 0.3R, 0.5R, 0.7R, and It can gradually increase in the order of 1.0R.
  • connection line 103 is inclined with respect to the central axis (C-axis)
  • the attachment structure 100 when viewed from the rear of the ship 1, the attachment structure 100 is oriented in one side direction (e.g. -x) relative to the central axis (C-axis). direction) and can be attached to the stern (10).
  • the attachment structure 100 By attaching the attachment structure 100 to the stern 10 by twisting it in the direction of one side, the propulsion efficiency of the ship 1 can be improved compared to the case where it is aligned on the central axis (C-axis).
  • the present invention is not limited to the embodiments described above, and may include a combination of the above embodiments or a combination of at least one of the above embodiments and known techniques as another embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

본 발명은 선박 구조에 있어서, 선박의 선체; 및 상기 선체의 선미에 부착 가능하도록 마련된 부착 구조물;을 포함하고, 상기 부착 구조물은 일 측면에서 다른 측면으로 유체가 유동하도록 마련된 관통부를 포함하고, 상기 관통부는, 상기 부착 구조물의 일 측면에 형성된 유입구; 및 상기 유입구의 후방에서 상기 부착 구조물의 다른 측면에 형성된 유출구를 포함할 수 있다.

Description

선박 구조
관련출원과의 상호인용
본 출원은 2022년 7월 27일에 출원된 한국특허출원 제10-2022-0093480호, 및 2023년 7월 26일에 출원된 한국특허출원 제10-2023-0097778호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 선박 구조에 관한 것이다.
대형 선박의 경우, 선미에 마련되어 있는 프로펠러가 회전할 때 발생하는 유체의 흐름을 추진력으로 이용하여 전진한다. 이때 프로펠러의 후측에는 러더가 부착되며, 러더가 좌우로 회전함에 따라 유체의 흐름 방향을 조절함으로써 항해 방향을 변경한다.
프로펠러로 대형 선박의 추진력을 얻기 위해서는 디젤, LPG등의 연료를 사용하여 엔진을 구동하는데, 많은 양의 연료가 소모되며 부가적으로 배출가스, 온실가스 등이 배출되어 환경 파괴를 야기하게 된다.
최근에는 환경 보호를 위하여, 선박 운항 시 온실가스 감축 방안에 대하여 논의되고 있으며 조선사들도 연료 소비량을 줄이고 온실가스 배출을 줄일 수 있는 연료절감기술에 대해서 지속적인 연구 및 개발을 해오고 있다.
연료절감 기술의 예시로는, 선박의 후미, 프로펠러, 덕트, 러더 등의 형상을 개량하거나 별도의 부가물을 부착함으로써 유동의 흐름을 변경하여 추진 효율을 높이는 동시에 연료를 절감하는 에너지 절감장치(ESD: Energy Saving Device)가 있으며, 이러한 에너지 절감 장치는 상당수의 선박에 이미 적용되어 사용 중이다.
그러나 이와 같은 에너지 절감 장치는, 선체에 마련된 형상을 개량하거나 별도의 부가물을 부착하므로 선박의 추진 효율을 높이는 동시에 저항에 영향을 주게 되며, 선박의 운항 중에 부유물 및 외력 등에 의하여 파괴 및 손상이 될 수 있어 유지 보수에 주의가 필요하다.
본 발명은 상기와 같은 종래기술의 문제점을 해결하고자 창출된 것으로서, 본 발명의 목적은, 선박의 구조를 개선하여 선박의 추진효율을 향상시키고 제조 및 유지 보수의 용이성을 가지는 선박구조를 제공하기 위한 것이다.
본 발명의 일 실시예에 따른 선박 구조는 선박의 선체; 및 상기 선체의 선미에 부착 가능하도록 마련된 부착 구조물;을 포함하고, 상기 부착 구조물은 일 측면에서 다른 측면으로 유체가 유동하도록 마련된 관통부를 포함하고, 상기 관통부는, 상기 부착 구조물의 일 측면에 형성된 유입구; 및 상기 유입구의 후방에서 상기 부착 구조물의 다른 측면에 형성된 유출구를 포함할 수 있다.
일 실시예에 따르면, 상기 관통부는 상기 유입구로 유입된 유체가 상기 유출구를 통해 상기 선박의 후방에 배치된 프로펠러로 유입되도록 유도할 수 있다.
일 실시예에 따르면, 상기 부착 구조물은, 상기 선체의 선미의 단부에 연결된 러더의 전방에 배치될 수 있다.
일 실시예에 따르면, 상기 부착 구조물은 상기 선체의 선미의 굴곡부에 대응하는 형상을 가질 수 있다.
일 실시예에 따르면, 상기 선박의 후방에서 보았을 때, 상기 부착 구조물의 일 측면과 다른 측면이 만나는 연결선이, 프로펠러 축에 직교하는 중심 축과 정렬되지 않도록 기울어져 형성될 수 있다.
일 실시예에 따르면, 상기 연결선이 상기 중심 축에 대하여 기울어진 정도는 상기 프로펠러의 축으로부터 상부로 향할수록 점진적으로 커질 수 있다.
일 실시예에 따르면, 상기 부착 구조물의 일부와 상기 선체의 선미의 일부는 끼워 맞춤 결합 구조로 형성되어 있을 수 있다.
일 실시예에 따르면, 상기 부착 구조물의 내부 공간에는 충진재가 형성될 수 있다.
일 실시예에 따르면, 상기 부착 구조물의 내부 공간에는 허니콤 구조로 형성될 수 있다.
일 실시예에 따르면, 상기 유입구 및 상기 유출구에는 유체의 흐름을 제어하는 개폐 장치가 배치될 수 있다.
일 실시예에 따르면, 상기 유출구에는 상기 관통부의 유체를 분사하는 분사 장치가 배치되거나, 또는 상기 유입구에는 유체를 흡입하는 흡입 장치가 배치될 수 있다.
일 실시예에 따르면, 상기 유입구는, 프로펠러 축을 기준으로 상기 프로펠러의 반지름의 20% 이상이고 120% 이하에서 마련되고, 상기 유출구는, 상기 프로펠러 축을 기준으로 상기 프로펠러의 반지름의 20% 이상이고 100% 이하에서 마련될 수 있다.
본 발명의 일 실시예에 따르면, 선박의 선체의 선미에 부착 가능하도록 마련된 부착 구조물에 있어서, 상기 부착 구조물은 일 측면에서 다른 측면으로 유체가 유동하도록 마련된 관통부를 포함하고, 상기 관통부는, 상기 부착 구조물의 일 측면에 형성된 유입구; 및 상기 부착 구조물의 상기 다른 측면에 형성된 유출구를 포함할 수 있다.
본 발명에 따른 선박구조는, 선박의 구조를 개선하여 선박의 추진효율을 향상시키고 제조 및 유지 보수를 용이하게 할 수 있다.
도 1은 본 발명의 제1 실시예에 따른 선박구조의 사시도이다.
도 2는 본 발명의 제1 실시예에 따른 선박구조의 측면도이다.
도 3은 본 발명의 제2 실시예에 따른 선박구조의 배면도이다.
도 4는 본 발명의 일 실시예에 따른 선박구조에서 오목부의 개념도이다.
도 5는 본 발명의 일 실시예에 따른 선박구조의 CFD를 통한 선박을 운용하는데 필요한 전달 마력의 개선 정도를 비교한 도면이다.
도 6은 본 발명의 일 실시예에 따른 선박구조의 CFD 해석 결과를 비교하여 도시한 것이다.
도 7은 본 발명의 일 실시예에 따른 선박구조의 CFD 해석 결과를 비교하여 도시한 것이다.
도 8은 본 발명의 제3 실시예에 따른 선박구조의 사시도이다.
도 9는 도 8과 다른 방향에서 바라본 선박구조의 사시도이다.
도 10은 도 8의 선박구조의 측면도이다.
도 11은 본 발명의 제4 실시예에 따른 선박구조의 배면도이다.
도 12는 도 11의 선박구조의 사시도이다.
본 발명의 목적, 특정한 장점 및 신규한 특징은 첨부된 도면들과 관련된 이하의 상세한 설명과 바람직한 실시예로부터 더욱 명백해질 것이다. 본 명세서에서 각 도면의 구성 요소들에 참조번호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면 상에 표시되더라도 가능한 한 동일한 번호를 가지도록 하고 있음에 유의하여야 한다. 또한, 본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다.
또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 본 발명은 선박 구조이며, 이때 선박(1)은 액화가스를 운반하는 운반선과 같은 일반 상선 외에도 FLNG, FSRU 등과 같은 해양플랜트를 포괄하는 표현임을 알려둔다.
도 1은 본 발명의 제1 실시예에 따른 선박구조의 사시도이고, 도 2는 본 발명의 제1 실시예에 따른 선박구조의 측면도이다.
도 1 및 도 2를 참조하면, 본 발명의 제1 실시예에 따른 선박구조는 선미(10)를 관통하는 관통부(30)를 포함할 수 있다.
관통부(30)는 프로펠러(20) 축의 상부 및 전방에 마련되어 선미(10)를 관통되게 형성될 수 있으며, 선미(10)의 일측에 유입구(31)가 마련되고 타측에 유입구(31)와 연결된 유출구(32)를 포함할 수 있다.
관통부(30)는 유입구(31)로부터 유출구(32)까지의 통로(도시하지 않음)를 포함할 수 있으며, 통로는 하나의 통로로 이루어지거나 복수의 통로로 이루어질 수 있어 개수에 한정되지는 않으며, 복수의 통로로 이루어지는 경우에는 각각의 통로는 서로 상이한 면적이나 다른 형상을 가질 수 있다.
도 2를 참조하면, 유입구(31)와 유출구(32)는 각각 1개씩 도시되어 있으나 유입구(31)와 유출구(32)의 개수와 형상은 한정되지 않으며, 하나의 통로 또는 복수의 통로와 조합이 가능하여 다양한 형상의 선박구조가 가능하다.
선박(1)의 운항시 또는 정박시에 해류에 의하여 발생하는 유체는 선박(1)의 형상을 따라서 흐르게 되는데, 유체가 선미(10)에서 관통부(30)를 만나면 관통부(30)를 통과하여 프로펠러(20)로 전달될 수 있다.
유입구(31)와 유출구(32)의 크기 및 높이에 따라서, 관통부(30)를 통과한 유체의 흐름을 달라질 수 있으며, 유입구(31)의 높이가 유출구(32)의 높이보다 높게 마련되는 경우에는, 관통부(30)를 통과한 유체의 흐름은 하향하게 되며, 유입구(31)의 높이가 상대적으로 낮게 마련되는 경우에는 관통부(30)를 통과한 유체의 흐름은 상향하게 된다.
유입구(31)와 유출구(32)의 상대적인 높이 및 마련되는 위치는, 프로펠러(20)의 회전 방향 등에 의하여 다르게 설정될 수 있으며, 일반적으로 유입구(31)가 유출구(32)보다 높게 마련되어 관통부(30)를 통한 유체가 하향 흐름을 가지게 할 수 있다.
또한 일예로, 프로펠러(20)가 우회전하는 경우에는 유입구(31)는 우현에 마련되어 관통부(30)는 우현에서 좌현으로 관통되어 형성되며, 프로펠러(20)가 좌회전하는 경우에는 유입구(31)는 좌현에 마련되어 관통부(30)는 좌현에서 우현으로 관통되어 형성될 수 있다.
유입구(31)는 프로펠러(20) 축의 상부에서 선미(10)에 마련되며, 유출구(32)는 유입구(31)의 후측에 위치하여 선미(10)에 마련될 수 있다. 따라서, 유출구(32)는 유입구(31)보다 프로펠러(20)에 가깝게 마련이 될 수 있으나, 유입구(31)를 통하여 배출되는 유체의 흐름을 프로펠러(20)로 전달하기 위해서 유입구(31)와 프로펠러(20) 사이에는 일정거리가 마련될 필요가 있다.
유출구(32)를 통해 배출되는 유체의 속도를 빠르게 하기 위하여, 유입구(31)의 면적보다 유출구(32)의 면적을 작게 만들 수 있다. 즉, 유입구(31)의 크기 및 면적은 유출구(32)의 크기 및 면적보다 적어도 같거나 크게 마련될 수 있다.
이는 유체에 관한 방정식은 '베르누이 방정식'에 의한 것인데, 관통부(30)를 통과하는 유체의 유량이 일정하다면 유량은 단위면적과 유체의 속도의 곱으로 계산이 되므로, 단위면적이 작은 유출구(32)에서 유체의 속도가 빨라질 수 있다.
도 2를 참조하면 유입구(31) 및 유출구(32)의 위치는, 앞서 설명한 바와 같이 프로펠러(20)의 축의 상부에서 선미(10)에 마련되지만, 선미(10)에 별도로 마련된 수밀격벽(S.F.B.H)의 후측에 위치할 수 있다. 수밀격벽(S.F.B.H)은, Stern Frame Bulkhead로서 선박(1)의 한 구획이 손상에 의해 침수가 생길 경우에 인접한 구획이 침수되는 것을 방지하기 위한 벽으로, 종/횡방향의 부재역할도 할 수 있다.
수밀격벽은 선수, 선미(10), 기관실 등에 마련될 수 있는데, 본 발명의 제1 실시예에 따른 선박구조에서는 선미(10)에 마련된 수밀격벽(S.F.B.H)의 후측에 유입구(31) 및 유출구(32)가 위치할 수 있다. 따라서, 유입구(31) 및 유출구(32)는 선미(10)에 마련된 수밀격벽과 프로펠러(20) 사이에 마련될 수 있다.
유입구(31)와 유출구(32)는 프로펠러(20)의 축의 상부에 마련되지만, 유체의 흐름을 프로펠러(20)로 전달하기 위하여 프로펠러(20)의 반지름(R) 내외에서 마련될 수 있다.
유입구(31)는 프로펠러(20) 축을 기준으로 프로펠러(20)의 반지름의 20% 이상이고 120% 이하에서 마련될 수 있으며, 유출구(32)는 프로펠러(20) 축을 기준으로 프로펠러(20)의 반지름의 20% 이상이고 100% 이하에서 마련될 수 있다.
즉, 유입구(31) 및 유출구(32)는 프로펠러(20) 축을 기준으로 반지름의 20%와 120% 사이에서 마련될 수 있으며, 유입구(31)의 크기가 유출구(32)의 크기보다 크게 마련될 수 있으므로 유출구(32)의 높이는 반지름의 120% 이하에서 마련될 수 있다.
유입구(31) 및 유출구(32)와 프로펠러(20) 사이의 거리는 일정거리가 유지될 수 있는데, 이는 유입구(31) 및 유출구(32)가 마련된 선미(10)와 프로펠러(20) 사이의 거리를 조절하여 일정거리가 유지되게 할 수 있다.
도 2를 참조하면, 유입구(31) 및 유출구(32)가 마련된 선미(10)(이하 선미(10))와 프로펠러(20) 사이의 거리 또는 길이(b)는, 프로펠러(20)의 반지름의 70%의 높이에서 측정하여 계산될 수 있으며, 프로펠러(20)의 반지름의 2배인 프로펠러(20) 직경(D)과 프로펠러(20)에 마련된 핀의 개수(Z)에 대한 식으로 표현될 수 있다.
선미(10)와 프로펠러(20) 사이의 길이(b)는 (0.35 - 0.02Z)D 보다 길게 마련되어, 식으로는 b > (0.35 - 0.02Z)D 으로 표현될 수 있다. 따라서, 프로펠러(20)의 직경(D)이 클수록, 프로펠러(20)에 마련된 핀의 개수(Z)가 작을수록, 선미(10)와 프로펠러(20) 사이의 길이(b)는 길게 마련되어, 선미(10)와 프로펠러(20)는 멀어질 수 있다.
도 2는 본 발명의 제1 실시예에 따른 선박구조의 측면도이며, 도 2의 왼쪽 상단에는 종래의 선박구조에 대한 측면도가 비교를 위해 도시되어 있음을 알 수 있다.
도 2를 참조하면, 종래의 선박구조에서 선미(10)와 프로펠러(20) 사이의 길이(b')와 본 발명의 제1 실시예에 따른 선박구조에서 선미(10)와 프로펠러(20) 사이의 길이(b)는 다른 것을 알 수 있다.
종래의 선박구조에서 선미(10)와 프로펠러(20) 사이의 길이(b')는 상대적으로 길게 마련되어, 선미(10)가 움푹하게 파인 형상을 가지고 있으며 선미(10)에서 프로펠러(20)만 튀어나온 형상을 가질 수 있었다.
반면에, 본 발명의 제1 실시예에 따른 선박구조에서는 선미(10)와 프로펠러(20) 사이의 길이(b)가 상대적으로 짧게 마련되어, 종래의 선박구조와 대비하여 새롭게 형성된 선미(10) 부분에 유입구(31) 및 유출구(32)가 마련될 수 있다.
다만, 선미(10)와 프로펠러(20)는 선급 규정에 의하여 일정거리가 확보되어야 하므로, 본 발명의 제1 실시예에 따른 선박구조에서 선미(10)와 프로펠러(20) 사이의 길이(b)는 선급 규정에 의한 일정거리보다 길게 마련될 수 있다.
도 1 및 도 2를 참조하면, 유입구(31) 및 유출구(32)의 형상은 사각형으로 도시되어 있으나, 유입구(31) 및 유출구(32)의 형상은 무각형 또는 다각형으로 마련될 수 있다. 무각형은 원형, 타원형 등의 형상을 말하며, 다각형은 삼각형, 사각형, 오각형, 사다리꼴 등 기타 각을 가진 형상을 의미할 수 있다.
유입구(31) 및 유출구(32)의 형상이 상이하게 마련될 수 있어, 예를 들면, 유입구(31)는 사각형으로 마련되고 유출구(32)는 원형으로 마련될 수 있다. 사각형인 유입구(31)의 면적이 원형인 유출구(32)의 면적보다 크게 마련된다면, 위에서 설명한 '베르누이 방정식'에 의하여 원형인 유출구(32)에서의 유속이 상대적으로 빠르게 형성될 수 있다.
또한, 유체가 유입구(31) 및 통로를 통하여 유출구(32)로 배출이 되는데, 유출구(32)의 형상에 따라서 배출되는 유체의 형태 및 속도가 달라질 수 있으므로, 예를 들면 유출구(32)가 타원형으로 마련되더라도 타원형의 중심의 위치 또는 곡률에 따라서 배출되는 유체의 형태 및 속도가 달라질 수 있다.
도 3은 본 발명의 제2 실시예에 따른 선박구조의 배면도이다.
이하에서는 본 실시예가 앞선 실시예 대비 달라지는 점 위주로 설명하며, 설명을 생략한 부분은 앞선 내용으로 갈음한다.
도 3을 참조하면, 관통부(30)의 내부에 제어 핀(40)이 마련된 것을 알 수 있다. 제어 핀(40)이 3개로 도시되어 있으나 일 예시이며, 적어도 하나 이상의 제어 핀(40)이 마련될 수 있다.
제어 핀(40)은, 관통부(30)의 내부에 마련되는 내부 핀(도시하지 않음)과 관통부(30)로부터 돌출되는 돌출 핀(부호 도시하지 않음)을 포함할 수 있다. 제어 핀(40)은 적어도 하나 이상의 내부 핀이 마련되며, 돌출 핀은 마련되지 않을 수도 있다. 즉, 제어 핀(40)이 관통부(30)의 내부에만 존재하며, 관통부(30)로부터 돌출되지 않게 마련될 수도 있다.
내부 핀은, 관통부(30)의 통로(도시하지 않음)에 마련되어 관통부(30)로부터 돌출하지 않는 핀을 의미할 수 있다. 내부 핀이 마련되는 각도와 위치는 달라질 수 있으나, 일반적으로 배의 길이방향인 가로 방향 또는 높이 방향인 세로 방향으로 배치될 수 있다.
내부 핀은, 유입구(31)와 유출구(32) 사이인 관통부(30)의 통로에 마련될 수 있다. 유입구(31)와 유출구(32)의 크기 및 형상은, 같게 마련될 수도 있지만 바람직하게는 유입구(31)의 크기가 유출구(32)의 크기보다 크게 마련될 수 있으므로, 내부 핀은 유입구(31) 방향의 크기가 상대적으로 크게 마련되는 사다리꼴 등의 형상을 가질 수 있다.
내부 핀은, 관통부(30)의 통로에 마련되어 유체의 저항이 거세지 않을 수 있으나, 돌출 핀은 관통부(30)로부터 돌출되어 유체의 저항이 거셀 수 있어 내부 핀과는 다른 재질, 형상을 가질 수 있다.
돌출 핀은, 존재하는 경우에 관통부(30)로부터 돌출되어 유입구(31) 또는 유출구(32)의 밖으로 돌출될 수 있다. 돌출 핀은 내부 핀과 별개로 마련될 수 있으며, 내부 핀과 선형적으로 연결되어 유입구(31) 또는 유출구(32)의 밖으로 돌출될 수 있다.
돌출 핀의 각도는 내부 핀의 각도와 같게 마련되거나 상이하게 형성될 수 있으며, 내부 핀과 돌출 핀의 연결 여부는 각도와는 무관하게 정해질 수 있다.
관통부(30)에 복수 개의 제어 핀(40)이 마련되는 경우에, 각각의 제어 핀(40)은 개별적으로 각도가 설정될 수 있어서 다양한 유체의 흐름을 생성할 수 있으며, 관통부(30)에 복수의 통로가 있는 경우에는 각각의 통로마다 제어 핀(40)의 배치여부가 달라질 수 있다.
제어 핀은 유입구(31)로 유입되는 유체의 흐름을 변경할 수 있을 뿐만 아니라, 유입구(31)에 마련된 돌출 핀을 통하여 유입되는 유체의 양도 조절할 수 있으며, 유출구(32)에 마련된 돌출 핀을 통하여 유출되는 유체의 양 및 유체의 흐름 또한 조절할 수 있다.
제어 핀(40)은 고정되어 마련될 수 있으며, 경우에 따라서 각도나 위치가 변경되게 마련될 수 있어, 이를 위한 작동장치(도시하지 않음)가 배치될 수 있다.
작동장치가 배치되는 경우에 제어 핀(40)을 이용하여, 유입구(31) 또는 유출구(32)를 차단하여 관통부(30)를 통과하는 유체를 저지할 수 있으며 이는 선박(1) 운항 중에도 진행될 수 있다.
돌출 핀의 경우, 유입구(31) 또는 유출구(32)의 밖으로 돌출되어 마련될 수 있으나 프로펠러(20)의 직경 안에 위치할 수 있으며, 프로펠러(20)로 전달되는 유체의 방해가 되지 않는다면 프로펠러(20)의 직경 내외까지 돌출 핀이 마련될 수 있다.
도 4는 본 발명의 일 실시예에 따른 선박구조에서 오목부(50)의 개념도이다.
이하에서는 본 실시예가 앞선 실시예 대비 달라지는 점 위주로 설명하며, 설명을 생략한 부분은 앞선 내용으로 갈음한다.
도 4를 참조하면, 유입구(31) 또는 유출구(32)의 주변에 오목부(50)(Recess, 부호 도시하지 않음)가 마련된 것을 알 수 있다. 오목부(50)는, 유입구(31) 또는 유출구(32)의 형상보다 큰 면적을 가지게 마련되며, 선미(10)의 외판보다 파인 형태를 가질 수 있다.
따라서, 유입구(31)에 마련된 오목부(50)는 선미(10)를 타고 흐르는 유체가 유입구(31)로 잘 모이게 할 수 있으며, 유출구(32)에 마련된 오목부(50)는 형태에 따라서 유체가 흩어지게 또는 집중되게 할 수 있다.
오목부(50)의 형상은 일반적으로 유입구(31) 및 유출구(32)의 형상과 유사한 형상으로 마련될 수 있으나, 이는 달라질 수 있다. 오목부(50)가 마련되는 경우에는, 오목부(50)가 마련되지 않은 경우보다 관통부(30)의 통로가 짧아질 수 있다. 즉, 오목부(50)가 유입구(31) 또는 유출구(32)로 모이는 파인 형태로 마련되므로, 유입구(31) 또는 유출구(32)는 파인 형태의 오목부(50)의 특정 지점에서 마련되어 상대적으로 안쪽에서 형성될 수 있다.
오목부(50)는 유입구(31) 또는 유출구(32)의 형상을 포함하는 도형으로 표현되었으나, 유입구(31) 또는 유출구(32)의 형상의 일부에만 위치할 수 있으며, 도형이 아니라 선 및 점의 형태로도 형성될 수 있다.
종래의 ESD는, 선박의 후미, 프로펠러, 덕트, 러더 등의 비대칭의 형상으로 개량하거나 대칭의 형상에 별도의 부가물을 부착함으로써 유동의 흐름을 변경하였다. 따라서, 비대칭의 형상 또는 별도의 부가물로 인하여 좌우현의 유동 편향 및 불균일성이 발생할 수 있었으며, 일반적인 선박(1) 공정에 비하여 추가적인 공정이 필요하여 원가 상승이 불가피 하였다.
본 발명의 일 실시예를 따른 선박구조는 선미(10)를 관통하는 관통부(30) 및 제어 핀(40)이 마련되므로, 종래의 ESD에 비하여 비교적 단순한 구조로 제작이 용이하며 구조적으로 안정성이 높을 수 있으며, 선박(1)을 운용하는데 필요한 전달 마력의 개선량에서 종래의 ESD와 적어도 같은 개선량을 가질 수 있다.
앞서 언급한, 유출구(32), 유입구(31) 및 제어 핀 등의 위치 한정의 경우는 일 실시예에 따른 예시일 뿐이므로, 설계에 따라서 위치 한정이 벗어나도록 설계될 수 있다.
도 5는 본 발명의 일 실시예에 따른 선박구조의 CFD를 통한 선박(1)을 운용하는데 필요한 전달 마력의 개선 정도를 비교한 도면이며, 도 6은 본 발명의 일 실시예에 따른 선박구조의 CFD 해석 결과를 비교하여 도시한 것이고, 도 7은 본 발명의 일 실시예에 따른 선박구조의 CFD 해석 결과를 비교하여 도시한 것이다.
도 5를 참조하면, ESD 없이 마련되는 종래의 선박과 비교하여, 각각 서로 다른 ESD가 마련된 선박(1)의 전달 마력의 개선여부를 알 수 있다. (Self-Propulsion, 계약속도를 기준으로 실증).
도 5의 수치는, 비교를 위하여 첫번째 막대인 ESD 없이 마련되는 종래의 선박(Without ESD)을 100%로 하여 비율로 나타낸 것이다.
두번째 막대(With PSD)는, PSD(Pre-Swirl Duct)가 마련된 선박으로 종래의 선박(Without ESD)과 비교하여 약 3%의 선박의 전달 마력의 개선이 된 것을 알 수 있다.
세번째 막대(With Intake hole)는, 본 발명의 특징인 관통부(30)(Intake hole)가 마련된 선박(1)으로, 두번째 막대(With PSD)와 같이 약 3%의 선박(1)의 전달 마력의 개선이 된 것을 알 수 있다.
네번째 막대(With FCF)는, FCF(Flow Control Fin)이 마련된 선박으로, 종래의 선박(Without ESD)과 비교하여 약 1%의 선박의 전달 마력의 개선이 된 것을 알 수 있다.
다섯번째 막대(With AFG)는, AFG(Asymmetric Flow Generator)가 마련된 선박으로, 종래의 선박(Without ESD)과 비교하여 약 2%의 선박의 전달 마력의 개선이 된 것을 알 수 있다.
도 5를 통하여, 본 발명의 특징인 관통부(30)(Intake hole)가 마련된 선박(1)에 대한 세번째 막대(With Intake hole)는 두번째 막대(With PSD)와 마찬가지로, 종래의 선박(Without ESD)과 비교하여 약 3%의 선박(1)의 전달 마력의 개선이 된 것을 알 수 있다.
두번째 막대(With PSD)는 PSD(Pre-Swirl Duct)가 마련된 선박으로, 프로펠러의 전방에 덕트가 마련되는 부가형 구조로서, 본 발명의 특징인 관통부(30)가 적용된 세번째 막대(With Intake hole)와 개선된 효과의 정도가 같아, 본 발명인 선박구조는 선박(1)을 운용하는데 필요한 전달 마력의 개선량에서 종래의 ESD와 적어도 같거나 우월한 개선량을 가질 수 있다.
도 6 및 도 7은, 종래의 선박과 본 발명인 선박구조를 가지는 선박에 대한 CFD 해석 결과로서, n(프로펠러 회전수), Q(토크), T(추력) 및 Power(전달마력)에 대한 결과가 도시된 것을 알 수 있다.
도 6 및 도 7의 x축에 도시된, Existing는 본 발명의 특징인 관통부(30)가 마련되지 않은 종래의 선박이며, NEW는 본 발명의 특징인 관통부(30)가 마련된 선박구조를 가지는 선박(1)이다.
본 발명의 특징인 관통부(30)가 마련된 선박구조를 가지는 선박(NEW)은, 본 발명의 특징인 관통부(30)가 마련되지 않은 종래의 선박(Existing)에 비하여, 동일한 속도를 기준으로 할 때, n(프로펠러 회전수), Q(토크) 및 Power(전달마력)이 작고 T(추력)은 큰 값을 가지므로, 종래의 선박(Existing)에 비하여 개선됨을 알 수 있다.
도 7의 Power(전달마력)에서, 본 발명의 특징인 관통부(30)가 마련된 선박구조를 가지는 선박(NEW)은 종래의 선박(Existing)에 비하여 약 3.2% 정도 개선된 Power(전달마력)을 가지므로, 이는 앞서 설명한 도 5의 결과와 일치하는 것을 알 수 있다.
도 8은 본 발명의 제3 실시예에 따른 선박구조의 사시도이다.
도 9는 도 8과 다른 방향에서 바라본 선박구조의 사시도이다.
도 10은 도 8의 선박구조의 측면도이다.
도 8, 도 9, 및 도 10의 선박(1)은 도 1의 선박(1)에 더하여 부착 구조물(100)을 포함할 수 있다. 도 8, 도 9, 및 도 10의 선박(1)은 도 1 내지 도 7의 선박(1)과 중복되는 특징을 참조할 수 있다.
도 8 내지 도 10을 참고하면, 선박(1)의 선체의 선미(10)에는 부착 구조물(100)이 배치될 수 있다. 부착 구조물(100)은 선미(10)에 부착 가능하도록 마련될 수 있다. 관통부(30)는 선박(1)의 선체와 별개의 부착 구조물(100)에 형성될 수 있다.
선박(1)의 선미(10)에 관통부가 직접 형성되는 경우, 선박의 구조적 안정성이 저하되는 문제가 발생될 수 있고, 선주에 따라서는 선체에 관통부(30)를 형성하는 것을 허용하지 않음에 따른 설계 제한을 해결하기 위하여 선체와 별개로 제작되어 선미(10)에 부착 가능한 부착 구조물(100)이 형성될 수 있다.
또한, 선미(10)와 프로펠러(20) 사이의 거리가 먼 대형 선박의 경우, 관통부(30)를 통과한 유체에 의한 프로펠러(20)로의 전달 마력 효과가 미비할 수 있다. 크기 조절이 가능한 부착 구조물(100)에 관통부(30)가 형성됨으로써, 선미(10)와 프로펠러(20) 사이의 거리가 먼 대형 선박에서도 관통부(30)와 프로펠러(20) 사이의 간격이 필요에 따라 조절될 수 있다. 관통부(30)와 프로펠러(20) 사이의 간격이 조절됨으로써, 프로펠러(20)로의 전달 마력 효과가 증가할 수 있다.
부착 구조물(100)은 선체의 선미(10)의 단부(12)에 연결된 러더(60)의 전방(예: +y방향)에서 선체의 선미(10)에 부착될 수 있다.
선체의 선미(10)는 전방(예: +y방향)을 향하여 굽어지는 굴곡부(11)를 포함할 수 있다. 굴곡부(11)는 러더(60)와 결합된 선체의 일 부분과 프로펠러(20)와 결합된 선체의 다른 일 부분을 연결할 수 있다.
부착 구조물(100)은 프로펠러 축(P축)에 직교한 중심 축(도 9 및 도 10의 C축)을 기준으로 대칭 형성될 수 있다. 예를 들어, 선박(1)의 후방에서 보았을 때, 부착 구조물(100)은 중심 축(C축)을 기준으로 좌우 대칭으로 형성될 수 있다.
부착 구조물(100)은 선체와 대응되는 형상으로 형성될 수 있다. 예를 들어, 부착 구조물(100)은 선체와 대응되는 유선형의 형상으로 형성될 수 있다. 다만, 부착 구조물(100)의 형상은 이에 한정하지 않는다. 다른 예를 들어, 부착 구조물(100)의 형상은 일부가 각진 형태로 형성될 수 있다.
부착 구조물(100)은 굴곡부(11)에 부착될 수 있다. 예를 들어, 부착 구조물(100)은 선체의 선미(10)의 굴곡부(11)에 대응하는 형상으로 형성되어 굴곡부(11)에 부착될 수 있다.
부착 구조물(100)이 선박(1)의 선체와 대응되는 형상으로 형성됨으로써, 제조사는 선주에게 선박과 부착 구조물(100)의 이질감이 없는 선박을 제공할 수 있다. 예를 들어, 부착 구조물(100)은 선박(1)의 선체와 동일한 외관을 형성할 수 있다. 예를 들어, 부착 구조물(100)이 선체와 별도로 결합됨에도 불구하고, 하나의 선박(1)의 이미지가 형성될 수 있다.
부착 구조물(100)은 결합 부재(미도시)에 의해서 선체의 선미(10)에 부착될 수 있다. 결합 부재는 용접 부재, 볼팅 부재, 리벳 부재, 본딩 부재, 및 테이핑 부재 중 적어도 하나를 포함할 수 있다.
다른 예를 들어, 부착 구조물(100)은 선박(1)의 선체와 끼움 결합될 수 있다. 예를 들어, 부착 구조물(100)의 일부와 상기 선체 선미(10)의 일부는 끼워 맞춤 결합 구조(미도시)로 형성될 수 있다. 예를 들어, 부착 구조물(100)의 일부는 음각의 형상으로 형성되고, 선체의 선미(10)의 일부는 양각으로 형성될 수 있다. 부착 구조물(100)의 음각과 선미(10)의 양각이 맞춤 결합됨으로써, 부착 구조물(100)은 선체에 부착될 수 있다. 다른 예를 들어, 부착 구조물(100)의 일부가 양각의 형상으로 형성되고, 선체의 선미(10)의 일부가 음각으로 형성될 수 있다.
부착 구조물(100)이 선박(1)의 선체에 결합 부재에 의해 부착 가능하도록 형성됨으로써, 제조사는 선주의 요구 사항에 맞추어 선박(1)에 부착 구조물(100)을 장착시키거나 부착 구조물(100)을 분리시킬 수 있다.
부착 구조물(100)의 내구성 강화를 위하여, 부착 구조물(100)의 내부 공간에는 충진재가 형성될 수 있다. 예를 들어, 부착 구조물(100)의 내부 공간에는 선박(1)에 부력을 제공하는 충진재가 채워질 수 있다. 다른 예를 들어, 부착 구조물(100)의 내부 공간에는 선박(1)에 부력을 제공하지 않는 충진재가 채워질 수 있다.
전술한 내부 공간은 부착 구조물(100)이 선체에 부착된 경우, 부착 구조물(100)과 선체 사이의 공간을 포함할 수 있다.
다른 예를 들어, 부착 구조물(100)의 내부 공간에는 부착 구조물을 지지하는 보강재가 형성될 수 있다. 예를 들어, 부착 구조물(100)의 내부 공간에는 허니콤 구조가 형성될 수 있다.
선체에 탈부착 가능한 부착 구조물(100)이 형성됨으로써, 선체 제조 과정 이후에도 부착 구조물(100)만을 분리함으로써 용이하게 유지 보수할 수 있다. 예를 들어, 선박(1)의 운항 중 부착 구조물(100)이 파손된 경우, 부착 구조물(100)만을 따로 분리하여 용이하게 유지 보수할 수 있다.
부착 구조물(100)은 관통부(30)를 포함할 수 있다. 관통부(30)는 도 1 내지 도 7의 관통부(30)를 참조할 수 있다. 예를 들어, 관통부(30)는 부착 구조물(100)의 일 측면(101)에서 다른 측면(102)으로 유체가 이동할 수 있는 유로를 형성할 수 있다.
관통부(30)는 일 측면(101)에 형성된 유입구(31), 및 유입구(31)의 후방에서 다른 측면(102)에 형성된 유출구(32)를 포함할 수 있다. 관통부(30)는 유입구(31)로 유입되어 유출구(32)로 배출된 유체가 선박(1)의 후방에 배치된 프로펠러(20)로 유입되도록 유도할 수 있다.
도 5, 도 6, 및 도 7에서 전술한 바와 같이, 관통부(30)를 통해 프로펠러(20)로 유체가 유입됨으로써, 종래의 선박(without ESD)와 비교하여 선박의 추진 효율이 향상될 수 있다.
별도의 PSD(Pre-Swirl Duct) 부재가 아닌 관통부(30)를 이용함으로써, 외부의 충격에 의해운항 중 파손되더라도 프로펠러(20)가 손상되는 문제가 방지될 수 있다. 예를 들어, 덕트가 마련되는 부가형 구조와 같은 기존의 부재의 경우 외부의 충격에 의해 선박으로부터 떨어지는 경우, 프로펠러(20)와 인접한 영역에 덕트가 배치됨에 따라 프로펠러(20)의 손상을 유발시킬 수 있다. 관통부(30)로 형성되는 경우, 선체로부터 떨어지는 문제가 발생하지 않음에 따라 프로펠러(20)가 파손되는 문제가 방지될 수 있다.
부착 구조물(100)이 선체와 결합되는 면적이 증가함에 따라, 덕트보다 더 강하게 선체에 결합됨으로써 구조적 안정성이 향상될 수 있다. 예를 들어, 종래의 덕트 형상의 PSD는 일부가 선체에 고정되는 외팔보 형태의 구조를 가질 수 있다. 외팔보 형태의 구조를 가지기 때문에, 덕트는 선체와의 결합되는 면적이 좁아서, 선체와의 결합력이 약할 수 있다. 반면에 부착 구조물(100)은 선체와 결합되는 면적이 넓고, 부착 구조물(100)이 전반적으로 선체에 부착되는 결합구조를 가짐으로써, 구조적 안정성이 향상될 수 있다.
부착 구조물(100)에 관통부(30)가 형성됨으로써, 프로펠러(20)와 관통부(30)가 인접하게 배치될 수 있다. 예를 들어, 선체에 관통부(30)가 형성되는 경우보다 상대적으로 더 인접하게 관통부(30)가 프로펠러(20)에 인접하게 배치될 수 있다. 선체에 관통부(30)가 형성되는 경우, 선급에서 요구하는 구조적 안정성으로 인하여 관통부(30)의 위치가 제한될 수 있으나, 부착 구조물(100)에 관통부(30)가 형성된 경우, 관통부(30)가 프로펠러(20)와 인접하게 배치될 수 있다.
프로펠러(20)와 관통부(30)가 인접하게 배치됨으로써, 선박의 추진 효율이 향상되는 효과가 증가할 수 있다.
유입구(31) 및 유출구(32)에는 유체의 흐름을 제어하는 개폐 장치가 배치될 수 있다. 예를 들어, 유입구(31) 및 유출구(32)에는 유체의 흐름을 제어하는 그물 망이 배치될 수 있다.
유출구(32)에는 관통부(30)의 유체를 분사하는 분사 장치가 배치되거나, 또는 상기 유입구(31)에는 유체를 흡입하는 흡입 장치가 더 배치될 수 있다.
도 11은 본 발명의 제4 실시예에 따른 선박구조의 배면도이다.
도 12는 도 11의 선박구조의 사시도이다.
도 11 및 도 12는 도 8 내지 도 10과 달리, 부착 구조물(100)이 일 방향으로 치우쳐져 선박(1)의 선미(10)에 부착될 수 있다.
도 11을 참고하면, 선박(1)의 후방에서 보았을 때, 부착 구조물(100)은 일 방향(예: -x 방향)으로 치우쳐져 선박(1)의 선미(10)에 부착될 수 있다.
부착 구조물(100)의 일 측면(101)과 다른 측면(102)이 만나 연결선(103)이 형성될 수 있다. 선박(1)의 후방에서 보았을 때, 연결선(103)은 프로펠러 축(P축)에 직교하는 중심 축(C축)과 정렬되지 않도록 형성될 수 있다. 예를 들어, 연결선(103)은 프로펠러 축(P축)의 중심 축(C축)과 정렬되지 않도록 기울어져 형성될 수 있다.
연결선(103)이 중심 축(C축)에 대하여 기울어진 정도는 프로펠러 축(P축)으로부터 상부로 향할수록 점진적으로 증가할 수 있다. 예를 들어, 도 11 및 도 12를 참고하면, 프로펠러 날개의 길이를 1.0R이라 할 때, 연결선(103)이 중심 축(C축)으로부터 기울어진 정도는 0.3R, 0.5R, 0.7R, 및 1.0R 순으로 갈수록 점진적으로 증가할 수 있다.
연결선(103)이 중심 축(C축)에 대하여 기울어짐으로써, 선박(1)의 후방에서 보았을 때, 부착 구조물(100)은 중심 축(C축)을 기준으로 일 측면 방향(예:-x 방향)으로 틀어져 선미(10)에 부착될 수 있다. 부착 구조물(100)이 상기 일 측면 방향으로 틀어져서 선미(10)에 부착됨으로써, 중심 축(C축)에 정렬된 경우보다 선박(1)의 추진 효율이 향상될 수 있다.
본 발명은 상기에서 설명한 실시예들로 한정되지 않으며, 상기 실시예들의 조합 또는 상기 실시예 중 적어도 어느 하나와 공지 기술의 조합을 또 다른 실시예로서 포함할 수 있다.
이상 본 발명을 구체적인 실시예를 통하여 상세히 설명하였으나, 이는 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명은 이에 한정되지 않으며, 본 발명의 기술적 사상 내에서 당해 분야의 통상의 지식을 가진 자에 의해 그 변형이나 개량이 가능함은 명백하다고 할 것이다.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속하는 것으로 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.

Claims (24)

  1. 프로펠러 축의 상부에 마련되어 선미를 관통하는 관통부;에 있어서,
    상기 관통부는,
    유입구; 및 상기 유입구의 후측에 위치하는 유출구;를 포함하며,
    상기 관통부를 통과한 유체가 상기 프로펠러로 전달되는, 선박 구조.
  2. 제1 항에 있어서,
    상기 프로펠러가 우회전하는 경우에는 상기 유입구는 우현에 마련되어 상기 관통부는 우현에서 좌현으로 관통되며,
    상기 프로펠러가 좌회전하는 경우에는 상기 유입구는 좌현에 마련되어 상기 관통부는 좌현에서 우현으로 관통되는, 선박 구조.
  3. 제2 항에 있어서, 상기 유입구는,
    적어도 상기 유출구의 크기와 같게 마련되며 상기 선미에 마련된 수밀격벽의 후측에 위치하는, 선박 구조.
  4. 제3 항에 있어서, 상기 유입구는,
    상기 프로펠러 축을 기준으로 상기 프로펠러의 반지름의 20% 이상이고 120% 이하에서 마련되는, 선박 구조.
  5. 제4 항에 있어서, 상기 유출구는,
    상기 프로펠러 축을 기준으로 상기 프로펠러의 반지름의 20% 이상이고 100% 이하에서 마련되는, 선박 구조.
  6. 제5 항에 있어서,
    상기 프로펠러의 반지름의 70% 높이에서 상기 프로펠러와 상기 선미 사이의 길이는,
    상기 프로펠러의 직경(D)과 상기 프로펠러의 핀 개수(Z)에 대하여
    (0.35 - 0.02Z)D보다 길게 마련되는, 선박 구조.
  7. 제6 항에 있어서,
    상기 유입구 및 상기 유출구의 형상은,
    무각형 또는 다각형으로 각각 마련되는, 선박 구조.
  8. 제7 항에 있어서,
    상기 형상의 둘레에는 상기 형상보다 큰 면적을 가지는 오목부가 마련되는,
    선박 구조.
  9. 제8 항에 있어서, 상기 관통부는,
    내부에 적어도 하나 이상의 제어 핀;을 더 포함하며,
    상기 제어 핀은,
    적어도 하나 이상이 상기 관통부로부터 돌출되는 돌출 핀;이나 모두 돌출되지 않는 내부 핀;을 포함하는, 선박 구조.
  10. 제9 항에 있어서,
    상기 제어 핀은 개별적으로 각도가 설정되어 마련되며,
    상기 돌출 핀과 상기 내부 핀의 각도는 같거나 다르게 마련되는,
    선박 구조.
  11. 제10 항에 있어서, 상기 돌출 핀은,
    상기 프로펠러의 직경 안에 위치하는, 선박 구조.
  12. 선박의 선체; 및
    상기 선체의 선미에 부착 가능하도록 마련된 부착 구조물;을 포함하고,
    상기 부착 구조물은 일 측면에서 다른 측면으로 유체가 유동하도록 마련된 관통부를 포함하고,
    상기 관통부는,
    상기 부착 구조물의 일 측면에 형성된 유입구; 및
    상기 유입구의 후방에서 상기 부착 구조물의 다른 측면에 형성된 유출구를 포함하는, 선박 구조.
  13. 청구항 12에 있어서,
    상기 관통부는 상기 유입구로 유입된 유체가 상기 유출구를 통해 상기 선박의 후방에 배치된 프로펠러로 유입되도록 유도하는, 선박 구조.
  14. 청구항 12에 있어서,
    상기 부착 구조물은, 상기 선체의 선미의 단부에 연결된 러더의 전방에 배치되는, 선박 구조.
  15. 청구항 12에 있어서,
    상기 부착 구조물은 상기 선체의 선미의 굴곡부에 대응하는 형상을 가지는, 선박 구조.
  16. 청구항 12에 있어서,
    상기 선박의 후방에서 보았을 때,
    상기 부착 구조물의 일 측면과 다른 측면이 만나는 연결선이, 프로펠러 축에 직교하는 중심 축과 정렬되지 않도록 기울어져 형성되는, 선박 구조.
  17. 청구항 16에 있어서,
    상기 연결선이 상기 중심 축에 대하여 기울어진 정도는 상기 프로펠러의 축으로부터 상부로 향할수록 점진적으로 커지는, 선박 구조.
  18. 청구항 12에 있어서,
    상기 부착 구조물의 일부와 상기 선체의 선미의 일부는 끼워 맞춤 결합 구조로 형성되어 있는, 선박 구조.
  19. 청구항 12에 있어서,
    상기 부착 구조물의 내부 공간에는 충진재가 형성되는, 선박 구조.
  20. 청구항 12에 있어서,
    상기 부착 구조물의 내부 공간에는 허니콤 구조로 형성되는, 선박 구조.
  21. 청구항 12에 있어서,
    상기 유입구 및 상기 유출구에는 유체의 흐름을 제어하는 개폐 장치가 배치되는, 선박 구조.
  22. 청구항 12에 있어서,
    상기 유출구에는 상기 관통부의 유체를 분사하는 분사 장치가 배치되거나, 또는 상기 유입구에는 유체를 흡입하는 흡입 장치가 배치되는, 선박 구조.
  23. 청구항 12에 있어서,
    상기 유입구는, 프로펠러 축을 기준으로 상기 프로펠러의 반지름의 20% 이상이고 120% 이하에서 마련되고,
    상기 유출구는, 상기 프로펠러 축을 기준으로 상기 프로펠러의 반지름의 20% 이상이고 100% 이하에서 마련되는, 선박 구조.
  24. 선박의 선체의 선미에 부착 가능하도록 마련된 부착 구조물에 있어서,
    상기 부착 구조물은 일 측면에서 다른 측면으로 유체가 유동하도록 마련된 관통부를 포함하고,
    상기 관통부는,
    상기 부착 구조물의 일 측면에 형성된 유입구; 및
    상기 부착 구조물의 상기 다른 측면에 형성된 유출구를 포함하는, 부착 구조물.
PCT/KR2023/010991 2022-07-27 2023-07-27 선박 구조 WO2024025376A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220093480 2022-07-27
KR10-2022-0093480 2022-07-27
KR1020230097778A KR20240015603A (ko) 2022-07-27 2023-07-26 선박 구조
KR10-2023-0097778 2023-07-26

Publications (1)

Publication Number Publication Date
WO2024025376A1 true WO2024025376A1 (ko) 2024-02-01

Family

ID=89707055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/010991 WO2024025376A1 (ko) 2022-07-27 2023-07-27 선박 구조

Country Status (1)

Country Link
WO (1) WO2024025376A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08318896A (ja) * 1995-05-26 1996-12-03 Shinkurushima Dock:Kk 船舶の針路安定フィン
KR20140131725A (ko) * 2013-05-06 2014-11-14 현대중공업 주식회사 선미 핀이 장착된 선박
KR20170108381A (ko) * 2016-03-17 2017-09-27 현대중공업 주식회사 선박구조
KR20210024140A (ko) * 2013-05-06 2021-03-04 베커 마린 시스템즈 게엠베하 워터크래프트의 구동 출력 요건을 감소시키기 위한 디바이스
KR20210062729A (ko) * 2013-12-16 2021-05-31 고쿠리츠겐큐카이하츠호진 가이죠·고완·고쿠기쥬츠겐큐죠 선미용 덕트, 선미용 부가물, 선미용 덕트의 설계 방법, 및 선미용 덕트를 장착한 선박

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08318896A (ja) * 1995-05-26 1996-12-03 Shinkurushima Dock:Kk 船舶の針路安定フィン
KR20140131725A (ko) * 2013-05-06 2014-11-14 현대중공업 주식회사 선미 핀이 장착된 선박
KR20210024140A (ko) * 2013-05-06 2021-03-04 베커 마린 시스템즈 게엠베하 워터크래프트의 구동 출력 요건을 감소시키기 위한 디바이스
KR20210062729A (ko) * 2013-12-16 2021-05-31 고쿠리츠겐큐카이하츠호진 가이죠·고완·고쿠기쥬츠겐큐죠 선미용 덕트, 선미용 부가물, 선미용 덕트의 설계 방법, 및 선미용 덕트를 장착한 선박
KR20170108381A (ko) * 2016-03-17 2017-09-27 현대중공업 주식회사 선박구조

Similar Documents

Publication Publication Date Title
US5445547A (en) Outboard motor
WO2013122403A1 (ko) 에어버블 쇄빙선
WO2024025376A1 (ko) 선박 구조
WO2014123397A1 (ko) 선박의 추진장치
CN1192936C (zh) 外侧喷射驱动船
JPH0789489A (ja) 水噴射推進装置
US4526002A (en) Exhaust relief system
US20010008127A1 (en) Reed valve cooling apparatus for engine
US6132273A (en) Cowling for outboard motor
US6868798B2 (en) Powered watercraft
WO2023243789A1 (ko) 질량 호흡 제어를 이용한 팁 보오텍스 케비테이션 저감 시스템
WO2019027126A1 (ko) 덕트형 선박 에너지 절감 장치
WO2013122404A1 (ko) 유빙 방어용 스턴핀이 부착된 선체구조
JP2005299591A (ja) 船外機
JP2007056695A (ja) 水上滑走艇におけるエンジンのウォータージャケット
KR20240015603A (ko) 선박 구조
JPS62286886A (ja) 船舶の摩擦抵抗低減装置
WO2021153857A1 (ko) 조향장치 및 이를 구비하는 선박
WO2020096380A1 (ko) 선박용 수평형 선외기 모듈
WO2016175359A1 (ko) 부유식lng벙커링터미널의 접안구조물
SE8503448L (sv) Marin framdrivningsanordning
WO2019194350A1 (ko) 선박용 프로펠러
WO2018216931A1 (ko) 와류 생성핀을 포함하는 선박
US7599614B2 (en) Camera apparatuses, systems and methods for use with marine propulsion mechanisms
JP3226679B2 (ja) 船外機の外気導入装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23847032

Country of ref document: EP

Kind code of ref document: A1