WO2024025237A1 - 검사용 커넥터 - Google Patents

검사용 커넥터 Download PDF

Info

Publication number
WO2024025237A1
WO2024025237A1 PCT/KR2023/010337 KR2023010337W WO2024025237A1 WO 2024025237 A1 WO2024025237 A1 WO 2024025237A1 KR 2023010337 W KR2023010337 W KR 2023010337W WO 2024025237 A1 WO2024025237 A1 WO 2024025237A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
metal housing
connector
hole
elastic
Prior art date
Application number
PCT/KR2023/010337
Other languages
English (en)
French (fr)
Inventor
주상현
우동균
양준혁
김언중
김규현
엄기수
정영배
Original Assignee
주식회사 아이에스시
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아이에스시 filed Critical 주식회사 아이에스시
Publication of WO2024025237A1 publication Critical patent/WO2024025237A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0433Sockets for IC's or transistors
    • G01R1/0441Details
    • G01R1/0466Details concerning contact pieces or mechanical details, e.g. hinges or cams; Shielding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0416Connectors, terminals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/286External aspects, e.g. related to chambers, contacting devices or handlers
    • G01R31/2863Contacting devices, e.g. sockets, burn-in boards or mounting fixtures

Definitions

  • the present disclosure relates to an inspection connector disposed between a test apparatus and a device to be inspected and used to inspect the device to be inspected.
  • a connector disposed between a test apparatus and the device under test is used.
  • a connector used to inspect a device to be inspected electrically connects the inspection device and the device to be inspected.
  • a pogo pin or conductive rubber connector is known.
  • a conductive rubber connector has conductive parts in which a large number of conductive particles are gathered in the vertical direction.
  • Conductive rubber connectors have better RF characteristics than pogo pins due to their thinner thickness, so conductive rubber connectors are used for RF inspection of semiconductor devices.
  • Japanese Patent Application Laid-Open No. 2004-335450 proposes a connector that can be used to inspect high-frequency RF characteristics.
  • a conventional inspection connector used for inspection of high-frequency RF characteristics has a structure in which conductive parts are coaxially arranged in through-holes of a single metal block and the conductive parts are supported in the vertical direction by the single metal block. You can.
  • the conventional inspection connector prevents signal interference and cross talk between conductive parts by having a structure in which conductive parts are supported by a single metal block.
  • the terminal of the device under test presses the conductive part during inspection of the device under test
  • the elastic deformation of the conductive part is restricted by the metal block, and the conductive part cannot be elastically deformed smoothly and cannot be elastically restored. Accordingly, in the inspection connector of the prior art, the operability of the conductive part is poor.
  • the device under test In order for a conductive part with poor operability to exhibit an appropriate resistance value that allows inspection, the device under test must press the conductive part under a strong pressing force. However, strong pressing force may cause damage to the device under test and damage to the conductive portion.
  • the terminal of the device under test When testing the device under test, if the terminal of the device under test is not aligned with the center of the conductive part, the terminal of the device under test may contact the metal block while being offset from the center of the conductive part. A single block of metal cannot absorb or dissipate the pressing force applied through the device under test. If the terminal of the device under test is offset from the center of the conductive portion, the terminal of the device under test may be damaged by the metal block.
  • One embodiment of the present disclosure provides a test connector that includes a conductive portion with improved operability and can reduce the pressing force of the device being tested.
  • One embodiment of the present disclosure provides a test connector that can prevent damage to the device under test by absorbing and dispersing the pressing force applied by the device under test.
  • a connector disposed between a test apparatus and a test subject device and used for inspection of the test subject device.
  • a connector includes a first metal housing, a second metal housing, an elastic shielding part, a conductive part, and an insulating part.
  • the first metal housing has a first through hole that penetrates in the vertical direction and has a central axis in the vertical direction.
  • the second metal housing has a second through hole penetrating in the vertical direction coaxially with the central axis.
  • the elastic shield is disposed between the first metal housing and the second metal housing to space the second metal housing upward from the first metal housing.
  • the elastic shield is configured to electrically connect the first metal housing and the second metal housing.
  • the conductive portion is disposed in the vertical direction in the first through hole and the second through hole and is configured to enable conduction between the inspection apparatus and the device to be inspected.
  • the insulating portion is inserted into the first through hole and the second through hole.
  • the insulating portion is configured to surround the conductive portion in the circumferential direction of the central axis and position the conductive portion coaxially with the central axis.
  • an air layer is formed between the first metal housing and the second metal housing that are spaced apart from each other. A portion of the outer peripheral surface of the insulation portion is exposed within the air layer, and the elastic shield portion is disposed in the air layer.
  • the air layer has a thickness limited by the thickness of the elastic shield, and the thickness of the air layer may increase depending on the thickness of the elastic shield.
  • the elastic shielding part may include an elastic shielding filler.
  • the elastic shielding filler is spaced apart from the outer peripheral surface of the insulating part, is formed in a pillar shape, and is configured to electrically connect the first metal housing and the second metal housing.
  • a plurality of conductive parts and a plurality of insulating parts may be disposed in the first metal housing and the second metal housing. At least one elastic shielding filler may be disposed between two neighboring insulating parts.
  • the elastic shielding filler may have a circular, oval, or cross-shaped cross-section.
  • the first through hole, the second through hole, and the insulating portion may have a circular or oval cross-section
  • the elastic shielding filler may have a circular, oval, or cross-shaped cross section.
  • An elastic shielding filler with an elliptical cross-section can be placed next to the insulation with an elliptical cross-section.
  • the elastic shielding unit may include an elastic shielding sheet.
  • the elastic shielding sheet is configured to electrically connect the first metal housing and the second metal housing.
  • the elastic shielding sheet has an insertion hole that is larger than the diameter of the insulating portion and penetrates in the vertical direction.
  • the elastic shield may include a plurality of conductive materials that are gathered so as to be conductive in a vertical direction, and an elastic material that maintains the plurality of conductive materials in the vertical direction.
  • the conductive material of the elastic shielding portion may be any one of metal particles, carbon nanotubes, graphene, and conductive wire.
  • the elastic shield may include a conductive metal member including one of a conductive metal pin and a conductive spring elastically compressible in the vertical direction, and an elastic material that maintains the conductive metal member in the vertical direction.
  • the conductive portion, the insulating portion, and the first metal housing may be formed integrally to form a conductive module while the conductive portion is positioned coaxially with the central axis of the first through hole.
  • the conductive portion, the insulating portion, and the second metal housing may be formed integrally to form a conductive module while the conductive portion is positioned coaxially with the central axis of the second through hole.
  • the conductive portion may include a plurality of conductive materials that are gathered so as to be conductive in the vertical direction and an elastic material that holds the plurality of conductive materials in the vertical direction.
  • the conductive material of the conductive portion may be any one of metal particles, carbon nanotubes, graphene, and conductive wire.
  • the insulating portion may be made of an elastic material of the conductive portion and may be formed integrally with the conductive portion.
  • the conductive portion may include a conductive metal pin that is elastically compressible in the vertical direction and an elastic material that maintains the conductive metal pin in the vertical direction.
  • the insulating portion may be made of any one of silicone rubber, silicone rubber containing multiple pores, fluorine silicone rubber, and polytetrafluoroethylene resin.
  • the insulating part includes a first part located in the first through hole, and a second part that fits into the second through hole and has an outer diameter larger than the outer diameter of the first part and is in contact with a terminal of the device to be inspected. may include.
  • the first through hole may include an upper through hole having an inner diameter larger than the outer diameter of the insulating part, and a lower through hole having an inner diameter smaller than the upper through hole into which the insulating part is fitted.
  • the upper through hole may be formed between the first and second metal housings spaced apart from each other and communicate with an air layer in which the elastic shield is disposed.
  • the first metal housing includes a first metal housing sheet through which the lower through hole penetrates, and a second metal housing sheet stacked on the first metal housing sheet and through which the upper through hole penetrates.
  • the connector of one embodiment may further include a third metal housing and an additional elastic shield.
  • the third metal housing is disposed above the second metal housing and has a third through hole penetrating in an upward and downward direction coaxially with the central axis.
  • the additional elastic shield is disposed between the second metal housing and the third metal housing to space the third metal housing upwardly from the second metal housing.
  • the additional resilient shield is configured to electrically connect the second and third metal housings.
  • the first and second metal housings supporting the conductive portion are spaced apart by an elastic shield, and the first and second metal housings are electrically connected by the elastic shield. Therefore, the first and second metal housings and the elastic shielding act as one housing, preventing signal interference and crosstalk between conductive parts and maintaining good signal characteristics of the connector.
  • the elastic shield may elastically support the second metal housing with respect to the first metal housing. Therefore, the second metal housing can be maintained in a floating state from the first metal housing, and the pressing force applied by the device under test can be absorbed and distributed.
  • the elastic shield separates the first and second metal housings in the vertical direction to form an air layer between the first and second metal housings. Therefore, the area that restrains the elastic deformation of the conductive portion can be reduced. Accordingly, the operability of the conductive part can be improved, and the pressing force of the device under test can be lowered.
  • FIG. 1 schematically shows an example in which a connector according to embodiments of the present disclosure is used.
  • Figure 2 is a cross-sectional view showing a portion of a connector according to one embodiment.
  • FIG. 3 is a cross-sectional perspective view showing a part of the connector shown in FIG. 2.
  • FIG. 4 is an exploded cross-sectional view showing a part of the connector shown in FIG. 2.
  • FIG. 5 is a plan view showing a first example of a conductive portion, an insulating portion, and an elastic shielding portion in a connector according to an embodiment.
  • FIG. 6 is a plan view showing a second example of a conductive portion, an insulating portion, and an elastic shielding portion in a connector according to an embodiment.
  • FIG. 7 is a plan view showing a third example of a conductive portion, an insulating portion, and an elastic shielding portion in a connector according to an embodiment.
  • FIG. 8 is a plan view showing a fourth example of a conductive portion, an insulating portion, and an elastic shielding portion in a connector according to an embodiment.
  • Figure 9 is a plan view showing a fifth example of a conductive portion, an insulating portion, and an elastic shielding portion in a connector according to an embodiment.
  • FIG. 10 is a plan view showing a sixth example of a conductive portion, an insulating portion, and an elastic shielding portion in a connector according to an embodiment.
  • Figure 11 is a plan view showing an example of an elastic shield formed in a sheet shape in a connector according to an embodiment.
  • FIG. 12 is a cross-sectional view showing a portion of the connector of one embodiment including the elastic shield shown in FIG. 11.
  • Figure 13 is a cross-sectional view showing a part of a connector according to another embodiment.
  • Figure 14 is a cross-sectional view showing a portion of a connector according to another embodiment.
  • Figure 15 is a cross-sectional view showing a portion of a connector according to another embodiment.
  • Embodiments of the present disclosure are illustrated for the purpose of explaining the technical idea of the present disclosure.
  • the scope of rights according to the present disclosure is not limited to the embodiments presented below or the specific description of these embodiments.
  • Expressions such as 'first' and 'second' used in the present disclosure are used to distinguish a plurality of components from each other, and do not limit the order or importance of the components.
  • a component when referred to as being 'connected' or 'coupled' to another component, it means that the component can be directly connected or coupled to the other component, or as a new component. It should be understood that it can be connected or combined through other components.
  • the direction indicator 'upward' used in the present disclosure is based on the direction in which the connector is located with respect to the inspection device, and the direction indicator 'downward' means the opposite direction to upward.
  • the direction indicator 'upward direction' used in the present disclosure includes the upward direction and the downward direction, but should be understood as not meaning a specific one of the upward direction and the downward direction.
  • the embodiments described below and examples shown in the accompanying drawings relate to an inspection connector (hereinafter simply referred to as a connector) used for inspection of a device to be inspected.
  • the connectors of the embodiments may be disposed between the test apparatus and the test device when testing the test device, and may be used for testing the test device.
  • the connectors of the embodiments may be used for final inspection of the semiconductor device in a post-process during the semiconductor device manufacturing process.
  • examples of inspections to which the connectors of the embodiments are applied are not limited to the above-described inspections.
  • FIG. 1 shows an example in which a connector according to embodiments of the present disclosure is used.
  • Figure 1 schematically shows the shapes of a connector, a component to which the connector is attached, an inspection device, and a device to be inspected.
  • the shape shown in FIG. 1 is only an example selected for understanding of the embodiment.
  • the connector 100 is a sheet-shaped structure and is disposed between the inspection apparatus 20 and the device to be inspected 30.
  • the connector 100 may form a test socket.
  • the connector 100 is attached to the socket housing 40 and can be positioned on the inspection device 20 by the socket housing 40 .
  • the socket housing 40 may have a socket guide 41, and a receiving hole 42 may be formed in the socket guide 41 in the vertical direction (VD).
  • the socket housing 40 may be removably mounted on the inspection device 20 from the socket guide 41, and the connector 100 may be removably coupled to the socket guide 41.
  • the connector 100 is in contact with the test device 20 and the device to be tested 30 in the vertical direction (VD), and the connector 100 is in contact with the test device 20 and the device to be tested 30. are electrically connected to each other.
  • the device under test 30 may be a semiconductor device manufactured by packaging a semiconductor IC chip and a plurality of terminals in a hexahedral shape using a resin material.
  • the device under test 30 may be a semiconductor device used in a mobile communication device, but is not limited thereto.
  • the device under test 30 may have a plurality of terminals 31 protruding from its lower surface.
  • the terminal 31 of the device under test shown in FIG. 1 is a ball type.
  • the terminal 31 is not limited to the ball type, and may be, for example, a land type or a pin type. Additionally, the terminal 31 may include a terminal for signal transmission and a terminal for grounding.
  • the test device 20 can test the electrical characteristics and operating characteristics of the device to be tested 30 .
  • the test device 20 may have a board on which a test is performed, and the board may be provided with a test circuit 21 for testing a device to be tested. Additionally, the test circuit 21 has a plurality of terminals 22 that are electrically connected to the terminals of the device to be tested through the connector 100. Terminal 22 of testing device 20 can transmit a test signal and receive a response signal.
  • the connector 100 When testing a device to be inspected, the connector 100 electrically connects the terminal 31 of the device to be inspected and the terminal 22 of the corresponding inspection device in the vertical direction (VD), and the connector 100
  • the test device 30 may be tested by the test device 20 through the test device 20 .
  • the connector 100 may include metal housings 110 and 120, a conductive portion 140, and an insulating portion 150.
  • the metal housings 110 and 120 may be coupled to the socket guide 41 of the socket housing 40 and positioned in the horizontal direction (HD).
  • the metal housings 110 and 120 may form the main body of the connector in which the conductive portion 140 is arranged in the vertical direction (VD).
  • the metal housings 110 and 120 may be composed of two metal housings 110 and 120 disposed vertically, and the two metal housings 110 and 120 may include an elastic shielding portion disposed between them. 130) can be spaced apart in the vertical direction (VD).
  • the conductive portion 140 and the insulating portion 150 may include an elastic material.
  • the conductive portion 140 is configured to conduct electricity in the vertical direction VD between the inspection apparatus 20 and the device to be inspected 30.
  • the conductive portion 140 may be in contact with the terminal 31 of the device to be inspected 30 at its upper end, and may be in contact with the terminal 22 of the inspection device 20 at its lower end.
  • the insulating portion 150 supports the conductive portion 140 in the vertical direction (VD) and insulates the conductive portion 140 from the metal housings 110 and 120.
  • a pressing force PF is applied to the device under test 30 by a mechanical device or manually.
  • the pressing force (PF) By the pressing force (PF), the terminal 31 of the device to be inspected and the conductive portion 140 of the connector 100 may be contacted in the vertical direction (VD), and the conductive portion 140 of the connector 100 and the conductive portion 140 may be inspected.
  • the terminal 22 of the device may be contacted in the vertical direction (VD).
  • the conductive portion 140 may be elastically deformed in such a way that it is compressed downward and expands in the horizontal direction.
  • the pressing force PF is removed from the conductive portion 140 of the connector, the conductive portion 140 may be restored to its original shape.
  • the connector 100 may include a plurality of conductive parts 140 and a plurality of insulating parts 150 that insulate each conductive part.
  • the planar arrangement form of the plurality of conductive parts 140 may vary depending on the arrangement form of the terminals of the device under test 30. For example, when the connector 100 is viewed from above, the plurality of conductive portions 140 may be arranged in a single matrix, in the form of one or more pairs of matrixes, or in a zigzag form.
  • FIGS. 2 to 15 may be referred to for description of connectors according to embodiments. 2 to 15 schematically show the shapes of the components of the connector. The shapes shown in FIGS. 2 to 15 are merely examples selected for understanding of the embodiments.
  • FIG. 2 is a cross-sectional view showing a portion of a connector according to an embodiment of the present disclosure.
  • FIG. 3 is a cross-sectional perspective view showing a part of the connector shown in FIG. 2
  • FIG. 4 is an exploded cross-sectional view showing a part of the connector shown in FIG. 2. Reference is made to FIGS. 2 to 4 for description of the connector according to one embodiment.
  • the connector 100 includes metal housings 110 and 120, an elastic shielding portion 130 disposed between the metal housings 110 and 120, and is configured to be conductive in the vertical direction (VD). It includes a conductive portion 140 and an insulating portion 150 that supports the conductive portion 140 and insulates the conductive portion 140 from the metal housings 110 and 120.
  • the metal housings 110 and 120 are components for supporting the conductive portion 140 in the vertical direction (VD).
  • the metal housings 110 and 120 may be formed in a thin flat shape and are arranged in the horizontal direction (HD) orthogonal to the vertical direction (VD).
  • the metal material constituting the metal housings 110 and 120 may be aluminum or stainless steel, but is not limited thereto.
  • the metal housings 110 and 120 may include a first metal housing 110 and a second metal housing 120 spaced upward from the first metal housing 110.
  • the second metal housing 120 may have a thickness smaller than the thickness of the first metal housing 110 in the vertical direction.
  • the elastic shield 130 is disposed between the first metal housing 110 and the second metal housing 120 to space the second metal housing 120 upward from the first metal housing 110.
  • the elastic shield 130 is in electrically conductive contact with the upper surface of the first metal housing 110 and the lower surface of the second metal housing 120.
  • the elastic shielding portion 130 may be formed in a pillar shape as shown in FIG. 3 .
  • the elastic shielding part formed in a pillar shape may be referred to as an elastic shielding pillar.
  • the elastic shielding portion 130 may be formed in the shape of a sheet as shown in FIGS. 11 and 12.
  • the elastic shielding part formed in a sheet shape may be referred to as an elastic shielding sheet.
  • the elastic shield 130 is configured to have elasticity.
  • the elastic shielding portion 130 causes the second metal housing 120 to be connected to the first metal housing 110 by an external force applied downward to the connector 100 (for example, the pressing force PF shown in FIG. 1).
  • the second metal housing 120 can be elastically supported relative to the first metal housing 110.
  • the second metal housing 120 may be supported in a floating state from the first metal housing 110 by the elastic shielding part 130, and the connector 100 may be supported by the pressing force by the elastic force of the elastic shielding part 130. can be absorbed or dispersed.
  • the terminal of the device to be inspected presses the conductive portion 140 and the second metal housing 120 in a state offset from the center of the conductive portion 140, the second metal housing 120 becomes an elastic shield.
  • the pressing force applied by the device under test may be absorbed or distributed. Accordingly, when the center of the terminal of the device to be inspected and the conductive portion 140 are offset, the terminal of the device to be inspected is prevented from being damaged by the interface between the second metal housing 120 and the conductive portion 140. can do.
  • the elastic shield 130 is configured to be conductive and electrically connects the first metal housing 110 and the second metal housing 120.
  • the first and second metal housings 110 and 120 may function as shielding areas.
  • the first and second metal housings 110 and 120 reflect most electromagnetic waves from their surfaces, the first and second metal housings 110 and 120 may function as shielding areas in the connector.
  • the first and second metal housings 110 and 120 are electrically connected by an elastic shielding portion 130. Accordingly, the first and second metal housings 110 and 120 and the elastic shielding portion 130 can function as one shielding block and maintain good signal transmission characteristics of the conductive portion.
  • the first and second metal housings 110 and 120 have through holes penetrating in the vertical direction VD.
  • the first metal housing 110 has a first through hole 111 penetrating in the vertical direction (VD).
  • the first through hole 111 may have a circular or oval cross-section.
  • a central axis CA passing through the center of the cross-sectional shape of the first through hole and extending in the vertical direction may be defined in the first through hole 111 .
  • the first through hole 111 has a central axis CA in the vertical direction VD.
  • the second metal housing 120 has a second through hole 121 corresponding to the first through hole 111.
  • the second through hole 121 penetrates the second metal housing 120 in the vertical direction coaxially with the central axis CA of the first through hole.
  • the conductive portion 140 is not only conductive in the up and down directions, but can also be compressed and expanded by the pressing force applied by the device under test.
  • the conductive portion 140 is disposed in the first through hole 111 and the second through hole 121 in the vertical direction (VD) coaxially with the central axis (CA).
  • the conductive portion 140 is disposed in the first through hole 111 to be spaced apart from the inner peripheral surface of the first through hole 111 and is disposed in the second through hole 121 to be spaced apart from the inner peripheral surface of the second through hole 121. do.
  • the conductive portion 140 is disposed so that the outer peripheral surface of the conductive portion and the inner peripheral surface of the first and second through holes are spaced apart from each other in the outer radial direction with respect to the central axis CA.
  • the conductive portion 140 is configured to conduct electricity in the vertical direction between the test apparatus and the test subject device, and transmits signals in the vertical direction (VD) between the test apparatus and the test subject device.
  • the conductive portion 140 may have a cylindrical shape extending in the vertical direction (VD).
  • the conductive portion 140 is in contact with the terminal of the test device at its upper end and with the terminal of the test device at its lower end. Accordingly, a conductive path in the vertical direction is formed between the terminal of the device to be inspected and the terminal of the inspection device, corresponding to one conductive portion 140, via the conductive portion 140.
  • the test signal of the test device may be transmitted from the terminal of the test device to the terminal of the device under test through the conductive portion 140, and the response signal of the device under test may be transmitted from the terminal of the device under test through the conductive portion 140. It can be transmitted to the terminal of the device.
  • the conductive part 140 is disposed in the first through hole 111 and the second through hole 121 by the insulating part 150. As shown in FIGS. 2 and 3 , the insulating portion 150 is inserted into the first through hole 111 and the second through hole 121 . The insulating portion 150 is configured to position the conductive portion 140 in the first through hole 111 and the second through hole 121 coaxially with the central axis CA. Additionally, the insulating portion 150 supports the conductive portion 140 in the vertical direction (VD) and is configured to insulate the conductive portion 140 from the first and second metal housings 110 and 120.
  • VD vertical direction
  • the insulating portion 150 is disposed between the outer peripheral surface of the conductive portion 140 and the inner peripheral surface of the first and second through holes 111 and 121.
  • the insulating portion 150 includes an annular space formed between the inner peripheral surface of the first through hole 111 and the outer peripheral surface of the conductive portion 140, the inner peripheral surface of the second through hole 121, and the outer peripheral surface of the conductive portion 140. It is formed to fill the fantasy space formed in between.
  • the insulating portion 150 may take the shape of a pipe corresponding to the annular spaces.
  • the insulating portion 150 surrounds the conductive portion 140 in the circumferential direction (CD) about the central axis CA between the inner peripheral surface of the first through hole 111 and the outer peripheral surface of the conductive portion 140, and forms a second It is configured to surround the conductive portion 140 in the circumferential direction (CD) between the inner peripheral surface of the through hole 121 and the outer peripheral surface of the conductive portion 140.
  • the width of the insulating portion 150 in the outer radial direction with respect to the central axis CA may be constant along the circumferential direction CD. Therefore, the conductive part 140 supported by the insulating part 150 may be positioned coaxially with the central axis CA in the first through hole 111 and the second through hole 121.
  • an air layer 160 is formed between the first and second metal housings 110 and 120. Since the first and second metal housings 110 and 120 are spaced apart from each other in the vertical direction (VD) by the elastic shielding portion 130, the air layer 160 is formed between the first and second metal housings 110 and 120. It is formed in the horizontal direction (HD) between them.
  • the elastic shield 130 is disposed in the air layer 160. Additionally, since the first and second metal housings 110 and 120 are spaced apart through the air layer 160, a portion of the outer peripheral surface of the insulating portion 150 is exposed within the air layer 160. The thickness of the air layer 160 in the vertical direction may be limited by the thickness of the elastic shielding portion 130 in the vertical direction.
  • the connector 100 may include an elastic shield 130 having various thicknesses in the vertical direction, and accordingly, the separation in the vertical direction between the first and second metal housings 110 and 120 in the connector The distance can also be set in various ways. Therefore, in an embodiment of the connector, the thickness of the air layer 160 may increase depending on the thickness of the elastic shielding portion 130 in the vertical direction.
  • the first and second metal housings 110 and 120 elastically expand the conductive portion 140 in the area where the air layer 160 is formed. does not bind
  • the pressing force is applied to the conductive portion 140 through the device to be inspected, at least a portion of the conductive portion 140 located in the air layer 160 is restrained by the first and second metal housings 110 and 120. It can be compressed vertically and expanded horizontally. Therefore, when the conductive portion 140 is pressed by the pressing force during inspection of the device being inspected, the conductive portion 140 can be smoothly elastically deformed and have improved operability.
  • the dielectric constant of the area surrounding the conductive portion 140 in the circumferential direction (CD) of the central axis (CA) may affect the signal transmission performance of the conductive portion 140 and the impedance to the inspection apparatus and the device to be inspected. This may affect matching.
  • the air layer 160 is filled with air, and the air may have a dielectric constant of about 1. Therefore, since the area surrounding the conductive portion 140 in the circumferential direction (CD) has a very low dielectric constant due to the air layer 160, the conductive portion 140 can have reduced signal loss and improved high-frequency characteristics, Better impedance matching can be achieved.
  • FIGS. 3 and 4 for examples of materials constituting the conductive portion, the insulating portion, and the elastic shielding portion and examples of combinations of each member in the connector.
  • Figure 4 shows each member constituting the connector of one embodiment simply separated.
  • the conductive portion 140 may include a plurality of conductive materials 141 and elastic materials 142.
  • a plurality of conductive materials 141 are gathered in a pillar shape to enable conduction in the vertical direction (VD), and neighboring conductive materials 141 can be contacted to enable conduction in any direction.
  • An assembly of a plurality of conductive materials 141 arranged so as to be conductive in the vertical direction functions as a conductor that transmits signals between the terminals of the inspection apparatus and the terminals of the device to be inspected.
  • the conductive material 141 may be any one of metal particles, carbon nanotubes, graphene, and conductive wire.
  • FIG. 4 shows an example of a conductive material 141 having the shape of a metal particle.
  • the metal particles may be made of a highly conductive metal material.
  • the metal particles may be formed by coating a core made of an elastic resin material or a metal material with a highly conductive metal material.
  • VD vertical direction
  • the elastic material 142 is in a hardened state and has elasticity.
  • the elastic material 142 maintains the conductive materials 141 in the vertical direction (VD) so that the conductive materials 141 are gathered into a pillar shape.
  • the space between the conductive materials 141 may be filled with an elastic material 142.
  • the elastic material 142 is formed integrally with the conductive materials 141 to form the conductive portion 140.
  • the elastic material 142 may have insulating properties.
  • the elastic material 142 may be, but is not limited to, cured silicone rubber.
  • the conductive portion 140 including the elastic material 142 has elasticity and can be elastically deformed in the vertical direction (VD) and horizontal direction (HD).
  • VD vertical direction
  • HD horizontal direction
  • the terminal of the device to be inspected presses the conductive portion 140 downward by a pressing force.
  • the conductive portion 140 may be elastically deformed to be compressed downward.
  • the pressing force is removed, the conductive portion 140 can be elastically restored to its original shape (i.e., non-pressurized state) from the pressed state.
  • the conductive portion 140 may be reversibly deformed between a non-pressurized state and a pressed state.
  • the insulating portion 150 may be made of an elastic material with insulating properties.
  • the insulating portion 150 may be made of any one of silicone rubber, silicone rubber containing multiple pores, fluorine silicone rubber, or polytetrafluoroethylene resin (PTFE resin), but is not limited thereto.
  • the insulating portion 150 positions the conductive portion 140 coaxially with the first and second through holes 111 and 121.
  • the liquid elastic material forming the insulating portion 150 is hardened to form a cylindrical insulating portion, and a through hole may be formed in the cylindrical insulating portion by a laser in the vertical direction. Thereafter, the conductive portion 140 may be fitted into the through hole formed in the insulating portion 150 in the vertical direction to form the insulating portion 150 that coaxially positions the conductive portion 140.
  • the conductive portion 140 and the insulating portion 150 may be formed integrally with a mold. A liquid molding material in which the conductive materials 141 and the liquid elastic material 142 are mixed may be injected into the mold.
  • the conductive materials 141 may be gathered in the vertical direction by a magnetic field to form the conductive portion 140. Afterwards, the liquid elastic material that does not form the conductive part 140 may be hardened to form the insulating part 150. Therefore, when the elastic material constituting the insulating portion 150 and the elastic material constituting the conductive portion 140 are the same, the insulating portion 150 is made of the elastic material of the conductive portion 140 and is formed in one mold. It may be formed integrally with the conductive portion 140.
  • the insulating portion 150 may be formed from liquid silicone rubber to which a foaming agent has been added.
  • the foaming agent chemically reacts with liquid silicone rubber to generate gas.
  • the generated gas pushes out the liquid material within the liquid silicone rubber, and as a result, the generated gas partially depletes the liquid resin during molding of the insulating part, creating a large number of pores of various sizes throughout the insulating part. This can be formed.
  • the insulating portion 150 containing a plurality of pores may have a lower dielectric constant than the dielectric constant of the insulating portion not containing pores due to the pores.
  • the fluorine silicone rubber may be fluorine-added silicone rubber.
  • the insulating portion 150 made of fluorosilicone rubber may have cold resistance.
  • the insulating portion 150 made of fluorosilicone rubber can exhibit appropriate elastic recovery force when inspected at low temperatures.
  • the conductive portion 140 may include a conductive metal pin elastically compressible in the vertical direction (VD), and an elastic material of the aforementioned conductive portion while maintaining the conductive metal pin in the vertical direction (VD).
  • the conductive metal pin is positioned in the vertical direction (VD) and can contact the terminal of the device to be inspected and the terminal of the inspection device at its top and bottom, respectively.
  • the conductive metal pin may have a bent portion that undergoes elastic deformation, and may have, for example, an S-shape or a U-shape.
  • the conductive metal pin may be formed using MEMS (Micro Electro Mechanical System) technology.
  • FIG 3 and 4 show an elastic shielding portion 130 including an elastic shielding filler formed in a pillar shape.
  • the elastic shielding portion 130 may have a configuration similar to that of the conductive portion 140.
  • the elastic shield 130 may include a plurality of conductive materials 131 and elastic materials 132.
  • a plurality of conductive materials 131 are gathered in a pillar shape to enable conduction in the vertical direction (VD), and neighboring conductive materials 131 can be contacted to enable conduction in any direction.
  • a plurality of conductive materials 131 gathered in a vertical direction electrically connect the first metal housing 110 and the second metal housing 120.
  • the conductive material 131 may be any one of metal particles, carbon nanotubes, graphene, and conductive wire.
  • FIG. 4 shows an example of a conductive material 131 having the shape of a metal particle.
  • the metal particles, carbon nanotubes, graphene, and conductive wires constituting the elastic shielding portion 130 may be the same as the metal particles, carbon nanotubes, graphene, and conductive wires of the conductive portion 140.
  • the elastic material 132 is in a hardened state and has elasticity.
  • the elastic material 132 maintains the conductive materials 131 in the vertical direction (VD) so that the conductive materials 131 are gathered into a pillar shape.
  • the space between the conductive materials 131 may be filled with an elastic material 132.
  • the elastic material 132 is formed integrally with the conductive materials 131 to form the elastic shielding portion 130.
  • the elastic material 132 may be, but is not limited to, cured silicone rubber.
  • the elastic shielding portion 130 including the elastic material 132 has elasticity and is elastically deformable in the vertical direction (VD) and the horizontal direction (HD). For example, when the second metal housing 120 is pressed by the pressing force of the device to be inspected, the second metal housing 120 is elastically supported by the elastic shield 130, so that the pressing force is absorbed or dispersed. You can.
  • the elastic shield 130 may include a conductive metal member elastically compressible in the vertical direction (VD) and the above-described elastic material 132 that maintains the conductive metal member in the vertical direction (VD).
  • the conductive metal member in this example may include a conductive metal pin or a conductive spring.
  • the conductive metal pins constituting the elastic shielding portion may be the same as the conductive metal pins of the aforementioned conductive portion.
  • the conductive spring constituting the elastic shield may take the form of a compressed coil spring and may be maintained in a cylindrical shape by the elastic material 132.
  • the elastic shielding portion 130 may be formed integrally with the upper surface of the first metal housing 110 or the lower surface of the second metal housing 120 .
  • a first metal housing 110 in which a first through hole 111 is formed is prepared, and the conductive material 131 constituting the elastic shielding portion 130 and the liquid elastic material 132 are mixed into a liquid form. Material may be applied locally on the top surface of first metal housing 110 . Afterwards, the liquid molding material is hardened, and the elastic shielding part 130 can be formed on the upper surface of the first metal housing.
  • a first metal housing 110 in which a first through hole 111 is formed is prepared, and a mold in which a through hole for forming the elastic shield is formed is placed on the upper surface of the first metal housing 110.
  • the above-described liquid molding material is injected and hardened into the through hole of the mold, the mold is removed from the upper surface of the first metal housing 110, and the elastic shielding portion 130 is formed on the upper surface of the first metal housing. can be formed in If necessary for forming the elastic shielding portion 130, a magnetic field may be applied to the conductive materials 131 to gather the conductive materials 131 in the vertical direction.
  • one of the first and second metal housings 110 and 120, the conductive portion 140, and the insulating portion 150 are formed integrally in advance to perform a conductive function. You can configure one challenge module to perform. These conductive modules and the remaining components of the connector may be assembled or combined to manufacture the connector.
  • the conductive portion 140, the insulating portion 150, and the first metal housing 110 may be formed in advance as one body to form one conductive module.
  • the conductive portion 140 positioned coaxially with the central axis CA in the first through hole 111 of the first metal housing 110 by the insulating portion 150, the conductive portion and the insulating portion
  • the conductive module may be configured of a secondary and first metal housing.
  • a first through hole 111 is formed in the first metal housing 110, and a liquid molding material made of a conductive material 141 and a liquid elastic material 142 is formed in the first through hole 111.
  • the conductive portion 140 of the conductive module may be coupled to the second through hole 121 of the second metal housing 120.
  • the elastic shielding portion 130 may be formed in the first metal housing 110 of the conductive module or in the second metal housing 120 prepared separately from the conductive module.
  • the conductive portion 140, the insulating portion 150, and the second metal housing 120 may be formed integrally in advance to form one conductive module.
  • the conductive portion 140 positioned coaxially with the central axis CA in the second through hole 121 of the second metal housing 120 by the insulating portion 150, the conductive portion and the insulating portion
  • the conductive module may be configured of a secondary and secondary metal housing.
  • the second through hole 121 is formed in the second metal housing 120, and a liquid molding material made of a conductive material 141 and a liquid elastic material 142 is formed in the second through hole 121.
  • a magnetic field may be applied to the conductive material 141 to form the conductive portion 140, and the elastic material 142 may be hardened to form the conductive portion 140, the insulating portion 150, and the second metal housing 120.
  • This can be formed as a whole.
  • the cylindrical insulating part 150 may be formed in the second through hole 121 by the liquid elastic material 142, and the through hole may be formed in the cylindrical insulating part 150, and the magnetic field may be formed in the cylindrical insulating part 150.
  • the conductive portion 140 may be formed integrally with the insulating portion 150 without application.
  • the conductive portion 140 of the conductive module may be coupled to the first through hole 111 of the first metal housing 110.
  • the elastic shielding portion 130 may be formed in the second metal housing 120 of the conductive module or in the first metal housing 110 prepared separately from the conductive module.
  • 5 to 10 are plan views showing various examples of a conductive part, an insulating part, and an elastic shielding part. Reference may be made to FIGS. 5-10 for various examples of conductive portions, insulating portions, and elastic shielding portions in various embodiments of a connector. 5 to 10 show an elastic shielding filler formed in a pillar shape as an example of an elastic shielding part. As shown in FIGS. 5 to 10 , a plurality of conductive parts 140 and insulating parts 150 may be disposed in the first metal housing 110 and the second metal housing.
  • the conductive portion 140 and the insulating portion 150 may have a circular cross-section, and the first through hole 111 of the first metal housing 110 and the second metal housing may have a circular cross-section.
  • the second through hole may have a circular cross section.
  • Each structure consisting of the conductive part 140 and the insulating part 150 may be arranged in a matrix form, and the first through holes 111 of the first metal housing 110 and the second through holes of the second metal housing They can also be arranged in a matrix form. Alternatively, referring to FIG.
  • each structure consisting of the conductive portion 140 and the insulating portion 150 may be arranged in a zigzag shape, and the first through holes 111 of the first metal housing 110 and the first through holes 111 of the first metal housing 110 may be formed. 2
  • the second through holes of the metal housing may also be arranged in a zigzag shape.
  • the elastic shielding filler 133 which is an example of the elastic shielding part 130, is formed in a pillar shape and is spaced apart from the outer peripheral surface of the insulating part 150. As shown in FIGS. 5 to 7 , at least one elastic shielding filler 133 may be disposed between two neighboring insulating portions 150 .
  • the cross section of the elastic shielding filler 133 may have a circular or cross shape. As shown in FIG. 7, when the elastic shielding filler 133 has a cross-shaped cross-section, the shielding area within the aforementioned air layer (see FIGS. 2 and 3) formed between the first metal housing and the second metal housing is circular. It can be formed longer than an elastic shielding filler with a cross section of. Alternatively, the cross-section of the elastic shielding filler 133 may have a polygon such as a square.
  • the conductive portion 140 and the insulating portion 150 may have an oval cross-section, and the first through hole 111 of the first metal housing 110 and the second metal housing may have an oval shape.
  • the second through hole may have an oval cross-section.
  • Each structure consisting of the conductive part 140 and the insulating part 150 may be arranged in a matrix form, and the first through holes 111 of the first metal housing 110 and the second through holes of the second metal housing They can also be arranged in a matrix form.
  • the conductive portion 140 and the insulating portion 150 may be arranged in a zigzag shape, and the first through holes 111 of the first metal housing 110 and the second through holes 111 of the second metal housing Through holes may also be arranged in a zigzag pattern.
  • the conductive portion 140 and the insulating portion 150 having a circular cross-section and the conductive portion 140 and the insulating portion 150 having an elliptical cross-section may be disposed together.
  • the first through hole of the first metal housing and the second through hole of the second metal housing may also have a circular or oval shape.
  • the land-type terminal When the device under test has a land-type terminal, the land-type terminal may be formed in a flat and wide plate shape. To contact this land-type terminal, the conductive portion 140 and the insulating portion 150 may be formed to have an oval cross-section.
  • the elastic shielding filler 133 may have an oval cross-section. Referring to FIG. 8 , an elastic shielding filler 133 having an oval cross-section may be disposed next to the conductive portion 140 and the insulating portion 150 having an oval cross-section. Referring to FIG. 9 , an elastic shielding filler 133 having a cross-shaped cross-section may be disposed next to the conductive portion 140 and the insulating portion 150 having an oval-shaped cross-section. Referring to FIG. 10 , an elastic shielding filler 133 having an oval shape longer than the oval shape shown in FIG. 8 may be disposed next to the conductive portion 140 and the insulating portion 150 having an oval cross-section. Additionally, referring to FIG.
  • an elastic shielding filler 133 with a circular cross-section is formed. It may be disposed between the pair of conductive parts 140 having a circular cross-section, and the elastic shielding filler 133 having an elongated oval cross-section may be disposed between the pair of conductive parts 140 having an elongated oval cross-section. It can be placed in between.
  • the number and shape of elastic shielding fillers in an embodiment of the connector can be determined in various ways.
  • the number and shape of the elastic shielding fillers can be determined in various ways by considering factors such as the magnitude of the pressing force applied to the device under test, the degree of compression of the connector due to the pressing force, and the shielding performance of the conductive part. For example, when a low level of shielding performance is required, an elastic shielding filler with a circular cross-section may be employed in the connector. If a higher level of shielding performance than the above lower level is required, an elastic shielding filler having an oval, oblong or cross-shaped cross-section may be employed in the connector. Additionally, depending on the magnitude of the pressing force of the device under test and the degree of compression of the connector, an appropriate number of elastic shielding fillers may be employed in the connector between adjacent conductive parts.
  • FIG. 11 is a plan view showing an example of an elastic shield formed in a sheet shape
  • FIG. 12 is a cross-sectional view showing a part of a connector of an embodiment including the elastic shield shown in FIG. 11.
  • the elastic shielding unit may include an elastic shielding sheet formed as a sheet. In this regard, see Figures 11 and 12.
  • the elastic shielding portion 130 includes an elastic shielding sheet 134 configured to electrically connect the first metal housing 110 and the second metal housing 120.
  • the elastic shielding sheet 134 separates the second metal housing 120 upward from the first metal housing 110 and elastically supports the second metal housing 120 with respect to the first metal housing 110.
  • the elastic shielding sheet 134 formed as a sheet has a cross-sectional area that is larger than the cross-sectional area of the elastic shielding filler described above. Accordingly, when a high level of shielding performance is required for the connector, the elastic shielding sheet 134 may be employed as the elastic shield.
  • the elastic shielding portion 130 has an insertion hole 135 penetrating in the vertical direction VD so that the insulating portion 150 and the conductive portion 140 are inserted.
  • the insertion hole 135 is larger than the diameter of the insulating portion 150. Accordingly, an air layer 160 is formed between the insertion hole 135 and the outer peripheral surface of the insulating portion 150.
  • the elastic shielding sheet 134 may include the conductive material 131 and the elastic material 132 described with reference to FIG. 4 .
  • a conductive elastic sheet is formed from a liquid molding material that is a mixture of the conductive material 131 and the liquid elastic material 132, and an insertion hole 135 is formed in the conductive elastic sheet using a laser to create an elastic shielding sheet. (134) can be formed.
  • a magnetic field may be applied to evenly distribute the conductive material 131.
  • the elastic shielding sheet 134 may be bonded to the upper surface of the first metal housing 110 or the lower surface of the second metal housing 120.
  • Figure 13 is a cross-sectional view showing a part of a connector according to another embodiment.
  • the elastic shielding portion 130 has a vertical thickness greater than the thickness of the elastic shielding portion shown in FIG. 2.
  • the air layer 160 has a vertical thickness greater than that of the air layer shown in FIG. 2 , and the separation distance between the first and second metal housings 110 and 120 is greater than the separation distance shown in FIG. 2 .
  • the connector shown in FIG. 13 may be more advantageous in dispersing the pressing force of the device under test and expanding the conductive portion in the horizontal direction due to the larger air layer 160.
  • the connector shown in FIG. 2 includes two metal housings spaced apart vertically and an elastic shield disposed between them.
  • An additional metal housing may be disposed above the upper metal housing, and an additional elastic shield may be disposed between the additional metal housing and the upper metal housing.
  • Figure 14 shows a portion of a connector according to another embodiment.
  • the connector 100 shown in FIG. 14 further includes a third metal housing 170 disposed above the second metal housing 120.
  • the third metal housing 170 has a third through hole 171 penetrating in the vertical direction (VD) coaxially with the central axis (CA).
  • the insulating part 150 that positions the conductive part 140 coaxially with the central axis CA is inserted into the third through hole 171.
  • the connector 100 further includes an additional elastic shielding portion 180 configured to electrically connect the second metal housing 120 and the third metal housing 170.
  • the elastic shield 180 is disposed between the second metal housing 120 and the third metal housing 170 to space the third metal housing 170 upward from the second metal housing 120. Additionally, the elastic shield 180 elastically supports the third metal housing 170 with respect to the second metal housing 120.
  • the elastic shielding unit 180 may be configured in the same manner as the elastic shielding unit 130.
  • the connector 100 may include a plurality of metal housings, and an elastic shield may be disposed between metal housings adjacent to each other above and below the plurality of metal housings.
  • the insulating part may be formed in a different shape from the cylindrical body, the first through hole of the first metal housing may be formed to have a diameter larger than the diameter of the insulating part, and the first metal housing may be formed as a laminated structure.
  • Figure 15 shows a portion of a connector according to yet another embodiment.
  • the first metal housing 110 and the second metal housing 120 are spaced apart from each other by the elastic shielding portion 130.
  • An air layer 160 is formed between the first and second metal housings 110 and 120 that are spaced apart from each other, and an elastic shield 130 is disposed in the air layer 160.
  • the conductive portion 140 contacts the terminal of the device to be inspected and the terminal of the inspection device to transmit signals.
  • the connector 100 may include a conductive portion 190 that grounds the device to be inspected, the connector, and the inspection device.
  • the size and arrangement form of the conductive part 140 for signal transmission and the conductive part 190 for grounding shown in FIG. 15 are only examples and may vary depending on the arrangement form of the terminal of the device under test. .
  • the insulating portion 150 may include a plurality of parts with different diameters.
  • the insulating part is inserted into the first part 151 located in the first through hole 111 of the first metal housing 110 and the second through hole 121 of the second metal housing 120. It may include a second portion 152 that is fitted.
  • the second part 152 has an outer diameter larger than that of the first part 151.
  • the second part 152 may be formed in the insulating part 150 in a flange-like shape.
  • the insulating portion 150 is made of an elastic material and the second portion 152 has a larger outer diameter.
  • the second part 152 of the insulating part may be connected to the device under test.
  • the terminal can be prevented from being damaged by the second metal housing 120.
  • the first part 151 of the insulating part may be separated from the first through hole 111 of the first metal housing along the circumferential direction.
  • the insulating part 150 may include a third part 153 that is formed on the lower end of the insulating part and has an outer diameter that is larger than the outer diameter of the first part 151.
  • the third portion 153 of the insulating portion may be fitted into the first through hole 111 of the first metal housing.
  • the first through hole 111 of the first metal housing 110 may be formed to improve the degree of elastic deformation of the conductive portion 140.
  • the first through hole 111 may include an upper through hole 112 and a lower through hole 113 forming one through hole.
  • the upper through hole 112 has an inner diameter larger than the outer diameter of the insulating portion 150 (or an inner diameter larger than the first portion 151 of the insulating portion).
  • the insulating portion 150 (or the third portion 153 of the insulating portion) is fitted into the lower through hole 113.
  • the lower through hole 113 has a smaller inner diameter than the upper through hole 112.
  • the upper through hole 112 is formed to communicate with the air layer 160. Since an upper through hole larger than the diameter of the insulating part is formed around the insulating part 150 (or the first part 151 of the insulating part), the conductive part 140 may be elastically deformed by being constrained by expansion in the horizontal direction. , the elastic restoring force of the conductive portion 140 may be improved.
  • the first metal housing 110 may be formed as a laminate of two metal sheets.
  • the first metal housing 110 may include a first metal housing sheet 114 located on the lower side and a second metal housing sheet 115 stacked on the first metal housing sheet 114. there is.
  • the lower through hole 113 which is part of the first through hole, penetrates the first metal housing sheet 114
  • the upper through hole 112 which is part of the first through hole, penetrates the second metal housing sheet 115. there is. Since the first metal housing 110 is formed of a laminate of two metal sheets, the first metal housing 110 having first through holes 111 having different diameters can be easily manufactured.
  • a support film 116 which may be made of polyimide resin, may be attached to the lower surface of the first metal housing (for example, the lower surface of the first metal housing sheet 114).
  • the support film 116 may support the conductive portion 140 and the lower protrusion of the conductive portion 190 and prevent short circuit between the conductive portion 140 and the conductive portion 190.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Details Of Connecting Devices For Male And Female Coupling (AREA)
  • Measuring Leads Or Probes (AREA)

Abstract

검사 장치와 피검사 디바이스의 사이에 배치되어 피검사 디바이스의 검사에 사용되는 검사용 커넥터가 제공된다. 커넥터는, 제1 및 제2 금속 하우징과, 탄성 차폐부와, 도전부와, 절연부를 포함한다. 제1 금속 하우징은 제1 관통공을 갖고, 제2 금속 하우징은 제2 관통공을 갖는다. 탄성 차폐부는 제1 및 제2 금속 하우징의 사이에 배치되며, 제1 및 제2 금속 하우징을 전기적으로 접속시킨다. 도전부는 제1 관통공 및 제2 관통공에 배치된다. 절연부는 제1 관통공 및 제2 관통공에 삽입된다. 절연부는, 도전부를 관통공의 중심축의 둘레 방향으로 둘러싸고, 도전부를 중심축과 동축으로 위치시킨다.

Description

검사용 커넥터
본 개시는 검사 장치와 피검사 디바이스의 사이에 배치되어 피검사 디바이스의 검사에 사용되는 검사용 커넥터에 관한 것이다.
반도체 디바이스와 같은 피검사 디바이스(device under test)를 검사하기 위해, 검사 장치와 피검사 디바이스의 사이에 배치되는 커넥터가 사용되고 있다. 피검사 디바이스의 검사에 사용되는 커넥터는 검사 장치와 피검사 디바이스를 전기적으로 접속시킨다. 이러한 커넥터로서, 포고핀(pogo pin) 또는 도전성 러버 커넥터가 알려져 있다. 도전성 러버 커넥터는, 다수의 도전성 입자가 상하 방향으로 집합되어 있는 도전부들을 가진다.
모바일 통신 기기에 사용되는 반도체 디바이스는 고주파의 RF(radio frequency) 특성에 대해 검사되어야 한다. 도전성 러버 커넥터는 얇은 두께로 인해 포고핀보다 양호한 RF 특성을 가지므로, 도전성 러버 커넥터가 반도체 디바이스의 RF 검사를 위해 사용되고 있다. 일 예로, 일본 공개특허공보 특개2004-335450호는, 고주파 RF 특성의 검사에 사용될 수 있는 커넥터를 제안한다.
고주파의 RF 특성의 검사에 사용되는 종래기술의 검사용 커넥터는, 도전부들이 단일의 금속 블록의 관통공들에 동축으로 배치되고 도전부들이 단일의 금속 블록에 의해 상하 방향으로 지지되는 구조를 가질 수 있다. 종래기술의 검사용 커넥터는, 단일의 금속 블록에 의해 도전부들이 지지되는 구조에 의해, 도전부 간 신호의 간섭 및 누화(cross talk)를 방지한다.
피검사 디바이스의 검사 시에 피검사 디바이스의 단자가 도전부를 누를 때, 도전부의 탄성 변형이 상기 금속 블록에 의해 구속되어, 도전부가 원활하게 탄성 변형될 수 없고 탄성 복원될 수 없다. 이에 따라, 종래기술의 검사용 커넥터에서는, 도전부의 동작성이 불량하다. 동작성이 불량한 도전부가 검사가 가능할 정도의 적정 저항값을 나타내기 위해서는, 피검사 디바이스가 강한 가압력 하에서 도전부를 눌러야 한다. 그러나, 강한 가압력은 피검사 디바이스의 손상과 도전부의 손상을 야기할 수 있다.
피검사 디바이스의 검사 시에 피검사 디바이스의 단자가 도전부의 중심과 정렬되지 못하면, 피검사 디바이스의 단자가 도전부의 중심으로부터 오프셋된 상태로 금속 블록에 접촉될 수도 있다. 단일의 금속 블록은 피검사 디바이스를 통해 가해지는 가압력을 흡수하거나 분산시킬 수 없다. 피검사 디바이스의 단자가 도전부의 중심으로부터 오프셋되면, 피검사 디바이스의 단자가 금속 블록에 의해 손상될 수 있다.
본 개시의 일 실시예는, 향상된 동작성을 갖는 도전부를 포함하여 피검사 디바이스의 가압력을 낮출 수 있는 검사용 커넥터를 제공한다. 본 개시의 일 실시예는, 피검사 디바이스가 가하는 가압력을 흡수 및 분산시켜 피검사 디바이스의 손상을 방지할 수 있는 검사용 커넥터를 제공한다.
본 개시의 실시예들은, 검사 장치와 피검사 디바이스의 사이에 배치되어 피검사 디바이스의 검사에 사용되는 검사용 커넥터에 관련된다. 일 실시예에 따른 커넥터는, 제1 금속 하우징과, 제2 금속 하우징과, 탄성 차폐부와, 도전부와, 절연부를 포함한다. 제1 금속 하우징은, 상하 방향으로 관통되고 상하 방향에서의 중심축을 갖는 제1 관통공을 갖는다. 제2 금속 하우징은, 중심축과 동축으로 상하 방향으로 관통된 제2 관통공을 갖는다. 탄성 차폐부는, 제1 금속 하우징과 제2 금속 하우징의 사이에 배치되어 제2 금속 하우징을 제1 금속 하우징으로부터 상방으로 이격시킨다. 탄성 차폐부는 제1 금속 하우징과 제2 금속 하우징을 전기적으로 접속시키도록 구성된다. 도전부는 제1 관통공 및 제2 관통공에 상하 방향으로 배치되고, 검사 장치와 피검사 디바이스의 사이에서 도전 가능하도록 구성된다. 절연부는 제1 관통공 및 제2 관통공에 삽입되어 있다. 절연부는, 중심축의 둘레 방향으로 도전부를 둘러싸고 도전부를 중심축과 동축으로 위치시키도록 구성된다.
일 실시예에 있어서, 공기층이 서로 이격된 제1 금속 하우징과 제2 금속 하우징의 사이에 형성되어 있다. 절연부의 외주면의 일부가 공기층 내에서 노출되고 탄성 차폐부가 공기층에 배치된다.
일 실시예에 있어서, 공기층은 탄성 차폐부의 두께에 의해 한정되는 두께를 갖고, 공기층의 두께는 탄성 차폐부의 두께에 따라 증대될 수 있다.
일 실시예에 있어서, 탄성 차폐부는 탄성 차폐 필러를 포함할 수 있다. 탄성 차폐 필러는 절연부의 외주면으로부터 이격되어 있고, 기둥 형상으로 형성되며, 제1 금속 하우징과 제2 금속 하우징을 전기적으로 접속시키도록 구성된다.
일 실시예에 있어서, 복수의 도전부 및 복수의 절연부가 제1 금속 하우징 및 제2 금속 하우징에 배치될 수 있다. 적어도 하나의 탄성 차폐 필러가 이웃하는 두개의 절연부의 사이에 배치될 수 있다.
일 실시예에 있어서, 탄성 차폐 필러는 원형, 타원형 또는 십자형의 횡단면을 가질 수 있다.
일 실시예에 있어서, 제1 관통공, 제2 관통공 및 절연부는, 원형 또는 타원형의 횡단면을 가질 수 있고, 탄성 차폐 필러는 원형, 타원형 또는 십자형의 횡단면을 가질 수 있다. 타원형의 횡단면을 갖는 탄성 차폐 필러가 타원형의 횡단면을 갖는 절연부의 옆에 배치될 수 있다.
일 실시예에 있어서, 탄성 차폐부는 탄성 차폐 시트를 포함할 수 있다. 탄성 차폐 시트는 제1 금속 하우징과 제2 금속 하우징을 전기적으로 접속시키도록 구성된다. 탄성 차폐 시트는, 절연부의 직경보다 크고 상하 방향으로 관통된 삽입공을 갖는다.
일 실시예에 있어서, 탄성 차폐부는, 상하 방향으로 도전 가능하게 집합되어 있는 다수의 도전성 물질과, 다수의 도전성 물질을 상하 방향으로 유지하는 탄성 물질을 포함할 수 있다. 탄성 차폐부의 도전성 물질은, 금속 입자, 탄소나노튜브, 그래핀 및 도전성 와이어 중 어느 하나일 수 있다.
일 실시예에 있어서, 탄성 차폐부는, 상하 방향으로 탄성 압축가능한 도전성 금속핀 및 도전성 스프링 중 하나를 포함하는 도전성 금속 부재와, 도전성 금속 부재를 상하 방향으로 유지하는 탄성 물질을 포함할 수 있다.
일 실시예에 있어서, 도전부가 제1 관통공에 중심축과 동축으로 위치된 상태에서 도전부, 절연부, 및 제1 금속 하우징이 일체로 형성되어 도전 모듈을 구성할 수 있다.
일 실시예에 있어서, 도전부가 제2 관통공에 중심축과 동축으로 위치된 상태에서 도전부, 절연부 및 제2 금속 하우징이 일체로 형성되어 도전 모듈을 구성할 수 있다.
일 실시예에 있어서, 도전부는, 상하 방향으로 도전 가능하게 집합되어 있는 다수의 도전성 물질과 다수의 도전성 물질을 상하 방향으로 유지하는 탄성 물질을 포함할 수 있다. 도전부의 도전성 물질은, 금속 입자, 탄소나노튜브, 그래핀 및 도전성 와이어 중 어느 하나일 수 있다.
일 실시예에 있어서, 절연부는 도전부의 탄성 물질로 이루어질 수 있고 도전부와 일체로 형성될 수 있다.
일 실시예에 있어서, 도전부는, 상하 방향으로 탄성 압축가능한 도전성 금속핀과 도전성 금속핀을 상하 방향으로 유지하는 탄성 물질을 포함할 수 있다.
일 실시예에 있어서, 절연부는, 실리콘 고무, 다수의 기공을 내포하는 실리콘 고무, 불소 실리콘 고무, 및 폴리테트라플루오로에틸렌 수지 중 어느 하나로 이루어질 수 있다.
일 실시예에 있어서, 절연부는, 제1 관통공에 위치하는 제1 부분과, 제2 관통공에 끼워맞춤되고 제1 부분의 외경보다 큰 외경을 가지며 피검사 디바이스의 단자와 접촉 가능한 제2 부분을 포함할 수 있다.
일 실시예에 있어서, 제1 관통공은, 절연부의 외경보다 큰 내경을 갖는 상측 관통공과, 상측 관통공 보다 작은 내경을 갖고 절연부가 끼워맞춤되는 하측 관통공을 포함할 수 있다. 상측 관통공은, 서로 이격된 제1 금속 하우징과 제2 금속 하우징의 사이에 형성되고 탄성 차폐부가 배치되는 공기층과 연통하도록 형성될 수 있다.
일 실시예에 있어서, 제1 금속 하우징은, 하측 관통공이 관통되어 있는 제1 금속 하우징 시트와, 제1 금속 하우징 시트 상에 적층되고 상측 관통공이 관통되어 있는 제2 금속 하우징 시트를 포함할 수 있다.
일 실시예의 커넥터는, 제3 금속 하우징과 추가의 탄성 차폐부를 더 포함할 수 있다. 제3 금속 하우징은 제2 금속 하우징의 상방에 배치되며, 중심축과 동축으로 상하 방향으로 관통된 제3 관통공을 갖는다. 추가의 탄성 차폐부는 제2 금속 하우징과 제3 금속 하우징의 사이에 배치되어 제3 금속 하우징을 제2 금속 하우징으로부터 상방으로 이격시킨다. 추가의 탄성 차폐부는 제2 금속 하우징과 제3 금속 하우징을 전기적으로 접속시키도록 구성된다.
일 실시예에 따른 커넥터에서는, 도전부를 지지하는 제1 및 제2 금속 하우징이 탄성 차폐부에 의해 이격되며, 제1 및 제2 금속 하우징은 탄성 차폐부에 의해 전기적으로 접속된다. 그러므로, 제1 및 제2 금속 하우징과 탄성 차폐부가 하나의 하우징과 같이 작용하여, 도전부간의 신호 간섭과 누화를 방지할 수 있고 커넥터의 신호 특성을 양호하게 유지할 수 있다.
일 실시예에 따른 커넥터에서는, 탄성 차폐부가 제2 금속 하우징을 제1 금속 하우징에 대해 탄력적으로 지지할 수 있다. 그러므로, 제2 금속 하우징은 제1 금속 하우징으로부터 떠있는 상태로 유지될 수 있고, 피검사 디바이스가 가하는 가압력이 흡수 및 분산될 수 있다.
일 실시예에 따른 커넥터에서는, 탄성 차폐부가 제1 및 제2 금속 하우징을 상하 방향으로 이격시켜 제1 및 제2 금속 하우징의 사이에 공기층을 형성한다. 그러므로, 도전부의 탄성 변형을 구속하는 영역이 감소될 수 있다. 이에 따라, 도전부의 동작성이 향상될 수 있고, 피검사 디바이스의 가압력이 낮아질 수 있다.
도 1은 본 개시의 실시예들에 따른 커넥터가 사용되는 예를 개략적으로 도시한다.
도 2는 일 실시예에 따른 커넥터의 일부를 도시하는 단면도이다.
도 3은 도 2에 도시하는 커넥터의 일부를 도시하는 단면 사시도이다.
도 4는 도 2에 도시하는 커넥터의 일부를 도시하는 분해 단면도이다.
도 5는 일 실시예에 따른 커넥터에서의 도전부, 절연부 및 탄성 차폐부의 제1 예를 도시하는 평면도이다.
도 6은 일 실시예에 따른 커넥터에서의 도전부, 절연부 및 탄성 차폐부의 제2 예를 도시하는 평면도이다.
도 7은 일 실시예에 따른 커넥터에서의 도전부, 절연부 및 탄성 차폐부의 제3 예를 도시하는 평면도이다.
도 8은 일 실시예에 따른 커넥터에서의 도전부, 절연부 및 탄성 차폐부의 제4 예를 도시하는 평면도이다.
도 9는 일 실시예에 따른 커넥터에서의 도전부, 절연부 및 탄성 차폐부의 제5 예를 도시하는 평면도이다.
도 10은 일 실시예에 따른 커넥터에서의 도전부, 절연부 및 탄성 차폐부의 제6 예를 도시하는 평면도이다.
도 11은 일 실시예에 따른 커넥터에서 시트 형상으로 형성되는 탄성 차폐부의 예를 도시하는 평면도이다.
도 12는 도 11에 도시하는 탄성 차폐부를 포함하는 일 실시예의 커넥터의 일부를 도시하는 단면도이다.
도 13은 또 하나의 실시예에 따른 커넥터의 일부를 도시하는 단면도이다.
도 14는 또 다른 실시예에 따른 커넥터의 일부를 도시하는 단면도이다.
도 15는 또 하나의 다른 실시예에 따른 커넥터의 일부를 도시하는 단면도이다.
본 개시의 실시예들은 본 개시의 기술적 사상을 설명하기 위한 목적으로 예시된 것이다. 본 개시에 따른 권리범위가 이하에 제시되는 실시예들이나 이들 실시예들에 대한 구체적 설명으로 한정되는 것은 아니다.
본 개시에 사용되는 모든 기술적 용어들 및 과학적 용어들은, 달리 정의되지 않는 한, 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자에게 일반적으로 이해되는 의미를 갖는다. 본 개시에 사용되는 모든 용어들은 본 개시를 더욱 명확히 설명하기 위한 목적으로 선택된 것이며 본 개시에 따른 권리범위를 제한하기 위해 선택된 것이 아니다.
본 개시에서 사용되는 '포함하는', '구비하는', '갖는' 등과 같은 표현은, 해당 표현이 포함되는 어구 또는 문장에서 달리 언급되지 않는 한, 다른 실시예를 포함할 가능성을 내포하는 개방형 용어(open-ended terms)로 이해되어야 한다.
본 개시에서 기술된 단수형의 표현은 달리 언급하지 않는 한 복수형의 의미를 포함할 수 있으며, 이는 청구범위에 기재된 단수형의 표현에도 마찬가지로 적용된다.
본 개시에서 사용되는 '제1', '제2' 등의 표현들은 복수의 구성요소들을 상호 구분하기 위해 사용되며, 해당 구성요소들의 순서 또는 중요도를 한정하는 것은 아니다.
본 개시에서, 어떤 구성요소가 다른 구성요소에 '연결되어' 있다거나 '결합되어' 있다고 언급되는 경우, 상기 어떤 구성요소가 상기 다른 구성요소에 직접적으로 연결될 수 있거나 결합될 수 있는 것으로, 또는 새로운 다른 구성요소를 매개로 하여 연결될 수 있거나 결합될 수 있는 것으로 이해되어야 한다.
본 개시에서 사용되는 '상방'의 방향지시어는 커넥터가 검사 장치에 대해 위치하는 방향에 근거하고, '하방'의 방향지시어는 상방의 반대 방향을 의미한다. 본 개시에서 사용되는 '상하 방향'의 방향지시어는 상방 방향과 하방 방향을 포함하지만, 상방 방향과 하방 방향 중 특정한 하나의 방향을 의미하지는 않는 것으로 이해되어야 한다.
첨부한 도면에 도시하는 예들을 참조하여, 실시예들이 설명된다. 첨부된 도면에서, 동일하거나 대응하는 구성요소에는 동일한 참조부호가 부여되어 있다. 또한, 이하의 실시예들의 설명에 있어서, 동일하거나 대응하는 구성요소를 중복하여 기술하는 것이 생략될 수 있다. 그러나, 구성요소에 관한 기술이 생략되어도, 그러한 구성요소가 어떤 실시예에 포함되지 않는 것으로 의도되지는 않는다.
이하에 설명되는 실시예들과 첨부된 도면에 도시하는 예들은, 피검사 디바이스의 검사에 사용되는 검사용 커넥터(이하, 간단히 커넥터라고 한다)에 관련된다. 실시예들의 커넥터는 피검사 디바이스의 검사 시에 검사 장치와 피검사 디바이스의 사이에 배치되어, 피검사 디바이스의 검사를 위해 사용될 수 있다. 일 예로, 실시예들의 커넥터는, 반도체 디바이스의 제조 공정 중 후공정에서, 반도체 디바이스의 최종적인 검사를 위해 사용될 수 있다. 그러나, 실시예들의 커넥터가 적용되는 검사의 예가 전술한 검사에 한정되지는 않는다.
본 개시의 실시예들에 따른 커넥터가 사용되는 예를 도시하는 도 1을 참조한다. 도 1은 커넥터, 커넥터가 부착되는 부품, 검사 장치 및 피검사 디바이스의 형상을 개략적으로 도시한다. 도 1에 도시하는 형상은 실시예의 이해를 위해 선택된 하나의 예에 불과하다.
일 실시예에 따른 커넥터(100)는 시트(sheet) 형상의 구조물이며, 검사 장치(20)와 피검사 디바이스(30)의 사이에 배치된다. 일 예로, 커넥터(100)는 테스트 소켓을 구성할 수 있다. 커넥터(100)는 소켓 하우징(40)에 부착되어, 소켓 하우징(40)에 의해 검사 장치(20) 상에 위치될 수 있다. 소켓 하우징(40)은 소켓 가이드(41)를 가질 수 있고, 소켓 가이드 (41)에는 수용공(42)이 상하 방향(VD)으로 형성될 수 있다. 소켓 하우징(40)은 소켓 가이드(41)에서 검사 장치(20)에 제거 가능하게 장착될 수 있고, 커넥터(100)는 소켓 가이드(41)에 제거 가능하게 결합될 수 있다. 수작업으로 또는 운반 장치에 의해 검사 장치(20)로 운반되는 피검사 디바이스(30)가 소켓 하우징의 수용공(42)에 수용되며, 소켓 하우징(40)은 피검사 디바이스(30)를 커넥터(100)에 대해 정렬시킨다. 피검사 디바이스(30)의 검사 시에, 커넥터(100)는 검사 장치(20)와 피검사 디바이스(30)에 상하 방향(VD)으로 접촉되며, 검사 장치(20)와 피검사 디바이스(30)를 서로 전기적으로 접속시킨다.
피검사 디바이스(30)는, 반도체 IC 칩과 다수의 단자를 수지 재료를 사용하여 육면체 형태로 패키징하여 제조되는 반도체 디바이스일 수 있다. 일 예로, 피검사 디바이스(30)는 모바일 통신 기기에 사용되는 반도체 디바이스일 수 있지만, 이에 한정되지는 않는다. 피검사 디바이스(30)는 그 하면으로부터 돌출한 다수의 단자(31)를 가질 수 있다. 도 1에 도시하는 피검사 디바이스의 단자(31)는 볼 타입이다. 단자(31)는 볼 타입에 한정되지 않으며, 예컨대, 랜드(land) 타입 또는 핀(pin) 타입일 수 있다. 또한, 단자(31)는 신호 전달을 위한 단자와 접지를 위한 단자를 포함할 수 있다.
검사 장치(20)는 피검사 디바이스(30)의 전기적 특성과 동작 특성을 검사할 수 있다. 검사 장치(20)는 검사가 수행되는 보드를 가질 수 있고, 상기 보드에는 피검사 디바이스의 검사를 위한 검사 회로(21)가 구비될 수 있다. 또한, 검사 회로(21)는 커넥터(100)를 통해 피검사 디바이스의 단자와 전기적으로 접속되는 다수의 단자(22)를 갖는다. 검사 장치(20)의 단자(22)는 테스트 신호를 송신할 수 있고 응답 신호를 수신할 수 있다.
피검사 디바이스의 검사 시에, 커넥터(100)가 피검사 디바이스의 단자(31)와 이것에 대응하는 검사 장치의 단자(22)를 상하 방향(VD)으로 전기적으로 접속시키며, 커넥터(100)를 통해 검사 장치(20)에 의해 피검사 디바이스(30)의 검사가 수행될 수 있다.
커넥터(100)는, 금속 하우징(110, 120)과, 도전부(140)와, 절연부(150)를 포함할 수 있다. 금속 하우징(110, 120)은 소켓 하우징(40)의 소켓 가이드(41)에 결합되어, 수평 방향(HD)으로 위치할 수 있다. 금속 하우징(110, 120)은, 도전부(140)가 상하 방향(VD)으로 배치되는, 커넥터의 본체를 구성할 수 있다. 일 예로, 금속 하우징(110, 120)은 상하로 배치되는 두개의 금속 하우징(110, 120)으로 구성될 수 있으며, 이러한 두개의 금속 하우징(110, 120)은 그들 사이에 배치되는 탄성 차폐부(130)에 의해 상하 방향(VD)으로 이격될 수 있다. 커넥터(100)에서 도전부(140)와 절연부(150)는 탄성 물질을 포함할 수 있다. 도전부(140)는, 검사 장치(20)와 피검사 디바이스(30)의 사이에서 상하 방향(VD)으로 도전 가능하도록 구성된다. 도전부(140)는, 그 상단에서 피검사 디바이스(30)의 단자(31)와 접촉될 수 있고, 그 하단에서 검사 장치(20)의 단자(22)와 접촉될 수 있다. 절연부(150)는 도전부(140)를 상하 방향(VD)으로 지지하며, 금속 하우징(110, 120)에 대해 도전부(140)를 절연시킨다.
피검사 디바이스(30)의 검사 시에, 가압력(PF)이 기계 장치에 의해 또는 수동으로 피검사 디바이스(30)에 가해진다. 가압력(PF)에 의해, 피검사 디바이스의 단자(31)와 커넥터(100)의 도전부(140)가 상하 방향(VD)으로 접촉될 수 있고, 커넥터(100)의 도전부(140)와 검사 장치의 단자(22)가 상하 방향(VD)으로 접촉될 수 있다. 가압력(PF)을 받는 피검사 디바이스의 단자(31)가 도전부(140)를 하방으로 누름에 따라, 도전부(140)는 하방으로 압축되고 수평 방향에서 팽창하는 식으로 탄성 변형될 수 있다. 가압력(PF)이 커넥터의 도전부(140)로부터 제거되면, 도전부(140)는 그 원래 형상으로 복원될 수 있다.
커넥터(100)는 복수의 도전부(140)와, 각 도전부를 절연시키는 복수의 절연부(150)를 포함할 수 있다. 복수의 도전부(140)들의 평면 배열 형태는 피검사 디바이스(30)의 단자들의 배열 형태에 따라 다양할 수 있다. 일 예로, 커넥터(100)를 상방에서 볼 때, 복수의 도전부(140)들은 하나의 행렬 형태로, 한 쌍 이상의 행렬 형태로, 또는 지그재그 형태로 배열될 수도 있다.
실시예들에 따른 커넥터의 설명을 위해 도 2 내지 도 15가 참조될 수 있다. 도 2 내지 도 15는 커넥터의 구성 요소의 형상을 개략적으로 도시한다. 도 2 내지 도 15에 도시하는 형상은 실시예의 이해를 위해 선택된 예에 불과한다.
도 2는 본 개시의 일 실시예에 따른 커넥터의 일부를 도시하는 단면도이다. 도 3은 도 2에 도시하는 커넥터의 일부를 도시하는 단면 사시도이고, 도 4는 도 2에 도시하는 커넥터의 일부를 도시하는 분해 단면도이다. 일 실시예에 따른 커넥터의 설명을 위해 도 2 내지 도 4가 참조된다.
일 실시예에 따른 커넥터(100)는, 금속 하우징(110, 120)과, 금속 하우징(110, 120)의 사이에 배치되는 탄성 차폐부(130)와, 상하 방향(VD)으로 도전 가능하도록 구성된 도전부(140)와, 도전부(140)를 지지하고 도전부(140)를 금속 하우징(110, 120)으로부터 절연시키는 절연부(150)를 포함한다.
금속 하우징(110, 120)은 도전부(140)를 상하 방향(VD)으로 지지하기 위한 부품이다. 금속 하우징(110, 120)은 얇은 평판 형상으로 형성될 수 있으며, 상하 방향(VD)에 직교하는 수평 방향(HD)으로 배치된다. 금속 하우징(110, 120)을 구성하는 금속 재료는 알루미늄 또는 스테인레스 스틸일 수 있지만, 이에 한정되지는 않는다. 커넥터(100)에서, 금속 하우징(110, 120)은 제1 금속 하우징(110)과, 제1 금속 하우징(110)으로부터 상방으로 이격되어 있는 제2 금속 하우징(120)으로 이루어질 수 있다. 제2 금속 하우징(120)은 제1 금속 하우징(110)의 상하 방향에서의 두께보다 작은 두께를 가질 수 있다.
탄성 차폐부(130)가 제1 금속 하우징(110)과 제2 금속 하우징(120)의 사이에 배치되어, 제2 금속 하우징(120)을 제1 금속 하우징(110)으로부터 상방으로 이격시킨다. 탄성 차폐부(130)는 제1 금속 하우징(110)의 상면과 제2 금속 하우징(120)의 하면에 도전 가능하게 접촉되어 있다. 탄성 차폐부(130)는 도 3에 도시하는 바와 같이 기둥 형상으로 형성될 수 있다. 본 개시에 있어서, 기둥 형상으로 형성되는 탄성 차폐부는 탄성 차폐 필러(pillar)로서 참조될 수 있다. 또는, 탄성 차폐부(130)는 도 11과 도 12에 도시하는 바와 같이 시트(sheet)의 형상으로 형성될 수 있다. 본 개시에 있어서, 시트 형상으로 형성되는 탄성 차폐부는 탄성 차폐 시트로서 참조될 수 있다.
탄성 차폐부(130)는 탄성을 갖도록 구성된다. 탄성 차폐부(130)는, 커넥터(100)에 하방으로 가해지는 외력(예를 들어, 도 1에 도시하는 가압력(PF))에 의해 제2 금속 하우징(120)이 제1 금속 하우징(110)으로 눌릴 때, 제2 금속 하우징(120)을 제1 금속 하우징(110)에 대해 탄력적으로 지지할 수 있다. 제2 금속 하우징(120)은 탄성 차폐부(130)에 의해 제1 금속 하우징(110)으로부터 떠있는 상태로 지지될 수 있으며, 커넥터(100)는 탄성 차폐부(130)의 탄성력에 의해 상기 가압력을 흡수 또는 분산시킬 수 있다. 예를 들어, 피검사 디바이스의 단자가 도전부(140)의 중심으로부터 오프셋된 상태로 도전부(140)와 제2 금속 하우징(120)을 누르는 경우, 제2 금속 하우징(120)이 탄성 차폐부(130)에 의해 탄력적으로 지지되면서 피검사 디바이스가 가하는 상기 가압력이 흡수 또는 분산될 수 있다. 이에 따라, 피검사 디바이스의 상기 단자와 도전부(140)의 중심이 오프셋되는 경우, 피검사 디바이스의 상기 단자가 제2 금속 하우징(120)과 도전부(140) 간의 경계면에 의해 손상되는 것을 방지할 수 있다.
또한, 탄성 차폐부(130)는 도전성을 갖도록 구성되어, 제1 금속 하우징(110)과 제2 금속 하우징(120)을 전기적으로 접속시킨다. 커넥터(100)에 있어서, 제1 및 제2 금속 하우징(110, 120)은 차폐 영역으로 기능할 수 있다. 예를 들어, 피검사 디바이스에 대한 고주파 신호의 테스트 시에, 도전부들에서의 신호 전달이 전기장, 자기장, 전자기파 등에 의해 간섭될 수 있다. 제1 및 제2 금속 하우징(110, 120)은 그 표면에서 대부분의 전자기파를 반사시키기 때문에, 제1 및 제2 금속 하우징(110, 120)은 커넥터에서의 차폐 영역으로 기능할 수 있다. 제1 및 제2 금속 하우징(110, 120)이 탄성 차폐부(130)에 의해 전기적으로 접속되어 있다. 따라서, 제1 및 제2 금속 하우징(110, 120)과 탄성 차폐부(130)는 하나의 차폐 블록으로서 기능할 수 있고, 도전부의 신호 전달 특성을 양호하게 유지할 수 있다.
도전부(140)를 제1 및 제2 금속 하우징(110, 120)에 배치하기 위해, 제1 및 제2 금속 하우징(110, 120)은 상하 방향(VD)으로 관통된 관통공을 갖는다. 제1 금속 하우징(110)은 상하 방향(VD)으로 관통되어 있는 제1 관통공(111)을 갖는다. 제1 관통공(111)은 원형 또는 타원형의 횡단면을 가질 수 있다. 이러한 제1 관통공의 횡단면 형상의 중심을 지나고 상하 방향으로 연장하는 중심축(CA)이 제1 관통공(111)에 정의될 수 있다. 따라서, 제1 관통공(111)은 상하 방향(VD)에서의 중심축(CA)을 갖는다. 제2 금속 하우징(120)은 제1 관통공(111)에 대응하는 제2 관통공(121)을 갖는다. 제2 관통공(121)은 제1 관통공의 중심축(CA)과 동축으로 제2 금속 하우징(120)에 상하 방향으로 관통되어 있다.
도전부(140)는, 상하 방향으로 도전 가능할뿐만 아니라, 피검사 디바이스가 가하는 가압력에 의해 압축 및 팽창 가능하다. 도전부(140)는 제1 관통공(111) 및 제2 관통공(121)에 중심축(CA)과 동축으로 상하 방향(VD)으로 배치된다. 도전부(140)는, 제1 관통공(111)의 내주면과 이격되도록 제1 관통공(111)에 배치되고 제2 관통공(121)의 내주면과 이격되도록 제2 관통공(121)에 배치된다. 예를 들어, 도전부(140)는 도전부의 외주면과 제1 및 제2 관통공의 내주면이 중심축(CA)에 대한 외측 반경 방향으로 이격되도록 배치된다. 도전부(140)는, 검사 장치와 피검사 디바이스의 사이에서 상하 방향으로 도전 가능하도록 구성되어, 검사 장치와 피검사 디바이스의 사이에서 상하 방향(VD)에서의 신호 전달을 실행한다. 도전부(140)는 상하 방향(VD)으로 연장하는 원기둥 형상을 가질 수 있다.
도전부(140)는 그 상단에서 피검사 디바이스의 단자와 접촉되고 그 하단에서 검사 장치의 단자와 접촉된다. 이에 따라, 하나의 도전부(140)에 대응하는, 피검사 디바이스의 단자와 검사 장치의 단자의 사이에서, 도전부(140)를 매개로 하여 상하 방향의 도전로가 형성된다. 검사 장치의 테스트 신호는 검사 장치의 단자로부터 도전부(140)를 통해 피검사 디바이스의 단자에 전달될 수 있고, 피검사 디바이스의 응답 신호는 피검사 디바이스의 단자로부터 도전부(140)를 통해 검사 장치의 단자에 전달될 수 있다.
도전부(140)는 절연부(150)에 의해 제1 관통공(111) 및 제2 관통공(121)에 배치된다. 도 2 및 도 3에 도시하는 바와 같이, 절연부(150)는 제1 관통공(111) 및 제2 관통공(121)에 삽입되어 있다. 절연부(150)는 도전부(140)를 제1 관통공(111) 및 제2 관통공(121)에 중심축(CA)과 동축으로 위치시키도록 구성된다. 또한, 절연부(150)는 도전부(140)를 상하 방향(VD)으로 지지하며, 도전부(140)를 제1 및 제2 금속 하우징(110, 120)에 대하여 절연시키도록 구성된다.
절연부(150)는 도전부(140)의 외주면과 제1 및 제2 관통공(111, 121)의 내주면의 사이에 배치된다. 절연부(150)는, 제1 관통공(111)의 내주면과 도전부(140)의 외주면의 사이에 형성되는 환상의 공간과 제2 관통공(121)의 내주면과 도전부(140)의 외주면의 사이에 형성되는 환상의 공간을 채우도록 형성된다. 절연부(150)는 상기 환상의 공간들에 대응하는 파이프 형상을 취할 수 있다. 절연부(150)는, 제1 관통공(111)의 내주면과 도전부(140)의 외주면의 사이에서 도전부(140)를 중심축(CA)에 대한 둘레 방향(CD)으로 둘러싸고, 제2 관통공(121)의 내주면과 도전부(140)의 외주면의 사이에서 도전부(140)를 둘레 방향(CD)으로 둘러싸도록 구성된다. 중심축(CA)에 대한 외측 반경 방향에서의 절연부(150)의 폭은 둘레 방향(CD)을 따라 일정할 수 있다. 그러므로, 절연부(150)에 의해 지지되는 도전부(140)는, 제1 관통공(111) 및 제2 관통공(121)에 중심축(CA)과 동축으로 위치될 수 있다.
도 2 및 도 3을 참조하면, 공기층(160)이 제1 및 제2 금속 하우징(110, 120)의 사이에 형성되어 있다. 탄성 차폐부(130)에 의해 제1 및 제2 금속 하우징(110, 120)이 상하 방향(VD)에서 서로 이격되어 있으므로, 공기층(160)이 제1 및 제2 금속 하우징(110, 120)의 사이에 수평 방향(HD)으로 형성된다. 탄성 차폐부(130)가 공기층(160)에 배치된다. 또한, 제1 및 제2 금속 하우징(110, 120)이 공기층(160)을 통해 이격되어 있으므로, 절연부(150)의 외주면의 일부가 공기층(160) 내에서 노출된다. 공기층(160)의 상하 방향에서의 두께는 탄성 차폐부(130)의 상하 방향에서의 두께에 의해 한정될 수 있다. 커넥터(100)는, 다양한 상하 방향에서의 두께를 갖는 탄성 차폐부(130)를 포함할 수 있고, 이에 따라, 커넥터에서의 제1 및 제2 금속 하우징(110, 120) 간의 상하 방향에서의 이격 거리도 다양하게 설정될 수 있다. 그러므로, 커넥터의 실시예에 있어서, 공기층(160)의 두께는 탄성 차폐부(130)의 상하 방향에서의 두께에 따라 증대될 수 있다.
공기층(160) 내에서 절연부(150)의 외주면의 일부가 노출되므로, 제1 및 제2 금속 하우징(110, 120)은 공기층(160)이 형성되어 있는 영역에서 도전부(140)의 탄성 팽창을 구속하지 않는다. 피검사 디바이스를 통해 상기 가압력이 도전부(140)에 가해질 때, 적어도 공기층(160)에 위치하는 도전부(140)의 일부는 제1 및 제2 금속 하우징(110, 120)에 의해 구속됨이 없이 상하 방향으로 압축되면서 수평 방향으로 팽창될 수 있다. 그러므로, 피검사 디바이스의 검사 시에 도전부(140)가 상기 가압력에 의해 눌릴 때, 도전부(140)는 원활하게 탄성 변형되어 향상된 동작성을 가질 수 있다.
도전부(140)를 중심축(CA)의 둘레 방향(CD)으로 둘러싸는 영역의 유전율이, 도전부(140)의 신호 전달 성능에 영향을 줄 수 있고, 검사 장치와 피검사 디바이스에 대한 임피던스 매칭에 영향을 줄 수 있다. 공기층(160)은 공기로 채워지고, 공기는 약 1의 유전율을 가질 수 있다. 그러므로, 도전부(140)를 둘레 방향(CD)으로 둘러싸는 영역이 공기층(160)으로 인해 매우 낮은 유전율을 갖게 되므로, 도전부(140)는 감소된 신호 손실과 향상된 고주파 특성을 가질 수 있으며, 더욱 양호한 임피던스 매칭을 나타낼 수 있다.
상기 도전부, 상기 절연부 및 상기 탄성 차폐부를 구성하는 물질의 예와 커넥터에서의 각 부재의 결합의 예에 관해 도 3 및 도 4를 참조한다. 도 4는 일 실시예의 커넥터를 구성하는 각 부재를 단순히 분리시켜 도시한다.
도전부(140)는 다수의 도전성 물질(141)과 탄성 물질(142)을 포함할 수 있다. 다수의 도전성 물질(141)은 상하 방향(VD)으로 도전 가능하게 기둥 형상으로 집합되어 있으며, 이웃하는 도전성 물질(141)들은 임의의 방향에서 도전 가능하게 접촉될 수 있다. 상하 방향으로 도전 가능하게 집합된 다수의 도전성 물질(141)의 집합체가 검사 장치의 단자와 피검사 디바이스의 단자의 사이에서 신호 전달을 실행하는 도전체로서 기능한다.
도전성 물질(141)은 금속 입자, 탄소나노튜브, 그래핀 및 도전성 와이어 중 어느 하나일 수 있다. 도 4는, 금속 입자의 형상을 갖는 도전성 물질(141)의 일 예를 도시한다. 금속 입자는 고도전성 금속 재료로 이루어질 수 있다. 또는, 탄성을 가지는 수지 재료 또는 금속 재료로 이루어지는 코어에 고도전성 금속 재료가 코팅되어 있는 형태로 상기 금속 입자가 이루어질 수도 있다. 탄소나노튜브, 그래핀, 또는 도전성 와이어로 도전부(140)가 이루어지는 경우, 이들 물질들은 상하 방향(VD)으로 도전 가능하게 집합되며, 이웃하는 물질들까지 임의의 방향에서 도전 가능하게 접촉될 수 있다.
탄성 물질(142)은 경화된 상태에 있으며 탄성을 갖는다. 탄성 물질(142)은 도전성 물질(141)들이 기둥 형상으로 집합되도록, 도전성 물질(141)들을 상하 방향(VD)으로 유지한다. 도전성 물질(141)들의 사이는 탄성 물질(142)로 채워질 수 있다. 탄성 물질(142)이 도전성 물질(141)들과 일체로 형성되어, 도전부(140)를 구성한다. 탄성 물질(142)은 절연성을 가질 수 있다. 일 예로, 탄성 물질(142)은 경화된 실리콘 고무일 수 있지만, 이에 한정되지는 않는다.
탄성 물질(142)을 포함하는 도전부(140)는 탄성을 가지며, 상하 방향(VD)과 수평 방향(HD)으로 탄성 변형 가능하다. 피검사 디바이스의 검사 시에, 피검사 디바이스의 단자가 가압력에 의해 도전부(140)를 하방으로 누른다. 도전부의 가압 상태에서, 도전부(140)는 하방으로 압축되도록 탄성 변형될 수 있다. 상기 가압력이 제거되면, 도전부(140)는 가압 상태로부터 그 원래 형상(즉, 비가압 상태)으로 탄성 복원될 수 있다. 도전부(140)는 비가압 상태와 가압 상태로 가역적으로 변형될 수 있다.
절연부(150)는 절연성을 갖는 탄성 물질로 이루어질 수 있다. 일 예로, 절연부(150)는, 실리콘 고무, 다수의 기공을 내포하는 실리콘 고무, 불소 실리콘 고무, 또는 폴리테트라플루오로에틸렌 수지(PTFE 수지) 중 어느 하나로 이루어질 수 있으며, 이에 한정되지는 않는다.
절연부(150)가 도전부(140)를 제1 및 제2 관통공(111, 121)에 동축으로 위치시킨다. 일 예로, 절연부(150)를 형성하는 액상의 탄성 물질이 경화되어 원기둥 형상의 절연부가 성형되고, 이 원기둥 형상의 절연부에 상하 방향으로 레이저에 의해 관통공이 형성될 수 있다. 그 후, 도전부(140)가 절연부(150)에 형성된 상기 관통공에 상하 방향으로 끼워맞춤되어, 도전부(140)를 동축으로 위치시키는 절연부(150)가 형성될 수 있다. 또 하나의 예로, 도전부(140)와 절연부(150)는 성형 금형에 의해 일체로 형성될 수 있다. 도전성 물질(141)들과 액상의 탄성 물질(142)이 혼합되어 있는 액상 성형 재료가, 성형 금형에 주입될 수 있다. 그 후, 자기장에 의해 도전성 물질(141)들이 상하 방향으로 집합되어 도전부(140)가 성형될 수 있다. 그 후, 도전부(140)를 성형하지 않는 액상의 탄성 물질이 경화되어 절연부(150)가 성형될 수 있다. 따라서, 절연부(150)를 구성하는 탄성 물질과 도전부(140)를 구성하는 탄성 물질이 동일한 경우, 절연부(150)는 도전부(140)의 탄성 물질로 이루어지고, 하나의 성형 금형에 의해 도전부(140)와 일체로 형성될 수도 있다.
절연부(150)가 다수의 기공을 내포하는 실리콘 고무로 이루어지는 경우, 절연부(150)는 발포제를 첨가한 액상의 실리콘 고무로부터 형성될 수 있다. 일 예로, 절연부(150)를 형성할 때, 발포제는 액상의 실리콘 고무와 화학 반응하여 가스를 발생시킨다. 발생된 가스는, 액상의 실리콘 고무 내에서 액상의 재료를 밀어내고, 이에 따라, 발생된 가스가 절연부의 성형 도중 액상의 수지를 부분적으로 결핍시킴으로써, 절연부의 전체에 걸쳐 다양한 크기를 갖는 다수의 기공이 형성될 수 있다. 다수의 기공을 내포하는 절연부(150)는, 기공으로 인해, 기공을 내포하지 않는 절연부의 유전율보다 낮은 유전율을 가질 수 있다.
절연부(150)가 불소 실리콘 고무로 이루어지는 경우, 불소 실리콘 고무는 불소가 첨가된 실리콘 고무일 수 있다. 불소 실리콘 고무로 이루어지는 절연부(150)는 내한성을 가질 수 있다. 불소 실리콘 고무로 이루어지는 절연부(150)는 저온의 온도에서 검사 시에 적절한 탄성복원력을 나타낼 수 있다.
또 다른 예로서, 도전부(140)는, 상하 방향(VD)으로 탄성 압축가능한 도전성 금속핀과, 상기 도전성 금속핀을 상하 방향(VD)으로 유지하며 전술한 도전부의 탄성 물질을 포함할 수 있다. 이러한 예에 있어서의 상기 도전성 금속핀은 상하 방향(VD)으로 위치되어, 그 상단과 그 하단에서 각각 피검사 디바이스의 단자와 검사 장치의 단자에 접촉될 수 있다. 상기 도전성 금속핀은, 탄성 변형이 행해지는 굴곡부를 가질 수 있으며, 예를 들어, S자 형상 또는 U자 형상을 가질 수 있다. 또한, 상기 도전성 금속핀은 MEMS(Micro Electro Mechanical System) 기술에 의해 성형될 수 있다.
도 3 및 도 4는 기둥 형상으로 형성되어 있는 탄성 차폐 필러를 포함하는 탄성 차폐부(130)를 도시한다. 탄성 차폐부(130)는 도전부(140)의 구성과 유사한 구성을 가질 수 있다.
탄성 차폐부(130)는 다수의 도전성 물질(131)과 탄성 물질(132)을 포함할 수 있다. 다수의 도전성 물질(131)은 상하 방향(VD)으로 도전 가능하게 기둥 형상으로 집합되어 있으며, 이웃하는 도전성 물질(131)들은 임의의 방향에서 도전 가능하게 접촉될 수 있다. 상하 방향으로 도전 가능하게 집합된 다수의 도전성 물질(131)이, 제1 금속 하우징(110)과 제2 금속 하우징(120)을 전기적으로 접속시킨다.
도전성 물질(131)은 금속 입자, 탄소나노튜브, 그래핀 및 도전성 와이어 중 어느 하나일 수 있다. 도 4는 금속 입자의 형상을 갖는 도전성 물질(131)의 일 예를 도시한다. 탄성 차폐부(130)를 구성하는 금속 입자, 탄소나노튜브, 그래핀 및 도전성 와이어는 도전부(140)의 금속 입자, 탄소나노튜브, 그래핀 및 도전성 와이어와 동일할 수 있다.
탄성 물질(132)은 경화된 상태에 있으며 탄성을 갖는다. 탄성 물질(132)은 도전성 물질(131)들이 기둥 형상으로 집합되도록, 도전성 물질(131)들을 상하 방향(VD)으로 유지한다. 도전성 물질(131)들의 사이는 탄성 물질(132)로 채워질 수 있다. 탄성 물질(132)이 도전성 물질(131)들과 일체로 형성되어, 탄성 차폐부(130)를 구성한다. 일 예로, 탄성 물질(132)은 경화된 실리콘 고무일 수 있지만, 이에 한정되지는 않는다.
탄성 물질(132)을 포함하는 탄성 차폐부(130)는 탄성을 가지며, 상하 방향(VD)과 수평 방향(HD)으로 탄성 변형 가능하다. 예를 들어, 피검사 디바이스의 가압력에 의해 제2 금속 하우징(120)이 눌리는 경우, 제2 금속 하우징(120)이 탄성 차폐부(130)에 의해 탄력적으로 지지되어, 상기 가압력이 흡수 또는 분산될 수 있다.
또 다른 예로서, 탄성 차폐부(130)는, 상하 방향(VD)으로 탄성 압축가능한 도전성 금속 부재와, 상기 도전성 금속 부재를 상하 방향(VD)으로 유지하는 전술한 탄성 물질(132)을 포함할 수 있다. 이러한 예에 있어서의 상기 도전성 금속 부재는, 도전성 금속핀 또는 도전성 스프링을 포함할 수 있다. 탄성 차폐부를 구성하는 도전성 금속핀은, 전술한 도전부의 도전성 금속핀과 동일할 수 있다. 탄성 차폐부를 구성하는 도전성 스프링은, 압축 코일 스프링 형태를 취할 수 있으며, 탄성 물질(132)에 의해 원기둥 형태로 유지될 수 있다.
탄성 차폐부(130)는 제1 금속 하우징(110)의 상면 상에 또는 제2 금속 하우징(120)의 하면 상에 일체로 형성될 수 있다. 일 예로, 제1 관통공(111)이 형성된 제1 금속 하우징(110)이 준비되고, 탄성 차폐부(130)를 구성하는 도전성 물질(131)과 액상의 탄성 물질(132)이 혼합된 액상 성형 재료가 제1 금속 하우징(110)의 상면 상에 국부적으로 도포될 수 있다. 그 후, 상기 액상의 성형 재료가 경화되어, 탄성 차폐부(130)를 제1 금속 하우징의 상면에 형성시킬 수 있다. 또 하나의 예로, 제1 관통공(111)이 형성된 제1 금속 하우징(110)이 준비되고, 탄성 차폐부를 성형하기 위한 관통공이 형성된 성형 금형이 제1 금속 하우징(110)의 상면 상에 배치될 수 있다. 그 후, 전술한 액상의 성형 재료가 성형 금형의 관통공에 주입 및 경화되고, 성형 금형이 제1 금속 하우징(110)의 상면으로부터 제거되어, 탄성 차폐부(130)가 제1 금속 하우징의 상면에 형성될 수 있다. 탄성 차폐부(130)의 성형에 필요한 경우, 도전성 물질(131)들을 상하 방향으로 집합시키기 위한 자기장이 도전성 물질(131)들에 가해질 수도 있다.
커넥터의 실시예에 의하면, 제1 및 제2 금속 하우징(110, 120)의 어느 하나의 금속 하우징과, 도전부(140)와, 절연부(150)는 사전에 일체로 형성되어, 도전 기능을 수행하는 하나의 도전 모듈을 구성할 수 있다. 이러한 도전 모듈과 커넥터의 나머지의 구성요소가 조립 또는 결합되어, 커넥터가 제조될 수도 있다.
일 예로, 도전부(140), 절연부(150), 및 제1 금속 하우징(110)이 사전에 일체로 형성되어 하나의 도전 모듈을 구성할 수 있다. 이러한 예에서는, 도전부(140)가 절연부(150)에 의해 제1 금속 하우징(110)의 제1 관통공(111)에 중심축(CA)과 동축으로 위치된 상태에서, 도전부, 절연부 및 제1 금속 하우징의 상기 도전 모듈이 구성될 수 있다. 예를 들면, 제1 관통공(111)이 제1 금속 하우징(110)에 형성되고, 도전성 물질(141)과 액상의 탄성 물질(142)로 이루어지는 액상 성형 재료가 제1 관통공(111)에 주입될 수 있다. 그 후, 자기장이 도전성 물질(141)에 가해져 도전부(140)가 성형될 수 있고, 탄성 물질(142)이 경화되어 도전부(140), 절연부(150) 및 제1 금속 하우징(110)이 일체로 형성될 수 있다. 도전부, 절연부 및 제1 금속 하우징의 상기 도전 모듈이 사전에 준비된 후, 상기 도전 모듈의 도전부(140)가 제2 금속 하우징(120)의 제2 관통공(121)에 결합될 수 있다. 탄성 차폐부(130)는 상기 도전 모듈에서의 제1 금속 하우징(110)에 또는, 상기 도전 모듈과는 별개로 준비되는 제2 금속 하우징(120)에 형성될 수도 있다.
또 하나의 예로, 도전부(140), 절연부(150), 및 제2 금속 하우징(120)이 사전에 일체로 형성되어 하나의 도전 모듈을 구성할 수 있다. 이러한 예에서는, 도전부(140)가 절연부(150)에 의해 제2 금속 하우징(120)의 제2 관통공(121)에 중심축(CA)과 동축으로 위치된 상태에서, 도전부, 절연부 및 제2 금속 하우징의 상기 도전 모듈이 구성될 수 있다. 예를 들면, 제2 관통공(121)이 제2 금속 하우징(120)에 형성되고, 도전성 물질(141)과 액상의 탄성 물질(142)로 이루어지는 액상 성형 재료가 제2 관통공(121)에 주입될 수 있다. 그 후, 자기장이 도전성 물질(141)에 가해져 도전부(140)가 성형될 수 있고, 탄성 물질(142)이 경화되어 도전부(140), 절연부(150) 및 제2 금속 하우징(120)이 일체로 형성될 수 있다. 또는, 원기둥 형상의 절연부(150)가 액상의 탄성 물질(142)에 의해 제2 관통공(121)에 형성될 수도 있고, 관통공이 원기둥 형상의 절연부(150)에 형성될 수 있으며, 자기장의 인가 없이 도전부(140)가 절연부(150)와 일체로 형성될 수도 있다. 도전부, 절연부 및 제2 금속 하우징의 상기 도전 모듈이 사전에 준비된 후, 상기 도전 모듈의 도전부(140)가 제1 금속 하우징(110)의 제1 관통공(111)에 결합될 수 있다. 탄성 차폐부(130)는 상기 도전 모듈에서의 제2 금속 하우징(120)에 또는, 상기 도전 모듈과는 별개로 준비되는 제1 금속 하우징(110)에 형성될 수도 있다.
도 5 내지 도 10은 도전부, 절연부 및 탄성 차폐부의 다양한 예들을 도시하는 평면도이다. 커넥터의 다양한 실시예에서 도전부, 절연부 및 탄성 차폐부의 다양한 예들에 대해 도 5 내지 도 10이 참조될 수 있다. 도 5 내지 도 10은 탄성 차폐부의 일 예로서 기둥 형상으로 형성되는 탄성 차폐 필러를 도시한다. 도 5 내지 도 10에 도시하는 바와 같이, 제1 금속 하우징(110) 및 제2 금속 하우징에 복수의 도전부(140) 및 절연부(150)가 배치될 수 있다.
도 5 내지 도 7을 참조하면, 도전부(140)와 절연부(150)는 원형의 횡단면을 가질 수 있고, 제1 금속 하우징(110)의 제1 관통공(111) 및 제2 금속 하우징의 제2 관통공은 원형의 횡단면을 가질 수 있다. 도전부(140) 및 절연부(150)로 이루어지는 각 구조물들이 행렬 형태로 배치될 수 있으며, 제1 금속 하우징(110)의 제1 관통공(111)들과 제2 금속 하우징의 제2 관통공들도 행렬 형태로 배치될 수 있다. 또는, 도 6을 참조하면, 도전부(140) 및 절연부(150)로 이루어지는 각 구조물들이 지그재그 형태로 배치될 수 있으며, 제1 금속 하우징(110)의 제1 관통공(111)들과 제2 금속 하우징의 제2 관통공들도 지그재그 형태로 배치될 수 있다.
탄성 차폐부(130)의 일 예로 되는 탄성 차폐 필러(133)는 기둥(pillar) 형상으로 형성되며, 절연부(150)의 외주면으로부터 이격되어 있다. 도 5 내지 도 7에 도시하는 바와 같이, 이웃하는 두개의 절연부(150)의 사이에 적어도 하나의 탄성 차폐 필러(133)가 배치될 수 있다. 탄성 차폐 필러(133)의 횡단면은 원형 또는 십자형을 가질 수 있다. 도 7에 도시하는 바와 같이 탄성 차폐 필러(133)가 십자형의 횡단면을 갖는 경우, 제1 금속 하우징과 제2 금속 하우징 사이에 형성되는 전술한 공기층(도 2 및 도 3 참조) 내의 차폐 영역이 원형의 횡단면을 갖는 탄성 차폐 필러에 비해 더욱 길게 형성될 수 있다. 또는, 탄성 차폐 필러(133)의 횡단면은 사각형과 같은 다각형을 가질 수도 있다.
도 8 내지 도 10을 참조하면, 도전부(140)와 절연부(150)는 타원형의 횡단면을 가질 수 있고, 제1 금속 하우징(110)의 제1 관통공(111) 및 제2 금속 하우징의 제2 관통공은 타원형의 횡단면을 가질 수 있다. 도전부(140) 및 절연부(150)로 이루어지는 각 구조물들이 행렬 형태로 배치될 수 있으며, 제1 금속 하우징(110)의 제1 관통공(111)들과 제2 금속 하우징의 제2 관통공들도 행렬 형태로 배치될 수 있다.
도 10을 참조하면, 도전부(140) 및 절연부(150)가 지그재그 형태로 배치될 수 있으며, 제1 금속 하우징(110)의 제1 관통공(111)들과 제2 금속 하우징의 제2 관통공들도 지그재그 형태로 배치될 수 있다. 원형의 횡단면을 갖는 도전부(140) 및 절연부(150)와, 타원형의 횡단면을 갖는 도전부(140) 및 절연부(150)가 함께 배치될 수도 있다. 제1 금속 하우징의 제1 관통공 및 제2 금속 하우징의 제2 관통공도 원형과 타원형을 가질 수 있다.
피검사 디바이스가 랜드 타입의 단자를 갖는 경우, 랜드 타입의 단자는 납작하고 넓은 판 형상으로 형성될 수 있다. 이러한 랜드 타입의 단자에의 접촉을 위해, 도전부(140) 및 절연부(150)는 타원형 횡단면을 갖도록 형성될 수 있다.
탄성 차폐 필러(133)는 타원형의 횡단면을 가질 수 있다. 도 8을 참조하면, 타원형의 횡단면을 갖는 탄성 차폐 필러(133)가 타원형의 횡단면을 갖는 도전부(140) 및 절연부(150)의 옆에 배치될 수 있다. 도 9를 참조하면, 십자형의 횡단면을 갖는 탄성 차폐 필러(133)가 타원형의 횡단면을 갖는 도전부(140) 및 절연부(150)의 옆에 배치될 수 있다. 도 10을 참조하면, 도 8에 도시하는 타원형보다 긴 타원형을 갖는 탄성 차폐 필러(133)가 타원형의 횡단면을 갖는 도전부(140) 및 절연부(150)의 옆에 배치될 수 있다. 또한, 도 10을 참조하면, 원형의 횡단면을 갖는 도전부(140)와 타원형의 횡단면을 갖는 도전부(140)가 혼재되어 있는 커넥터의 일부 영역에서는, 원형의 횡단면을 갖는 탄성 차폐 필러(133)가 원형의 횡단면을 갖는 한 쌍의 도전부(140)의 사이에 배치될 수 있고, 긴 타원형의 횡단면을 갖는 탄성 차폐 필러(133)가 긴 타원형의 횡단면을 갖는 한 쌍의 도전부(140)의 사이에 배치될 수 있다.
도 5 내지 도 10에 도시하는 바와 같이, 커넥터의 실시예에서 탄성 차폐 필러의 개수와 형상은 다양하게 정해질 수 있다. 탄성 차폐 필러의 개수와 형상은, 피검사 디바이스에 가해지는 가압력의 크기, 가압력에 의한 커넥터의 압축 정도, 도전부에 대한 차폐 성능 등과 같은 요인을 고려하여 다양하게 정해질 수 있다. 예를 들어, 낮은 수준의 차폐 성능이 필요한 겨우, 원형의 횡단면을 갖는 탄성 차폐 필러가 커넥터에 채용될 수 있다. 상기 낮은 수준보다 높은 수준의 차폐 성능이 필요한 경우, 타원형, 긴 타원형 또는 십자형의 횡단면을 갖는 탄성 차폐 필러가 커넥터에 채용될 수 있다. 또한, 피검사 디바이스의 가압력의 크기와 커넥터의 압축 정도에 따라, 이웃하는 도전부들의 사이에 적절한 수의 탄성 차폐 필러가 커넥터에 채용될 수 있다.
도 11은 시트 형상으로 형성되는 탄성 차폐부의 예를 도시하는 평면도이고, 도 12는 도 11에 도시하는 탄성 차폐부를 포함하는 일 실시예의 커넥터의 일부를 도시하는 단면도이다. 전술한 바와 같이, 탄성 차폐부는 시트(sheet)로서 형성되는 탄성 차폐 시트를 포함할 수 있다. 이에 관련하여, 도 11 및 도 12를 참조한다.
탄성 차폐부(130)는 제1 금속 하우징(110)과 제2 금속 하우징(120)을 전기적으로 접속시키도록 구성되는 탄성 차폐 시트(134)를 포함한다. 탄성 차폐 시트(134)가 제2 금속 하우징(120)을 제1 금속 하우징(110)으로부터 상방으로 이격시키고 제2 금속 하우징(120)을 제1 금속 하우징(110)에 대하여 탄력적으로 지지한다. 시트로서 형성되는 탄성 차폐 시트(134)는, 전술한 탄성 차폐 필러의 횡단면적보다 넓은 횡단면적을 갖는다. 따라서, 높은 수준의 차폐 성능이 커넥터에 필요한 경우, 탄성 차폐 시트(134)가 탄성 차폐부로서 채용될 수 있다.
탄성 차폐부(130)는, 절연부(150) 및 도전부(140)가 삽입되도록 상하 방향(VD)으로 관통된 삽입공(135)을 갖는다. 삽입공(135)은 절연부(150)의 직경보다 크다. 따라서, 삽입공(135)과 절연부(150)의 외주면에 사이에 공기층(160)이 형성된다.
탄성 차폐 시트(134)는 도 4를 참조하여 설명한 도전성 물질(131)과 탄성 물질(132)을 포함할 수 있다. 예를 들어, 도전성 물질(131)과 액상의 탄성 물질(132)이 혼합된 액상 성형 재료로부터 도전성 탄성 시트가 성형되고, 이러한 도전성 탄성 시트에 레이저로 삽입공(135)이 형성되어, 탄성 차폐 시트(134)가 형성될 수 있다. 상기 도전성 탄성 시트를 성형할 때, 필요한 경우, 도전성 물질(131)의 고른 분포를 위해 자기장이 가해질 수도 있다. 탄성 차폐 시트(134)는 제1 금속 하우징(110)의 상면 또는 제2 금속 하우징(120)의 하면에 접합될 수 있다.
도 13은 또 하나의 실시예에 따른 커넥터의 일부를 도시하는 단면도이다. 도 13에 도시하는 커넥터(100)에 있어서, 탄성 차폐부(130)는 도 2에 도시하는 탄성 차폐부의 두께보다 큰 상하 방향의 두께를 갖는다. 또한, 공기층(160)은 도 2에 도시하는 공기층의 두께보다 큰 상하 방향의 두께를 가지며, 제1 및 제2 금속 하우징(110, 120) 간의 이격 거리가 도 2에 도시하는 이격 거리보다 크다. 도 13에 도시하는 커넥터는, 더욱 큰 공기층(160)으로 인해, 피검사 디바이스의 가압력의 분산과 도전부의 수평 방향의 팽창에 더욱 유리할 수 있다.
도 2에 도시하는 커넥터는 상하로 이격되는 두개의 금속 하우징과 그 사이에 배치되는 탄성 차폐부를 포함한다. 상측에 위치하는 금속 하우징의 상방에 추가의 금속 하우징이 배치될 수도 있고, 추가의 탄성 차폐부가 추가의 금속 하우징과 상측에 위치하는 금속 하우징의 사이에 배치될 수도 있다. 이에 관련하여, 또 다른 실시예에 따른 커넥터의 일부를 도시하는 도 14를 참조한다.
도 14에 도시하는 커넥터(100)는, 제2 금속 하우징(120)의 상방에 배치되는 제3 금속 하우징(170)을 더 포함한다. 제3 금속 하우징(170)은, 중심축(CA)과 동축으로 상하 방향(VD)으로 관통되어 있는 제3 관통공(171)을 갖는다. 도전부(140)를 중심축(CA)과 동축으로 위치시키는 절연부(150)가 제3 관통공(171)에 삽입된다. 또한, 커넥터(100)는 제2 금속 하우징(120)과 제3 금속 하우징(170)을 전기적으로 접속시키도록 구성된 추가의 탄성 차폐부(180)를 더 포함한다. 탄성 차폐부(180)는 제2 금속 하우징(120)과 제3 금속 하우징(170)의 사이에 배치되어 제3 금속 하우징(170)을 제2 금속 하우징(120)으로 상방으로 이격시킨다. 또한, 탄성 차폐부(180)는 제3 금속 하우징(170)을 제2 금속 하우징(120)에 대하여 탄력적으로 지지한다. 탄성 차폐부(180)는 탄성 차폐부(130)와 동일하게 구성될 수 있다. 도 14에 도시하는 바와 같이, 커넥터(100)는 복수의 금속 하우징을 포함할 수도 있고, 이러한 복수의 금속 하우징에서 상하로 이웃하는 금속 하우징의 사이에 탄성 차폐부가 배치될 수도 있다.
절연부는 원통체와는 다른 형상으로 형성될 수도 있고, 제1 금속 하우징의 제1 관통공은 절연부의 직경보다 큰 직경을 갖도록 형성될 수도 있으며, 제1 금속 하우징은 적층 구조물로서 형성될 수도 있다. 이에 관련하여, 또 하나의 다른 실시예에 따른 커넥터의 일부를 도시하는 도 15를 참조한다.
도 15를 참조하면, 제1 금속 하우징(110)과 제2 금속 하우징(120)은 탄성 차폐부(130)에 의해 서로 이격된다. 공기층(160)이 서로 이격된 제1 및 제2 금속 하우징(110, 120)의 사이에 형성되어 있으며, 탄성 차폐부(130)가 공기층(160)에 배치된다. 도전부(140)는 피검사 디바이스의 단자와 검사 장치의 단자에 접촉되어, 신호 전달을 수행한다. 커넥터(100)는, 피검사 디바이스, 커넥터 및 검사 장치를 접지시키는 도전부(190)를 포함할 수 있다. 도 15에 도시하는, 신호 전달용의 도전부(140) 및 접지용의 도전부(190)의 크기 및 배치 형태는 단지 하나의 예이며, 피검사 디바이스의 단자의 배치 형태에 따라 다양할 수 있다.
절연부(150)는 직경이 서로 다른 복수의 부분을 포함할 수 있다. 예를 들어, 절연부는, 제1 금속 하우징(110)의 제1 관통공(111)에 위치하는 제1 부분(151)과, 제2 금속 하우징(120)의 제2 관통공(121)에 끼워맞춤되는 제2 부분(152)을 포함할 수 있다. 제2 부분(152)은 제1 부분(151)의 외경보다 큰 외경을 갖는다. 제2 부분(152)은 플랜지와 같은 형상으로 절연부(150)에 형성될 수 있다. 피검사 디바이스의 검사 시에, 피검사 디바이스의 단자가 도전부(140)의 중심에 접촉하지 못하여, 피검사 디바이스의 단자가 제2 금속 하우징(120)에 닿을 수 있다. 절연부(150)가 탄성 물질로 이루어지고 제2 부분(152)이 더욱 큰 외경을 갖는다. 따라서, 피검사 디바이스의 단자와 도전부(140)가 정렬되지 못한 상태에서 피검사 디바이스의 단자가 제2 부분(152)에 접촉될 수 있으므로, 절연부의 제2 부분(152)은 피검사 디바이스의 단자가 제2 금속 하우징(120)에 의해 손상되는 것을 방지할 수 있다. 절연부의 제1 부분(151)은 제1 금속 하우징의 제1 관통공(111)과 둘레 방향을 따라 분리될 수 있다. 절연부(150)는 절연부의 하단 측에 형성되고 제1 부분(151)의 외경보다 큰 외경을 갖는 제3 부분(153)을 포함할 수 있다. 절연부의 제3 부분(153)이 제1 금속 하우징의 제1 관통공(111)에 끼워맞춤될 수 있다.
제1 금속 하우징(110)의 제1 관통공(111)은, 도전부(140)의 탄성 변형의 정도를 향상시키도록 형성될 수 있다. 예를 들어, 도 15에 도시하는 바와 같이, 제1 관통공(111)은, 하나의 관통공을 형성하는 상측 관통공(112) 및 하측 관통공(113)을 포함할 수 있다. 상측 관통공(112)은, 절연부(150)의 외경보다 큰 내경(또는, 절연부의 제1 부분(151)보다 큰 내경)을 갖는다. 절연부(150)(또는, 절연부의 제3 부분(153))가 하측 관통공(113)에 끼워맞춤된다. 하측 관통공(113)은 상측 관통공(112)보다 작은 내경을 갖는다. 제1 및 제2 금속 하우징(110, 120)이 이격되어 있고 이들 사이에 공기층(160)이 형성되어 있으므로, 상측 관통공(112)이 공기층(160)과 연통하도록 형성된다. 절연부(150)(또는 절연부의 제1 부분(151))의 둘레에 절연부의 직경보다 큰 상측 관통공이 형성되므로, 도전부(140)는 수평 방향에서의 팽창에 구속됨이 탄성 변형될 수 있고, 도전부(140)의 탄성 복원력이 향상될 수 있다.
제1 금속 하우징(110)은 두개의 금속 시트의 적층체로서 형성될 수 있다. 예를 들어, 제1 금속 하우징(110)은 하측에 위치하는 제1 금속 하우징 시트(114)와, 제1 금속 하우징 시트(114) 상에 적층되는 제2 금속 하우징 시트(115)를 포함할 수 있다. 제1 관통공의 일부인 하측 관통공(113)이 제1 금속 하우징 시트(114)에 관통되어 있고, 제1 관통공의 일부인 상측 관통공(112)이 제2 금속 하우징 시트(115)에 관통되어 있다. 제1 금속 하우징(110)이 두개의 금속 시트의 적층체로 형성되므로, 서로 다른 직경을 갖는 제1 관통공(111)을 갖는 제1 금속 하우징(110)이 용이하게 제조될 수 있다. 제1 금속 하우징의 하면(예를 들어, 제1 금속 하우징 시트(114)의 하면)에는, 폴리이미드 수지로 이루어질 수 있는 지지 필름(116)이 부착될 수도 있다. 지지 필름(116)은 도전부(140) 및 도전부(190)의 하측 돌출부를 지지할 수 있고, 도전부(140)와 도전부(190) 간의 단락을 방지할 수 있다.
이상 일부 실시예들과 첨부된 도면에 도시하는 예에 의해 본 개시의 기술적 사상이 설명되었지만, 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자가 이해할 수 있는 본 개시의 기술적 사상 및 범위를 벗어나지 않는 범위에서 다양한 치환, 변형 및 변경이 이루어질 수 있다는 점을 알아야 할 것이다. 또한, 그러한 치환, 변형 및 변경은 첨부된 청구범위 내에 속하는 것으로 생각되어야 한다.

Claims (22)

  1. 검사 장치와 피검사 디바이스의 사이에 배치되는 검사용 커넥터이며,
    상하 방향으로 관통되고 상기 상하 방향에서의 중심축을 갖는 제1 관통공을 갖는 제1 금속 하우징과,
    상기 중심축과 동축으로 상기 상하 방향으로 관통된 제2 관통공을 갖는 제2 금속 하우징과,
    상기 제1 금속 하우징과 상기 제2 금속 하우징의 사이에 배치되어 상기 제2 금속 하우징을 상기 제1 금속 하우징으로부터 상방으로 이격시키고, 상기 제1 금속 하우징과 상기 제2 금속 하우징을 전기적으로 접속시키도록 구성된 탄성 차폐부와,
    상기 제1 관통공 및 상기 제2 관통공에 상기 상하 방향으로 배치되고, 상기 검사 장치와 상기 피검사 디바이스의 사이에서 도전 가능하도록 구성된 도전부와,
    상기 제1 관통공 및 상기 제2 관통공에 삽입되어 있고, 상기 중심축의 둘레 방향으로 상기 도전부를 둘러싸고 상기 도전부를 상기 중심축과 동축으로 위치시키도록 구성된 절연부를 포함하는
    커넥터.
  2. 제1항에 있어서,
    상기 절연부의 외주면의 일부가 노출되고 상기 탄성 차폐부가 배치되는 공기층이, 서로 이격된 상기 제1 금속 하우징과 상기 제2 금속 하우징의 사이에 형성되어 있는,
    커넥터.
  3. 제2항에 있어서,
    상기 공기층은 상기 탄성 차폐부의 두께에 의해 한정되는 두께를 갖고, 상기 공기층의 두께는 상기 탄성 차폐부의 두께에 따라 증대될 수 있는,
    커넥터.
  4. 제1항에 있어서,
    상기 탄성 차폐부는, 상기 절연부의 외주면으로부터 이격되어 있고 기둥 형상으로 형성되며 상기 제1 금속 하우징과 상기 제2 금속 하우징을 전기적으로 접속시키도록 구성된 탄성 차폐 필러를 포함하는,
    커넥터.
  5. 제4항에 있어서,
    복수의 상기 도전부 및 복수의 상기 절연부가 상기 제1 금속 하우징 및 상기 제2 금속 하우징에 배치되고,
    이웃하는 두개의 상기 절연부의 사이에 적어도 하나의 상기 탄성 차폐 필러가 배치되는,
    커넥터.
  6. 제4항에 있어서,
    상기 탄성 차폐 필러는 원형, 타원형 또는 십자형의 횡단면을 갖는,
    커넥터.
  7. 제4항에 있어서,
    상기 제1 관통공, 상기 제2 관통공 및 상기 절연부는, 원형 또는 타원형의 횡단면을 갖고,
    상기 탄성 차폐 필러는 원형, 타원형 또는 십자형의 횡단면을 갖고,
    타원형의 횡단면을 갖는 상기 탄성 차폐 필러가 타원형의 횡단면을 갖는 상기 절연부의 옆에 배치되는,
    커넥터.
  8. 제1항에 있어서,
    상기 탄성 차폐부는, 상기 절연부의 직경보다 크고 상기 상하 방향으로 관통된 삽입공을 갖고 상기 제1 금속 하우징과 상기 제2 금속 하우징을 전기적으로 접속시키도록 구성되는 탄성 차폐 시트를 포함하는,
    커넥터.
  9. 제1항에 있어서,
    상기 탄성 차폐부는, 상기 상하 방향으로 도전 가능하게 집합되어 있는 다수의 도전성 물질과, 상기 다수의 도전성 물질을 상기 상하 방향으로 유지하는 탄성 물질을 포함하는,
    커넥터.
  10. 제9항에 있어서,
    상기 도전성 물질은, 금속 입자, 탄소나노튜브, 그래핀 및 도전성 와이어 중 어느 하나인,
    커넥터.
  11. 제1항에 있어서,
    상기 탄성 차폐부는, 상기 상하 방향으로 탄성 압축가능한 도전성 금속핀 및 도전성 스프링 중 하나를 포함하는 도전성 금속 부재와, 상기 도전성 금속 부재를 상기 상하 방향으로 유지하는 탄성 물질을 포함하는,
    커넥터.
  12. 제1항에 있어서,
    상기 도전부가 상기 제1 관통공에 상기 중심축과 동축으로 위치된 상태에서 상기 도전부, 상기 절연부, 및 상기 제1 금속 하우징이 일체로 형성되어 도전 모듈을 구성하는,
    커넥터.
  13. 제1항에 있어서,
    상기 도전부가 상기 제2 관통공에 상기 중심축과 동축으로 위치된 상태에서 상기 도전부, 상기 절연부 및 상기 제2 금속 하우징이 일체로 형성되어 도전 모듈을 구성하는,
    커넥터.
  14. 제1항에 있어서,
    상기 도전부는, 상기 상하 방향으로 도전 가능하게 집합되어 있는 다수의 도전성 물질과 상기 다수의 도전성 물질을 상기 상하 방향으로 유지하는 탄성 물질을 포함하는,
    커넥터.
  15. 제14항에 있어서,
    상기 도전성 물질은, 금속 입자, 탄소나노튜브, 그래핀 및 도전성 와이어 중 어느 하나인,
    커넥터.
  16. 제14항에 있어서,
    상기 절연부는 상기 도전부의 상기 탄성 물질로 이루어지고 상기 도전부와 일체로 형성되는,
    커넥터.
  17. 제1항에 있어서,
    상기 도전부는, 상기 상하 방향으로 탄성 압축가능한 도전성 금속핀과 상기 도전성 금속핀을 상기 상하 방향으로 유지하는 탄성 물질을 포함하는,
    커넥터.
  18. 제1항에 있어서,
    상기 절연부는, 실리콘 고무, 다수의 기공을 내포하는 실리콘 고무, 불소 실리콘 고무, 및 폴리테트라플루오로에틸렌 수지 중 어느 하나로 이루어지는,
    커넥터.
  19. 제1항에 있어서,
    상기 절연부는, 상기 제1 관통공에 위치하는 제1 부분과, 상기 제2 관통공에 끼워맞춤되고 상기 제1 부분의 외경보다 큰 외경을 가지며 상기 피검사 디바이스의 단자와 접촉 가능한 제2 부분을 포함하는,
    커넥터.
  20. 제1항에 있어서,
    상기 제1 관통공은, 상기 절연부의 외경보다 큰 내경을 갖는 상측 관통공과, 상기 상측 관통공 보다 작은 내경을 갖고 상기 절연부가 끼워맞춤되는 하측 관통공을 포함하고,
    상기 상측 관통공은, 서로 이격된 상기 제1 금속 하우징과 상기 제2 금속 하우징의 사이에 형성되고 상기 탄성 차폐부가 배치되는 공기층과 연통하도록 형성되는,
    커넥터.
  21. 제20항에 있어서,
    상기 제1 금속 하우징은, 상기 하측 관통공이 관통되어 있는 제1 금속 하우징 시트와, 상기 제1 금속 하우징 시트 상에 적층되고 상기 상측 관통공이 관통되어 있는 제2 금속 하우징 시트를 포함하는,
    커넥터.
  22. 제1항에 있어서,
    상기 중심축과 동축으로 상기 상하 방향으로 관통된 제3 관통공을 갖고 상기 제2 금속 하우징의 상방에 배치되는 제3 금속 하우징과,
    상기 제2 금속 하우징과 상기 제3 금속 하우징의 사이에 배치되어 상기 제3 금속 하우징을 상기 제2 금속 하우징으로부터 상방으로 이격시키고, 상기 제2 금속 하우징과 상기 제3 금속 하우징을 전기적으로 접속시키도록 구성된 추가의 탄성 차폐부를 더 포함하고,
    상기 절연부는 상기 제3 관통공에 삽입되어 있는,
    커넥터.
PCT/KR2023/010337 2022-07-27 2023-07-19 검사용 커넥터 WO2024025237A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0093040 2022-07-27
KR1020220093040A KR20240015324A (ko) 2022-07-27 2022-07-27 검사용 커넥터

Publications (1)

Publication Number Publication Date
WO2024025237A1 true WO2024025237A1 (ko) 2024-02-01

Family

ID=89706855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/010337 WO2024025237A1 (ko) 2022-07-27 2023-07-19 검사용 커넥터

Country Status (3)

Country Link
KR (1) KR20240015324A (ko)
TW (1) TW202406227A (ko)
WO (1) WO2024025237A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241641A (ja) * 2007-03-29 2008-10-09 Sumitomo Electric Ind Ltd インターポーザおよびその製造方法
KR20100020101A (ko) * 2008-08-12 2010-02-22 이용준 반도체 소자 테스트용 콘택터
KR20210044935A (ko) * 2019-10-15 2021-04-26 주식회사 이노글로벌 도전 라인 주변에 완충 영역이 형성된 테스트 소켓
KR20210146663A (ko) * 2020-05-27 2021-12-06 주식회사 아이에스시 전기접속용 커넥터
KR20220056641A (ko) * 2020-10-28 2022-05-06 주식회사 아이에스시 전기 접속용 커넥터

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335450A (ja) 2003-04-16 2004-11-25 Jsr Corp 異方導電性コネクターおよび回路装置の電気的検査装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241641A (ja) * 2007-03-29 2008-10-09 Sumitomo Electric Ind Ltd インターポーザおよびその製造方法
KR20100020101A (ko) * 2008-08-12 2010-02-22 이용준 반도체 소자 테스트용 콘택터
KR20210044935A (ko) * 2019-10-15 2021-04-26 주식회사 이노글로벌 도전 라인 주변에 완충 영역이 형성된 테스트 소켓
KR20210146663A (ko) * 2020-05-27 2021-12-06 주식회사 아이에스시 전기접속용 커넥터
KR20220056641A (ko) * 2020-10-28 2022-05-06 주식회사 아이에스시 전기 접속용 커넥터

Also Published As

Publication number Publication date
TW202406227A (zh) 2024-02-01
KR20240015324A (ko) 2024-02-05

Similar Documents

Publication Publication Date Title
WO2015012498A1 (ko) 도전성 커넥터 및 그 제조방법
WO2013151316A1 (ko) 고밀도 도전부를 가지는 테스트용 소켓 및 그 제조방법
WO2016126024A1 (ko) 결합 형상의 도전성 입자를 가지는 검사용 소켓
WO2014129784A1 (ko) 고밀도 도전부를 가지는 테스트용 소켓
WO2013085254A1 (ko) 탐침부 연결형 포고핀 및 그 제조방법
WO2023128428A1 (ko) 신호 손실 방지용 테스트 소켓
WO2014204161A2 (ko) 검사용 인서트
WO2020022745A1 (ko) 검사용 도전 시트
WO2014171621A1 (ko) 반도체 칩 테스트용 소켓 및 그 제조 방법
WO2021075628A1 (ko) 도전 라인 주변에 완충 영역이 형성된 양방향 도전성 모듈
WO2018128361A1 (ko) Dc 패러미터 테스트를 위한 수직형 울트라-로우 리키지 프로브 카드
WO2015156653A1 (ko) 검사용 시트의 제조방법 및 검사용 시트
WO2021241992A1 (ko) 전기접속용 커넥터
WO2018208117A1 (ko) 검사용 소켓
WO2024025237A1 (ko) 검사용 커넥터
WO2022005085A1 (en) Test socket and method of fabricating the same
WO2013100560A1 (ko) 전기적 콘택터 및 전기적 콘택터의 제조방법
WO2015076614A1 (ko) 하나의 절연성 몸체로 구성되는 소켓
WO2021157970A1 (ko) 전기접속용 커넥터
WO2021045286A1 (ko) 빈 공간이 형성된 테스트 소켓
WO2023229281A1 (ko) 검사용 커넥터
WO2022092812A1 (ko) 전기 접속용 커넥터
WO2022045787A1 (ko) 도전성 입자 및 이를 포함하는 전기접속용 커넥터
WO2023191394A1 (ko) 검사용 커넥터
WO2019039628A1 (ko) 레이저 가공 기술이 적용된 양방향 도전성 모듈 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846896

Country of ref document: EP

Kind code of ref document: A1