WO2024025229A1 - Method for producing seed potatoes by treatment with biostimulants in plant factory system - Google Patents

Method for producing seed potatoes by treatment with biostimulants in plant factory system Download PDF

Info

Publication number
WO2024025229A1
WO2024025229A1 PCT/KR2023/010266 KR2023010266W WO2024025229A1 WO 2024025229 A1 WO2024025229 A1 WO 2024025229A1 KR 2023010266 W KR2023010266 W KR 2023010266W WO 2024025229 A1 WO2024025229 A1 WO 2024025229A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon dioxide
ppm
seed potatoes
concentration
treatment
Prior art date
Application number
PCT/KR2023/010266
Other languages
French (fr)
Korean (ko)
Inventor
임영석
하피줄 라흐만엠디
Original Assignee
강원대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강원대학교산학협력단 filed Critical 강원대학교산학협력단
Publication of WO2024025229A1 publication Critical patent/WO2024025229A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • A01G22/25Root crops, e.g. potatoes, yams, beet or wasabi
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/06Treatment of growing trees or plants, e.g. for preventing decay of wood, for tingeing flowers or wood, for prolonging the life of plants
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • A01N25/04Dispersions, emulsions, suspoemulsions, suspension concentrates or gels
    • A01N25/06Aerosols
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/02Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms
    • A01N43/04Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom
    • A01N43/06Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom five-membered rings
    • A01N43/12Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom five-membered rings condensed with a carbocyclic ring
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds

Definitions

  • the present invention relates to a method for cultivating seed potatoes with improved production, which includes cultivating potato plants while treating them with silicon dioxide in an aeroponic system, and to seed potatoes with improved production grown by the method.
  • Biostimulants are a combination of various molecules, substances and microorganisms added to soil as catalysts to increase crop yield, quality and abiotic and biotic stress tolerance/resistance. Improve plant growth and development by promoting metabolism, promoting nutrient absorption, assimilation and transfer, and promoting soil microorganisms to improve soil fertility.
  • Agricultural biostimulants include a variety of items used in plant production, including microbial inoculants, biochemical compounds and plant extracts, to improve nutrient use efficiency, plant tolerance and quality characteristics. Biostimulants can be used to augment and complement current agricultural techniques and crop inputs.
  • a plant biostimulant means an improvement in one or more of the following properties of the plant or plant rhizosphere: Must be an EU fertilizer product whose sole purpose is to: i) nutrient use efficiency, ii) tolerance to abiotic stresses, iii) quality characteristics or iv) availability of limited nutrients in the soil or rhizosphere” (EU, 2019).
  • biostimulants are defined based on claims of agricultural function and include a variety of bioactive natural substances: humic and fulvic acids, animal and vegetable protein hydrolysates, macroalgae extracts and silicon, as well as helpful microorganisms: rhizobia. N-fixing bacteria and arbuscular mycorrhizal fungi (AMF) of the genera Rhizobium, Azotobacter and Azospirillum I.
  • AMF arbuscular mycorrhizal fungi
  • Korean Patent No. 0361652 discloses a method for producing biotech seed potatoes
  • Korean Patent No. 1544321 discloses a method for mass producing seed potatoes, but they are different from the method for producing seed potatoes by treatment with a bioactive agent of the present invention. .
  • the present invention was derived from the above needs, and the purpose of the present invention is to increase the production of seed potatoes in an aeroponic system by cultivating potato plants by optimizing the type and concentration of bioactive agents, thereby achieving growth and The goal is to establish a cultivation method for seed potatoes with improved production.
  • the present invention provides a method for cultivating seed potatoes with improved yield, which includes cultivating potato plants while treating them with silicon dioxide in an aeroponic system.
  • the present invention provides seed potatoes with improved yield grown by the above method.
  • the present invention provides a method for increasing the production of seed potatoes, characterized in that potato plants are grown in an aeroponic system while being treated with silicon dioxide.
  • the present invention provides a composition for increasing the production of seed potatoes in an aeroponic system containing silicon dioxide at a concentration of 3000 to 4000 ppm as an active ingredient.
  • the present invention provides a composition for increasing the production of seed potatoes in an aeroponic system containing gibberellic acid at a concentration of 250 to 350 ppm and silicon dioxide at a concentration of 200 to 300 ppm as active ingredients.
  • Potato plants grown with silicon dioxide treatment under the conditions of the present invention in an aeroponic system have the advantage of increasing tuber number, size, and live weight, resulting in high yield.
  • production is increased, so it is believed that the present invention can be usefully used in mass production cultivation of seed potatoes.
  • Figure 1 shows photos of growing potato plants according to treatments for each gibberellic acid concentration (see Table 2).
  • Figure 2 is a graph comparing the number of tubers per plant, tuber live weight, number of tubers larger than 10 g, number of tubers larger than 5 g, and number of tubers smaller than 5 g of potato plants according to treatments according to gibberellic acid concentration.
  • Figure 3 is a graph comparing the number of tubers of 10 g or more, the number of tubers of 5 g or more, and the number of tubers of 5 g or less per plant of potato plants according to treatments according to gibberellic acid concentration.
  • Figure 4 is a graph comparing the photosynthetic rate (Pr), stomatal conductance (Gs), transpiration rate (Tr), and water use efficiency (WUE) of potato plants according to treatments at different gibberellic acid concentrations.
  • FIG. 5 is a graph comparing the total carbohydrate content (TSC) and total sugar content (TSS) of potato plants according to treatment with different gibberellic acid concentrations.
  • Figure 6 is a graph comparing the carotenoid, chlorophyll a, and chlorophyll b contents of potato plants according to treatments at different gibberellic acid concentrations.
  • Figure 7 shows photos of growing potato plants according to treatments by silicon dioxide concentration (see Table 3).
  • Figure 8 is a graph comparing the photosynthetic rate (Pr), stomatal conductance (Gs), transpiration rate (Tr), and water use efficiency (WUE) of potato plants according to treatments at different silicon dioxide concentrations.
  • Figure 9 is a graph comparing the chlorophyll content (SPAD value) of potato plants according to treatment at different silicon dioxide concentrations.
  • Figure 10 shows photos of growing potato plants according to treatments by concentration of gibberellic acid and silicon dioxide (see Table 4).
  • Figure 11 is a graph comparing the number of tubers per plant, tuber live weight, number of tubers greater than 10 g, number of tubers greater than 5 g, and number of tubers less than 5 g of potato plants according to treatments at different concentrations of gibberellic acid and silicon dioxide.
  • Figure 12 is a graph comparing the photosynthesis rate (Pr), stomatal conductance (Gs), transpiration rate (Tr), and water use efficiency (WUE) of potato plants according to treatments at different concentrations of gibberellic acid and silicon dioxide.
  • Figure 13 is a graph comparing the chlorophyll a (Chl a), chlorophyll b (Chl b) and carotenoid contents of potato plants according to treatment with different concentrations of gibberellic acid and silicon dioxide.
  • Figure 14 is a graph comparing the total carbohydrate content (TSC) and total sugar content (TSS) of potato plants according to treatment at different concentrations of gibberellic acid and silicon dioxide.
  • the present invention provides a method for cultivating seed potatoes with improved yield, which includes cultivating potato plants while treating them with silicon dioxide in an aeroponic system.
  • the silicon dioxide treatment is preferably performed by treating potato plants 20 to 40 days old with silicon dioxide at a concentration of 3000 to 4000 ppm 3 to 5 times at intervals of 6 to 8 days, More preferably, potato plants that are 30 days old can be treated with silicon dioxide at a concentration of 3500 ppm four times at 7-day intervals.
  • gibberellic acid can be additionally treated during the above treatment. More specifically, potato plants that are 20 to 40 days old after transplanting are treated with gibberellic acid at a concentration of 250 to 350 ppm and gibberellic acid at a concentration of 200 to 300 ppm. Silicon dioxide can be treated 3 to 5 times at 6-8 day intervals. More specifically, 30-day-old potato plants can be treated with 300 ppm concentration of gibberellic acid and 250 ppm concentration of silicon dioxide 4 times at 7-day intervals. can do.
  • the cultivation can be carried out by field cultivation or pot cultivation in a general plastic greenhouse or glass greenhouse with supplemental light, hydroponic cultivation or pot cultivation by spraying under closed indoor smart farm conditions or plant factory-type conditions.
  • the cultivation may include all nutrient cultivation methods that supply nutrient solutions, such as freshwater culture, culture culture, and spray culture.
  • the potato may be a Golden king variety, but is not limited thereto.
  • the seed potatoes with improved yield may be seed potatoes with improved tuber number, size, and live weight, but are not limited thereto.
  • the present invention also provides seed potatoes with improved tuber number, size, and live weight grown by the above method.
  • the present invention also provides a method for increasing the production of seed potatoes, characterized in that the potato plants are grown in an aeroponic system while being treated with silicon dioxide.
  • the method for increasing the production of seed potatoes of the present invention is, more specifically, treating potato plants 20 to 40 days old with silicon dioxide at a concentration of 3000 to 4000 ppm 3 to 5 times at intervals of 6 to 8 days. Specifically, potato plants that are 30 days old can be treated with silicon dioxide at a concentration of 3500 ppm four times at 7-day intervals.
  • gibberellic acid can be additionally treated during the above treatment. More specifically, potato plants that are 20 to 40 days old are treated with gibberellic acid at a concentration of 250 to 350 ppm and silicon dioxide at a concentration of 200 to 300 ppm at intervals of 6 to 8 days. It can be treated 3 to 5 times, and more specifically, 30-day-old potato plants can be treated with gibberellic acid at a concentration of 300 ppm and silicon dioxide at a concentration of 250 ppm four times at 7-day intervals.
  • the present invention also provides a composition for increasing the production of seed potatoes in an aeroponic system containing silicon dioxide at a concentration of 3000 to 4000 ppm as an active ingredient.
  • the present invention also provides a composition for increasing the production of seed potatoes in an aeroponic system containing gibberellic acid at a concentration of 250 to 350 ppm and silicon dioxide at a concentration of 200 to 300 ppm as active ingredients.
  • Golden King (mid-early maturing), a healthy tissue culture material, was supplied from the “Potato Gene Bank” of Kangwon National University in Chuncheon. This study was conducted to determine the dependence (growth and yield) variables and different nutritional conditions during the potato growth period under a diver aeroponic system in two semi-controlled greenhouses in Chuncheon, Gangwon-do, South Korea.
  • the EC level was 1.5 dS m-1
  • the daytime temperature was between 16 and 26°C
  • the night temperature was between 8 and 12°C.
  • Plants were grown under a 12-hour photoperiod, and relative humidity levels in the greenhouse ranged from 35 to 40% in both greenhouses.
  • Table 1 below shows nutrient solution formulations during the growing period of potatoes.
  • the vegetative growth period solution was supplied until the 40th day after transplantation, and the potato bulking period solution was supplied from the 41st day until harvest.
  • foliar applications were applied at three concentrations of gibberellic acid (GA3) (100, 200, 300 ppm) and silicon dioxide (SiO 2 ) concentrations (1500, 2500, 3500 ppm), four times at 7-day intervals. (Tables 2 and 3).
  • GA3 gibberellic acid
  • SiO 2 silicon dioxide
  • Tuber grades were classified as ⁇ 5 g, > 5 g, and > 10 g for gibberellic acid and combined treatment with gibberellic acid and silicon dioxide, and ⁇ 1 g, > 1 g, and > 3 g for treatment with silicon dioxide alone.
  • Chlorophyll a 12.25 ⁇ A663 - 2.79 ⁇ A647
  • Chlorophyll b 21.50 ⁇ A647 - 5.10 ⁇ A663
  • Carotenoids 1000 ⁇ A470 - 1.82 ⁇ Chl a - 85.02 ⁇ Chl b
  • the SPAD-502 meter was calibrated using a reading checker provided by the manufacturer. Each leaf SPAD value obtained was the average of 10 readings (5 on each side of the leaf core).
  • TSC total soluble carbohydrate
  • TSS total soluble sugar
  • sucrose content 0.2 mL of supernatant was mixed with 0.1 mL (30%) KOH and heated at 100°C for 10 min. After the mixture was cooled to room temperature, 3 mL of anthrone (150 mg anthrone in 100 mL 70% sulfuric acid) was added. After 10 minutes, the sample was cooled and the absorbance was measured at 620 nm. TSS concentration was calculated using a standard glucose curve, and the results were expressed as ⁇ g/g live weight.
  • Example 1 Potato plant growth characteristics according to treatment at different gibberellic acid concentrations
  • the carotenoid content of potato leaves was high in the GA200 treatment group at 60 days of potato growth (Winter) and in the untreated group at 90 days of potato growth (Spring). In the case of chlorophyll content, there was no significant difference at 60 days of potato growth, but it was higher in the untreated group at 90 days of potato growth ( Figure 6).
  • Example 2 Potato plant growth characteristics according to treatment by silicon dioxide concentration
  • the dose of silicon dioxide had a significant effect on the growth and tuber composition of potato plants.
  • the T3 treatment group showed the highest number of branches, stem diameter, and root length
  • the T4 treatment group showed the highest plant height, leaf length, and plant fresh weight.
  • Potato plant growth characteristics following application of different doses of silicon dioxide (data taken on day 50 of plant growth) process T1 * T2 T3 T4 Plant height (cm) 87 ⁇ 4.08 74.66 ⁇ 2.86 69.66 ⁇ 2.62 94.33 ⁇ 4.49 number of branches 13 ⁇ 0.81 15 ⁇ 0.81 19 ⁇ 0.81 16.66 ⁇ 0.47 Stem diameter (cm) 6.72 ⁇ 0.21 7 ⁇ 0.09 7.10 ⁇ 0.10 6.48 ⁇ 0.20 Leaf length (cm) 25.66 ⁇ 1.24 35 ⁇ 1.63 35.33 ⁇ 4.18 44.33 ⁇ 3.29 Root length (cm) 42.66 ⁇ 1.24 47.66 ⁇ 2.62 48.66 ⁇ 2.05 42.33 ⁇ 1.24 Stem length (cm) 52.66 ⁇ 1.69 63 ⁇ 2.16 56.33 ⁇ 1.88 55.66 ⁇ 2.49 Plant fresh weight (g) 97.66 ⁇ 4.64 84.66 ⁇ 2.86 86.66 ⁇ 4.64 118.66 ⁇ 5.73 Plant drying (g) 7.02 ⁇ 43.43 6.05 ⁇ 37.08 6.07 ⁇ 38
  • tuber yield including tuber size, was affected by silicon dioxide concentration. Tuber number and tuber fresh weight were observed to significantly increase in T3 treatment (Table 7).
  • the photosynthetic rate (Pr), stomatal conductance (Gs), transpiration rate (Tr), and water use efficiency are shown in Figure 8.
  • the photosynthetic rate was significantly improved in the T3 treatment, and the transpiration rate was higher in the T1 treatment.
  • the chlorophyll content (SPAD value) of potato plants according to treatment by silicon dioxide concentration was highest in the T4 treatment ( Figure 9).
  • tubers The number of tubers (TN) of potato plants according to treatment by silicon dioxide and gibberellic acid concentration was high in T1 to T3 treatments, but decreased in T4 and T5 treatments.
  • Tuber fresh weight (TFW) tended to decrease as the silicon dioxide concentration increased.
  • tubers were classified into ⁇ 5g, >5g, and >10g according to size and were affected by treatment concentration (Figure 11).
  • the total carbohydrate content (TSC) and total sugar content (TSS) of potato plants according to treatment with different silicon dioxide and gibberellic acid concentrations are shown in Figure 14.
  • Carbohydrates are the end products of photosynthesis and are an important parameter for supplying energy to plants.
  • the untreated group (T5) showed the lowest total carbohydrate and total sugar content, the total carbohydrate content was high in the T3 and T4 treatments, and the total sugar was high in the T2 treatment group.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Botany (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

The present invention relates to a method for cultivating seed potatoes with enhanced yield, the method comprising the step of growing potato plants with silicon dioxide treatment in an aeroponic system, seed potatoes cultivated by the method, and a method for increasing the yield of seed potatoes.

Description

식물 공장 시스템에서 생물활성제 처리에 의한 씨감자의 생산방법Method for producing seed potatoes by treatment with bioactive agent in plant factory system
본 발명은 분무경(aeroponic) 시스템에서 감자 식물을 이산화규소 처리하면서 재배하는 단계를 포함하는 생산량이 증진된 씨감자의 재배방법 및 상기 방법으로 재배된 생산량이 증진된 씨감자에 관한 것이다.The present invention relates to a method for cultivating seed potatoes with improved production, which includes cultivating potato plants while treating them with silicon dioxide in an aeroponic system, and to seed potatoes with improved production grown by the method.
생물촉진제(Biostimulants)는 작물 생산량, 품질 및 비생물적/생물적 스트레스 내성/저항성을 높이기 위한 촉매로 토양에 첨가되는 다양한 분자, 물질 및 미생물 조합이다. 신진대사를 촉진하고 영양소 흡수, 동화 및 전이를 촉진하고 토양 미생물을 촉진하여 토양 비옥도를 개선함으로써 식물 성장 및 발달을 개선한다. 농업용 생물촉진제는 미생물 접종제, 생화학적 화합물 및 식물 추출물을 포함하여 식물 생산에 사용되어 영양소 사용 효율성, 식물 내성 및 품질 특성을 개선하는 데 사용되는 다양한 품목을 포함한다. 생물촉진제는 현재의 농업 기술과 작물 투입량을 늘리고 보완하는 데 사용할 수 있다.Biostimulants are a combination of various molecules, substances and microorganisms added to soil as catalysts to increase crop yield, quality and abiotic and biotic stress tolerance/resistance. Improve plant growth and development by promoting metabolism, promoting nutrient absorption, assimilation and transfer, and promoting soil microorganisms to improve soil fertility. Agricultural biostimulants include a variety of items used in plant production, including microbial inoculants, biochemical compounds and plant extracts, to improve nutrient use efficiency, plant tolerance and quality characteristics. Biostimulants can be used to augment and complement current agricultural techniques and crop inputs.
현재, 농업 분야는 생태계와 인간 건강에 대한 환경적 영향을 줄이면서, 증가하는 세계 인구를 먹여 살리기 위해 생산성을 높여야 하는 동시적인 어려움에 직면해 있다. 비료와 살충제는 이상적인 조건과 열악한 조건 모두에서 계절 내내 생산량을 늘리고 지속적인 생산성을 보장할 수 있는 강력한 도구를 생산자에게 제공하기 때문에 농업에서 중요한 역할을 한다. 지난 30년 동안 살충제 및 비료와 같은 합성 농약을 크게 줄임으로써 농업 생산 시스템의 지속 가능성을 개선하기 위한 몇 가지 기술 발전이 제안되었다.Currently, the agricultural sector faces the simultaneous challenge of increasing productivity to feed a growing global population while reducing environmental impacts on ecosystems and human health. Fertilizers and pesticides play an important role in agriculture because they provide producers with powerful tools to increase yields and ensure continued productivity throughout the season under both ideal and harsh conditions. Over the past three decades, several technological advances have been proposed to improve the sustainability of agricultural production systems by significantly reducing the use of synthetic pesticides such as pesticides and fertilizers.
다양한 비생물적 스트레스 요인에 대한 내성을 향상시키면서 개화, 식물 성장, 과일 발달, 작물 생산성 및 영양소 이용 효율성을 촉진하는 천연 식물 생물촉진제는 유망하고 환경적으로 유익한 발명이다. 지난 10년 동안 생물촉진제의 정의는 가장 최근에 새로운 규정(EU) 2019/1009에 따라 뜨겁게 논의되어 왔으며, 그 결과 다음과 같다: "식물 생물촉진제는 식물 또는 식물 근권의 다음 특성 중 하나 이상을 개선하는 것이 유일한 목적인 EU 비료 제품이어야 한다: i) 영양소 사용 효율성, ii) 비생물적 스트레스에 대한 내성, iii) 품질 특성 또는 iv) 토양 또는 근권에서 제한된 영양소의 가용성”(EU, 2019). 이 정의에 따르면, 생물촉진제는 농업 기능의 주장을 기반으로 정의되며 다양한 생리활성 천연물질을 포함한다: 휴믹산 및 풀빅산, 동물 및 식물성 단백질 가수분해물, 대형조류 해조류 추출물 및 규소뿐만 아니라 도움이 되는 미생물: 리조비움(Rhizobium), 아조토박터(Azotobacter) 및 아조스피릴룸(Azospirillum) I 속의 N-고정 박테리아와 수지상 균근 균류(AMF).Natural plant biostimulants that promote flowering, plant growth, fruit development, crop productivity and nutrient use efficiency while improving tolerance to various abiotic stressors are a promising and environmentally beneficial invention. Over the past decade, the definition of a biostimulant has been hotly debated, most recently under the new Regulation (EU) 2019/1009, which results in: “A plant biostimulant means an improvement in one or more of the following properties of the plant or plant rhizosphere: Must be an EU fertilizer product whose sole purpose is to: i) nutrient use efficiency, ii) tolerance to abiotic stresses, iii) quality characteristics or iv) availability of limited nutrients in the soil or rhizosphere” (EU, 2019). This definition According to it, biostimulants are defined based on claims of agricultural function and include a variety of bioactive natural substances: humic and fulvic acids, animal and vegetable protein hydrolysates, macroalgae extracts and silicon, as well as helpful microorganisms: rhizobia. N-fixing bacteria and arbuscular mycorrhizal fungi (AMF) of the genera Rhizobium, Azotobacter and Azospirillum I.
감자생산에 가장 큰 영향을 주는 것이 씨감자의 품질이기에, 국가는 우량 씨감자생산을 위해서 수년간 노력하였다. 최근에 기본종 씨감자의 생산성을 높이기 위한 다양한 방법들, 배지경 양액재배, 분무경 양액재배, 담수경 양액재배 등이 연구되었다. 온실 조건에서 감자의 기본종 생산은 계절적 의무를 무시하여 종자 괴경을 일년내내 생산할 수 있는 비교적 새로운 아이디어이다. 식물공장이 조성된 후 모의환경에서 식물생장을 제어할 수 있는 환경이 조성되어 형질 내구력과 수확량이 증진되지만, 기본 수경재배방법으로는 한계성이 있으므로, 좀 더 효율적인 생산방법이 필요한 상황이다.Since the quality of seed potatoes has the greatest impact on potato production, the country has made efforts for many years to produce high-quality seed potatoes. Recently, various methods to increase the productivity of basic seed potatoes have been studied, including culture media, spray culture, and freshwater culture. The production of basic varieties of potatoes in greenhouse conditions is a relatively new idea that allows the production of seed tubers all year round, ignoring seasonal obligations. After the plant factory is established, an environment is created in which plant growth can be controlled in a simulated environment, thereby improving trait durability and yield. However, there are limitations to the basic hydroponic cultivation method, so a more efficient production method is needed.
한국등록특허 제0361652호에는 바이오텍 씨감자의 생산방법이 개시되어 있고, 한국등록특허 제1544321호에는 씨감자의 대량 생산방법이 개시되어 있으나, 본 발명의 생물활성제 처리에 의한 씨감자의 생산방법과는 상이하다.Korean Patent No. 0361652 discloses a method for producing biotech seed potatoes, and Korean Patent No. 1544321 discloses a method for mass producing seed potatoes, but they are different from the method for producing seed potatoes by treatment with a bioactive agent of the present invention. .
본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명의 목적은 분무경(aeroponic) 시스템에서 씨감자의 생산량을 증진시키기 위해, 생물활성제 종류 및 농도 처리를 최적화하여 감자 식물을 재배함으로써, 생육 및 생산량이 증진된 씨감자의 재배방법을 확립하는 데 있다.The present invention was derived from the above needs, and the purpose of the present invention is to increase the production of seed potatoes in an aeroponic system by cultivating potato plants by optimizing the type and concentration of bioactive agents, thereby achieving growth and The goal is to establish a cultivation method for seed potatoes with improved production.
상기 과제를 해결하기 위해, 본 발명은 분무경(aeroponic) 시스템에서 감자 식물을 이산화규소 처리하면서 재배하는 단계를 포함하는 생산량이 증진된 씨감자의 재배방법을 제공한다.In order to solve the above problems, the present invention provides a method for cultivating seed potatoes with improved yield, which includes cultivating potato plants while treating them with silicon dioxide in an aeroponic system.
또한, 본 발명은 상기 방법으로 재배된 생산량이 증진된 씨감자를 제공한다.In addition, the present invention provides seed potatoes with improved yield grown by the above method.
또한, 본 발명은 분무경(aeroponic) 시스템에서 감자 식물을 이산화규소 처리하면서 재배하는 것을 특징으로 하는, 씨감자의 생산량을 증가시키는 방법을 제공한다.Additionally, the present invention provides a method for increasing the production of seed potatoes, characterized in that potato plants are grown in an aeroponic system while being treated with silicon dioxide.
또한, 본 발명은 3000~4000 ppm 농도의 이산화규소를 유효성분으로 함유하는 분무경(aeroponic) 시스템에서 씨감자의 생산량을 증가시키기 위한 조성물을 제공한다.In addition, the present invention provides a composition for increasing the production of seed potatoes in an aeroponic system containing silicon dioxide at a concentration of 3000 to 4000 ppm as an active ingredient.
또한, 본 발명은 250~350 ppm 농도의 지베렐린산과 200~300 ppm 농도의 이산화규소를 유효성분으로 함유하는 분무경(aeroponic) 시스템에서 씨감자의 생산량을 증가시키기 위한 조성물을 제공한다.In addition, the present invention provides a composition for increasing the production of seed potatoes in an aeroponic system containing gibberellic acid at a concentration of 250 to 350 ppm and silicon dioxide at a concentration of 200 to 300 ppm as active ingredients.
분무경(aeroponic) 시스템에서 본 발명의 조건으로 이산화규소 처리하여 재배된 감자 식물은 괴경 수, 크기 및 생체중을 증진시켜 생산량이 높은 이점이 있다. 또한, 분무경(aeroponic) 시스템에서 이산화규소와 지베렐린산을 감자 식물에 복합 처리할 경우, 생산량이 증진되어 본 발명은 씨감자 대량생산 재배 시 유용하게 사용할 수 있을 것으로 판단된다.Potato plants grown with silicon dioxide treatment under the conditions of the present invention in an aeroponic system have the advantage of increasing tuber number, size, and live weight, resulting in high yield. In addition, when potato plants are combined with silicon dioxide and gibberellic acid in an aeroponic system, production is increased, so it is believed that the present invention can be usefully used in mass production cultivation of seed potatoes.
도 1은 지베렐린산 농도별 처리(표 2 참고)에 따른 감자 식물을 재배하는 사진을 보여준다.Figure 1 shows photos of growing potato plants according to treatments for each gibberellic acid concentration (see Table 2).
도 2는 지베렐린산 농도별 처리에 따른 감자 식물의 식물 당 괴경 수, 괴경 생체중, 10 g 이상의 괴경 수, 5 g 이상의 괴경 수, 5 g 이하의 괴경 수를 비교한 그래프이다.Figure 2 is a graph comparing the number of tubers per plant, tuber live weight, number of tubers larger than 10 g, number of tubers larger than 5 g, and number of tubers smaller than 5 g of potato plants according to treatments according to gibberellic acid concentration.
도 3은 지베렐린산 농도별 처리에 따른 감자 식물의 식물 당 10 g 이상의 괴경 수, 5 g 이상의 괴경 수, 5 g 이하의 괴경 수를 비교한 그래프이다.Figure 3 is a graph comparing the number of tubers of 10 g or more, the number of tubers of 5 g or more, and the number of tubers of 5 g or less per plant of potato plants according to treatments according to gibberellic acid concentration.
도 4는 지베렐린산 농도별 처리에 따른 감자 식물의 광합성 속도(Pr), 기공 전도도(Gs), 증산 속도(Tr) 및 물 사용 효율(WUE)을 비교한 그래프이다.Figure 4 is a graph comparing the photosynthetic rate (Pr), stomatal conductance (Gs), transpiration rate (Tr), and water use efficiency (WUE) of potato plants according to treatments at different gibberellic acid concentrations.
도 5는 지베렐린산 농도별 처리에 따른 감자 식물의 총 탄수화물 함량(TSC)과 총 당 함량(TSS)을 비교한 그래프이다.Figure 5 is a graph comparing the total carbohydrate content (TSC) and total sugar content (TSS) of potato plants according to treatment with different gibberellic acid concentrations.
도 6은 지베렐린산 농도별 처리에 따른 감자 식물의 카로티노이드, 엽록소 a 및 엽록소 b 함량을 비교한 그래프이다.Figure 6 is a graph comparing the carotenoid, chlorophyll a, and chlorophyll b contents of potato plants according to treatments at different gibberellic acid concentrations.
도 2 내지 6의 Winter: 60일, Spring: 90일 성장 후 수확2 to 6, Winter: 60 days, Spring: Harvest after 90 days of growth.
도 7은 이산화규소 농도별 처리(표 3 참고)에 따른 감자 식물을 재배하는 사진을 보여준다.Figure 7 shows photos of growing potato plants according to treatments by silicon dioxide concentration (see Table 3).
도 8은 이산화규소 농도별 처리에 따른 감자 식물의 광합성 속도(Pr), 기공 전도도(Gs), 증산 속도(Tr) 및 물 사용 효율(WUE)을 비교한 그래프이다.Figure 8 is a graph comparing the photosynthetic rate (Pr), stomatal conductance (Gs), transpiration rate (Tr), and water use efficiency (WUE) of potato plants according to treatments at different silicon dioxide concentrations.
도 9는 이산화규소 농도별 처리에 따른 감자 식물의 엽록소 함량(SPAD값)을 비교한 그래프이다.Figure 9 is a graph comparing the chlorophyll content (SPAD value) of potato plants according to treatment at different silicon dioxide concentrations.
도 10은 지베렐린산과 이산화규소 농도별 처리(표 4 참고)에 따른 감자 식물을 재배하는 사진을 보여준다.Figure 10 shows photos of growing potato plants according to treatments by concentration of gibberellic acid and silicon dioxide (see Table 4).
도 11은 지베렐린산과 이산화규소 농도별 처리에 따른 감자 식물의 식물 당 괴경 수, 괴경 생체중, 10 g 이상의 괴경 수, 5 g 이상의 괴경 수, 5 g 이하의 괴경 수를 비교한 그래프이다.Figure 11 is a graph comparing the number of tubers per plant, tuber live weight, number of tubers greater than 10 g, number of tubers greater than 5 g, and number of tubers less than 5 g of potato plants according to treatments at different concentrations of gibberellic acid and silicon dioxide.
도 12는 지베렐린산과 이산화규소 농도별 처리에 따른 감자 식물의 광합성 속도(Pr), 기공 전도도(Gs), 증산 속도(Tr) 및 물 사용 효율(WUE)을 비교한 그래프이다.Figure 12 is a graph comparing the photosynthesis rate (Pr), stomatal conductance (Gs), transpiration rate (Tr), and water use efficiency (WUE) of potato plants according to treatments at different concentrations of gibberellic acid and silicon dioxide.
도 13은 지베렐린산과 이산화규소 농도별 처리에 따른 감자 식물의 엽록소 a(Chl a), 엽록소 b(Chl b) 및 카로티노이드 함량을 비교한 그래프이다.Figure 13 is a graph comparing the chlorophyll a (Chl a), chlorophyll b (Chl b) and carotenoid contents of potato plants according to treatment with different concentrations of gibberellic acid and silicon dioxide.
도 14는 지베렐린산과 이산화규소 농도별 처리에 따른 감자 식물의 총 탄수화물 함량(TSC)과 총 당 함량(TSS)을 비교한 그래프이다.Figure 14 is a graph comparing the total carbohydrate content (TSC) and total sugar content (TSS) of potato plants according to treatment at different concentrations of gibberellic acid and silicon dioxide.
본 발명의 목적을 달성하기 위하여, 본 발명은 분무경(aeroponic) 시스템에서 감자 식물을 이산화규소 처리하면서 재배하는 단계를 포함하는 생산량이 증진된 씨감자의 재배방법을 제공한다.In order to achieve the object of the present invention, the present invention provides a method for cultivating seed potatoes with improved yield, which includes cultivating potato plants while treating them with silicon dioxide in an aeroponic system.
본 발명의 씨감자의 재배방법에서, 상기 이산화규소 처리는 바람직하게는 이식한지 20~40일된 감자 식물을 3000~4000 ppm 농도의 이산화규소를 6~8일 간격으로 3~5회 처리할 수 있으며, 더욱 바람직하게는 이식한지 30일된 감자 식물을 3500 ppm 농도의 이산화규소를 7일 간격으로 4회 처리할 수 있다.In the seed potato cultivation method of the present invention, the silicon dioxide treatment is preferably performed by treating potato plants 20 to 40 days old with silicon dioxide at a concentration of 3000 to 4000 ppm 3 to 5 times at intervals of 6 to 8 days, More preferably, potato plants that are 30 days old can be treated with silicon dioxide at a concentration of 3500 ppm four times at 7-day intervals.
또한, 본 발명의 씨감자의 재배방법에서, 상기 처리 시 지베렐린산을 추가로 처리할 수 있는데, 보다 구체적으로는 이식한지 20~40일된 감자 식물을 250~350 ppm 농도의 지베렐린산과 200~300 ppm 농도의 이산화규소를 6~8일 간격으로 3~5회 처리할 수 있으며, 더욱 구체적으로는 이식한지 30일된 감자 식물을 300 ppm 농도의 지베렐린산과 250 ppm 농도의 이산화규소를 7일 간격으로 4회 처리할 수 있다.In addition, in the seed potato cultivation method of the present invention, gibberellic acid can be additionally treated during the above treatment. More specifically, potato plants that are 20 to 40 days old after transplanting are treated with gibberellic acid at a concentration of 250 to 350 ppm and gibberellic acid at a concentration of 200 to 300 ppm. Silicon dioxide can be treated 3 to 5 times at 6-8 day intervals. More specifically, 30-day-old potato plants can be treated with 300 ppm concentration of gibberellic acid and 250 ppm concentration of silicon dioxide 4 times at 7-day intervals. can do.
또한, 본 발명의 씨감자의 재배방법에서, 상기 재배는 일반 비닐 온실 또는 유리 온실에 보조광의 밭 재배 또는 포트 재배, 밀폐형 실내 스마트팜 조건 또는 식물공장형 조건하에서 분무경 방식으로 수경재배 또는 포트재배할 수 있으나, 이에 제한되지 않는다. 즉, 상기 재배는 담수경, 배지경, 분무경 등 영양액을 공급하는 모든 영양재배를 포함할 수 있다.In addition, in the method of cultivating seed potatoes of the present invention, the cultivation can be carried out by field cultivation or pot cultivation in a general plastic greenhouse or glass greenhouse with supplemental light, hydroponic cultivation or pot cultivation by spraying under closed indoor smart farm conditions or plant factory-type conditions. However, it is not limited to this. In other words, the cultivation may include all nutrient cultivation methods that supply nutrient solutions, such as freshwater culture, culture culture, and spray culture.
또한, 본 발명의 씨감자의 재배방법에서, 상기 감자는 골든킹(Golden king, 금왕) 품종일 수 있으나, 이에 제한되지 않는다.Additionally, in the seed potato cultivation method of the present invention, the potato may be a Golden king variety, but is not limited thereto.
또한, 본 발명의 씨감자의 재배방법에서, 상기 생산량이 증진된 씨감자는 괴경 수, 크기 및 생체중이 증진된 씨감자일 수 있으나, 이에 제한되지 않는다.Additionally, in the seed potato cultivation method of the present invention, the seed potatoes with improved yield may be seed potatoes with improved tuber number, size, and live weight, but are not limited thereto.
본 발명은 또한, 상기 방법으로 재배된 괴경 수, 크기 및 생체중이 증진된 씨감자를 제공한다.The present invention also provides seed potatoes with improved tuber number, size, and live weight grown by the above method.
본 발명은 또한, 분무경(aeroponic) 시스템에서 감자 식물을 이산화규소 처리하면서 재배하는 것을 특징으로 하는, 씨감자의 생산량을 증가시키는 방법을 제공한다.The present invention also provides a method for increasing the production of seed potatoes, characterized in that the potato plants are grown in an aeroponic system while being treated with silicon dioxide.
본 발명의 씨감자의 생산량을 증가시키는 방법은, 보다 구체적으로는 이식한지 20~40일된 감자 식물을 3000~4000 ppm 농도의 이산화규소를 6~8일 간격으로 3~5회 처리할 수 있으며, 더욱 구체적으로는 이식한지 30일된 감자 식물을 3500 ppm 농도의 이산화규소를 7일 간격으로 4회 처리할 수 있다.The method for increasing the production of seed potatoes of the present invention is, more specifically, treating potato plants 20 to 40 days old with silicon dioxide at a concentration of 3000 to 4000 ppm 3 to 5 times at intervals of 6 to 8 days. Specifically, potato plants that are 30 days old can be treated with silicon dioxide at a concentration of 3500 ppm four times at 7-day intervals.
또한, 상기 처리 시 지베렐린산을 추가로 처리할 수 있는데, 보다 구체적으로는 이식한지 20~40일된 감자 식물을 250~350 ppm 농도의 지베렐린산과 200~300 ppm 농도의 이산화규소를 6~8일 간격으로 3~5회 처리할 수 있으며, 더욱 구체적으로는 이식한지 30일된 감자 식물을 300 ppm 농도의 지베렐린산과 250 ppm 농도의 이산화규소를 7일 간격으로 4회 처리할 수 있다.In addition, gibberellic acid can be additionally treated during the above treatment. More specifically, potato plants that are 20 to 40 days old are treated with gibberellic acid at a concentration of 250 to 350 ppm and silicon dioxide at a concentration of 200 to 300 ppm at intervals of 6 to 8 days. It can be treated 3 to 5 times, and more specifically, 30-day-old potato plants can be treated with gibberellic acid at a concentration of 300 ppm and silicon dioxide at a concentration of 250 ppm four times at 7-day intervals.
본 발명은 또한, 3000~4000 ppm 농도의 이산화규소를 유효성분으로 함유하는 분무경(aeroponic) 시스템에서 씨감자의 생산량을 증가시키기 위한 조성물을 제공한다.The present invention also provides a composition for increasing the production of seed potatoes in an aeroponic system containing silicon dioxide at a concentration of 3000 to 4000 ppm as an active ingredient.
본 발명은 또한, 250~350 ppm 농도의 지베렐린산과 200~300 ppm 농도의 이산화규소를 유효성분으로 함유하는 분무경(aeroponic) 시스템에서 씨감자의 생산량을 증가시키기 위한 조성물을 제공한다.The present invention also provides a composition for increasing the production of seed potatoes in an aeroponic system containing gibberellic acid at a concentration of 250 to 350 ppm and silicon dioxide at a concentration of 200 to 300 ppm as active ingredients.
이하, 본 발명의 제조예 및 실시예를 들어 상세히 설명한다. 단, 하기 제조예 및 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 제조예 및 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to preparation examples and examples. However, the following preparation examples and examples are merely illustrative of the present invention, and the content of the present invention is not limited to the following preparation examples and examples.
재료 및 방법Materials and Methods
1. 식물 재료 및 성장 조건1. Plant materials and growth conditions
춘천에 있는 강원대학교 "감자유전자은행" 으로부터 건강한 조직배양 재료인 골든킹(Golden king, mid-early maturing)을 공급받았다. 본 연구는 대한민국 강원도 춘천시 두 곳의 반제어 온실 내 다이버 에어로포닉 시스템 하에서의 의존성(성장 및 수확량) 변수와 감자 성장 기간의 다른 영양 조건을 결정하기 위해 수행되었다. EC 수준 1.5 dS m-1, 낮 기온은 16~26℃ 사이, 밤 기온은 8~12℃ 사이였다. 식물은 12시간 광주기 하에서 성장하였고, 온실의 상대 습도 수준은 두 온실 모두에서 35~40% 범위였다.Golden King (mid-early maturing), a healthy tissue culture material, was supplied from the “Potato Gene Bank” of Kangwon National University in Chuncheon. This study was conducted to determine the dependence (growth and yield) variables and different nutritional conditions during the potato growth period under a diver aeroponic system in two semi-controlled greenhouses in Chuncheon, Gangwon-do, South Korea. The EC level was 1.5 dS m-1, the daytime temperature was between 16 and 26℃, and the night temperature was between 8 and 12℃. Plants were grown under a 12-hour photoperiod, and relative humidity levels in the greenhouse ranged from 35 to 40% in both greenhouses.
2. 영양 용액2. Nutrient solution
하기 표 1은 감자의 성장기간 동안 영양 용액 제형을 나타낸다. 이식 40일째까지는 영양생장기(vegetative growth period) 용액을 공급받았고, 41일째부터 수확할 때까지 감자 성장기(potato bulking periods) 용액을 공급하였다.Table 1 below shows nutrient solution formulations during the growing period of potatoes. The vegetative growth period solution was supplied until the 40th day after transplantation, and the potato bulking period solution was supplied from the 41st day until harvest.
영양액 조성Nutrient solution composition

화합물 이름

compound name
Vegetative Growth Period
(Transplantation to 40 th Day)
Vegetative Growth Period
(Transplantation to 40th Day)
Tuber Bulking Period
(41th days to Harvesting day)
Tuber Bulking Period
(41st days to Harvesting day)
A 탱크(50 L)A tank (50 L) B 탱크(50 L)B tank (50 L) A 탱크(50 L)A tank (50 L) B 탱크(50 L)B tank (50 L)
Ca(NO3)Ca(NO 3 ) 1.5 kg1.5 kg 7.66 kg7.66kg
KNO3 KNO 3 3.79 kg3.79kg 3.79 kg3.79 kg 3.54 kg3.54kg 3.54 kg3.54kg
(NH4)2HPO4 (NH 4 ) 2 HPO 4 1.6 kg1.6kg 1.52 kg1.52kg
MgSO4 MgSO 4 4.3 kg4.3kg 3.68 kg3.68kg
K2SO4 K 2 SO 4 1.3 kg1.3 kg
Fe-EDTAFe-EDTA 460 g460g 460 g460g 30.8 g30.8g
MnSO4 MnSO 4 30.8 g30.8g
H3BO3 H3BO3 _ 57.2 g57.2 g 57.2 g57.2 g
ZnSO4 ZnSO4 3.6 g3.6g 3.6 g3.6g
CuSO4 CuSO 4 1.3 g1.3g 1.3 g1.3g
(NH4)6MO7O24·4H2O(NH 4 ) 6 M O 7 O 24 ·4H 2 O 0.4 g0.4g 0.4 g0.4g
3. 분무경(aeroponic) 시스템3. Aeroponic system
어두운 뿌리 성장 챔버를 형성하는 확장된 스트레이 폼 패널이 있는 알루미늄 프레임을 사용하여 첨단 분무경 시스템을 만들었다. 이 첨단 관개/배수 시스템으로 영양 용액 분무, 회수 및 수정의 정밀 제어가 가능하다. 영양액(표 1)은 사용 중인 처리제에 따라 다양한 저장소에서 지속적으로 펌핑되었다. 식물 뿌리에 2분 간격으로 한 번에 10초 동안 마이크로 제트 노즐로 분무되어 튜브 네트워크의 다양한 펌프에 의해 순환되는 영양 용액을 공급하였다. 잔류 영양 용액은 해당 저장소로 다시 침출되어 재순환되었다. 실험 내내 영양 용액의 품질을 매일 모니터링했다.An advanced atomization system was created using an aluminum frame with expanded stray foam panels forming a dark root growth chamber. This advanced irrigation/drainage system allows precise control of nutrient solution spraying, withdrawal and fertilization. Nutrients (Table 1) were continuously pumped from various reservoirs depending on the treatment being used. Plant roots were supplied with a nutrient solution that was sprayed with a micro-jet nozzle for 10 seconds at a time at 2-minute intervals and circulated by various pumps in a network of tubes. The residual nutrient solution was leached back to the reservoir and recycled. The quality of the nutrient solution was monitored daily throughout the experiment.
4. 지베렐린산과 이산화규소(SiO2)의 실험 설계4. Experimental design of gibberellic acid and silicon dioxide (SiO 2 )
이식 후 30일 경과 시 3가지 지베렐린산(GA3) 농도(100, 200, 300 ppm)와 이산화규소(SiO2) 농도(1500, 2500, 3500 ppm)로 각각 엽면 시비하였고, 7일 간격 4회 실시하였다(표 2 및 3).30 days after transplanting, foliar applications were applied at three concentrations of gibberellic acid (GA3) (100, 200, 300 ppm) and silicon dioxide (SiO 2 ) concentrations (1500, 2500, 3500 ppm), four times at 7-day intervals. (Tables 2 and 3).
지베렐린산(GA3)의 실험 설계Experimental design of gibberellic acid (GA3)
TreatmentTreatment 농도density
GA100GA100 100 ppm100ppm
GA200GA200 200 ppm200ppm
GA300GA300 300 ppm300 ppm
ControlControl No treatmentNo treatment
이산화규소(SiO2)의 실험 설계Experimental design of silicon dioxide (SiO 2 )
TreatmentTreatment 농도density Code nameCode name
SiO2 SiO 2 1500 ppm1500ppm T1T1
SiO2 SiO 2 2500 ppm2500 ppm T2T2
SiO2 SiO 2 3500 ppm3500ppm T3T3
ControlControl No treatmentNo treatment T4T4
또한, 최적의 투여량이였던 지베렐린산(GA3) 농도 300 ppm으로 고정하고, 이산화규소(SiO2) 농도(250, 500, 1000, 1500 ppm)를 달리하여 처리하였다(표 4).In addition, the optimal dosage of gibberellic acid (GA3) was fixed at 300 ppm, and silicon dioxide (SiO 2 ) concentrations (250, 500, 1000, 1500 ppm) were varied (Table 4).
지베렐린산(GA3)과 이산화규소(SiO2) 조합 실험 설계Gibberellic acid (GA3) and silicon dioxide (SiO 2 ) combination experiment design
TreatmentTreatment Code nameCode name
GA3 300 ppm + SiO2 250 ppmGA3 300 ppm + SiO 2 250 ppm T1T1
GA3 300 ppm + SiO2 500 ppmGA3 300 ppm + SiO 2 500 ppm T2T2
GA3 300 ppm + SiO2 1000 ppmGA3 300 ppm + SiO 2 1000 ppm T3T3
GA3 300 ppm + SiO2 1500 ppmGA3 300 ppm + SiO 2 1500 ppm T4T4
Control(No treatment)Control(No treatment) T5T5
5. 식물 생장 특성 및 종자 괴경 수확량 측정5. Determination of plant growth characteristics and seed tuber yield
온실에서 각각 60일 및 90일 성장 후 형태 생리학적 및 괴경 데이터 수집을 위해 식물을 무작위로 선택하였다. 그리고 괴경 3가지를 기준으로 괴경 등급 매개변수를 기록하였다. 괴경 등급은 지베렐린산과 지베렐린산 및 이산화규소 복합 처리의 경우 < 5g, > 5g, > 10g, 이산화규소 단독 처리의 경우 < 1g, > 1g, > 3g로 분류하였다.Plants were randomly selected for morphophysiological and tuber data collection after 60 and 90 days of growth in the greenhouse, respectively. Then, tuber grade parameters were recorded based on the three types of tubers. Tuber grades were classified as < 5 g, > 5 g, and > 10 g for gibberellic acid and combined treatment with gibberellic acid and silicon dioxide, and < 1 g, > 1 g, and > 3 g for treatment with silicon dioxide alone.
6. 감자 식물의 광합성 색소 분석6. Analysis of photosynthetic pigments in potato plants
엽록소 a(Chl a), 엽록소 b(Chl b), 총 엽록소(Tchl) 및 카로티노이드(car)를 포함한 감자 식물의 광합성 색소 분석을 위해 각 처리에서 6개의 식물 시료를 수확하였다. 수확한 잎은 즉시 액체 질소에 투하된 다음 -80℃에 저장하여 추가 분석을 수행하였다. 광합성 색소 검출을 위해 신선한 잎(500 mg)을 막자사발과 막자를 사용하여 80% 아세톤 10 mL에 불린 후 상온에 15분간 두었다. 채취한 추출물은 튜브로 옮겨 5,000 rpm에서 10분 동안 원심분리하였다. 흡광도는 각각 647, 663 및 470 nm에서 분광광도계(UV-1800 240V, Shimadzu Corporation, Kyoto, Japan)를 사용하여 측정하였다. 광합성 색소는 하기 식에 따라 결정되었고 mg/g 생체중(FW)으로 표시하였다.Six plant samples from each treatment were harvested for analysis of photosynthetic pigments in potato plants, including chlorophyll a (Chl a), chlorophyll b (Chl b), total chlorophyll (Tchl), and carotenoids (car). The harvested leaves were immediately placed in liquid nitrogen and then stored at -80°C for further analysis. To detect photosynthetic pigments, fresh leaves (500 mg) were soaked in 10 mL of 80% acetone using a mortar and pestle and left at room temperature for 15 minutes. The collected extract was transferred to a tube and centrifuged at 5,000 rpm for 10 minutes. Absorbance was measured using a spectrophotometer (UV-1800 240V, Shimadzu Corporation, Kyoto, Japan) at 647, 663, and 470 nm, respectively. Photosynthetic pigments were determined according to the formula below and expressed as mg/g live weight (FW).
엽록소 a = 12.25 × A663 - 2.79 × A647Chlorophyll a = 12.25 × A663 - 2.79 × A647
엽록소 b = 21.50 × A647 - 5.10 × A663Chlorophyll b = 21.50 × A647 - 5.10 × A663
총 엽록소 = 7.15 × A663 + 18.71 × A647Total chlorophyll = 7.15 × A663 + 18.71 × A647
카로티노이드 = 1000 × A470 - 1.82 × Chl a - 85.02 × Chl bCarotenoids = 1000 × A470 - 1.82 × Chl a - 85.02 × Chl b
7. SPAD-502 값 측정7. SPAD-502 value measurement
측정 전 SPAD-502 미터는 제조사에서 제공하는 판독 검사기를 사용하여 보정하였다. 얻은 각 잎 SPAD 값은 10개 판독값의 평균이었다(잎 중추의 각 면에 5개).Before measurement, the SPAD-502 meter was calibrated using a reading checker provided by the manufacturer. Each leaf SPAD value obtained was the average of 10 readings (5 on each side of the leaf core).
8. 잎 가스 교환 측정8. Leaf gas exchange measurements
각 처리한 식물의 상단에서 세 번째 줄기 마디에서 완전히 확장된 잎을 무작위로 선택된 6개의 종자 중에서 선택되었다. 가스 교환 특성에 대해 ADC BioScientific LCpro 가스 분석기를 사용하여 순 광합성 속도(Pr, μm-2s-1), 증산 속도(Tr, mmol m-2s-1), 기공 전도도(Gs, mmol m-2s-1)를 측정하였다. Pr, Gs, Tr 및 WUE의 수준은 주변 환경 조건에서 측정되었다. 가스 교환 측정은 오전 10시부터 오후 3시 사이의 한낮에 실시하였다. 측정은 무작위로 선택된 6개의 묘목 각각의 두 번째 잎을 사용하였다. 광합성 수분 이용 효율(WUE)은 비율 Pr/Tr로 계산하였다.Fully expanded leaves from the third stem node from the top of each treated plant were selected from six randomly selected seeds. Net photosynthetic rate (Pr, μm -2 s -1 ), transpiration rate (Tr, mmol m -2 s -1 ), and stomatal conductance (Gs, mmol m -2 ) using an ADC BioScientific LCpro gas analyzer for gas exchange properties. s -1 ) was measured. Levels of Pr, Gs, Tr and WUE were measured under ambient environmental conditions. Gas exchange measurements were performed midday between 10 AM and 3 PM. Measurements were made using the second leaf of each of six randomly selected seedlings. Photosynthetic water utilization efficiency (WUE) was calculated as the ratio Pr/Tr.
9. 총 가용성 탄수화물(TSC) 및 총 가용성 당(TSS) 함량 측정9. Determination of total soluble carbohydrate (TSC) and total soluble sugar (TSS) content
수확한 신선한 잎 샘플(250 mg)을 5 mL의 에탄올(95%)에서 균질화한 다음, 5000 rpm에서 10분 동안 원심분리하였다. 그런 다음 상층액을 추출한 후 70% 에탄올로 이 과정을 반복하고, 두 상층액을 합하여 냉장고에 보관하였다. 0.1 mL의 분취액을 안트론(200 mg의 anthrone과 72% 황산 100 mL 혼합) 1 mL와 혼합하였다. 그 혼합물은 100℃에서 10분 동안 가열한 후 냉각하였다. 총 가용성 탄수화물은 표준 포도당 곡선을 사용하여 측정하였고, 검출 파장은 625 nm였으며, 결과는 mg/g 생체중으로 표현되었다. 수크로스 함량의 경우 0.2 mL의 상등액을 0.1 mL(30%)의 KOH와 혼합하고 100℃에서 10분간 가열하였다. 혼합물을 실온으로 냉각시킨 후, 3 mL의 안트론(100 mL 70% 황산 중 150 mg 안트론)을 첨가하였다. 10분 후, 샘플은 냉각되었고 흡광도는 620 nm에서 측정하였다. TSS 농도는 표준 포도당 곡선을 사용하여 계산하였으며, 결과는 ㎍/g 생체중으로 표현하였다.Harvested fresh leaf samples (250 mg) were homogenized in 5 mL of ethanol (95%) and then centrifuged at 5000 rpm for 10 min. Then, after extracting the supernatant, this process was repeated with 70% ethanol, and the two supernatants were combined and stored in the refrigerator. An aliquot of 0.1 mL was mixed with 1 mL of anthrone (200 mg of anthrone mixed with 100 mL of 72% sulfuric acid). The mixture was heated at 100°C for 10 minutes and then cooled. Total soluble carbohydrates were measured using a standard glucose curve, the detection wavelength was 625 nm, and the results were expressed as mg/g live weight. For sucrose content, 0.2 mL of supernatant was mixed with 0.1 mL (30%) KOH and heated at 100°C for 10 min. After the mixture was cooled to room temperature, 3 mL of anthrone (150 mg anthrone in 100 mL 70% sulfuric acid) was added. After 10 minutes, the sample was cooled and the absorbance was measured at 620 nm. TSS concentration was calculated using a standard glucose curve, and the results were expressed as ㎍/g live weight.
10. 통계 분석10. Statistical analysis
일원 분산 분석은 Statistics 10(Tallahassee, FL 32312, USA)을 이용하여 수행하였으며, 모든 결과는 평균±SD(표준편차)로 표현하였다. 최소유의차(LSD)는 5% 수준의 확률로 서로 다른 처리의 평균을 비교하기 위해 계산하였다.One-way analysis of variance was performed using Statistics 10 (Tallahassee, FL 32312, USA), and all results were expressed as mean ± SD (standard deviation). The least significant difference (LSD) was calculated to compare the means of different treatments with a probability of 5%.
실시예 1. 지베렐린산 농도별 처리에 따른 감자 식물 성장 특성Example 1. Potato plant growth characteristics according to treatment at different gibberellic acid concentrations
(1) 감자 식물 성장 특성(1) Potato plant growth characteristics
식물 높이, 가지 수, 잎 수, 뿌리 길이, 줄기 길이, 식물 생체중 및 건조 중량이 GA300 처리에서 다른 처리구나 무처리구(Control)에 비해 유의하게 증가하였음을 관찰하였다(표 5).It was observed that plant height, number of branches, number of leaves, root length, stem length, plant fresh weight, and dry weight significantly increased in the GA300 treatment compared to other treatments and no treatment (Control) (Table 5).
상이한 용량의 지베렐린산 시비에 따른 감자 식물 성장 특성(식물 성장 60일, 90일째에 취한 데이터)Potato plant growth characteristics following application of different doses of gibberellic acid (data taken at 60 and 90 days of plant growth)
GA100GA100 GA200GA200 GA300GA300 ControlControl
W* W * SS WW SS WW SS WW SS
식물 높이(cm)Plant height (cm) 65±2.1665±2.16 92±6.1692±6.16 69.66±1.2469.66±1.24 98.66±2.8698.66±2.86 74.66±2.0574.66±2.05 101.3±3.29101.3±3.29 43±1.6343±1.63 57.6±3.6857.6±3.68
가지 수number of branches 7±0.817±0.81 22.31±2.0522.31±2.05 7.3±0.477.3±0.47 27±2.1627±2.16 8.3±0.478.3±0.47 31±0.8131±0.81 5.2±0.475.2±0.47 6.19±0.186.19±0.18
줄기 직경(cm)Stem diameter (cm) 4.93±0.234.93±0.23 5.72±0.525.72±0.52 5.09±0.525.09±0.52 5.9±0.235.9±0.23 6.8±0.236.8±0.23 6.09±0.136.09±0.13 6.45±0.196.45±0.19 12±0.8112±0.81
잎 수number of leaves 19.63±1.6919.63±1.69 34.6±2.4934.6±2.49 34.6±2.4934.6±2.49 35±2.4435±2.44 23.5±2.4923.5±2.49 40±3.2640±3.26 13±0.8113±0.81 35.2±7.2535.2±7.25
뿌리 길이(cm)Root length (cm) 38±4.8938±4.89 37.65±2.4937.65±2.49 37.65±2.4937.65±2.49 33.36±1.6933.36±1.69 46.3±4.9246.3±4.92 44.63±3.2944.63±3.29 30±1.6330±1.63 35±7.1135±7.11
줄기 길이(cm)Stem length (cm) 58.61±2.0558.61±2.05 55.3±2.8655.3±2.86 55.3±2.8655.3±2.86 59±2.9459±2.94 65±1.6365±1.63 65±1.6365±1.63 22±2.4422±2.44 38.62±2.4938.62±2.49
식물 생체중(g)Plant fresh weight (g) 43.4±1.8343.4±1.83 130±4.08130±4.08 45±1.0845±1.08 143±3.55143±3.55 42.36±1.2342.36±1.23 164±6.68164±6.68 34.73±1.2634.73±1.26 136.33±3.68136.33±3.68
식물 건조중(g)Plant drying (g) 3.06±0.493.06±0.49 11.5±1.0311.5±1.03 3.05±0.413.05±0.41 12.63±0.2812.63±0.28 4.08±0.364.08±0.36 13.25±0.2513.25±0.25 2.5±0.452.5±0.45 10.6±0.2610.6±0.26
*W: 식물 성장 60일, S: 식물 성장 90일째에 취한 데이터 * W: data taken at 60 days of plant growth, S: at 90 days of plant growth
(2) 종자 괴경 수율(2) Seed tuber yield
도 2에 나타난 바와 같이, 총 괴경 수는 GA300 처리구에서 가장 높게 나타났다.As shown in Figure 2, the total number of tubers was highest in the GA300 treatment.
(3) 성장 관련 매개변수 분석(3) Analysis of growth-related parameters
한편, 광합성 속도(Pr), 증산 속도(Tr), 기공 전도도(Gs), 물 이용 효율(WUE)은 무처리구에서 높은 경향을 나타내었다(도 4).Meanwhile, photosynthetic rate (Pr), transpiration rate (Tr), stomatal conductance (Gs), and water utilization efficiency (WUE) tended to be higher in the untreated group (Figure 4).
(4) 총 탄수화물 및 총 가용성 당 함량(4) Total carbohydrate and total soluble sugar content
감자 잎의 총 탄수화물(TSC) 및 총 가용성 당(TSS) 함량은 GA200 및 무처리구에서 높게 나타났다(도 5).The total carbohydrate (TSC) and total soluble sugar (TSS) contents of potato leaves were high in GA200 and untreated groups (Figure 5).
(5) 광합성 색소 분석(5) Photosynthetic pigment analysis
감자 잎의 카로티노이드 함량은 감자 성장 60일(Winter)엔 GA200 처리구가, 감자 성장 90일(Spring)엔 무처리구에서 높게 나타났다. 엽록소 함량의 경우 감자 성장 60일에서는 유의적 차이를 나타내지 않았으나, 감자 성장 90일에서는 무처리구에서 높게 나타났다(도 6). The carotenoid content of potato leaves was high in the GA200 treatment group at 60 days of potato growth (Winter) and in the untreated group at 90 days of potato growth (Spring). In the case of chlorophyll content, there was no significant difference at 60 days of potato growth, but it was higher in the untreated group at 90 days of potato growth (Figure 6).
실시예 2. 이산화규소 농도별 처리에 따른 감자 식물 성장 특성Example 2. Potato plant growth characteristics according to treatment by silicon dioxide concentration
(1) 감자 식물 성장 특성(1) Potato plant growth characteristics
이산화규소의 용량이 감자 식물의 성장과 괴경 조성에 상당한 영향을 미친다는 것이 분명하게 관찰되었다. 표 6에서, T3 처리구의 경우 가지 수, 줄기 직경, 뿌리 길이가 가장 높게 나타났고, T4 처리구에서 식물 높이, 잎 길이, 식물 생체중 등이 높게 나타났다.It was clearly observed that the dose of silicon dioxide had a significant effect on the growth and tuber composition of potato plants. In Table 6, the T3 treatment group showed the highest number of branches, stem diameter, and root length, and the T4 treatment group showed the highest plant height, leaf length, and plant fresh weight.
상이한 용량의 이산화규소 시비에 따른 감자 식물 성장 특성(식물 성장 50일째에 취한 데이터)Potato plant growth characteristics following application of different doses of silicon dioxide (data taken on day 50 of plant growth)
처리process T1* T1 * T2T2 T3T3 T4T4
식물 높이(cm)Plant height (cm) 87±4.0887±4.08 74.66±2.8674.66±2.86 69.66±2.6269.66±2.62 94.33±4.4994.33±4.49
가지 수number of branches 13±0.8113±0.81 15±0.8115±0.81 19±0.8119±0.81 16.66±0.4716.66±0.47
줄기 직경(cm)Stem diameter (cm) 6.72±0.216.72±0.21 7±0.097±0.09 7.10±0.107.10±0.10 6.48±0.206.48±0.20
잎 길이(cm)Leaf length (cm) 25.66±1.2425.66±1.24 35±1.6335±1.63 35.33±4.1835.33±4.18 44.33±3.2944.33±3.29
뿌리 길이(cm)Root length (cm) 42.66±1.2442.66±1.24 47.66±2.6247.66±2.62 48.66±2.0548.66±2.05 42.33±1.2442.33±1.24
줄기 길이(cm)Stem length (cm) 52.66±1.6952.66±1.69 63±2.1663±2.16 56.33±1.8856.33±1.88 55.66±2.4955.66±2.49
식물 생체중(g)Plant fresh weight (g) 97.66±4.6497.66±4.64 84.66±2.8684.66±2.86 86.66±4.6486.66±4.64 118.66±5.73118.66±5.73
식물 건조중(g)Plant drying (g) 7.02±43.437.02±43.43 6.05±37.086.05±37.08 6.07±38.656.07±38.65 8.33±53.838.33±53.83
*표 3 참고 * Refer to Table 3
(2) 종자 괴경 수율(2) Seed tuber yield
한편, 괴경 크기를 포함한 괴경 수율은 이산화규소 농도에 영향을 받았다. 괴경 수와 괴경 생체중은 T3 처리에서 유의하게 증가하는 것으로 관찰되었다(표 7).Meanwhile, tuber yield, including tuber size, was affected by silicon dioxide concentration. Tuber number and tuber fresh weight were observed to significantly increase in T3 treatment (Table 7).
60일(1차 수확) 및 90일(2차 수확)에 수확된 괴경 수확량Tuber yield harvested at 60 days (first harvest) and 90 days (second harvest)
처리구treatment area 수확 단계harvest stage 괴경 수number of tubers 괴경 생체중(g)Tuber fresh weight (g)
T1* T1 * 1차 수확(60일)1st harvest (60 days) 28.31±4.1828.31±4.18 38.5±1.9438.5±1.94
2차 수확(90일)2nd harvest (90 days) 16±0.816±0.8 71±1.6371±1.63
T2T2 1차 수확(60일)1st harvest (60 days) 33.3±1.233.3±1.2 54±1.4154±1.41
2차 수확(90일)2nd harvest (90 days) 17.36±1.617.36±1.6 88±4.0888±4.08
T3T3 1차 수확(60일)1st harvest (60 days) 37.35±2.4937.35±2.49 60.37±3.0960.37±3.09
2차 수확(90일)2nd harvest (90 days) 23±0.8123±0.81 119.6±3.29119.6±3.29
T4T4 1차 수확(60일)1st harvest (60 days) 21±1.6321±1.63 68.5±2.4968.5±2.49
2차 수확(90일)2nd harvest (90 days) 12.34±0.4712.34±0.47 69.4±5.5569.4±5.55
*표 3 참고 * Refer to Table 3
같은 방법으로 괴경의 크기에 따라 <1g, >1g, >3g으로 분류하였다. 이 등급화된 괴경은 두 수확 상태 모두에서 이산화규소 처리의 영향을 받았다(표 8). In the same way, they were classified into <1g, >1g, and >3g depending on the size of the tuber. These graded tubers were affected by silicon dioxide treatment at both harvest conditions (Table 8).
무게에 따른 종자 괴경 크기에 대한 다른 처리의 효과Effect of different treatments on seed tuber size by weight
처리구treatment area 수확 단계harvest stage > 1g> 1g > 3g>3g
T1T1 1차 수확(60일)1st harvest (60 days) 7.67±0.47.67±0.4 7.32±1.887.32±1.88
2차 수확(90일)2nd harvest (90 days) 5.58±0.455.58±0.45 4.39±0.474.39±0.47
T2T2 1차 수확(60일)1st harvest (60 days) 7.57±0.477.57±0.47 13.29±1.2413.29±1.24
2차 수확(90일)2nd harvest (90 days) 3.6±0.363.6±0.36 11±0.8111±0.81
T3T3 1차 수확(60일)1st harvest (60 days) 11.33±1.2211.33±1.22 12.59±1.6912.59±1.69
2차 수확(90일)2nd harvest (90 days) 6.6±0.946.6±0.94 12.7±0.4412.7±0.44
T4T4 1차 수확(60일)1st harvest (60 days) 6.68±0.446.68±0.44 6.3±0.476.3±0.47
2차 수확(90일)2nd harvest (90 days) 3.38±0.473.38±0.47 5±0.825±0.82
*표 3 참고 * Refer to Table 3
(3) 성장 관련 매개변수 분석(3) Analysis of growth-related parameters
광합성 속도(Pr), 기공 전도도(Gs), 증산 속도(Tr) 및 물 사용 효율은 도 8과 같다. 광합성 속도는 T3 처리에서 유의하게 향상되었고, 증산 속도는 T1 처리에서 높게 나타났다. 또한, 이산화규소 농도별 처리에 따른 감자 식물의 엽록소 함량(SPAD값)에서 T4 처리에서 가장 높게 나타났다(도 9).The photosynthetic rate (Pr), stomatal conductance (Gs), transpiration rate (Tr), and water use efficiency are shown in Figure 8. The photosynthetic rate was significantly improved in the T3 treatment, and the transpiration rate was higher in the T1 treatment. In addition, the chlorophyll content (SPAD value) of potato plants according to treatment by silicon dioxide concentration was highest in the T4 treatment (Figure 9).
실시예 3. 이산화규소 및 지베렐린산 농도별 처리에 따른 감자 식물의 성장 특성Example 3. Growth characteristics of potato plants according to treatment with silicon dioxide and gibberellic acid concentrations
(1) 감자 식물 성장 특성(1) Potato plant growth characteristics
감자 식물의 종자 괴경을 생산하기 위해, 이산화규소(SiO2) 및 지베렐린산(GA3)의 농도별 처리에 따른 감자 식물의 성장 특성을 분석하였다(표 9). GA3와 SiO2의 조합이 감자 식물 성장에 영향을 미쳤고, 투여량 중 T3 조합이 전체 성장에 효과적인 영향을 보였다.To produce seed tubers of potato plants, the growth characteristics of potato plants were analyzed according to treatment with different concentrations of silicon dioxide (SiO 2 ) and gibberellic acid (GA3) (Table 9). The combination of GA3 and SiO 2 affected potato plant growth, and among the dosages, the T3 combination showed an effective effect on overall growth.
이산화규소 및 지베렐린산 농도별 처리에 따른 감자 식물의 성장 특성(식물 성장 50일째에 취한 데이터)Growth characteristics of potato plants according to treatments at different concentrations of silicon dioxide and gibberellic acid (data taken on day 50 of plant growth)
처리process T1* T1 * T2T2 T3T3 T4T4 T5T5
식물 높이(cm)Plant height (cm) 67±2.1667±2.16 71.66±2.8671.66±2.86 81±2.9481±2.94 58±2.1658±2.16 58.33±2.8658.33±2.86
마디 수number of measures 22.3±2.8622.3±2.86 20.33±2.4920.33±2.49 23±0.8123±0.81 11.33±2.0511.33±2.05 12±0.8112±0.81
줄기 직경(cm)Stem diameter (cm) 5.95±0.355.95±0.35 6.43±0.396.43±0.39 6.37±0.136.37±0.13 5.49±0.235.49±0.23 6.19±0.186.19±0.18
잎 수number of leaves 59.66±2.6259.66±2.62 62±1.6362±1.63 70.33±3.2970.33±3.29 41.66±2.4941.66±2.49 46.66±1.2446.66±1.24
뿌리 길이(cm)Root length (cm) 40±3.5540±3.55 41.66±1.6941.66±1.69 42±2.1642±2.16 28.33±1.6928.33±1.69 25±2.9425±2.94
줄기 길이(cm)Stem length (cm) 55.33±2.8655.33±2.86 63±2.1663±2.16 56.33±1.8856.33±1.88 65±1.6365±1.63 41.33±2.0541.33±2.05
식물 생체중(g)Plant fresh weight (g) 97.66±4.6497.66±4.64 118.66±5.73118.66±5.73 124.33±5.55124.33±5.55 86.66±4.6486.66±4.64 69.66±3.8569.66±3.85
식물 건조중(g)Plant drying (g) 7.02±0.287.02±0.28 8.47±0.408.47±0.40 8.87±0.388.87±0.38 6.03±0.126.03±0.12 5.38±0.335.38±0.33
* 표 4 참고 * Refer to Table 4
(2) 종자 괴경 수율(2) Seed tuber yield
이산화규소 및 지베렐린산 농도별 처리에 따른 감자 식물의 괴경 수(TN)는 T1 내지 T3 처리구에서 높게 나타났고, 이에 비해 T4 및 T5 처리구에서는 감소하였다. 괴경 생체중(TFW)은 이산화규소 농도가 높아질수록 감소하는 경향을 나타내었다. 같은 방법으로 덩이줄기는 크기에 따라 < 5g, > 5g, > 10g으로 분류하였고, 처리 농도에 따라서 영향을 받았다(도 11). The number of tubers (TN) of potato plants according to treatment by silicon dioxide and gibberellic acid concentration was high in T1 to T3 treatments, but decreased in T4 and T5 treatments. Tuber fresh weight (TFW) tended to decrease as the silicon dioxide concentration increased. In the same way, tubers were classified into <5g, >5g, and >10g according to size and were affected by treatment concentration (Figure 11).
(3) 성장 관련 매개변수 분석(3) Analysis of growth-related parameters
광합성 속도(Pr), 기공 전도도(Gs), 증산 속도(Tr) 및 물 사용 효율(WUE)은 도 12와 같다. 증산 속도(Tr) 및 기공 전도도(Gs)는 처리구별로 큰 차이를 나타내지 않았고, 광합성 속도(Pr) 및 물 사용 효율(WUE)은 이산화규소 처리 농도가 높아질수록 소폭 증가하는 경향을 보였다(도 12).The photosynthetic rate (Pr), stomatal conductance (Gs), transpiration rate (Tr), and water use efficiency (WUE) are shown in Figure 12. Transpiration rate (Tr) and stomatal conductance (Gs) did not show significant differences by treatment, and photosynthesis rate (Pr) and water use efficiency (WUE) tended to slightly increase as the silicon dioxide treatment concentration increased (Figure 12 ).
(4) 광합성 색소 분석(4) Photosynthetic pigment analysis
엽록소 a(Chl a), 엽록소 b(Chl b) 및 카로티노이드(car)를 포함한 감자 식물의 광합성 색소를 분석한 결과는 도 13과 같다. 카로티노이드와 엽록소 a 및 b는 T2 처리구에서 가장 낮게 나타났고, 처리 농도에 따라 영향을 받는 것을 확인할 수 있었다(도 13).The results of analyzing the photosynthetic pigments of potato plants, including chlorophyll a (Chl a), chlorophyll b (Chl b), and carotenoid (car), are shown in Figure 13. Carotenoids and chlorophyll a and b were found to be lowest in the T2 treatment group, and were confirmed to be affected by treatment concentration (Figure 13).
(5) 총 탄수화물 및 총 가용성 당 함량(5) Total carbohydrate and total soluble sugar content
이산화규소 및 지베렐린산 농도별 처리에 따른 감자 식물의 총 탄수화물 함량(TSC)과 총 당 함량(TSS)은 도 14에 나타내었다. 탄수화물은 광합성의 최종 산물이고 식물에 에너지를 공급하는 중요한 매개 변수이다. 무처리구(T5)에서 가장 낮은 총 탄수화물 및 총 당 함량을 나타내었고, T3 및 T4 처리구에서 총 탄수화물 함량이 높게 나타났고, 총 당은 T2 처리구에서 높게 나타났다.The total carbohydrate content (TSC) and total sugar content (TSS) of potato plants according to treatment with different silicon dioxide and gibberellic acid concentrations are shown in Figure 14. Carbohydrates are the end products of photosynthesis and are an important parameter for supplying energy to plants. The untreated group (T5) showed the lowest total carbohydrate and total sugar content, the total carbohydrate content was high in the T3 and T4 treatments, and the total sugar was high in the T2 treatment group.

Claims (11)

  1. 분무경(aeroponic) 시스템에서 감자 식물을 이산화규소 처리하면서 재배하는 단계를 포함하는 생산량이 증진된 씨감자의 재배방법.A method of cultivating seed potatoes with improved yield, comprising cultivating potato plants while treating them with silicon dioxide in an aeroponic system.
  2. 제1항에 있어서, 상기 처리 시 지베렐린산을 추가로 처리하는 것을 특징으로 하는 생산량이 증진된 씨감자의 재배방법.The method of cultivating seed potatoes with improved production according to claim 1, wherein gibberellic acid is additionally treated during the treatment.
  3. 제1항에 있어서, 상기 이산화규소 처리는 이식한지 20~40일된 감자 식물을 3000~4000 ppm 농도의 이산화규소를 6~8일 간격으로 3~5회 처리하는 것을 특징으로 하는 생산량이 증진된 씨감자의 재배방법.The method of claim 1, wherein the silicon dioxide treatment is performed by treating potato plants 20 to 40 days old with silicon dioxide at a concentration of 3000 to 4000 ppm 3 to 5 times at intervals of 6 to 8 days. Seed potatoes with improved yield. Cultivation method.
  4. 제2항에 있어서, 상기 처리는 이식한지 20~40일된 감자 식물을 250~350 ppm 농도의 지베렐린산과 200~300 ppm 농도의 이산화규소를 6~8일 간격으로 3~5회 처리하는 것을 특징으로 하는 생산량이 증진된 씨감자의 재배방법.The method of claim 2, wherein the treatment involves treating potato plants 20 to 40 days old with gibberellic acid at a concentration of 250 to 350 ppm and silicon dioxide at a concentration of 200 to 300 ppm 3 to 5 times at intervals of 6 to 8 days. A method of growing seed potatoes with improved production.
  5. 제1항에 있어서, 상기 생산량이 증진된 씨감자는 괴경 수, 크기 및 생체중이 증진된 씨감자인 것을 특징으로 하는 생산량이 증진된 씨감자의 재배방법.The method of claim 1, wherein the seed potatoes with improved production are seed potatoes with improved tuber number, size, and live weight.
  6. 제1항 내지 제5항 중 어느 한 항의 방법으로 재배된 괴경 수, 크기 및 생체중이 증진된 씨감자.Seed potatoes with improved tuber number, size, and live weight grown by the method of any one of claims 1 to 5.
  7. 분무경(aeroponic) 시스템에서 감자 식물을 이산화규소 처리하면서 재배하는 것을 특징으로 하는, 씨감자의 생산량을 증가시키는 방법.A method for increasing the production of seed potatoes, characterized in that growing potato plants in an aeroponic system while treating them with silicon dioxide.
  8. 제7항에 있어서, 상기 처리는 이식한지 20~40일된 감자 식물을 3000~4000 ppm 농도의 이산화규소를 6~8일 간격으로 3~5회 처리하는 것을 특징으로 하는 씨감자의 생산량을 증가시키는 방법.The method of claim 7, wherein the treatment includes treating potato plants 20 to 40 days old with silicon dioxide at a concentration of 3000 to 4000 ppm 3 to 5 times at intervals of 6 to 8 days. .
  9. 제7항에 있어서, 상기 처리는 이식한지 20~40일된 감자 식물을 250~350 ppm 농도의 지베렐린산과 200~300 ppm 농도의 이산화규소를 6~8일 간격으로 3~5회 처리하는 것을 특징으로 하는 씨감자의 생산량을 증가시키는 방법.The method of claim 7, wherein the treatment involves treating potato plants 20 to 40 days old with gibberellic acid at a concentration of 250 to 350 ppm and silicon dioxide at a concentration of 200 to 300 ppm 3 to 5 times at intervals of 6 to 8 days. A method of increasing the production of seed potatoes.
  10. 3000~4000 ppm 농도의 이산화규소를 유효성분으로 함유하는 분무경(aeroponic) 시스템에서 씨감자의 생산량을 증가시키기 위한 조성물.A composition for increasing the production of seed potatoes in an aeroponic system containing silicon dioxide at a concentration of 3000 to 4000 ppm as an active ingredient.
  11. 250~350 ppm 농도의 지베렐린산과 200~300 ppm 농도의 이산화규소를 유효성분으로 함유하는 분무경(aeroponic) 시스템에서 씨감자의 생산량을 증가시키기 위한 조성물.A composition for increasing the production of seed potatoes in an aeroponic system containing gibberellic acid at a concentration of 250 to 350 ppm and silicon dioxide at a concentration of 200 to 300 ppm as active ingredients.
PCT/KR2023/010266 2022-07-29 2023-07-18 Method for producing seed potatoes by treatment with biostimulants in plant factory system WO2024025229A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220094383A KR102494306B1 (en) 2022-07-29 2022-07-29 Production method of seed potato by bioactive agent treatment in plant factory system
KR10-2022-0094383 2022-07-29

Publications (1)

Publication Number Publication Date
WO2024025229A1 true WO2024025229A1 (en) 2024-02-01

Family

ID=85224218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/010266 WO2024025229A1 (en) 2022-07-29 2023-07-18 Method for producing seed potatoes by treatment with biostimulants in plant factory system

Country Status (2)

Country Link
KR (1) KR102494306B1 (en)
WO (1) WO2024025229A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102494306B1 (en) * 2022-07-29 2023-02-06 강원대학교산학협력단 Production method of seed potato by bioactive agent treatment in plant factory system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060129986A (en) * 2006-11-10 2006-12-18 괴산군 Mass-production method for seed potatoes
KR20160094523A (en) * 2015-01-30 2016-08-10 대한민국(농촌진흥청장) Circulation type deep flow technique apparatus for producing seed potatoes and cultivation method using the same
JP2020054385A (en) * 2013-04-03 2020-04-09 三井化学株式会社 Plant cultivation system, cultivation method using it, and method for manufacturing it
KR102494306B1 (en) * 2022-07-29 2023-02-06 강원대학교산학협력단 Production method of seed potato by bioactive agent treatment in plant factory system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060129986A (en) * 2006-11-10 2006-12-18 괴산군 Mass-production method for seed potatoes
JP2020054385A (en) * 2013-04-03 2020-04-09 三井化学株式会社 Plant cultivation system, cultivation method using it, and method for manufacturing it
KR20160094523A (en) * 2015-01-30 2016-08-10 대한민국(농촌진흥청장) Circulation type deep flow technique apparatus for producing seed potatoes and cultivation method using the same
KR102494306B1 (en) * 2022-07-29 2023-02-06 강원대학교산학협력단 Production method of seed potato by bioactive agent treatment in plant factory system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Plant Growth Regulators, Everything about Gibberellin", NAVER BLOG, 23 March 2018 (2018-03-23), XP093132989, Retrieved from the Internet <URL:https://m.blog.naver.com/yeonjadang1/221235571744> [retrieved on 20240220] *
JONG-WOON BAEK: "Water-Soluble Silicate 'Keunson'", SATURN BIO TECH CO, 10 August 2018 (2018-08-10), XP093132992, Retrieved from the Internet <URL:http://www.agrinet.co.kr/news/articleView.html?idxno=163195> [retrieved on 20240220] *

Also Published As

Publication number Publication date
KR102494306B1 (en) 2023-02-06

Similar Documents

Publication Publication Date Title
Osei-Bonsu et al. Cacao-coconut intercropping in Ghana: agronomic and economic perspectives
WO2024025229A1 (en) Method for producing seed potatoes by treatment with biostimulants in plant factory system
CN107155550B (en) Thick-skin melon cultivation fertilizing method
US20190335758A1 (en) Biostimulating composition for plant growth containing lipopeptides
Al-Bayati et al. Evaluation of eggplant via different drip irrigation intervals and foliar sprays with seaweed extract biostimulant
Locascio et al. Frequency and Rate of Fertilization with Trickle Irrigation for Strawberries1
Kandil et al. Effect of planting dates, nitrogen levels and biofertilization treatments on 1: Growth attributes of sugar beet (Beta vulgaris L.)
KR100576608B1 (en) Sweet potato with high calcium concentration and cultivation method thereof
Yahya et al. Effect of biofertilizer trichoderma harzianum t-22 application, growing medium and training methods on some chararctrestics for Lantana camara plants
KR102565522B1 (en) Method for mass propagation of high quality seedlings of Myrica rubra
CN113892401A (en) Living tree epiphytic cultivation method for dendrobium officinale
CN111937667A (en) Cultivation process for interplanting pepper in pepper
CN105684818B (en) The Forest Tree Genetic Breeding method of southerm yew
KR102724483B1 (en) Producton method of potato plant with increased yield and physiological property by various LED light spectrum treatments
CN109287398A (en) A kind of mind green pepper No.1 high yield cultivating method
CN109845609B (en) Household balcony cymbidium culture method
KR102708455B1 (en) Disease-free seed potato productivity enhancement technology by LED light pre-treatment
CN111771633A (en) High-yield cultivation method for purple yam pumpkins
CN105900780A (en) Planting method of young pear trees
Mantja et al. Growth and production of cayenne pepper (Capsicum frutescens L.) on various concentrations of bio-fertilizer and NPK fertilizer
Boboc et al. The influence of fertilization regime on plants growth of Passiflora caerulea.
Nihad et al. Marigold-globe amaranth sequential cropping in coconut plantations of coastal humid tropics
BUTA et al. THE INFLUENCE OF FERTILIZATION REGIME ON PLANTS GROWTH OF PASSIFLORA CAERULEA.
sS Isotope-aided research in fruit and vegetable crops
CN116649369A (en) Plant growth regulator and method for improving symbiotic nitrogen fixation under weak light

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846888

Country of ref document: EP

Kind code of ref document: A1