WO2024024233A1 - 半導体レーザ装置 - Google Patents
半導体レーザ装置 Download PDFInfo
- Publication number
- WO2024024233A1 WO2024024233A1 PCT/JP2023/018926 JP2023018926W WO2024024233A1 WO 2024024233 A1 WO2024024233 A1 WO 2024024233A1 JP 2023018926 W JP2023018926 W JP 2023018926W WO 2024024233 A1 WO2024024233 A1 WO 2024024233A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- semiconductor laser
- recess
- mesa
- wiring
- laser device
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 206
- 229910000679 solder Inorganic materials 0.000 claims abstract description 45
- 239000000758 substrate Substances 0.000 claims description 72
- 230000003287 optical effect Effects 0.000 claims description 24
- 238000005192 partition Methods 0.000 claims description 21
- 229920005989 resin Polymers 0.000 claims description 14
- 239000011347 resin Substances 0.000 claims description 14
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- 238000000034 method Methods 0.000 description 13
- 239000000463 material Substances 0.000 description 12
- 230000000694 effects Effects 0.000 description 10
- 230000008569 process Effects 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 230000001154 acute effect Effects 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 238000005476 soldering Methods 0.000 description 4
- 238000001039 wet etching Methods 0.000 description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- 230000000994 depressogenic effect Effects 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- -1 AuGe Substances 0.000 description 1
- 241001391944 Commicarpus scandens Species 0.000 description 1
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/023—Mount members, e.g. sub-mount members
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/0233—Mounting configuration of laser chips
- H01S5/0234—Up-side down mountings, e.g. Flip-chip, epi-side down mountings or junction down mountings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/0235—Method for mounting laser chips
- H01S5/02375—Positioning of the laser chips
- H01S5/0238—Positioning of the laser chips using marks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
Definitions
- the present disclosure relates to a semiconductor laser device.
- Patent Document 1 discloses that a junction-up method is used to mount the back surface of a semiconductor laser device having multiple channels (light-emitting points) on the opposite side to the front surface (the surface on which the active layer forming the light-emitting points is provided).
- a configuration for mounting on a member is disclosed.
- a junction-down method is also known in which the surface of a semiconductor laser element is mounted on a mount member.
- a plurality of channels are configured to include at least a first channel and a second channel that can be driven independently of each other, it is required to reliably prevent short circuits between the first channel and the second channel. It will be done.
- one aspect of the present disclosure is to provide a semiconductor laser device that can accurately align a plurality of light emitting points while preventing short circuits between channels configured to be driven independently of each other. With the goal.
- the present disclosure includes the following semiconductor laser devices [1] to [18].
- a substrate having a first surface and a second surface located opposite to each other in a first direction, and a light emitting end surface that intersects in a second direction perpendicular to the first direction, and a first surface formed on the second surface.
- a semiconductor laser element having a plurality of mesa portions formed to protrude in a first direction with respect to a reference plane and extend in a second direction;
- a mount member having a third surface forming a second reference surface opposite to the first reference surface; and a recess formed on the third surface in which a plurality of mesa portions are disposed;
- the mesa portion has a top surface facing the bottom surface of the recess, and a pair of side surfaces located on opposite sides in a third direction orthogonal to the first direction and the second direction,
- a first electrode is provided on the top surface of the mesa portion, and is electrically connected to a contact layer provided on the top surface side of the mesa portion.
- a wiring portion is provided in the recess at a position corresponding to each of the plurality of mesa portions,
- the first electrode corresponding to each of the plurality of mesa portions is electrically connected to the wiring portion via a solder member
- the wiring section includes a first wiring and a second wiring arranged adjacent to each other in the third direction and electrically isolated from each other, By arranging the solder member electrically connected to the first wiring so as not to contact the solder member electrically connected to the second wiring, the mesa portion electrically connected to the first wiring
- a certain first mesa portion is electrically separated from a second mesa portion that is a mesa portion electrically connected to the second wiring
- the first reference surface is in surface contact with the second reference surface
- the first mesa part is connected to the second mesa part from the first base end, which is the boundary between the first reference plane and the side surface of the first mesa part on the side where the second mesa part is located with respect to the first mesa part.
- the distance in the third direction to the second base end, which is the boundary between the side surface of the second mesa portion on the side where the position is located, and the first reference surface is the distance in the third direction of the contact region of the contact layer that contacts the first electrode. longer than the length of Semiconductor laser equipment.
- the semiconductor laser device In the semiconductor laser device described above, the first reference surface of the semiconductor laser element is in surface contact with the second reference surface of the mount member. Thereby, the positions of the plurality of light emitting points (for example, the center of the light emitting end surface in the first direction) with respect to the second reference plane of the mount member can be aligned with high precision. Further, the semiconductor laser device has a first mesa portion and a second mesa portion that are electrically isolated from each other (that is, configured to be able to be driven independently of each other) and arranged adjacent to each other.
- the amount of solder material required (for example, the width of the solder material in the third direction) may vary depending on the width of the contact region (length in the third direction).
- the distance between the mesa portion and the second mesa portion (that is, the distance from the first base end to the second base end in the third direction) is longer than the width of the contact region. Thereby, a sufficient distance between the first mesa portion and the second mesa portion can be secured for the amount of solder material required depending on the width of the contact region.
- the solder member corresponding to the first mesa part and the solder member corresponding to the second mesa part melt and come into contact with each other. can be prevented. Therefore, according to the semiconductor laser device described above, it is possible to accurately align a plurality of light emitting points while preventing short circuits between channels configured to be driven independently of each other.
- the recess has a first recess in which the first mesa is arranged, and a second recess in which the second mesa is arranged,
- the length in the third direction of the second reference plane of the partition wall formed between the first recess and the second recess and extending in the second direction so as to separate the first recess and the second recess is: longer than the length of the contact region in the third direction;
- Semiconductor laser device According to the above configuration, the first mesa portion and the second mesa portion are arranged in mutually different recesses (the first recess and the second recess), and the width of the partition between the first recess and the second recess is set to a sufficient width.
- the recess is composed of a plurality of recesses in which each of the plurality of mesa parts is individually arranged, A partition wall part is provided between the mutually adjacent recesses, extending in the second direction, having a predetermined length in the third direction, and having a second reference surface.
- the semiconductor laser device according to [1] or [2]. According to the above configuration, compared to a configuration including a single recess in which two or more mesa portions are arranged, short circuits between adjacent mesa portions can be better prevented, and the reliability of independent drive of a plurality of channels is improved. can be improved.
- the contact area between the first reference surface and the second reference surface can be increased in the partition section provided between each recess, the stress applied to the semiconductor laser device (mainly the substrate) can be reduced, and the semiconductor laser device The occurrence of warpage can be suppressed.
- the substrate tends to warp in the third direction. The above configuration is particularly effective in such cases.
- a single second electrode common to the plurality of mesa portions is provided on the first surface.
- the semiconductor laser device according to any one of [1] to [3]. According to the above configuration, by making the electrode member (second electrode) arranged on the back surface (first surface) side of the substrate of the semiconductor laser element common among the plurality of mesa parts, the electrode member can be connected to the electrode member by wire bonding. Since the number of connected wires can be reduced, damage to the semiconductor laser element due to wire bonding can be suppressed.
- the recess has a first side surface facing the side surface of the mesa portion in the third direction,
- the first side surface is inclined with respect to the bottom surface such that the opening width of the recess in the third surface along the third direction is larger than the width of the bottom surface of the recess along the third direction.
- the semiconductor laser device according to any one of [1] to [4]. According to the above configuration, by configuring the first side surface of the recess as an inclined surface that becomes wider from the bottom side toward the opening end side, a space for escaping melted solder material during reflow can be appropriately created within the recess. can be secured.
- the wiring portion extends from the inside of the recess to the third surface outside the recess.
- the semiconductor laser device according to any one of [1] to [5]. According to the above configuration, since the electrode on the mesa side of the semiconductor laser element can be drawn out to the surface (third surface) of the mount member via the first electrode and the wiring part, It is easier to implement the configuration.
- the wiring portion extends along the second direction from the inside of the recess to the outside of the recess,
- the recess has a second side surface that intersects in the second direction and along which the wiring portion runs;
- the second side surface is inclined with respect to the bottom surface such that the opening width of the recess in the third surface along the second direction is larger than the width of the bottom surface of the recess along the second direction.
- Semiconductor laser device If the second side surface is not sloped as described above (for example, if the second side surface is perpendicular to the bottom surface of the recess), the wiring part will be bent in a step shape, making it easy to break the wire. Become. On the other hand, by configuring the second side surface as an inclined surface as described above and placing the wiring section along the inclined second side surface, it is possible to avoid bending the wiring section into a stepped shape and suppress the occurrence of wire breakage. can.
- Each of the plurality of mesa portions has one or more active layers provided independently for each mesa portion,
- the semiconductor laser device according to any one of [1] to [7]. According to the above configuration, since the active layer is spatially separated between the plurality of mesa parts, it is possible to reliably prevent the occurrence of optical crosstalk between the mesa parts. Further, when each mesa portion is provided with a plurality of active layers, each mesa portion can function as a stacked semiconductor laser element, and the laser output can be increased.
- the wiring part includes a plurality of wirings arranged at positions corresponding to each of the plurality of mesa parts and electrically isolated from each other, Any two wirings arranged adjacent to each other in the third direction among the plurality of wirings correspond to the first wiring and the second wiring,
- the semiconductor laser device according to any one of [1] to [8].
- the distance between the mesa parts is the width of the contact region. Since the length is longer than that, it is possible to independently drive a plurality of mesa portions (channels) while preventing short circuits between the channels.
- the mount member is made of silicon.
- the mount member has a fourth surface connected to the third surface and intersecting the second direction, The recess extends to the fourth surface and is open to the fourth surface.
- the semiconductor laser device according to any one of [1] to [10]. According to the above configuration, the light emitting end face of each mesa portion arranged in the recess can be exposed to the outside from the portion of the recess that is open to the fourth surface. The efficiency of extracting emitted light can be improved.
- the third surface is provided with an alignment mark for aligning the semiconductor laser element with respect to the mount member.
- the semiconductor laser device according to any one of [1] to [11]. According to the above configuration, when mounting the semiconductor laser element on the mount member, it is possible to easily and accurately align the semiconductor laser element with respect to the mount member.
- the thickness of the substrate in the first direction is smaller than the thickness of the mounting member in the first direction.
- the substrate has a fifth surface intersecting the third direction,
- the distance in the third direction from the end of the recess provided at the position closest to the fifth surface in the third direction to the fifth surface is greater than the distance in the first direction from the first reference plane to the top surface of the mesa portion.
- the semiconductor laser device according to any one of [1] to [13]. According to the above configuration, it is possible to secure a certain area or more of the area of the portion where the first reference surface and the second reference surface are in contact with each other on the outside of the region in the third direction of the substrate where the recessed portion is provided. The support stability of the semiconductor laser element with respect to the mount member can be improved.
- an optical element that is disposed at a position facing the semiconductor laser element and the mount member in a second direction and guides light emitted from the light emitting end face of each of the plurality of mesa parts toward the outside; a support substrate that supports the mount member and the optical element; further comprising;
- the support substrate includes a first support surface that supports the mount member in surface contact with a sixth surface opposite to the third surface of the mount member, and a second support surface that supports the optical element in surface contact with the optical element. and has The semiconductor laser device according to any one of [1] to [14].
- the mount member on which the semiconductor laser element is mounted and the optical element are supported in surface contact with the first support surface and the second support surface of the support substrate.
- the height positions that is, the height positions of each member with respect to the support surface (first support surface and second support surface) of the support substrate) can be easily and accurately matched.
- the optical element has a light incident surface into which light emitted from each of the plurality of mesa portions is incident
- the mount member has a fourth surface facing the light incident surface, The light incidence surface is in surface contact with the fourth surface.
- the semiconductor laser device of [15] by bringing the fourth surface of the mount member that faces each other in the second direction into surface contact with the light incident surface of the optical element, the distance between the light output end surface and the light incident surface in the second direction can be accurately adjusted. Can be adjusted well. That is, when mounting the semiconductor laser element on the mount member, by adjusting the distance from the light emitting end surface to the fourth surface in the second direction, the distance from the light emitting end surface to the light incident surface can be adjusted. .
- the length of the recess in the second direction is longer than the length of the semiconductor laser element in the second direction.
- the semiconductor laser device according to any one of [1] to [16]. According to the above configuration, it is possible to release the solder material melted during reflow into a space in the recess that does not overlap with the semiconductor laser element (mesa part) in the second direction. Furthermore, when the optical element is a lens, the position of the semiconductor laser element in the second direction relative to the mount member can be adjusted depending on the focal length of the lens.
- each member optical element, mount member, and semiconductor laser element
- the semiconductor laser device according to any one of [15] to [17]. According to the above configuration, the positional relationship of each member (optical element, mount member, and semiconductor laser element) arranged on the support substrate can be fixed by the molded resin, so that deviations in the positional relationship of each member can be prevented. This can be prevented from occurring. Moreover, each member can be appropriately protected by the mold resin.
- a semiconductor laser device that can accurately align a plurality of light emitting points while preventing short circuits between channels configured to be driven independently of each other. Can be done.
- FIG. 1 is a perspective view showing a semiconductor laser device according to a first embodiment.
- FIG. 2 is a perspective view of the semiconductor laser element of the semiconductor laser device of FIG. 1 viewed from the side where the mesa portion is provided.
- FIG. 3 is a sectional view taken along line III-III in FIG. 2.
- FIG. 4 is a perspective view showing a submount in the semiconductor laser device of FIG. 1 before a semiconductor laser element is mounted thereon.
- FIG. 5 is an enlarged view of area A in FIG.
- FIG. 6A is a cross-sectional view taken along line VIa-VIa in FIG.
- FIG. 6B is a cross-sectional view taken along line VIb-VIb in FIG.
- FIG. 7 is a diagram showing a mounting process of a semiconductor laser element on a submount.
- FIG. 8 is a plan view showing a semiconductor laser element mounted on a submount.
- FIG. 9 is a side view of a portion including two mesa portions adjacent to each other.
- FIG. 10 is a side view showing a modified example of the recess.
- FIG. 11 is a partial side view showing another modification of the recess.
- FIG. 12 is a perspective view showing the semiconductor laser device of the second embodiment.
- FIG. 13 is a side view showing the semiconductor laser device of FIG. 12.
- FIG. 14 is a perspective view showing a semiconductor laser device according to the third embodiment.
- FIG. 15 is a side view showing the semiconductor laser device of FIG. 14.
- the semiconductor laser device 1A of the first embodiment includes a semiconductor laser element 10 and a submount 20 (mount member).
- the semiconductor laser device 10 is mounted on a submount 20 using a junction down method. That is, the semiconductor laser element 10 is mounted on the submount 20 such that the surface (lower surface 11b) on the side where the active layer 13 (see FIG. 3) is provided faces the submount 20.
- the side on which the semiconductor laser device 10 is mounted on the submount 20 is defined as the upper side
- the side from which the laser beam L directed to the outside is emitted from the semiconductor laser device 10 is defined as the front side.
- the up-down direction is expressed as the Z-axis direction (first direction)
- the front-rear direction is expressed as the Y-axis direction (second direction)
- the left-right direction is expressed as the X-axis direction (third direction).
- the Z-axis direction coincides with the direction in which the semiconductor laser element 10 and the submount 20 face each other.
- the Y-axis direction is a direction perpendicular to the Z-axis direction, and coincides with the direction in which each of the plurality of mesa portions 12 of the semiconductor laser element 10 extends (that is, the laser emission direction).
- the X-axis direction is a direction perpendicular to both the Z-axis direction and the Y-axis direction, and coincides with the direction in which the plurality of mesa portions 12 are arranged.
- the semiconductor laser device 10 is an edge-emitting type semiconductor laser device.
- the semiconductor laser device 10 includes a substrate 11 and a plurality of (eight in this embodiment) mesa portions 12.
- the semiconductor laser device 10 may be of a single channel type having only a single channel, or may be of a multichannel type having a plurality of channels.
- a "channel" is a unit that emits light simultaneously. In other words, channels are independently drivable units.
- One channel is composed of one or more mesa portions 12. For example, when two or more mesa portions 12 are electrically connected, one channel is configured by the two or more mesa portions 12.
- the semiconductor laser device 10 is configured as a multi-channel (8 channel) type semiconductor laser device, and the number of mesa portions 12 (eight) matches the number of channels.
- the substrate 11 is, for example, a semiconductor substrate such as a compound semiconductor substrate.
- the substrate 11 is formed into a rectangular plate shape (cuboid shape).
- the substrate 11 has an upper surface 11a (first surface) and a lower surface 11b (second surface) located on opposite sides in the Z-axis direction, and on opposite sides in the Y-axis direction. It has a front surface 11c and a rear surface 11d, and side surfaces 11e and 11f (fifth surfaces) located on opposite sides in the X-axis direction.
- An electrode 32 (second electrode), which is a cathode electrode, is provided on the upper surface 11a of the substrate 11.
- the electrode 32 is configured as a single electrode common to the plurality of mesa parts 12. That is, the electrode 32 is provided on substantially the entire surface of the upper surface 11a so as to overlap with the plurality of mesa portions 12 in the Z-axis direction.
- the electrode 32 may be formed of a metal material such as AuGe, Ni, or Au.
- a wire for electrical connection to a power supply circuit (not shown) may be connected to the upper surface of the electrode 32 by wire bonding or the like.
- the plurality of mesa portions 12 each have a light emitting end face 12a that independently emits the laser beam L.
- a plurality of (eight in this embodiment) mesa portions 12 are arranged at approximately equal intervals along the X-axis direction.
- the light emitting end surface 12a of each mesa portion 12 intersects with the Y-axis direction, and emits the laser beam L along the Y-axis direction.
- the light emitting end face 12a is provided on both sides (front side and rear side) of each mesa portion 12 in the Y-axis direction, but in this embodiment, the front light emitting end face 12a directs the laser beam toward the outside. It functions as a light emitting end face that emits L.
- a reflective film or the like may be provided on the rear light emitting end surface 12a in order to prevent the laser beam L from being emitted rearward.
- a low reflection film may be provided on the front light emitting end surface 12a in order to increase the efficiency of light extraction to the outside.
- each mesa portion 12 is formed to protrude in the Z-axis direction with respect to a reference surface R1 (first reference surface) formed on the lower surface 11b of the substrate 11. Further, each mesa portion 12 is formed to extend in the Y-axis direction.
- the reference surface R1 is a surface that is directly supported by the submount 20 by coming into surface contact with the reference surface R2 (second reference surface) of the submount 20.
- the insulating layer 19 is continuously formed with a predetermined thickness over the entire lower surface 11b (including the surface of the mesa portion 12). In this case, the surface 19a of the insulating layer 19 on the side opposite to the side facing the substrate 11 functions as the reference surface R1.
- Each mesa portion 12 has a top surface 12b and a pair of side surfaces 12c.
- the top surface 12b is a surface facing the recess 21 (see FIG. 4) of the submount 20.
- the top surface 12b is a surface facing the opposite side of the mesa portion 12 from the side where the substrate 11 is located.
- the top surface 12b is formed by a portion of the surface 19a of the insulating layer 19 that covers a surface 18a of the contact layer 18, which will be described later.
- the pair of side surfaces 12c are surfaces located on opposite sides of each other in the X-axis direction.
- the side surface 12c is a surface connecting the top surface 12b and the reference surface R1.
- each mesa portion 12 is formed into a trapezoidal shape when viewed from the Y-axis direction.
- An electrode 35 that is an anode electrode electrically connected to each mesa portion 12 is provided on the top surface 12b of each mesa portion 12. That is, the electrode 35 is provided for each mesa portion 12.
- the electrode 35 may be formed of a metal material such as Ti, Pt, or Au. As shown in FIG. 2, as an example, the electrode 35 covers most of the top surface 12b of the mesa portion 12 (excluding both side edges of the top surface 12b in the Y-axis direction), and extends in the Y-axis direction. It is arranged to extend.
- the mesa portion 12 has a laminated structure formed on the lower surface 11b of the substrate 11.
- the mesa portion 12 includes four first laminated structures L1, three second laminated structures L2, and a contact layer 18. More specifically, the first laminated structure L1 at the bottom (the side closest to the substrate 11) is laminated on the lower surface 11b of the substrate 11. Thereon, three first laminated structures L1 and three second laminated structures L2 are formed so that a repeating structure in which one second laminated structure L2 is sandwiched between two first laminated structures L1 is formed. are laminated. A contact layer 18 is laminated on the first laminated structure L1 at the top (the side farthest from the substrate 11).
- the first stacked structure L1 includes an active layer 13, a first semiconductor layer 14, and a second semiconductor layer 15.
- the layers constituting the first stacked structure L1 are stacked in the order of the first semiconductor layer 14, the active layer 13, and the second semiconductor layer 15 from the bottom surface 11b side.
- the active layer 13 is, for example, a layer including a quantum well structure in which quantum well layers and barrier layers are alternately stacked in the Z-axis direction, and is a layer that generates laser light L.
- the active layer 13 has, for example, a structure in which a plurality of InGaAs layers and InAlAs layers are alternately stacked along the stacking direction (Z-axis direction).
- the first semiconductor layer 14 may be formed of, for example, an n-type AlGaAs layer.
- the second semiconductor layer 15 may be formed of, for example, a p-type AlGaAs layer.
- the second stacked structure L2 is a so-called tunnel junction, and includes a first tunnel junction layer 16 and a second tunnel junction layer 17.
- the first tunnel junction layer 16 is located closer to the lower surface 11b than the second tunnel junction layer 17 is.
- the first tunnel junction layer 16 may be formed, for example, by a heavily doped GaAs layer with p-type dopants.
- the second tunnel junction layer 17 may be formed, for example, by a heavily doped GaAs layer with n-type dopants.
- the contact layer 18 may be formed by, for example, a GaAs layer heavily doped with a p-type dopant.
- the contact layer 18 is a layer that comes into contact with the electrode 35 described above.
- An opening 19b for exposing at least a portion of the surface 18a is provided in the insulating layer 19 covering the surface 18a of the contact layer 18 on the side opposite to the side facing the substrate 11. As shown in FIGS. 2 and 3, the opening 19b is provided at the center of the top surface 12b in the X-axis direction in a portion where the electrode 35 and the contact layer 18 overlap. When viewed from the Z-axis direction, the opening 19b is formed in a rectangular shape extending in the Y-axis direction.
- the depressed portion of the electrode 35 in FIG. 2 corresponds to the portion where the opening 19b is formed.
- the electrode 35 enters into the contact layer 18 side, so that the surface of the electrode 35 is depressed.
- a region of the surface 18a of the contact layer 18 that overlaps with the opening 19b in the Z-axis direction (that is, a region exposed to the outside) functions as a contact region CA that contacts the electrode 35.
- the insulating layer 19 covers both edges of the surface 18a of the contact layer 18 in the X-axis direction, the length d1 of the contact area CA in the X-axis direction is equal to the length d1 of the top surface 12b in the X-axis direction. It is shorter than its length.
- the submount 20 is, for example, a silicon substrate made of silicon.
- a circuit for driving the semiconductor laser element 10 may be built inside the submount 20.
- the submount 20 is formed into a rectangular plate shape (cuboid shape).
- the submount 20 has an upper surface 20a (third surface) and a lower surface 20b (sixth surface) located opposite to each other in the Z-axis direction, and a front surface 20c (fourth surface) located opposite to each other in the Y-axis direction. It has a rear surface 20d and side surfaces 20e and 20f located on opposite sides in the X-axis direction.
- the upper surface 20a is a surface facing the reference surface R1 of the semiconductor laser element 10, and forms a reference surface R2 that is in surface contact with the reference surface R1.
- the reference surface R1 of the semiconductor laser element 10 is formed by the surface 19a of the insulating layer 19 provided on the lower surface 11b of the substrate 11, whereas the reference surface R2 of the submount 20 is formed by the surface 19a of the insulating layer 19 provided on the lower surface 11b of the substrate 11. It is formed by the surface (upper surface 20a) of the mount 20 itself.
- the submount 20 has a recess 21 formed in the upper surface 20a.
- the recessed portion 21 is a portion formed to be depressed toward the lower surface 20b than other portions of the upper surface 20a in order to arrange (accommodate) the plurality of mesa portions 12 provided in the semiconductor laser element 10.
- the recess 21 may be formed, for example, by wet etching.
- the recess 21 is configured by a plurality of (eight in this embodiment) recesses 22 that accommodate each of the plurality of mesa parts 12 individually. That is, in this embodiment, the upper surface 20a is provided with a plurality of recesses 22 arranged in the X-axis direction so as to correspond to each of the plurality of mesa parts 12.
- each recess 22 in the Y-axis direction is longer than the length of the substrate 11 in the Y-axis direction.
- a partition 23 is provided between the recesses 22 adjacent to each other.
- the partition wall portion 23 extends in the Y-axis direction, has a predetermined length in the X-axis direction (that is, a width of a certain value or more), and has a reference surface R2. That is, the adjacent recesses 22 are arranged at a certain distance or more in the X-axis direction, and the portion corresponding to this distance (that is, the portion where the recess 22 is not formed) functions as the partition wall portion 23. do.
- the recess 22 is formed in the shape of a groove extending in the Y-axis direction.
- the recess 22 extends to the front surface 20c and is open to the front surface 20c.
- the recess 22 has a bottom surface 22a that intersects in the Z-axis direction, a pair of side surfaces 22b (first side surfaces) that intersect in the X-axis direction, and side surfaces 22c (second side surfaces) that intersect in the Y-axis direction.
- FIGS. 4, 5, and 6 show the state before the semiconductor laser element 10 is mounted on the submount 20.
- the pair of side surfaces 22b are surfaces that face the side surfaces 12c of the mesa portion 12 in the X-axis direction when the semiconductor laser element 10 is mounted on the submount 20.
- the side surface 22b is inclined with respect to the bottom surface 22a such that the opening width of the recess 22 along the X-axis direction on the upper surface 20a is larger than the width of the bottom surface 22a of the recess 22 along the X-axis direction. That is, as shown in FIG. 6A, the inclination angle ⁇ 1 of the side surface 22b with respect to the bottom surface 22a is an acute angle.
- the angle ⁇ 2 formed between the upper surface 20a (reference surface R2) and the side surface 22b is an obtuse angle.
- the side surface 22b is formed into a planar shape by forming the recess 22 by wet etching.
- the side surface 22c is a surface formed at the rear of the recess 22.
- the side surface 22c is inclined with respect to the bottom surface 22a such that the opening width of the recess 22 in the upper surface 20a along the Y-axis direction is larger than the width of the bottom surface 22a of the recess 22 along the Y-axis direction. That is, as shown in FIG. 6(B), the inclination angle ⁇ 3 of the side surface 22c with respect to the bottom surface 22a is an acute angle. As an example, since the recess 22 is formed by wet etching, the inclination angle ⁇ 3 substantially matches the inclination angle ⁇ 1.
- a wiring portion W is provided in the recess 21 at a position corresponding to each of the plurality of mesa portions 12.
- the wiring portion W includes a plurality of wirings 31 arranged at positions corresponding to each of the plurality of mesa portions 12.
- the wiring 31 may be formed of a metal material such as Au.
- an individual wiring 31 is provided for each recess 22, as shown in FIG. In each recess 22, the wiring 31 extends in the Y-axis direction along the bottom surface 22a. As shown in FIGS. 4 and 5, the wiring 31 extends from inside the recess 22 to above the upper surface 20a outside the recess 22. As shown in FIGS.
- each wiring 31 extends to an electrode pad 34 provided independently on the upper surface 20a. That is, the plurality of wirings 31 are electrically isolated from each other. This allows current to flow independently into each of the plurality of mesa portions 12 (that is, to drive each mesa portion 12 independently). As shown in FIGS. 5 and 6B, the wiring 31 is along the bottom surface 22a and the side surface 22c. That is, the side surface 22c plays the role of guiding the wiring 31 from the inside of the recess 22 to the outside of the recess 22. Note that a wire for electrical connection to a power supply circuit (not shown) may be connected to each electrode pad 34 by wire bonding or the like.
- solder member 33 is provided on the wiring 31 in each recess 22 by vapor deposition or the like.
- the solder member 33 may be formed of a material suitable for reflow soldering, such as Sn, Ag, or Cu.
- the mounting process of the semiconductor laser element 10 on the submount 20 will be described.
- the solder member 33 is placed on the wiring 31 in each recess 22.
- the positions of the respective mesa portions 12 of the semiconductor laser device 10 and the positions of the recesses 22 are aligned, and the semiconductor laser device is aligned so that the reference surface R1 faces the reference surface R2.
- 10 is placed on the submount 20. That is, the electrode 35 provided on the top surface 12b of each mesa portion 12 is brought into contact with the upper surface of the solder member 33 placed in each recess 22.
- the semiconductor laser element 10 and the submount 20 in the state shown in S2 of FIG. 7 are heated in a reflow oven, so that the solder member 33 is melted and the semiconductor laser element 10 is attracted to the submount 20. Specifically, the solder member 33 melts and the thickness of the solder member 33 in the Z-axis direction decreases, so that the semiconductor The laser element 10 moves toward the submount 20 side.
- each of the plurality of mesa portions 12 is housed in the recess 22, and the reference surface R1 and the reference surface R2 are brought into surface contact. Further, the electrodes 35 corresponding to each of the plurality of mesa portions 12 are electrically connected to the corresponding wirings 31 via the solder members 33.
- an alignment mark M is provided on the upper surface 20a of the submount 20 for aligning the semiconductor laser element 10 with respect to the submount 20 in the mounting process shown in FIG.
- the alignment mark M has a cross shape in plan view.
- the alignment marks M are arranged on both sides of the semiconductor laser element 10 in the X-axis direction in the mounted state. As shown in FIG. 8, by aligning the inner end of each alignment mark M in the X-axis direction along the side surfaces 11e and 11f, it is possible to align the semiconductor laser element 10 with respect to the submount 20 in the X-axis direction. It is possible.
- marks (recesses 32a) corresponding to the alignment marks M are provided at both end portions of the electrode 32 in the X-axis direction.
- the semiconductor laser element 10 is aligned in the Y-axis direction with respect to the submount 20 by aligning so that the portion M1 of the alignment mark M that extends inward in the X-axis direction overlaps the recess 32a in the Y-axis direction. is possible.
- the semiconductor laser device 10 is arranged with respect to the submount 20 such that the front surface 11c of the semiconductor laser device 10 and the front surface 20c of the submount 20 are substantially flush with each other.
- the position of the semiconductor laser element 10 relative to the submount 20 in the Y-axis direction can also be determined by aligning the front surface 11c and the front surface 20c.
- the semiconductor laser element 10 is arranged so that the front surface 11c of the substrate 11 is located in front or behind the front surface 20c of the submount 20, the above-mentioned portion M1 and the recess 32a may be used as a mark. Accordingly, the position of the semiconductor laser element 10 in the Y-axis direction can be appropriately determined.
- FIG. 9 is a side view of a portion including two mesa portions 12 adjacent to each other in the X-axis direction among a plurality of (eight in this embodiment) mesa portions 12 as viewed from the Y-axis direction (front).
- the left mesa portion 12 when viewed from the front is referred to as a first mesa portion 12A
- the right mesa portion 12 is referred to as a second mesa portion 12B.
- the first wiring 31A which is the wiring 31 placed in the recess 22 in which the first mesa portion 12A is accommodated
- the second wiring 31B which is the wiring 31 placed in the recess 22 in which the second mesa portion 12B is accommodated.
- the plurality of wirings 31 include a first wiring 31A and a second wiring 31B that are arranged adjacent to each other in the X-axis direction and electrically isolated from each other.
- the solder member 33 electrically connected to the first wiring 31A is arranged so as not to come into contact with the solder member 33 electrically connected to the second wiring 31B, the solder member 33 electrically connected to the first wiring 31A is electrically connected to the first wiring 31A.
- the first mesa portion 12A connected to the first mesa portion 12A is electrically isolated from the second mesa portion 12B, which is electrically connected to the second wiring 31B.
- the plurality of wirings 31 are electrically isolated from each other. Therefore, any two wirings 31 arranged adjacent to each other in the X-axis direction among the plurality of wirings 31 correspond to the first wiring 31A and the second wiring 31B.
- the boundary between the side surface 12c of the mesa section 12 and the reference surface R1 is referred to as a base end P, and the side surface 12c of the first mesa section 12A on the side where the second mesa section 12B is located with respect to the first mesa section 12A.
- the base end P which is the boundary between and the reference plane R1
- the base end P that is the boundary with the reference surface R1 is referred to as a second base end P2.
- the distance d2 in the X-axis direction from the first base end P1 to the second base end P2 is longer than the length d1 of the contact area CA of the mesa portion 12 in the X-axis direction.
- the distance d4 in the X-axis direction between the side surface 22b of the recess 22 and the side surface 12c of the mesa portion 12 opposite to the side surface 22b is the distance d4 from the top surface 12b to the mesa section along the Z-axis direction.
- the length becomes shorter toward the base end P, which is the boundary between the side surface 12c of the portion 12 and the reference surface R1.
- the reference surface R1 of the semiconductor laser element 10 (in this embodiment, the surface 19a of the insulating layer 19) is in surface contact with the reference surface R2 of the submount 20.
- the positions of a plurality of light emitting points (for example, the center of the light emitting end surface 12a in the Z-axis direction) can be precisely aligned with respect to the reference surface R2 of the submount 20.
- the semiconductor laser device 1A includes a first mesa portion 12A and a second mesa portion 12B that are electrically isolated from each other (that is, configured to be able to be driven independently of each other) and are arranged adjacent to each other. .
- the amount of solder member 33 required may change depending on the width of the contact area CA (length d1 in the X-axis direction), but the semiconductor laser device 1A Then, the distance between the first mesa part 12A and the second mesa part 12B (that is, the distance d2 from the first base end P1 to the second base end P2 in the X-axis direction) is smaller than the length d1 of the contact area CA. It has also been lengthened. Thereby, a sufficient distance between the first mesa portion 12A and the second mesa portion 12B can be secured for the amount of solder member 33 required depending on the length d1 of the contact area CA.
- the semiconductor laser device 10 when the semiconductor laser device 10 is mounted on the submount 20 by reflow soldering, the solder member 33 corresponding to the first mesa portion 12A and the solder member 33 corresponding to the second mesa portion 12B melt and come into contact with each other. This can be suitably prevented. Therefore, according to the semiconductor laser device 1A, it is possible to precisely align a plurality of light emitting points while preventing short circuits between channels configured to be driven independently of each other.
- the semiconductor laser device 1A has the following configuration in relation to the above first effect. That is, as shown in FIG. 9, the recess 21 includes a first recess 22A, which is the recess 22 in which the first mesa part 12A is accommodated (arranged), and a recess 22, which is the recess 22 in which the second mesa part 12B is accommodated. 2 recesses 22B.
- the reference for the partition wall 23 formed between the first recess 22A and the second recess 22B (that is, the portion extending in the Y-axis direction so as to separate the first recess 22A and the second recess 22B)
- the length d3 of the surface R2 in the X-axis direction is longer than the length d1 of the contact area CA in the X-axis direction.
- a boundary B between the reference surface R2 and the side surface 22b of the recess 22 is spaced apart from the base end P in the X-axis direction. Therefore, the relationship "d2>d3>d1" holds true.
- the length d3 is defined as the boundary B between the reference surface R2 and the first recess 22A (the boundary B on the second recess 22B side) and the boundary B between the reference surface R2 and the second recess 22B (the boundary B on the first recess 22A side). This is the length in the X-axis direction from the boundary part B).
- the first mesa portion 12A and the second mesa portion 12B are accommodated in mutually different recesses 22 (the first recess 22A and the second recess 22B), and the space between the first recess 22A and the second recess 22B is By ensuring a sufficient width (length d3) of the partition wall portion 23, the solder member 33 corresponding to the first mesa portion 12A (or second mesa portion 12B) that is melted during reflow can cross the partition wall portion 23 and become the first mesa portion 23. Contact (short circuit) with the solder member 33 corresponding to the second mesa portion 12B (or the first mesa portion 12A) can be suitably prevented.
- the recess 21 is constituted by a plurality of recesses 22 in which each of the plurality of mesa portions 12 is individually housed, and a partition wall portion 23 is provided between the recesses 22 adjacent to each other. According to the above configuration, compared to a configuration including a single recess 22 in which two or more mesa portions 12 are accommodated, short circuits between adjacent mesa portions 12 can be better prevented, and a plurality of channels can be independently driven. reliability can be improved.
- the contact area between the reference surface R1 and the reference surface R2 can be increased in the partition wall section 23 provided between each recess 22, the stress applied to the semiconductor laser element 10 (mainly the substrate 11) can be reduced, and the The occurrence of warpage of the laser element 10 can be suppressed.
- the substrate 11 in the X-axis direction increases due to the plurality of mesa portions 12 being arranged in the X-axis direction as in this embodiment, the substrate 11 tends to warp in the X-axis direction. Become.
- the above configuration is particularly effective in such cases.
- the first mesa portion 12A and the second mesa portion 12B are accommodated in separate recesses 22, so that the solder member 33 corresponding to the first mesa portion 12A and the second mesa portion 12B correspond to each other.
- the first mesa portion 12A and the second mesa portion 12B are housed in separate recesses 22. It is not necessary to do so.
- the recess 21 may be configured by a single recess 22C that accommodates a plurality of (here, eight) mesa parts 12.
- a plurality of wirings 31 corresponding to each of the plurality of mesa portions 12 are provided on the bottom surface 22a of the single recess 22C. That is, the wiring portion W provided at a position corresponding to each of the plurality of mesa portions 12 is arranged at a position corresponding to each of the plurality of mesa portions 12, and connects a plurality of wirings 31 that are electrically isolated from each other.
- the recess 21 has a plurality of recesses 22 (however, the number is smaller than the total number of mesa parts 12) and accommodates two or more (here, three) mesa parts 12. It may have at least one recess 22D.
- the distance between adjacent mesa portions 12 may not be uniform among all mesa portions 12.
- the distance d21 between the rightmost mesa portion 12 accommodated in the recess 22D and the leftmost mesa portion 12 accommodated in the recess 22 adjacent to the right side of the recess 22D is The distance d22 between the three mesa portions 12 accommodated in the three mesa portions 12 is longer than the distance d22.
- the distance between mesa portions 12 that need to be electrically isolated may be longer than the distance between mesa portions 12 that do not need to be electrically isolated. Further, in the example of FIG.
- one wiring common to the three mesa parts 12 (the three mesa parts 12 (wiring formed wide in the X-axis direction so as to overlap with the wiring) may be provided in the recess 22D.
- the three mesa portions 12 are electrically connected to each other via the one wiring.
- the wiring portion W includes a plurality of wirings 31 arranged at positions corresponding to each of the plurality of mesa portions 12 and electrically isolated from each other, and among the plurality of wirings 31, the X-axis Any two wirings 31 arranged adjacent to each other in the direction correspond to the above-described first wiring 31A and second wiring 31B.
- the interval between the mesa portions 12 i.e., the distance d2
- the width (length d1) of the contact area CA It becomes possible to independently drive a plurality of mesa portions 12 (channels) while preventing short circuits between the channels.
- the common wiring 31 may be formed in two or more mesa portions 12 belonging to the same channel. In this case, there is no problem even if the solder members 33 corresponding to some of the wirings 31 come into contact with each other. Therefore, when the mesa portions 12 corresponding to the several wirings 31 are adjacent to each other in the X-axis direction, the interval (distance d2) between the mesa portions 12 is smaller than the width (length d1) of the contact area CA. may also be shortened. That is, in order to obtain the above first effect, the above-mentioned relationship "d2>d1" is satisfied by It suffices if it is established between the first mesa portion 12A and the second mesa portion 12B.
- the reference surface R1 of the semiconductor laser element 10 is in surface contact with the reference surface R2 of the submount 20.
- the positions of a plurality of light emitting points (for example, the center of the light emitting end surface 12a in the Z-axis direction) can be precisely aligned with respect to the reference surface R2 of the submount 20.
- the semiconductor laser element 10 since the contact area between the reference surface R1 and the reference surface R2 can be increased in the partition part 23 provided between the adjacent recesses 22, the semiconductor laser element 10 (mainly the substrate 11) The stress applied to the semiconductor laser element 10 can be reduced, and the occurrence of warpage of the semiconductor laser element 10 can be suppressed.
- the reference plane R1 and the reference plane R2 are also in contact at the partition wall 23, so that the stress applied to the semiconductor laser element 10 (mainly the substrate 11) is reduced. can be effectively reduced.
- the contact surface between the reference surface R1 and the reference surface R2 it is preferable to make the contact surface between the reference surface R1 and the reference surface R2 as large as possible.
- the distance d4 in the X-axis direction between the side surface 22b of the recess 22 and the side surface 12c of the mesa portion 12 (see FIG.
- the semiconductor laser device 1A it is possible to suitably suppress the occurrence of warping of the semiconductor laser element 10 and to accurately align the plurality of light emitting points.
- the semiconductor laser device 1A has the following configuration in relation to the above-mentioned second effect. That is, the plurality of recesses 22 accommodate each of the plurality of mesa parts 12 individually. According to the above configuration, since the contact area between the reference surface R1 and the reference surface R2 can be increased in the plurality of partition walls 23 provided between the respective recesses 22, the contact area between the reference surface R1 and the reference surface R2 can be increased. Stress can be further reduced, and the occurrence of warpage of the semiconductor laser device 10 can be effectively suppressed.
- the wiring portion W includes a plurality of wirings 31 that are arranged at positions corresponding to each of the plurality of mesa portions 12 and electrically isolated from each other. According to the above configuration, by separating any two adjacent mesa parts 12 by the partition wall part 23 provided between the recesses 22, short circuits between the channels can be prevented, and a plurality of mesa parts 12 ( channels) can be driven independently.
- the inclination angle ⁇ 4 of the side surface 12c of the mesa portion 12 with respect to the reference plane R1 is smaller than the inclination angle ⁇ 1 of the side surface 22b with respect to the bottom surface 22a of the recess 22 (see (A) in FIG. 6). . That is, in the present embodiment, both the side surface 12c of the mesa portion 12 and the side surface 22b of the recessed portion 22 are provided in a planar shape, and the inclination angle ⁇ 4 of the side surface 12c and the inclination angle ⁇ 1 of the side surface 22b satisfy “ ⁇ 4 ⁇ 1”. By having the following relationship, a configuration is realized in which the distance d4 becomes shorter from the top surface 12b toward the base end P.
- the angle ⁇ 2 between the reference surface R2 and the side surface 22b of the recess 22 is an obtuse angle.
- the side surface 12c of the mesa portion 12 comes into contact with the portion where the reference surface R2 and the side surface 22b intersect (i.e., the boundary portion B). Even so, the impact on the side surface 12c of the mesa portion 12 can be reduced compared to the case where the angle between the reference surface R2 and the side surface 22c is configured to be 90 degrees or less (that is, when the sharpness of the boundary portion B is large). . Therefore, according to the above configuration, the risk of damage to the semiconductor laser element 10 during mounting can be reduced.
- the boundary B between the reference surface R2 and the side surface 22b of the recess 22 is spaced apart from the base end P in the X-axis direction. According to the above configuration, since the semiconductor laser element 10 is mounted on the submount 20 so that the boundary part B and the base end part P do not come into contact with each other, the side surface 12c of the mesa part 12 comes into contact with the boundary part B during mounting. Risk can be reduced and damage to the semiconductor laser element 10 can be suitably prevented.
- a single electrode 32 common to the plurality of mesa portions 12 is provided on the upper surface 11 a of the substrate 11 of the semiconductor laser device 10 .
- the wires connected to the electrode 32 by wire bonding are Since the number of wires can be reduced, damage to the semiconductor laser element 10 due to wire bonding can be suppressed. More specifically, if the electrodes 32 were separated for each channel, at least as many wires as the number of channels would be required, but according to the present embodiment, if at least one wire is connected to the electrodes 32, good.
- the opening width of the side surface 22b of the recess 22 along the X-axis direction of the recess 22 on the top surface 20a of the submount 20 is the same as that of the bottom surface 22a of the recess 22 along the X-axis direction. It is inclined with respect to the bottom surface 22a so as to be larger than the width. That is, the inclination angle ⁇ 1 of the side surface 22b with respect to the bottom surface 22a is an acute angle. According to the above configuration, by configuring the side surface 22b of the recess 22 as an inclined surface that becomes wider from the bottom surface 22a side toward the opening end side, a space is created in the recess 22 for the solder member 33 melted during reflow to escape. can be appropriately secured.
- the wiring 31 extends from inside the recess 22 to above the upper surface 20a outside the recess 22.
- the electrode (anode electrode) on the mesa portion 12 side of the semiconductor laser element 10 can be drawn out to the surface (upper surface 20a) of the submount 20 via the electrode 35 and the wiring 31, the semiconductor laser element 10 This makes it easy to implement a configuration for passing current through.
- the electrode pad 34 electrically connected to the electrode 35, which is the anode electrode can be exposed on the same side as the electrode 32, which is the cathode electrode (the side facing the upper surface 20a of the submount 20). . Thereby, the workability of wire bonding to the electrode 32 and the electrode pad 34 can be improved.
- the wiring 31 extends along the Y-axis direction from the inside of the recess 22 to the outside of the recess 22.
- the recess 22 has a side surface 22c that intersects with the Y-axis direction and along which the wiring 31 runs.
- the side surface 22c is inclined with respect to the bottom surface 22a such that the opening width of the recess 22 in the upper surface 20a along the Y-axis direction is larger than the width of the bottom surface 22a of the recess 22 along the Y-axis direction. . That is, the inclination angle ⁇ 3 of the side surface 22c with respect to the bottom surface 22a is an acute angle.
- the side surface 22c is not inclined as described above (for example, if the side surface 22c is a surface perpendicular to the bottom surface 22a of the recess 22), the boundary between the bottom surface 22a and the side surface 22c and the boundary between the side surface 22c and the top surface 20a. Since the wiring 31 is bent in a step-like manner at the boundary, disconnection is likely to occur. On the other hand, by configuring the side surface 22c as a sloped surface as described above and arranging the wiring 31 along the sloped side surface 22c, the wiring 31 can be prevented from bending in a step-like manner, and the occurrence of wire breakage can be suppressed.
- each of the plurality of mesa parts 12 has one or more active layers 13 provided independently for each mesa part 12. According to the above configuration, since the active layer 13 is spatially separated between the plurality of mesa parts 12, it is possible to reliably prevent the occurrence of optical crosstalk between the mesa parts 12. Furthermore, when a plurality of (four in this embodiment) active layers 13 are provided in each mesa portion 12 as in this embodiment, each mesa portion 12 can function as a stacked semiconductor laser element. It is possible to increase the laser output.
- the submount 20 is made of silicon. According to the above configuration, the recess 21 can be formed with high precision, for example, by an etching process.
- the submount 20 has a front surface 20c that is connected to the upper surface 20a and intersects in the Y-axis direction, and the recess 22 extends to the front surface 20c and is open to the front surface 20c. According to the above configuration, the light emitting end surface 12a of each mesa section 12 accommodated in the recess 22 can be exposed to the outside from the portion of the recess 22 that opens to the front surface 20c. The extraction efficiency of the laser beam L emitted along the direction can be improved.
- An alignment mark M for aligning the semiconductor laser element 10 with respect to the submount 20 is provided on the upper surface 20a of the submount 20. According to the above configuration, when mounting the semiconductor laser device 10 on the submount 20, it is possible to easily and accurately align the semiconductor laser device 10 with respect to the submount 20.
- the thickness of the substrate 11 in the Z-axis direction (the length from the top surface 11a to the bottom surface 11b) is smaller than the thickness of the submount 20 in the Z-axis direction (the length from the top surface 20a to the bottom surface 20b).
- the submount 20 that is thicker than the semiconductor laser element 10 it is possible to suitably suppress the occurrence of distortion of the submount 20 with respect to the semiconductor laser element 10 (that is, distortion of the reference plane R2).
- the positions of the plurality of light emitting points with respect to the reference surface R2 of the submount 20 can be aligned with even higher precision.
- the substrate 11 has side surfaces 11e and 11f that intersect in the X-axis direction. Further, the distance d5 in the X-axis direction from the end (boundary B) of the recess 22 provided at the position closest to the side surfaces 11e and 11f in the X-axis direction to the side surfaces 11e and 11f (see FIG. 7) is It is longer than the distance d6 in the Z-axis direction from R1 to the top surface 12b of the mesa portion 12 (see FIG. 9).
- the distance d6 i.e., the height of the mesa portion 12
- 1/2 of the depth of the recess 22 i.e., the length in the Z-axis direction from the reference surface R2 to the bottom surface 22a. It may be set as follows. In this case, since a space not occupied by the mesa portion 12 can be appropriately secured in the recess 22, a space for storing the solder member 33 melted during reflow, for example, can be appropriately secured.
- the distance d6 may be set to be longer than 1 ⁇ 3 of the depth of the recess 22.
- a semiconductor laser device 1B according to the second embodiment will be described with reference to FIGS. 12 and 13.
- the semiconductor laser device 1B is different from the semiconductor laser device 1A in that it further includes a support substrate 40 and a lens member 50 (optical element) in addition to the semiconductor laser device 1A of the first embodiment.
- a support substrate 40 and a lens member 50 optical element
- FIG. 13 only the elements necessary to explain the positional relationship among the semiconductor laser element 10, the submount 20, the support substrate 40, and the lens member 50 are shown, and unnecessary elements (the wiring 31 , electrode pads 34, etc.) are omitted as appropriate.
- the support substrate 40 is a member that supports the submount 20 and the lens member 50.
- the support substrate 40 is formed into a rectangular plate shape whose length in the X-axis direction matches that of the submount 20 and whose length in the Y-axis direction is longer than the submount 20.
- a pair of side surfaces of the support substrate 40 that intersect in the X-axis direction are substantially flush with the side surfaces 20f and 20e of the submount 20, and a rear-facing surface of the support substrate 40 is approximately flush with the rear surface 20d of the submount 20.
- the submount 20 is arranged on the support substrate 40 so as to be flush with each other.
- the lens member 50 is arranged at a position facing the semiconductor laser element 10 and the submount 20 in the Y-axis direction.
- the lens member 50 guides the laser light L emitted from the light emitting end face 12a (see FIG. 1) of each of the plurality of mesa parts 12 toward the outside.
- the lens member 50 has the role of condensing or collimating the laser light L emitted from the light emitting end surface 12a of each mesa portion 12 with a certain spread angle. Fulfill.
- the lens member 50 includes a main body 51 having a lens function, a lower flange 52 provided on the lower side of the main body 51 (the side where the support substrate 40 is located), and an upper flange 53 provided on the upper side of the main body 51. It has .
- the lower flange 52 and the upper flange 53 have similar rectangular plate shapes.
- the lens member 50 has a lower surface 50a formed by the rectangular lower surface of the lower flange 52, a light incident surface 50b formed by the rear surfaces of the main body 51, the lower flange 52, and the upper flange 53, and a light incident surface 50b formed on the main body 51. and a light exit surface 50c on the opposite side to the light entrance surface 50b.
- Both the lower surface 50a and the light entrance surface 50b are flat surfaces.
- the light exit surface 50c is a lens surface having a curved surface convex outward (forward) when viewed from the X-axis direction.
- the light incident surface 50b is a surface onto which the laser beam L emitted from the light emitting end surface 12a of each of the plurality of mesa portions 12 is incident.
- the light incident surface 50b is in surface contact with the front surface 20c of the submount 20.
- the support substrate 40 has a support surface 40a that supports the submount 20 and the lens member 50.
- the support surface 40a includes a first support surface 40a1 that supports the submount 20 in surface contact with the lower surface 20b of the submount 20, and a second support surface that supports the lens member 50 in surface contact with the lower surface 50a of the lens member 50. 40a2.
- the first support surface 40a1 and the second support surface 40a2 are flush and continuous, but the height position (position in the Z-axis direction) of the first support surface 40a1 and the second support surface The height positions of the surfaces 40a2 may be different from each other. That is, the support substrate 40 may have a connection surface parallel to the XZ plane that connects the first support surface 40a1 and the second support surface 40a2.
- the submount 20 on which the semiconductor laser element 10 is mounted and the lens member 50 are supported in surface contact with the first support surface 40a1 and the second support surface 40a2 of the support substrate 40.
- the height positions of the semiconductor laser element 10 and the lens member 50 (that is, the height positions of each member with respect to the support surface 40a (first support surface 40a1 and second support surface 40a2) of the support substrate 40) can be easily and Can be matched with high precision.
- the thickness of the submount 20 in the Z-axis direction is expressed as T
- the height of the central axis of the lens member 50 from the lower surface 50a is expressed as H.
- the height positions of the plurality of light emitting points can be easily aligned with the center position of the lens member 50.
- the height position adjustment described above may be performed by adjusting the height position of the second support surface 40a2 of the support substrate 40 with respect to the first support surface 40a1. In any case, by simply placing the submount 20 and the lens member 50 on the support surface 40a of the support substrate 40, the height positions of the semiconductor laser element 10 and the lens member 50 can be easily and appropriately adjusted. Become.
- the semiconductor laser device 1B by bringing the front surface 20c of the submount 20 and the light incident surface 50b of the lens member 50, which face each other in the Y-axis direction, into surface contact, the light output end surface 12a and the light incident surface in the Y-axis direction are brought into surface contact.
- the distance to 50b can be adjusted with high precision. That is, when mounting the semiconductor laser element 10 on the submount 20, the distance from the light emitting end surface 12a to the light incident surface 50b is adjusted by adjusting the distance from the light emitting end surface 12a to the front surface 20c in the Y-axis direction. can do.
- the light emitting end surface 12a of each mesa portion 12 is configured to be flush with the front surface 11c of the substrate 11, and the semiconductor laser element is configured such that the front surface 11c of the substrate 11 and the front surface 20c of the submount 20 are flush with each other.
- 10 is mounted on the submount 20, the light emitting end surface 12a is flush with the front surface 20c of the submount 20.
- the light output end surface 12a of each mesa portion 12 can be brought into surface contact with the light entrance surface 50b.
- the length of the recess 21 in the Y-axis direction is longer than the length of the semiconductor laser element 10 in the Y-axis direction. According to the above configuration, it is possible to release the solder member 33 melted during reflow into a space in the recess 21 that does not overlap with the semiconductor laser element 10 (mesa portion 12) in the Y-axis direction. Furthermore, it is possible to adjust the position of the semiconductor laser element 10 with respect to the submount 20 in the Y-axis direction according to the focal length of the lens member 50.
- the semiconductor laser device 10 is mounted on the submount such that the front surface 11c of the semiconductor laser device 10 is located behind the front surface 20c of the submount 20 within a range where the mesa portion 12 does not interfere with the submount 20. It becomes possible to arrange it with respect to the mount 20. Thereby, it becomes possible to appropriately adjust the distance between the front light emitting end surface 12a of each mesa portion 12 and the light incident surface 50b.
- a semiconductor laser device 1C according to the third embodiment will be described with reference to FIGS. 14 and 15.
- the semiconductor laser device 1C differs from the semiconductor laser device 1B in that it further includes a mold resin 60 in addition to the semiconductor laser device 1B of the second embodiment. 15, similar to FIG. 13, only the elements necessary to explain the positional relationship among the semiconductor laser element 10, submount 20, support substrate 40, lens member 50, and mold resin 60 are illustrated, and the above-mentioned elements are illustrated. For the sake of explanation, illustrations of unnecessary elements (wiring 31, electrode pads 34, etc.) are omitted as appropriate.
- the mold resin 60 is formed on the support substrate 40 so as to cover the lens member 50, the submount 20, and the semiconductor laser element 10.
- the semiconductor laser device 1C has a rectangular parallelepiped outer shape as a whole by including the mold resin 60 as described above.
- the mold resin 60 may be formed by, for example, a resin molding technique such as transfer molding or compression molding. Examples of the material for the mold resin 60 include epoxy resin and silicone resin.
- each member (lens member 50, submount 20, and semiconductor laser element 10) arranged on the support substrate 40 can be fixed by the molding resin 60. It is possible to prevent a shift in the positional relationship of the members from occurring. Moreover, each member can be appropriately protected by the mold resin 60.
- the recess 22 may be formed by a method other than wet etching.
- the inclination angle ⁇ 1 and the inclination angle ⁇ 3 may be different.
- the inclination angle ⁇ 1 of the side surface 22b of the recess 22 may not be constant over the entire region of the side surface 22b in the Z-axis direction.
- the side surface 22b may be formed such that the angle of inclination with respect to the bottom surface 22a changes stepwise from the top surface 20a side toward the bottom surface 22a side.
- the side surface 22b does not have to be planar, and may be curved, for example. What has been said above regarding the side surface 22b also applies to the side surface 22c.
- the lens member 50 has been described as an example of an optical element, but the optical element may be a member other than a lens, such as an optical filter or a volume holographic diffraction grating (VBG). It may be. That is, the optical element only needs to have a lower surface (a surface corresponding to the lower surface 50a) that can be supported in surface contact with the second support surface 40a2 of the support substrate 40, and is incorporated into the semiconductor laser device.
- the type of optical element is not particularly limited.
- each mesa portion 12 is completely housed within the recess 22, but a portion of the mesa portion 12 may be placed outside the recess 22. That is, at least a portion of the mesa portion 12 may be disposed in the recess 22 .
- the front light emitting end surface 12a of the mesa portion 12 may protrude further forward than the front surface 20c of the submount 20.
- the reference surface R1 of the semiconductor laser element 10 is formed lower than in the above embodiment (for example, the reference surface R1 is formed by the surface of another member provided on the surface 19a of the insulating layer 19, etc. In this case, a portion of the mesa portion 12 (a portion on the proximal end P side in the Z-axis direction) may be disposed outside the recess portion 22.
- 1A, 1B, 1C...Semiconductor laser device 10...Semiconductor laser element, 11...Substrate, 11a...Top surface (first surface), 11b...Bottom surface (second surface), 11e, 11f...Side surface (fifth surface), 12 ... Mesa part, 12a... Light emitting end surface, 12A... First mesa part, 12B... Second mesa part, 12b... Top surface, 12c... Side surface, 13... Active layer, 18... Contact layer, 20...
- Submount (mounting member) 20a...Top surface (third surface), 20b...Bottom surface (sixth surface), 20c...Front surface (fourth surface), 21, 22, 22C, 22D...Concave portion, 22a...Bottom surface, 22b...Side surface (first side surface) ), 22c... Side surface (second side surface), 22A... First recess, 22B... Second recess, 23... Partition wall, 31... Wiring, 31A... First wiring, 31B... Second wiring, 32... Electrode (second electrode), 33... solder member, 35... electrode (first electrode), 40... support substrate, 40a1... first support surface, 40a2... second support surface, 50... lens member (optical element), 50b...
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Geometry (AREA)
- Semiconductor Lasers (AREA)
Abstract
半導体レーザ装置は、複数のメサ部を有する半導体レーザ素子と、複数のメサ部が配置される凹部を有するサブマウントと、を備える。凹部には、配線部が設けられている。各メサ部に対応する電極は、半田部材を介して、配線部と電気的に接続されている。配線部は、互いに隣接し電気的に分離された第1配線及び第2配線を含む。半導体レーザ素子の第1基準面は、サブマウントの第2基準面と面接触している。第1配線に対応する第1メサ部の第1基端部から第2配線に対応する第2メサ部の第2基端部までの距離は、メサ部のコンタクト領域の長さよりも長い。
Description
本開示は、半導体レーザ装置に関する。
従来、端面出射型の半導体レーザ素子が知られている。例えば特許文献1には、ジャンクションアップ方式によって、複数のチャンネル(発光点)を有する半導体レーザ素子の表面(発光点を形成する活性層が設けられた側の面)とは反対側の裏面をマウント部材に実装する構成が開示されている。また、従来、ジャンクションアップ方式以外の実装方式として、半導体レーザ素子の表面をマウント部材に実装するジャンクションダウン方式も知られている。
しかしながら、上述したような従来の実装方式には、例えばリフロー半田付け等によって半田部材を介して半導体レーザ素子の表面又は裏面をマウント部材に実装する際に、半田部材の厚みが均一にならず、複数の発光点の高さ位置がばらつくという問題があった。
また、複数のチャンネルを互いに独立して駆動可能な第1チャンネルと第2チャンネルとを少なくとも含むように構成する場合、第1チャンネルと第2チャンネルとの間の短絡を確実に防止することが求められる。
そこで、本開示の一側面は、互いに独立して駆動可能に構成されたチャンネル間の短絡を防止しつつ、複数の発光点の位置合わせを精度良く実行することができる半導体レーザ装置を提供することを目的とする。
本開示は、以下の[1]~[18]の半導体レーザ装置を含んでいる。
[1]
第1方向において互いに反対側に位置する第1表面及び第2表面を有する基板と、第1方向に直交する第2方向に交差する光出射端面を有し、第2表面に形成された第1基準面に対して第1方向に突出すると共に第2方向に延在するように形成された複数のメサ部と、を有する半導体レーザ素子と、
第1基準面に対向する第2基準面を形成する第3表面と、第3表面に形成され、複数のメサ部が配置される凹部と、を有するマウント部材と、を備え、
メサ部は、凹部の底面に対向する頂面と、第1方向及び第2方向に直交する第3方向において互いに反対側に位置する一対の側面と、を有し、
メサ部の頂面には、メサ部の頂面側に設けられたコンタクト層と電気的に接続された第1電極が設けられており、
凹部には、複数のメサ部の各々に対応する位置に配線部が設けられており、
複数のメサ部の各々に対応する第1電極は、半田部材を介して、配線部と電気的に接続されており、
配線部は、第3方向に互いに隣接して配置され且つ互いに電気的に分離された第1配線及び第2配線を含み、
第1配線と電気的に接続された半田部材が第2配線と電気的に接続された半田部材と接触しないように配置されていることにより、第1配線と電気的に接続されたメサ部である第1メサ部は、第2配線と電気的に接続されたメサ部である第2メサ部と電気的に分離されており、
第1基準面は、第2基準面と面接触しており、
第1メサ部に対して第2メサ部が位置する側の第1メサ部の側面と第1基準面との境界である第1基端部から第2メサ部に対して第1メサ部が位置する側の第2メサ部の側面と第1基準面との境界である第2基端部までの第3方向の距離は、コンタクト層のうち第1電極と接触するコンタクト領域の第3方向の長さよりも長い、
半導体レーザ装置。
第1方向において互いに反対側に位置する第1表面及び第2表面を有する基板と、第1方向に直交する第2方向に交差する光出射端面を有し、第2表面に形成された第1基準面に対して第1方向に突出すると共に第2方向に延在するように形成された複数のメサ部と、を有する半導体レーザ素子と、
第1基準面に対向する第2基準面を形成する第3表面と、第3表面に形成され、複数のメサ部が配置される凹部と、を有するマウント部材と、を備え、
メサ部は、凹部の底面に対向する頂面と、第1方向及び第2方向に直交する第3方向において互いに反対側に位置する一対の側面と、を有し、
メサ部の頂面には、メサ部の頂面側に設けられたコンタクト層と電気的に接続された第1電極が設けられており、
凹部には、複数のメサ部の各々に対応する位置に配線部が設けられており、
複数のメサ部の各々に対応する第1電極は、半田部材を介して、配線部と電気的に接続されており、
配線部は、第3方向に互いに隣接して配置され且つ互いに電気的に分離された第1配線及び第2配線を含み、
第1配線と電気的に接続された半田部材が第2配線と電気的に接続された半田部材と接触しないように配置されていることにより、第1配線と電気的に接続されたメサ部である第1メサ部は、第2配線と電気的に接続されたメサ部である第2メサ部と電気的に分離されており、
第1基準面は、第2基準面と面接触しており、
第1メサ部に対して第2メサ部が位置する側の第1メサ部の側面と第1基準面との境界である第1基端部から第2メサ部に対して第1メサ部が位置する側の第2メサ部の側面と第1基準面との境界である第2基端部までの第3方向の距離は、コンタクト層のうち第1電極と接触するコンタクト領域の第3方向の長さよりも長い、
半導体レーザ装置。
上記半導体レーザ装置では、半導体レーザ素子の第1基準面がマウント部材の第2基準面と面接触している。これにより、マウント部材の第2基準面に対する複数の発光点(例えば、光出射端面の第1方向における中心)の位置を精度良く揃えることができる。また、上記半導体レーザ装置は、互いに電気的に分離される(すなわち、互いに独立して駆動可能に構成される)と共に互いに隣接して配置された第1メサ部及び第2メサ部を有する。ここで、コンタクト領域の幅(第3方向の長さ)によって、必要となる半田部材の量(例えば、第3方向における半田部材の幅)が変化し得るが、上記半導体レーザ装置では、第1メサ部と第2メサ部との間隔(すなわち、第3方向における第1基端部から第2基端部までの距離)がコンタクト領域の幅よりも長くされている。これにより、コンタクト領域の幅に応じて必要となる半田部材の量に対して、第1メサ部と第2メサ部との間隔を十分に確保することができる。その結果、リフロー半田付けによって半導体レーザ素子をマウント部材に実装する際に、第1メサ部に対応する半田部材と第2メサ部に対応する半田部材とが溶けて互いに接触してしまうことを好適に防止できる。従って、上記半導体レーザ装置によれば、互いに独立して駆動可能に構成されたチャンネル間の短絡を防止しつつ、複数の発光点の位置合わせを精度良く実行することができる。
[2]
凹部は、第1メサ部が配置される第1凹部と、第2メサ部が配置される第2凹部と、を有し、
第1凹部と第2凹部との間に形成され、第1凹部と第2凹部とを分離するように第2方向に延在する隔壁部の第2基準面の第3方向の長さは、コンタクト領域の第3方向の長さよりも長い、
[1]の半導体レーザ装置。
上記構成によれば、第1メサ部と第2メサ部とを互いに異なる凹部(第1凹部及び第2凹部)に配置すると共に第1凹部と第2凹部との間の隔壁部の幅を十分に確保することにより、リフロー時に溶けた第1メサ部(又は第2メサ部)に対応する半田部材が隔壁部を越えて第2メサ部(又は第1メサ部)に対応する半田部材と短絡することを好適に防止できる。
凹部は、第1メサ部が配置される第1凹部と、第2メサ部が配置される第2凹部と、を有し、
第1凹部と第2凹部との間に形成され、第1凹部と第2凹部とを分離するように第2方向に延在する隔壁部の第2基準面の第3方向の長さは、コンタクト領域の第3方向の長さよりも長い、
[1]の半導体レーザ装置。
上記構成によれば、第1メサ部と第2メサ部とを互いに異なる凹部(第1凹部及び第2凹部)に配置すると共に第1凹部と第2凹部との間の隔壁部の幅を十分に確保することにより、リフロー時に溶けた第1メサ部(又は第2メサ部)に対応する半田部材が隔壁部を越えて第2メサ部(又は第1メサ部)に対応する半田部材と短絡することを好適に防止できる。
[3]
凹部は、複数のメサ部の各々が個別に配置される複数の凹部によって構成されており、
互いに隣接する凹部間には、第2方向に延在すると共に第3方向に所定の長さを有し、第2基準面を有する隔壁部が設けられている、
[1]又は[2]の半導体レーザ装置。
上記構成によれば、2以上のメサ部が配置される単一の凹部を含む構成と比較して、隣接するメサ部間の短絡を好適に防止できると共に、複数のチャンネルの独立駆動の信頼性を向上させることができる。さらに、各凹部間に設けられた隔壁部において第1基準面と第2基準面との接触面積を増やすことができるため、半導体レーザ素子(主に基板)にかかる応力を低減でき、半導体レーザ素子の反りの発生を抑制することができる。特に、第3方向に複数のメサ部が配列されることによって基板の第3方向の長さが長くなると、第3方向に対して基板の反りが発生し易くなる。上記構成は、このような場合に特に有効である。
凹部は、複数のメサ部の各々が個別に配置される複数の凹部によって構成されており、
互いに隣接する凹部間には、第2方向に延在すると共に第3方向に所定の長さを有し、第2基準面を有する隔壁部が設けられている、
[1]又は[2]の半導体レーザ装置。
上記構成によれば、2以上のメサ部が配置される単一の凹部を含む構成と比較して、隣接するメサ部間の短絡を好適に防止できると共に、複数のチャンネルの独立駆動の信頼性を向上させることができる。さらに、各凹部間に設けられた隔壁部において第1基準面と第2基準面との接触面積を増やすことができるため、半導体レーザ素子(主に基板)にかかる応力を低減でき、半導体レーザ素子の反りの発生を抑制することができる。特に、第3方向に複数のメサ部が配列されることによって基板の第3方向の長さが長くなると、第3方向に対して基板の反りが発生し易くなる。上記構成は、このような場合に特に有効である。
[4]
第1表面には、複数のメサ部に共通の単一の第2電極が設けられている、
[1]~[3]のいずれかの半導体レーザ装置。
上記構成によれば、半導体レーザ素子の基板の裏面(第1表面)側に配置される電極部材(第2電極)を複数のメサ部間で共通化することにより、ワイヤボンディングによって当該電極部材に接続されるワイヤの本数を削減できるため、ワイヤボンディングによる半導体レーザ素子の損傷を抑制できる。
第1表面には、複数のメサ部に共通の単一の第2電極が設けられている、
[1]~[3]のいずれかの半導体レーザ装置。
上記構成によれば、半導体レーザ素子の基板の裏面(第1表面)側に配置される電極部材(第2電極)を複数のメサ部間で共通化することにより、ワイヤボンディングによって当該電極部材に接続されるワイヤの本数を削減できるため、ワイヤボンディングによる半導体レーザ素子の損傷を抑制できる。
[5]
凹部は、第3方向においてメサ部の側面に対向する第1側面を有し、
第1側面は、第3表面における凹部の第3方向に沿った開口幅が凹部の底面の第3方向に沿った幅よりも大きくなるように、底面に対して傾斜している、
[1]~[4]のいずれかの半導体レーザ装置。
上記構成によれば、凹部の第1側面を底面側から開口端側に向かって幅広となる傾斜面として構成することにより、凹部内において、リフロー時に溶けた半田部材を逃がすためのスペースを適切に確保することができる。
凹部は、第3方向においてメサ部の側面に対向する第1側面を有し、
第1側面は、第3表面における凹部の第3方向に沿った開口幅が凹部の底面の第3方向に沿った幅よりも大きくなるように、底面に対して傾斜している、
[1]~[4]のいずれかの半導体レーザ装置。
上記構成によれば、凹部の第1側面を底面側から開口端側に向かって幅広となる傾斜面として構成することにより、凹部内において、リフロー時に溶けた半田部材を逃がすためのスペースを適切に確保することができる。
[6]
配線部は、凹部の内部から凹部の外側の第3表面上まで延びている、
[1]~[5]のいずれかの半導体レーザ装置。
上記構成によれば、半導体レーザ素子のメサ部側の電極を第1電極及び配線部を介してマウント部材の表面(第3表面)まで引き出すことができるため、半導体レーザ素子に電流を流すための構成の実装が容易となる。
配線部は、凹部の内部から凹部の外側の第3表面上まで延びている、
[1]~[5]のいずれかの半導体レーザ装置。
上記構成によれば、半導体レーザ素子のメサ部側の電極を第1電極及び配線部を介してマウント部材の表面(第3表面)まで引き出すことができるため、半導体レーザ素子に電流を流すための構成の実装が容易となる。
[7]
配線部は、凹部の内部から凹部の外側まで第2方向に沿って延びており、
凹部は、第2方向に交差し、配線部が沿う第2側面を有し、
第2側面は、第3表面における凹部の第2方向に沿った開口幅が凹部の底面の第2方向に沿った幅よりも大きくなるように、底面に対して傾斜している、
[6]の半導体レーザ装置。
仮に第2側面が上記のように傾斜していない場合(例えば、第2側面が凹部の底面に対して垂直な面である場合)、配線部が段差状に折れ曲がってしまうため、断線が生じ易くなる。一方、上記のように第2側面を傾斜面として構成し、傾斜した第2側面に配線部を沿わせることにより、配線部が段差状に折れ曲がることを回避し、断線の発生を抑制することができる。
配線部は、凹部の内部から凹部の外側まで第2方向に沿って延びており、
凹部は、第2方向に交差し、配線部が沿う第2側面を有し、
第2側面は、第3表面における凹部の第2方向に沿った開口幅が凹部の底面の第2方向に沿った幅よりも大きくなるように、底面に対して傾斜している、
[6]の半導体レーザ装置。
仮に第2側面が上記のように傾斜していない場合(例えば、第2側面が凹部の底面に対して垂直な面である場合)、配線部が段差状に折れ曲がってしまうため、断線が生じ易くなる。一方、上記のように第2側面を傾斜面として構成し、傾斜した第2側面に配線部を沿わせることにより、配線部が段差状に折れ曲がることを回避し、断線の発生を抑制することができる。
[8]
複数のメサ部の各々は、メサ部毎に独立して設けられた一以上の活性層を有している、
[1]~[7]のいずれかの半導体レーザ装置。
上記構成によれば、複数のメサ部間において活性層が空間的に分離されるため、メサ部間の光学的クロストークの発生を確実に防止することができる。また、各メサ部に複数の活性層を設けた場合には、各メサ部をスタック型の半導体レーザ素子として機能させることができ、レーザ出力の増強を図ることができる。
複数のメサ部の各々は、メサ部毎に独立して設けられた一以上の活性層を有している、
[1]~[7]のいずれかの半導体レーザ装置。
上記構成によれば、複数のメサ部間において活性層が空間的に分離されるため、メサ部間の光学的クロストークの発生を確実に防止することができる。また、各メサ部に複数の活性層を設けた場合には、各メサ部をスタック型の半導体レーザ素子として機能させることができ、レーザ出力の増強を図ることができる。
[9]
配線部は、複数のメサ部の各々に対応する位置毎に配置され、互いに電気的に分離された複数の配線を含み、
複数の配線のうち第3方向に互いに隣接して配置された任意の2つの配線は、第1配線及び第2配線に該当する、
[1]~[8]のいずれかの半導体レーザ装置。
上記構成によれば、互いに隣接する任意の2つのメサ部間において、メサ部同士の間隔(すなわち、第3方向における第1基端部から第2基端部までの距離)がコンタクト領域の幅よりも長くされているため、各チャンネル間の短絡を防止しつつ、複数のメサ部(チャンネル)を独立して駆動させることが可能となる。
配線部は、複数のメサ部の各々に対応する位置毎に配置され、互いに電気的に分離された複数の配線を含み、
複数の配線のうち第3方向に互いに隣接して配置された任意の2つの配線は、第1配線及び第2配線に該当する、
[1]~[8]のいずれかの半導体レーザ装置。
上記構成によれば、互いに隣接する任意の2つのメサ部間において、メサ部同士の間隔(すなわち、第3方向における第1基端部から第2基端部までの距離)がコンタクト領域の幅よりも長くされているため、各チャンネル間の短絡を防止しつつ、複数のメサ部(チャンネル)を独立して駆動させることが可能となる。
[10]
マウント部材は、シリコンによって形成されている、
[1]~[9]のいずれかの半導体レーザ装置。
上記構成によれば、例えばエッチングプロセスによって、凹部を精度良く形成することができる。
マウント部材は、シリコンによって形成されている、
[1]~[9]のいずれかの半導体レーザ装置。
上記構成によれば、例えばエッチングプロセスによって、凹部を精度良く形成することができる。
[11]
マウント部材は、第3表面と接続され、第2方向に交差する第4表面を有し、
凹部は、第4表面まで延びており、第4表面に開口している、
[1]~[10]のいずれかの半導体レーザ装置。
上記構成によれば、凹部のうち第4表面に開口した部分から、凹部に配置された各メサ部の光出射端面を外部に露出させることができるため、光出射端面から第2方向に沿って出射される光の取り出し効率を向上させることができる。
マウント部材は、第3表面と接続され、第2方向に交差する第4表面を有し、
凹部は、第4表面まで延びており、第4表面に開口している、
[1]~[10]のいずれかの半導体レーザ装置。
上記構成によれば、凹部のうち第4表面に開口した部分から、凹部に配置された各メサ部の光出射端面を外部に露出させることができるため、光出射端面から第2方向に沿って出射される光の取り出し効率を向上させることができる。
[12]
第3表面には、マウント部材に対して半導体レーザ素子を位置合わせするためのアライメントマークが設けられている、
[1]~[11]のいずれかの半導体レーザ装置。
上記構成によれば、マウント部材に半導体レーザ素子を実装する際に、マウント部材に対する半導体レーザ素子の位置合わせを容易且つ正確に行うことが可能となる。
第3表面には、マウント部材に対して半導体レーザ素子を位置合わせするためのアライメントマークが設けられている、
[1]~[11]のいずれかの半導体レーザ装置。
上記構成によれば、マウント部材に半導体レーザ素子を実装する際に、マウント部材に対する半導体レーザ素子の位置合わせを容易且つ正確に行うことが可能となる。
[13]
第1方向における基板の厚さは、第1方向におけるマウント部材の厚さよりも小さい、
[1]~[12]のいずれかの半導体レーザ装置。
上記構成によれば、半導体レーザ素子よりも厚みのあるマウント部材を用いることにより、半導体レーザ素子に対するマウント部材の歪み(すなわち、第2基準面の歪み)の発生を好適に抑制できる。その結果、マウント部材の第2基準面に対する複数の発光点の位置をより一層精度良く揃えることができる。
第1方向における基板の厚さは、第1方向におけるマウント部材の厚さよりも小さい、
[1]~[12]のいずれかの半導体レーザ装置。
上記構成によれば、半導体レーザ素子よりも厚みのあるマウント部材を用いることにより、半導体レーザ素子に対するマウント部材の歪み(すなわち、第2基準面の歪み)の発生を好適に抑制できる。その結果、マウント部材の第2基準面に対する複数の発光点の位置をより一層精度良く揃えることができる。
[14]
基板は、第3方向に交差する第5表面を有し、
第3方向において第5表面から最も近い位置に設けられた凹部の端部から第5表面までの第3方向の距離は、第1基準面からメサ部の頂面までの第1方向の距離よりも長い、
[1]~[13]のいずれかの半導体レーザ装置。
上記構成によれば、基板のうち第3方向において凹部が設けられた領域よりも外側において、第1基準面と第2基準面とが接触する部分の面積を一定以上確保することができるため、マウント部材に対する半導体レーザ素子の支持安定性を向上させることができる。
基板は、第3方向に交差する第5表面を有し、
第3方向において第5表面から最も近い位置に設けられた凹部の端部から第5表面までの第3方向の距離は、第1基準面からメサ部の頂面までの第1方向の距離よりも長い、
[1]~[13]のいずれかの半導体レーザ装置。
上記構成によれば、基板のうち第3方向において凹部が設けられた領域よりも外側において、第1基準面と第2基準面とが接触する部分の面積を一定以上確保することができるため、マウント部材に対する半導体レーザ素子の支持安定性を向上させることができる。
[15]
第2方向において半導体レーザ素子及びマウント部材と対向する位置に配置され、複数のメサ部の各々の光出射端面から出射される光を外部に向けて導光する光学素子と、
マウント部材及び光学素子を支持する支持基板と、
を更に備え、
支持基板は、マウント部材の第3表面とは反対側の第6表面と面接触してマウント部材を支持する第1支持面と、光学素子と面接触して光学素子を支持する第2支持面と、を有する、
[1]~[14]のいずれかの半導体レーザ装置。
上記構成によれば、半導体レーザ素子が搭載されたマウント部材と光学素子とが、支持基板の第1支持面及び第2支持面と面接触して支持されるため、半導体レーザ素子及び光学素子の高さ位置(すなわち、支持基板の支持面(第1支持面及び第2支持面)を基準とする各部材の高さ位置)を容易且つ精度良く合わせることができる。
第2方向において半導体レーザ素子及びマウント部材と対向する位置に配置され、複数のメサ部の各々の光出射端面から出射される光を外部に向けて導光する光学素子と、
マウント部材及び光学素子を支持する支持基板と、
を更に備え、
支持基板は、マウント部材の第3表面とは反対側の第6表面と面接触してマウント部材を支持する第1支持面と、光学素子と面接触して光学素子を支持する第2支持面と、を有する、
[1]~[14]のいずれかの半導体レーザ装置。
上記構成によれば、半導体レーザ素子が搭載されたマウント部材と光学素子とが、支持基板の第1支持面及び第2支持面と面接触して支持されるため、半導体レーザ素子及び光学素子の高さ位置(すなわち、支持基板の支持面(第1支持面及び第2支持面)を基準とする各部材の高さ位置)を容易且つ精度良く合わせることができる。
[16]
光学素子は、複数のメサ部の各々の光出射端面から出射される光が入射される光入射面を有し、
マウント部材は、光入射面に対向する第4表面を有し、
光入射面は、第4表面と面接触している、
[15]の半導体レーザ装置。
上記構成によれば、第2方向において互いに対向するマウント部材の第4表面と光学素子の光入射面とを面接触させることにより、第2方向における光出射端面と光入射面との距離を精度良く調整することができる。すなわち、マウント部材に半導体レーザ素子を実装する際に、第2方向における光出射端面から第4表面までの距離を調整することにより、光出射端面から光入射面までの距離を調整することができる。
光学素子は、複数のメサ部の各々の光出射端面から出射される光が入射される光入射面を有し、
マウント部材は、光入射面に対向する第4表面を有し、
光入射面は、第4表面と面接触している、
[15]の半導体レーザ装置。
上記構成によれば、第2方向において互いに対向するマウント部材の第4表面と光学素子の光入射面とを面接触させることにより、第2方向における光出射端面と光入射面との距離を精度良く調整することができる。すなわち、マウント部材に半導体レーザ素子を実装する際に、第2方向における光出射端面から第4表面までの距離を調整することにより、光出射端面から光入射面までの距離を調整することができる。
[17]
凹部の第2方向の長さは、半導体レーザ素子の第2方向の長さよりも長い、
[1]~[16]のいずれかの半導体レーザ装置。
上記構成によれば、凹部のうち第2方向において半導体レーザ素子(メサ部)と重ならない空間に、リフロー時に溶けた半田部材を逃すことが可能となる。また、光学素子がレンズである場合等において、レンズの焦点距離に応じて、マウント部材に対する半導体レーザ素子の第2方向の位置を調整することが可能となる。
凹部の第2方向の長さは、半導体レーザ素子の第2方向の長さよりも長い、
[1]~[16]のいずれかの半導体レーザ装置。
上記構成によれば、凹部のうち第2方向において半導体レーザ素子(メサ部)と重ならない空間に、リフロー時に溶けた半田部材を逃すことが可能となる。また、光学素子がレンズである場合等において、レンズの焦点距離に応じて、マウント部材に対する半導体レーザ素子の第2方向の位置を調整することが可能となる。
[18]
支持基板上において、光学素子、マウント部材、及び半導体レーザ素子を覆うように形成されたモールド樹脂を更に備える、
[15]~[17]のいずれかの半導体レーザ装置。
上記構成によれば、モールド樹脂によって、支持基板上に配置された各部材(光学素子、マウント部材、及び半導体レーザ素子)の位置関係を固定することができるため、各部材の位置関係のずれが発生することを防止できる。また、モールド樹脂によって各部材を適切に保護することができる。
支持基板上において、光学素子、マウント部材、及び半導体レーザ素子を覆うように形成されたモールド樹脂を更に備える、
[15]~[17]のいずれかの半導体レーザ装置。
上記構成によれば、モールド樹脂によって、支持基板上に配置された各部材(光学素子、マウント部材、及び半導体レーザ素子)の位置関係を固定することができるため、各部材の位置関係のずれが発生することを防止できる。また、モールド樹脂によって各部材を適切に保護することができる。
本開示の一側面によれば、互いに独立して駆動可能に構成されたチャンネル間の短絡を防止しつつ、複数の発光点の位置合わせを精度良く実行することができる半導体レーザ装置を提供することができる。
以下、本開示の一実施形態について、図面を参照しつつ詳細に説明する。なお、以下の説明において、同一又は相当要素には同一符号を用い、重複する説明を省略する。
[第1実施形態]
図1~図9を参照して、第1実施形態の半導体レーザ装置1Aについて説明する。図1に示されるように、半導体レーザ装置1Aは、半導体レーザ素子10と、サブマウント20(マウント部材)と、を備えている。半導体レーザ素子10は、ジャンクションダウン方式によって、サブマウント20上に実装されている。すなわち、半導体レーザ素子10は、活性層13(図3参照)が設けられた側の表面(下面11b)がサブマウント20に対向するようにして、サブマウント20上に搭載されている。
図1~図9を参照して、第1実施形態の半導体レーザ装置1Aについて説明する。図1に示されるように、半導体レーザ装置1Aは、半導体レーザ素子10と、サブマウント20(マウント部材)と、を備えている。半導体レーザ素子10は、ジャンクションダウン方式によって、サブマウント20上に実装されている。すなわち、半導体レーザ素子10は、活性層13(図3参照)が設けられた側の表面(下面11b)がサブマウント20に対向するようにして、サブマウント20上に搭載されている。
本実施形態では、サブマウント20に対して半導体レーザ素子10が搭載される側を上側とし、半導体レーザ素子10から外部に向けたレーザ光Lが出射される側を前側とする。また、上記定義を前提として、上下方向をZ軸方向(第1方向)と表し、前後方向をY軸方向(第2方向)と表し、左右方向をX軸方向(第3方向)と表す。Z軸方向は、半導体レーザ素子10とサブマウント20とが対向する方向と一致する。Y軸方向は、Z軸方向に直交する方向であり、半導体レーザ素子10が有する複数のメサ部12の各々が延在する方向(すなわち、レーザ出射方向)と一致する。X軸方向は、Z軸方向及びY軸方向の両方に直交する方向であり、複数のメサ部12の配列方向と一致する。
半導体レーザ素子10は、端面出射型の半導体レーザ素子である。半導体レーザ素子10は、基板11と、複数(本実施形態では8つ)のメサ部12と、を有している。半導体レーザ素子10は、単一のチャンネルのみを有するシングルチャンネル型であってもよいし、複数のチャンネルを有するマルチチャンネル型であってもよい。ここで、「チャンネル」とは、同時に発光する単位である。言い換えれば、チャンネルは、独立して駆動可能な単位である。一つのチャンネルは、一以上のメサ部12によって構成される。例えば、2以上のメサ部12が電気的に接続されている場合には、当該2以上のメサ部12によって1つのチャンネルが構成される。本実施形態では、一例として、複数のメサ部12の各々が互いに電気的に分離されているため、メサ部12とチャンネルとは「1:1」の関係を有している。すなわち、本実施形態では、半導体レーザ素子10は、マルチチャンネル(8チャンネル)型の半導体レーザ素子として構成されており、メサ部12の数(8つ)とチャンネル数とが一致している。
基板11は、例えば化合物半導体基板等の半導体基板である。基板11は、矩形板状(直方体状)に形成されている。図1及び図2に示されるように、基板11は、Z軸方向において互いに反対側に位置する上面11a(第1表面)及び下面11b(第2表面)と、Y軸方向において互いに反対側に位置する前面11c及び後面11dと、X軸方向において互いに反対側に位置する側面11e,11f(第5表面)と、を有している。
基板11の上面11aには、カソード電極である電極32(第2電極)が設けられている。一例として、電極32は、複数のメサ部12に共通の単一の電極として構成されている。すなわち、電極32は、Z軸方向において複数のメサ部12と重なるように、上面11aの略全面に設けられている。電極32は、例えば、AuGe、Ni、Au等の金属材料によって形成され得る。電極32の上面には、ワイヤボンディング等によって、図示しない電源回路と電気的に接続するためのワイヤが接続され得る。
複数のメサ部12は、それぞれ独立してレーザ光Lを出射する光出射端面12aを有している。図2に示されるように、複数(本実施形態では8つ)のメサ部12は、X軸方向に沿って略等間隔に配列されている。各メサ部12の光出射端面12aは、Y軸方向に交差しており、Y軸方向に沿ってレーザ光Lを出射する。なお、光出射端面12aは、各メサ部12のY軸方向の両側(前側及び後側)に設けられているが、本実施形態では、前側の光出射端面12aが、外部に向けてレーザ光Lを出射する光出射端面として機能する。従って、後側の光出射端面12aには、後方に向けてレーザ光Lが出射されないようにするために、反射膜等が設けられてもよい。一方、前側の光出射端面12aには、外部への光の取り出し効率を高めるために、低反射膜が設けられてもよい。
図2に示されるように、各メサ部12は、基板11の下面11bに形成された基準面R1(第1基準面)に対してZ軸方向に突出するように形成されている。また、各メサ部12は、Y軸方向に延在するように形成されている。基準面R1は、サブマウント20の基準面R2(第2基準面)に面接触することによりサブマウント20に直接支持される面である。一例として、下面11bの全体(メサ部12の表面を含む)に、絶縁層19が所定の厚みで連続的に形成される。この場合、絶縁層19の基板11に対向する側とは反対側の表面19aが、基準面R1として機能する。
各メサ部12は、頂面12bと、一対の側面12cと、を有している。頂面12bは、サブマウント20の凹部21(図4参照)に対向する面である。言い換えれば、頂面12bは、メサ部12に対して基板11が位置する側とは反対側を向く面である。一例として、頂面12bは、絶縁層19の表面19aのうち、後述するコンタクト層18の表面18aを覆う部分によって形成される。一対の側面12cは、X軸方向において互いに反対側に位置する面である。側面12cは、頂面12bと基準面R1とを接続する面である。一対の側面12cは、X軸方向における一対の側面12c同士の間隔が頂面12bから基準面R1に向かうにつれて幅広となるように、頂面12b及び基準面R1に対して傾斜している。すなわち、各メサ部12は、Y軸方向から見た場合に、台形状に形成されている。
各メサ部12の頂面12bには、各メサ部12と電気的に接続されるアノード電極である電極35(第1電極)が設けられている。すなわち、電極35は、メサ部12毎に設けられている。電極35は、例えば、Ti、Pt、Au等の金属材料によって形成され得る。図2に示されるように、一例として、電極35は、メサ部12の頂面12bの大部分(頂面12bのY軸方向における両側縁部を除いた部分)を覆うと共に、Y軸方向に延在するように設けられている。
図3に示されるように、メサ部12は、基板11の下面11b上に形成された積層構造を有している。一例として、メサ部12は、4つの第1積層構造体L1と、3つの第2積層構造体L2と、コンタクト層18と、を含んでいる。より具体的には、基板11の下面11b上に最下部(最も基板11に近い側)の第1積層構造体L1が積層されている。その上に、1つの第2積層構造体L2が2つの第1積層構造体L1に挟まれる繰り返し構造が形成されるように、3つの第1積層構造体L1と3つの第2積層構造体L2とが積層されている。最上部(最も基板11から遠い側)の第1積層構造体L1上には、コンタクト層18が積層されている。
第1積層構造体L1は、活性層13と、第1半導体層14と、第2半導体層15と、を含んでいる。第1積層構造体L1を構成する各層は、下面11b側から、第1半導体層14、活性層13、第2半導体層15の順に積層されている。活性層13は、例えば、量子井戸層と障壁層とがZ軸方向に交互に積層された量子井戸構造を含む層であり、レーザ光Lを発生させる層である。活性層13は、例えば、InGaAs層とInAlAs層とを積層方向(Z軸方向)に沿って交互に複数積層した構造を有している。第1半導体層14は、例えば、n型のAlGaAs層によって形成され得る。第2半導体層15は、例えば、p型のAlGaAs層によって形成され得る。
第2積層構造体L2は、いわゆるトンネルジャンクションであり、第1トンネル接合層16と、第2トンネル接合層17と、を含んでいる。第1トンネル接合層16は、第2トンネル接合層17よりも下面11b側に位置している。第1トンネル接合層16は、例えば、p型ドーパントの高濃度ドープGaAs層によって形成され得る。第2トンネル接合層17は、例えば、n型ドーパントの高濃度ドープGaAs層によって形成され得る。
コンタクト層18は、例えば、p型ドーパントの高濃度ドープGaAs層によって形成され得る。コンタクト層18は、上述した電極35と接触する層である。コンタクト層18の基板11に対向する側とは反対側の表面18aを覆う絶縁層19には、表面18aの少なくとも一部を露出させるための開口部19bが設けられている。図2及び図3に示されるように、開口部19bは、電極35とコンタクト層18とが重なる部分において、X軸方向における頂面12bの中央部に設けられている。Z軸方向から見た場合に、開口部19bは、Y軸方向に延在する長方形状に形成されている。本実施形態では、図2において電極35が窪んだ部分が、開口部19bが形成された部分に対応する。開口部19bにおいて、電極35がコンタクト層18側へと入り込むことによって、電極35の表面が窪んでいる。コンタクト層18の表面18aのうちZ軸方向において開口部19bと重なる領域(すなわち、外部に露出した領域)が、電極35と接触するコンタクト領域CAとして機能する。本実施形態では、絶縁層19がコンタクト層18の表面18aのX軸方向の両側縁部を覆っているため、コンタクト領域CAのX軸方向の長さd1は、頂面12bのX軸方向の長さよりも短くなっている。
サブマウント20は、例えば、シリコンによって形成されたシリコン基板である。サブマウント20の内部には、半導体レーザ素子10を駆動させるための回路が内蔵されてもよい。図4に示されるように、サブマウント20は、矩形板状(直方体状)に形成されている。サブマウント20は、Z軸方向において互いに反対側に位置する上面20a(第3表面)及び下面20b(第6表面)と、Y軸方向において互いに反対側に位置する前面20c(第4表面)及び後面20dと、X軸方向において互いに反対側に位置する側面20e,20fと、を有している。上面20aは、半導体レーザ素子10の基準面R1に対向する面であり、基準面R1と面接触する基準面R2を形成する。本実施形態では、半導体レーザ素子10の基準面R1が、基板11の下面11bに設けられた絶縁層19の表面19aによって形成されているのに対して、サブマウント20の基準面R2は、サブマウント20自体の表面(上面20a)によって形成されている。
サブマウント20は、上面20aに形成された凹部21を有している。凹部21は、半導体レーザ素子10に設けられた複数のメサ部12を配置(収容)するために、上面20aの他の部分よりも下面20b側に窪むように形成された部分である。凹部21は、例えばウェットエッチングによって形成され得る。一例として、凹部21は、複数のメサ部12の各々を個別に収容する複数(本実施形態では8つ)の凹部22によって構成されている。すなわち、本実施形態では、上面20aに、複数のメサ部12の各々に対応するようにX軸方向に配列された複数の凹部22が設けられている。各凹部22のY軸方向の長さは、基板11のY軸方向の長さよりも長くされている。互いに隣接する凹部22間には、隔壁部23が設けられている。隔壁部23は、Y軸方向に延在すると共にX軸方向に所定の長さ(すなわち、一定以上の幅)を有し、基準面R2を有している。すなわち、隣接する凹部22同士は、X軸方向に一定以上の間隔を空けて配置されており、この間隔に対応する部分(すなわち、凹部22が形成されていない部分)が、隔壁部23として機能する。
図4、図5及び図6に示されるように、凹部22は、Y軸方向に延在する溝状に形成されている。凹部22は、前面20cまで延びており、前面20cに開口している。凹部22は、Z軸方向に交差する底面22aと、X軸方向に交差する一対の側面22b(第1側面)と、Y軸方向に交差する側面22c(第2側面)と、を有している。なお、図4、図5及び図6は、サブマウント20に半導体レーザ素子10が実装される前の状態を示している。
一対の側面22bは、半導体レーザ素子10がサブマウント20に実装された実装状態において、X軸方向においてメサ部12の側面12cと対向する面である。側面22bは、上面20aにおける凹部22のX軸方向に沿った開口幅が凹部22の底面22aのX軸方向に沿った幅よりも大きくなるように、底面22aに対して傾斜している。すなわち、図6の(A)に示されるように、底面22aに対する側面22bの傾斜角度θ1は、鋭角をなしている。一方、上面20a(基準面R2)と側面22bとがなす角度θ2は、鈍角である。一例として、凹部22がウェットエッチングによって形成されることによって、側面22bは、平面状に形成されている。この場合、傾斜角度θ1と角度θ2とは、「θ1+θ2=180°」の関係を有している。
側面22cは、凹部22の後方に形成された面である。側面22cは、上面20aにおける凹部22のY軸方向に沿った開口幅が凹部22の底面22aのY軸方向に沿った幅よりも大きくなるように、底面22aに対して傾斜している。すなわち、図6の(B)に示されるように、底面22aに対する側面22cの傾斜角度θ3は、鋭角をなしている。一例として、凹部22がウェットエッチングによって形成されることによって、傾斜角度θ3は、傾斜角度θ1と略一致している。
凹部21には、複数のメサ部12の各々に対応する位置に配線部Wが設けられている。一例として、配線部Wは、複数のメサ部12の各々に対応する位置毎に配置された複数の配線31を含んでいる。配線31は、例えばAu等の金属材料によって形成され得る。本実施形態では、メサ部12毎に独立した凹部22が形成されているため、図5に示されるように、凹部22毎に個別の配線31が設けられている。各凹部22において、配線31は、底面22aに沿ってY軸方向に延びている。図4及び図5に示されるように、配線31は、凹部22の内部から凹部22の外側の上面20a上まで延びている。一例として、各配線31は、上面20a上にそれぞれ独立して設けられた電極パッド34まで延びている。すなわち、複数の配線31は、互いに電気的に分離されている。これにより、複数のメサ部12の各々に対して独立して電流を流すこと(すなわち、各メサ部12を独立して駆動させること)が可能となっている。図5及び図6の(B)に示されるように、配線31は、底面22a及び側面22cに沿っている。すなわち、側面22cは、配線31を凹部22の内部から凹部22の外側へと誘導する役割を果たしている。なお、各電極パッド34には、ワイヤボンディング等によって、図示しない電源回路と電気的に接続するためのワイヤが接続され得る。
図5及び図6の(A)に示されるように、各凹部22内において、配線31上には、半田部材33が蒸着等によって設けられている。半田部材33は、例えばSn、Ag、Cu等のリフロー半田付けに適した材料によって形成され得る。
図7を参照して、サブマウント20に対する半導体レーザ素子10の実装工程について説明する。まず、図7のS1に示されるように、各凹部22内の配線31上に半田部材33が配置される。続いて、図7のS2に示されるように、半導体レーザ素子10の各メサ部12の位置と凹部22の位置とを合わせると共に、基準面R1が基準面R2に対向するようにして半導体レーザ素子10をサブマウント20上に載置する。すなわち、各メサ部12の頂面12bに設けられた電極35を、各凹部22に配置された半田部材33の上面と接触させる。続いて、図7のS2に示される状態の半導体レーザ素子10及びサブマウント20をリフロー炉で加熱することにより、半田部材33が溶融し、半導体レーザ素子10がサブマウント20に吸着される。具体的には、半田部材33が溶融して半田部材33のZ軸方向の厚みが減少することにより、半導体レーザ素子10の基準面R1とサブマウント20の基準面R2とが接触するまで、半導体レーザ素子10がサブマウント20側へと移動する。その結果、図7のS3に示されるように、複数のメサ部12の各々が凹部22内に収容されると共に、基準面R1と基準面R2とが面接触した状態となる。また、複数のメサ部12の各々に対応する電極35が、半田部材33を介して、対応する配線31と電気的に接続された状態となる。
図8に示されるように、サブマウント20の上面20aには、図7に示した実装工程においてサブマウント20に対して半導体レーザ素子10を位置合わせするためのアライメントマークMが設けられている。一例として、アライメントマークMは、平面視において十字形状を有している。アライメントマークMは、実装状態における半導体レーザ素子10のX軸方向の両側に配置されている。図8に示されるように、各アライメントマークMのX軸方向における内側端部を側面11e,11fに沿わせることにより、サブマウント20に対する半導体レーザ素子10のX軸方向の位置合わせを行うことが可能となっている。また、一例として、電極32のX軸方向における両側端部には、アライメントマークMに対応する目印(凹部32a)が設けられている。アライメントマークMのうちX軸方向の内側に延びる部分M1が凹部32aとY軸方向において重なるように位置合わせを行うことにより、サブマウント20に対する半導体レーザ素子10のY軸方向の位置合わせを行うことが可能となっている。なお、本実施形態では、このような位置合わせにより、半導体レーザ素子10の前面11cとサブマウント20の前面20cとが略面一となるように、半導体レーザ素子10がサブマウント20に対して配置されるため、前面11cと前面20cとを合わせることによっても、サブマウント20に対する半導体レーザ素子10のY軸方向の位置を決定することができる。ただし、例えば、基板11の前面11cがサブマウント20の前面20cよりも前方又は後方に位置するように半導体レーザ素子10が配置される場合には、上述した部分M1及び凹部32aを目印として用いることにより、半導体レーザ素子10のY軸方向の位置を適切に決定することができる。
図9を参照して、実装状態における各メサ部12の位置関係について説明する。図9は、複数(本実施形態では8つ)のメサ部12のうち互いにX軸方向に隣接する2つのメサ部12を含む部分をY軸方向(前方)から見た側面図である。ここでは、2つのメサ部12のうち前方から見て左側のメサ部12を第1メサ部12Aとし、右側のメサ部12を第2メサ部12Bとする。
第1メサ部12Aが収容された凹部22に配置された配線31である第1配線31Aは、第2メサ部12Bが収容された凹部22に配置された配線31である第2配線31Bと電気的に分離(絶縁)されている。言い換えれば、複数の配線31は、X軸方向に互いに隣接して配置され且つ互いに電気的に分離された第1配線31A及び第2配線31Bを含んでいる。また、第1配線31Aと電気的に接続された半田部材33が第2配線31Bと電気的に接続された半田部材33と接触しないように配置されていることにより、第1配線31Aと電気的に接続された第1メサ部12Aは、第2配線31Bと電気的に接続された第2メサ部12Bと電気的に分離されている。なお、本実施形態では、上述した通り、複数の配線31は、互いに電気的に分離されている。従って、複数の配線31のうちX軸方向に互いに隣接して配置された任意の2つの配線31が、第1配線31A及び第2配線31Bに該当する。
ここで、メサ部12の側面12cと基準面R1との境界を基端部Pと表し、第1メサ部12Aに対して第2メサ部12Bが位置する側の第1メサ部12Aの側面12cと基準面R1との境界である基端部Pを第1基端部P1と表し、第2メサ部12Bに対して第1メサ部12Aが位置する側の第2メサ部12Bの側面12cと基準面R1との境界である基端部Pを第2基端部P2と表す。このとき、第1基端部P1から第2基端部P2までのX軸方向の距離d2は、メサ部12のコンタクト領域CAのX軸方向の長さd1よりも長い。
また、Y軸方向から見た場合に、凹部22の側面22bと当該側面22bに対向するメサ部12の側面12cとのX軸方向の距離d4は、Z軸方向に沿って頂面12bからメサ部12の側面12cと基準面R1との境界である基端部Pに向かうにつれて短くなっている。
[作用効果]
以下、上述した半導体レーザ装置1Aの作用効果について説明する。
以下、上述した半導体レーザ装置1Aの作用効果について説明する。
(第1の作用効果)
半導体レーザ装置1Aでは、半導体レーザ素子10の基準面R1(本実施形態では、絶縁層19の表面19a)がサブマウント20の基準面R2と面接触している。これにより、サブマウント20の基準面R2に対する複数の発光点(例えば、光出射端面12aのZ軸方向における中心)の位置を精度良く揃えることができる。また、半導体レーザ装置1Aは、互いに電気的に分離される(すなわち、互いに独立して駆動可能に構成される)と共に互いに隣接して配置された第1メサ部12A及び第2メサ部12Bを有する。ここで、コンタクト領域CAの幅(X軸方向の長さd1)によって、必要となる半田部材33の量(例えば、X軸方向における半田部材33の幅)が変化し得るが、半導体レーザ装置1Aでは、第1メサ部12Aと第2メサ部12Bとの間隔(すなわち、X軸方向における第1基端部P1から第2基端部P2までの距離d2)がコンタクト領域CAの長さd1よりも長くされている。これにより、コンタクト領域CAの長さd1に応じて必要となる半田部材33の量に対して、第1メサ部12Aと第2メサ部12Bとの間隔を十分に確保することができる。その結果、リフロー半田付けによって半導体レーザ素子10をサブマウント20に実装する際に、第1メサ部12Aに対応する半田部材33と第2メサ部12Bに対応する半田部材33とが溶けて互いに接触してしまうことを好適に防止できる。従って、半導体レーザ装置1Aによれば、互いに独立して駆動可能に構成されたチャンネル間の短絡を防止しつつ、複数の発光点の位置合わせを精度良く実行することができる。
半導体レーザ装置1Aでは、半導体レーザ素子10の基準面R1(本実施形態では、絶縁層19の表面19a)がサブマウント20の基準面R2と面接触している。これにより、サブマウント20の基準面R2に対する複数の発光点(例えば、光出射端面12aのZ軸方向における中心)の位置を精度良く揃えることができる。また、半導体レーザ装置1Aは、互いに電気的に分離される(すなわち、互いに独立して駆動可能に構成される)と共に互いに隣接して配置された第1メサ部12A及び第2メサ部12Bを有する。ここで、コンタクト領域CAの幅(X軸方向の長さd1)によって、必要となる半田部材33の量(例えば、X軸方向における半田部材33の幅)が変化し得るが、半導体レーザ装置1Aでは、第1メサ部12Aと第2メサ部12Bとの間隔(すなわち、X軸方向における第1基端部P1から第2基端部P2までの距離d2)がコンタクト領域CAの長さd1よりも長くされている。これにより、コンタクト領域CAの長さd1に応じて必要となる半田部材33の量に対して、第1メサ部12Aと第2メサ部12Bとの間隔を十分に確保することができる。その結果、リフロー半田付けによって半導体レーザ素子10をサブマウント20に実装する際に、第1メサ部12Aに対応する半田部材33と第2メサ部12Bに対応する半田部材33とが溶けて互いに接触してしまうことを好適に防止できる。従って、半導体レーザ装置1Aによれば、互いに独立して駆動可能に構成されたチャンネル間の短絡を防止しつつ、複数の発光点の位置合わせを精度良く実行することができる。
さらに、半導体レーザ装置1Aは、上記第1の作用効果に関連して、以下の構成を備えている。すなわち、図9に示されるように、凹部21は、第1メサ部12Aが収容(配置)される凹部22である第1凹部22Aと、第2メサ部12Bが収容される凹部22である第2凹部22Bと、を有している。また、第1凹部22Aと第2凹部22Bとの間に形成された隔壁部23(すなわち、第1凹部22Aと第2凹部22Bとを分離するようにY軸方向に延在する部分)の基準面R2のX軸方向の長さd3は、コンタクト領域CAのX軸方向の長さd1よりも長い。図9に示されるように、本実施形態では、基準面R2と凹部22の側面22bとの境界部Bは、X軸方向において、基端部Pから離間している。このため、「d2>d3>d1」の関係が成立している。なお、長さd3は、基準面R2及び第1凹部22Aの境界部B(第2凹部22B側の境界部B)と基準面R2及び第2凹部22Bの境界部B(第1凹部22A側の境界部B)とのX軸方向の長さである。上記構成によれば、第1メサ部12Aと第2メサ部12Bとを互いに異なる凹部22(第1凹部22A及び第2凹部22B)に収容すると共に第1凹部22Aと第2凹部22Bとの間の隔壁部23の幅(長さd3)を十分に確保することにより、リフロー時に溶けた第1メサ部12A(又は第2メサ部12B)に対応する半田部材33が隔壁部23を越えて第2メサ部12B(又は第1メサ部12A)に対応する半田部材33と接触(短絡)することを好適に防止できる。
また、凹部21は、複数のメサ部12の各々が個別に収容される複数の凹部22によって構成されており、互いに隣接する凹部22間に隔壁部23が設けられている。上記構成によれば、2以上のメサ部12が収容される単一の凹部22を含む構成と比較して、隣接するメサ部12間の短絡を好適に防止できると共に、複数のチャンネルの独立駆動の信頼性を向上させることができる。さらに、各凹部22間に設けられた隔壁部23において基準面R1と基準面R2との接触面積を増やすことができるため、半導体レーザ素子10(主に基板11)にかかる応力を低減でき、半導体レーザ素子10の反りの発生を抑制することができる。特に、本実施形態のようにX軸方向に複数のメサ部12が配列されることによって基板11のX軸方向の長さが長くなると、X軸方向に対して基板11の反りが発生し易くなる。上記構成は、このような場合に特に有効である。
なお、本実施形態では、第1メサ部12Aと第2メサ部12Bとが別々の凹部22に収容されることによって、第1メサ部12Aに対応する半田部材33と第2メサ部12Bに対応する半田部材33とが互いに接触することが効果的に防止されるが、上記第1の作用効果を得る上で、第1メサ部12Aと第2メサ部12Bとが別々の凹部22に収容されることは必須ではない。例えば、図10に示されるように、凹部21は、複数(ここでは8つ)のメサ部12を収容する単一の凹部22Cによって構成されてもよい。この場合、単一の凹部22Cの底面22a上に複数のメサ部12の各々に対応する複数の配線31が設けられる。すなわち、複数のメサ部12の各々に対応する位置に設けられた配線部Wは、複数のメサ部12の各々に対応する位置毎に配置され、互いに電気的に分離された複数の配線31を含む。或いは、図11に示されるように、凹部21は、複数(ただし、メサ部12の総数よりも少ない数)の凹部22を有すると共に、2以上(ここでは3つ)のメサ部12を収容する少なくとも1つの凹部22Dを有してもよい。上述した「d2>d1」が成立する構成によれば、仮に第1メサ部12Aと第2メサ部12Bとが同一の凹部に収容される場合(すなわち、第1メサ部12Aと第2メサ部12Bとの間に隔壁部23が設けられない場合)においても、第1メサ部12Aに対応する半田部材33と第2メサ部12Bに対応する半田部材33との短絡の発生を効果的に防止することができる。
また、図11に示される例のように、隣接するメサ部12間の距離(上述した距離d2に対応する距離)は、全てのメサ部12間で均一でなくてもよい。図11の例では、凹部22Dに収容された最も右側に位置するメサ部12と凹部22Dの右側に隣接する凹部22に収容された最も左側に位置するメサ部12との距離d21は、凹部22Dに収容された3つのメサ部12間の距離d22よりも長くされている。例えば、電気的に分離する必要があるメサ部12間の距離を、電気的に分離する必要のないメサ部12間の距離よりも長くしてもよい。また、図11の例において、凹部22Dに収容された3つのメサ部12によって同一のチャンネルが構成される場合には、当該3つのメサ部12に共通の1つの配線(当該3つのメサ部12と重なるようにX軸方向に幅広に形成された配線)が凹部22D内に設けられてもよい。この場合、当該1つの配線を介して、当該3つのメサ部12が互いに電気的に接続される。
また、本実施形態では、配線部Wは、複数のメサ部12の各々に対応する位置毎に配置され、互いに電気的に分離された複数の配線31を含み、複数の配線31のうちX軸方向に互いに隣接して配置された任意の2つの配線31が、上述した第1配線31A及び第2配線31Bに該当する。上記構成によれば、互いに隣接する任意の2つのメサ部12間において、メサ部12同士の間隔(すなわち、距離d2)がコンタクト領域CAの幅(長さd1)よりも長くされているため、各チャンネル間の短絡を防止しつつ、複数のメサ部12(チャンネル)を独立して駆動させることが可能となる。
なお、複数の配線31のうちのいくつかの配線31は、互いに電気的に接続されていてもよい。例えば、上述したように、同一のチャンネルに属する2以上のメサ部12に共通の配線31が形成されてもよい。この場合、当該いくつかの配線31に対応する半田部材33同士が接触しても問題ない。従って、当該いくつかの配線31に対応するメサ部12同士がX軸方向に互いに隣接する場合において、当該メサ部12同士の間隔(距離d2)は、コンタクト領域CAの幅(長さd1)よりも短くされてもよい。すなわち、上記第1の作用効果を得る上で、上述した「d2>d1」の関係は、互いに電気的に分離された2つの配線31(第1配線31A及び第2配線31B)に対応する第1メサ部12Aと第2メサ部12Bとの間で成立していればよい。
(第2の作用効果)
半導体レーザ装置1Aでは、半導体レーザ素子10の基準面R1がサブマウント20の基準面R2と面接触している。これにより、サブマウント20の基準面R2に対する複数の発光点(例えば、光出射端面12aのZ軸方向における中心)の位置を精度良く揃えることができる。また、半導体レーザ装置1Aでは、互いに隣接する凹部22間に設けられた隔壁部23において基準面R1と基準面R2との接触面積を増やすことができるため、半導体レーザ素子10(主に基板11)にかかる応力を低減でき、半導体レーザ素子10の反りの発生を抑制することができる。より具体的には、半導体レーザ装置1Aでは、半導体レーザ素子のX軸方向における両側の領域(最も左側の凹部22よりもさらに左側の領域と、最も右側の凹部22よりもさらに右側の領域)において基準面R1と基準面R2とが接触していることに加えて、隔壁部23においても基準面R1と基準面R2とが接触するため、半導体レーザ素子10(主に基板11)にかかる応力を効果的に低減できる。ここで、半導体レーザ素子10の反りの発生を抑制する観点からは、基準面R1と基準面R2との接触面をなるべく大きくすることが好ましい。そのためには、凹部22の側面22b及び基準面R2の境界部Bと当該側面22bに対向するメサ部12の基端部PとのX軸方向の距離をなるべく短くすることが好ましい。しかし、このように境界部Bと基端部Pとの距離を短くした場合、凹部22の側面22bとメサ部12の側面12cとが接触し易くなり、メサ部12が破損するリスクが高くなる。そこで、半導体レーザ装置1Aでは、凹部22の側面22bとメサ部12の側面12cとのX軸方向の距離d4(図9参照)が、Z軸方向に沿って頂面12bから基端部Pに向かうにつれて短くなるように構成されている。上記構成によれば、凹部22の側面22bとメサ部12の側面12cとが接触するリスクを低減しつつ、境界部Bと基端部Pとの距離をなるべく短くすることができる。その結果、半導体レーザ素子10の破損を抑制しつつ、基準面R1と基準面R2との接触面をなるべく大きくすることができる。従って、半導体レーザ装置1Aによれば、半導体レーザ素子10の反りの発生を好適に抑制しつつ、複数の発光点の位置合わせを精度良く実行することができる。
半導体レーザ装置1Aでは、半導体レーザ素子10の基準面R1がサブマウント20の基準面R2と面接触している。これにより、サブマウント20の基準面R2に対する複数の発光点(例えば、光出射端面12aのZ軸方向における中心)の位置を精度良く揃えることができる。また、半導体レーザ装置1Aでは、互いに隣接する凹部22間に設けられた隔壁部23において基準面R1と基準面R2との接触面積を増やすことができるため、半導体レーザ素子10(主に基板11)にかかる応力を低減でき、半導体レーザ素子10の反りの発生を抑制することができる。より具体的には、半導体レーザ装置1Aでは、半導体レーザ素子のX軸方向における両側の領域(最も左側の凹部22よりもさらに左側の領域と、最も右側の凹部22よりもさらに右側の領域)において基準面R1と基準面R2とが接触していることに加えて、隔壁部23においても基準面R1と基準面R2とが接触するため、半導体レーザ素子10(主に基板11)にかかる応力を効果的に低減できる。ここで、半導体レーザ素子10の反りの発生を抑制する観点からは、基準面R1と基準面R2との接触面をなるべく大きくすることが好ましい。そのためには、凹部22の側面22b及び基準面R2の境界部Bと当該側面22bに対向するメサ部12の基端部PとのX軸方向の距離をなるべく短くすることが好ましい。しかし、このように境界部Bと基端部Pとの距離を短くした場合、凹部22の側面22bとメサ部12の側面12cとが接触し易くなり、メサ部12が破損するリスクが高くなる。そこで、半導体レーザ装置1Aでは、凹部22の側面22bとメサ部12の側面12cとのX軸方向の距離d4(図9参照)が、Z軸方向に沿って頂面12bから基端部Pに向かうにつれて短くなるように構成されている。上記構成によれば、凹部22の側面22bとメサ部12の側面12cとが接触するリスクを低減しつつ、境界部Bと基端部Pとの距離をなるべく短くすることができる。その結果、半導体レーザ素子10の破損を抑制しつつ、基準面R1と基準面R2との接触面をなるべく大きくすることができる。従って、半導体レーザ装置1Aによれば、半導体レーザ素子10の反りの発生を好適に抑制しつつ、複数の発光点の位置合わせを精度良く実行することができる。
さらに、半導体レーザ装置1Aは、上記第2の作用効果に関連して、以下の構成を備えている。すなわち、複数の凹部22が、複数のメサ部12の各々を個別に収容している。上記構成によれば、各凹部22間に設けられた複数の隔壁部23において基準面R1と基準面R2との接触面積を増やすことができるため、半導体レーザ素子10(主に基板11)にかかる応力をより一層低減でき、半導体レーザ素子10の反りの発生を効果的に抑制することができる。
また、配線部Wは、複数のメサ部12の各々に対応する位置毎に配置され、互いに電気的に分離された複数の配線31を含む。上記構成によれば、互いに隣接する任意の2つのメサ部12間を凹部22間に設けられた隔壁部23で分離することによって、各チャンネル間の短絡を防止しつつ、複数のメサ部12(チャンネル)を独立して駆動させることが可能となる。
また、図9に示されるように、基準面R1に対するメサ部12の側面12cの傾斜角度θ4は、凹部22の底面22aに対する側面22bの傾斜角度θ1(図6の(A)参照)よりも小さい。すなわち、本実施形態では、メサ部12の側面12cと凹部22の側面22bとがいずれも平面状に設けられると共に、側面12cの傾斜角度θ4と側面22bの傾斜角度θ1とが「θ4<θ1」の関係を有することにより、距離d4が頂面12bから基端部Pに向かうにつれて短くなる構成が実現されている。上記構成によれば、凹部22の側面22bとメサ部12の側面12cとの距離d4が頂面12bから基端部Pに向かうにつれて短くなる構成を、容易且つ確実に実現することができる。
また、図6の(A)に示されるように、基準面R2と凹部22の側面22bとがなす角度θ2は、鈍角である。上記構成によれば、仮に半導体レーザ素子10をサブマウント20に実装する際に基準面R2と側面22bとが交わる部分(すなわち、境界部B)にメサ部12の側面12cが接触してしまったとしても、基準面R2と側面22cとがなす角度を90度以下に構成する場合(すなわち、境界部Bの尖り具合が大きい場合)と比較して、メサ部12の側面12cに対する衝撃を低減できる。従って、上記構成によれば、実装時における半導体レーザ素子10の破損のリスクを低減できる。
また、基準面R2と凹部22の側面22bとの境界部Bは、X軸方向において、基端部Pから離間している。上記構成によれば、境界部Bと基端部Pとが接触しないように半導体レーザ素子10がサブマウント20に実装されるため、実装時においてメサ部12の側面12cが境界部Bに接触するリスクを低減し、半導体レーザ素子10の破損を好適に防止することができる。
なお、上記第2の作用効果を得る上で、メサ部12を個別に収容する複数の凹部22が設けられることは必須ではない。上記第2の作用効果を得るためには、少なくとも2つの凹部22とその間に配置される少なくとも1つの隔壁部23とが設けられていればよい。
(他の作用効果)
半導体レーザ素子10の基板11の上面11aには、複数のメサ部12に共通の単一の電極32が設けられている。上記構成によれば、基板11の裏面(上面11a)側に配置されるカソード電極(電極32)を複数のメサ部12間で共通化することにより、ワイヤボンディングによって電極32に接続されるワイヤの本数を削減できるため、ワイヤボンディングによる半導体レーザ素子10の損傷を抑制できる。より具体的には、仮に電極32がチャンネル毎に分離されていると、少なくともチャンネル数分のワイヤが必要になるが、本実施形態によれば、少なくとも1本のワイヤを電極32に接続すればよい。
半導体レーザ素子10の基板11の上面11aには、複数のメサ部12に共通の単一の電極32が設けられている。上記構成によれば、基板11の裏面(上面11a)側に配置されるカソード電極(電極32)を複数のメサ部12間で共通化することにより、ワイヤボンディングによって電極32に接続されるワイヤの本数を削減できるため、ワイヤボンディングによる半導体レーザ素子10の損傷を抑制できる。より具体的には、仮に電極32がチャンネル毎に分離されていると、少なくともチャンネル数分のワイヤが必要になるが、本実施形態によれば、少なくとも1本のワイヤを電極32に接続すればよい。
図6の(A)に示されるように、凹部22の側面22bは、サブマウント20の上面20aにおける凹部22のX軸方向に沿った開口幅が凹部22の底面22aのX軸方向に沿った幅よりも大きくなるように、底面22aに対して傾斜している。すなわち、底面22aに対する側面22bの傾斜角度θ1が鋭角とされている。上記構成によれば、凹部22の側面22bを底面22a側から開口端側に向かって幅広となる傾斜面として構成することにより、凹部22内において、リフロー時に溶けた半田部材33を逃がすためのスペースを適切に確保することができる。
図4及び図5に示されるように、配線31は、凹部22の内部から凹部22の外側の上面20a上まで延びている。上記構成によれば、半導体レーザ素子10のメサ部12側の電極(アノード電極)を電極35及び配線31を介してサブマウント20の表面(上面20a)まで引き出すことができるため、半導体レーザ素子10に電流を流すための構成の実装が容易となる。より具体的には、アノード電極である電極35と電気的に接続された電極パッド34を、カソード電極である電極32と同じ側(サブマウント20の上面20aが向く側)に露出させることができる。これにより、電極32及び電極パッド34に対するワイヤボンディングの作業性を向上させることができる。
図5に示されるように、配線31(配線部W)は、凹部22の内部から凹部22の外側までY軸方向に沿って延びている。また、図6の(B)に示されるように、凹部22は、Y軸方向に交差し、配線31が沿う側面22cを有している。また、側面22cは、上面20aにおける凹部22のY軸方向に沿った開口幅が凹部22の底面22aのY軸方向に沿った幅よりも大きくなるように、底面22aに対して傾斜している。すなわち、底面22aに対する側面22cの傾斜角度θ3が鋭角とされている。仮に側面22cが上記のように傾斜していない場合(例えば、側面22cが凹部22の底面22aに対して垂直な面である場合)、底面22aと側面22cとの境界及び側面22cと上面20aとの境界において、配線31が段差状に折れ曲がってしまうため、断線が生じ易くなる。一方、上記のように側面22cを傾斜面として構成し、傾斜した側面22cに配線31を沿わせることにより、配線31が段差状に折れ曲がることを回避し、断線の発生を抑制することができる。
図3に示されるように、複数のメサ部12の各々は、メサ部12毎に独立して設けられた一以上の活性層13を有している。上記構成によれば、複数のメサ部12間において活性層13が空間的に分離されるため、メサ部12間の光学的クロストークの発生を確実に防止することができる。また、本実施形態のように、各メサ部12に複数(本実施形態では4つ)の活性層13を設けた場合には、各メサ部12をスタック型の半導体レーザ素子として機能させることができ、レーザ出力の増強を図ることができる。
サブマウント20は、シリコンによって形成されている。上記構成によれば、例えばエッチングプロセスによって、凹部21を精度良く形成することができる。
サブマウント20は、上面20aと接続され、Y軸方向に交差する前面20cを有し、凹部22は、前面20cまで延びており、前面20cに開口している。上記構成によれば、凹部22のうち前面20cに開口した部分から、凹部22に収容された各メサ部12の光出射端面12aを外部に露出させることができるため、光出射端面12aからY軸方向に沿って出射されるレーザ光Lの取り出し効率を向上させることができる。
サブマウント20の上面20aには、サブマウント20に対して半導体レーザ素子10を位置合わせするためのアライメントマークMが設けられている。上記構成によれば、サブマウント20に半導体レーザ素子10を実装する際に、サブマウント20に対する半導体レーザ素子10の位置合わせを容易且つ正確に行うことが可能となる。
Z軸方向における基板11の厚さ(上面11aから下面11bまでの長さ)は、Z軸方向におけるサブマウント20の厚さ(上面20aから下面20bまでの長さ)よりも小さい。上記構成によれば、半導体レーザ素子10よりも厚みのあるサブマウント20を用いることにより、半導体レーザ素子10に対するサブマウント20の歪み(すなわち、基準面R2の歪み)の発生を好適に抑制できる。その結果、サブマウント20の基準面R2に対する複数の発光点の位置をより一層精度良く揃えることができる。
基板11は、X軸方向に交差する側面11e,11fを有している。また、X軸方向において側面11e,11fから最も近い位置に設けられた凹部22の端部(境界部B)から側面11e,11fまでのX軸方向の距離d5(図7参照)は、基準面R1からメサ部12の頂面12bまでのZ軸方向の距離d6(図9参照)よりも長い。上記構成によれば、基板11のうちX軸方向において凹部22が設けられた領域よりも外側において、基準面R1と基準面R2とが接触する部分の面積を一定以上確保することができるため、サブマウント20に対する半導体レーザ素子10の支持安定性を向上させることができる。
なお、一例として、距離d6(すなわち、メサ部12の高さ)は、凹部22の深さ(すなわち、基準面R2から底面22aまでのZ軸方向の長さ)の1/2よりも短くなるように設定されてもよい。この場合、凹部22においてメサ部12によって占有されない空間を好適に確保できるため、例えばリフロー時に溶けた半田部材33を溜めるためのスペースを適切に確保できる。また、メサ部12の高さに対して凹部22を深くすることで、メサ部12と凹部22との接触のリスクを低減できるが、メサ部12の高さに対して凹部22を深くし過ぎると、配線31と電極35との確実なコンタクトを図るために必要な半田部材33の量(高さ)が増大する。上記観点から、距離d6は、凹部22の深さの1/3よりも長くなるように設定されてもよい。
[第2実施形態]
図12及び図13を参照して、第2実施形態の半導体レーザ装置1Bについて説明する。半導体レーザ装置1Bは、第1実施形態の半導体レーザ装置1Aに加えて、支持基板40と、レンズ部材50(光学素子)と、を更に備える点において、半導体レーザ装置1Aと相違している。なお、図13では、半導体レーザ素子10、サブマウント20、支持基板40、及びレンズ部材50の位置関係を説明するために必要な要素のみを図示し、上記説明のために不要な要素(配線31、電極パッド34等)の図示を適宜省略している。
図12及び図13を参照して、第2実施形態の半導体レーザ装置1Bについて説明する。半導体レーザ装置1Bは、第1実施形態の半導体レーザ装置1Aに加えて、支持基板40と、レンズ部材50(光学素子)と、を更に備える点において、半導体レーザ装置1Aと相違している。なお、図13では、半導体レーザ素子10、サブマウント20、支持基板40、及びレンズ部材50の位置関係を説明するために必要な要素のみを図示し、上記説明のために不要な要素(配線31、電極パッド34等)の図示を適宜省略している。
支持基板40は、サブマウント20及びレンズ部材50を支持する部材である。一例として、支持基板40は、X軸方向の長さがサブマウント20と一致し、Y軸方向の長さがサブマウント20よりも長い矩形板状に形成されている。一例として、支持基板40のX軸方向に交差する一対の側面がサブマウント20の側面20f,20eと略面一になると共に、支持基板40の後方を向く面がサブマウント20の後面20dと略面一になるように、支持基板40上にサブマウント20が配置されている。
レンズ部材50は、Y軸方向において半導体レーザ素子10及びサブマウント20と対向する位置に配置されている。レンズ部材50は、複数のメサ部12の各々の光出射端面12a(図1参照)から出射されるレーザ光Lを外部に向けて導光する。本実施形態では、図13に示されるように、レンズ部材50は、各メサ部12の光出射端面12aから一定の拡がり角を有して出射されるレーザ光Lを集光又はコリメートする役割を果たす。レンズ部材50は、レンズ機能を有する本体部51と、本体部51の下側(支持基板40が位置する側)に設けられた下部フランジ52と、本体部51の上側に設けられた上部フランジ53と、を有している。下部フランジ52及び上部フランジ53は、同様の矩形板状を有している。レンズ部材50は、下部フランジ52の矩形状の下面によって構成される下面50aと、本体部51、下部フランジ52、及び上部フランジ53の後面によって形成された光入射面50bと、本体部51に形成された光入射面50bとは反対側の光出射面50cと、を有している。下面50a及び光入射面50bは、いずれも平坦面である。光出射面50cは、X軸方向から見て外側(前方)に凸な曲面状を有するレンズ面である。光入射面50bは、複数のメサ部12の各々の光出射端面12aから出射されるレーザ光Lが入射される面である。光入射面50bは、サブマウント20の前面20cと面接触している。
支持基板40は、サブマウント20及びレンズ部材50を支持する支持面40aを有している。支持面40aは、サブマウント20の下面20bと面接触してサブマウント20を支持する第1支持面40a1と、レンズ部材50の下面50aと面接触してレンズ部材50を支持する第2支持面40a2と、を有している。なお、本実施形態では、第1支持面40a1と第2支持面40a2とは、面一に連続しているが、第1支持面40a1の高さ位置(Z軸方向における位置)と第2支持面40a2の高さ位置とは、互いに異なっていてもよい。すなわち、支持基板40は、第1支持面40a1と第2支持面40a2とを接続するXZ平面に平行な接続面を有していてもよい。
半導体レーザ装置1Bによれば、半導体レーザ素子10が搭載されたサブマウント20とレンズ部材50とが、支持基板40の第1支持面40a1及び第2支持面40a2と面接触して支持されるため、半導体レーザ素子10及びレンズ部材50の高さ位置(すなわち、支持基板40の支持面40a(第1支持面40a1及び第2支持面40a2)を基準とする各部材の高さ位置)を容易且つ精度良く合わせることができる。ここで、図13に示されるように、サブマウント20のZ軸方向の厚さをTと表し、レンズ部材50の中心軸の下面50aからの高さをHと表す。この場合、基準面R1からメサ部12の頂面12bまでのZ軸方向の距離d6(図9参照)と上述した厚さT及び高さHとの間で「H=T-d6/2」の関係が成立するように厚さTを調整することにより、複数の発光点(光出射端面12aのZ軸方向における中心)の高さ位置をレンズ部材50の中心位置に容易に合わせることができる。なお、上記の高さ位置の調整は、支持基板40の第1支持面40a1に対する第2支持面40a2の高さ位置を調整することによって行われてもよい。いずれにしても、支持基板40の支持面40a上にサブマウント20及びレンズ部材50を載置するだけで、半導体レーザ素子10及びレンズ部材50の高さ位置を容易且つ適切に合わせることが可能となる。
また、半導体レーザ装置1Bでは、Y軸方向において互いに対向するサブマウント20の前面20cとレンズ部材50の光入射面50bとを面接触させることにより、Y軸方向における光出射端面12aと光入射面50bとの距離を精度良く調整することができる。すなわち、サブマウント20に半導体レーザ素子10を実装する際に、Y軸方向における光出射端面12aから前面20cまでの距離を調整することにより、光出射端面12aから光入射面50bまでの距離を調整することができる。例えば、各メサ部12の光出射端面12aを基板11の前面11cと面一になるように構成し、基板11の前面11cとサブマウント20の前面20cとが面一になるように半導体レーザ素子10をサブマウント20に実装した場合、光出射端面12aは、サブマウント20の前面20cと面一となる。この場合、サブマウント20の前面20cと光入射面50bとを面接触させることにより、各メサ部12の光出射端面12aを光入射面50bに面接触させることができる。
また、半導体レーザ装置1Aを説明した際に述べた通り、本実施形態では、凹部21のY軸方向の長さは、半導体レーザ素子10のY軸方向の長さよりも長い。上記構成によれば、凹部21のうちY軸方向において半導体レーザ素子10(メサ部12)と重ならない空間に、リフロー時に溶けた半田部材33を逃すことが可能となる。また、レンズ部材50の焦点距離に応じて、サブマウント20に対する半導体レーザ素子10のY軸方向の位置を調整することが可能となる。すなわち、上記構成によれば、メサ部12がサブマウント20と干渉しない範囲で、半導体レーザ素子10の前面11cがサブマウント20の前面20cよりも後方に位置するように、半導体レーザ素子10をサブマウント20に対して配置することが可能となる。これにより、各メサ部12の前方の光出射端面12aと光入射面50bとの距離を適切に調整することが可能となる。
[第3実施形態]
図14及び図15を参照して、第3実施形態の半導体レーザ装置1Cについて説明する。半導体レーザ装置1Cは、第2実施形態の半導体レーザ装置1Bに加えて、モールド樹脂60を更に備える点において、半導体レーザ装置1Bと相違している。なお、図15では、図13と同様に、半導体レーザ素子10、サブマウント20、支持基板40、レンズ部材50、及びモールド樹脂60の位置関係を説明するために必要な要素のみを図示し、上記説明のために不要な要素(配線31、電極パッド34等)の図示を適宜省略している。
図14及び図15を参照して、第3実施形態の半導体レーザ装置1Cについて説明する。半導体レーザ装置1Cは、第2実施形態の半導体レーザ装置1Bに加えて、モールド樹脂60を更に備える点において、半導体レーザ装置1Bと相違している。なお、図15では、図13と同様に、半導体レーザ素子10、サブマウント20、支持基板40、レンズ部材50、及びモールド樹脂60の位置関係を説明するために必要な要素のみを図示し、上記説明のために不要な要素(配線31、電極パッド34等)の図示を適宜省略している。
モールド樹脂60は、支持基板40上において、レンズ部材50、サブマウント20、及び半導体レーザ素子10を覆うように形成されている。半導体レーザ装置1Cは、このようなモールド樹脂60を備えることにより、全体として直方体状の外形を有している。モールド樹脂60は、例えば、トランスファーモールド、コンプレッションモールド等の樹脂成形技術によって形成され得る。モールド樹脂60の材料としては、例えばエポキシ樹脂、シリコーン樹脂等が挙げられる。
半導体レーザ装置1Cによれば、モールド樹脂60によって、支持基板40上に配置された各部材(レンズ部材50、サブマウント20、及び半導体レーザ素子10)の位置関係を固定することができるため、各部材の位置関係のずれが発生することを防止できる。また、モールド樹脂60によって各部材を適切に保護することができる。
[変形例]
以上、本開示の実施形態及びいくつかの変形例について説明したが、本開示は、上記実施形態及び各変形例で示した構成に限られない。各構成の材料及び形状には、上述した具体的な材料及び形状に限らず、上述した以外の様々な材料及び形状を採用することができる。また、上記実施形態及び各変形例に含まれる一部の構成は、適宜省略又は変更されてもよいし、任意に組み合わせることが可能である。
以上、本開示の実施形態及びいくつかの変形例について説明したが、本開示は、上記実施形態及び各変形例で示した構成に限られない。各構成の材料及び形状には、上述した具体的な材料及び形状に限らず、上述した以外の様々な材料及び形状を採用することができる。また、上記実施形態及び各変形例に含まれる一部の構成は、適宜省略又は変更されてもよいし、任意に組み合わせることが可能である。
例えば、凹部22は、ウェットエッチング以外の方法で形成されてもよい。この場合、傾斜角度θ1と傾斜角度θ3とは異なっていてもよい。また、凹部22の側面22bの傾斜角度θ1は、側面22bのZ軸方向における全域において一定でなくてもよい。例えば、側面22bは、上面20a側から底面22a側に向かうにつれて、底面22aに対する傾斜角度が段階的に変化するように形成されてもよい。また、側面22bは、平面状でなくてもよく、例えば曲面状であってもよい。側面22bについて上述した内容は、側面22cについても同様にあてはまる。
また、第2実施形態及び第3実施形態では、光学素子の例としてレンズ部材50を説明したが、光学素子は、例えば、光学フィルタ、体積型ホログラフィック回折格子(VBG)等のレンズ以外の部材であってもよい。すなわち、光学素子は、支持基板40の第2支持面40a2と面接触して支持されることが可能な下面(下面50aに相当する面)を有していればよく、半導体レーザ装置に組み込まれる光学素子の種類は特に限定されない。
また、上記実施形態では、各メサ部12は、凹部22内に完全に収容されたが、メサ部12の一部が凹部22の外側に配置されてもよい。すなわち、凹部22には、メサ部12の少なくとも一部が配置されていればよい。例えば、メサ部12の前側の光出射端面12aは、サブマウント20の前面20cよりも前方に突出してもよい。また、例えば、半導体レーザ素子10の基準面R1が上記実施形態よりも下方に形成される場合(例えば、絶縁層19の表面19aに設けられた他の部材の表面等によって基準面R1が形成される場合)には、メサ部12の一部(Z軸方向における基端部P側の一部)が凹部22の外側に配置されてもよい。
1A,1B,1C…半導体レーザ装置、10…半導体レーザ素子、11…基板、11a…上面(第1表面)、11b…下面(第2表面)、11e,11f…側面(第5表面)、12…メサ部、12a…光出射端面、12A…第1メサ部、12B…第2メサ部、12b…頂面、12c…側面、13…活性層、18…コンタクト層、20…サブマウント(マウント部材)、20a…上面(第3表面)、20b…下面(第6表面)、20c…前面(第4表面)、21,22,22C,22D…凹部、22a…底面、22b…側面(第1側面)、22c…側面(第2側面)、22A…第1凹部、22B…第2凹部、23…隔壁部、31…配線、31A…第1配線、31B…第2配線、32…電極(第2電極)、33…半田部材、35…電極(第1電極)、40…支持基板、40a1…第1支持面、40a2…第2支持面、50…レンズ部材(光学素子)、50b…光入射面、60…モールド樹脂、CA…コンタクト領域、M…アライメントマーク、P1…第1基端部、P2…第2基端部、R1…基準面(第1基準面)、R2…基準面(第2基準面)、W…配線部。
Claims (18)
- 第1方向において互いに反対側に位置する第1表面及び第2表面を有する基板と、前記第1方向に直交する第2方向に交差する光出射端面を有し、前記第2表面に形成された第1基準面に対して前記第1方向に突出すると共に前記第2方向に延在するように形成された複数のメサ部と、を有する半導体レーザ素子と、
前記第1基準面に対向する第2基準面を形成する第3表面と、前記第3表面に形成され、前記複数のメサ部が配置される凹部と、を有するマウント部材と、
を備え、
前記メサ部は、前記凹部の底面に対向する頂面と、前記第1方向及び前記第2方向に直交する第3方向において互いに反対側に位置する一対の側面と、を有し、
前記メサ部の前記頂面には、前記メサ部の前記頂面側に設けられたコンタクト層と電気的に接続された第1電極が設けられており、
前記凹部には、前記複数のメサ部の各々に対応する位置に配線部が設けられており、
前記複数のメサ部の各々に対応する前記第1電極は、半田部材を介して、前記配線部と電気的に接続されており、
前記配線部は、前記第3方向に互いに隣接して配置され且つ互いに電気的に分離された第1配線及び第2配線を含み、
前記第1配線と電気的に接続された前記半田部材が前記第2配線と電気的に接続された前記半田部材と接触しないように配置されていることにより、前記第1配線と電気的に接続された前記メサ部である第1メサ部は、前記第2配線と電気的に接続された前記メサ部である第2メサ部と電気的に分離されており、
前記第1基準面は、前記第2基準面と面接触しており、
前記第1メサ部に対して前記第2メサ部が位置する側の前記第1メサ部の前記側面と前記第1基準面との境界である第1基端部から前記第2メサ部に対して前記第1メサ部が位置する側の前記第2メサ部の前記側面と前記第1基準面との境界である第2基端部までの前記第3方向の距離は、前記コンタクト層のうち前記第1電極と接触するコンタクト領域の前記第3方向の長さよりも長い、
半導体レーザ装置。 - 前記凹部は、前記第1メサ部が配置される第1凹部と、前記第2メサ部が配置される第2凹部と、を有し、
前記第1凹部と前記第2凹部との間に形成され、前記第1凹部と前記第2凹部とを分離するように前記第2方向に延在する隔壁部の前記第2基準面の前記第3方向の長さは、前記コンタクト領域の前記第3方向の長さよりも長い、
請求項1に記載の半導体レーザ装置。 - 前記凹部は、前記複数のメサ部の各々が個別に配置される複数の凹部によって構成されており、
互いに隣接する前記凹部間には、前記第2方向に延在すると共に前記第3方向に所定の長さを有し、前記第2基準面を有する隔壁部が設けられている、
請求項1に記載の半導体レーザ装置。 - 前記第1表面には、前記複数のメサ部に共通の単一の第2電極が設けられている、
請求項1に記載の半導体レーザ装置。 - 前記凹部は、前記第3方向において前記メサ部の前記側面に対向する第1側面を有し、
前記第1側面は、前記第3表面における前記凹部の前記第3方向に沿った開口幅が前記凹部の前記底面の前記第3方向に沿った幅よりも大きくなるように、前記底面に対して傾斜している、
請求項1に記載の半導体レーザ装置。 - 前記配線部は、前記凹部の内部から前記凹部の外側の前記第3表面上まで延びている、
請求項1に記載の半導体レーザ装置。 - 前記配線部は、前記凹部の内部から前記凹部の外側まで前記第2方向に沿って延びており、
前記凹部は、前記第2方向に交差し、前記配線部が沿う第2側面を有し、
前記第2側面は、前記第3表面における前記凹部の前記第2方向に沿った開口幅が前記凹部の前記底面の前記第2方向に沿った幅よりも大きくなるように、前記底面に対して傾斜している、
請求項6に記載の半導体レーザ装置。 - 前記複数のメサ部の各々は、前記メサ部毎に独立して設けられた一以上の活性層を有している、
請求項1に記載の半導体レーザ装置。 - 前記配線部は、前記複数のメサ部の各々に対応する位置毎に配置され、互いに電気的に分離された複数の配線を含み、
前記複数の配線のうち前記第3方向に互いに隣接して配置された任意の2つの配線は、前記第1配線及び前記第2配線に該当する、
請求項1に記載の半導体レーザ装置。 - 前記マウント部材は、シリコンによって形成されている、
請求項1に記載の半導体レーザ装置。 - 前記マウント部材は、前記第3表面と接続され、前記第2方向に交差する第4表面を有し、
前記凹部は、前記第4表面まで延びており、前記第4表面に開口している、
請求項1に記載の半導体レーザ装置。 - 前記第3表面には、前記マウント部材に対して前記半導体レーザ素子を位置合わせするためのアライメントマークが設けられている、
請求項1に記載の半導体レーザ装置。 - 前記第1方向における前記基板の厚さは、前記第1方向における前記マウント部材の厚さよりも小さい、
請求項1に記載の半導体レーザ装置。 - 前記基板は、前記第3方向に交差する第5表面を有し、
前記第3方向において前記第5表面から最も近い位置に設けられた前記凹部の端部から前記第5表面までの前記第3方向の距離は、前記第1基準面から前記メサ部の前記頂面までの前記第1方向の距離よりも長い、
請求項1に記載の半導体レーザ装置。 - 前記第2方向において前記半導体レーザ素子及び前記マウント部材と対向する位置に配置され、前記複数のメサ部の各々の前記光出射端面から出射される光を外部に向けて導光する光学素子と、
前記マウント部材及び前記光学素子を支持する支持基板と、
を更に備え、
前記支持基板は、前記マウント部材の前記第3表面とは反対側の第6表面と面接触して前記マウント部材を支持する第1支持面と、前記光学素子と面接触して前記光学素子を支持する第2支持面と、を有する、
請求項1に記載の半導体レーザ装置。 - 前記光学素子は、前記複数のメサ部の各々の前記光出射端面から出射される前記光が入射される光入射面を有し、
前記マウント部材は、前記光入射面に対向する第4表面を有し、
前記光入射面は、前記第4表面と面接触している、
請求項15に記載の半導体レーザ装置。 - 前記凹部の前記第2方向の長さは、前記半導体レーザ素子の前記第2方向の長さよりも長い、
請求項1又は15に記載の半導体レーザ装置。 - 前記支持基板上において、前記光学素子、前記マウント部材、及び前記半導体レーザ素子を覆うように形成されたモールド樹脂を更に備える、
請求項15又は16に記載の半導体レーザ装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022121564A JP2024018311A (ja) | 2022-07-29 | 2022-07-29 | 半導体レーザ装置 |
JP2022-121564 | 2022-07-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024024233A1 true WO2024024233A1 (ja) | 2024-02-01 |
Family
ID=89706028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/018926 WO2024024233A1 (ja) | 2022-07-29 | 2023-05-22 | 半導体レーザ装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024018311A (ja) |
WO (1) | WO2024024233A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0846279A (ja) * | 1994-07-26 | 1996-02-16 | Mitsubishi Electric Corp | アレイ型半導体レーザ装置 |
JP2004515063A (ja) * | 2000-11-23 | 2004-05-20 | イルジン コーポレーション | 凸部をもつ光学集積回路素子及びその製造方法と、この光学集積回路素子を用いて製造した光通信用送受信装置モジュール |
JP2008263046A (ja) * | 2007-04-12 | 2008-10-30 | Sony Corp | 実装基板および半導体レーザ装置 |
JP2010226078A (ja) * | 2009-02-24 | 2010-10-07 | Sony Corp | 発光装置およびその製造方法 |
JP2011249401A (ja) * | 2010-05-24 | 2011-12-08 | Hamamatsu Photonics Kk | 半導体レーザ装置の製造方法 |
US20200073065A1 (en) * | 2018-08-31 | 2020-03-05 | Finisar Corporation | Lens-less laser micro-package assembly |
WO2020225952A1 (ja) * | 2019-05-09 | 2020-11-12 | パナソニック株式会社 | 半導体レーザ装置および外部共振型レーザ装置 |
-
2022
- 2022-07-29 JP JP2022121564A patent/JP2024018311A/ja active Pending
-
2023
- 2023-05-22 WO PCT/JP2023/018926 patent/WO2024024233A1/ja unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0846279A (ja) * | 1994-07-26 | 1996-02-16 | Mitsubishi Electric Corp | アレイ型半導体レーザ装置 |
JP2004515063A (ja) * | 2000-11-23 | 2004-05-20 | イルジン コーポレーション | 凸部をもつ光学集積回路素子及びその製造方法と、この光学集積回路素子を用いて製造した光通信用送受信装置モジュール |
JP2008263046A (ja) * | 2007-04-12 | 2008-10-30 | Sony Corp | 実装基板および半導体レーザ装置 |
JP2010226078A (ja) * | 2009-02-24 | 2010-10-07 | Sony Corp | 発光装置およびその製造方法 |
JP2011249401A (ja) * | 2010-05-24 | 2011-12-08 | Hamamatsu Photonics Kk | 半導体レーザ装置の製造方法 |
US20200073065A1 (en) * | 2018-08-31 | 2020-03-05 | Finisar Corporation | Lens-less laser micro-package assembly |
WO2020225952A1 (ja) * | 2019-05-09 | 2020-11-12 | パナソニック株式会社 | 半導体レーザ装置および外部共振型レーザ装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2024018311A (ja) | 2024-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101616552B1 (ko) | 발광소자 | |
US7123642B2 (en) | Multi-wavelength laser device | |
JP4462657B2 (ja) | 半導体発光素子およびその製造方法 | |
US7894498B2 (en) | Semiconductor laser device and method for manufacturing the same | |
JP6715589B2 (ja) | 半導体光素子、アレイ半導体光素子、及び光モジュール | |
JP6304282B2 (ja) | 半導体レーザ装置 | |
US9780523B2 (en) | Semiconductor laser device | |
US8619826B2 (en) | Laser diode | |
US5373174A (en) | Semiconductor light-emitting device | |
US12119611B2 (en) | Semiconductor laser apparatus and semiconductor laser device | |
JP6231389B2 (ja) | 半導体光素子及び光モジュール | |
JP5959484B2 (ja) | 半導体レーザ素子、及び半導体レーザ装置 | |
US20020172245A1 (en) | Semiconductor laser array | |
CN105453350B (zh) | 激光元件和用于制造激光元件的方法 | |
WO2024024233A1 (ja) | 半導体レーザ装置 | |
WO2024024234A1 (ja) | 半導体レーザ装置 | |
US20240348017A1 (en) | Laser component and laser device | |
KR101629988B1 (ko) | 광전 소자를 위한 하우징 | |
US20060093284A1 (en) | Semiconductor laser diode | |
JP2001284731A (ja) | 半導体レーザ装置 | |
JP2010147149A (ja) | 光モジュール及び半導体発光素子 | |
US9461438B2 (en) | Housing for laser diodes and method for producing a housing | |
CN114762201A (zh) | 半导体激光元件及其制造方法、半导体激光装置 | |
US20230396036A1 (en) | Semiconductor laser light emitting device | |
WO2021059752A1 (ja) | レーザ発光素子およびレーザ発光装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23845971 Country of ref document: EP Kind code of ref document: A1 |