WO2024023206A1 - Conteneur de modules de batterie, et système de stockage de puissance électrique associé - Google Patents

Conteneur de modules de batterie, et système de stockage de puissance électrique associé Download PDF

Info

Publication number
WO2024023206A1
WO2024023206A1 PCT/EP2023/070821 EP2023070821W WO2024023206A1 WO 2024023206 A1 WO2024023206 A1 WO 2024023206A1 EP 2023070821 W EP2023070821 W EP 2023070821W WO 2024023206 A1 WO2024023206 A1 WO 2024023206A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
roof
battery modules
region
extending
Prior art date
Application number
PCT/EP2023/070821
Other languages
English (en)
Inventor
Quentin LIEVOUX
Jennifer CRONIER
Stephen AICOBERRY
Matthieu Bertin
Arnaud COLLIGNAN
Clément THÉTIOT
Jim MCDOWALL
Original Assignee
Saft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saft filed Critical Saft
Publication of WO2024023206A1 publication Critical patent/WO2024023206A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/251Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for stationary devices, e.g. power plant buffering or backup power supplies
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H1/00Buildings or groups of buildings for dwelling or office purposes; General layout, e.g. modular co-ordination or staggered storeys
    • E04H1/12Small buildings or other erections for limited occupation, erected in the open air or arranged in buildings, e.g. kiosks, waiting shelters for bus stops or for filling stations, roofs for railway platforms, watchmen's huts or dressing cubicles
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H5/00Buildings or groups of buildings for industrial or agricultural purposes
    • E04H5/02Buildings or groups of buildings for industrial purposes, e.g. for power-plants or factories
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H1/00Buildings or groups of buildings for dwelling or office purposes; General layout, e.g. modular co-ordination or staggered storeys
    • E04H1/12Small buildings or other erections for limited occupation, erected in the open air or arranged in buildings, e.g. kiosks, waiting shelters for bus stops or for filling stations, roofs for railway platforms, watchmen's huts or dressing cubicles
    • E04H2001/1283Small buildings of the ISO containers type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant

Definitions

  • TITLE Battery module container, and associated electrical power storage system
  • the present invention relates to a battery module container, comprising a structure for receiving the battery modules, the structure comprising a floor, peripheral walls extending vertically at the periphery of the floor and defining upper corners, upper corner pieces mounted on the upper corners and projecting above the upper edges of the peripheral walls, the upper corner pieces each having an upper surface, the structure further comprising a roof extending between the upper corners, the roof, the peripheral walls , and the floor delimiting an interior volume for storing battery modules.
  • Such a container is intended to contain battery modules to provide a movable source of electrical power, suitable for being installed temporarily or permanently on a site requiring electrical power.
  • an electrical power storage system by arranging, in a standard parallelepiped container, battery modules and an electrical and thermal management unit for the modules.
  • This storage system is easily movable, notably by road, rail, sea or air transport.
  • the structure of the container receiving the battery modules generally comprises a floor, peripheral walls projecting relative to the floor, and a flat roof which closes the interior volume containing the battery modules.
  • the container is equipped, at its lower and upper corners, with corner pieces.
  • the lower corner pieces project downward from the floor and the upper corner pieces protrude from the roof.
  • the container can be placed under another container, the lower corner pieces of the other container bearing on the upper corner pieces of the container.
  • Such a container does not give complete satisfaction when it is placed outside. Since the roof of the container is flat, rainwater falling on the roof is likely to stagnate above the container. This stagnation occurs particularly in the center of the container, especially in the areas furthest from the side edges of the roof.
  • the stagnation of rainwater can in certain cases cause premature wear of the container, in particular by promoting oxidation, or even by creating holes which communicate with the interior volume containing the battery modules. This can be detrimental to the proper functioning of the container, since the battery modules are sensitive to water. In addition, the aesthetic appearance of the container is degraded.
  • the pitched roof according to CN212461856U cannot therefore be installed during the assembly of the storage system and must only be installed once the container is on site.
  • An aim of the invention is therefore to obtain a battery module container, which is very resistant to bad weather, while being simple and inexpensive to transport.
  • the subject of the invention is a container of the aforementioned type, characterized in that the roof comprises at least one water evacuation region, the water evacuation region comprising at least two inclined sides between a lower edge and at least one upper point common to the two inclined sides, to allow a flow of water received on each of the inclined sides towards their lower edge, the water evacuation region being located in or under a plane defined by the upper surfaces of the upper corner pieces.
  • the container according to the invention may comprise one or more of the following characteristics, taken in isolation or in any technically possible combination:
  • peripheral walls comprise two opposite longitudinal walls, extending along a longitudinal axis of the container, and two transverse walls, extending perpendicular to the longitudinal axis, at least two inclined sides being longitudinal inclined sides sloping away from each other towards the opposite longitudinal walls;
  • the roof has at least four inclined sections, at least two inclined sections being transverse inclined sections inclined opposite each other towards the transverse walls;
  • the four inclined sides have the shape of a pyramid, the upper point being common to all the inclined sides, and forming the top of the pyramid;
  • - two inclined sides have a common upper edge, the common upper edge defining a plurality of common upper points;
  • the structure comprises at least one structural support surface extending between two peripheral walls under the two inclined sections, the structure further comprising at least one reinforcing spacer interposed between the structural support surface and at least one of the sections inclined;
  • the structure comprises a roof support frame comprising at least one spar extending along a longitudinal axis of the container, and/or at least one crosspiece, extending transversely relative to the longitudinal axis of the container, the structural surface support extending on the spar and/or on the crosspiece;
  • the roof further comprises at least one non-inclined region adjacent to the water evacuation region;
  • the roof has two non-inclined regions located on either side of the water evacuation region;
  • the roof has no non-sloped region
  • a non-inclined region of the roof and/or at least one inclined section defines at least one through opening for evacuating excess pressure in the interior volume
  • the roof comprising a deflagration panel attached to the through opening, the relief panel deflagration being capable of at least partially releasing the through opening during an overpressure greater than a given threshold in the interior volume;
  • the peripheral walls delimit lower corners, the structure comprising lower corner pieces mounted under the lower corners while being located to the right of the upper corner pieces;
  • the structure includes a layer of thermal insulation placed at least under the inclined sides.
  • the invention also relates to an electrical power storage system, comprising:
  • - terminals connected to the battery modules and intended to connect to a consumer of electrical power supplied by the battery modules and/or to a supplier of electrical power for recharging the battery modules.
  • the system according to the invention may include the following characteristic: - the structure comprises an internal partition separating the interior volume to delimit a control room receiving at least one battery module management system, and at least one storage room receiving the battery modules.
  • Figure 1 is a perspective view of a first movable electrical energy storage system comprising a container of battery modules according to the invention, the container being partially open;
  • Figure 2 is a top perspective view of the roof of the container of Figure 1;
  • Figure 3 is a schematic view representing an example of a support frame for the roof of the container of Figure 1;
  • Figure 4 is a schematic view illustrating reinforcement spacers for the inclined sections of the roof of Figure 1, allowing an operator to walk on the container;
  • Figure 5 is a view similar to Figure 3 of a container roof of a second electrical energy storage system according to the invention.
  • Figure 6 is a view similar to Figure 2 of a container roof of a third electrical energy storage system according to the invention.
  • orientations are generally defined in relation to the position of a container placed on a flat horizontal surface.
  • the terms “under”, “below”, “on”, “above” are generally understood in relation to this position of the container.
  • a first electrical energy storage system 10 according to the invention is illustrated in Figure 1.
  • the storage system 10 is intended to be moved to a site of use, for example by a road vehicle such as a truck, by a railway vehicle, and/or by a maritime vehicle such as a transport ship . It is intended to be electrically connected to an electrical energy use network on a site of use and alternately to an electrical energy supply network for its recharging.
  • the storage system 10 comprises a container 12 of battery modules, delimiting an interior volume 14, and a plurality of battery modules 16 received in the interior volume 14.
  • the storage system 10 advantageously comprises a system 18 for electrical and thermal management of battery modules 16 (“Battery Management Module” or “BMM” in English) and a security system 20.
  • the container 12 contains for example between 10 and 150 battery modules 16.
  • the battery modules 16 are arranged in the form of columns and rows. They are connected in series and/or in parallel to deliver to at least two electrical terminals 22 present on the container 12, an electrical power which can reach up to 4MWh for voltages up to 1500V.
  • Each battery module 16 comprises a plurality of electrochemical cells, for example received in prismatic or cylindrical housings or in flexible pockets.
  • Each electrochemical cell has anodes, cathodes and separators, between which electrochemical reactions take place.
  • the management system 18 is capable of controlling the voltage and the intensity delivered by each battery module 16 when supplying electrical power, and the power and intensity of electrical current delivered to each battery module 16, during the recharging battery modules 16.
  • the electrical terminals 22 are intended to connect to the user network (not shown) for the supply of electrical energy stored in the battery modules 16, and alternately, to an electrical power supply network, for recharging the battery modules. battery 16.
  • the safety system 20 comprises for example sensors (not shown) for detecting temperature and/or pressure in the interior volume 14, a source of inert gas 24, and a control unit 25, capable of delivering the inert gas into the interior volume 14 from the inert gas source 24, upon detection of an increase in temperature and/or pressure greater than a given threshold in the interior volume 14.
  • the container 12 comprises a self-supporting structure 30, intended to define the interior volume 14, and to allow the joint transport of the battery modules 16, of the module management system 18, and of the system security 20 to a site of use.
  • the structure 30 comprises a floor 32 mounted on a floor support 34. It comprises peripheral walls 36 projecting from the periphery of the floor 32, the peripheral walls 36 being supported by vertical pillars 38 at the corner of the walls 36. It comprises in in addition to a roof 40 carried by a support frame 42 visible in particular in Figure 3.
  • the structure 30 of the container 12 is here of polyhedral shape.
  • the structure 30 has the shape of a rectangular parallelepiped, extending longitudinally along a longitudinal axis A-A' which is horizontal when the container 12 is placed on a horizontal support.
  • the container 12 has for example a length greater than 2 m, in particular between 2.5 m and 15 m, a width greater than 1 m, in particular between 2 m and 4 m and a height greater than 1 m, in particular between 2m and 4m.
  • Container 12 is in particular a so-called “High Cube” foot container of 6.058 m in length, 2.438 m in width and 2.896 m in height.
  • the present invention applies to any type of container having ISO corners (example 40 feet (12 m), 10 feet (3 m), etc.).
  • Floor 32 is flat here. It supports 16 battery modules, 18 management system as well as 20 security system when present.
  • the floor 32 delimits the interior volume 14 downwards.
  • the floor support 34 comprises for example beams, in particular of the IPN type, extending longitudinally along the edges of the structure 30, and at the longitudinal ends of the structure 30, transverse crosspieces connecting the longitudinal beams.
  • the floor 32 is mounted to rest on the floor support 34.
  • the floor support 34 is for example capable of being gripped by the gripping members of a crane, in order to lift the container 12 and move it.
  • the floor support 34 is provided with lower corner pieces 46 extending at each corner defined between two adjacent peripheral walls 36.
  • the lower corner pieces 46 have a lower surface 48 intended to rest on the ground or on another support, the floor 32 then being located above the ground or support.
  • each lower corner piece 46 is located under a vertical pillar 38.
  • the peripheral walls 36 comprise two longitudinal vertical walls 50A, 50B (the wall 50B has been removed from Figure 1, but is visible in particular in Figure 3), the longitudinal walls 50A, 50B being arranged vertically, parallel to the axis A - A', on either side of the axis A-A'.
  • the peripheral walls 36 further comprise two transverse vertical walls 52C, 52D extending perpendicular to the axis A-A' and connecting the longitudinal walls 50A, 50B together at the longitudinal ends of the structure 30.
  • the longitudinal walls 50A, 50B and the transverse walls 52C, 52D delimit the corners of the structure 30 in pairs. They delimit the interior volume 14 towards the outside.
  • the longitudinal walls 50A, 50B and possibly the transverse walls 52C, 52D are provided with movable doors making it possible, for example, to provide an access passage to the interior volume 14 from the outside of the container 12.
  • the structure 30 also includes an internal partition 54 to the interior volume 14, delimiting in the interior volume 14 a room 56 for storing the battery modules 16, and separately, a control room 58, receiving the management system 18 and the security system 20.
  • At least one door provided in a peripheral wall 36 allows access to the storage room 56, without having to open the control room 58, and at least one other door allows access to the control room 58, without having to open storage room 56.
  • the support frame 42 comprises a plurality of beams 60, and advantageously a plurality of crosspieces 62 transversely connecting the beams 60 to each other.
  • At least two side rails 60 connect the pillars 38 parallel to the axis A-A’.
  • At least two end crosspieces 62 connect the pillars 38 transversely to the axis A-A’.
  • the support frame 42 further comprises at least one additional spar 60A disposed between the side spars 60, and several additional crosspieces 62B arranged between end crosspieces 62.
  • the spars 60, 60A and the crosspieces 62, 62B define, under the roof 40, at least one support surface 64 supporting the roof 40.
  • the longitudinal members 60 and the crosspieces 62 are dimensioned to allow the support of the roof 40 and at least one equipped human being walking on the roof, the equipped human being weighing for example 100 kg.
  • the support frame 42 further comprises upper corner pieces 70 intended to project above the vertical pillars 38, above the roof 40.
  • the corner pieces 70 define a flat upper surface 72, and horizontal when the axis A-A' is horizontal.
  • the upper surfaces 72 of the corner pieces 70 define an upper plane P of the container 12, no element of the container 12 protruding beyond the upper plane P.
  • the roof 40 is preferably made of metal, in particular steel, and is advantageously covered with a protective coating, in particular an anti-rust paint.
  • the roof 40 of the structure 30 comprises a central water evacuation region 80, provided with at least two inclined sections 82A to 82D and advantageously, two regions not inclined 84, located longitudinally on either side of the central region 80.
  • the central region 80 extends over a length of at least 10%, preferably at least 20%, of the length of the roof 40, taken along the axis A-A'.
  • the central region 80 comprises four inclined sections 82A to 82D defining a pyramid.
  • the central region 80 thus comprises two longitudinal inclined sections 82A, 82B, with inclinations directed laterally, respectively towards the longitudinal walls 50A, 50B, and two transverse inclined sections 82C, 82D with inclinations directed longitudinally, respectively towards the transverse walls 52C, 52D.
  • Each inclined section 82A to 82D here has a substantially triangular shape defining a common upper point 86 to the four inclined sections 82A to 82D.
  • Each inclined section 82A to 82D has a lower edge 88 and two edges 90, 92 converging from the ends of the lower edge 88 towards the upper point 86.
  • the lower edges 88 of the longitudinal inclined sections 82A, 82B extend along the respective longitudinal walls 50A, 50B, above these walls, in particular on the upper surface defined by the longitudinal beams 60.
  • the lower edges 88 of the transverse inclined sections 82C, 82D extend parallel to the transverse walls 52C, 52D, preferably facing a crosspiece 62. They delimit, towards the center of the roof 40, the non-inclined regions 84.
  • the central water evacuation region 80 is located totally in and under the upper plane P defined by the upper surfaces 72 of the upper corner pieces 70 or totally under the upper plane P. It does not protrude above the upper plane P.
  • the upper point 86 is located in the plane P, or below the plane P when the container 12 rests horizontally on a horizontal support.
  • the height H1 of the upper point 86, taken vertically from the support surface 64 defined on the longitudinal members 60, is less than or equal to the height H2 of the upper surfaces 72 of the upper corner pieces 70, taken vertically from the support surface 64.
  • the height H2 is between 20 mm and 30 mm.
  • the height H1 guarantees keeping a distance of at least 5 mm under the plane P.
  • the central water evacuation region 80 does not interfere with an additional container which would be placed by its lower corner pieces on the upper corner pieces 70 of the container 12.
  • each inclined section 82A to 82D is for example less than 10°, and in particular between 1° and 5° for the usual dimensions of a container 12.
  • the area occupied by the inclined sections 82A to 82D of the central water evacuation region 80 is thus advantageously greater than at least 3% of the total area of the roof 40, the areas being taken in projection in a horizontal plane .
  • the roof 40 comprises reinforcing spacers 94, extending between the support surface 64 and a lower surface of the panel. inclined 82A to 82D.
  • the roof 40 comprises at least one spacer 94 located between the support surface 64 and each inclined section 82A to 82D, preferably at least two spacers 94 spaced from one another , interposed between the support surface 64 and each inclined section 82A to 82D.
  • the spacers 94 are arranged on a support surface 64 defined by a crosspiece 62.
  • the spacers 94 are arranged on the support surface 64 defined by a spar 60, in particular by a central spar parallel to the axis A-A'.
  • the central water evacuation region 80 is able to carry an operator equipped with his equipment (for example weighing 100 kg with his equipment), without deformation inclined sections 82A, 82B.
  • his equipment for example weighing 100 kg with his equipment
  • the shape and inclination of the transverse inclined sections 82C, 82D reinforce the structural rigidity of the water evacuation region 80, allowing the operator to walk on the roof 40, without buckling of the inclined sections 82A to 82D.
  • each non-inclined region 84 comprises at least one horizontal roof panel 100 extending longitudinally between the upper edge of a respective transverse wall 50C, 50D and the central water evacuation region 80 and extending transversely between the upper edges of the longitudinal walls 50A, 50B.
  • Each non-inclined region 84 defines at least one through opening 102 for overpressure evacuation in the interior volume 14, and for each through opening 102, a deflagration plate 104 attached to the roof panel 100 on the periphery of the through opening 102, to seal the through opening 102, in the absence of overpressure greater than a calibrated threshold in the interior volume 14.
  • the roof panel 100 is supported by the bearing surfaces 64 defined on the longitudinal members 60 and the crosspieces 62.
  • each through opening 102 passes vertically through the roof panel 100.
  • the roof panel 100 here comprises two parallel through openings 102, located on either side of the axis A-A', projected in a plane horizontal.
  • Each through opening 102 here has a contour, for example polygonal, in particular rectangular.
  • the deflagration plates 104 are attached to the periphery of the through openings 102.
  • the fixing is configured to define the calibrated overpressure threshold beyond which the deflagration plate 104 opens to partially release the through opening 102, and reduce the pressure inside the interior volume 14.
  • each roof panel 100, and each deflagration plate 104 attached to the roof panel 100 is located under the upper plane P defined by the upper surfaces 72 of the upper corner pieces 70.
  • the deflagration plates 104 have a surface upper located vertically under the upper point 86 of the inclined sections 82A to 82D.
  • the rainwater which falls at the central water evacuation region 80 is naturally evacuated towards the side edges of the container 12 thanks to the inclined sides 82A, 82B, and away from the center of the roof 40 by the inclined sides 82C, 82D.
  • the container 12 therefore has a longer lifespan and increased reliability of the battery modules 16 it contains, since they are not exposed to humidity. In addition, it presents an improved exterior aesthetic appearance, even if subjected to bad weather.
  • the central water evacuation region 80 being located under the plane P defined by the upper surfaces 72 of the upper corner pieces 70, it does not interfere with the normal transport of the container 12.
  • the container 12 can be transported under other containers of a stack of containers, receiving, on its upper corner pieces 70, lower corner pieces of another container. This allows it to be loaded onto ships, thus reducing transport costs.
  • the longitudinal inclined sections 82A, 82B have, in projection in a horizontal plane, an area greater than that of the transverse inclined sections 82C, 82D.
  • the area of the longitudinal inclined sections 82A, 82B is notably greater than more than 200% of the area of the transverse inclined sections 82C, 82D.
  • the longitudinal sections 82A, 82B delimit between them a horizontal upper edge 120, extending parallel to the axis A-A' and defining a plurality of upper points 86 of the central water evacuation region 80.
  • the upper edge 120 extends between the edges 88, 90 of each panel 82A, 82B.
  • the upper edge 120 thus defined is located in the plane P, or under the plane P defined by the upper surfaces 72 of the upper corner pieces 70.
  • the longitudinal inclined sections 82A, 82B thus have a trapezoid-shaped contour, while the transverse longitudinal sections have a triangular contour.
  • the roof 40 does not have a non-inclined region 84.
  • the water evacuation region 80 extends over the entire length and width of the roof 40.
  • the area occupied by the transverse inclined sections 82C, 82D is preferably less than 10% of the area occupied by the longitudinal inclined sections 82A, 82B.
  • the entire water evacuation region 80 is located in the plane P or under the plane P.
  • the through openings 102 for overpressure evacuation are provided directly in the inclined sections 82A, 82B and the deflagration plates 104 are attached to the inclined sections 82A, 82B on the periphery of the through openings 102, as described previously.
  • a layer of thermal insulation for example a fibrous layer made of rock wool, is placed under the roof 40, in particular, in the volume delimited between the support surface 64, and the inclined sections 82A to 82D.
  • This variant promotes thermal insulation of the battery modules 16, particularly when the temperature increases outside the energy storage system 10.

Abstract

Le conteneur (12) comporte une structure (30) de réception des modules de batterie (16), comprenant des pièces de coin supérieures (70) montées sur les coins supérieurs de parois périphériques (36) de la structure (30), la structure (30) comportant en outre un toit (40) s'étendant entre les coins supérieurs. Le toit (40) comporte une région d'évacuation d'eau (80), comprenant au moins deux pans (82A à 82D) inclinés entre un bord inférieur et au moins un point supérieur (86) commun aux deux pans inclinés (82A à 82D), pour permettre un écoulement d'eau reçue sur chacun des pans inclinés (82A à 82D) vers leur bord inférieur. La région d'évacuation d'eau (80) est située dans ou sous un plan (P) défini par les surfaces supérieures (72) des pièces de coin supérieures (70).

Description

TITRE : Conteneur de modules de batterie, et système de stockage de puissance électrique associé
La présente invention concerne un conteneur de modules de batterie, comportant une structure de réception des modules de batterie, la structure comprenant un plancher, des parois périphériques s’étendant verticalement à la périphérie du plancher et définissant des coins supérieurs, des pièces de coin supérieures montées sur les coins supérieurs et faisant saillie au-dessus des bords supérieurs des parois périphériques, les pièces de coin supérieures présentant chacune une surface supérieure, la structure comportant en outre un toit s’étendant entre les coins supérieurs, le toit, les parois périphériques, et le plancher délimitant un volume intérieur de stockage de modules de batterie.
Un tel conteneur est destiné à contenir des modules de batterie pour offrir une source de puissance électrique déplaçable, propre à être installée temporairement ou en permanence sur un site requérant de la puissance électrique.
De manière classique, il est connu de construire un système de stockage de puissance électrique en disposant, dans un conteneur parallélépipédique standard, des modules de batterie et une unité de gestion électrique et thermique des modules. Ce système de stockage est facilement déplaçable, notamment par transport routier, ferroviaire, maritime ou aérien.
La structure du conteneur recevant les modules de batterie comporte généralement un plancher, des parois périphériques faisant saillie par rapport au plancher, et un toit plat qui ferme le volume intérieur contenant les modules de batteries.
De manière normalisée, le conteneur est équipé, à ses coins inférieurs et supérieurs, de pièces de coin. Les pièces de coin inférieures font saillie vers le bas par rapport au plancher et les pièces de coin supérieures font saillie par rapport au toit. Ainsi, le conteneur peut être disposé sous un autre conteneur, les pièces de coin inférieures de l’autre conteneur prenant appui sur les pièces de coin supérieur du conteneur.
Un tel conteneur ne donne pas entière satisfaction, lorsque celui-ci est disposé à l’extérieur. Le toit du conteneur étant plat, les eaux de pluie qui tombent sur le toit sont susceptibles de stagner au-dessus du conteneur. Cette stagnation se produit particulièrement au centre du conteneur, en particulier dans les zones les plus éloignées des bords latéraux du toit.
La stagnation des eaux de pluie peut provoquer dans certains cas une usure prématurée du conteneur, notamment en favorisant l’oxydation, voire en créant des trous qui communiquent avec le volume intérieur contenant les modules de batteries. Ceci peut être nuisible au bon fonctionnement du conteneur, puisque les modules de batterie sont sensibles à l’eau. En outre, l’aspect esthétique du conteneur est dégradé.
Pour pallier ce problème, il est connu par exemple de CN212461856U de disposer, au-dessus du conteneur, un toit pentu qui évite la stagnation de l’eau de pluie lorsque celle- ci tombe sur le conteneur.
Une telle solution protège efficacement le conteneur. Cependant, elle n’est pas satisfaisante, car le conteneur ne peut être transporté qu’au-dessus d’une pile de conteneurs, sans pouvoir recevoir au-dessus de lui des conteneurs supplémentaires. Le toit pentu augmente le coût du transport, et rend plus difficile la manutention du conteneur.
Pour éviter les problèmes pendant le transport, le toit pentu selon CN212461856U ne peut donc pas être installé lors de l’assemblage du système de stockage et doit être seulement installé une fois le conteneur sur site.
Un but de l’invention est donc d’obtenir un conteneur de modules de batterie, qui soit très résistant aux intempéries, tout en étant simple et peu coûteux à transporter.
A cet effet, l’invention a pour objet un conteneur du type précité, caractérisé en ce que le toit comporte au moins une région d’évacuation d’eau, la région d’évacuation d’eau comprenant au moins deux pans inclinés entre un bord inférieur et au moins un point supérieur commun aux deux pans inclinés, pour permettre un écoulement d’eau reçue sur chacun des pans inclinés vers leur bord inférieur, la région d’évacuation d’eau étant située dans ou sous un plan défini par les surfaces supérieures des pièces de coin supérieures.
Le conteneur selon l’invention peut comprendre l’une ou plusieurs des caractéristiques suivantes, prise(s) isolément ou suivant toutes combinaisons techniquement possibles :
- les parois périphériques comportent deux parois longitudinales opposées, s’étendant le long d’un axe longitudinal du conteneur, et deux parois transversales, s’étendant perpendiculairement à l’axe longitudinal, au moins deux pans inclinés étant des pans inclinés longitudinaux s’inclinant à l’opposé l’un de l’autre vers les parois longitudinales opposées ;
- le toit comporte au moins quatre pans inclinés, au moins deux pans inclinés étant des pans inclinés transversaux s’inclinant à l’opposé l’un de l’autre vers les parois transversales ;
- les quatre pans inclinés ont une forme de pyramide, le point supérieur étant commun à tous les pans inclinés, et formant le sommet de la pyramide ; - deux pans inclinés ont un bord supérieur commun, le bord supérieur commun définissant une pluralité de points supérieurs communs ;
- la structure comporte au moins une surface structurelle d’appui s’étendant entre deux parois périphériques sous les deux pans inclinés, la structure comportant en outre au moins une entretoise de renfort interposée entre la surface structurelle d’appui et au moins un des pans inclinés ;
- la structure comporte une charpente de support du toit comportant au moins un longeron s’étendant suivant un axe longitudinal du conteneur, et/ou au moins une traverse, s’étendant transversalement par rapport à l’axe longitudinal du conteneur, la surface structurelle d’appui s’étendant sur le longeron et/ou sur la traverse ;
- le toit comporte en outre au moins une région non inclinée adjacente à la région d’évacuation d’eau ;
- le toit comporte deux régions non inclinées situées de part et d’autre de la région d’évacuation d’eau ;
- le toit est dépourvu de région non inclinée ;
- une région non inclinée du toit ou/et au moins un pan incliné définit au moins une ouverture traversante d’évacuation d’une surpression dans le volume intérieur, le toit comportant un panneau de déflagration rapporté sur l’ouverture traversante, le panneau de déflagration étant propre à libérer au moins partiellement l’ouverture traversante lors d’une surpression supérieure à un seuil donné dans le volume intérieur ;
- les parois périphériques délimitent des coins inférieurs, la structure comportant des pièces de coin inférieures montées sous les coins inférieurs en étant situées au droit des pièces de coins supérieures ;
- la structure comporte une couche d’isolant thermique disposée au moins sous les pans inclinés.
L’invention a également pour objet un système de stockage de puissance électrique, comportant :
- un conteneur tel que défini plus haut ;
- des modules de batterie reçus dans le volume intérieur ;
- des bornes, raccordées aux modules de batterie et destinées à se raccorder à un consommateur de puissance électrique fournie par les modules de batterie et/ou à un fournisseur de puissance électrique pour le rechargement des modules de batterie.
Le système selon l’invention peut comprendre la caractéristique suivante : - la structure comporte une cloison interne séparant le volume intérieur pour délimiter une salle de commande recevant au moins un système de gestion des modules de batterie, et au moins une salle de stockage recevant les modules de batterie.
L’invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d’exemple, et faite se référant aux dessins annexés, sur lesquels :
- [Fig.1] La figure 1 est une vue en perspective d’un premier système déplaçable de stockage d’énergie électrique comprenant un conteneur de modules de batteries selon l’invention, le conteneur étant partiellement ouvert ;
- [Fig.2] La figure 2 est une vue de dessus en perspective du toit du conteneur de la figure 1 ;
- [Fig .3] La figure 3 est une vue schématique représentant un exemple de charpente de support du toit du conteneur de la figure 1 ;
- [Fig .4] La figure 4 est une vue schématique illustrant des entretoises de renfort des pans inclinés du toit de la figure 1 , permettant à un opérateur de marcher sur le conteneur ;
- [Fig.5] La figure 5 est une vue analogue à la figure 3 d’un toit de conteneur d’un deuxième système de stockage d’énergie électrique selon l’invention ;
- [Fig.6] La figure 6 est une vue analogue à la figure 2 d’un toit de conteneur d’un troisième système de stockage d’énergie électrique selon l’invention.
Dans tout ce qui suit, les orientations sont généralement définies par rapport à la position d’un conteneur posé sur une surface plane horizontale. En particulier, les termes « sous », « en dessous », « sur », « au-dessus » s’entendent généralement par rapport à cette position du conteneur.
Un premier système 10 de stockage d’énergie électrique selon l’invention est illustré par la figure 1.
Le système de stockage 10 est destiné à être déplacé jusqu’à un site d’utilisation, par exemple par un véhicule routier tel qu’un camion, par un véhicule ferroviaire, ou/et par un véhicule maritime tel qu’un navire de transport. Il est destiné à être raccordé électriquement à un réseau d’utilisation d’énergie électrique sur un site d’utilisation et en alternance à un réseau de fourniture d’énergie électrique pour son rechargement.
Comme illustré par la figure 1 , le système de stockage 10 comporte un conteneur 12 de modules de batterie, délimitant un volume intérieur 14, et une pluralité de modules de batterie 16 reçus dans le volume intérieur 14. Le système de stockage 10 comporte avantageusement un système 18 de gestion électrique et thermique des modules de batterie 16 (« Battery Management Module » ou « BMM » en anglais) et un système de sécurité 20. Dans cet exemple, le conteneur 12 contient par exemple entre 10 et 150 modules de batterie 16. Les modules de batterie 16, sont arrangés sous forme de colonnes et de rangées. Ils sont montés en série et/ou en parallèle pour délivrer à au moins deux bornes électriques 22 présentes sur le conteneur 12, une puissance électrique pouvant atteindre jusqu’à 4MWh pour des tensions allant jusqu’à 1500V.
Chaque module de batterie 16 comporte une pluralité de cellules électrochimiques, par exemple reçues dans des boitiers prismatiques ou cylindriques ou dans des poches souples. Chaque cellule électrochimique comporte des anodes, des cathodes et des séparateurs, entre lesquels se déroulent des réactions électrochimiques.
Le système de gestion 18 est propre à piloter la tension et l’intensité délivrées par chaque module de batterie 16 lors de la fourniture de puissance électrique, et la puissance et l’intensité de courant électrique délivrées à chaque module de batterie 16, lors du rechargement des modules de batterie 16.
Les bornes électriques 22 sont destinées à se connecter au réseau utilisateur (non représenté) pour la fourniture d’énergie électrique stockée dans les modules de batterie 16, et en alternance, à un réseau de fourniture de puissance électrique, pour le rechargement des modules de batterie 16.
Le système de sécurité 20 comporte par exemple des capteurs (non représentés) de détection de température ou/et de pression dans le volume intérieur 14, une source de gaz inerte 24, et une unité de commande 25, propre à délivrer le gaz inerte dans le volume intérieur 14 à partir de la source de gaz inerte 24, sur détection d’une augmentation de température ou/et de pression supérieure à un seuil donné dans le volume intérieur 14.
Dans l’exemple représenté sur la figure 1 , le conteneur 12 comprend une structure 30 autoportante, destinée à définir le volume intérieur 14, et à permettre le transport conjoint des modules de batterie 16, du système de gestion de modules 18, et du système de sécurité 20 jusqu’à un site d’utilisation.
La structure 30 comporte un plancher 32 monté sur un support de plancher 34. Elle comporte des parois périphériques 36 faisant saillie à la périphérie du plancher 32, les parois périphériques 36 étant supportées par des piliers verticaux 38 au coin des parois 36. Elle comporte en outre un toit 40 porté par une charpente de support 42 visible notamment sur la figure 3.
La structure 30 du conteneur 12 est ici de forme polyédrique. En particulier, la structure 30 présente la forme d’un parallélépipède rectangle, s’étendant longitudinalement le long d’un axe longitudinal A-A’ qui est horizontal lorsque le conteneur 12 est posé sur un support horizontal. Le conteneur 12 présente par exemple une longueur supérieure à 2 m, notamment comprise entre 2,5 m et 15 m, une largeur supérieure à 1 m, notamment comprise entre 2 m et 4 m et une hauteur supérieure à 1 m, notamment comprise entre 2 m et 4 m.
Le conteneur 12 est notamment un conteneur pieds dit « High Cube » de 6,058 m de longueur, 2,438 m de largeur et 2,896 m de hauteur. Cependant la présente invention s’applique à tout type de conteneur ayant des coins ISO (exemple 40 pieds (12 m), 10 pieds (3 m), etc.).
Le plancher 32 est ici plan. Il supporte les modules de batterie 16, le système de gestion 18 ainsi que le système de sécurité 20 lorsqu’il est présent. Le plancher 32 délimite vers le bas le volume intérieur 14.
Le support de plancher 34 comporte par exemple des poutres, notamment de type IPN, s’étendant longitudinalement le long des bords de la structure 30, et aux extrémités longitudinales de la structure 30, des traverses transversales raccordant les poutres longitudinales.
Le plancher 32 est monté en appui sur le support de plancher 34. Le support de plancher 34 est par exemple propre à être saisi par des organes de saisie d’une grue, en vue de soulever le conteneur 12 et de le déplacer.
Le support de plancher 34 est muni de pièces de coin inférieures 46 s’étendant à chaque coin défini entre deux parois périphériques 36 adjacentes.
Les pièces de coin inférieures 46 présentent une surface inférieure 48 destinée à reposer sur le sol ou sur un autre support, le plancher 32 étant alors situé au-dessus du sol ou du support.
Dans cet exemple, chaque pièce de coin inférieure 46 est située sous un pilier vertical 38.
Les parois périphériques 36 comportent deux parois verticales longitudinales 50A, 50B (la paroi 50B a été enlevée de la figure 1 , mais est visible notamment sur la figure 3), les parois longitudinales 50A, 50B étant disposées verticalement, parallèlement à l’axe A- A’, de part et d’autre de l’axe A-A’.
Les parois périphériques 36 comportent en outre deux parois verticales transversales 52C, 52D s’étendant perpendiculairement à l’axe A-A’ et raccordant les parois longitudinales 50A, 50B entre elles aux extrémités longitudinales de la structure 30.
Les parois longitudinales 50A, 50B et les parois transversales 52C, 52D délimitent deux à deux des coins de la structure 30. Elles délimitent vers l’extérieur le volume intérieur 14. Les parois longitudinales 50A, 50B et éventuellement les parois transversales 52C, 52D sont munies de portes mobiles permettant par exemple d’offrir un passage d’accès au volume intérieur 14 depuis l’extérieur du conteneur 12.
Avantageusement, la structure 30 comporte également une cloison interne 54 au volume intérieur 14, délimitant dans le volume intérieur 14 une salle 56 de stockage des modules de batterie 16, et séparément, une salle 58 de commande, recevant le système de gestion 18 et le système de sécurité 20.
Avantageusement, au moins une porte ménagée dans une paroi périphérique 36 permet d’accéder à la salle de stockage 56, sans avoir à ouvrir la salle de commande 58, et au moins une autre porte permet d’accéder à la salle de commande 58, sans avoir à ouvrir la salle de stockage 56.
En référence à la figure 3, la charpente de support 42 comporte une pluralité de longerons 60, et avantageusement une pluralité de traverses 62 raccordant transversalement les longerons 60 entre eux.
Au moins deux longerons latéraux 60 raccordent les piliers 38 parallèlement à l’axe A-A’. Au moins deux traverses d’extrémité 62 raccordent les piliers 38 transversalement à l’axe A-A’.
Dans cet exemple, la charpente de support 42 comporte en outre au moins un longeron additionnel 60A disposé entre les longerons latéraux 60, et plusieurs traverses additionnelles 62B disposées entre des traverses d’extrémité 62. Les longerons 60, 60A et les traverses 62, 62B définissent, sous le toit 40, au moins une surface d’appui 64 supportant le toit 40.
Les longerons 60 et les traverses 62 sont dimensionnés pour permettre le support du toit 40 et d’au moins un être humain équipé marchant sur le toit, l’être humain équipé pesant par exemple 100 kg.
La charpente de support 42 comporte en outre des pièces de coin supérieur 70 destinées à faire saillie au-dessus des piliers verticaux 38, au-dessus du toit 40. Les pièces de coin 70 définissent une surface supérieure 72 plane, et horizontale lorsque l’axe A-A’ est horizontal.
Comme visible sur les figures 1 et 3, les surfaces supérieures 72 des pièces de coin 70 définissent un plan supérieur P du conteneur 12, aucun élément du conteneur 12 ne dépassant au-delà du plan supérieur P.
Le toit 40 est réalisé de préférence en métal, notamment en acier, et est avantageusement couvert d’un revêtement de protection, notamment d’une peinture antirouille. Selon l’invention, dans l’exemple de la figure 2, le toit 40 de la structure 30 comporte une région centrale 80 d’évacuation d’eau, munie d’au moins deux pans inclinés 82A à 82D et avantageusement, deux régions non inclinées 84, situées longitudinalement de part et d’autre de la région centrale 80.
La région centrale 80 s’étend sur une longueur d’au moins 10%, de préférence d’au moins 20%, de la longueur du toit 40, prise le long de l’axe A-A’.
Dans l’exemple représenté sur la figure 1 , la région centrale 80 comporte quatre pans inclinés 82A à 82D définissant une pyramide.
En référence à la figure 2, la région centrale 80 comprend ainsi deux pans inclinés longitudinaux 82A, 82B, d’inclinaisons dirigées latéralement, respectivement vers les parois longitudinales 50A, 50B, et deux pans inclinés transversaux 82C, 82D d’inclinaisons dirigées longitudinalement, respectivement vers les parois transversales 52C, 52D.
Chaque pan incliné 82A à 82D présente ici une forme sensiblement triangulaire définissant un point supérieur commun 86 aux quatre pans inclinés 82A à 82D.
Chaque pan incliné 82A à 82D comporte un bord inférieur 88 et deux arêtes 90, 92 convergeant depuis les extrémités du bord inférieur 88 vers le point supérieur 86.
Les bords inférieurs 88 des pans inclinés longitudinaux 82A, 82B s’étendent le long des parois longitudinales respectives 50A, 50B, au-dessus de ces parois, notamment sur la surface supérieure définie par les longerons longitudinaux 60.
Les bords inférieurs 88 des pans inclinés transversaux 82C, 82D s’étendent parallèlement aux parois transversales 52C, 52D, de préférence en regard d’une traverse 62. Ils délimitent, vers le centre du toit 40, les régions non inclinées 84.
La région centrale d’évacuation d’eau 80 est située totalement dans et sous le plan supérieur P défini par les surfaces supérieures 72 des pièces de coin supérieur 70 ou totalement sous le plan supérieur P. Elle ne dépasse pas au-dessus du plan supérieur P.
Ainsi, le point supérieur 86 est situé dans le plan P, ou en dessous du plan P lorsque le conteneur 12 repose horizontalement sur un support horizontal.
En référence à la figure 4, la hauteur H1 du point supérieur 86, prise verticalement depuis la surface d’appui 64 définie sur les longerons 60, est inférieure ou égale à la hauteur H2 des surfaces supérieures 72 des pièces de coin supérieur 70, prise verticalement depuis la surface d’appui 64.
La hauteur H2 est comprise entre 20 mm et 30 mm. La hauteur H1 garantit de garder une distance d’au moins 5 mm sous le plan P. Ainsi, la région centrale d’évacuation d’eau 80 n’interfère pas avec un conteneur additionnel qui serait posé par ses pièces de coin inférieures sur les pièces de coin supérieures 70 du conteneur 12.
L’angle d’inclinaison de chaque pan incliné 82A à 82D par rapport à un plan horizontal est par exemple inférieur à 10°, et notamment compris entre 1 ° et 5° pour les dimensions usuelles d’un conteneur 12.
L’aire occupée par les pans inclinés 82A à 82D de la région centrale d’évacuation d’eau 80 est ainsi avantageusement supérieure à au moins 3% de l’aire totale du toit 40, les aires étant prises en projection dans un plan horizontal.
Avantageusement, pour renforcer la rigidité de la région centrale 80, et notamment la rigidité de chaque pan incliné 82A à 82D, le toit 40 comporte des entretoises de renfort 94, s’étendant entre la surface d’appui 64 et une surface inférieure du pan incliné 82A à 82D.
Dans l’exemple représenté sur la figure 2, le toit 40 comprend au moins une entretoise 94 située entre la surface d’appui 64 et chaque pan incliné 82A à 82D, de préférence au moins deux entretoises 94 espacées l’une de l’autre, interposées entre la surface d’appui 64 et chaque pan incliné 82A à 82D.
Pour les pans inclinés longitudinaux 82A, 82B, les entretoises 94 sont disposées sur une surface d’appui 64 définie par une traverse 62. Pour les pans inclinés transversaux 82C, 82D, les entretoises 94 sont disposées sur la surface d’appui 64 définie par un longeron 60, en particulier par un longeron central parallèle à l’axe A-A’.
Grâce à la présence d’entretoises 94 situées sous les pans inclinés 82A, 82B, la région centrale d’évacuation d’eau 80 est apte à porter un opérateur muni de son équipement (par exemple pesant 100 kg avec son équipement), sans déformation des pans inclinés 82A, 82B. De plus, la forme et l’inclinaison des pans inclinés transversaux 82C, 82D renforce la rigidité structurelle de la région d’évacuation d’eau 80, permettant à l’opérateur de marcher sur le toit 40, sans flambement des pans inclinés 82A à 82D.
En référence notamment à la figure 1 , chaque région non inclinée 84 comporte au moins un panneau de toit horizontal 100 s’étendant longitudinalement entre le bord supérieur d’une paroi transversale 50C, 50D respective et la région centrale d’évacuation d’eau 80 et s’étendant transversalement entre les bords supérieurs des parois longitudinales 50A, 50B.
Chaque région non inclinée 84 définit au moins une ouverture traversante 102 d’évacuation de surpression dans le volume intérieur 14, et pour chaque ouverture traversante 102, une plaque de déflagration 104 rapportée sur le panneau de toit 100 sur le pourtour de l’ouverture traversante 102, pour obturer de manière étanche l’ouverture traversante 102, en l’absence de surpression supérieure à un seuil calibré dans le volume intérieur 14.
Le panneau de toit 100 est supporté par les surfaces d’appui 64 définies sur les longerons 60 et les traverses 62.
Dans cet exemple, chaque ouverture traversante 102 traverse verticalement le panneau de toit 100. Le panneau de toit 100 comporte ici deux ouvertures traversantes 102 parallèles, situées de part et d’autre de l’axe A-A’, en projection dans un plan horizontal.
Chaque ouverture traversante 102 présente ici un contour par exemple polygonal, notamment rectangulaire.
Les plaques de déflagration 104 sont rapportées à la périphérie des ouvertures traversantes 102. La fixation est configurée pour définir le seuil calibré de surpression au- delà duquel la plaque de déflagration 104 s’ouvre pour libérer partiellement l’ouverture traversante 102, et diminuer la pression à l’intérieur du volume intérieur 14.
Chaque panneau de toit 100, et chaque plaque de déflagration 104 rapportée sur le panneau de toit 100 est située sous le plan supérieur P défini par les surfaces supérieures 72 des pièces de coin supérieur 70. En outre, les plaques de déflagration 104 présentent une surface supérieure située verticalement sous le point supérieur 86 des pans inclinés 82A à 82D.
Grâce à la présence de la région centrale d’évacuation d’eau 80, l’eau de pluie qui tombe au niveau de la région centrale d’évacuation d’eau 80 est évacuée naturellement vers les bords latéraux du conteneur 12 grâce aux pans inclinés 82A, 82B, et à l’écart du centre du toit 40 par les pans inclinés 82C, 82D.
Ainsi, l’accumulation d’eau au centre du toit 40 est supprimée, ou est au moins très significativement diminuée. Ceci limite les risques de stagnation d’eau, et donc de dégradation du toit 40 du conteneur 12 en son centre. La formation par corrosion de trous nuisant à l’étanchéité du conteneur 12 est donc évitée.
Le conteneur 12 présente donc une durée de vie plus importante, une fiabilité accrue des modules de batterie 16 qu’il contient, puisque ceux-ci ne sont pas exposés à l’humidité. En outre, il présente un aspect esthétique extérieur amélioré, même s’il est soumis à des intempéries.
La région centrale d’évacuation d’eau 80 étant située sous le plan P défini par les surfaces supérieures 72 des pièces de coin supérieur 70, elle n’interfère pas avec le transport normal du conteneur 12. En particulier, le conteneur 12 peut être transporté sous d’autres conteneurs d’une pile de conteneurs, en recevant, sur ses pièces de coin supérieur 70, des pièces de coin inférieur d’un autre conteneur. Ceci permet notamment son chargement sur des navires, réduisant ainsi les coûts de transport.
Dans une variante, visible sur la figure 5, les pans inclinés longitudinaux 82A, 82B présentent, en projection dans un plan horizontal, une aire supérieure à celle des pans inclinés transversaux 82C, 82D. L’aire des pans inclinés longitudinaux 82A, 82B est notamment supérieure à plus de 200% de l’aire des pans inclinés transversaux 82C, 82D.
Les pans longitudinaux 82A, 82B délimitent entre eux un bord supérieur 120 horizontal, s’étendant parallèlement à l’axe A-A’ et définissant une pluralité de points supérieurs 86 de la région centrale d’évacuation d’eau 80. Le bord supérieur 120 s’étend entre les arêtes 88, 90 de chaque pan 82A, 82B.
Comme précédemment, le bord supérieur 120 ainsi défini est situé dans le plan P, ou sous le plan P défini par les surfaces supérieures 72 des pièces de coin supérieur 70.
Les pans inclinés longitudinaux 82A, 82B présentent ainsi un contour en forme de trapèze, alors que les pans longitudinaux transversaux présentent un contour triangulaire.
Une telle disposition optimise l’écoulement vers les parois longitudinales 50A, 50B, et non vers les régions non inclinées 84. La stagnation d’eau est donc encore plus limitée.
Dans la variante illustrée sur la figure 6, le toit 40 est dépourvu de région non inclinée 84.
La région d’évacuation d’eau 80 s’étend sur toute la longueur et sur toute la largeur du toit 40.
Dans cet exemple, en projection dans un plan horizontal, l’aire occupée par les pans inclinés transversaux 82C, 82D est de préférence inférieure à 10% de l’aire occupée par les pans inclinés longitudinaux 82A, 82B.
Comme précédemment, toute la région d’évacuation d’eau 80, incluant le bord supérieur 120 est située dans le plan P ou sous le plan P.
Dans cette variante, les ouvertures traversantes 102 d’évacuation de surpression sont ménagées directement dans les pans inclinés 82A, 82B et les plaques de déflagration 104 sont rapportées sur les pans inclinés 82A, 82B sur le pourtour des ouvertures traversantes 102, comme décrit précédemment.
Dans une variante, une couche d’isolant thermique, par exemple une couche fibreuse réalisée en laine de roche est disposée sous le toit 40, notamment, dans le volume délimité entre la surface d’appui 64, et les pans inclinés 82A à 82D. Cette variante favorise l’isolation thermique des modules de batterie 16, notamment lorsque la température augmente à l’extérieur du système de stockage d’énergie 10.

Claims

REVENDICATIONS
1. Conteneur (12) de modules de batterie (16), comportant une structure (30) de réception des modules de batterie (16), la structure (30) comprenant un plancher (32), des parois périphériques (36) s’étendant verticalement à la périphérie du plancher (32) et définissant des coins supérieurs, des pièces de coin supérieures (70) montées sur les coins supérieurs et faisant saillie au-dessus des bords supérieurs des parois périphériques (36), les pièces de coin supérieures (70) présentant chacune une surface supérieure (72), la structure (30) comportant en outre un toit (40) s’étendant entre les coins supérieurs, le toit (40), les parois périphériques (36), et le plancher (32) délimitant un volume intérieur (14) de stockage de modules de batterie (16), caractérisé en ce que le toit (40) comporte au moins une région d’évacuation d’eau (80), la région d’évacuation d’eau (80) comprenant au moins deux pans (82A à 82D) inclinés entre un bord inférieur (88) et au moins un point supérieur (86) commun aux deux pans inclinés (82A à 82D), pour permettre un écoulement d’eau reçue sur chacun des pans inclinés (82A à 82D) vers leur bord inférieur (88), la région d’évacuation d’eau (80) étant située dans ou sous un plan défini par les surfaces supérieures (72) des pièces de coin supérieures (70).
2. Conteneur (12) selon la revendication 1 , dans lequel les parois périphériques (36) comportent deux parois longitudinales (50A, 50B) opposées, s’étendant le long d’un axe (A-A’) longitudinal du conteneur (12), et deux parois transversales (52C, 52D), s’étendant perpendiculairement à l’axe longitudinal (A-A’), au moins deux pans inclinés (82A, 82B) étant des pans inclinés longitudinaux s’inclinant à l’opposé l’un de l’autre vers les parois longitudinales opposées (50A, 50B).
3. Conteneur (12) selon la revendication 2, dans lequel le toit (40) comporte au moins quatre pans inclinés (82A à 82D), au moins deux pans inclinés (82C, 82D) étant des pans inclinés transversaux s’inclinant à l’opposé l’un de l’autre vers les parois transversales (52C, 52D).
4. Conteneur (12) selon la revendication 3, dans lequel les quatre pans inclinés (82A à 82D) ont une forme de pyramide, le point supérieur (86) étant commun à tous les pans inclinés (82A à 82D), et formant le sommet de la pyramide.
5. Conteneur (12) selon l’une quelconque des revendications 1 à 3, dans lequel deux pans inclinés (82A à 82D) ont un bord supérieur (120) commun, le bord supérieur (120) commun définissant une pluralité de points supérieurs communs (86).
6. Conteneur (12) selon l’une quelconque des revendications précédentes, dans lequel la structure (30) comporte au moins une surface structurelle d’appui (64) s’étendant entre deux parois périphériques (36) sous les deux pans inclinés (82A à 82D), la structure (30) comportant en outre au moins une entretoise de renfort (94) interposée entre la surface structurelle d’appui (64) et au moins un des pans inclinés (82A à 82D).
7. Conteneur (12) selon la revendication 6, dans lequel la structure (30) comporte une charpente (42) de support du toit (40) comportant au moins un longeron (60, 60A) s’étendant suivant un axe longitudinal (A-A’) du conteneur (12), et/ou au moins une traverse (62, 62B), s’étendant transversalement par rapport à l’axe longitudinal (A-A’) du conteneur (12), la surface structurelle d’appui (64) s’étendant sur le longeron (60, 60A) et/ou sur la traverse (62, 62B).
8. Conteneur (12) selon l’une quelconque des revendications précédentes, dans lequel le toit (40) comporte en outre au moins une région non inclinée (84) adjacente à la région d’évacuation d’eau (80).
9. Conteneur (12) selon la revendication 8, dans lequel le toit (40) comporte deux régions non inclinées (84) situées de part et d’autre de la région d’évacuation d’eau (80).
10. Conteneur (12) selon l’une quelconque des revendications 1 à 7, dans lequel le toit (40) est dépourvu de région non inclinée (84).
11. Conteneur (12) selon l’une quelconque des revendications précédentes, dans lequel une région non inclinée (84) du toit (40) ou/et au moins un pan incliné (82A à 82D) définit au moins une ouverture traversante (102) d’évacuation d’une surpression dans le volume intérieur (14), le toit (40) comportant un panneau de déflagration (104) rapporté sur l’ouverture traversante (102), le panneau de déflagration (104) étant propre à libérer au moins partiellement l’ouverture traversante (102) lors d’une surpression supérieure à un seuil donné dans le volume intérieur (14).
12. Conteneur (12) selon l’une quelconque des revendications précédentes, dans lequel les parois périphériques (36) délimitent des coins inférieurs, la structure (30) comportant des pièces de coin inférieures (46) montées sous les coins inférieurs en étant situées au droit des pièces de coins supérieures (70).
13. Conteneur (12) selon l’une quelconque des revendications précédentes, dans lequel la structure (30) comporte une couche d’isolant thermique disposée au moins sous les pans inclinés (82A à 82D).
14. Système (10) de stockage de puissance électrique, comportant :
- un conteneur (12) selon l’une quelconque des revendications précédentes ; - des modules de batterie (16) reçus dans le volume intérieur (14) ;
- des bornes (22), raccordées aux modules de batterie (16) et destinées à se raccorder à un consommateur de puissance électrique fournie par les modules de batterie (16) et/ou à un fournisseur de puissance électrique pour le rechargement des modules de batterie (16).
15. Système de stockage (10) selon la revendication 14, dans lequel la structure (30) comporte une cloison interne (54) séparant le volume intérieur (14) pour délimiter une salle de commande (58) recevant au moins un système (18) de gestion des modules de batterie (16), et au moins une salle de stockage (56) recevant les modules de batterie (16).
PCT/EP2023/070821 2022-07-27 2023-07-27 Conteneur de modules de batterie, et système de stockage de puissance électrique associé WO2024023206A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2207737 2022-07-27
FR2207737A FR3138576A1 (fr) 2022-07-27 2022-07-27 Conteneur de modules de batterie, et système de stockage de puissance électrique associé

Publications (1)

Publication Number Publication Date
WO2024023206A1 true WO2024023206A1 (fr) 2024-02-01

Family

ID=83690061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/070821 WO2024023206A1 (fr) 2022-07-27 2023-07-27 Conteneur de modules de batterie, et système de stockage de puissance électrique associé

Country Status (2)

Country Link
FR (1) FR3138576A1 (fr)
WO (1) WO2024023206A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014174608A1 (fr) * 2013-04-24 2014-10-30 株式会社日立システムズ Centre de données du type conteneur
CN211530802U (zh) * 2020-03-24 2020-09-18 安徽海螺新能源有限公司 一种集装箱式储能系统
CN212461856U (zh) 2020-05-26 2021-02-02 福建时代星云科技有限公司 一种防冷凝水储能装置
CN113036277A (zh) * 2021-03-02 2021-06-25 北京昆兰新能源技术有限公司 一种户外储能柜
US20210359367A1 (en) * 2019-02-04 2021-11-18 Sma Solar Technology Ag Container for an energy supply system, energy supply system, and method for providing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014174608A1 (fr) * 2013-04-24 2014-10-30 株式会社日立システムズ Centre de données du type conteneur
US20210359367A1 (en) * 2019-02-04 2021-11-18 Sma Solar Technology Ag Container for an energy supply system, energy supply system, and method for providing same
CN211530802U (zh) * 2020-03-24 2020-09-18 安徽海螺新能源有限公司 一种集装箱式储能系统
CN212461856U (zh) 2020-05-26 2021-02-02 福建时代星云科技有限公司 一种防冷凝水储能装置
CN113036277A (zh) * 2021-03-02 2021-06-25 北京昆兰新能源技术有限公司 一种户外储能柜

Also Published As

Publication number Publication date
FR3138576A1 (fr) 2024-02-02

Similar Documents

Publication Publication Date Title
EP3377347B1 (fr) Vehicule terrestre de transport en commun a capotage superieur fonctionnel
EP2506337B1 (fr) Implantation de baies batteries en conteneur
EP3377351A1 (fr) Vehicule electrique terrestre de transport en commun a architecture optimisee
FR2475505A1 (fr) Conteneur pour le transport d'une chaine de fabrication, de traitement, d'experimentation, d'examen ou analogue
WO2017084921A1 (fr) Véhicule électrique terrestre de transport en commun, de type bus, muni de modules de stockage d'énergie électrique supérieurs
EP3756915A1 (fr) Semi-remorque ou remorque frigorifique de transport de marchandises munie d'un module de production d'électricité à pile à combustible
WO2019215414A1 (fr) Procede d'assemblage d'une cuve etanche et thermiquement isolante
WO2024023206A1 (fr) Conteneur de modules de batterie, et système de stockage de puissance électrique associé
FR3014381A1 (fr) Chariot elevateur a batterie
EP2656352B1 (fr) Dispositif de stockage longue duree integrant un etui de stockage ventile destine a recevoir un etui de confinement contenant des matieres radioactives
WO2024033466A1 (fr) Conteneur de modules de batterie muni d'une marche de protection, systeme de stockage de puissance electrique et procede associe
WO2016103020A1 (fr) Systeme de confinement pour un ensemble anodique
FR2956859A1 (fr) Conteneur notamment pour le transport de conteneurs standardises ou specifiques
FR3069564B1 (fr) Abri stationnaire transportable, pour le stockage de modules de stockage d'energie electrique
FR2960500A1 (fr) Station de transfert de batteries electriques et procede de mise en oeuvre d'une telle station
WO1998001330A1 (fr) Station-service autonome transportable
EP3377349B1 (fr) Vehicule electrique terrestre de transport en commun, de type bus, muni de modules de stockage d'energie electrique interieurs
EP3711109B1 (fr) Systeme de generation d'energie electrique nomade pour un aeronef comprenant une pile a combustible
FR2684349A1 (fr) Navire, en particulier navire marchand.
FR3091037A1 (fr) Installation de baies de batteries dans un conteneur par déplacement des baies, selon le principe du jeu de Taquin
FR2974673A1 (fr) Batterie de traction pour un chariot transporteur
FR2761676A1 (fr) Station-service autonome transportable
FR3111021A1 (fr) Dispositif de fixation de packs batterie, dispositif d'alimentation et cloisons associés
EP4309935A2 (fr) Véhicule de transport routier électrique à pile à combustible et procédé de conversion d'un véhicule de transport routier thermique en un tel véhicule
EP4124508A1 (fr) Coffre de toit et véhicule équipé d'un tel coffre

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23749004

Country of ref document: EP

Kind code of ref document: A1