WO2024022343A1 - 一种被用于无线通信中的方法和装置 - Google Patents

一种被用于无线通信中的方法和装置 Download PDF

Info

Publication number
WO2024022343A1
WO2024022343A1 PCT/CN2023/109135 CN2023109135W WO2024022343A1 WO 2024022343 A1 WO2024022343 A1 WO 2024022343A1 CN 2023109135 W CN2023109135 W CN 2023109135W WO 2024022343 A1 WO2024022343 A1 WO 2024022343A1
Authority
WO
WIPO (PCT)
Prior art keywords
rlc entity
rlc
entity
node
pdcp
Prior art date
Application number
PCT/CN2023/109135
Other languages
English (en)
French (fr)
Inventor
张锦芳
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210961156.0A external-priority patent/CN117528703A/zh
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2024022343A1 publication Critical patent/WO2024022343A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/03Protocol definition or specification 
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections

Definitions

  • the present application relates to methods and devices in wireless communication systems, and in particular to methods and devices for supporting multi-path transmission in wireless communications.
  • Multipath transmission can include direct path transmission and indirect path transmission.
  • the source node and the destination receiving node are usually base station equipment and user equipment, or they can both be user equipment; the relay node can be network equipment or user equipment.
  • the transmission from the user equipment to the relay node uses secondary link air interface technology, and the transmission from the relay node to the base station or enhanced node B (eNodeB, eNB)
  • the transmission uses LTE air interface technology, and the relay node is used for data forwarding between UE (User Equipment) and eNB.
  • a data packet can be submitted to multiple lower-layer entities for transmission after being copied, that is, it can be sent through multiple paths. If multiple paths between the sending node and the receiving node There is only one hop. When one of the lower-layer entities indicates that the data packet transmission is successful, it can instruct to stop transmission on other paths to save air interface resources. When a path between the sending node and the receiving node is forwarded through a relay, the lower-layer entity only indicates that the data packet is successfully transmitted at the current hop, and does not indicate that the data packet is also successfully transmitted to the destination receiving node. At this time, if the indication stops at Transmission on other paths creates the risk of packet transmission failure.
  • this application discloses a solution that can effectively save air interface resources while improving the success rate of data transmission.
  • the embodiments and features in the embodiments of the first node of the present application can be applied to the second node, and vice versa.
  • the embodiments of the present application and the features in the embodiments can be combined with each other arbitrarily without conflict.
  • the original intention of this application is for the Uu air interface
  • this application can also be used for the PC5 air interface.
  • the original intention of this application is for terminal and base station scenarios, this application is also applicable to relays and base stations, achieving similar technical effects in terminal and base station scenarios.
  • This application discloses a method used in a first node of wireless communication, which is characterized by including:
  • whether to instruct the second RLC entity to discard the copy of the first PDCP PDU is related to the configuration of the first RLC entity; when the first RLC entity is configured by the first configuration type, as receiving the first The indicated response indicates to the second RLC entity to discard the copy of the first PDCP PDU; the first RLC entity and the second RLC entity are two RLCs in the first RLC entity set Entity, the first RLC entity set is maintained at the first node.
  • this application is applicable to dual connectivity transmission.
  • this application is applicable to multi-path transmission.
  • this application is applicable to a scenario in which all paths in multipath transmission are directly connected paths, and is also applicable to a scenario in which at least one path in multipath transmission is an indirect path.
  • the indirect path in this application is forwarded through UE-to-Network (U2N) relay.
  • U2N UE-to-Network
  • the indirect path in this application is forwarded through Layer 2U2N relay.
  • the indirect path in this application is forwarded through layer 2U2U (UE-to-UE) relay.
  • this application is applicable to multi-path transmission using a replication method.
  • the above method can save air interface resources by instructing to discard the duplication of the first PDCP (Packet Data Convergence Protocol) PDU (Protocol Data Unit).
  • PDCP Packet Data Convergence Protocol
  • PDU Protocol Data Unit
  • the above method is backward compatible and helps reduce hardware complexity and cost.
  • the entity in this application is a module.
  • the entity in this application is a module that completes a set of functions.
  • the entity in this application is a hardware module that completes a set of functions.
  • the entity in this application is a software module that completes a set of functions.
  • the relay node and relay UE in this application can be interchanged.
  • the first RLC entity When the first RLC entity is configured with the second configuration type, in response to receiving the first indication, delay the first time length and instruct the second RLC entity to discard the copy of the first PDCP PDU. .
  • the above method can simultaneously save air interface resources and improve data transmission robustness by delaying the instruction to the second RLC (Radio Link Control, Radio Link Control) entity to discard the copy of the first PDCP PDU. beneficial effects.
  • RLC Radio Link Control, Radio Link Control
  • the first time length is related to the number of layer 2 relay nodes included between the node where the peer RLC entity of the first RLC entity is located and the destination recipient of the first PDCP PDU;
  • the node where the peer RLC entity of the first RLC entity is located is a layer 2 relay node.
  • the first RLC entity is an AM RLC entity
  • the second RLC entity is one of an AM RLC entity or a UM RLC entity.
  • the first RLC SDU is the copy of the first PDCP PDU.
  • the above method discards the first RLC SDU (ServiceDataUnit, service data unit), that is, discarding the copy of the first PDCP PDU, which can save air interface resources.
  • ServiceDataUnit service data unit
  • the above method can reduce the underlying implementation complexity.
  • the above method does not indicate to the second RLC entity that discarding the copy of the first PDCP PDU can improve data transmission robustness.
  • a first PDCP entity is configured with PDCP replication and is associated with each RLC entity in the first set of RLC entities.
  • This application discloses a first node used for wireless communication, which is characterized by including:
  • the first transceiver copies the first PDCP PDU and submits the first PDCP PDU to each RLC entity in the first RLC entity set for transmission;
  • the first transceiver receives a first indication from a first RLC entity, and the first indication is used to confirm the successful transmission of the first PDCP PDU;
  • whether to indicate to the second RLC entity to discard the copy of the first PDCP PDU is related to the configuration of the first RLC entity; when the first RLC entity is configured by the first configuration type, as receiving the first The indicated response indicates to the second RLC entity to discard the copy of the first PDCP PDU; the first RLC entity and the second RLC entity are two RLCs in the first RLC entity set. Entity, the first RLC entity set is maintained at the first node.
  • the first transceiver when the first RLC entity is configured with the second configuration type, in response to receiving the first indication, delays the first length of time and then instructs the second RLC entity to discard the first indication.
  • the copy of a PDCP PDU when the first RLC entity is configured with the second configuration type, in response to receiving the first indication, delays the first length of time and then instructs the second RLC entity to discard the first indication.
  • the first time length is related to the number of layer 2 relay nodes included between the node where the peer RLC entity of the first RLC entity is located and the destination recipient of the first PDCP PDU;
  • the node where the peer RLC entity of the first RLC entity is located is a layer 2 relay node.
  • the first RLC entity is an AM RLC entity
  • the second RLC entity is one of an AM RLC entity or a UM RLC entity.
  • the first transceiver when neither the first RLC SDU nor the segments of the first RLC SDU is delivered to the bottom layer, discards the first RLC SDU;
  • the first RLC SDU is the copy of the first PDCP PDU.
  • the first transceiver when the first RLC entity is configured by the second configuration type, gives up instructing the second RLC entity to discard the copy of the first PDCP PDU.
  • a first PDCP entity is configured with PDCP replication and is associated with each RLC entity in the first set of RLC entities.
  • Figure 1 illustrates a transmission flow chart of a first node according to an embodiment of the present application
  • Figure 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application
  • Figure 3 illustrates a schematic diagram of the wireless protocol architecture of the user plane and control plane according to one embodiment of the present application
  • Figure 4 illustrates a schematic diagram of a hardware module of a communication device according to an embodiment of the present application
  • Figure 5 illustrates a signal transmission flow chart according to an embodiment of the present application
  • Figure 6 illustrates another signal transmission flow chart according to an embodiment of the present application
  • Figure 7 illustrates a third wireless signal transmission flow chart according to an embodiment of the present application.
  • Figure 8 illustrates a schematic diagram of a radio bearer according to an embodiment of the present application
  • Figure 9 illustrates a schematic diagram of the wireless protocol architecture of relay transmission according to an embodiment of the present application.
  • Figure 10 illustrates a schematic diagram of a topology structure according to an embodiment of the present application
  • Figure 11 illustrates a structural block diagram of a processing device in a first node according to an embodiment of the present application.
  • Embodiment 1 illustrates a transmission flow chart of the first node according to an embodiment of the present application, as shown in Figure 1.
  • the first node 100 copies the first PDCP PDU in step 101 and submits the first PDCP PDU to each RLC entity in the first RLC entity set for transmission; in step 102, from the first RLC The entity receives a first indication, the first indication being used to confirm the successful transmission of the first PDCP PDU; wherein, whether to instruct the second RLC entity to discard the copy of the first PDCP PDU and the first RLC entity related to the configuration; when the first RLC entity is configured with the first configuration type, in response to receiving the first indication, instruct the second RLC entity to discard the copy of the first PDCP PDU; the The first RLC entity and the The second RLC entities are two RLC entities in the first RLC entity set, and the first RLC entity set is maintained at the first node.
  • the first PDCP PDU is copied and submitted to each RLC entity in the first RLC entity set for transmission.
  • the first transceiver generates a first PDCP PDU.
  • the first PDCP entity is a transmitting PDCP entity.
  • each RLC entity in the first RLC entity set is activated for PDCP duplication.
  • the first RLC entity set includes related RLC entities activated for PDCP replication.
  • any RLC entity in the first RLC entity set is an AM (Acknowledged Mode, acknowledgment mode) RLC entity.
  • the first RLC entity set includes at least one AM RLC entity.
  • an RLC entity in the first RLC entity set is identified by one of a logical channel identity (Logical Channel Identity, LCID) or an RLC channel identity (RLC channel Identity).
  • LCID Logical Channel Identity
  • RLC channel Identity RLC channel Identity
  • the logical channel identifier or the RLC channel identifier is configured by the base station of the serving cell of the first node.
  • the logical channel identifier or the RLC channel identifier is used to identify the one RLC entity on the network side.
  • an RLC entity in the first RLC entity set is associated with a logical channel identifier on the Uu air interface, and the transmission path through the one RLC entity is a direct path.
  • an RLC entity in the first RLC entity set is associated with a logical channel identifier on the PC5 air interface, and the transmission path through the one RLC entity is an indirect path.
  • the one logical channel identifier associated with the one RLC entity on the PC5 interface is allocated by the first node itself.
  • the first PDCP PDU is a PDCP data (data) PDU.
  • the first PDCP PDU is a PDCP control (control) PDU.
  • the first PDCP PDU is either a PDCP control PDU or a PDCP data PDU.
  • the first transceiver is used for inter-layer communication between the first PDCP entity and any RLC entity in the first RLC entity set.
  • a first indication is received from the first RLC entity, and the first indication is used to confirm the successful transmission of the first PDCP PDU.
  • the first indication is an inter-layer indication.
  • the first indication is used to confirm the successful transmission of the first PDCP PDU.
  • the first indication includes a sequence number (SN) of the first PDCP PDU.
  • a PDCP data PDU includes a PDCP sequence number.
  • the PDCP sequence number is a non-negative integer.
  • the PDCP sequence number includes 12 bits.
  • the PDCP sequence number includes 18 bits.
  • the first RLC entity sends a poll (poll) to the peer RLC entity of the first RLC entity, and the poll is used to trigger the first RLC entity.
  • the status PDU indicates whether the first RLC SDU is successfully sent.
  • a status PDU is received from the peer RLC entity of the first RLC entity.
  • the status PDU indicates a positive acknowledgment (positive acknowledgment) for the first RLC SDU
  • the first RLC entity The first PDCP entity sends the first indication; wherein the first RLC SDU is the first PDCP PDU.
  • the peer RLC entity of the first RLC entity is located at a node other than the first node.
  • the first node and a node other than the first node are not co-located.
  • the first node and a node other than the first node are connected through an air interface.
  • the air interface is Uu.
  • the air interface is PC5.
  • the first node and a node other than the first node are connected through a wired link.
  • whether to instruct the second RLC entity to discard the copy of the first PDCP PDU is related to the configuration of the first RLC entity.
  • the configuration of the first RLC entity is a network configuration.
  • whether the phrase indicates to the second RLC entity to discard the copy of the first PDCP PDU is related to the configuration of the first RLC entity and includes: whether to indicate to the second RLC entity to discard the first PDCP PDU.
  • the copying is related to configuring the type of the first RLC entity.
  • whether the phrase indicates to the second RLC entity to discard the copy of the first PDCP PDU is related to the configuration of the first RLC entity and includes: whether to indicate to the second RLC entity to discard the first PDCP PDU.
  • the copying is related to the type of information element (Information Element, IE) that configures the first RLC entity.
  • the first transceiver when the first RLC entity is configured with the first configuration type, in response to receiving the first indication, instructs the second RLC entity to discard the first The described copy of the PDCP PDU.
  • the second RLC entity when the first RLC entity is configured by the first configuration type, if the first indication is received, instruct the second RLC entity to discard the copy of the first PDCP PDU .
  • the second RLC entity when the first RLC entity is not configured by the first configuration type, if the first indication is received, the second RLC entity is not instructed to discard all of the first PDCP PDU. Describe copying.
  • the first configuration type is RLC bearer configuration.
  • the first configuration type includes the lower layer part of the radio bearer configuration, including RLC and logical channel configuration.
  • the first RLC entity is configured by the first configuration type.
  • the first RLC entity when the information element configuring the first RLC entity includes a logical channel identity, the first RLC entity is configured by the first configuration type.
  • the first RLC entity when the first RLC entity is identified by a logical channel identifier on the network side, the first RLC entity is configured by the first configuration type.
  • the first RLC entity is configured by the first configuration type.
  • the intended recipient is the final recipient of the first PDCP PDU.
  • the first PDCP PDU is uploaded to the application layer of the destination recipient after being processed by the destination recipient.
  • the first RLC entity is configured with the first configuration type. configuration.
  • the NG-RAN node is gNB (NR Node B) or ng (Next Generation)-eNB.
  • the first RLC entity when the data processed by the first RLC entity is transmitted through the PUSCH (Physical Uplink Shared Channel) channel at the physical layer, the first RLC entity is configured by the first configuration type .
  • PUSCH Physical Uplink Shared Channel
  • the first RLC entity when the first RLC entity is for Uu air interface transmission, the first RLC entity is configured by the first configuration type.
  • the first configuration type is not RLC channel configuration.
  • the first configuration type is only identified by a logical channel identifier on the network side and is not identified by an RLC channel identifier.
  • the configuration of the first configuration type includes part or all of the information elements (IEs) in RRC (Radio Resource Control, Radio Resource Control) signaling.
  • IEs information elements
  • the configuration of the first configuration type is RRC signaling.
  • the configuration of the first configuration type includes all or part of the IEs in one RRC signaling.
  • the configuration of the first configuration type includes all or part of a field (field) in an IE in an RRC signaling.
  • the first RLC entity and the second RLC entity are two RLC entities in the first RLC entity set.
  • the second RLC entity is any RLC entity in the first RLC entity set except the first RLC entity.
  • the first RLC entity set includes at least two RLC entities.
  • the first RLC entity set is located at the first node.
  • the first PDCP entity is maintained at the first node.
  • the first PDCP entity is located in a PDCP sublayer (sublayer).
  • the first RLC entity set is maintained at the first node.
  • the first RLC entity set is located at the RLC sublayer.
  • the first transceiver copies the first PDCP PDU and submits the first PDCP PDU to each RLC entity in the first RLC entity set for transmission; the first transceiver copies the first PDCP PDU from the first RLC entity Receive a first indication, the first indication being used to confirm successful delivery of the first PDCP PDU; wherein, whether to instruct the second RLC entity to discard the copy of the first PDCP PDU and the third Related to the configuration of an RLC entity; when the first RLC entity is configured with a first configuration type, in response to receiving the first indication, instruct the second RLC entity to discard the first PDCP PDU Copy; the first RLC entity and the second RLC entity are two RLC entities in the first RLC entity set, and any RLC entity in the first RLC entity set is on the first node or A node other than the first node is maintained.
  • the first node is MN (MasterNode, primary node), and the node other than the first node is SN (SecondaryNode, secondary node).
  • the first node is SN, and the node other than the first node is MN.
  • the first node is an NG-RAN node
  • the node other than the first node is a UE.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in Figure 2.
  • Figure 2 illustrates a diagram of the network architecture 200 of NR 5G, LTE (Long-Term Evolution, Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced, Enhanced Long-Term Evolution) systems.
  • the NR 5G, LTE or LTE-A network architecture 200 may be called 5GS (5G System)/EPS (Evolved Packet System) 200 or some other suitable term.
  • 5GS 5G System
  • EPS Evolved Packet System
  • 5GS/EPS 200 may include one or more UE (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G Core Network, 5G Core Network)/EPC (Evolved Packet Core, Evolved Packet Core) 210, HSS (Home Subscriber Server, Home Subscriber Server)/UDM (Unified Data Management, Unified Data Management) 220 and Internet Services 230.
  • 5GS/EPS can be interconnected with other access networks, but for simplicity it is not Expose these entities/interfaces. As shown, 5GS/EPS provides packet-switched services, however those skilled in the art will readily appreciate that the various concepts presented throughout this application may be extended to networks that provide circuit-switched services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNBs 204.
  • gNB 203 provides user and control plane protocol termination towards UE 201.
  • gNB 203 may connect to other gNBs 204 via the Xn interface (eg, backhaul link).
  • the XnAP protocol of the Xn interface is used to transmit control plane messages of the wireless network, and the user plane protocol of the Xn interface is used to transmit user plane data.
  • gNB203 can also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP (Transmission Reception Point, Transmitting and receiving node) or some other suitable terminology, in an NTN (Non Terrestrial Network, non-terrestrial/satellite network) network, gNB203 can be a satellite, an aircraft or a ground base station relayed through a satellite. gNB203 provides UE201 with an access point to 5GC/EPC210.
  • Examples of UE201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptops, Personal Digital Assistants (PDAs), satellite radios, global positioning systems, multimedia devices, Video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, vehicle-mounted equipment, vehicle-mounted communication units, Wearable devices, or any other similarly functional device.
  • SIP Session Initiation Protocol
  • PDAs Personal Digital Assistants
  • multimedia devices Video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., digital audio players
  • game consoles e.g., drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, vehicle-mounted equipment, vehicle-mounted communication units, Wearable devices, or any other similarly functional device.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminals, wireless terminals, remote process terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to 5GC/EPC210 through the S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management domain)/SMF (Session Management Function, session management function) 211.
  • MME Mobility Management Entity
  • AMF Authentication Management Field, authentication management domain
  • Session Management Function Session Management Function, session management function
  • MME/AMF/SMF214 S-GW (Service Gateway, Service Gateway)/UPF (User Plane Function, User Plane Function) 212 and P-GW (Packet Date Network Gateway, Packet Data Network Gateway)/UPF213.
  • MME/AMF/SMF211 is the control node that handles signaling between UE201 and 5GC/EPC210. Basically, MME/AMF/SMF211 provides bearer and connection management. All user IP (Internet Protocol, Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213. P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF 213 is connected to Internet service 230.
  • Internet service 230 includes the operator's corresponding Internet protocol service, which may specifically include Internet, intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and PS (Packet Switching, packet switching) streaming services.
  • the UE201 corresponds to the first node in this application.
  • the gNB 203 corresponds to the second node in this application.
  • the UE241 corresponds to the third node in this application.
  • the UE201 is user equipment.
  • the UE241 is user equipment.
  • the UE241 is an RSU (Road Side Unit).
  • the UE241 is a relay node.
  • the UE241 is a layer 2 relay node.
  • the UE241 is a layer 2 U2N relay UE.
  • the UE241 is a layer 2U2U relay UE.
  • the gNB 203 is a macro cell (Marco Cell) base station.
  • the gNB 203 is a Micro Cell base station.
  • the gNB 203 is a Pico Cell base station.
  • the gNB 203 is a home base station (Femtocell).
  • the gNB 203 is a base station device that supports a large delay difference.
  • the gNB 203 is a flying platform device.
  • the gNB 203 is a satellite device.
  • the gNB 203 is a base station device that supports a large delay difference.
  • the gNB 203 is a test equipment (for example, a transceiver device that simulates part of the functions of a base station, a signaling tester).
  • a test equipment for example, a transceiver device that simulates part of the functions of a base station, a signaling tester.
  • the wireless link from the UE 201 to the gNB 203 is an uplink, and the uplink is used to perform uplink transmission.
  • the wireless link from the UE 241 to the gNB 203 is an uplink, and the uplink is used to perform uplink transmission.
  • the wireless link from the gNB 203 to the UE 201 is a downlink, and the downlink is used to perform downlink transmission.
  • the wireless link from the gNB 203 to the UE 241 is a downlink, and the downlink is used to perform downlink transmission.
  • the wireless link between the UE201 and the UE241 is a secondary link, and the secondary link is used to perform secondary link transmission.
  • the UE201 and the gNB203 are connected through a Uu air interface.
  • the UE241 and the gNB203 are connected through a Uu air interface.
  • the UE201 and the UE241 are connected through a PC5 air interface.
  • Embodiment 3 illustrates a schematic diagram of the wireless protocol architecture of the user plane and control plane according to an embodiment of the present application, as shown in FIG. 3 .
  • 3 is a schematic diagram illustrating an embodiment of a wireless protocol architecture for user plane 350 and control plane 300, shown in three layers.
  • the radio protocol architecture of the control plane 300 of the UE and gNB is shown: Layer 1, Layer 2 and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be called PHY301 in this article.
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the UE and the gNB through the PHY 301.
  • L2 layer 305 includes MAC (Medium Access Control, media access control) sublayer 302, RLC (Radio Link Control, wireless link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304, these sub-layers terminate at the gNB on the network side.
  • the PDCP sublayer 304 provides data encryption and integrity protection.
  • the PDCP sublayer 304 also provides handover support for UEs between gNBs.
  • the RLC sublayer 303 provides segmentation and reassembly of data packets, and realizes retransmission of lost data packets through ARQ (Automatic Repeat Request, Automatic Repeat Request).
  • the RLC sublayer 303 also provides duplicate data packet detection and protocol error detection.
  • the MAC sublayer 302 provides mapping between logical channels and transport channels and multiplexing of logical channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among UEs.
  • the MAC sublayer 302 is also responsible for HARQ (Hybrid Automatic RepeatRequest, Hybrid Automatic Repeat Request) operations.
  • the RRC (Radio Resource Control, radio resource control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and configuring the lower part using RRC signaling between gNB and UE. layer.
  • the wireless protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the wireless protocol architecture in the user plane 350 is for the physical layer 351, the PDCP sublayer 354 in the L2 layer 355, and the PDCP sublayer 354 in the L2 layer 355.
  • the RLC sublayer 353 and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also provides header compression for upper layer packets to reduce wireless Send overhead.
  • the L2 layer 355 in the user plane 350 also includes an SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356.
  • the SDAP sublayer 356 is responsible for the mapping between QoS flows and data radio bearers (DRB, Data Radio Bearer). , to support business diversity.
  • DRB Data Radio Bearer
  • the wireless protocol architecture of the UE in the user plane 350 may include part or all of the protocol sublayers of the SDAP sublayer 356, the PDCP sublayer 354, the RLC sublayer 353 and the MAC sublayer 352 at the L2 layer.
  • the UE may also have several upper layers above the L2 layer 355, including a network layer that terminates at the P-GW on the network side (eg, an IP layer) and one that terminates at the other end of the connection (eg, , the application layer at the remote UE, server, etc.).
  • the PDCP 304 sends data to or receives data from the RLC 303 through an RLC channel.
  • the PDCP354 sends data to or receives data from the RLC353 through an RLC channel.
  • the RLC 303 sends data to or receives data from the MAC 302 through a logical channel.
  • the RLC 353 sends data to or receives data from the MAC 352 through a logical channel.
  • the MAC 302 sends data to or receives data from the PHY 301 through a transmission channel.
  • the MAC352 sends data to or receives data from the PHY351 through a transmission channel.
  • the first transceiver is used for data transmission from the bottom layer to the upper layer.
  • the first transceiver is used for data transmission from the upper layer to the lower layer.
  • the upper layer and the bottom layer are adjacent layers.
  • the first transceiver is used by the PDCP 304 to send to the RLC 303 .
  • the first transceiver is used by the PDCP 304 to receive from the RLC 303 .
  • the first transceiver is used by the PDCP354 to send to the RLC353.
  • the first transceiver is used by the PDCP 354 to receive from the RLC 353.
  • the first transceiver is used by the RLC 303 to send to the PDCP 304 .
  • the first transceiver is used by the RLC 303 to receive from the PDCP 304.
  • the first transceiver is used by the RLC353 to send to the PDCP354.
  • the first transceiver is used by the RLC 353 to receive from the PDCP 354.
  • the first transceiver includes inter-layer transceiver primitives.
  • the first transceiver includes a set of instructions for completing the transceiver function.
  • entities of multiple sub-layers of the control plane in Figure 3 form an SRB (Signaling Radio Bearer) in the vertical direction.
  • entities of multiple sub-layers of the user plane in Figure 3 form a DRB (Data Radio Bearer) in the vertical direction.
  • DRB Data Radio Bearer
  • entities of multiple sub-layers of the user plane in Figure 3 form an MRB (MBS Radio Bearer, Multicast Broadcast Service Wireless Bearer) in the vertical direction.
  • MRB MRS Radio Bearer, Multicast Broadcast Service Wireless Bearer
  • the wireless protocol architecture in Figure 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Figure 3 is applicable to the second node in this application.
  • the wireless protocol architecture in Figure 3 is applicable to the third node in this application.
  • the first PDCP PDU in this application is generated from the PDCP 304.
  • the first PDCP PDU in this application is generated from the PDCP354.
  • a copy of the first PDCP PDU in this application is generated from the PDCP 304.
  • a copy of the first PDCP PDU in this application is generated from the PDCP 354.
  • the first PDCP entity is located in the PDCP 304, and any RLC entity in the first RLC entity set is located in the RLC 303.
  • the first PDCP entity is located in the PDCP 354, and any RLC entity in the first RLC entity set is located in the RLC 353.
  • the data packets on the interface between the PDCP sublayer and the RLC sublayer are called PDCP PDU in the PDCP sublayer, and are called RLC SDU in the RLC sublayer, that is, the PDCP sublayer transmits the PDCP PDU to the RLC sublayer.
  • the RLC sublayer receives RLC SDU from the PDCP sublayer; the RLC sublayer transmits RLC SDU to the PDCP sublayer, and the PDCP sublayer receives PDCP PDU from the RLC sublayer.
  • the L2 layer 305 or 355 belongs to a higher layer.
  • the RRC sublayer 306 in the L3 layer belongs to a higher layer.
  • Embodiment 4 illustrates a schematic diagram of a hardware module of a communication device according to an embodiment of the present application, as shown in FIG. 4 .
  • Figure 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in the access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452.
  • the second communication device 410 includes a controller/processor 475, a memory 476, a data source 477, a receiving processor 470, a transmitting processor 416, a multi-antenna receiving processor 472, a multi-antenna transmitting processor 471, and a transmitter/receiver 418 and antenna 420.
  • Controller/Processor 475 In transmission from the second communication device 410 to the first communication device 450, at the second communication device 410, upper layer data packets from the core network or upper layer data packets from the data source 477 are provided to Controller/Processor 475. Core network and data sources 477 represent all protocol layers above the L2 layer. Controller/processor 475 implements the functionality of the L2 layer. In transmission from the second communications device 410 to the first communications device 450, the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels Multiplexing, and radio resource allocation to the first communication device 450 based on various priority metrics. The controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the first communications device 450 .
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer). Transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communications device 410, as well as based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for M-phase shift keying (QPSK), M-phase shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for M-phase shift keying
  • M-PSK M-phase shift keying
  • M-QAM M-quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams. Transmit processor 416 then maps each spatial stream to a subcarrier, multiplexes it with a reference signal (eg, a pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel carrying a stream of time-domain multi-carrier symbols. Then the multi-antenna transmit processor 471 performs transmit analog precoding/beamforming operations on the time domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives the signal via its respective antenna 452 at the first communications device 450 .
  • Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • the receive processor 456 and the multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • Multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from receiver 454.
  • the receive processor 456 converts the baseband multi-carrier symbol stream after the received analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458.
  • the first communication device 450 is any spatial stream that is the destination. The symbols on each spatial stream are demodulated and recovered in the receive processor 456, and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control information transmitted by the second communication device 410 on the physical channel. Number.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 may be associated with memory 460 which stores program code and data. Memory 460 may be referred to as computer-readable media.
  • the controller/processor 459 In transmission from the second communication device 410 to the first communication device 450, the controller/processor 459 provides multiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover higher layer data packets from the second communication device 410. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • upper layer data packets are provided at the first communications device 450 to a controller/processor 459 using a data source 467.
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements header compression, encryption, packet Segmentation and reordering and multiplexing between logical and transport channels implement L2 layer functions for the user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the second communications device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beam forming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which undergoes analog precoding/beamforming operations in the multi-antenna transmit processor 457 and then is provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 may be associated with memory 476 that stores program code and data. Memory 476 may be referred to as computer-readable media.
  • the controller/processor 475 In transmission from the first communications device 450 to the second communications device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from the first communication device 450.
  • Upper layer packets from the controller/processor 475 may be provided to the core network or all protocol layers above the L2 layer, and various control signals may also be provided to the core network or L3 for L3 processing.
  • the first communication device 450 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Using the at least one processor together, the first communication device 450 is configured to at least: copy the first PDCP PDU and submit the first PDCP PDU to each RLC entity in the first RLC entity set; send from the first RLC The entity receives a first indication, the first indication being used to confirm the successful transmission of the first PDCP PDU; wherein, whether to indicate to the second RLC entity to discard the copy of the first PDCP PDU and the first RLC entity related to the configuration; when the first RLC entity is configured by the first configuration type, in response to receiving the first indication, instruct the second RLC entity to discard the copy of the first PDCP PDU; the The first RLC entity and the second RLC entity are two RLC entities in the first RLC entity set, and the first RLC entity set is maintained at the first node.
  • the first communication device 450 device includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: copy and submitting the first PDCP PDU to each RLC entity in the first RLC entity set for transmission; receiving a first indication from the first RLC entity, the first indication being used to confirm the first Successful transmission of PDCP PDU; wherein, whether to indicate to the second RLC entity to discard the copy of the first PDCP PDU is related to the configuration of the first RLC entity; when the first RLC entity is configured by the first configuration type, In response to receiving the first indication, instruct the second RLC entity to discard the copy of the first PDCP PDU; the first RLC entity and the second RLC entity are the first RLC entity Two RLC entities in the set, the first RLC entity set is maintained at the first node.
  • the first communication device 450 corresponds to the first node in this application.
  • the first communication device 450 is a UE.
  • the first communication device 450 is a base station.
  • the first communication device 450 is an RSU (Road Side Unit).
  • the first communication device 450 is a layer 3 relay node.
  • the second communication device 410 corresponds to the second node in this application.
  • the second communication device 410 is a base station.
  • At least one of the antenna 452, the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468 or the controller/processor 459 is used to transmit this The first PDCP PDU in the request.
  • At least one of the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470 or the controller/processor 475 is used to receive this The first PDCP PDU in the request.
  • Embodiment 5 illustrates a signal transmission flow chart according to an embodiment of the present application, as shown in FIG. 5 .
  • the first PDCP entity E51, the first RLC entity E52 and the second RLC entity E53 are all located at the first node, and the first PDCP entity E51 and the first RLC entity E52 communicate through the inter-layer interface.
  • the first PDCP entity E51 and the second RLC entity E53 communicate through an inter-layer interface.
  • step S51 copy the first PDCP PDU and submit the first PDCP PDU to each RLC entity in the first RLC entity set; in step S512, receive the first indication; in step S513 instruct the second RLC entity to discard the copy of the first PDCP PDU.
  • the first PDCP PDU is received in step S521; and the first indication is sent in step S522.
  • step S531 the first PDCP PDU is received; in step S532, the indication is received and the copy of the first PDCP PDU is discarded.
  • Embodiment 5 The steps performed in Embodiment 5 are applicable to the scenario where the first RLC entity is configured by the first configuration type.
  • the second RLC entity discards the first RLC SDU.
  • the first RLC SDU is the copy of the first PDCP PDU.
  • the first PDCP PDU and the first RLC SDU may be interchanged.
  • the bottom layer is a layer below the RLC sub-layer.
  • the bottom layer is a MAC sublayer.
  • the segment of the first RLC SDU includes at least 1 bit of the first RLC SDU.
  • the second RLC entity in response to receiving the first indication, if neither the first RLC SDU nor the segments of the first RLC SDU are delivered to the bottom layer, the second RLC entity discards the first RLC SDU.
  • the data transmitted through the second RLC entity is delivered to the bottom layer.
  • the first PDCP PDU is delivered to the bottom layer.
  • the first RLC entity is an AM RLC entity
  • the second RLC entity is one of an AM RLC entity or a UM (Unacknowledged Mode, unacknowledged mode) RLC entity.
  • the first RLC entity is an AM RLC entity
  • the second RLC entity is one of an AM RLC entity, a UM RLC entity, or a TM (Transparent Mode) RLC entity.
  • the first RLC entity is an AM RLC entity
  • the second RLC entity is an AM RLC entity
  • the first RLC entity is an AM RLC entity
  • the second RLC entity is a UM RLC entity
  • the first RLC entity is an AM RLC entity
  • the second RLC entity is a TM RLC entity
  • the AM RLC entity is configured to pass DL (Downlink, downlink)/UL (Uplink, uplink) DCCH (Dedicated Control Channel, dedicated control channel), DL/UL DTCH (DedicatedTraffic Channel, dedicated traffic channel ), SCCH (Sidelink Control Channel, secondary link control channel) and STCH (Sidelink Traffic CHannel, secondary link business channel) are logical channels that submit/receive RLC PDUs.
  • the AM RLC entity submits/receives an RLC data PDU.
  • the RLC data PDU is an AMD PDU.
  • the AMD PDU includes a complete RLC SDU or an RLC SDU segment.
  • the AM RLC entity submits/receives an RLC control PDU, and the RLC control PDU is a status PDU.
  • the UM RLC entity is configured to pass DL/UL DTCH, SCCH, STCH, MCCH (MBS Control Channel, MBS control channel) and MTCH (MBS Traffic Channel, MBS business channel) these logical channels submit/receive RLC PDU
  • the UM RLC entity submits/receives an RLC data PDU
  • the RLC data PDU is a UMD PDU
  • the UMD PDU includes a complete RLC SDU or an RLC SDU segment.
  • the TM RLC entity is configured to use BCCH (BroadcastControl CHannel, broadcast control channel), DL/UL CCCH (Common Control Channel, public control channel), PCCH (Paging Control CHannel, paging control channel) and SBCCH (Sidelink Broadcast Control CHannel, secondary link broadcast control channel) These logical channels submit/receive RLC PDUs.
  • BCCH BroadcastControl CHannel, broadcast control channel
  • DL/UL CCCH Common Control Channel, public control channel
  • PCCH Paging Control CHannel, paging control channel
  • SBCCH Segmentlink Broadcast Control CHannel, secondary link broadcast control channel
  • the TM RLC entity submits/receives RLC data PDU, and the RLC data PDU is a TMD PDU.
  • the first RLC entity consists of a transmitting side and a receiving side.
  • the second RLC entity consists of a sending side and a receiving side.
  • the second RLC entity is configured to send an RLC entity.
  • Embodiment 6 illustrates another signal transmission flow chart according to an embodiment of the present application, as shown in FIG. 6 .
  • the first PDCP entity E61, the first RLC entity E62 and the second RLC entity E63 are all located at the first node.
  • the first PDCP entity E61 and the first RLC entity E62 communicate through the inter-layer interface.
  • the first PDCP entity E61 and the second RLC entity E63 communicate through an inter-layer interface.
  • step S611 copy the first PDCP PDU and submit the first PDCP PDU to each RLC entity in the first RLC entity set; in step S612, receive the first indication; in step S613 After delaying for a first length of time, instruct the second RLC entity to discard the copy of the first PDCP PDU.
  • the first PDCP PDU is received in step S521; and the first indication is sent in step S522.
  • step S531 the first PDCP PDU is received; in step S532, the indication is received and the copy of the first PDCP PDU is discarded.
  • Embodiment 6 The steps performed in Embodiment 6 are applicable to the scenario where the first RLC entity is configured by the second configuration type.
  • the first transceiver when the first RLC entity is configured with the second configuration type, in response to receiving the first indication, delays (delays) a first length of time before sending the message to the third
  • the second RLC entity instructs to discard the copy of the first PDCP PDU.
  • the first RLC entity when configured by the second configuration type, if the first indication is received, delay the first length of time and then instruct the second RLC entity to discard the The copy of the first PDCP PDU.
  • the second configuration type is RLC channel configuration.
  • the first RLC entity is configured by the second configuration type.
  • the first RLC entity is configured by the second configuration type.
  • the first RLC entity is configured by the second configuration type.
  • the first RLC entity when the information element configuring the first RLC entity includes an RLC channel identity, the first RLC entity is configured by the second configuration type.
  • the first RLC entity when the first RLC entity is identified by an RLC channel identifier on the network side, the first RLC entity is configured by the second configuration type.
  • the first RLC entity when the first RLC entity is identified by a logical channel identifier on the PC5 air interface, the first RLC entity is configured by the second configuration type.
  • the first RLC entity is configured by the second configuration type.
  • the first RLC entity is configured by the second configuration type.
  • the node where the opposite RLC entity of the first RLC entity is located is a layer 2U2N relay UE
  • the first RLC entity is configured by the second configuration type.
  • the first RLC entity when the data processed by the first RLC entity is transmitted through the PSSCH (Physical Sidelink Shared CHannel, Physical Sidelink Shared Channel) channel at the physical layer, the first RLC entity is configured by the second Type configuration.
  • PSSCH Physical Sidelink Shared CHannel, Physical Sidelink Shared Channel
  • the first RLC entity when the first RLC entity is for PC5 air interface transmission, the first RLC entity is configured by the second configuration type.
  • the second configuration type is not an RLC bearer configuration.
  • the second configuration type is only identified by the RLC channel identifier on the network side and is not identified by the logical channel identifier.
  • the configuration of the second configuration type includes part or all of the information elements (IEs) in one RRC signaling.
  • IEs information elements
  • the configuration of the second configuration type is an RRC signaling.
  • the configuration of the second configuration type includes all or part of the IEs in one RRC signaling.
  • the configuration of the second configuration type includes all or part of a field (field) in an IE in an RRC signaling.
  • instructing the second RLC entity to discard the copy of the first PDCP PDU after delaying the first length of time includes: starting a first timer in response to receiving the first indication; When the first timer expires, instruct the second RLC entity to discard the copy of the first PDCP PDU; the duration indicated by the expiration value of the first timer is the first time length .
  • the first length of time is configurable.
  • the first time length is configured by the serving cell of the first node.
  • the first length of time is preconfigured.
  • the first timer is maintained in the first PDCP entity.
  • the first length of time is variable.
  • the first time length is fixed.
  • the step of instructing the second RLC entity to discard the copy of the first PDCP PDU after delaying a first length of time includes: until receiving the second indication, instructing the second RLC entity to discard the copy of the first PDCP PDU. Discarding the copy of the first PDCP PDU; wherein the receipt of the second indication is later than the receipt of the first indication, the second indication includes a first sequence number greater than that of the first PDCP PDU The sequence number of the PDCP PDU confirms the successful delivery.
  • the step of instructing the second RLC entity to discard the copy of the first PDCP PDU after delaying a first length of time includes: until receiving the second indication, instructing the second RLC entity to discard the copy of the first PDCP PDU. Discarding the copy of the first PDCP PDU; wherein the second indication is an inter-layer indication immediately following the first indication that the PDCP PDU is sent correctly.
  • the delaying the first length of time and instructing the second RLC entity to discard the copy of the first PDCP PDU includes: until the value of TX_NEXT (next transmission) is not less than the first PDCP When the COUNT value of the PDU is added to the sum of the first window size (Window Size), the second RLC entity is instructed to discard the copy of the first PDCP PDU.
  • the TX_NEXT indicates the COUNT value of the next PDCP SDU sent.
  • the COUNT value consists of HFN and PDCP sequence number; where the HFN is a Hyper Frame Number.
  • the first window size is configurable.
  • the first window size is configured by the serving cell of the first node.
  • the first window size is preconfigured.
  • the first window size is variable.
  • the first window size is fixed.
  • the first time length is related to the number of layer 2 relay nodes included between the node where the peer RLC entity of the first RLC entity is located and the destination recipient of the first PDCP PDU. .
  • the node where the peer RLC entity of the first RLC entity is located is a layer 2 relay node.
  • the node where the peer RLC entity of the first RLC entity is located is a layer 2 relay node for the first PDCP PDU.
  • the first time length is t1; when the node where the peer RLC entity of the first RLC entity is located is far away from the first PDCP PDU.
  • the first time length is t2, where the value of t1 is smaller than the value of t2.
  • the first time length is equal to the number of layer 2 relay nodes included between the node where the peer RLC entity of the first RLC entity is located and the destination recipient of the first PDCP PDU. Proportional.
  • the first time length is the number of layer 2 relay nodes included between the node where the peer RLC entity of the first RLC entity is located and the destination recipient of the first PDCP PDU. The product of the first factors.
  • the value of the first factor is configurable.
  • Embodiment 7 illustrates a third wireless signal transmission flow chart according to an embodiment of the present application, as shown in FIG. 7 .
  • the first PDCP entity E71, the first RLC entity E72 and the second RLC entity E73 are all located at the first node, and the first PDCP entity E71 and the first RLC entity E72 communicate through the inter-layer interface.
  • the first PDCP entity E71 and the second RLC entity E73 communicate through an inter-layer interface.
  • step S711 copy the first PDCP PDU and submit the first PDCP PDU to each RLC entity in the first RLC entity set; in step S712, receive the first indication.
  • the first PDCP PDU is received in step S721; and the first indication is sent in step S722.
  • the first PDCP PDU is received in step S731.
  • Embodiment 7 The steps performed in Embodiment 7 are applicable to the scenario where the first RLC entity is configured by the second configuration type.
  • the first transceiver when the first RLC entity is configured with the second configuration type, in response to receiving the first indication, gives up instructing the second RLC entity to discard the first indication.
  • the copy of a PDCP PDU when the first RLC entity is configured with the second configuration type, in response to receiving the first indication, gives up instructing the second RLC entity to discard the first indication.
  • the second RLC entity when the first RLC entity is configured by the second configuration type, the second RLC entity is not instructed to discard the copy of the first PDCP PDU.
  • the first transceiver in response to receiving the first indication, discards the first PDCP PDU and the PDCP SDU corresponding to the first PDCP PDU, wherein the first PDCP PDU is PDCP data PDU.
  • Embodiment 8 illustrates a schematic diagram of a radio bearer according to an embodiment of the present application, as shown in FIG. 8 .
  • the first PDCP entity, the first RLC entity and the second RLC entity are all located at the first node.
  • the first PDCP entity and the first RLC entity communicate through an inter-layer interface.
  • the first PDCP The entity communicates with the second RLC entity through an inter-layer interface.
  • Figure 8 is applicable to SRB.
  • Figure 8 is applicable to DRB.
  • Figure 8 is applicable to MRB.
  • the protocol structure shown in Figure 8 is used for the first radio bearer.
  • the first radio bearer is a split SRB, that is, split SRB (signaling radio bearer).
  • the first radio bearer is a split DRB, that is, split DRB (data radio bearer).
  • the first radio bearer is a split DRB, that is, split MRB (MBS radio bearer).
  • Figure 8 is suitable for transmitting and receiving.
  • the higher layer protocol entity in Figure 8 is RRC, and Figure 8 is for SRB.
  • the higher-layer protocol entity in Figure 8 is SDAP, and Figure 8 is for DRB or MRB.
  • the first PDCP entity is configured with PDCP replication, and the first PDCP entity is associated with each RLC entity in the first RLC entity set.
  • the first PDCP entity is used for the first radio bearer.
  • the first PDCP entity is used to send data belonging to the first radio bearer, and activate PDCP replication for the first radio bearer.
  • the phrase the first PDCP entity is associated with each RLC entity in the first RLC entity set. Including: the bearer served by each RLC entity in the first RLC entity set is the first radio bearer, and the first PDCP entity is used for the first radio bearer.
  • the phrase that the first PDCP entity is associated with each RLC entity in the first RLC entity set includes: each RLC entity in the first RLC entity set is used to transmit data from the The data of the first PDCP entity.
  • configuring PDCP replication for the first PDCP entity includes: data sent through the first PDCP entity is copied and distributed to each RLC entity in the first RLC entity set for transmission.
  • the first PDCP entity is configured with PDCP replication including: replicating a PDCP PDU in the first PDCP entity and distributing the PDCP PDU to each RLC entity in the first RLC entity set for transmission. .
  • the first PDCP entity is configured with PDCP replication including: when the PDCP PDU is a PDCP DataPDU, the first PDCP entity replicates the PDCP DataPDU and submits the PDCP dataPDU to the first RLC entity set. Each RLC entity in the RLC entity is sent; when the PDCP PDU is a PDCP Control PDU, the PDCP Control PDU is submitted to the primary RLC entity in the first RLC entity set for sending.
  • the PDCP PDU formed by processing the data packets received from the higher layer protocol entity is sent through one of the first RLC entity or the second RLC entity; wherein, the higher layer protocol The entity is an RRC protocol entity.
  • the PDCP PDU formed by processing the data packets received from the higher layer protocol entity is copied and sent simultaneously through the first RLC entity and the second RLC entity; wherein, the higher layer protocol The entity is an SDAP protocol entity.
  • the first RLC entity is for uplink communication
  • the second RLC entity is for secondary link communication
  • the first RLC entity is for secondary link communication
  • the second RLC entity is for uplink communication
  • the first RLC entity and the second RLC entity are both aimed at uplink communication.
  • the first RLC entity and the second RLC entity are both aimed at secondary link communication.
  • the first RLC entity and the second RLC entity are both directed to a master cell group (Master Cell Group, MCG).
  • MCG Master Cell Group
  • the first RLC entity and the second RLC entity are both directed to a secondary cell group (Secondary Cell Group, SCG).
  • SCG Secondary Cell Group
  • the first RLC entity set includes a primary RLC entity and at least one split secondary RLC entity.
  • the primary RLC entity is used for data transmission on the primary path (primary path) in dual connectivity (DC); the at least one split secondary RLC entity is used in addition to the primary path data transmission along the path.
  • primary path primary path
  • DC dual connectivity
  • both the primary RLC entity and the at least one split secondary RLC entity are used for data transmission on the Uu air interface.
  • the primary RLC entity is used for data transmission on the Uu air interface
  • the at least one split secondary RLC entity is used for data transmission on the PC5 air interface.
  • the primary RLC entity is used for data transmission on the PC5 air interface
  • the at least one split secondary RLC entity is used for data transmission on the Uu air interface.
  • the primary RLC entity is used for data transmission on the control plane
  • the at least one split secondary RLC entity is used for data transmission on the data plane.
  • the first RLC entity is a primary RLC entity
  • the second RLC entity is a split secondary RLC entity
  • the first RLC entity is a split secondary RLC entity
  • the second RLC entity is a primary RLC entity
  • the primary RLC entity is configurable.
  • the primary RLC entity is associated with a cell group.
  • the cell group is one of a primary cell group or a secondary cell group.
  • data belonging to the first radio bearer is sent through at least 2 connections, and each of the at least 2 connections is sent through an RLC entity in the first RLC entity set.
  • the at least 2 connections include MCG.
  • the at least two connections include MCG and SCG.
  • the at least two connections include at least one direct path and at least one indirect path.
  • the direct path means that data is transmitted from the original node to the destination receiver only through one air interface.
  • the indirect path refers to data transmission from the original node to the destination recipient through at least two air interfaces.
  • the at least two air interfaces include a Uu air interface and a PC5 air interface.
  • the at least two air interfaces include at least two PC5 air interfaces.
  • the at least two air interfaces include a BH (backhaul) air interface and an Access (access) air interface.
  • the first radio bearer is an uplink radio bearer.
  • the first radio bearer is a Sidelink Radio Bearer (SLRB).
  • SLRB Sidelink Radio Bearer
  • Embodiment 9 illustrates a schematic diagram of the wireless protocol architecture of relay transmission according to an embodiment of the present application, as shown in FIG. 9 .
  • a target data sequentially passes through the Uu-PDCP sublayer 905, PC5-SRAP (Sidelink Relay Adaptation Protocol, Secondary Link Relay Adaptation Protocol) sublayer 904 and PC5-RLC sublayer 903 on the first node side and is processed in PC5-
  • the MAC sublayer 902 generates the first target MAC PDU, then passes it to the PC5-PHY layer 901, and then transmits it to the PC5-PHY layer 911 of the third node through the PC5 air interface, and then passes through the PC5-MAC sublayer 912 and PC5-RLC in turn.
  • sub-layer 913 recovers the first RLC data; the first RLC data is regenerated into second RLC data in Uu-RLC sub-layer 923 after being processed by PC5-SRAP sub-layer 914 and Uu-SRAP sub-layer 924, and then After processing by the Uu-MAC sublayer 922, the second target MAC PDU is generated and passed to the Uu-PHY layer 921; then transmitted to the Uu-PHY layer 931 of the second node through the Uu air interface, and then passed through the Uu-MAC sublayer 932 The second target MAC PDU is recovered, and then the first target data is recovered through the processing of Uu-RLC sublayer 933, Uu-SRAP sublayer 934 and Uu-PDCP sublayer 935.
  • the third node in Figure 9 is a layer 2U2N relay node.
  • the data forwarded by the third node is processed by the MAC sublayer, RLC sublayer and SRAP sublayer but not by the PDCP sublayer;
  • the PC5 air interface is between the first node and the third node.
  • the air interface, PC5 interface related protocol entities PC5-SRAP904 and PC5-SRAP914, PC5-RLC903 and PC5-RLC913, PC5-MAC902 and PC5-MAC912, PC5-PHY901 and PC5-PHY911 respectively terminate at the first node and
  • the Uu air interface is the air interface between the third node and the second node, and the protocol entities of the Uu air interface are Uu-SRAP924 and Uu-SRAP934, Uu-RLC923 and Uu-RLC933 , Uu-MAC922 and Uu-MAC932, Uu-PHY921 and Uu-PHY931 respectively terminate at the third node and the second node;
  • the PC5-SRAP904 is the peer SRAP entity of the PC5-SRAP914.
  • the Uu-SRAP924 is the peer SRAP entity of the Uu-SRAP934.
  • the Uu-SRAP924 is the peer SRAP entity of the Uu-SRAP934.
  • the PC5-RLC903 is the peer RLC entity of the PC5-RLC913.
  • the Uu-RLC923 is the peer RLC entity of the Uu-RLC933.
  • the Uu-PDCP905 is the peer PDCP entity of the Uu-PDCP935.
  • the first PDCP entity is the Uu-PDCP905
  • the first RLC entity is the PC5-RLC903
  • the peer RLC entity of the first RLC entity is the PC5-RLC913.
  • the PC5-RLC903 sends polling (poll) to the PC5-RLC913, and the polling is used to trigger the PC5-RLC913 to feed back a status PDU to the PC5-RLC903; when the status PDU indicates that it is for the first RLC
  • the PC5-RLC903 sends a first indication to the Uu-PDCP905; wherein the first RLC SDU is the first PDCP PDU.
  • the RLC sublayer, MAC sublayer and PHY layer are responsible for the point-to-point communication of each hop; the PDCP sublayer and the RRC/SDAP sublayer are responsible for End-to-end (peer-to-peer) communication.
  • the SRAP sublayer implements UE ID (User Equipment Identity) and bearer identification determination.
  • UE ID User Equipment Identity
  • the SRAP sublayer implements egress link determination.
  • the SRAP sublayer implements RLC channel (egress RLC channel) determination.
  • the SRAP sublayer implements the Bearer mapping function.
  • the SRAP sublayer implements routing (Routing) function.
  • the routing function sends data packets from the first node to the second node.
  • the second node is an NG-RAN node
  • the first node is a UE.
  • the first node in Figure 9 corresponds to the UE 201 in Embodiment 2.
  • the third node in Figure 9 corresponds to the UE241 in Embodiment 2.
  • the second node in Figure 9 corresponds to the gNB 203 in Embodiment 2.
  • the second node in Figure 9 corresponds to the second communication device 410 in Embodiment 4.
  • Embodiment 10 illustrates a schematic diagram of the topology structure according to an embodiment of the present application, as shown in FIG. 10 .
  • the communication between the first node and the second node is an indirect path.
  • the communication between the first node and the second node is a direct path.
  • the indirect path is the main path.
  • the direct path is the main path.
  • the third node shown is a layer 2 relay node.
  • the third node shown is a layer 2U2N relay UE.
  • the third node and the first node belong to the same cell group.
  • the third node and the first node belong to different cell groups.
  • the third node is a secondary cell (Secondary Cell, SCell) of the primary cell group of the first node.
  • SCell Secondary Cell
  • the third node is a cell in the secondary cell group of the first node.
  • the third node is a node of TN (Terrestrial Network).
  • the third node is a node of NTN (Non-Terrestrial Network, non-terrestrial network).
  • NTN Non-Terrestrial Network, non-terrestrial network
  • the second node is an NG-RAN node.
  • the first node in Figure 10 corresponds to the UE 201 in Embodiment 2.
  • the third node in Figure 10 corresponds to the UE241 in Embodiment 2.
  • the second node in Figure 10 corresponds to the gNB 203 in Embodiment 2.
  • the second node in Figure 10 corresponds to the second communication device 410 in Embodiment 4.
  • Embodiment 11 illustrates a structural block diagram of a processing device in a first node according to an embodiment of the present application, as shown in FIG. 11 .
  • the first node processing device 1100 includes a first transceiver 1101 .
  • the first node 1100 is a UE.
  • the first transceiver 1101 copies the first PDCP PDU and submits the first PDCP PDU to each RLC entity in the first RLC entity set for transmission; the first transceiver 1101 copies the first PDCP PDU from the first RLC entity set.
  • An RLC entity receives a first indication, and the first indication is used to confirm the successful transmission of the first PDCP PDU; wherein, whether to indicate to the second RLC entity to discard the copy of the first PDCP PDU and the first Related to the configuration of the RLC entity; when the first RLC entity is configured by the first configuration type, in response to receiving the first indication, instruct the second RLC entity to discard the copy of the first PDCP PDU ;
  • the first RLC entity and the second RLC entity are two RLC entities in the first RLC entity set, and the first RLC entity set is maintained at the first node.
  • the first transceiver 1101 when the first RLC entity is configured with the second configuration type, in response to receiving the first indication, delays a first length of time and then sends a message to the second RLC The entity indicates that the copy of the first PDCP PDU is discarded.
  • the first transceiver 1101 when the first RLC entity is configured with the second configuration type, in response to receiving the first indication, delays a first length of time and then sends a message to the second RLC
  • the entity instructs to discard the copy of the first PDCP PDU;
  • the first time length is included between the node where the peer RLC entity of the first RLC entity is located and the destination recipient of the first PDCP PDU. It is related to the number of layer 2 relay nodes; wherein, the node where the peer RLC entity of the first RLC entity is located is a layer 2 relay node.
  • the first RLC entity is an AM RLC entity
  • the second RLC entity is one of an AM RLC entity or a UM RLC entity.
  • the first transceiver 1101 discards the first RLC SDU when neither the first RLC SDU nor the segments of the first RLC SDU are delivered to the bottom layer; wherein, the The first RLC SDU is the copy of the first PDCP PDU.
  • the first transceiver 1101 when the first RLC entity is configured by the second configuration type, gives up instructing the second RLC entity to discard the copy of the first PDCP PDU.
  • a first PDCP entity is configured with PDCP replication, and the first PDCP entity is associated with each RLC entity in the first RLC entity set.
  • the first transceiver 1101 includes the receiver 454 (including the antenna 452), the receiving processor 456, the multi-antenna receiving processor 458 and the controller/processor 459 in Figure 4 of this application.
  • the first transceiver 1101 includes at least one of the receiver 454 (including the antenna 452), the receiving processor 456, the multi-antenna receiving processor 458 or the controller/processor 459 in Figure 4 of this application. one.
  • the first transceiver 1101 includes the controller/processor 459 in Figure 4 of this application.
  • the first type of communication node or UE or terminal in this application includes but is not limited to mobile phones, tablets, laptops, network cards, low-power devices, eMTC (enhanced Machine Type Communication) devices, and NB-IoT devices , vehicle-mounted communication equipment, aircraft, aircraft, drones, remote control aircraft and other wireless communication equipment.
  • eMTC enhanced Machine Type Communication
  • the second type of communication node or base station or network side equipment in this application includes but is not limited to macro cell base station, micro cell base station, home base station, relay base station, eNB, gNB, transmission and reception node TRP (Transmission and Reception Point, transmitting and Receiving point), relay satellite, satellite base station, air base station, test equipment, such as transceiver device that simulates some functions of the base station, signaling tester and other wireless communication equipment.
  • TRP Transmission and Reception Point, transmitting and Receiving point
  • relay satellite satellite base station
  • air base station test equipment, such as transceiver device that simulates some functions of the base station, signaling tester and other wireless communication equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信中的方法和装置。第一节点复制第一PDCP PDU并将所述第一PDCP PDU提交给第一RLC实体集合中的每个RLC实体发送;从第一RLC实体接收第一指示,所述第一指示被用于确认所述第一PDCP PDU的成功发送;其中,是否向第二RLC实体指示丢弃所述第一PDCP PDU的复制与所述第一RLC实体的配置有关;当所述第一RLC实体被第一配置类型配置时,作为接收所述第一指示的响应,向所述第二RLC实体指示丢弃所述第一PDCP PDU的所述复制;所述第一RLC实体和所述第二RLC实体为所述第一RLC实体集合中的两个RLC实体,所述第一RLC实体集合在所述第一节点维持。本申请可以在有效节省空口资源的同时提高数据传输鲁棒性。

Description

一种被用于无线通信中的方法和装置 技术领域
本申请涉及无线通信系统中的方法和装置,尤其涉及在无线通信中支持多路径传输的方法和装置。
背景技术
针对迅猛发展的V2X(Vehicle-to-Everything,车联网)业务,公共安全(Public Safety)业务以及商业应用和服务,3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)在版本17中针对“新空口副链路中继研究(Study on NR(New Radio)Sidelink Relay)”启动了SI(Study Item,研究项目)和WI(Work Item,工作项目)标准化工作,但由于时间限制,版本17仅支持有限的特性。为进一步支持5G(Fifth Generation)系统增强,版本18开始进行临近业务(ProSe)的第二阶段研究,包括支持多路径(multi-path)传输。多路径传输中可以包括直连路径(direct path)传输和非直连路径(indirect path)传输,直连路径传输中源节点和目的接收节点之间只有一跳传输,非直连路径传输中源节点和目的接收节点之间包括多跳。其中,中继作为一种多跳传输技术,可以提升吞吐量,提高鲁棒性,并增加覆盖。源节点的数据通过中继节点(relay node,RN)的转发到达目的接收节点。源节点和目的接收节点通常是基站设备和用户设备,也可以都是用户设备;中继节点可以是网络设备或者用户设备。以LTE(Long Term Evolution,长期演进)系统中的副链路传输为例,用户设备到中继节点的传输采用副链路空口技术,中继节点到基站或增强节点B(eNodeB,eNB)的传输采用LTE空口技术,中继节点用于UE(User Equipment,用户设备)和eNB之间的数据转发。
发明内容
发明人通过研究发现,在支持多路径传输中,一个数据包经复制后可以被提交给多个下层实体执行发送,即可以通过多个路径发送,如果发送节点和接收节点之间的多个路径都仅有一跳,当其中一个下层实体指示数据包传输成功后,可以指示停止在其它路径上的传输以节省空口资源。当发送节点和接收节点之间一个路径通过中继转发时,下层实体仅指示数据包在当前一跳传输成功,并不指示数据包在到目的接收节点的传输也成功,此时如果指示停止在其它路径上的传输会引起数据包传输失败的风险。
针对上述问题,本申请公开了一种解决方案,可以在有效节省空口资源的基础上同时提高数据传输成功率。在不冲突的情况下,本申请的第一节点中的实施例和实施例中的特征可以应用到第二节点中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。进一步的,虽然本申请的初衷是针对Uu空中接口,但本申请也能被用于PC5空中接口。进一步的,虽然本申请的初衷是针对终端与基站场景,但本申请也同样适用于中继与基站,取得类似的终端与基站场景中的技术效果。此外,不同场景(包括但不限于V2X场景和终端与基站的通信场景)采用统一的解决方案还有助于降低硬件复杂度和成本。特别的,对本申请中的术语(Terminology)、名词、函数、变量的解释(如果未加特别说明)可以参考3GPP的规范协议TS36系列、TS38系列、TS37系列中的定义。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
复制第一PDCP PDU并将所述第一PDCP PDU提交给第一RLC实体集合中的每个RLC实体发送;
从第一RLC实体接收第一指示,所述第一指示被用于确认所述第一PDCP PDU的成功发送;
其中,是否向第二RLC实体指示丢弃所述第一PDCP PDU的复制与所述第一RLC实体的配置有关;当所述第一RLC实体被第一配置类型配置时,作为接收所述第一指示的响应,向所述第二RLC实体指示丢弃所述第一PDCP PDU的所述复制;所述第一RLC实体和所述第二RLC实体为所述第一RLC实体集合中的两个RLC实体,所述第一RLC实体集合在所述第一节点维持。
作为一个实施例,本申请适用于双链接(dual connectivity)传输。
作为一个实施例,本申请适用于多路径传输。
作为一个实施例,本申请适用于多路径传输中的所有路径都是直连路径的场景,也适用于多路径传输中的至少一条路径为非直连路径的场景。
作为一个实施例,本申请中的非直连路径通过UE-to-Network(U2N)中继转发。
作为一个实施例,本申请中的非直连路径通过层(Layer)2U2N中继转发。
作为一个实施例,本申请中的非直连路径通过层2U2U(UE-to-UE)中继转发。
作为一个实施例,本申请适用于针对多路径采用复制的方法传输。
作为一个实施例,上述方法通过指示丢弃所述第一PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)PDU(Protocol Data Unit,协议数据单元)的复制(duplication)可以节省空口资源。
作为一个实施例,上述方法后向兼容,有助于降低硬件复杂度和成本。
作为一个实施例,本申请中的实体(entity)是模块(module)。
作为一个实施例,本申请中的实体是完成一组功能的模块。
作为一个实施例,本申请中的实体是完成一组功能的硬件模块。
作为一个实施例,本申请中的实体是完成一组功能的软件模块。
作为一个实施例,本申请中的中继节点和中继UE可以互换。
根据本申请的一个方面,包括:
当所述第一RLC实体被第二配置类型配置时,作为接收所述第一指示的响应,延迟第一时间长度后向所述第二RLC实体指示丢弃所述第一PDCP PDU的所述复制。
作为一个实施例,上述方法通过延迟向所述第二RLC(Radio Link Control,无线链路控制)实体指示丢弃所述第一PDCP PDU的复制可以同时获得节省空口资源和提高数据传输鲁棒性的有益效果。
根据本申请的一个方面,包括:
所述第一时间长度与所述第一RLC实体的对端RLC实体所在的节点距离所述第一PDCP PDU的目的接收者之间包括的层2中继节点数有关;
其中,所述第一RLC实体的所述对端RLC实体所在的节点为一个层2中继节点。
根据本申请的一个方面,包括:
所述第一RLC实体为AM RLC实体,所述第二RLC实体为AM RLC实体或UM RLC实体二者中之一。
根据本申请的一个方面,包括:
当所述第一RLC SDU或者所述第一RLC SDU的分段都没有被传递给底层时,丢弃所述第一RLC SDU;
其中,所述第一RLC SDU是所述第一PDCP PDU的所述复制。
作为一个实施例,上述方法丢弃所述第一RLC SDU(ServiceDataUnit,业务数据单元),即丢弃所述第一PDCP PDU的所述复制可以节省空口资源。
作为一个实施例,上述方法可以降低底层实现复杂度。
根据本申请的一个方面,包括:
当所述第一RLC实体被第二配置类型配置时,放弃向所述第二RLC实体指示丢弃所述第一PDCP PDU的所述复制。
作为一个实施例,上述方法不向所述第二RLC实体指示丢弃所述第一PDCP PDU的所述复制可以提高数据传输鲁棒性。
根据本申请的一个方面,包括:
第一PDCP实体被配置PDCP复制,所述第一PDCP实体与所述第一RLC实体集合中的每个RLC实体关联。
本申请公开了一种被用于无线通信的第一节点,其特征在于,包括:
第一收发机,复制第一PDCP PDU并将所述第一PDCP PDU提交给第一RLC实体集合中的每个RLC实体发送;
所述第一收发机,从第一RLC实体接收第一指示,所述第一指示被用于确认所述第一PDCP PDU的成功发送;
其中,是否向第二RLC实体指示丢弃所述第一PDCP PDU的复制与所述第一RLC实体的配置有关;当所述第一RLC实体被第一配置类型配置时,作为接收所述第一指示的响应,向所述第二RLC实体指示丢弃所述第一PDCP PDU的所述复制;所述第一RLC实体和所述第二RLC实体为所述第一RLC实体集合中的两个RLC实体,所述第一RLC实体集合在所述第一节点维持。
根据本申请的一个方面,包括:
所述第一收发机,当所述第一RLC实体被第二配置类型配置时,作为接收所述第一指示的响应,延迟第一时间长度后向所述第二RLC实体指示丢弃所述第一PDCP PDU的所述复制。
根据本申请的一个方面,包括:
所述第一时间长度与所述第一RLC实体的对端RLC实体所在的节点距离所述第一PDCP PDU的目的接收者之间包括的层2中继节点数有关;
其中,所述第一RLC实体的所述对端RLC实体所在的节点为一个层2中继节点。
根据本申请的一个方面,包括:
所述第一RLC实体为AM RLC实体,所述第二RLC实体为AM RLC实体或UM RLC实体二者中之一.
根据本申请的一个方面,包括:
所述第一收发机,当所述第一RLC SDU或者所述第一RLC SDU的分段都没有被传递给底层时,丢弃所述第一RLC SDU;
其中,所述第一RLC SDU是所述第一PDCP PDU的所述复制。
根据本申请的一个方面,包括:
所述第一收发机,当所述第一RLC实体被第二配置类型配置时,放弃向所述第二RLC实体指示丢弃所述第一PDCP PDU的所述复制。
根据本申请的一个方面,包括:
第一PDCP实体被配置PDCP复制,所述第一PDCP实体与所述第一RLC实体集合中的每个RLC实体关联。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示例了根据本申请的一个实施例的第一节点的传输流程图;
图2示例了根据本申请的一个实施例的网络架构的示意图;
图3示例了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示例了根据本申请的一个实施例的通信设备的硬件模块示意图;
图5示例了根据本申请的一个实施例的一个信号传输流程图;
图6示例了根据本申请的一个实施例的另一个信号传输流程图;
图7示例了根据本申请的一个实施例的第三个无线信号传输流程图;
图8示例了根据本申请的一个实施例的无线承载的示意图;
图9示例了根据本申请的一个实施例的中继传输的无线协议架构示意图;
图10示例了根据本申请的一个实施例的拓扑结构示意图;
图11示例了根据本申请的一个实施例的第一节点中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一节点的传输流程图,如附图1所示。
在实施例1中,第一节点100在步骤101中复制第一PDCP PDU并将所述第一PDCP PDU提交给第一RLC实体集合中的每个RLC实体发送;在步骤102中从第一RLC实体接收第一指示,所述第一指示被用于确认所述第一PDCP PDU的成功发送;其中,是否向第二RLC实体指示丢弃所述第一PDCP PDU的复制与所述第一RLC实体的配置有关;当所述第一RLC实体被第一配置类型配置时,作为接收所述第一指示的响应,向所述第二RLC实体指示丢弃所述第一PDCP PDU的所述复制;所述第一RLC实体和所 述第二RLC实体为所述第一RLC实体集合中的两个RLC实体,所述第一RLC实体集合在所述第一节点维持。
作为一个实施例,复制(duplicate)第一PDCP PDU并将所述第一PDCP PDU提交给第一RLC实体集合中的每个RLC实体发送。
作为一个实施例,所述第一收发机,生成第一PDCP PDU。
作为一个实施例,第一PDCP实体为发送PDCP实体(transmitting PDCP entity)。
作为一个实施例,所述第一RLC实体集合中的每个RLC实体为PDCP复制而被激活(activated for PDCP duplication)。
作为一个实施例,所述第一RLC实体集合包括为PDCP复制而激活的相关RLC实体。
作为一个实施例,所述第一RLC实体集合中的任一RLC实体为AM(Acknowledged Mode,确认模式)RLC实体。
作为一个实施例,所述第一RLC实体集合中包括至少一个AM RLC实体。
作为一个实施例,所述第一RLC实体集合中的一个RLC实体被逻辑信道标识(Logical Channel Identity,LCID)或RLC信道标识(RLC channel Identity)二者之一所标识。
作为上述实施例的一个子实施例,由所述第一节点的服务小区的基站配置所述逻辑信道标识或所述RLC信道标识。
作为上述实施例的一个子实施例,所述逻辑信道标识或所述RLC信道标识被用于在网络侧标识所述一个RLC实体。
作为一个实施例,所述第一RLC实体集合中的一个RLC实体在Uu空中接口关联一个逻辑信道标识,经过所述一个RLC实体传输的路径为直连路径。
作为一个实施例,所述第一RLC实体集合中的一个RLC实体在PC5空中接口关联一个逻辑信道标识,经过所述一个RLC实体传输的路径为非直连路径。
作为上述实施例的一个子实施例,所述一个RLC实体在PC5接口关联的所述一个逻辑信道标识是由所述第一节点自己分配的。
作为一个实施例,所述第一PDCP PDU为PDCP数据(data)PDU。
作为一个实施例,所述第一PDCP PDU为PDCP控制(control)PDU。
作为一个实施例,所述第一PDCP PDU为PDCP控制PDU或PDCP数据PDU二者之一。
作为一个实施例,所述第一收发机被用于所述第一PDCP实体和所述第一RLC实体集合中的任一RLC实体之间的层间通信。
作为一个实施例,从第一RLC实体接收第一指示,所述第一指示被用于确认所述第一PDCP PDU的成功发送。
作为一个实施例,所述第一指示为层间指示。
作为一个实施例,所述第一指示被用于确认(confirm)所述第一PDCP PDU的成功发送。
作为一个实施例,所述第一指示包括所述第一PDCP PDU的序列号(sequence number,SN)。
作为一个实施例,一个PDCP数据PDU包括一个PDCP序列号。
作为一个实施例,所述PDCP序列号为非负整数。
作为一个实施例,所述PDCP序列号包括12比特。
作为一个实施例,所述PDCP序列号包括18比特。
作为一个实施例,所述第一RLC实体向所述第一RLC实体的对端(peer)RLC实体发送轮询(poll),所述轮询被用于触发所述第一RLC实体的所述对端RLC实体反馈状态(STATUS)PDU。
作为一个实施例,所述状态PDU指示所述第一RLC SDU是否被成功发送。
作为一个实施例,从所述第一RLC实体的所述对端RLC实体接收状态PDU,当所述状态PDU指示针对第一RLC SDU为肯定确认(positive acknowledgement)时,所述第一RLC实体向所述第一PDCP实体发送所述第一指示;其中,所述第一RLC SDU为所述第一PDCP PDU。
作为一个实施例,所述第一RLC实体的所述对端RLC实体位于所述第一节点之外的一个节点。
作为一个实施例,所述第一节点和所述第一节点之外的一个节点不共址。
作为一个实施例,所述第一节点和所述第一节点之外的一个节点通过空中接口连接。
作为一个实施例,所述空中接口为Uu。
作为一个实施例,所述空中接口为PC5。
作为一个实施例,所述第一节点和所述第一节点之外的一个节点通过有线链路连接。
作为一个实施例,是否向第二RLC实体指示丢弃所述第一PDCP PDU的复制与所述第一RLC实体的配置有关。
作为上述实施例的一个子实施例,所述第一RLC实体的所述配置是网络配置。
作为一个实施例,所述短语是否向第二RLC实体指示丢弃所述第一PDCP PDU的复制与所述第一RLC实体的配置有关包括:是否向第二RLC实体指示丢弃所述第一PDCP PDU的复制与配置所述第一RLC实体的类型有关。
作为一个实施例,所述短语是否向第二RLC实体指示丢弃所述第一PDCP PDU的复制与所述第一RLC实体的配置有关包括:是否向第二RLC实体指示丢弃所述第一PDCP PDU的复制与配置所述第一RLC实体的信息元素(Information Element,IE)的类型有关。
作为一个实施例,所述第一收发机,当所述第一RLC实体被第一配置类型配置时,作为接收所述第一指示的响应,向所述第二RLC实体指示丢弃所述第一PDCP PDU的所述复制。
作为一个实施例,当所述第一RLC实体被所述第一配置类型配置时,如果接收到所述第一指示,向所述第二RLC实体指示丢弃所述第一PDCP PDU的所述复制。
作为一个实施例,当所述第一RLC实体不被所述第一配置类型配置时,如果接收到所述第一指示,不向所述第二RLC实体指示丢弃所述第一PDCP PDU的所述复制。
作为一个实施例,所述第一配置类型为RLC承载配置。
作为一个实施例,所述第一配置类型包括无线承载配置的下层部分(lower layer part),包括RLC和逻辑信道(logical channel)配置。
作为一个实施例,当配置所述第一RLC实体的信息元素为RLC-BearerConfig(RLC承载配置)时,所述第一RLC实体被所述第一配置类型配置。
作为一个实施例,当配置所述第一RLC实体的信息元素中包括逻辑信道标识(logical channel identity)时,所述第一RLC实体被所述第一配置类型配置。
作为一个实施例,当所述第一RLC实体在网络侧被逻辑信道标识所标识时,所述第一RLC实体被所述第一配置类型配置。
作为一个实施例,当所述第一RLC实体的对端(peer)RLC实体所在的节点为所述第一PDCP PDU的目的接收者时,所述第一RLC实体被所述第一配置类型配置。
作为一个实施例,所述目的接收者为所述第一PDCP PDU的最终接收者。
作为一个实施例,所述第一PDCP PDU在所述目的接收者被处理后上传至所述目的接收者的应用层。
作为一个实施例,当所述第一RLC实体的所述对端RLC实体所在的节点为一个NG(next generation,下一代)-RAN节点时,所述第一RLC实体被所述第一配置类型配置。
作为一个实施例,所述NG-RAN节点为gNB(NR节点B)或ng(下一代)-eNB。
作为一个实施例,当经过所述第一RLC实体处理的数据在物理层通过PUSCH(Physical Uplink Shared Channel,物理上行共享信道)信道传输时,所述第一RLC实体被所述第一配置类型配置。
作为一个实施例,当所述第一RLC实体是为Uu空中接口传输时,所述第一RLC实体被所述第一配置类型配置。
作为一个实施例,所述第一配置类型不是RLC信道配置。
作为一个实施例,所述第一配置类型在网络侧仅被逻辑信道标识所标识,而不被RLC信道标识所标识。
作为一个实施例,所述第一配置类型的配置中包括一个RRC(Radio Resource Control,无线资源控制)信令中的部分或全部信息元素(IE)。
作为一个实施例,所述第一配置类型的配置为一个RRC信令。
作为一个实施例,所述第一配置类型的配置中包括一个RRC信令中的全部或部分IE。
作为一个实施例,所述第一配置类型的配置中包括一个RRC信令中的一个IE中的全部或部分域(field)。
作为一个实施例,所述第一RLC实体和所述第二RLC实体为所述第一RLC实体集合中的两个RLC实体。
作为一个实施例,所述第二RLC实体是所述第一RLC实体集合中除所述第一RLC实体之外的任一RLC实体。
作为一个实施例,所述第一RLC实体集合中至少包括两个RLC实体。
作为一个实施例,所述第一RLC实体集合位于所述第一节点。
作为一个实施例,所述第一PDCP实体在所述第一节点维持。
作为一个实施例,所述第一PDCP实体位于PDCP子层(sublayer)。
作为一个实施例,所述第一RLC实体集合在所述第一节点维持。
作为一个实施例,所述第一RLC实体集合位于RLC子层。
作为一个实施例,第一收发机,复制第一PDCP PDU并将所述第一PDCP PDU提交给第一RLC实体集合中的每个RLC实体发送;所述第一收发机,从第一RLC实体接收第一指示,所述第一指示被用于确认所述第一PDCP PDU的成功发送(successful delivery);其中,是否向第二RLC实体指示丢弃所述第一PDCP PDU的复制与所述第一RLC实体的配置有关;当所述第一RLC实体被第一配置类型配置时,作为接收所述第一指示的响应,向所述第二RLC实体指示丢弃所述第一PDCP PDU的所述复制;所述第一RLC实体和所述第二RLC实体为所述第一RLC实体集合中的两个RLC实体,所述第一RLC实体集合中的任一RLC实体在所述第一节点或者所述第一节点之外的一个节点维持。
作为上述实施例的一个子实施例,所述第一节点为MN(MasterNode,主节点),所述第一节点之外的所述一个节点为SN(SecondaryNode,辅节点)。
作为上述实施例的一个子实施例,所述第一节点为SN,所述第一节点之外的所述一个节点为MN。
作为上述实施例的一个子实施例,所述第一节点为NG-RAN节点,所述第一节点之外的所述一个节点为UE。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构示意图,如附图2所示。图2说明了NR 5G,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。NR 5G,LTE或LTE-A网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200或某种其它合适术语。5GS/EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230。5GS/EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,5GS/EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回传链路)连接到其它gNB204。Xn接口的XnAP协议用于传输无线网络的控制面消息,Xn接口的用户面协议用于传输用户面数据。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(Basic Service Set,BSS)、扩展服务集合(Extended Service Set,ESS)、TRP(Transmission Reception Point,发送接收节点)或某种其它合适术语,在NTN(Non Terrestrial Network,非陆地/卫星网络)网络中,gNB203可以是卫星,飞行器或通过卫星中继的地面基站。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(Session Initiation Protocol,SIP)电话、膝上型计算机、个人数字助理(Personal Digital Assistant,PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、车载设备、车载通信单元、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远 程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocol,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和PS(Packet Switching,包交换)串流服务。
作为一个实施例,所述UE201对应本申请中的第一节点。
作为一个实施例,所述gNB203对应本申请中的第二节点。
作为一个实施例,所述UE241对应本申请中的第三节点。
作为一个实施例,所述UE201是用户设备。
作为一个实施例,所述UE241是用户设备。
作为一个实施例,所述UE241是RSU(Road Side Unit,路边单元)。
作为一个实施例,所述UE241是中继节点。
作为一个实施例,所述UE241是层2中继节点。
作为一个实施例,所述UE241是层2U2N中继UE。
作为一个实施例,所述UE241是层2U2U中继UE。
作为一个实施例,所述gNB203是宏蜂窝(Marco Cell)基站。
作为一个实施例,所述gNB203是微小区(Micro Cell)基站。
作为一个实施例,所述gNB203是微微小区(Pico Cell)基站。
作为一个实施例,所述gNB203是家庭基站(Femtocell)。
作为一个实施例,所述gNB203是支持大时延差的基站设备。
作为一个实施例,所述gNB203是一个飞行平台设备。
作为一个实施例,所述gNB203是卫星设备。
作为一个实施例,所述gNB203是支持大时延差的基站设备。
作为一个实施例,所述gNB203是测试设备(例如模拟基站部分功能的收发装置,信令测试仪)。
作为一个实施例,从所述UE201到所述gNB203的无线链路是上行链路,所述上行链路被用于执行上行传输。
作为一个实施例,从所述UE241到所述gNB203的无线链路是上行链路,所述上行链路被用于执行上行传输。
作为一个实施例,从所述gNB203到所述UE201的无线链路是下行链路,所述下行链路被用于执行下行传输。
作为一个实施例,从所述gNB203到所述UE241的无线链路是下行链路,所述下行链路被用于执行下行传输。
作为一个实施例,所述UE201和所述UE241之间的无线链路是副链路,所述副链路被用于执行副链路传输。
作为一个实施例,所述UE201和所述gNB203之间通过Uu空中接口连接。
作为一个实施例,所述UE241和所述gNB203之间通过Uu空中接口连接。
作为一个实施例,所述UE201和所述UE241之间通过PC5空中接口连接。
实施例3
实施例3示例了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线协议架构的实施例的示意图,图3用三个层展 示UE和gNB的控制平面300的无线协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,通过PHY301负责在UE和gNB之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧的gNB处。PDCP子层304提供数据加密和完整性保护,PDCP子层304还提供gNB之间的对UE的越区移动支持。RLC子层303提供数据包的分段和重组,通过ARQ(Automatic Repeat Request,自动重传请求)实现丢失数据包的重传,RLC子层303还提供重复数据包检测和协议错误检测。MAC子层302提供逻辑信道与传输信道之间的映射和逻辑信道的复用。MAC子层302还负责在UE之间分配一个小区中的各种无线资源(例如,资源块)。MAC子层302还负责HARQ(Hybrid Automatic RepeatRequest,混合自动重传请求)操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线资源控制)子层306负责获得无线资源(即,无线承载)且使用gNB与UE之间的RRC信令来配置下部层。用户平面350的无线协议架构包括层1(L1层)和层2(L2层),在用户平面350中的无线协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的包头压缩以减少无线发送开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。UE在用户平面350中的无线协议架构在L2层可包括SDAP子层356,PDCP子层354,RLC子层353和MAC子层352的部分协议子层或者全部协议子层。虽然未图示,但UE还可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,所述PDCP304通过RLC信道向所述RLC303发送数据或从所述RLC303接收数据。
作为一个实施例,所述PDCP354通过RLC信道向所述RLC353发送数据或从所述RLC353接收数据。
作为一个实施例,所述RLC303通过逻辑信道向所述MAC302发送数据或从所述MAC302接收数据。
作为一个实施例,所述RLC353通过逻辑信道向所述MAC352发送数据或从所述MAC352接收数据。
作为一个实施例,所述MAC302通过传输信道向所述PHY301发送数据或从所述PHY301接收数据。
作为一个实施例,所述MAC352通过传输信道向所述PHY351发送数据或从所述PHY351接收数据。
作为一个实施例,所述第一收发机被用于从底层向上层的数据传递。
作为一个实施例,所述第一收发机被用于从上层向底层的数据传递。
作为上述两个实施例的一个子实施例,所述上层和所述底层为相邻层。
作为一个实施例,所述第一收发机被所述PDCP304用于向所述RLC303发送。
作为一个实施例,所述第一收发机被所述PDCP304用于从所述RLC303接收。
作为一个实施例,所述第一收发机被所述PDCP354用于向所述RLC353发送。
作为一个实施例,所述第一收发机被所述PDCP354用于从所述RLC353接收。
作为一个实施例,所述第一收发机被所述RLC303用于向所述PDCP304发送。
作为一个实施例,所述第一收发机被所述RLC303用于从所述PDCP304接收。
作为一个实施例,所述第一收发机被所述RLC353用于向所述PDCP354发送。
作为一个实施例,所述第一收发机被所述RLC353用于从所述PDCP354接收。
作为一个实施例,所述第一收发机包括层间收发原语。
作为一个实施例,所述第一收发机包括一组用于完成收发功能的指令。
作为一个实施例,附图3中的控制平面的多个子层的实体在垂直方向组成SRB(Signaling Radio Bearer,信令无线承载)。
作为一个实施例,附图3中的用户平面的多个子层的实体在垂直方向组成DRB(Data Radio Bearer,数据无线承载)。
作为一个实施例,附图3中的用户平面的多个子层的实体在垂直方向组成MRB(MBS Radio Bearer,多播广播业务无线承载)。
作为一个实施例,附图3中的无线协议架构适用于本申请中的第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的第二节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的第三节点。
作为一个实施例,本申请中的第一PDCP PDU生成于所述PDCP304。
作为一个实施例,本申请中的第一PDCP PDU生成于所述PDCP354。
作为一个实施例,本申请中的第一PDCP PDU的复制生成于所述PDCP304。
作为一个实施例,本申请中的第一PDCP PDU的复制生成于所述PDCP354。
作为一个实施例,当所述第一PDCP PDU生成于所述PDCP304时,所述第一PDCP实体位于所述PDCP304,所述第一RLC实体集合中的任一RLC实体位于所述RLC303。
作为一个实施例,当所述第一PDCP PDU生成于所述PDCP354时,所述第一PDCP实体位于所述PDCP354,所述第一RLC实体集合中的任一RLC实体位于所述RLC353。
作为一个实施例,PDCP子层和RLC子层接口上的数据包,在PDCP子层被称为PDCP PDU,在RLC子层被称为RLC SDU,即PDCP子层向RLC子层传递PDCP PDU,RLC子层从PDCP子层接收RLC SDU;RLC子层向PDCP子层传递RLC SDU,PDCP子层从RLC子层接收PDCP PDU。
作为一个实施例,所述L2层305或者355属于更高层。
作为一个实施例,所述L3层中的RRC子层306属于更高层。
实施例4
实施例4示例了根据本申请的一个实施例的通信设备的硬件模块示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,数据源477,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网的上层数据包或者来自数据源477的上层数据包被提供到控制器/处理器475。核心网和数据源477表示L2层之上的所有协议层。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信 号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路复用、包重组装、解密、标头解压缩、控制信号处理以恢复来自第二通信设备410的更高层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自第一通信设备450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网或者L2层之上的所有协议层,也可将各种控制信号提供到核心网或者L3以用于L3处理。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450装置至少:复制第一PDCP PDU并将所述第一PDCP PDU提交给第一RLC实体集合中的每个RLC实体发送;从第一RLC实体接收第一指示,所述第一指示被用于确认所述第一PDCP PDU的成功发送;其中,是否向第二RLC实体指示丢弃所述第一PDCP PDU的复制与所述第一RLC实体的配置有关;当所述第一RLC实体被第一配置类型配置时,作为接收所述第一指示的响应,向所述第二RLC实体指示丢弃所述第一PDCP PDU的所述复制;所述第一RLC实体和所述第二RLC实体为所述第一RLC实体集合中的两个RLC实体,所述第一RLC实体集合在所述第一节点维持。
作为一个实施例,所述第一通信设备450装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:复制第一PDCP PDU并将所述第一PDCP PDU提交给第一RLC实体集合中的每个RLC实体发送;从第一RLC实体接收第一指示,所述第一指示被用于确认所述第一PDCP PDU的成功发送;其中,是否向第二RLC实体指示丢弃所述第一PDCP PDU的复制与所述第一RLC实体的配置有关;当所述第一RLC实体被第一配置类型配置时,作为接收所述第一指示的响应,向所述第二RLC实体指示丢弃所述第一PDCP PDU的所述复制;所述第一RLC实体和所述第二RLC实体为所述第一RLC实体集合中的两个RLC实体,所述第一RLC实体集合在所述第一节点维持。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第一通信设备450是一个UE。
作为一个实施例,所述第一通信设备450是一个基站。
作为一个实施例,所述第一通信设备450是一个RSU(Road Side Unit,路边单元)。
作为一个实施例,所述第一通信设备450是一个层3中继节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第二通信设备410是一个基站。
作为一个实施例,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468或所述控制器/处理器459中的至少之一被用于发送本申请中的第一PDCP PDU。
作为一个实施例,所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470或所述控制器/处理器475中的至少之一被用于接收本申请中的第一PDCP PDU。
实施例5
实施例5示例了根据本申请的一个实施例的一个信号传输流程图,如附图5所示。在附图5中,第一PDCP实体E51,第一RLC实体E52和第二RLC实体E53都位于第一节点,所述第一PDCP实体E51和所述第一RLC实体E52通过层间接口通信,所述第一PDCP实体E51和所述第二RLC实体E53通过层间接口通信。
对于第一PDCP实体E51,在步骤S511中复制第一PDCP PDU并将所述第一PDCP PDU提交给第一RLC实体集合中的每个RLC实体;在步骤S512中接收第一指示;在步骤S513中向第二RLC实体指示丢弃所述第一PDCP PDU的复制。
对于第一RLC实体E52,在步骤S521中接收第一PDCP PDU;在步骤S522中发送第一指示。
对于第二RLC实体E53,在步骤S531中接收第一PDCP PDU;在步骤S532中接收指示并丢弃所述第一PDCP PDU的复制。
实施例5中执行的步骤适用于所述第一RLC实体被所述第一配置类型配置的场景。
作为一个实施例,当所述第一RLC SDU或者所述第一RLC SDU的分段(segment)都没有被传递给底层时,所述第二RLC实体丢弃所述第一RLC SDU。
作为一个实施例,所述第一RLC SDU是所述第一PDCP PDU的所述复制。
作为一个实施例,所述第一PDCP PDU和所述第一RLC SDU可以互换。
作为一个实施例,所述底层是RLC子层以下层。
作为一个实施例,所述底层是MAC子层。
作为一个实施例,所述第一RLC SDU的分段包括所述第一RLC SDU的至少1个比特。
作为一个实施例,作为接收所述第一指示的响应,如果所述第一RLC SDU或者所述第一RLC SDU的分段都没有被传递给底层时,所述第二RLC实体丢弃所述第一指示所指示的RLC SDU。
作为一个实施例,当所述第二RLC实体对应的逻辑信道被调度时,通过所述第二RLC实体传输的数据被传递给所述底层。
作为一个实施例,当所述第一PDCP PDU在所述第二RLC实体处理完成后,所述第一PDCP PDU被传递给所述底层。
作为一个实施例,所述第一RLC实体为AM RLC实体,所述第二RLC实体为AM RLC实体或UM(Unacknowledged Mode,不确认模式)RLC实体二者中之一。
作为一个实施例,所述第一RLC实体为AM RLC实体,所述第二RLC实体为AM RLC实体或UM RLC实体或TM(Transparent Mode,透明模式)RLC实体三者中之一。
作为一个实施例,所述第一RLC实体为AM RLC实体,所述第二RLC实体为AM RLC实体。
作为一个实施例,所述第一RLC实体为AM RLC实体,所述第二RLC实体为UM RLC实体。
作为一个实施例,所述第一RLC实体为AM RLC实体,所述第二RLC实体为TM RLC实体。
作为一个实施例,AM RLC实体被配置通过DL(Downlink,下行链路)/UL(Uplink,上行链路)DCCH(Dedicated Control Channel,专用控制信道),DL/UL DTCH(DedicatedTraffic Channel,专用业务信道),SCCH(Sidelink Control Channel,副链路控制信道)和STCH(Sidelink Traffic CHannel,副链路业务信道)这些逻辑信道提交/接收RLC PDU。
作为一个实施例,AM RLC实体提交/接收RLC数据PDU,所述RLC数据PDU为AMD PDU,所述AMD PDU包括一个完整的RLC SDU或一个RLC SDU分段(segment)。
作为一个实施例,AM RLC实体提交/接收RLC控制PDU,所述RLC控制PDU为状态PDU。
作为一个实施例,UM RLC实体被配置通过DL/UL DTCH,SCCH,STCH,MCCH(MBS Control Channel, MBS控制信道)和MTCH(MBS Traffic Channel,MBS业务信道)这些逻辑信道提交/接收RLC PDU
作为一个实施例,UM RLC实体提交/接收RLC数据PDU,所述RLC数据PDU为UMD PDU,所述UMD PDU包括一个完整的RLC SDU或一个RLC SDU分段(segment)。
作为一个实施例,TM RLC实体被配置通过BCCH(BroadcastControl CHannel,广播控制信道),DL/UL CCCH(Common Control Channel,公共控制信道),PCCH(Paging Control CHannel,寻呼控制信道)和SBCCH(Sidelink Broadcast Control CHannel,副链路广播控制信道)这些逻辑信道提交/接收RLC PDU。
作为一个实施例,TM RLC实体提交/接收RLC数据PDU,所述RLC数据PDU为TMD PDU。
作为一个实施例,所述第一RLC实体由发送侧(transmitting side)和接收侧(receiving side)组成。
作为一个实施例,所述第二RLC实体由发送侧和接收侧组成。
作为一个实施例,所述第二RLC实体被配置为发送RLC实体。
实施例6
实施例6示例了根据本申请的一个实施例的另一个信号传输流程图,如附图6所示。在附图6中,第一PDCP实体E61,第一RLC实体E62和第二RLC实体E63都位于第一节点,所述第一PDCP实体E61和所述第一RLC实体E62通过层间接口通信,所述第一PDCP实体E61和所述第二RLC实体E63通过层间接口通信。
对于第一PDCP实体E61,在步骤S611中复制第一PDCP PDU并将所述第一PDCP PDU提交给第一RLC实体集合中的每个RLC实体;在步骤S612中接收第一指示;在步骤S613中延迟第一时间长度后向第二RLC实体指示丢弃所述第一PDCP PDU的复制。
对于第一RLC实体E62,在步骤S521中接收第一PDCP PDU;在步骤S522中发送第一指示。
对于第二RLC实体E63,在步骤S531中接收第一PDCP PDU;在步骤S532中接收指示并丢弃所述第一PDCP PDU的复制。
实施例6中执行的步骤适用于所述第一RLC实体被第二配置类型配置的场景。
作为一个实施例,所述第一收发机,当所述第一RLC实体被第二配置类型配置时,作为接收所述第一指示的响应,延迟(delay)第一时间长度后向所述第二RLC实体指示丢弃所述第一PDCP PDU的所述复制。
作为一个实施例,当所述第一RLC实体被所述第二配置类型配置时,如果接收到所述第一指示,延迟所述第一时间长度后向所述第二RLC实体指示丢弃所述第一PDCP PDU的所述复制。
作为一个实施例,所述第二配置类型为RLC信道配置。
作为一个实施例,当配置所述第一RLC实体的信息元素为SL-RLC-ChannelConfig(副链路RLC信道配置)时,所述第一RLC实体被所述第二配置类型配置。
作为一个实施例,当配置所述第一RLC实体的信息元素为Uu-Relay-RLC-ChannelConfig(Uu中继RLC信道配置)时,所述第一RLC实体被所述第二配置类型配置。
作为一个实施例,当配置所述第一RLC实体的信息元素为BH-RLC-ChannelConfig(回程RLC信道配置)时,所述第一RLC实体被所述第二配置类型配置。
作为一个实施例,当配置所述第一RLC实体的信息元素中包括RLC信道标识(RLC channel identity),所述第一RLC实体被所述第二配置类型配置。
作为一个实施例,当所述第一RLC实体在网络侧被RLC信道标识所标识时,所述第一RLC实体被所述第二配置类型配置。
作为一个实施例,当所述第一RLC实体在PC5空中接口被逻辑信道标识所标识时,所述第一RLC实体被所述第二配置类型配置。
作为一个实施例,当所述第一RLC实体的所述对端RLC实体所在的节点为所述第一PDCP PDU的中继节点时,所述第一RLC实体被所述第二配置类型配置。
作为一个实施例,当所述第一RLC实体的所述对端RLC实体所在的节点为一个层2中继UE时,所述第一RLC实体被所述第二配置类型配置。
作为一个实施例,当所述第一RLC实体的所述对端RLC实体所在的节点为一个层2U2N中继UE时, 所述第一RLC实体被所述第二配置类型配置。
作为一个实施例,当经过所述第一RLC实体处理的数据在物理层通过PSSCH(Physical Sidelink Shared CHannel,物理副链路共享信道)信道传输时,所述第一RLC实体被所述第二配置类型配置。
作为一个实施例,当所述第一RLC实体是为PC5空中接口传输时,所述第一RLC实体被所述第二配置类型配置。
作为一个实施例,所述第二配置类型不是RLC承载配置。
作为一个实施例,所述第二配置类型在网络侧仅被RLC信道标识所标识,而不被逻辑信道标识所标识。
作为一个实施例,所述第二配置类型的配置中包括一个RRC信令中的部分或全部信息元素(IE)。
作为一个实施例,所述第二配置类型的配置为一个RRC信令。
作为一个实施例,所述第二配置类型的配置中包括一个RRC信令中的全部或部分IE。
作为一个实施例,所述第二配置类型的配置中包括一个RRC信令中的一个IE中的全部或部分域(field)。
作为一个实施例,所述延迟第一时间长度后向所述第二RLC实体指示丢弃所述第一PDCP PDU的所述复制包括:作为接收所述第一指示的响应,开始第一计时器;当所述第一计时器过期时,向所述第二RLC实体指示丢弃所述第一PDCP PDU的所述复制;所述第一计时器的过期值所指示的时长为所述第一时间长度。
作为一个实施例,所述第一时间长度是可配置的。
作为一个实施例,所述第一时间长度由所述第一节点的服务小区配置。
作为一个实施例,所述第一时间长度是预配置的。
作为一个实施例,所述第一计时器在所述第一PDCP实体维持。
作为一个实施例,所述第一时间长度是可变的。
作为一个实施例,所述第一时间长度是固定的。
作为一个实施例,所述延迟第一时间长度后向所述第二RLC实体指示丢弃所述第一PDCP PDU的所述复制包括:直到接收到第二指示时,向所述第二RLC实体指示丢弃所述第一PDCP PDU的所述复制;其中,所述第二指示的接收晚于所述第一指示的接收,所述第二指示包括第一个序列号大于所述第一PDCP PDU的序列号的PDCP PDU的成功发送的确认。
作为一个实施例,所述延迟第一时间长度后向所述第二RLC实体指示丢弃所述第一PDCP PDU的所述复制包括:直到接收到第二指示时,向所述第二RLC实体指示丢弃所述第一PDCP PDU的所述复制;其中,所述第二指示为所述第一指示之后紧接着的一个针对PDCP PDU被正确发送的层间指示。
作为一个实施例,所述延迟第一时间长度后向所述第二RLC实体指示丢弃所述第一PDCP PDU的所述复制包括:直到TX_NEXT(下一个发送)的值不小于所述第一PDCP PDU的COUNT(计数)值加上第一窗口尺寸(Window Size)的和时,向所述第二RLC实体指示丢弃所述第一PDCP PDU的所述复制。
作为一个实施例,所述TX_NEXT指示下一个被发送的PDCP SDU的COUNT值。
作为一个实施例,所述COUNT值由HFN和PDCP序列号组成;其中,所述HFN为超帧号(Hyper Frame Number)。
作为一个实施例,所述第一窗口尺寸是可配置的。
作为一个实施例,所述第一窗口尺寸由所述第一节点的服务小区配置。
作为一个实施例,所述第一窗口尺寸是预配置的。
作为一个实施例,所述第一窗口尺寸是可变的。
作为一个实施例,所述第一窗口尺寸是固定的。
作为一个实施例,所述第一时间长度与所述第一RLC实体的所述对端RLC实体所在的节点距离所述第一PDCP PDU的目的接收者之间包括的层2中继节点数有关。
作为一个实施例,所述第一RLC实体的所述对端RLC实体所在的节点为一个层2中继节点。
作为一个实施例,所述第一RLC实体的所述对端RLC实体所在的节点针对所述第一PDCP PDU为一个层2中继节点。
作为一个实施例,当所述第一RLC实体的所述对端RLC实体所在的节点距离所述第一PDCP PDU的 所述目的接收者之间不包括层2中继节点时,所述第一时间长度为t1;当所述第一RLC实体的所述对端RLC实体所在的节点距离所述第一PDCP PDU的所述目的接收者之间包括至少一个层2中继节点时,所述第一时间长度为t2,其中,所述t1的值小于所述t2的值。
作为一个实施例,所述第一时间长度与所述第一RLC实体的所述对端RLC实体所在的节点距离所述第一PDCP PDU的目的接收者之间包括的层2中继节点数成正比。
作为一个实施例,所述第一时间长度是所述第一RLC实体的所述对端RLC实体所在的节点距离所述第一PDCP PDU的目的接收者之间包括的层2中继节点数与第一因子的乘积。
作为一个实施例,所述第一因子的值可配置。
实施例7
实施例7示例了根据本申请的一个实施例的第三个无线信号传输流程图,如附图7所示。在附图7中,第一PDCP实体E71,第一RLC实体E72和第二RLC实体E73都位于第一节点,所述第一PDCP实体E71和所述第一RLC实体E72通过层间接口通信,所述第一PDCP实体E71和所述第二RLC实体E73通过层间接口通信。
对于第一PDCP实体E71,在步骤S711中复制第一PDCP PDU并将所述第一PDCP PDU提交给第一RLC实体集合中的每个RLC实体;在步骤S712中接收第一指示。
对于第一RLC实体E72,在步骤S721中接收第一PDCP PDU;在步骤S722中发送第一指示。
对于第二RLC实体E73,在步骤S731中接收第一PDCP PDU。
实施例7中执行的步骤适用于所述第一RLC实体被第二配置类型配置的场景。
作为一个实施例,所述第一收发机,当所述第一RLC实体被第二配置类型配置时,作为接收所述第一指示的响应,放弃向所述第二RLC实体指示丢弃所述第一PDCP PDU的所述复制。
作为一个实施例,当所述第一RLC实体被第二配置类型配置时,不向所述第二RLC实体指示丢弃所述第一PDCP PDU的所述复制。
作为一个实施例,所述第一收发机,作为接收所述第一指示的响应,丢弃所述第一PDCP PDU以及所述第一PDCP PDU对应的PDCP SDU,其中,所述第一PDCP PDU为PDCP数据PDU。
实施例8
实施例8示例了根据本申请的一个实施例的无线承载的示意图,如附图8所示。在附图8中,第一PDCP实体,第一RLC实体和第二RLC实体都位于第一节点,所述第一PDCP实体和所述第一RLC实体通过层间接口通信,所述第一PDCP实体和所述第二RLC实体通过层间接口通信。
作为一个实施例,附图8适用于SRB。
作为一个实施例,附图8适用于DRB。
作为一个实施例,附图8适用于MRB。
作为一个实施例,附图8示出的协议结构用于第一无线承载。
作为一个实施例,所述第一无线承载是分裂式的SRB,即split SRB(signaling radio bearer)。
作为一个实施例,所述第一无线承载是分裂式的DRB,即split DRB(data radio bearer)。
作为一个实施例,所述第一无线承载是分裂式的DRB,即split MRB(MBS radio bearer)。
作为一个实施例,附图8适用于收发。
作为一个实施例,附图8中的更高层协议实体是RRC,附图8是针对SRB的。
作为一个实施例,附图8中的更高层协议实体是SDAP,附图8是针对DRB或MRB的。
作为一个实施例,所述第一PDCP实体被配置PDCP复制,所述第一PDCP实体与所述第一RLC实体集合中的每个RLC实体关联。
作为一个实施例,所述第一PDCP实体被用于所述第一无线承载。
作为一个实施例,所述第一PDCP实体被用于发送属于所述第一无线承载的数据,为所述第一无线承载激活PDCP复制。
作为一个实施例,所述短语所述第一PDCP实体与所述第一RLC实体集合中的每个RLC实体关联包 括:所述第一RLC实体集合中的每个RLC实体服务的承载为所述第一无线承载,所述第一PDCP实体被用于所述第一无线承载。
作为一个实施例,所述短语所述第一PDCP实体与所述第一RLC实体集合中的每个RLC实体关联包括:所述第一RLC实体集合中的每个RLC实体被用于传输来自所述第一PDCP实体的数据。
作为一个实施例,所述第一PDCP实体被配置PDCP复制包括:经过所述第一PDCP实体发送的数据被复制并被分发至所述第一RLC实体集合中的每个RLC实体进行发送。
作为一个实施例,所述第一PDCP实体被配置PDCP复制包括:在所述第一PDCP实体复制PDCP PDU并将所述PDCP PDU分发至所述第一RLC实体集合中的每个RLC实体进行发送。
作为一个实施例,所述第一PDCP实体被配置PDCP复制包括:当PDCP PDU为PDCP DataPDU时,在所述第一PDCP实体复制PDCP DataPDU并将所述PDCP dataPDU提交给所述第一RLC实体集合中的每个RLC实体进行发送;当PDCP PDU为PDCP Control PDU时,将所述PDCP Control PDU提交给所述第一RLC实体集合中的主(primary)RLC实体发送。
作为一个实施例,从更高层协议实体接收的数据包经过PDCP实体的处理形成的PDCP PDU通过所述第一RLC实体或所述第二RLC实体二者之一发送;其中,所述更高层协议实体为RRC协议实体。
作为一个实施例,从更高层协议实体接收的数据包经过PDCP实体的处理形成的PDCP PDU进行复制后同时通过所述第一RLC实体和所述第二RLC实体发送;其中,所述更高层协议实体为SDAP协议实体。
作为一个实施例,所述第一RLC实体是针对上行链路通信的,所述第二RLC实体是针对副链路通信的。
作为一个实施例,所述第一RLC实体是针对副链路通信的,所述第二RLC实体是针对上行链路通信的。
作为一个实施例,所述第一RLC实体和所述第二RLC实体都是针对上行链路通信的。
作为一个实施例,所述第一RLC实体和所述第二RLC实体都是针对副链路通信的。
作为一个实施例,所述第一RLC实体和所述第二RLC实体都是针对主小区组(Master Cell Group,MCG)的。
作为一个实施例,所述第一RLC实体和所述第二RLC实体都是针对辅小区组(Secondary Cell Group,SCG)的。
作为一个实施例,所述第一RLC实体集合中包括一个主(primary)RLC实体和至少一个分裂(split)辅(secondary)RLC实体。
作为一个实施例,所述主RLC实体被用于双连接(dual connectivity,DC)中的主路径(primary path)上的数据传输;所述至少一个分裂辅RLC实体被用于除主路径之外的路径上的数据传输。
作为一个实施例,所述主RLC实体和所述至少一个分裂辅RLC实体都被用于Uu空中接口的数据传输。
作为一个实施例,所述主RLC实体被用于Uu空中接口上的数据传输,所述至少一个分裂辅RLC实体被用于PC5空中接口上的数据传输。
作为一个实施例,所述主RLC实体被用于PC5空中接口上的数据传输,所述至少一个分裂辅RLC实体被用于Uu空中接口上的数据传输。
作为一个实施例,所述主RLC实体被用于控制面的数据传输,所述至少一个分裂辅RLC实体被用于数据面的数据传输。
作为一个实施例,所述第一RLC实体为主RLC实体,所述第二RLC实体为分裂辅RLC实体。
作为一个实施例,所述第一RLC实体为分裂辅RLC实体,所述第二RLC实体为主RLC实体。
作为一个实施例,所述主RLC实体是可配置的。
作为一个实施例,所述主RLC实体和一个小区组(cell group)关联。
作为一个实施例,所述小区组是主小区组或辅小区组二者之一。
作为一个实施例,属于所述第一无线承载的数据通过至少2个连接发送,所述至少2个连接中的每个连接通过所述第一RLC实体集合中的一个RLC实体发送。
作为一个实施例,所述至少2个连接包括MCG。
作为一个实施例,所述至少2个连接包括MCG和SCG。
作为一个实施例,所述至少2个连接包括至少一个直连路径(direct path)和至少一个非直连路径(indirect path)。
作为一个实施例,所述直连路径是指数据从原节点到目的接收者之间仅通过一个空中接口传输。
作为一个实施例,所述非直连路径是指数据从原节点到目的接收者之间通过至少两个空中接口传输。
作为一个实施例,所述至少两个空中接口包括Uu空中接口和PC5空中接口。
作为一个实施例,所述至少两个空中接口包括至少两个PC5空中接口。
作为一个实施例,所述至少两个空中接口包括BH(backhaul,回程)空中接口和Access(接入)空中接口。
作为一个实施例,所述第一无线承载为上行链路无线承载。
作为一个实施例,所述第一无线承载为副链路无线承载(SidelinkRadio Bearer,SLRB)。
实施例9
实施例9示例了根据本申请的一个实施例的中继传输的无线协议架构示意图,如附图9所示。
附图9中,在中继传输中,以数据从第一节点经过第三节点发送给第二节点为例(数据从第二节点经过第三节点发送给第一节点同理可得):第一目标数据在第一节点侧依次经过Uu-PDCP子层905,PC5-SRAP(Sidelink Relay Adaptation Protocol,副链路中继适配协议)子层904和PC5-RLC子层903的处理在PC5-MAC子层902生成第一目标MAC PDU,然后传递给PC5-PHY层901,再通过PC5空中接口传输给第三节点的PC5-PHY层911,再依次经过PC5-MAC子层912和PC5-RLC子层913的处理恢复出第一RLC数据;所述第一RLC数据经PC5-SRAP子层914和Uu-SRAP子层924处理后在Uu-RLC子层923被重新生成第二RLC数据,再经过Uu-MAC子层922的处理后生成第二目标MAC PDU并传递给Uu-PHY层921;然后通过Uu空中接口传输给第二节点的Uu-PHY层931,再经过Uu-MAC子层932恢复出第二目标MAC PDU,然后依次经过Uu-RLC子层933,Uu-SRAP子层934和Uu-PDCP子层935的处理恢复出第一目标数据。
附图9中的第三节点为层2U2N中继节点。
附图9中,在第三节点转发的数据经过MAC子层,RLC子层和SRAP子层处理但不经过PDCP子层处理;PC5空中接口是所述第一节点和所述第三节点之间的空中接口,PC5接口有关的协议实体PC5-SRAP904和PC5-SRAP914,PC5-RLC903和PC5-RLC913,PC5-MAC902和PC5-MAC912,PC5-PHY901和PC5-PHY911分别终结于所述第一节点和所述第三节点;Uu空中接口是所述第三节点与所述第二节点之间的空中接口,所述Uu空中接口的协议实体Uu-SRAP924和Uu-SRAP934,Uu-RLC923和Uu-RLC933,Uu-MAC922和Uu-MAC932,Uu-PHY921和Uu-PHY931分别分别终结于所述第三节点和所述第二节点;较高层的协议实体Uu-RRC/SDAP906和Uu-RRC/SDAP936,Uu-PDCP905和Uu-PDCP935分别终止于所述第一节点和所述第二节点。
作为一个实施例,所述PC5-SRAP904为所述PC5-SRAP914的对端SRAP实体。
作为一个实施例,所述Uu-SRAP924为所述Uu-SRAP934的对端SRAP实体。
作为一个实施例,所述Uu-SRAP924为所述Uu-SRAP934的对端SRAP实体。
作为一个实施例,所述PC5-RLC903为所述PC5-RLC913的对端RLC实体。
作为一个实施例,所述Uu-RLC923为所述Uu-RLC933的对端RLC实体。
作为一个实施例,所述Uu-PDCP905为所述Uu-PDCP935的对端PDCP实体。
作为一个实施例,所述第一PDCP实体为所述Uu-PDCP905,所述第一RLC实体为所述PC5-RLC903,所述第一RLC实体的对端RLC实体为所述PC5-RLC913,所述PC5-RLC903向所述PC5-RLC913发送轮询(poll),所述轮询被用于触发所述PC5-RLC913向所述PC5-RLC903反馈状态PDU;当所述状态PDU指示针对第一RLC SDU为肯定确认时,所述PC5-RLC903向所述Uu-PDCP905发送第一指示;其中,所述第一RLC SDU为所述第一PDCP PDU。
作为一个实施例,针对层2中继传输,RLC子层,MAC子层和PHY层负责每一跳(hop)的点对点(point-to-point)通信;PDCP子层和RRC/SDAP子层负责端到端(peer-to-peer)通信。
作为一个实施例,SRAP子层实现UE ID(用户设备标识)和承载标识决定。
作为一个实施例,SRAP子层实现出链路(egress link)决定。
作为一个实施例,SRAP子层实现出RLC信道(egress RLC channel)决定。
作为一个实施例,SRAP子层实现承载映射(Bearer mapping)功能。
作为一个实施例,SRAP子层实现路由(Routing)功能。
附图9中,所述路由功能将数据包从所述第一节点发送至所述第二节点。
附图9中,第二节点为NG-RAN节点,第一节点为UE。
作为一个实施例,附图9中的第一节点对应实施例2中的所述UE201。
作为一个实施例,附图9中的第三节点对应实施例2中的所述UE241
作为一个实施例,附图9中的第二节点对应实施例2中的所述gNB203。
作为一个实施例,附图9中的第二节点对应实施例4中的所述第二通信设备410。
实施例10
实施例10示例了根据本申请的一个实施例的拓扑结构示意图,如附图10所示。
作为一个实施例,当经过所述第三节点转发时,所述第一节点与所述第二节点之间的通信是非直连路径。
作为一个实施例,当不经过所述第三节点转发时,所述第一节点与所述第二节点之间的通信是直连路径。
作为上述两个实施例的一个子实施例,所述非直连路径为主路径。
作为上述两个实施例的一个子实施例,所述直连路径为主路径。
作为一个实施例,所示第三节点是一个层2中继节点。
作为一个实施例,所示第三节点是一个层2U2N中继UE。
作为一个实施例,所述第三节点与所述第一节点属于同一个小区组。
作为一个实施例,所述第三节点与所述第一节点属于不同的小区组。
作为一个实施例,所述第三节点是所述第一节点的主小区组的一个辅小区(Secondary Cell,SCell)。
作为一个实施例,所述第三节点是所述第一节点的辅小区组中的一个小区。
作为一个实施例,所述第三节点是TN(Terrestrial Network,陆地网络)的一个节点。
作为一个实施例,所述第三节点是NTN(Non-Terrestrial Network,非陆地网络)的一个节点。
作为一个实施例,所述第二节点是一个NG-RAN节点。
作为一个实施例,附图10中的第一节点对应实施例2中的所述UE201。
作为一个实施例,附图10中的第三节点对应实施例2中的所述UE241
作为一个实施例,附图10中的第二节点对应实施例2中的所述gNB203。
作为一个实施例,附图10中的第二节点对应实施例4中的所述第二通信设备410。
实施例11
实施例11示例了根据本申请的一个实施例的第一节点中的处理装置的结构框图,如附图11所示。
在附图11中,第一节点处理装置1100包括第一收发机1101。所述第一节点1100是一个UE。
在实施例11中,第一收发机1101,复制第一PDCP PDU并将所述第一PDCP PDU提交给第一RLC实体集合中的每个RLC实体发送;所述第一收发机1101,从第一RLC实体接收第一指示,所述第一指示被用于确认所述第一PDCP PDU的成功发送;其中,是否向第二RLC实体指示丢弃所述第一PDCP PDU的复制与所述第一RLC实体的配置有关;当所述第一RLC实体被第一配置类型配置时,作为接收所述第一指示的响应,向所述第二RLC实体指示丢弃所述第一PDCP PDU的所述复制;所述第一RLC实体和所述第二RLC实体为所述第一RLC实体集合中的两个RLC实体,所述第一RLC实体集合在所述第一节点维持。
作为一个实施例,所述第一收发机1101,当所述第一RLC实体被第二配置类型配置时,作为接收所述第一指示的响应,延迟第一时间长度后向所述第二RLC实体指示丢弃所述第一PDCP PDU的所述复制。
作为一个实施例,所述第一收发机1101,当所述第一RLC实体被第二配置类型配置时,作为接收所述第一指示的响应,延迟第一时间长度后向所述第二RLC实体指示丢弃所述第一PDCP PDU的所述复制;所述第一时间长度与所述第一RLC实体的对端RLC实体所在的节点距离所述第一PDCP PDU的目的接收者之间包括的层2中继节点数有关;其中,所述第一RLC实体的所述对端RLC实体所在的节点为一个层2中继节点。
作为一个实施例,所述第一RLC实体为AM RLC实体,所述第二RLC实体为AM RLC实体或UM RLC实体二者中之一。
作为一个实施例,所述第一收发机1101,当所述第一RLC SDU或者所述第一RLC SDU的分段都没有被传递给底层时,丢弃所述第一RLC SDU;其中,所述第一RLC SDU是所述第一PDCP PDU的所述复制。
作为一个实施例,所述第一收发机1101,当所述第一RLC实体被第二配置类型配置时,放弃向所述第二RLC实体指示丢弃所述第一PDCP PDU的所述复制。
作为一个实施例,第一PDCP实体被配置PDCP复制,所述第一PDCP实体与所述第一RLC实体集合中的每个RLC实体关联。
作为一个实施例,所述第一收发机1101包括本申请附图4中的接收器454(包括天线452),接收处理器456,多天线接收处理器458和控制器/处理器459。
作为一个实施例,所述第一收发机1101包括本申请附图4中的接收器454(包括天线452),接收处理器456,多天线接收处理器458或控制器/处理器459中的至少之一。
作为一个实施例,所述第一收发机1101包括本申请附图4中的控制器/处理器459。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一类通信节点或者UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC(enhanced Machine Type Communication,增强机器类通信)设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二类通信节点或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP(Transmission and Reception Point,发射和接收点),中继卫星,卫星基站,空中基站,测试设备,例如模拟基站部分功能的收发装置,信令测试仪等无线通信设备。
本领域的技术人员应当理解,本发明可以通过不脱离其核心或基本特点的其它指定形式来实施。因此,目前公开的实施例无论如何都应被视为描述性而不是限制性的。发明的范围由所附的权利要求而不是前面的描述确定,在其等效意义和区域之内的所有改动都被认为已包含在其中。

Claims (14)

  1. 一种被用于无线通信的第一节点,其特征在于,包括:
    第一收发机,复制第一PDCP PDU并将所述第一PDCP PDU提交给第一RLC实体集合中的每个RLC实体发送;
    所述第一收发机,从第一RLC实体接收第一指示,所述第一指示被用于确认所述第一PDCP PDU的成功发送;
    其中,是否向第二RLC实体指示丢弃所述第一PDCP PDU的复制与所述第一RLC实体的配置有关;当所述第一RLC实体被第一配置类型配置时,作为接收所述第一指示的响应,向所述第二RLC实体指示丢弃所述第一PDCP PDU的所述复制;所述第一RLC实体和所述第二RLC实体为所述第一RLC实体集合中的两个RLC实体,所述第一RLC实体集合在所述第一节点维持。
  2. 根据权利要求1所述的第一节点,其特征在于,包括:
    所述第一收发机,当所述第一RLC实体被第二配置类型配置时,作为接收所述第一指示的响应,延迟第一时间长度后向所述第二RLC实体指示丢弃所述第一PDCP PDU的所述复制。
  3. 根据权利要求2所述的第一节点,其特征在于,所述第一时间长度与所述第一RLC实体的对端RLC实体所在的节点距离所述第一PDCP PDU的目的接收者之间包括的层2中继节点数有关;
    其中,所述第一RLC实体的所述对端RLC实体所在的节点为一个层2中继节点。
  4. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,所述第一RLC实体为AM RLC实体,所述第二RLC实体为AM RLC实体或UM RLC实体二者中之一。
  5. 根据权利要求1至4中任一权利要求所述的第一节点,其特征在于,包括:
    所述第一收发机,当第一RLC SDU或者所述第一RLC SDU的分段都没有被传递给底层时,丢弃所述第一RLC SDU;
    其中,所述第一RLC SDU是所述第一PDCP PDU的所述复制。
  6. 根据权利要求1所述的第一节点,其特征在于,包括:
    所述第一收发机,当所述第一RLC实体被第二配置类型配置时,放弃向所述第二RLC实体指示丢弃所述第一PDCP PDU的所述复制。
  7. 根据权利要求1至6中任一权利要求所述的第一节点,其特征在于,第一PDCP实体被配置PDCP复制,所述第一PDCP实体与所述第一RLC实体集合中的每个RLC实体关联。
  8. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    复制第一PDCP PDU并将所述第一PDCP PDU提交给第一RLC实体集合中的每个RLC实体发送;
    从第一RLC实体接收第一指示,所述第一指示被用于确认所述第一PDCP PDU的成功发送;
    其中,是否向第二RLC实体指示丢弃所述第一PDCP PDU的复制与所述第一RLC实体的配置有关;当所述第一RLC实体被第一配置类型配置时,作为接收所述第一指示的响应,向所述第二RLC实体指示丢弃所述第一PDCP PDU的所述复制;所述第一RLC实体和所述第二RLC实体为所述第一RLC实体集合中的两个RLC实体,所述第一RLC实体集合在所述第一节点维持。
  9. 根据权利要求8所述的第一节点中的方法,其特征在于,包括:
    当所述第一RLC实体被第二配置类型配置时,作为接收所述第一指示的响应,延迟第一时间长度后向所述第二RLC实体指示丢弃所述第一PDCP PDU的所述复制。
  10. 根据权利要求9所述的第一节点中的方法,其特征在于,所述第一时间长度与所述第一RLC实体的对端RLC实体所在的节点距离所述第一PDCP PDU的目的接收者之间包括的层2中继节点数有关;
    其中,所述第一RLC实体的所述对端RLC实体所在的节点为一个层2中继节点。
  11. 根据权利要求8至10中任一权利要求所述的第一节点中的方法,其特征在于,所述第一RLC实体为AM RLC实体,所述第二RLC实体为AM RLC实体或UM RLC实体二者中之一。
  12. 根据权利要求8至11中任一权利要求所述的第一节点中的方法,其特征在于,包括:
    当第一RLC SDU或者所述第一RLC SDU的分段都没有被传递给底层时,丢弃所述第一RLC SDU;
    其中,所述第一RLC SDU是所述第一PDCP PDU的所述复制。
  13. 根据权利要求8所述的第一节点中的方法,其特征在于,包括:
    当所述第一RLC实体被第二配置类型配置时,放弃向所述第二RLC实体指示丢弃所述第一PDCP PDU的所述复制。
  14. 根据权利要求8至13中任一权利要求所述的第一节点中的方法,其特征在于,第一PDCP实体被配置PDCP复制,所述第一PDCP实体与所述第一RLC实体集合中的每个RLC实体关联。
PCT/CN2023/109135 2022-07-28 2023-07-25 一种被用于无线通信中的方法和装置 WO2024022343A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210897172 2022-07-28
CN202210897172.8 2022-07-28
CN202210961156.0 2022-08-09
CN202210961156.0A CN117528703A (zh) 2022-07-28 2022-08-09 一种被用于无线通信中的方法和装置

Publications (1)

Publication Number Publication Date
WO2024022343A1 true WO2024022343A1 (zh) 2024-02-01

Family

ID=89705350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/109135 WO2024022343A1 (zh) 2022-07-28 2023-07-25 一种被用于无线通信中的方法和装置

Country Status (2)

Country Link
CN (1) CN117528704A (zh)
WO (1) WO2024022343A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020155124A1 (zh) * 2019-02-01 2020-08-06 Oppo广东移动通信有限公司 复制数据的传输方法、终端设备及接入网设备
CN114095873A (zh) * 2020-08-24 2022-02-25 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114125763A (zh) * 2020-08-28 2022-03-01 上海朗帛通信技术有限公司 一种用于中继传输的方法和装置
CN114205774A (zh) * 2020-09-02 2022-03-18 上海朗帛通信技术有限公司 一种用于中继传输的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020155124A1 (zh) * 2019-02-01 2020-08-06 Oppo广东移动通信有限公司 复制数据的传输方法、终端设备及接入网设备
CN114095873A (zh) * 2020-08-24 2022-02-25 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114125763A (zh) * 2020-08-28 2022-03-01 上海朗帛通信技术有限公司 一种用于中继传输的方法和装置
CN114205774A (zh) * 2020-09-02 2022-03-18 上海朗帛通信技术有限公司 一种用于中继传输的方法和装置

Also Published As

Publication number Publication date
CN117528704A (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
JP2020184752A (ja) 無線通信システムにおけるユニキャスト伝送のサイドリンク無線ベアラ(slrb)設定を要求するための方法および装置
CN114698153B (zh) 一种被用于副链路无线通信中的方法和装置
CN114449538B (zh) 一种被用于中继无线通信中的方法和装置
CN114726490A (zh) 一种被用于无线通信的方法和设备
WO2024022343A1 (zh) 一种被用于无线通信中的方法和装置
CN114095873B (zh) 一种被用于无线通信的节点中的方法和装置
WO2020228556A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024032519A1 (zh) 一种被用于无线通信中的方法和装置
WO2020029862A1 (zh) 一种被用于无线通信节点中的方法和装置
CN114205774A (zh) 一种用于中继传输的方法和装置
CN117528703A (zh) 一种被用于无线通信中的方法和装置
US20240049326A1 (en) Method and device used for wireless communication
WO2024046252A1 (zh) 一种被用于无线通信中的方法和装置
CN113543038B (zh) 一种被用于无线通信的节点中的方法和装置
WO2024027609A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022171165A1 (zh) 一种被用于中继无线通信中的方法和装置
WO2023208080A1 (zh) 一种被用于无线通信的方法和设备
WO2023246671A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024083054A1 (zh) 一种被用于无线通信中的方法和装置
WO2024067538A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024083056A1 (zh) 一种被用于无线通信的方法和设备
WO2023125177A1 (zh) 一种被用于无线通信中的方法和装置
WO2023217076A1 (zh) 一种被用于无线通信的方法和装置
WO2022048508A1 (zh) 一种被用于中继无线通信中的方法和装置
WO2023207708A1 (zh) 一种被用于无线通信的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845552

Country of ref document: EP

Kind code of ref document: A1