WO2024032519A1 - 一种被用于无线通信中的方法和装置 - Google Patents

一种被用于无线通信中的方法和装置 Download PDF

Info

Publication number
WO2024032519A1
WO2024032519A1 PCT/CN2023/111368 CN2023111368W WO2024032519A1 WO 2024032519 A1 WO2024032519 A1 WO 2024032519A1 CN 2023111368 W CN2023111368 W CN 2023111368W WO 2024032519 A1 WO2024032519 A1 WO 2024032519A1
Authority
WO
WIPO (PCT)
Prior art keywords
rlc entity
candidate
pdcp
rlc
entity
Prior art date
Application number
PCT/CN2023/111368
Other languages
English (en)
French (fr)
Inventor
张锦芳
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2024032519A1 publication Critical patent/WO2024032519A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • H04W28/0236Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup

Definitions

  • the present application relates to methods and devices in wireless communication systems, and in particular to methods and devices for supporting multi-path transmission in wireless communications.
  • Multipath transmission can include direct path transmission and indirect path transmission.
  • the source node and the destination receiving node are usually base station equipment and user equipment, or they can both be user equipment; the relay node can be network equipment or user equipment.
  • the transmission from the user equipment to the relay node uses the Sidelink (SL) air interface technology
  • the relay node to the base station or enhanced node B (eNodeB , eNB) transmission uses LTE air interface technology
  • the relay node is used for data forwarding between UE (User Equipment) and eNB.
  • SL Sidelink
  • eNodeB enhanced node B
  • this application discloses a solution that can effectively improve the success rate of data transmission.
  • the embodiments and features in the embodiments of the first node of the present application can be applied to the second node, and vice versa.
  • the embodiments of the present application and the features in the embodiments can be combined with each other arbitrarily without conflict.
  • the original intention of this application is for the Uu air interface
  • this application can also be used for the PC5 air interface.
  • the original intention of this application is for terminal and base station scenarios, this application is also applicable to relays and base stations, achieving similar technical effects in terminal and base station scenarios.
  • This application discloses a method used in a first node of wireless communication, which is characterized by including:
  • the first PDCP PDU is a data unit of the first PDCP SDU processed by the first PDCP entity;
  • the first RLC entity is one of a first candidate RLC entity and a second candidate RLC entity, Whether the first RLC entity is the first candidate RLC entity or the second candidate RLC entity is related to the value of the first timer; the first candidate RLC entity and the second candidate RLC entity are respectively related to The first PDCP entity is associated; the data unit included in the first candidate RLC entity is sent through a direct path; the data unit included in the second candidate RLC entity is sent through an indirect path.
  • this application is suitable for dual connectivity transmission.
  • this application is applicable to multi-path transmission.
  • this application is applicable to scenarios in which multipath transmission includes direct paths and indirect paths.
  • the indirect path in this application is forwarded through UE-to-Network (U2N) relay.
  • U2N UE-to-Network
  • the indirect path in this application is forwarded through Layer 2 U2N relay.
  • the indirect path in this application is forwarded through layer 2 U2U (UE-to-UE, user to user) relay.
  • layer 2 U2U UE-to-UE, user to user
  • this application is applicable to PDCP (Packet Data Convergence Protocol, Packet Data Convergence Protocol) recovery.
  • PDCP Packet Data Convergence Protocol, Packet Data Convergence Protocol
  • the above method can increase the data transmission rate and improve the data transmission robustness by sending via a non-direct path.
  • the above method can reduce transmission delay by sending via a direct path.
  • the above method determines the first RLC (Radio Link Control, Radio Link Control) entity through the value of the first timer to increase the transmission rate at the same time, and can also avoid the transmission delay introduced by relay forwarding to cause the first PDCP SDU (Service Data Unit) has expired when it reaches the intended recipient, causing service quality to decline.
  • RLC Radio Link Control, Radio Link Control
  • the above method is backward compatible and helps reduce hardware complexity and cost.
  • the entity in this application is a module.
  • the entity in this application is a module that completes a set of functions.
  • the entity in this application is a hardware module that completes a set of functions.
  • the entity in this application is a software module that completes a set of functions.
  • the relay node and relay UE in this application can be interchanged.
  • the first RLC entity is the first candidate RLC entity.
  • the above method can reduce transmission delay and avoid packet loss due to exceeding the packet delay budget (packet delay budget, PDB).
  • PDB packet delay budget
  • the reference data amount is the total amount of PDCP data in the first PDCP entity and the RLC data amount waiting for initial transmission in the first candidate RLC entity and the second candidate RLC entity.
  • the above method is compatible with split bearer.
  • the above method can increase the transmission rate.
  • the above method supports services with large bandwidth requirements.
  • the value of the first timer is greater than the first threshold and the first timer has not expired; the first PDCP entity has not received the first PDCP from the second candidate RLC entity. An indication that the PDU is successfully sent; the first RLC entity is the second candidate RLC entity.
  • the above method can improve data transmission robustness through retransmission by the first candidate RLC entity.
  • the first RLC SDU is the first PDCP PDU.
  • the above method can save air interface resources by discarding the first PDCP PDU (Protocol Data Unit).
  • PDCP PDU Protocol Data Unit
  • the direct path includes only one air interface, and the indirect path includes at least two air interfaces.
  • the first expiration value is used to determine that the first timer has expired; the difference between the first expiration value minus the first threshold is used to determine that the first PDCP PDU passes through the second The maximum transmission delay forwarded by the node where the candidate RLC entity's peer RLC entity is located.
  • the above method can achieve consistent transmission delay performance by transmitting on each path of the multipath.
  • This application discloses a first node used for wireless communication, which is characterized by including:
  • the first transceiver receives the first PDCP SDU; in response to receiving the first PDCP SDU, starts a first timer; when the first timer is in a running state, delivers the first PDCP PDU to the first RLC Entity sent;
  • the first PDCP PDU is a data unit of the first PDCP SDU processed by the first PDCP entity;
  • the first RLC entity is one of a first candidate RLC entity and a second candidate RLC entity, Whether the first RLC entity is the first candidate RLC entity or the second candidate RLC entity is related to the value of the first timer; the first candidate RLC entity and the second candidate RLC entity are respectively related to The first PDCP entity is associated; the data unit included in the first candidate RLC entity is sent through a direct path; the data unit included in the second candidate RLC entity is sent through an indirect path.
  • the first RLC entity is the first candidate RLC entity.
  • the reference data amount is the total amount of PDCP data in the first PDCP entity and the RLC data amount waiting for initial transmission in the first candidate RLC entity and the second candidate RLC entity.
  • the first transceiver submits the first PDCP PDU to the first candidate RLC entity for transmission;
  • the value of the first timer is greater than the first threshold and the first timer has not expired; the first PDCP entity has not received the first PDCP from the second candidate RLC entity. An indication that the PDU is successfully sent; the first RLC entity is the second candidate RLC entity.
  • the first transceiver sends a first indication, and the first indication is used to instruct the first RLC entity to discard the first PDCP PDU; when the first RLC SDU or the first RLC SDU is decomposed When the segments are not passed to lower layers, discard the first RLC SDU;
  • the first RLC SDU is the first PDCP PDU.
  • the direct path includes only one air interface, and the indirect path includes at least two air interfaces.
  • the first transceiver receives a first message, the first message indicating a first expiration value and the first threshold; wherein the first expiration value is used to determine the expiration of the first timer; the The difference between the first expiration value minus the first threshold is used to determine the maximum transmission delay of the first PDCP PDU forwarded through the node where the peer RLC entity of the second candidate RLC entity is located.
  • Figure 1 illustrates a transmission flow chart of a first node according to an embodiment of the present application
  • Figure 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application
  • Figure 3 illustrates a schematic diagram of the wireless protocol architecture of the user plane and control plane according to one embodiment of the present application
  • Figure 4 illustrates a schematic diagram of a hardware module of a communication device according to an embodiment of the present application
  • Figure 5 illustrates a signal transmission flow chart according to an embodiment of the present application
  • Figure 6 illustrates another signal transmission flow chart according to an embodiment of the present application
  • Figure 7 illustrates a signal processing flow chart according to an embodiment of the present application
  • FIG. 8 illustrates another signal processing flow diagram according to an embodiment of the present application.
  • Figure 9 illustrates a schematic diagram of the wireless protocol architecture of relay transmission according to an embodiment of the present application.
  • Figure 10 illustrates a schematic diagram of the first PDCP entity, the first candidate RLC entity and the second candidate RLC entity according to an embodiment of the present application
  • Figure 11 illustrates a schematic diagram of a topology structure according to an embodiment of the present application.
  • Figure 12 illustrates a wireless signal transmission flow chart according to an embodiment of the present application
  • Figure 13 illustrates a structural block diagram of a processing device in a first node according to an embodiment of the present application.
  • Embodiment 1 illustrates a transmission flow chart of the first node according to an embodiment of the present application, as shown in Figure 1.
  • the first node 100 receives the first PDCP SDU in step 101; in step 102, as a response to receiving the first PDCP SDU, starts a first timer; in step 103, when the first PDCP SDU is received, the first timer is started.
  • the first PDCP PDU is submitted to the first RLC entity for transmission; wherein the first PDCP PDU is the data unit of the first PDCP SDU processed by the first PDCP entity; the first The RLC entity is one of the first candidate RLC entity and the second candidate RLC entity.
  • the first RLC entity is the first candidate RLC entity or the second candidate RLC entity and the first timer. value; the first candidate RLC entity and the second candidate RLC entity are respectively associated with the first PDCP entity; the data unit included in the first candidate RLC entity is sent through a direct path; the second candidate The data units included in the RLC entity are sent via indirect paths.
  • the first PDCP SDU is received.
  • the first PDCP SDU comes from a higher layer of the first node.
  • the first PDCP entity receives the first PDCP SDU from a higher layer of the first node.
  • the higher layer is an SDAP sublayer (sublayer); wherein the first PDCP SDU belongs to a data radio bearer (DRB).
  • SDAP sublayer sublayer
  • DRB data radio bearer
  • the higher layer is an RRC sublayer; wherein the first PDCP SDU belongs to a signaling radio bearer (SRB).
  • SRB signaling radio bearer
  • a first timer is started.
  • the first timer is maintained at the PDCP sublayer of the first node.
  • the first timer is discardTimer.
  • the first timer is in a running state.
  • the first PDCP PDU is delivered to the first RLC entity for transmission.
  • the first PDCP SDU and the first PDCP PDU are discarded.
  • the first PDCP PDU is a PDCP data (data) PDU.
  • the first PDCP entity when the first timer is in a running state, the first PDCP entity delivers the first PDCP PDU to the first RLC entity for sending through an inter-layer interface.
  • the first PDCP PDU is a data unit of the first PDCP SDU processed by the first PDCP entity.
  • the processing of the first PDCP SDU by the first PDCP entity includes ROHC (Robust Header Compression).
  • the processing of the first PDCP SDU by the first PDCP entity includes ciphering.
  • the processing of the first PDCP SDU by the first PDCP entity includes integrity protection and verification (Integrity protection and verification).
  • the first PDCP PDU includes processed bits of the first PDCP SDU.
  • the first PDCP PDU is composed of processed bits of the first PDCP SDU and a PDCP header.
  • the PDCP header includes a sequence number (SN) of the first PDCP PDU.
  • the first PDCP entity is a transmitting PDCP entity.
  • the first RLC entity is one of a first candidate RLC entity and a second candidate RLC entity.
  • the first candidate RLC entity and the second candidate RLC entity are respectively associated with the first PDCP entity.
  • the phrase that the first candidate RLC entity and the second candidate RLC entity are respectively associated with the first PDCP entity includes: both the first candidate RLC entity and the second candidate RLC entity are used For transmitting the data unit from the first PDCP entity.
  • the first PDCP entity is maintained at the first node.
  • the first PDCP entity is located in a PDCP sublayer (sublayer).
  • the first candidate RLC entity and the second candidate RLC entity are maintained at the first node respectively.
  • the first candidate RLC entity and the second candidate RLC entity are respectively located at the RLC sublayer.
  • the first candidate RLC entity and the second candidate RLC entity are in an activated state.
  • the data unit included in the first candidate RLC entity is sent through a direct path.
  • the phrase that the data unit included in the first candidate RLC entity is sent through a direct path includes: the node where the peer RLC entity of the first candidate RLC entity is located is the destination of the first PDCP SDU receiver.
  • the data unit included in the second candidate RLC entity is sent through an indirect path.
  • the phrase that the data unit included in the second candidate RLC entity is sent through a non-direct path includes: the node where the peer RLC entity of the second candidate RLC entity is located is not the node of the first PDCP SDU Purpose recipient.
  • the phrase that the data unit included in the second candidate RLC entity is sent through a non-direct path includes: the node where the peer RLC entity of the second candidate RLC entity is located is the node of the first PDCP PDU relay node.
  • the information element that configures the first candidate RLC entity is RLC-BearerConfig (RLC bearer configuration).
  • the first candidate RLC entity is identified by a logical channel identifier (Logical Channel Identity, LCID).
  • LCID Logical Channel Identity
  • the data processed by the first candidate RLC entity is transmitted at the physical layer through a PUSCH (Physical Uplink Shared Channel) channel.
  • PUSCH Physical Uplink Shared Channel
  • the information element that configures the second candidate RLC entity is SL-RLC-ChannelConfig (secondary link RLC channel configuration).
  • the second candidate RLC entity is identified by an RLC channel identity (RLC channel Identity).
  • RLC channel Identity RLC channel Identity
  • the data processed by the second candidate RLC entity is transmitted at the physical layer through a PSSCH (Physical Sidelink Shared CHannel, Physical Sidelink Shared Channel) channel.
  • PSSCH Physical Sidelink Shared CHannel, Physical Sidelink Shared Channel
  • the logical channel identifier or the RLC channel identifier is configured by the base station of the serving cell of the first node.
  • a logical channel identifier or an RLC channel identifier is used to identify an RLC entity on the network side.
  • the first candidate RLC entity is used for transmission on the Uu air interface.
  • the second candidate RLC entity is used for transmission on the PC5 air interface.
  • the second candidate RLC entity is associated with a logical channel on the PC5 air interface, and the logical channel is allocated by the first node itself.
  • whether the first RLC entity is the first candidate RLC entity or the second candidate RLC entity is related to the value of the first timer.
  • the value of the first timer is used to determine whether the first RLC entity is the first candidate RLC entity or the second candidate RLC entity.
  • the above method is applied when the first PDCP PDU is delivered to the RLC entity for the first time.
  • the above method is applied to each submission of the first PDCP PDU to the RLC entity multiple times.
  • the phrase whether the first RLC entity is the first candidate RLC entity or the second candidate RLC entity is related to the value of the first timer including: when the first PDCP PDU is When the first RLC entity is submitted to the first RLC entity for the first time, the first RLC entity is the second candidate RLC entity and the value of the first timer is less than the first threshold; when the first PDCP PDU is submitted to the When the first RLC entity is the first RLC entity, the first RLC entity is the first candidate RLC entity and the value of the first timer is not less than the first threshold.
  • the phrase whether the first RLC entity is the first candidate RLC entity or the second candidate RLC entity is related to the value of the first timer including: when the first PDCP PDU is When submitted to the first RLC entity for the first time, the first The RLC entity is the second candidate RLC entity and the value of the first timer is not greater than the first threshold; when the first PDCP PDU is delivered to the first RLC entity for the first time, the first RLC entity is the first candidate RLC entity and the value of the first timer is greater than the first threshold.
  • the second candidate RLC entity belongs to the primary path (primary path).
  • the phrase whether the first RLC entity is the first candidate RLC entity or the second candidate RLC entity is related to the value of the first timer including: when the first PDCP PDU is When submitted to the first RLC entity for the first time, the first RLC entity is one of the first candidate RLC entity or the second candidate RLC entity and the value of the first timer is less than the first Threshold; when the first PDCP PDU is delivered to the first RLC entity for the first time, the first RLC entity is the first candidate RLC entity and the value of the first timer is not less than the first threshold.
  • the phrase whether the first RLC entity is the first candidate RLC entity or the second candidate RLC entity is related to the value of the first timer including: when the first PDCP PDU is When submitted to the first RLC entity for the first time, the first RLC entity is one of the first candidate RLC entity or the second candidate RLC entity and the value of the first timer is not greater than the first RLC entity. a threshold; when the first PDCP PDU is delivered to the first RLC entity for the first time, the first RLC entity is the first candidate RLC entity and the value of the first timer is greater than the first threshold.
  • whether the first RLC entity is the first candidate RLC entity or the second candidate RLC entity is the first node is implemented.
  • the phrase whether the first RLC entity is the first candidate RLC entity or the second candidate RLC entity is related to the value of the first timer including: when the first PDCP PDU is When it is submitted to the first RLC entity for the first time, the first RLC entity is the second candidate RLC entity and the value of the first timer is less than the first threshold; when the first PDCP PDU is submitted to When the first RLC entity is the first RLC entity, the first RLC entity is the first candidate RLC entity and the value of the first timer is not less than the first threshold.
  • the phrase whether the first RLC entity is the first candidate RLC entity or the second candidate RLC entity is related to the value of the first timer including: when the first PDCP PDU is When it is submitted to the first RLC entity for the first time, the first RLC entity is the second candidate RLC entity and the value of the first timer is not greater than the first threshold; when the first PDCP PDU is submitted again When given to the first RLC entity, the first RLC entity is the first candidate RLC entity and the value of the first timer is greater than the first threshold.
  • the second candidate RLC entity belongs to the main path.
  • the first transceiver receives the first PDCP SDU; in response to receiving the first PDCP SDU, starts the first timer and the second timer; when the first timer is in the running state, Submitting the first PDCP PDU to the first RLC entity for transmission; wherein the first PDCP PDU is the data unit of the first PDCP SDU processed by the first PDCP entity; the first RLC entity is the first candidate RLC One of the entity and the second candidate RLC entity, the first RLC entity is the first candidate RLC entity or the second candidate RLC entity and the running status of the first timer and the second The running status of the timer is related; the first candidate RLC entity and the second candidate RLC entity are respectively associated with the first PDCP entity; the data unit included in the first candidate RLC entity is sent through a direct path; the The data unit included in the second candidate RLC entity is sent through an indirect path.
  • the running status of the first timer and the running status of the second timer are used to determine whether the first RLC entity is the first candidate RLC entity or the third RLC entity. Two candidate RLC entities.
  • the first RLC entity is the first candidate RLC entity.
  • the first RLC entity is the second candidate RLC entity.
  • the second candidate RLC entity belongs to the main path.
  • the first RLC entity is the first candidate RLC entity or the second candidate RLC entity.
  • whether the first RLC entity is the first candidate RLC entity or the second candidate RLC entity is the first node is implemented.
  • the expiration value of the first timer is greater than the expiration value of the second timer.
  • the expiration value of the first timer indicates an end-to-end (peer-to-peer) data packet delay budget on the air interface.
  • the expiration value of the second timer indicates a point-to-point data packet delay budget on the air interface.
  • the expiration value of the second timer indicates a data packet delay budget on an air interface.
  • the expiration value of the second timer indicates the data packet delay budget on the first air interface, wherein the path where the second candidate RLC entity is located is an indirect path, and the Indirect paths include at least 2 air interfaces.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in Figure 2.
  • Figure 2 illustrates a diagram of the network architecture 200 of NR 5G, LTE (Long-Term Evolution, Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced, Enhanced Long-Term Evolution) systems.
  • the NR 5G, LTE or LTE-A network architecture 200 may be called 5GS (5G System)/EPS (Evolved Packet System) 200 or some other suitable term.
  • 5GS 5G System
  • EPS Evolved Packet System
  • 5GS/EPS 200 may include one or more UE (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G Core Network, 5G Core Network)/EPC (Evolved Packet Core, Evolved Packet Core) 210, HSS (Home Subscriber Server, Home Subscriber Server)/UDM (Unified Data Management, Unified Data Management) 220 and Internet Services 230.
  • 5GS/EPS can be interconnected with other access networks, but for simplicity it is not Expose these entities/interfaces. As shown, 5GS/EPS provides packet-switched services, however those skilled in the art will readily appreciate that the various concepts presented throughout this application may be extended to networks that provide circuit-switched services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNBs 204.
  • gNB 203 provides user and control plane protocol termination towards UE 201.
  • gNB 203 may connect to other gNBs 204 via the Xn interface (eg, backhaul link).
  • the XnAP protocol of the Xn interface is used to transmit control plane messages of the wireless network, and the user plane protocol of the Xn interface is used to transmit user plane data.
  • gNB203 can also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP (Transmission Reception Point, Transmitting and receiving node) or some other suitable terminology, in an NTN (Non Terrestrial Network, non-terrestrial/satellite network) network, gNB203 can be a satellite, an aircraft or a ground base station relayed through a satellite. gNB203 provides UE201 with an access point to 5GC/EPC210.
  • Examples of UE201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, Personal Digital Assistants (Personal Digital Assistants, PDAs), satellite radios, global positioning systems, multimedia devices, Video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, vehicle-mounted equipment, vehicle-mounted communication units, Wearable devices, or any other similarly functional device.
  • SIP Session Initiation Protocol
  • PDAs Personal Digital Assistants
  • satellite radios global positioning systems
  • multimedia devices Video devices
  • digital audio players e.g., MP3 players
  • game consoles e.g., drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, vehicle-mounted equipment, vehicle-mounted communication units, Wearable devices, or any other similarly functional device.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to 5GC/EPC210 through the S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management field)/SMF (Session Management Function, session management function) 211.
  • MME Mobility Management Entity
  • AMF Authentication Management Field, authentication management field
  • Session Management Function Session Management Function, session management function
  • MME/AMF/SMF214 S-GW (Service Gateway)/UPF (User Plane Function) 212 and P-GW (Packet Date Network Gateway)/UPF213.
  • MME/AMF/SMF211 is the control node that handles signaling between UE201 and 5GC/EPC210. Basically, MME/AMF/SMF211 provides bearer and connection management. All user IP (Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213. P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF 213 is connected to Internet service 230.
  • Internet service 230 includes the operator's corresponding Internet protocol service, which may specifically include Internet, intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and PS (Packet Switching, packet switching) streaming services.
  • IMS IP Multimedia Subsystem
  • IP Multimedia Subsystem IP Multimedia Subsystem
  • PS Packet Switching,
  • the UE201 corresponds to the first node in this application.
  • the gNB 203 corresponds to the second node in this application.
  • the UE241 corresponds to the third node in this application.
  • the UE201 is user equipment.
  • the UE241 is a relay node.
  • the UE241 is a layer 2 relay node.
  • the UE241 is a layer 2 U2N relay UE.
  • the UE241 is a layer 2 U2U relay UE.
  • the gNB 203 is a macro cell (Marco Cell) base station.
  • the gNB 203 is a Micro Cell base station.
  • the gNB 203 is a Pico Cell base station.
  • the gNB 203 is a home base station (Femtocell).
  • the gNB 203 is a base station device that supports a large delay difference.
  • the gNB 203 is a flying platform device.
  • the gNB 203 is a satellite device.
  • the gNB 203 is a base station device that supports a large delay difference.
  • the gNB 203 is a test equipment (for example, a transceiver device that simulates part of the functions of a base station, a signaling tester).
  • a test equipment for example, a transceiver device that simulates part of the functions of a base station, a signaling tester.
  • the wireless link from the UE 201 to the gNB 203 is an uplink, and the uplink is used to perform uplink transmission.
  • the wireless link from the UE 241 to the gNB 203 is an uplink, and the uplink is used to perform uplink transmission.
  • the wireless link from the gNB 203 to the UE 201 is a downlink, and the downlink is used to perform downlink transmission.
  • the wireless link from the gNB 203 to the UE 241 is a downlink, and the downlink is used to perform downlink transmission.
  • the wireless link between the UE201 and the UE241 is a secondary link, and the secondary link is used to perform secondary link transmission.
  • the UE201 and the gNB203 are connected through a Uu air interface.
  • the UE241 and the gNB203 are connected through a Uu air interface.
  • the UE201 and the UE241 are connected through a PC5 air interface.
  • Embodiment 3 illustrates a schematic diagram of the wireless protocol architecture of the user plane and control plane according to an embodiment of the present application, as shown in FIG. 3 .
  • Figure 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane 350 and a control plane 300.
  • Figure 3 shows the radio protocol architecture of the control plane 300 of a UE and a gNB using three layers: Layer 1, Layer 2 and Layer 3. .
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions. The L1 layer will be called PHY301 in this article.
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the UE and the gNB through the PHY 301.
  • L2 layer 305 includes MAC (Medium Access Control, media access control) sublayer 302, RLC (Radio Link Control, wireless link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304, these sub-layers terminate at the gNB on the network side.
  • the PDCP sublayer 304 provides data encryption and integrity protection.
  • the PDCP sublayer 304 also provides handover support for UEs between gNBs.
  • the RLC sublayer 303 provides segmentation and reassembly of data packets, and realizes retransmission of lost data packets through ARQ (Automatic Repeat Request, Automatic Repeat Request).
  • the RLC sublayer 303 also provides duplicate data packet detection and protocol error detection.
  • the MAC sublayer 302 provides mapping between logical channels and transport channels and multiplexing of logical channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among UEs.
  • the MAC sublayer 302 is also responsible for HARQ (Hybrid Automatic Repeat Request, Hybrid Automatic Repeat Request) operations.
  • the RRC (Radio Resource Control, radio resource control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and configuring the lower part using RRC signaling between gNB and UE. layer.
  • the wireless protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the wireless protocol architecture in the user plane 350 is for the physical layer 351, the PDCP sublayer 354 in the L2 layer 355, and the PDCP sublayer 354 in the L2 layer 355.
  • the RLC sublayer 353 and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also provides header compression for upper layer packets to reduce wireless Send overhead.
  • the L2 layer 355 in the user plane 350 also includes an SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356.
  • the SDAP sublayer 356 is responsible for the mapping between QoS flows and data radio bearers (DRB, Data Radio Bearer). , to support business diversity.
  • DRB Data Radio Bearer
  • the wireless protocol architecture of the UE in the user plane 350 may include part or all of the protocol sublayers of the SDAP sublayer 356, the PDCP sublayer 354, the RLC sublayer 353 and the MAC sublayer 352 at the L2 layer.
  • the UE may also have several upper layers above the L2 layer 355, including a network layer that terminates at the P-GW on the network side (eg, an IP layer) and one that terminates at the other end of the connection (eg, , the application layer at the remote UE, server, etc.).
  • the PDCP 304 sends data to or receives data from the RLC 303 through an RLC channel.
  • the PDCP354 sends data to or receives data from the RLC353 through an RLC channel.
  • the RLC 303 sends data to or receives data from the MAC 302 through a logical channel.
  • the RLC 353 sends data to or receives data from the MAC 352 through a logical channel.
  • the MAC 302 sends data to or receives data from the PHY 301 through a transmission channel.
  • the MAC352 sends data to or receives data from the PHY351 through a transmission channel.
  • the first transceiver is used for inter-layer communication within the first node.
  • the inter-layer communication includes communication between two adjacent layers.
  • the inter-layer communication includes communication between two non-adjacent layers.
  • the inter-layer communication includes inter-layer communication between the first PDCP entity and the first RLC entity.
  • the inter-layer communication includes communication between the higher-layer protocol entity and the first PDCP entity.
  • the inter-layer communication includes communication between the first RLC entity and a lower-layer protocol entity.
  • the first transceiver is used by the PDCP 304 to send to the RLC 303 .
  • the first transceiver is used by the PDCP 304 to receive from the RLC 303 .
  • the first transceiver is used by the PDCP354 to send to the RLC353.
  • the first transceiver is used by the PDCP 354 to receive from the RLC 353.
  • the first transceiver is used by the RLC 303 to send to the PDCP 304 .
  • the first transceiver is used by the RLC 303 to receive from the PDCP 304 .
  • the first transceiver is used by the RLC353 to send to the PDCP354.
  • the first transceiver is used by the RLC 353 to receive from the PDCP 354.
  • the first transceiver includes inter-layer transceiver primitives.
  • the first transceiver includes a set of instructions for completing the transceiver function.
  • entities of multiple sub-layers of the control plane in Figure 3 form an SRB (Signaling Radio Bearer) in the vertical direction.
  • entities of multiple sub-layers of the user plane in Figure 3 form a DRB (Data Radio Bearer) in the vertical direction.
  • DRB Data Radio Bearer
  • entities of multiple sub-layers of the user plane in Figure 3 form an MRB (MBS Radio Bearer, Multicast Broadcast Service Wireless Bearer) in the vertical direction.
  • MRB MRS Radio Bearer, Multicast Broadcast Service Wireless Bearer
  • the wireless protocol architecture in Figure 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Figure 3 is applicable to the second node in this application.
  • the wireless protocol architecture in Figure 3 is applicable to the third node in this application.
  • the first PDCP SDU in this application is generated in the RRC306.
  • the first PDCP SDU in this application is generated in the SDAP356.
  • the first PDCP PDU in this application is generated from the PDCP 304.
  • the first PDCP PDU in this application is generated from the PDCP354.
  • the first PDCP entity is located in the PDCP 304, and the first candidate RLC entity and the second candidate RLC entity are located in the RLC 303.
  • the first PDCP PDU is generated in the PDCP 354, the first PDCP entity is located in the PDCP 354, and the first candidate RLC entity and the second candidate RLC entity are located in the RLC 353.
  • the data packets on the interface between the PDCP sublayer and the RLC sublayer are called PDCP PDU in the PDCP sublayer, and are called RLC SDU in the RLC sublayer, that is, the PDCP sublayer transmits the PDCP PDU to the RLC sublayer.
  • the RLC sublayer receives RLC SDU from the PDCP sublayer; the RLC sublayer transmits RLC SDU to the PDCP sublayer, and the PDCP sublayer receives PDCP PDU from the RLC sublayer.
  • the first PDCP PDU and the first RLC SDU may be interchanged.
  • the L2 layer 305 or 355 belongs to a higher layer.
  • the RRC sublayer 306 in the L3 layer belongs to a higher layer.
  • Embodiment 4 illustrates a schematic diagram of a hardware module of a communication device according to an embodiment of the present application, as shown in FIG. 4 .
  • Figure 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in the access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452.
  • the second communication device 410 includes a controller/processor 475, a memory 476, a data source 477, a receiving processor 470, a transmitting processor 416, a multi-antenna receiving processor 472, a multi-antenna transmitting processor 471, and a transmitter/receiver 418 and antenna 420.
  • Controller/Processor 475 In transmission from the second communication device 410 to the first communication device 450, at the second communication device 410, upper layer data packets from the core network or upper layer data packets from the data source 477 are provided to Controller/Processor 475. Core network and data sources 477 represent all protocol layers above the L2 layer. Controller/processor 475 implements the functionality of the L2 layer. In transmission from the second communications device 410 to the first communications device 450, the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels Multiplexing, and radio resource allocation to the first communication device 450 based on various priority metrics. The controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the first communications device 450 .
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer). Transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communications device 410, as well as based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for M-phase shift keying (QPSK), M-phase shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for M-phase shift keying
  • M-PSK M-phase shift keying
  • M-QAM M-quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams. Transmit processor 416 then maps each spatial stream to a subcarrier, multiplexes it with a reference signal (eg, a pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel carrying a stream of time-domain multi-carrier symbols. Then the multi-antenna transmit processor 471 performs transmit analog precoding/beamforming operations on the time domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives the signal via its respective antenna 452 at the first communications device 450 .
  • Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • the receive processor 456 and the multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • Multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from receiver 454.
  • the receive processor 456 converts the baseband multi-carrier symbol stream after the received analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458.
  • the first communication device 450 is any spatial stream that is the destination. The symbols on each spatial stream are demodulated and recovered in the receive processor 456, and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover upper layer data and control signals transmitted by the second communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 may be associated with memory 460 which stores program code and data. Memory 460 may be referred to as computer-readable media.
  • the controller/processor 459 In transmission from the second communication device 410 to the first communication device 450, the controller/processor 459 provides multiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover higher layer data packets from the second communication device 410. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • upper layer data packets are provided at the first communications device 450 to a controller/processor 459 using a data source 467.
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements header compression, encryption, packet Segmentation and reordering and multiplexing between logical and transport channels implement L2 layer functions for the user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the second communications device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beam forming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which undergoes analog precoding/beamforming operations in the multi-antenna transmit processor 457 and then is provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into a radio frequency The symbol stream is then provided to antenna 452.
  • each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 may be associated with memory 476 that stores program code and data. Memory 476 may be referred to as computer-readable media.
  • the controller/processor 475 In transmission from the first communications device 450 to the second communications device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from the first communication device 450.
  • Upper layer packets from the controller/processor 475 may be provided to the core network or all protocol layers above the L2 layer, and various control signals may also be provided to the core network or L3 for L3 processing.
  • the first communication device 450 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Using the at least one processor together, the first communication device 450 is configured to at least: receive a first PDCP SDU; in response to receiving the first PDCP SDU, start a first timer; when the first timer is running state, the first PDCP PDU is submitted to the first RLC entity for transmission; wherein the first PDCP PDU is a data unit of the first PDCP SDU processed by the first PDCP entity; the first RLC entity is the One of a candidate RLC entity and a second candidate RLC entity, whether the first RLC entity is the first candidate RLC entity or the second candidate RLC entity is related to the value of the first timer; The first candidate RLC entity and the second candidate RLC entity are respectively associated with the first PDCP entity; the data unit included in the first candidate RLC entity is sent through a direct path;
  • the first communication device 450 device includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: receiving The first PDCP SDU; as a response to receiving the first PDCP SDU, start the first timer; when the first timer is in the running state, submit the first PDCP PDU to the first RLC entity for transmission; wherein, The first PDCP PDU is a data unit of the first PDCP SDU processed by the first PDCP entity; the first RLC entity is one of a first candidate RLC entity and a second candidate RLC entity, and the third Whether an RLC entity is the first candidate RLC entity or the second candidate RLC entity is related to the value of the first timer; the first candidate RLC entity and the second candidate RLC entity are respectively related to the first candidate RLC entity.
  • a PDCP entity is associated; the data unit included in the first candidate RLC entity is sent through a direct path; the data unit included in the second candidate RLC entity is
  • the second communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Using the at least one processor, the second communication device 410 is configured to at least: send the first message.
  • the second communication device 410 device includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: sending First news.
  • the first communication device 450 corresponds to the first node in this application.
  • the first communication device 450 is a UE.
  • the first communication device 450 is a layer 3 relay node.
  • the second communication device 410 corresponds to the second node in this application.
  • the second communication device 410 is a base station.
  • the second communication device 410 corresponds to the third node in this application.
  • the second communication device 410 is a layer 2 relay node.
  • At least one of the antenna 452, the transmitter 454, the multi-antenna receiving processor 458, the receiving processor 456 or the controller/processor 459 is used to receive this The first PDCP SDU in the request.
  • At least one of the antenna 452, the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468 or the controller/processor 459 is used to submit this document.
  • At least one of the antenna 452, the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468 or the controller/processor 459 is used to transmit this First instruction in application.
  • the antenna 420, the receiver 418, the multi-antenna transmit processor 471, the transmit processor 416 Or at least one of the controllers/processors 475 is used to send the first message in this application.
  • At least one of the antenna 452, the transmitter 454, the multi-antenna receiving processor 458, the receiving processor 456 or the controller/processor 459 is used to receive this First news in application.
  • Embodiment 5 illustrates a signal transmission flow chart according to an embodiment of the present application, as shown in FIG. 5 .
  • the first PDCP entity E51, the first candidate RLC entity E52 and the second candidate RLC entity E53 are all located at the first node.
  • the first PDCP entity E51 and the first candidate RLC entity E52 pass through the inter-layer Interface communication: the first PDCP entity E51 and the second candidate RLC entity E53 communicate through an inter-layer interface.
  • the first PDCP entity E51 receive the first PDCP SDU in step S511; determine the first RLC entity as the first candidate RLC entity in step S512a; deliver the first PDCP PDU to the first candidate RLC entity in step S513a; In step S512b, the first RLC entity is determined to be the second candidate RLC entity; in step S513b, the first PDCP PDU is delivered to the second candidate RLC entity.
  • the first PDCP PDU is received in step S521.
  • the first PDCP PDU is received in step S531.
  • the first PDCP SDU is received; in response to receiving the first PDCP SDU, the first timer is started; when the first timer is in the running state, the first PDCP PDU is delivered to the first RLC The entity sends; wherein, the first PDCP PDU is a data unit of the first PDCP SDU processed by the first PDCP entity; the first RLC entity is the first candidate RLC entity and the second candidate RLC entity.
  • first candidate RLC entity is related to the value of the first timer; the first candidate RLC entity and the second candidate RLC entity The entities are respectively associated with the first PDCP entity; the data units included in the first candidate RLC entity are sent through a direct connection path; the data units included in the second candidate RLC entity are sent through an indirect connection path; when the first candidate RLC entity includes When the value of a timer is greater than the first threshold, the first RLC entity is the first candidate RLC entity; when the value of the first timer is less than the first threshold, the first RLC entity Whether the entity is the first candidate RLC entity or the second candidate RLC entity is related to the amount of reference data; wherein the amount of reference data is the amount of PDCP data in the first PDCP entity and the amount of the first candidate RLC entity. and the total amount of RLC data waiting for initial transmission in the second candidate RLC entity.
  • the first RLC entity is the first candidate RLC entity.
  • the first RLC entity is the first candidate RLC entity.
  • the first RLC entity is the second candidate RLC entity.
  • the first RLC entity is the second candidate RLC entity.
  • the first RLC entity is either the first candidate RLC entity or the second candidate RLC entity. one.
  • the first RLC entity is either the first candidate RLC entity or the second candidate RLC entity. one.
  • the first node independently selects the first RLC entity as the first candidate RLC entity or the second candidate RLC entity.
  • the first node selects the first RLC entity as the first candidate RLC entity or the second candidate RLC entity with equal probability.
  • the value of the first timer is less than the first threshold, whether the first RLC entity is the first candidate RLC entity or the second candidate RLC entity and the reference data amount related.
  • the value of the first timer is equal to the first threshold, whether the first RLC entity is the first candidate RLC entity or the second candidate RLC entity and the reference data amount related.
  • the reference data amount is used to determine whether the first RLC entity is the first candidate RLC entity or the Second candidate RLC entity.
  • the reference data amount is used to determine whether the first RLC entity is the first candidate RLC entity or the Second candidate RLC entity.
  • the first node is configured with a secondary RLC entity (secondary RLC entity).
  • the first RLC entity when the value of the first timer is less than the first threshold and the amount of reference data is less than the second threshold, the first RLC entity becomes the primary RLC entity.
  • the primary RLC entity is one of the first candidate RLC entity or the second candidate RLC entity.
  • the first RLC entity is the master RLC entity
  • the The primary RLC entity is one of the first candidate RLC entity or the second candidate RLC entity.
  • one of the first candidate RLC entity or the second candidate RLC entity is configured by the network as the primary RLC entity, and the first candidate RLC entity or the second candidate RLC entity The other of the two is the secondary RLC entity.
  • the first candidate RLC entity is the primary RLC entity
  • the second candidate RLC entity is the secondary RLC entity
  • the first candidate RLC entity is the secondary RLC entity
  • the second candidate RLC entity is the primary RLC entity
  • the main RLC entity belongs to the main path.
  • the secondary RLC entity belongs to a non-primary path.
  • the secondary RLC entity belongs to a secondary path.
  • the secondary RLC entity is a split secondary RLC entity.
  • the first RLC entity is the first candidate One of the RLC entity or the second candidate RLC entity.
  • the first RLC entity is the first candidate.
  • One of the RLC entity or the second candidate RLC entity is the first candidate.
  • the first node independently selects the first RLC entity as the first candidate RLC entity or the second candidate RLC entity.
  • the first node selects the first RLC entity as the first candidate RLC entity or the second candidate RLC entity with equal probability.
  • the second threshold is configured by the network.
  • the second threshold is preconfigured.
  • the second threshold is configured for split bearers.
  • the second threshold is configured to a PDCP entity associated with multiple RLC entities.
  • the second threshold is configured to the first PDCP entity.
  • the second threshold is indicated by ul-DataSplitThreshold (uplink data split threshold).
  • the reference data amount is the PDCP data amount in the first PDCP entity and the RLC data amount waiting for initial transmission in the first candidate RLC entity and the second candidate RLC entity. total amount.
  • the PDCP data amount in the first PDCP entity includes the data amount of PDCP SDU that has not yet constructed a PDCP data PDU.
  • the PDCP data amount in the first PDCP entity includes the data amount that has not yet been submitted to a lower-layer PDCP data PDU.
  • the PDCP data amount in the first PDCP entity includes the data amount of PDCP SDU to be retransmitted; wherein the first PDCP entity is used for AM (Acknowledged Mode, acknowledgment mode) DRB.
  • AM Acknowledged Mode, acknowledgment mode
  • the PDCP data amount in the first PDCP entity includes the data amount of PDCP data PDU to be retransmitted; wherein the first PDCP entity is used for AM DRB.
  • the PDCP data amount in the first PDCP entity includes the data amount of PDCP control PDU.
  • the amount of RLC data waiting for initial transmission (initial transmission) in the first candidate RLC entity and the second candidate RLC entity respectively includes RLC SDU and RLC SDU segments that are not yet included in the RLC data PDU.
  • the amount of data is not yet included in the RLC data PDU.
  • the amount of RLC data waiting for initial transmission (initial transmission) in the first candidate RLC entity and the second candidate RLC entity respectively includes RLC data PDUs waiting for initial transmission.
  • the amount of RLC data waiting for initial transmission (initial transmission) in the first candidate RLC entity and the second candidate RLC entity respectively includes an estimated data amount of STATUS PDU; wherein the STATUS PDU has been Activated and t-StatusProhitib (status prohibition timer) is not running or has not expired.
  • Embodiment 6 illustrates another signal transmission flow chart according to an embodiment of the present application, as shown in FIG. 6 .
  • the first PDCP entity E61, the first candidate RLC entity E62 and the second candidate RLC entity E63 are all located at the first node.
  • the first PDCP entity E61 and the first candidate RLC entity E62 pass through the inter-layer Interface communication: the first PDCP entity E61 and the second candidate RLC entity E63 communicate through an inter-layer interface.
  • the first PDCP entity E61 receive the first PDCP SDU in step S611; determine the first RLC entity as the second candidate RLC entity in step S612; submit the first PDCP PDU to the second candidate RLC entity in step S613; In step S614, it is determined that the value of the first timer is greater than the first threshold and the first timer has not expired, and it is determined that no indication of successful transmission of the first PDCP PDU is received from the second candidate RLC entity; in step S615, it is determined that the first PDCP PDU is successfully sent.
  • An RLC entity is the first candidate RLC entity; in step S616, the first PDCP PDU is delivered to the first candidate RLC entity; in step S617, the first indication is sent.
  • the first PDCP PDU is received in step S621.
  • the first PDCP PDU is received in step S631; the first indication is received in step S632; and the first RLC SDU is discarded in step S633.
  • the first PDCP SDU is received; in response to receiving the first PDCP SDU, the first timer is started; when the first timer is in the running state, the first PDCP PDU is delivered to the first RLC The entity sends; wherein, the first PDCP PDU is a data unit of the first PDCP SDU processed by the first PDCP entity; the first RLC entity is the first candidate RLC entity and the second candidate RLC entity.
  • first RLC entity is the first candidate RLC entity or the second candidate RLC entity is related to the value of the first timer; the first candidate RLC entity and the second candidate RLC entity The entities are respectively associated with the first PDCP entity; the data units included in the first candidate RLC entity are sent through a direct connection path; the data units included in the second candidate RLC entity are sent through an indirect connection path; A PDCP PDU is submitted to the first candidate RLC entity for transmission; wherein the value of the first timer is greater than the first threshold and the first timer has not expired; the first PDCP entity has not expired.
  • the second candidate RLC entity receives the indication that the first PDCP PDU is successfully sent; the first RLC entity is the second candidate RLC entity; and sends a first indication, and the first indication is used to send the first PDCP PDU to the second candidate RLC entity.
  • the first RLC entity instructs to discard the first PDCP PDU; when neither the first RLC SDU nor the fragments of the first RLC SDU are delivered to a lower layer, the first RLC SDU is discarded; wherein, the The first RLC SDU is the first PDCP PDU.
  • the phrase whether the first RLC entity is the first candidate RLC entity or the second candidate RLC entity is related to the value of the first timer includes: the first RLC entity is the The second candidate RLC entity; when the value of the first timer is greater than the first threshold and the first timer has not expired and the first PDCP entity has not received any data from the second candidate RLC entity.
  • the first PDCP PDU is submitted to the first candidate RLC entity for sending.
  • the phrase whether the first RLC entity is the first candidate RLC entity or the second candidate RLC entity is related to the value of the first timer includes: the first RLC entity is the The second candidate RLC entity; when the value of the first timer is not less than the first threshold and the first timer has not expired and the first PDCP entity has not received a message from the second candidate RLC entity When the first PDCP PDU is successfully sent, the first PDCP PDU is submitted to the first candidate RLC entity for sending.
  • receiving the first PDCP SDU as a response to receiving the first PDCP SDU, starting a first timer; when the first timer is in a running state, submitting the first PDCP PDU to the second candidate
  • the RLC entity sends the The value of the timer is greater than the first threshold and the first timer has not expired, and the first PDCP entity does not receive an indication of successful transmission of the first PDCP PDU from the second candidate RLC entity. when, the first PDCP PDU is submitted to the first candidate RLC entity for transmission.
  • the second candidate RLC entity is an AM (Acknowledged Mode, acknowledgment mode) RLC entity
  • the first PDCP entity receives an indication of successfully sending a PDCP PDU from the second candidate RLC entity, so The indication includes the sequence number of the successfully sent PDCP PDU.
  • a PDCP data PDU includes a PDCP sequence number.
  • the PDCP sequence number is a non-negative integer.
  • the second candidate RLC entity sends a poll (poll) to the peer RLC entity of the second candidate RLC entity, and the poll is used to trigger the second candidate RLC entity.
  • the second candidate RLC entity Indicate the successful transmission of the one RLC SDU to the first PDCP entity.
  • the counterpart RLC entity of the second candidate RLC entity is located at a node other than the first node.
  • the first node and a node other than the first node are not co-located.
  • the peer RLC entity of the second candidate RLC entity is located at the third node in this application.
  • the first node and the third node are connected through an air interface.
  • the air interface is Uu.
  • the air interface is PC5.
  • the first node and a node other than the first node are connected through a wired link.
  • the second candidate RLC entity is an AM (Acknowledged Mode, acknowledgment mode) RLC entity.
  • the second candidate RLC entity consists of a transmitting side and a receiving side.
  • the phrase delivering the first PDCP PDU to the first candidate RLC entity includes: copying the first PDCP PDU and delivering the first PDCP PDU to the first candidate RLC. Entity sent.
  • the first candidate RLC entity is an AM RLC entity.
  • the first candidate RLC entity is a UM (Unacknowledged Mode, unacknowledged mode) RLC entity.
  • the first candidate RLC entity is a TM (Transparent Mode, transparent mode) RLC entity.
  • the first candidate RLC entity consists of a sending side and a receiving side.
  • the first candidate RLC entity is configured to send an RLC entity.
  • a first indication is sent, and the first indication is used to indicate to the first RLC entity that the first PDCP PDU is discarded; wherein the first RLC entity is the second candidate RLC entity .
  • the first indication is an inter-layer indication.
  • the first PDCP entity sends the first indication to the first RLC entity; wherein the first RLC entity is the second candidate RLC entity.
  • the first indication includes the sequence number of the first PDCP PDU.
  • the second candidate RLC entity discards the first RLC SDU; wherein , the first RLC SDU is the first PDCP PDU.
  • the phrase that the first RLC SDU is the first PDCP PDU includes: the first RLC SDU is a duplication of the first PDCP PDU.
  • the lower layer is a layer below the RLC sub-layer.
  • the lower layer is the MAC (Medium Access Control) sublayer.
  • MAC Medium Access Control
  • the segment of the first RLC SDU includes at least 1 bit of the first RLC SDU.
  • the second candidate RLC entity discards the RLC SDU indicated by the first indication.
  • the first RLC SDU is delivered to the lower layer.
  • Embodiment 7 illustrates a signal processing flow chart according to an embodiment of the present application, as shown in FIG. 7 .
  • the steps in Figure 7 are performed at the first node.
  • the first PDCP SDU is received in step S701; the first timer is started in step S702; the first PDCP PDU is submitted to the second candidate RLC entity for transmission in step S703; the first PDCP SDU is determined in step S704.
  • step S705 determines whether the value of a timer is greater than the first threshold, if so, execute step S705, if not, jump back to step S704; in step S705, determine whether an indication of successful transmission of the first PDCP PDU is received, if yes, jump to step S708 , if not, perform step S706; in step S706, submit the first PDCP PDU to the first candidate RLC entity for transmission; in step S707, instruct the second candidate RLC entity to discard the first PDCP PDU.
  • the steps in Figure 7 are performed in the first PDCP entity.
  • Embodiment 8 illustrates another signal processing flow chart according to an embodiment of the present application, as shown in FIG. 8 .
  • the steps in Figure 8 are performed at the first node.
  • the first RLC SDU is received in step S801; the first indication is received in step S802; and it is determined in step S803 whether the first RLC SDU or the segment of the first RLC SDU is passed to the lower layer. , if yes, jump to step S805, if no, execute step S804; discard the first RLC SDU in step S804.
  • the steps in Figure 8 are performed on the second candidate RLC entity.
  • the first RLC SDU is the first PDCP PDU.
  • the first RLC SDU or a segment of the first RLC SDU is passed to a lower layer, the first RLC SDU is discarded.
  • Embodiment 9 illustrates a schematic diagram of the wireless protocol architecture of relay transmission according to an embodiment of the present application, as shown in FIG. 9 .
  • a target data sequentially passes through the Uu-PDCP sublayer 905, PC5-SRAP (Sidelink Relay Adaptation Protocol, Secondary Link Relay Adaptation Protocol) sublayer 904 and PC5-RLC sublayer 903 on the first node side and is processed in PC5-
  • the MAC sublayer 902 generates the first target MAC PDU, then passes it to the PC5-PHY layer 901, and then transmits it to the PC5-PHY layer 911 of the third node through the PC5 air interface, and then passes through the PC5-MAC sublayer 912 and PC5-RLC in turn.
  • sub-layer 913 recovers the first RLC data; the first RLC data is regenerated into second RLC data in Uu-RLC sub-layer 923 after being processed by PC5-SRAP sub-layer 914 and Uu-SRAP sub-layer 924, and then After processing by the Uu-MAC sublayer 922, the second target MAC PDU is generated and passed to the Uu-PHY layer 921; then transmitted to the Uu-PHY layer 931 of the second node through the Uu air interface, and then passed through the Uu-MAC sublayer 932 The second target MAC PDU is recovered, and then the first target data is recovered through the processing of Uu-RLC sublayer 933, Uu-SRAP sublayer 934 and Uu-PDCP sublayer 935.
  • the third node in Figure 9 is a layer 2U2N relay node.
  • the data forwarded by the third node is processed by the MAC sublayer, RLC sublayer and SRAP sublayer but not by the PDCP sublayer;
  • the PC5 air interface is between the first node and the third node.
  • the air interface, PC5 interface related protocol entities PC5-SRAP904 and PC5-SRAP914, PC5-RLC903 and PC5-RLC913, PC5-MAC902 and PC5-MAC912, PC5-PHY901 and PC5-PHY911 respectively terminate at the first node and
  • the Uu air interface is the air interface between the third node and the second node, and the protocol entities of the Uu air interface are Uu-SRAP924 and Uu-SRAP934, Uu-RLC923 and Uu-RLC933 , Uu-MAC922 and Uu-MAC932, Uu-PHY921 and Uu-PHY931 respectively terminate at the third node and the second node;
  • the PC5-SRAP904 is the peer SRAP entity of the PC5-SRAP914.
  • the Uu-SRAP924 is the peer SRAP entity of the Uu-SRAP934.
  • the PC5-RLC903 is the peer RLC entity of the PC5-RLC913.
  • the Uu-RLC923 is the peer RLC entity of the Uu-RLC933.
  • the Uu-PDCP905 is the peer PDCP entity of the Uu-PDCP935.
  • the first PDCP entity is the Uu-PDCP905
  • the second candidate RLC entity is the PC5-RLC903
  • the peer RLC entity of the second candidate RLC entity is the PC5-RLC913 .
  • the second candidate RLC entity is located at the first node, and the peer RLC entity of the second candidate RLC entity is located at the third node.
  • the first candidate RLC entity is located at the first node
  • the peer RLC entity of the first candidate RLC entity is located at the second node.
  • the RLC sublayer, MAC sublayer and PHY (physical) layer are responsible for the point-to-point communication of each hop; the PDCP sublayer and RRC/SDAP The sublayer is responsible for end-to-end (peer-to-peer) communication.
  • the SRAP sublayer implements UE ID (User Equipment Identity) and bearer identification determination.
  • UE ID User Equipment Identity
  • the SRAP sublayer implements RLC channel (egress RLC channel) determination.
  • the SRAP sublayer implements the Bearer mapping function.
  • the SRAP sublayer implements routing (Routing) function.
  • the routing function sends data packets from the first node to the second node.
  • the second node is an NG-RAN node
  • the first node is a UE.
  • the first node in Figure 9 corresponds to the UE 201 in Embodiment 2.
  • the third node in Figure 9 corresponds to the UE241 in Embodiment 2.
  • the second node in Figure 9 corresponds to the gNB 203 in Embodiment 2.
  • Embodiment 10 illustrates a schematic diagram of the first PDCP entity, the first candidate RLC entity and the second candidate RLC entity according to an embodiment of the present application, as shown in Figure 10.
  • the first PDCP entity, the first candidate RLC entity and the second candidate RLC entity are all located at the first node.
  • the first PDCP entity is associated with a first radio bearer.
  • the bearer served by the first candidate RLC entity and the second candidate RLC entity is the first radio bearer
  • the first PDCP entity is used to send data of the first radio bearer
  • the first radio bearer is DRB or SRB or MRB.
  • the protocol structure shown in Figure 10 is used for the first radio bearer.
  • the first radio bearer is configured as a split bearer.
  • the higher layer protocol entity in Figure 10 is RRC
  • Figure 8 is for SRB.
  • the higher-layer protocol entity in Figure 10 is SDAP, and Figure 8 is for DRB or MRB.
  • the first PDCP entity is configured with PDCP recovery (recovery).
  • the first PDCP entity is configured with PDCP recovery including: when the second candidate RLC entity does not successfully send the RLC SDU within the duration indicated by the first threshold, the PDCP PDU is replaced by the first PDCP entity. A PDCP entity is submitted to the first candidate RLC entity for transmission.
  • the PDCP PDU formed by processing the PDCP SDU received from the higher layer protocol entity and processed by the first PDCP entity is sent through one of the first candidate RLC entity or the second candidate RLC entity.
  • the first candidate RLC entity is for uplink communication
  • the second candidate RLC entity is for secondary link communication
  • the first radio bearer is an uplink radio bearer.
  • the first candidate RLC entity is for secondary link direct path communication
  • the second candidate RLC entity is for secondary link indirect path communication
  • the first radio bearer is a Sidelink Radio Bearer (SLRB).
  • SLRB Sidelink Radio Bearer
  • Embodiment 11 illustrates a schematic diagram of the topology structure according to an embodiment of the present application, as shown in Figure 11.
  • the first node is configured with multipath
  • the multipath includes a direct path and an indirect path.
  • the direct path means that data is transmitted from the source node to the destination receiver only through one air interface.
  • the indirect path refers to data transmission from the source node to the destination receiver through at least two air interfaces.
  • the at least two air interfaces include a Uu air interface and a PC5 air interface.
  • the at least two air interfaces include at least two PC5 air interfaces.
  • the at least two air interfaces include a backhaul air interface and an access air interface.
  • the communication between the first node and the second node is an indirect path.
  • the communication between the first node and the second node is a direct path.
  • the indirect path is the main path.
  • the direct path is the main path.
  • the first node is a UE.
  • the third node shown is a layer 2 relay node.
  • the third node shown is a layer 2 U2N relay UE.
  • the third node and the first node belong to the same cell group.
  • the third node and the first node belong to different cell groups.
  • the second node is an NG-RAN node.
  • the first node in Figure 11 corresponds to the UE 201 in Embodiment 2.
  • the third node in Figure 11 corresponds to the UE241 in Embodiment 2.
  • the second node in Figure 11 corresponds to the gNB 203 in Embodiment 2.
  • Embodiment 12 illustrates a wireless signal transmission flow chart according to an embodiment of the present application, as shown in Figure 12.
  • the first node and the second node communicate through the Uu air interface
  • the first node and the third node communicate through the PC5 air interface
  • the third node and the second node communicate through the Uu air interface.
  • the first message is received in step S1211a; the first message is received in step S1211b.
  • the first message is sent in step S1221a; the first message is sent in step S1221b.
  • the first message described in the dotted box F121 is transmitted through a direct path
  • the first message described in the dotted box F122 is transmitted through an indirect path, that is, through relay forwarding.
  • the steps in dotted box F122 include the third node receiving the first message from the second node, and the third node forwarding the first message to the first node. Tell the first news.
  • the second node is the base station of the serving cell of the first node.
  • the second node is the TRP of the serving cell of the first node.
  • the serving cell belongs to a master cell group.
  • the serving cell belongs to a secondary cell group.
  • the serving cell is a primary cell.
  • the serving cell is a secondary cell.
  • the first transceiver receives a first message indicating a first expiration value and the first threshold; wherein the first expiration value is used to determine the first expiration value. The timer expired.
  • the first message is a high-level message.
  • the first message is RRC (Radio Resource Control, Radio Resource Control) signaling.
  • RRC Radio Resource Control, Radio Resource Control
  • the first message includes all or part of IEs (Information Elements) in an RRC signaling.
  • the first message includes all or part of a field (field) in an IE in an RRC signaling.
  • the first message includes configuration information of the first PDCP entity.
  • the first message indicates a first expiration value and the first threshold.
  • the first message includes a first sub-message and a second sub-message, and the first sub-message and the second sub-message respectively indicate the first expiration value and the first threshold.
  • the first sub-message and the second sub-message respectively include all or part of IE (Information Element, information element) in an RRC signaling.
  • IE Information Element, information element
  • the first sub-message and the second sub-message respectively include all or part of a field (field) in an IE in an RRC signaling.
  • the first message is received from the air interface.
  • the first message when the first message is received through a direct path, the first message is received through a PDSCH (Physical Downlink Shared CHannel, Physical Downlink Shared Channel) channel; when the first message is received through a non-direct path message, the first message is received through the PSSCH channel.
  • PDSCH Physical Downlink Shared CHannel, Physical Downlink Shared Channel
  • the first expiration value is used to determine the expiration of the first timer.
  • the first timer when the first timer is in a running state, the first timer is updated in the next time interval, and then it is determined whether the first timer has expired.
  • the one time interval includes 1 millisecond.
  • the one time interval includes the time length of one time slot (slot).
  • the one time interval includes the time length of one subframe (subframe).
  • the phrase updating the first timer includes: adding 1 to the value of the first timer; When the value of the first timer is the first expiration value, the first timer expires.
  • the first expiration value is used to determine the maximum residence time of the first PDCP SDU in the first PDCP entity.
  • the first expiration value is used to determine the remaining packet delay budget (remaining packet delay budget).
  • the first expiration value is used for resource selection.
  • the first expiration value is used to determine the duration indicated by the maximum value of the resource selection window.
  • the difference between the first expiration value minus the first threshold is used to determine the maximum transmission of the first PDCP PDU forwarded through the node where the peer RLC entity of the second candidate RLC entity is located. Delay.
  • the difference between the first expiration value and the first threshold is the maximum transmission delay of the first PDCP PDU forwarded through the node where the peer RLC entity of the second candidate RLC entity is located.
  • the difference between the first expiration value minus the first threshold is not less than the maximum transmission delay of the first PDCP PDU forwarded through the node where the peer RLC entity of the second candidate RLC entity is located.
  • the difference between the first expiration value minus the first threshold is greater than the maximum transmission delay of the first PDCP PDU forwarded through the node where the peer RLC entity of the second candidate RLC entity is located.
  • the second node divides the transmission delay of the data unit of the first radio bearer between the first node and the second node into the sum of the transmission delays of two parts, where the first part is the transmission delay between the first node and the third node, the second part is the transmission delay between the third node and the second node, the two parts of transmission delay The sum is not greater than the time length indicated by the first expiration value; the transmission delay between the first node and the third node is not greater than the time length indicated by the first threshold.
  • the node where the peer RLC entity of the second candidate RLC entity is located is the third node.
  • the node where the peer RLC entity of the second candidate RLC entity is located is a relay node.
  • the node where the peer RLC entity of the second candidate RLC entity is located is a layer 2 U2N relay UE.
  • the expiration value of the first timer is the first expiration value.
  • the expiration value of the second timer is the first threshold.
  • Embodiment 13 illustrates a structural block diagram of a processing device in a first node according to an embodiment of the present application, as shown in FIG. 13 .
  • the first node processing device 1300 includes a first transceiver 1301 .
  • the first node 1300 is a UE.
  • the first transceiver 1301 receives the first PDCP SDU; in response to receiving the first PDCP SDU, starts the first timer; when the first timer is in the running state, sets the first The PDCP PDU is submitted to the first RLC entity for transmission; wherein the first PDCP PDU is the data unit of the first PDCP SDU processed by the first PDCP entity; the first RLC entity is the first candidate RLC entity and the first candidate RLC entity.
  • One of two candidate RLC entities whether the first RLC entity is the first candidate RLC entity or the second candidate RLC entity is related to the value of the first timer; the first candidate RLC entity and the second candidate RLC entity are respectively associated with the first PDCP entity; the data units included in the first candidate RLC entity are sent through a direct connection path; the data units included in the second candidate RLC entity are sent through an indirect connection path. path sent.
  • the first RLC entity is the first candidate RLC entity.
  • the first RLC entity when the value of the first timer is greater than a first threshold, the first RLC entity is the first candidate RLC entity; when the value of the first timer is less than the first threshold, the first RLC entity is the first candidate RLC entity.
  • the first threshold is specified, whether the first RLC entity is the first candidate RLC entity or the second candidate RLC entity is related to the amount of reference data; wherein the amount of reference data is the amount of data in the first PDCP entity.
  • the first RLC entity when the value of the first timer is greater than a first threshold, the first RLC entity is the first candidate RLC entity; the first transceiver 1301 PDCP PDU is submitted to the first candidate RLC entity for transmission; wherein the value of the first timer is greater than the first threshold and the first timer has not expired; the first PDCP entity has not received the
  • the second candidate RLC entity receives the indication that the first PDCP PDU is successfully sent; the first RLC entity is the second candidate RLC entity.
  • the first RLC entity when the value of the first timer is greater than a first threshold, the first RLC entity is the first candidate RLC entity; the first transceiver 1301 PDCP PDU is submitted to the first candidate RLC entity for transmission; wherein the value of the first timer is greater than the first threshold and the first timer has not expired; the first PDCP entity has not received the
  • the second candidate RLC entity receives the indication that the first PDCP PDU is successfully sent; the first RLC entity is the second candidate RLC entity; the first transceiver 1301 sends the first indication, and the first RLC entity
  • An indication is used to indicate to the first RLC entity that the first PDCP PDU is discarded; when neither the first RLC SDU nor the fragments of the first RLC SDU are delivered to a lower layer, the first RLC SDU is discarded.
  • RLC SDU wherein the first RLC SDU is the first PDCP PDU.
  • the direct path includes only one air interface, and the indirect path includes at least two air interfaces.
  • the first transceiver 1301 receives a first message indicating a first expiration value and the first threshold; wherein the first expiration value is used to determine the first expiration value.
  • a timer expires; the difference between the first expiration value minus the first threshold is used to determine the maximum transmission of the first PDCP PDU forwarded through the node where the peer RLC entity of the second candidate RLC entity is located. Delay.
  • the first transceiver 1301 includes the receiver 454 (including the antenna 452), the receiving processor 456, the multi-antenna receiving processor 458 and the controller/processor 459 in Figure 4 of this application.
  • the first transceiver 1301 includes at least one of the receiver 454 (including the antenna 452), the receiving processor 456, the multi-antenna receiving processor 458 or the controller/processor 459 in Figure 4 of this application. one.
  • the first transceiver 1301 includes the receiver 454 (including the antenna 452), the transmit processor 468, the multi-antenna transmit processor 457 and the controller/processor 459 in Figure 4 of this application.
  • the first transceiver 1301 includes at least one of the receiver 454 (including the antenna 452), the transmit processor 468, the multi-antenna transmit processor 457 or the controller/processor 459 in Figure 4 of this application. one.
  • the first transceiver 1301 includes the controller/processor 459 in Figure 4 of this application.
  • the first type of communication node or UE or terminal in this application includes but is not limited to mobile phones, tablets, laptops, network cards, low-power devices, eMTC (enhanced Machine Type Communication) devices, and NB-IoT devices , vehicle-mounted communication equipment, aircraft, aircraft, drones, remote control aircraft and other wireless communication equipment.
  • eMTC enhanced Machine Type Communication
  • the second type of communication node or base station or network side equipment in this application includes but is not limited to macro cell base station, micro cell base station, home base station, relay base station, eNB, gNB, transmission and reception node TRP (Transmission and Reception Point, transmitting and Receiving point), relay satellite, satellite base station, air base station, test equipment, such as transceiver device that simulates some functions of the base station, signaling tester and other wireless communication equipment.
  • TRP Transmission and Reception Point, transmitting and Receiving point
  • relay satellite satellite base station
  • air base station test equipment, such as transceiver device that simulates some functions of the base station, signaling tester and other wireless communication equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信中的方法和装置。第一节点接收第一PDCP SDU;作为接收所述第一PDCP SDU的响应,开始第一计时器;当所述第一计时器处于运行状态时,将第一PDCP PDU递交给第一RLC实体发送;其中,所述第一PDCP PDU为所述第一PDCP SDU经过第一PDCP实体处理后的数据单元;所述第一RLC实体为第一候选RLC实体与第二候选RLC实体二者中之一,所述第一RLC实体是所述第一候选RLC实体还是所述第二候选RLC实体与所述第一计时器的值有关;所述第一候选RLC实体和所述第二候选RLC实体分别与所述第一PDCP实体关联;所述第一候选RLC实体包括的数据单元通过直连路径发送;所述第二候选RLC实体包括的数据单元通过非直连路径发送。本申请可以提高数据传输成功率。

Description

一种被用于无线通信中的方法和装置 技术领域
本申请涉及无线通信系统中的方法和装置,尤其涉及在无线通信中支持多路径传输的方法和装置。
背景技术
针对迅猛发展的V2X(Vehicle-to-Everything,车联网)业务,公共安全(Public Safety)业务以及商业应用和服务,3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)在版本17中针对“新空口副链路中继研究(Study on NR(New Radio)Sidelink Relay)”启动了SI(Study Item,研究项目)和WI(Work Item,工作项目)标准化工作,但由于时间限制,版本17仅支持有限的特性。为进一步支持5G(Fifth Generation)系统增强,版本18开始进行临近业务(ProSe)的第二阶段研究,包括支持多路径(multi-path)传输。多路径传输中可以包括直连路径(direct path)传输和非直连路径(indirect path)传输,直连路径传输中源节点和目的接收节点之间只有一跳传输,非直连路径传输中源节点和目的接收节点之间包括多跳。其中,中继作为一种多跳传输技术,可以提升吞吐量,提高鲁棒性,并增加覆盖。源节点的数据通过中继节点(relay node,RN)的转发到达目的接收节点。源节点和目的接收节点通常是基站设备和用户设备,也可以都是用户设备;中继节点可以是网络设备或者用户设备。以LTE(Long Term Evolution,长期演进)系统中的中继传输为例,用户设备到中继节点的传输采用副链路(Sidelink,SL)空口技术,中继节点到基站或增强节点B(eNodeB,eNB)的传输采用LTE空口技术,中继节点用于UE(User Equipment,用户设备)和eNB之间的数据转发。
发明内容
发明人通过研究发现,针对非直连路径,网络将总的传输延时拆分成每一跳上的传输延时,在每一跳传输中,如果一个数据包在达到最大允许的传输延时后尚未被成功发送,该数据包被丢弃。在支持包括直连路径和非直连路径的多路径传输中,一个在非直连路径上传输的数据包超时并不意味着在直连路径上传输也超市,如果直接丢弃该数据包,会引起业务质量下降。因此如何在直连路径和非直连路径中选择传输路径需要研究。
针对上述问题,本申请公开了一种解决方案,可以有效提高数据传输成功率。在不冲突的情况下,本申请的第一节点中的实施例和实施例中的特征可以应用到第二节点中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。进一步的,虽然本申请的初衷是针对Uu空中接口,但本申请也能被用于PC5空中接口。进一步的,虽然本申请的初衷是针对终端与基站场景,但本申请也同样适用于中继与基站,取得类似的终端与基站场景中的技术效果。此外,不同场景(包括但不限于V2X场景和终端与基站的通信场景)采用统一的解决方案还有助于降低硬件复杂度和成本。特别的,对本申请中的术语(Terminology)、名词、函数、变量的解释(如果未加特别说明)可以参考3GPP的规范协议TS36系列、TS38系列、TS37系列中的定义。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一PDCP SDU;
作为接收所述第一PDCP SDU的响应,开始第一计时器;
当所述第一计时器处于运行状态时,将第一PDCP PDU递交给第一RLC实体发送;
其中,所述第一PDCP PDU为所述第一PDCP SDU经过第一PDCP实体处理后的数据单元;所述第一RLC实体为第一候选RLC实体与第二候选RLC实体二者中之一,所述第一RLC实体是所述第一候选RLC实体还是所述第二候选RLC实体与所述第一计时器的值有关;所述第一候选RLC实体和所述第二候选RLC实体分别与所述第一PDCP实体关联;所述第一候选RLC实体包括的数据单元通过直连路径发送;所述第二候选RLC实体包括的数据单元通过非直连路径发送。
作为一个实施例,本申请适用于双连接(dual connectivity)传输。
作为一个实施例,本申请适用于多路径(multi-path)传输。
作为一个实施例,本申请适用于多路径传输中包括直连路径和非直连路径的场景。
作为一个实施例,本申请中的非直连路径通过UE-to-Network(用户到网络,U2N)中继转发。
作为一个实施例,本申请中的非直连路径通过层(Layer)2 U2N中继转发。
作为一个实施例,本申请中的非直连路径通过层2 U2U(UE-to-UE,用户到用户)中继转发。
作为一个实施例,本申请适用于PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)恢复(recovery)。
作为一个实施例,上述方法通过非直连路径发送可以提高数据传输速率,提升数据传输鲁棒性。
作为一个实施例,上述方法通过直连路径发送可以降低传输延时。
作为一个实施例,上述方法通过第一计时器的值确定第一RLC(Radio Link Control,无线链路控制)实体可以同时提高传输速率,也可以避免由于中继转发引入的传输延时使得第一PDCP SDU(Service Data Unit,业务数据单元)在到达目的接收者时已过期,引起业务质量下降。
作为一个实施例,上述方法后向兼容,有助于降低硬件复杂度和成本。
作为一个实施例,本申请中的实体(entity)是模块(module)。
作为一个实施例,本申请中的实体是完成一组功能的模块。
作为一个实施例,本申请中的实体是完成一组功能的硬件模块。
作为一个实施例,本申请中的实体是完成一组功能的软件模块。
作为一个实施例,本申请中的中继节点和中继UE可以互换。
根据本申请的一个方面,包括:
当所述第一计时器的所述值大于第一阈值时,所述第一RLC实体为所述第一候选RLC实体。
作为一个实施例,上述方法可以降低传输时延,避免超过数据包延时预算(packet delay budget,PDB)而丢包。
根据本申请的一个方面,包括:
当所述第一计时器的所述值小于所述第一阈值时,所述第一RLC实体为所述第一候选RLC实体还是所述第二候选RLC实体与参考数据量有关;
其中,所述参考数据量为所述第一PDCP实体中的PDCP数据量和所述第一候选RLC实体以及所述第二候选RLC实体中等待初始传输(initial transmission)的RLC数据量的总量。
作为一个实施例,上述方法兼容分裂承载(split bearer)。
作为一个实施例,上述方法可以提高传输速率。
作为一个实施例,上述方法支持有大带宽需求的业务。
根据本申请的一个方面,包括:
将所述第一PDCP PDU递交给所述第一候选RLC实体发送;
其中,所述第一计时器的所述值大于所述第一阈值且所述第一计时器未过期;所述第一PDCP实体未从所述第二候选RLC实体接收到所述第一PDCP PDU成功发送的指示;所述第一RLC实体为所述第二候选RLC实体。
作为一个实施例,上述方法通过第一候选RLC实体重发可以提高数据传输鲁棒性。
根据本申请的一个方面,包括:
发送第一指示,所述第一指示被用于向所述第一RLC实体指示丢弃所述第一PDCP PDU;当第一RLC SDU或者所述第一RLC SDU的分段都没有被传递给更底层时,丢弃所述第一RLC SDU;
其中,所述第一RLC SDU是所述第一PDCP PDU。
作为一个实施例,上述方法通过丢弃第一PDCP PDU(Protocol Data Unit,协议数据单元)可以节省空口资源。
根据本申请的一个方面,包括:
所述直连路径仅包括一个空中接口,所述非直连路径包括至少两个空中接口。
根据本申请的一个方面,包括:
接收第一消息,所述第一消息指示第一过期值和所述第一阈值;
其中,所述第一过期值被用于确定所述第一计时器过期;所述第一过期值减去所述第一阈值的差被用于确定所述第一PDCP PDU通过所述第二候选RLC实体的对端RLC实体所在的节点转发的最大传输延时。
作为一个实施例,上述方法在多路径的每个路径上传输可以获得一致的传输延时性能。
本申请公开了一种被用于无线通信的第一节点,其特征在于,包括:
第一收发机,接收第一PDCP SDU;作为接收所述第一PDCP SDU的响应,开始第一计时器;当所述第一计时器处于运行状态时,将第一PDCP PDU递交给第一RLC实体发送;
其中,所述第一PDCP PDU为所述第一PDCP SDU经过第一PDCP实体处理后的数据单元;所述第一RLC实体为第一候选RLC实体与第二候选RLC实体二者中之一,所述第一RLC实体是所述第一候选RLC实体还是所述第二候选RLC实体与所述第一计时器的值有关;所述第一候选RLC实体和所述第二候选RLC实体分别与所述第一PDCP实体关联;所述第一候选RLC实体包括的数据单元通过直连路径发送;所述第二候选RLC实体包括的数据单元通过非直连路径发送。
根据本申请的一个方面,包括:
当所述第一计时器的所述值大于第一阈值时,所述第一RLC实体为所述第一候选RLC实体。
根据本申请的一个方面,包括:
当所述第一计时器的所述值小于所述第一阈值时,所述第一RLC实体为所述第一候选RLC实体还是所述第二候选RLC实体与参考数据量有关;
其中,所述参考数据量为所述第一PDCP实体中的PDCP数据量和所述第一候选RLC实体以及所述第二候选RLC实体中等待初始传输(initial transmission)的RLC数据量的总量。
根据本申请的一个方面,包括:
所述第一收发机,将所述第一PDCP PDU递交给所述第一候选RLC实体发送;
其中,所述第一计时器的所述值大于所述第一阈值且所述第一计时器未过期;所述第一PDCP实体未从所述第二候选RLC实体接收到所述第一PDCP PDU成功发送的指示;所述第一RLC实体为所述第二候选RLC实体。
根据本申请的一个方面,包括:
所述第一收发机,发送第一指示,所述第一指示被用于向所述第一RLC实体指示丢弃所述第一PDCP PDU;当第一RLC SDU或者所述第一RLC SDU的分段都没有被传递给更底层时,丢弃所述第一RLC SDU;
其中,所述第一RLC SDU是所述第一PDCP PDU。
根据本申请的一个方面,包括:
所述直连路径仅包括一个空中接口,所述非直连路径包括至少两个空中接口。
根据本申请的一个方面,包括:
所述第一收发机,接收第一消息,所述第一消息指示第一过期值和所述第一阈值;其中,所述第一过期值被用于确定所述第一计时器过期;所述第一过期值减去所述第一阈值的差被用于确定所述第一PDCP PDU通过所述第二候选RLC实体的对端RLC实体所在的节点转发的最大传输延时。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示例了根据本申请的一个实施例的第一节点的传输流程图;
图2示例了根据本申请的一个实施例的网络架构的示意图;
图3示例了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示例了根据本申请的一个实施例的通信设备的硬件模块示意图;
图5示例了根据本申请的一个实施例的一个信号传输流程图;
图6示例了根据本申请的一个实施例的另一个信号传输流程图;
图7示例了根据本申请的一个实施例的一个信号处理流程图;
图8示例了根据本申请的一个实施例的另一个信号处理流程图;
图9示例了根据本申请的一个实施例的中继传输的无线协议架构示意图;
图10示例了根据本申请的一个实施例的第一PDCP实体,第一候选RLC实体和第二候选RLC实体示意图;
图11示例了根据本申请的一个实施例的拓扑结构示意图;
图12示例了根据本申请的一个实施例的一个无线信号传输流程图;
图13示例了根据本申请的一个实施例的第一节点中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一节点的传输流程图,如附图1所示。
在实施例1中,第一节点100在步骤101中接收第一PDCP SDU;在步骤102中作为接收所述第一PDCP SDU的响应,开始第一计时器;在步骤103中当所述第一计时器处于运行状态时,将第一PDCP PDU递交给第一RLC实体发送;其中,所述第一PDCP PDU为所述第一PDCP SDU经过第一PDCP实体处理后的数据单元;所述第一RLC实体为第一候选RLC实体与第二候选RLC实体二者中之一,所述第一RLC实体是所述第一候选RLC实体还是所述第二候选RLC实体与所述第一计时器的值有关;所述第一候选RLC实体和所述第二候选RLC实体分别与所述第一PDCP实体关联;所述第一候选RLC实体包括的数据单元通过直连路径发送;所述第二候选RLC实体包括的数据单元通过非直连路径发送。
作为一个实施例,接收第一PDCP SDU。
作为一个实施例,所述第一PDCP SDU来自所述第一节点的更高层。
作为一个实施例,第一PDCP实体接收来自所述第一节点的更高层的所述第一PDCP SDU。
作为一个实施例,所述更高层为SDAP子层(sublayer);其中,所述第一PDCP SDU属于数据无线承载(data radio bearer,DRB)。
作为一个实施例,所述更高层为RRC子层;其中,所述第一PDCP SDU属于信令无线承载(signaling radio bearer,SRB)。
作为一个实施例,作为接收所述第一PDCP SDU的响应,开始第一计时器。
作为一个实施例,所述第一计时器在所述第一节点的PDCP子层维持。
作为一个实施例,所述第一计时器为discardTimer(丢弃计时器)。
作为一个实施例,当所述第一计时器开始后,所述第一计时器处于运行状态。
作为一个实施例,当所述第一计时器处于运行状态时,将第一PDCP PDU递交给第一RLC实体发送。
作为一个实施例,当所述第一计时器过期后,丢弃所述第一PDCP SDU以及所述第一PDCP PDU。
作为上述实施例的一个子实施例,如果所述第一PDCP PDU已经递交给更底层(lower layers),丢弃被指示给所述更底层。
作为一个实施例,所述第一PDCP PDU为PDCP数据(data)PDU。
作为一个实施例,当所述第一计时器处于运行状态时,所述第一PDCP实体通过层间接口将所述第一PDCP PDU递交给所述第一RLC实体发送。
作为一个实施例,所述第一PDCP PDU为所述第一PDCP SDU经过第一PDCP实体处理后的数据单元。
作为一个实施例,所述第一PDCP SDU在所述第一PDCP实体的处理包括ROHC(Robust Header Compression,鲁棒头压缩)。
作为一个实施例,所述第一PDCP SDU在所述第一PDCP实体的处理包括加密(ciphering)。
作为一个实施例,所述第一PDCP SDU在所述第一PDCP实体的处理包括完整性保护和认证(Integrity protection and verification)。
作为一个实施例,所述第一PDCP PDU包括所述第一PDCP SDU经处理后的比特。
作为一个实施例,所述第一PDCP PDU由所述第一PDCP SDU经处理后的比特和PDCP头(header)组成。
作为一个实施例,所述PDCP头包括所述第一PDCP PDU的序列号(sequence number,SN)。
作为一个实施例,所述第一PDCP实体为发送PDCP实体(transmitting PDCP entity)。
作为一个实施例,所述第一RLC实体为第一候选RLC实体与第二候选RLC实体二者中之一。
作为一个实施例,所述第一候选RLC实体和所述第二候选RLC实体分别与所述第一PDCP实体关联。
作为一个实施例,所述短语第一候选RLC实体和所述第二候选RLC实体分别与所述第一PDCP实体关联包括:所述第一候选RLC实体和所述第二候选RLC实体都被用于传输来自所述第一PDCP实体的数据单元。
作为一个实施例,所述第一PDCP实体在所述第一节点维持。
作为一个实施例,所述第一PDCP实体位于PDCP子层(sublayer)。
作为一个实施例,所述第一候选RLC实体和所述第二候选RLC实体分别在所述第一节点维持。
作为一个实施例,所述第一候选RLC实体和所述第二候选RLC实体分别位于RLC子层。
作为一个实施例,所述第一候选RLC实体和所述第二候选RLC实体处于激活状态。
作为一个实施例,所述第一候选RLC实体包括的数据单元通过直连路径发送。
作为一个实施例,所述短语所述第一候选RLC实体包括的数据单元通过直连路径发送包括:所述第一候选RLC实体的对端RLC实体所在的节点是所述第一PDCP SDU的目的接收者。
作为一个实施例,所述第二候选RLC实体包括的数据单元通过非直连路径发送。
作为一个实施例,所述短语所述第二候选RLC实体包括的数据单元通过非直连路径发送包括:所述第二候选RLC实体的对端RLC实体所在的节点不是所述第一PDCP SDU的目的接收者。
作为一个实施例,所述短语所述第二候选RLC实体包括的数据单元通过非直连路径发送包括:所述第二候选RLC实体的对端RLC实体所在的节点为所述第一PDCP PDU的中继节点。
作为一个实施例,配置所述第一候选RLC实体的信息元素为RLC-BearerConfig(RLC承载配置)。
作为一个实施例,所述第一候选RLC实体被逻辑信道标识(Logical Channel Identity,LCID)所标识。
作为一个实施例,经过所述第一候选RLC实体处理的数据在物理层通过PUSCH(Physical Uplink Shared Channel,物理上行共享信道)信道传输。
作为一个实施例,配置所述第二候选RLC实体的信息元素为SL-RLC-ChannelConfig(副链路RLC信道配置)。
作为一个实施例,所述第二候选RLC实体被RLC信道标识(RLC channel Identity)所标识。
作为一个实施例,经过所述第二候选RLC实体处理的数据在物理层通过PSSCH(Physical Sidelink Shared CHannel,物理副链路共享信道)信道传输。
作为一个实施例,由所述第一节点的服务小区的基站配置所述逻辑信道标识或所述RLC信道标识。
作为一个实施例,一个逻辑信道标识或一个RLC信道标识被用于在网络侧标识一个RLC实体。
作为一个实施例,所述第一候选RLC实体被用于Uu空中接口的发送。
作为一个实施例,所述第二候选RLC实体被用于PC5空中接口的发送。
作为上述实施例的一个子实施例,所述第二候选RLC实体在PC5空中接口关联一个逻辑信道,所述逻辑信道是由所述第一节点自己分配的。
作为一个实施例,所述第一RLC实体是所述第一候选RLC实体还是所述第二候选RLC实体与所述第一计时器的值有关。
作为一个实施例,所述第一计时器的值被用于确定所述第一RLC实体是所述第一候选RLC实体还是所述第二候选RLC实体。
上述方法被应用于所述第一PDCP PDU首次递交给RLC实体。
上述方法被应用于所述第一PDCP PDU多次递交给RLC实体时的每一次递交。
作为一个实施例,所述短语所述第一RLC实体是所述第一候选RLC实体还是所述第二候选RLC实体与所述第一计时器的值有关包括:当所述第一PDCP PDU被首次递交给所述第一RLC实体时,所述第一RLC实体为所述第二候选RLC实体且所述第一计时器的值小于第一阈值;当所述第一PDCP PDU被首次递交给所述第一RLC实体时,所述第一RLC实体为所述第一候选RLC实体且所述第一计时器的所述值不小于所述第一阈值。
作为一个实施例,所述短语所述第一RLC实体是所述第一候选RLC实体还是所述第二候选RLC实体与所述第一计时器的值有关包括:当所述第一PDCP PDU被首次递交给所述第一RLC实体时,所述第一 RLC实体为所述第二候选RLC实体且所述第一计时器的值不大于第一阈值;当所述第一PDCP PDU被首次递交给所述第一RLC实体时,所述第一RLC实体为所述第一候选RLC实体且所述第一计时器的所述值大于所述第一阈值。
作为上述两个实施例的一个子实施例,所述第二候选RLC实体属于主路径(primary path)。
作为一个实施例,所述短语所述第一RLC实体是所述第一候选RLC实体还是所述第二候选RLC实体与所述第一计时器的值有关包括:当所述第一PDCP PDU被首次递交给所述第一RLC实体时,所述第一RLC实体为所述第一候选RLC实体或所述第二候选RLC实体二者中之一且所述第一计时器的值小于第一阈值;当所述第一PDCP PDU被首次递交给所述第一RLC实体时,所述第一RLC实体为所述第一候选RLC实体且所述第一计时器的所述值不小于所述第一阈值。
作为一个实施例,所述短语所述第一RLC实体是所述第一候选RLC实体还是所述第二候选RLC实体与所述第一计时器的值有关包括:当所述第一PDCP PDU被首次递交给所述第一RLC实体时,所述第一RLC实体为所述第一候选RLC实体或所述第二候选RLC实体二者中之一且所述第一计时器的值不大于第一阈值;当所述第一PDCP PDU被首次递交给所述第一RLC实体时,所述第一RLC实体为所述第一候选RLC实体且所述第一计时器的所述值大于所述第一阈值。
作为上述两个实施例的一个子实施例,所述第一RLC实体是所述第一候选RLC实体还是所述第二候选RLC实体是所述第一节点实现相关。
作为一个实施例,所述短语所述第一RLC实体是所述第一候选RLC实体还是所述第二候选RLC实体与所述第一计时器的值有关包括:当所述第一PDCP PDU被首次递交给所述第一RLC实体时,所述第一RLC实体为所述第二候选RLC实体且所述第一计时器的值小于第一阈值;当所述第一PDCP PDU被再次递交给所述第一RLC实体时,所述第一RLC实体为所述第一候选RLC实体且所述第一计时器的所述值不小于所述第一阈值。
作为一个实施例,所述短语所述第一RLC实体是所述第一候选RLC实体还是所述第二候选RLC实体与所述第一计时器的值有关包括:当所述第一PDCP PDU被首次递交给所述第一RLC实体时,所述第一RLC实体为所述第二候选RLC实体且所述第一计时器的值不大于第一阈值;当所述第一PDCP PDU被再次递交给所述第一RLC实体时,所述第一RLC实体为所述第一候选RLC实体且所述第一计时器的所述值大于所述第一阈值。
作为上述两个实施例的一个子实施例,所述第二候选RLC实体属于主路径。
作为一个实施例,第一收发机,接收第一PDCP SDU;作为接收所述第一PDCP SDU的响应,开始第一计时器和第二计时器;当所述第一计时器处于运行状态时,将第一PDCP PDU递交给第一RLC实体发送;其中,所述第一PDCP PDU为所述第一PDCP SDU经过第一PDCP实体处理后的数据单元;所述第一RLC实体为第一候选RLC实体与第二候选RLC实体二者中之一,所述第一RLC实体是所述第一候选RLC实体还是所述第二候选RLC实体与所述第一计时器的运行状态和所述第二计时器的运行状态有关;所述第一候选RLC实体和所述第二候选RLC实体分别与所述第一PDCP实体关联;所述第一候选RLC实体包括的数据单元通过直连路径发送;所述第二候选RLC实体包括的数据单元通过非直连路径发送。
作为一个实施例,所述第一计时器的所述运行状态与所述第二计时器的所述运行状态被用于确定所述第一RLC实体是所述第一候选RLC实体还是所述第二候选RLC实体。
作为一个实施例,当所述第一计时器处于运行状态,且所述第二计时器过期时,所述第一RLC实体是所述第一候选RLC实体。
作为一个实施例,当所述第一计时器处于运行状态,且所述第二计时器处于运行状态时,所述第一RLC实体是所述第二候选RLC实体。
作为上述实施例的一个子实施例,所述第二候选RLC实体属于主路径。
作为一个实施例,当所述第一计时器处于运行状态,且所述第二计时器处于运行状态时,所述第一RLC实体是所述第一候选RLC实体或所述第二候选RLC实体。
作为上述实施例的一个子实施例,所述第一RLC实体是所述第一候选RLC实体还是所述第二候选RLC实体是所述第一节点实现相关。
作为一个实施例,所述第一计时器的过期值大于所述第二计时器的过期值。
作为一个实施例,所述第一计时器的所述过期值指示空中接口上端到端(peer-to-peer)的数据包延时预算。
作为一个实施例,所述第二计时器的所述过期值指示空中接口上点到点(point-to-point)的数据包延时预算。
作为一个实施例,所述第二计时器的所述过期值指示一个空中接口上的数据包延时预算。
作为一个实施例,所述第二计时器的所述过期值指示第一个空中接口上的数据包延时预算,其中,所述第二候选RLC实体所在的路径为非直连路径,所述非直连路径包括至少2个空中接口。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构示意图,如附图2所示。图2说明了NR 5G,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。NR 5G,LTE或LTE-A网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200或某种其它合适术语。5GS/EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230。5GS/EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,5GS/EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回传链路)连接到其它gNB204。Xn接口的XnAP协议用于传输无线网络的控制面消息,Xn接口的用户面协议用于传输用户面数据。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(Basic Service Set,BSS)、扩展服务集合(Extended Service Set,ESS)、TRP(Transmission Reception Point,发送接收节点)或某种其它合适术语,在NTN(Non Terrestrial Network,非陆地/卫星网络)网络中,gNB203可以是卫星,飞行器或通过卫星中继的地面基站。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(Session Initiation Protocol,SIP)电话、膝上型计算机、个人数字助理(Personal Digital Assistant,PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、车载设备、车载通信单元、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocol,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和PS(Packet Switching,包交换)串流服务。
作为一个实施例,所述UE201对应本申请中的第一节点。
作为一个实施例,所述gNB203对应本申请中的第二节点。
作为一个实施例,所述UE241对应本申请中的第三节点。
作为一个实施例,所述UE201是用户设备。
作为一个实施例,所述UE241是中继节点。
作为一个实施例,所述UE241是层2中继节点。
作为一个实施例,所述UE241是层2 U2N中继UE。
作为一个实施例,所述UE241是层2 U2U中继UE。
作为一个实施例,所述gNB203是宏蜂窝(Marco Cell)基站。
作为一个实施例,所述gNB203是微小区(Micro Cell)基站。
作为一个实施例,所述gNB203是微微小区(Pico Cell)基站。
作为一个实施例,所述gNB203是家庭基站(Femtocell)。
作为一个实施例,所述gNB203是支持大时延差的基站设备。
作为一个实施例,所述gNB203是一个飞行平台设备。
作为一个实施例,所述gNB203是卫星设备。
作为一个实施例,所述gNB203是支持大时延差的基站设备。
作为一个实施例,所述gNB203是测试设备(例如模拟基站部分功能的收发装置,信令测试仪)。
作为一个实施例,从所述UE201到所述gNB203的无线链路是上行链路,所述上行链路被用于执行上行传输。
作为一个实施例,从所述UE241到所述gNB203的无线链路是上行链路,所述上行链路被用于执行上行传输。
作为一个实施例,从所述gNB203到所述UE201的无线链路是下行链路,所述下行链路被用于执行下行传输。
作为一个实施例,从所述gNB203到所述UE241的无线链路是下行链路,所述下行链路被用于执行下行传输。
作为一个实施例,所述UE201和所述UE241之间的无线链路是副链路,所述副链路被用于执行副链路传输。
作为一个实施例,所述UE201和所述gNB203之间通过Uu空中接口连接。
作为一个实施例,所述UE241和所述gNB203之间通过Uu空中接口连接。
作为一个实施例,所述UE201和所述UE241之间通过PC5空中接口连接。
实施例3
实施例3示例了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线协议架构的实施例的示意图,图3用三个层展示UE和gNB的控制平面300的无线协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,通过PHY301负责在UE和gNB之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧的gNB处。PDCP子层304提供数据加密和完整性保护,PDCP子层304还提供gNB之间的对UE的越区移动支持。RLC子层303提供数据包的分段和重组,通过ARQ(Automatic Repeat Request,自动重传请求)实现丢失数据包的重传,RLC子层303还提供重复数据包检测和协议错误检测。MAC子层302提供逻辑信道与传输信道之间的映射和逻辑信道的复用。MAC子层302还负责在UE之间分配一个小区中的各种无线资源(例如,资源块)。MAC子层302还负责HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线资源控制)子层306负责获得无线资源(即,无线承载)且使用gNB与UE之间的RRC信令来配置下部层。用户平面350的无线协议架构包括层1(L1层)和层2(L2层),在用户平面350中的无线协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的包头压缩以减少无线发送开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。UE在用户平面350中的无线协议架构在L2层可包括SDAP子层356,PDCP子层354,RLC子层353和MAC子层352的部分协议子层或者全部协议子层。 虽然未图示,但UE还可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,所述PDCP304通过RLC信道向所述RLC303发送数据或从所述RLC303接收数据。
作为一个实施例,所述PDCP354通过RLC信道向所述RLC353发送数据或从所述RLC353接收数据。
作为一个实施例,所述RLC303通过逻辑信道向所述MAC302发送数据或从所述MAC302接收数据。
作为一个实施例,所述RLC353通过逻辑信道向所述MAC352发送数据或从所述MAC352接收数据。
作为一个实施例,所述MAC302通过传输信道向所述PHY301发送数据或从所述PHY301接收数据。
作为一个实施例,所述MAC352通过传输信道向所述PHY351发送数据或从所述PHY351接收数据。
作为一个实施例,所述第一收发机被用于所述第一节点内的层间通信。
作为一个实施例,所述层间通信包括相邻两层之间的通信。
作为一个实施例,所述层间通信包括不相邻的两层之间的通信。
作为一个实施例,所述层间通信包括所述第一PDCP实体和所述第一RLC实体之间的层间通信。
作为一个实施例,所述层间通信包括所述更高层协议实体与所述第一PDCP实体之间的通信。
作为一个实施例,所述层间通信包括所述第一RLC实体与更底层协议实体之间的通信。
作为一个实施例,所述第一收发机被所述PDCP304用于向所述RLC303发送。
作为一个实施例,所述第一收发机被所述PDCP304用于从所述RLC303接收。
作为一个实施例,所述第一收发机被所述PDCP354用于向所述RLC353发送。
作为一个实施例,所述第一收发机被所述PDCP354用于从所述RLC353接收。
作为一个实施例,所述第一收发机被所述RLC303用于向所述PDCP304发送。
作为一个实施例,所述第一收发机被所述RLC303用于从所述PDCP304接收。
作为一个实施例,所述第一收发机被所述RLC353用于向所述PDCP354发送。
作为一个实施例,所述第一收发机被所述RLC353用于从所述PDCP354接收。
作为一个实施例,所述第一收发机包括层间收发原语。
作为一个实施例,所述第一收发机包括一组用于完成收发功能的指令。
作为一个实施例,附图3中的控制平面的多个子层的实体在垂直方向组成SRB(Signaling Radio Bearer,信令无线承载)。
作为一个实施例,附图3中的用户平面的多个子层的实体在垂直方向组成DRB(Data Radio Bearer,数据无线承载)。
作为一个实施例,附图3中的用户平面的多个子层的实体在垂直方向组成MRB(MBS Radio Bearer,多播广播业务无线承载)。
作为一个实施例,附图3中的无线协议架构适用于本申请中的第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的第二节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的第三节点。
作为一个实施例,本申请中的第一PDCP SDU生成于所述RRC306。
作为一个实施例,本申请中的第一PDCP SDU生成于所述SDAP356。
作为一个实施例,本申请中的第一PDCP PDU生成于所述PDCP304。
作为一个实施例,本申请中的第一PDCP PDU生成于所述PDCP354。
作为一个实施例,当所述第一PDCP PDU生成于所述PDCP304时,所述第一PDCP实体位于所述PDCP304,所述第一候选RLC实体和所述第二候选RLC实体位于所述RLC303。
作为一个实施例,当所述第一PDCP PDU生成于所述PDCP354时,所述第一PDCP实体位于所述PDCP354,所述第一候选RLC实体和所述第二候选RLC实体位于所述RLC353。
作为一个实施例,PDCP子层和RLC子层接口上的数据包,在PDCP子层被称为PDCP PDU,在RLC子层被称为RLC SDU,即PDCP子层向RLC子层传递PDCP PDU,RLC子层从PDCP子层接收RLC SDU;RLC子层向PDCP子层传递RLC SDU,PDCP子层从RLC子层接收PDCP PDU。
作为一个实施例,第一PDCP PDU和第一RLC SDU可以互换。
作为一个实施例,所述L2层305或者355属于更高层。
作为一个实施例,所述L3层中的RRC子层306属于更高层。
实施例4
实施例4示例了根据本申请的一个实施例的通信设备的硬件模块示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,数据源477,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网的上层数据包或者来自数据源477的上层数据包被提供到控制器/处理器475。核心网和数据源477表示L2层之上的所有协议层。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路复用、包重组装、解密、标头解压缩、控制信号处理以恢复来自第二通信设备410的更高层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频 符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自第一通信设备450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网或者L2层之上的所有协议层,也可将各种控制信号提供到核心网或者L3以用于L3处理。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450装置至少:接收第一PDCP SDU;作为接收所述第一PDCP SDU的响应,开始第一计时器;当所述第一计时器处于运行状态时,将第一PDCP PDU递交给第一RLC实体发送;其中,所述第一PDCP PDU为所述第一PDCP SDU经过第一PDCP实体处理后的数据单元;所述第一RLC实体为第一候选RLC实体与第二候选RLC实体二者中之一,所述第一RLC实体是所述第一候选RLC实体还是所述第二候选RLC实体与所述第一计时器的值有关;所述第一候选RLC实体和所述第二候选RLC实体分别与所述第一PDCP实体关联;所述第一候选RLC实体包括的数据单元通过直连路径发送;所述第二候选RLC实体包括的数据单元通过非直连路径发送。
作为一个实施例,所述第一通信设备450装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一PDCP SDU;作为接收所述第一PDCP SDU的响应,开始第一计时器;当所述第一计时器处于运行状态时,将第一PDCP PDU递交给第一RLC实体发送;其中,所述第一PDCP PDU为所述第一PDCP SDU经过第一PDCP实体处理后的数据单元;所述第一RLC实体为第一候选RLC实体与第二候选RLC实体二者中之一,所述第一RLC实体是所述第一候选RLC实体还是所述第二候选RLC实体与所述第一计时器的值有关;所述第一候选RLC实体和所述第二候选RLC实体分别与所述第一PDCP实体关联;所述第一候选RLC实体包括的数据单元通过直连路径发送;所述第二候选RLC实体包括的数据单元通过非直连路径发送。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第二通信设备410装置至少:发送第一消息。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一消息。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第一通信设备450是一个UE。
作为一个实施例,所述第一通信设备450是一个层3中继节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第二通信设备410是一个基站。
作为一个实施例,所述第二通信设备410对应本申请中的第三节点。
作为一个实施例,所述第二通信设备410是层2中继节点。
作为一个实施例,所述天线452,所述发射器454,所述多天线接收处理器458,所述接收处理器456或所述控制器/处理器459中的至少之一被用于接收本申请中的第一PDCP SDU。
作为一个实施例,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468或所述控制器/处理器459中的至少之一被用于递交本申请中的第一PDCP PDU。
作为一个实施例,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468或所述控制器/处理器459中的至少之一被用于发送本申请中的第一指示。
作为一个实施例,所述天线420,所述接收器418,所述多天线发射处理器471,所述发射处理器416 或所述控制器/处理器475中的至少之一被用于发送本申请中的第一消息。
作为一个实施例,所述天线452,所述发射器454,所述多天线接收处理器458,所述接收处理器456或所述控制器/处理器459中的至少之一被用于接收本申请中的第一消息。
实施例5
实施例5示例了根据本申请的一个实施例的一个信号传输流程图,如附图5所示。在附图5中,第一PDCP实体E51,第一候选RLC实体E52和第二候选RLC实体E53都位于第一节点,所述第一PDCP实体E51和所述第一候选RLC实体E52通过层间接口通信,所述第一PDCP实体E51和所述第二候选RLC实体E53通过层间接口通信。
对于第一PDCP实体E51,在步骤S511中接收第一PDCP SDU;在步骤S512a中确定第一RLC实体为第一候选RLC实体;在步骤S513a中将第一PDCP PDU递交给第一候选RLC实体;在步骤S512b中确定第一RLC实体为第二候选RLC实体;在步骤S513b中将第一PDCP PDU递交给第二候选RLC实体。
对于第一候选RLC实体E52,在步骤S521中接收第一PDCP PDU。
对于第二候选RLC实体E53,在步骤S531中接收第一PDCP PDU。
需要说明的是,虚线框F51和虚线框F52中的步骤二选一执行,即不会同时执行。
实施例5中,接收第一PDCP SDU;作为接收所述第一PDCP SDU的响应,开始第一计时器;当所述第一计时器处于运行状态时,将第一PDCP PDU递交给第一RLC实体发送;其中,所述第一PDCP PDU为所述第一PDCP SDU经过第一PDCP实体处理后的数据单元;所述第一RLC实体为第一候选RLC实体与第二候选RLC实体二者中之一,所述第一RLC实体是所述第一候选RLC实体还是所述第二候选RLC实体与所述第一计时器的值有关;所述第一候选RLC实体和所述第二候选RLC实体分别与所述第一PDCP实体关联;所述第一候选RLC实体包括的数据单元通过直连路径发送;所述第二候选RLC实体包括的数据单元通过非直连路径发送;当所述第一计时器的所述值大于第一阈值时,所述第一RLC实体为所述第一候选RLC实体;当所述第一计时器的所述值小于第一阈值时,所述第一RLC实体为所述第一候选RLC实体还是所述第二候选RLC实体与参考数据量有关;其中,所述参考数据量为所述第一PDCP实体中的PDCP数据量和所述第一候选RLC实体以及所述第二候选RLC实体中等待初始传输(initial transmission)的RLC数据量的总量。
作为一个实施例,当所述第一计时器的所述值大于第一阈值时,所述第一RLC实体为所述第一候选RLC实体。
作为一个实施例,当所述第一计时器的所述值等于所述第一阈值时,所述第一RLC实体为所述第一候选RLC实体。
作为一个实施例,当所述第一计时器的所述值小于所述第一阈值时,所述第一RLC实体为所述第二候选RLC实体。
作为一个实施例,当所述第一计时器的所述值等于所述第一阈值时,所述第一RLC实体为所述第二候选RLC实体。
作为一个实施例,当所述第一计时器的所述值小于所述第一阈值时,所述第一RLC实体为所述第一候选RLC实体或所述第二候选RLC实体二者中之一。
作为一个实施例,当所述第一计时器的所述值等于所述第一阈值时,所述第一RLC实体为所述第一候选RLC实体或所述第二候选RLC实体二者中之一。
作为上述两个实施例的一个子实施例,所述第一节点自行选择所述第一RLC实体为所述第一候选RLC实体或所述第二候选RLC实体。
作为上述两个实施例的一个子实施例,所述第一节点等概率选择所述第一RLC实体为所述第一候选RLC实体或所述第二候选RLC实体。
作为一个实施例,当所述第一计时器的所述值小于所述第一阈值时,所述第一RLC实体为所述第一候选RLC实体还是所述第二候选RLC实体与参考数据量有关。
作为一个实施例,当所述第一计时器的所述值等于所述第一阈值时,所述第一RLC实体为所述第一候选RLC实体还是所述第二候选RLC实体与参考数据量有关。
作为一个实施例,当所述第一计时器的所述值小于所述第一阈值时,所述参考数据量被用于确定所述第一RLC实体为所述第一候选RLC实体还是所述第二候选RLC实体。
作为一个实施例,当所述第一计时器的所述值等于所述第一阈值时,所述参考数据量被用于确定所述第一RLC实体为所述第一候选RLC实体还是所述第二候选RLC实体。
作为上述四个实施例的一个子实施例,所述第一节点被配置辅RLC实体(secondary RLC entity)。
作为一个实施例,当所述第一计时器的所述值小于所述第一阈值,且所述参考数据量小于第二阈值时,所述第一RLC实体为主RLC实体(primary RLC entity),所述主RLC实体为所述第一候选RLC实体或所述第二候选RLC实体二者之一。
作为一个实施例,当所述第一计时器的所述值等于所述第一阈值,且所述参考数据量小于所述第二阈值时,所述第一RLC实体为主RLC实体,所述主RLC实体为所述第一候选RLC实体或所述第二候选RLC实体二者之一。
作为一个实施例,由网络配置所述第一候选RLC实体或所述第二候选RLC实体二者中之一为所述主RLC实体,所述第一候选RLC实体或所述第二候选RLC实体二者中另一为辅RLC实体。
作为上述实施例的一个子实施例,所述第一候选RLC实体为所述主RLC实体,所述第二候选RLC实体为所述辅RLC实体。
作为上述实施例的一个子实施例,所述第一候选RLC实体为所述辅RLC实体,所述第二候选RLC实体为所述主RLC实体。
作为一个实施例,所述主RLC实体属于主路径。
作为一个实施例,所述辅RLC实体属于非主路径。
作为一个实施例,所述辅RLC实体属于辅路径(secondary path)。
作为一个实施例,所述辅RLC实体为分裂辅RLC实体(split secondary RLC entity)。
作为一个实施例,当所述第一计时器的所述值小于所述第一阈值,且所述参考数据量不小于所述第二阈值时,所述第一RLC实体为所述第一候选RLC实体或所述第二候选RLC实体二者之一。
作为一个实施例,当所述第一计时器的所述值等于所述第一阈值,且所述参考数据量不小于所述第二阈值时,所述第一RLC实体为所述第一候选RLC实体或所述第二候选RLC实体二者之一。
作为上述两个实施例的一个子实施例,所述第一节点自行选择所述第一RLC实体为所述第一候选RLC实体或所述第二候选RLC实体。
作为上述两个实施例的一个子实施例,所述第一节点等概率选择所述第一RLC实体为所述第一候选RLC实体或所述第二候选RLC实体。
作为一个实施例,所述第二阈值由网络配置。
作为一个实施例,所述第二阈值是预配置的。
作为一个实施例,所述第二阈值被配置给分裂承载。
作为一个实施例,所述第二阈值被配置给关联多个RLC实体的PDCP实体。
作为一个实施例,所述第二阈值被配置给所述第一PDCP实体。
作为一个实施例,所述第二阈值由ul-DataSplitThreshold(上行链路数据分裂阈值)指示。
作为一个实施例,所述参考数据量为所述第一PDCP实体中的PDCP数据量和所述第一候选RLC实体以及所述第二候选RLC实体中等待初始传输(initial transmission)的RLC数据量的总量。
作为一个实施例,所述第一PDCP实体中的PDCP数据量包括尚未构建PDCP数据PDU的PDCP SDU的数据量。
作为一个实施例,所述第一PDCP实体中的PDCP数据量包括尚未递交给更底层的PDCP数据PDU的数据量。
作为一个实施例,所述第一PDCP实体中的PDCP数据量包括待重传的PDCP SDU的数据量;其中,所述第一PDCP实体被用于AM(Acknowledged Mode,确认模式)DRB。
作为一个实施例,所述第一PDCP实体中的PDCP数据量包括待重传的PDCP数据PDU的数据量;其中,所述第一PDCP实体被用于AM DRB。
作为一个实施例,所述第一PDCP实体中的PDCP数据量包括PDCP控制PDU的数据量。
作为一个实施例,所述第一候选RLC实体以及所述第二候选RLC实体中等待初始传输(initial transmission)的RLC数据量分别包括尚未包含在RLC数据PDU中的RLC SDU和RLC SDU分段的数据量。
作为一个实施例,所述第一候选RLC实体以及所述第二候选RLC实体中等待初始传输(initial transmission)的RLC数据量分别包括等待初始传输的RLC数据PDU。
作为一个实施例,所述第一候选RLC实体以及所述第二候选RLC实体中等待初始传输(initial transmission)的RLC数据量分别包括估计的STATUS PDU的数据量;其中,所述STATUS PDU已被激活且t-StatusProhitib(状态禁止计时器)不在运行或未过期。
实施例6
实施例6示例了根据本申请的一个实施例的另一个信号传输流程图,如附图6所示。在附图6中,第一PDCP实体E61,第一候选RLC实体E62和第二候选RLC实体E63都位于第一节点,所述第一PDCP实体E61和所述第一候选RLC实体E62通过层间接口通信,所述第一PDCP实体E61和所述第二候选RLC实体E63通过层间接口通信。
对于第一PDCP实体E61,在步骤S611中接收第一PDCP SDU;在步骤S612中确定第一RLC实体为第二候选RLC实体;在步骤S613中将第一PDCP PDU递交给第二候选RLC实体;在步骤S614中确定第一计时器的值大于第一阈值且所述第一计时器未过期,确定未从第二候选RLC实体接收到第一PDCP PDU成功发送的指示;在步骤S615中确定第一RLC实体为第一候选RLC实体;在步骤S616中将第一PDCP PDU递交给第一候选RLC实体;在步骤S617中发送第一指示。
对于第一候选RLC实体E62,在步骤S621中接收第一PDCP PDU。
对于第二候选RLC实体E63,在步骤S631中接收第一PDCP PDU;在步骤S632中接收第一指示;在步骤S633中丢弃第一RLC SDU。
实施例6中,接收第一PDCP SDU;作为接收所述第一PDCP SDU的响应,开始第一计时器;当所述第一计时器处于运行状态时,将第一PDCP PDU递交给第一RLC实体发送;其中,所述第一PDCP PDU为所述第一PDCP SDU经过第一PDCP实体处理后的数据单元;所述第一RLC实体为第一候选RLC实体与第二候选RLC实体二者中之一,所述第一RLC实体是所述第一候选RLC实体还是所述第二候选RLC实体与所述第一计时器的值有关;所述第一候选RLC实体和所述第二候选RLC实体分别与所述第一PDCP实体关联;所述第一候选RLC实体包括的数据单元通过直连路径发送;所述第二候选RLC实体包括的数据单元通过非直连路径发送;将所述第一PDCP PDU递交给所述第一候选RLC实体发送;其中,所述第一计时器的所述值大于所述第一阈值且所述第一计时器未过期;所述第一PDCP实体未从所述第二候选RLC实体接收到所述第一PDCP PDU成功发送的指示;所述第一RLC实体为所述第二候选RLC实体;发送第一指示,所述第一指示被用于向所述第一RLC实体指示丢弃所述第一PDCP PDU;当第一RLC SDU或者所述第一RLC SDU的分段都没有被传递给更底层时,丢弃所述第一RLC SDU;其中,所述第一RLC SDU是所述第一PDCP PDU。
需要说明的是,虚线框F61中的步骤仅当第一RLC SDU或者所述第一RLC SDU的分段没有被传递给更底层时执行。
作为一个实施例,所述短语所述第一RLC实体是所述第一候选RLC实体还是所述第二候选RLC实体与所述第一计时器的值有关包括:所述第一RLC实体是所述第二候选RLC实体;当所述第一计时器的值大于所述第一阈值且所述第一计时器未过期且所述第一PDCP实体未从所述第二候选RLC实体接收到所述第一PDCP PDU成功发送的指示时,将所述第一PDCP PDU递交给所述第一候选RLC实体发送。
作为一个实施例,所述短语所述第一RLC实体是所述第一候选RLC实体还是所述第二候选RLC实体与所述第一计时器的值有关包括:所述第一RLC实体是所述第二候选RLC实体;当所述第一计时器的值不小于所述第一阈值且所述第一计时器未过期且所述第一PDCP实体未从所述第二候选RLC实体接收到所述第一PDCP PDU成功发送的指示时,将所述第一PDCP PDU递交给所述第一候选RLC实体发送。
作为一个实施例,接收第一PDCP SDU,作为接收所述第一PDCP SDU的响应,开始第一计时器;当所述第一计时器处于运行状态时,将第一PDCP PDU递交给第二候选RLC实体发送所述;当所述第一计 时器的所述值大于所述第一阈值且所述第一计时器未过期,且所述第一PDCP实体未从所述第二候选RLC实体接收到所述第一PDCP PDU成功发送的指示时,将所述第一PDCP PDU递交给所述第一候选RLC实体发送。
作为一个实施例,所述第二候选RLC实体为AM(Acknowledged Mode,确认模式)RLC实体,所述第一PDCP实体从所述第二候选RLC实体接收成功发送PDCP PDU的指示(indication),所述指示包括所述被成功发送的PDCP PDU的序列号。
作为一个实施例,一个PDCP数据PDU包括一个PDCP序列号。
作为一个实施例,所述PDCP序列号为非负整数。
作为一个实施例,所述第二候选RLC实体向所述第二候选RLC实体的对端(peer)RLC实体发送轮询(poll),所述轮询被用于触发所述第二候选RLC实体的所述对端RLC实体反馈状态(STATUS)PDU;所述状态PDU指示一个RLC SDU或一个RLC SDU的一部分是否被成功发送。
作为一个实施例,从所述第二候选RLC实体的所述对端RLC实体接收状态PDU,当所述状态PDU指示针对一个RLC SDU为肯定确认(positive acknowledgement)时,所述第二候选RLC实体向所述第一PDCP实体指示所述一个RLC SDU的成功发送。
作为一个实施例,所述第二候选RLC实体的所述对端RLC实体位于所述第一节点之外的一个节点。
作为一个实施例,所述第一节点和所述第一节点之外的一个节点不共址。
作为一个实施例,所述第二候选RLC实体的所述对端RLC实体位于本申请中的第三节点。
作为一个实施例,所述第一节点和所述第三节点通过空中接口连接。
作为一个实施例,所述空中接口为Uu。
作为一个实施例,所述空中接口为PC5。
作为一个实施例,所述第一节点和所述第一节点之外的一个节点通过有线链路连接。
作为一个实施例,所述第二候选RLC实体为AM(Acknowledged Mode,确认模式)RLC实体。
作为一个实施例,所述第二候选RLC实体由发送侧(transmitting side)和接收侧(receiving side)组成。
作为一个实施例,所述短语将所述第一PDCP PDU递交给所述第一候选RLC实体发送包括:复制所述第一PDCP PDU并将所述第一PDCP PDU递交给所述第一候选RLC实体发送。
作为一个实施例,所述第一候选RLC实体为AM RLC实体。
作为一个实施例,所述第一候选RLC实体为UM(Unacknowledged Mode,不确认模式)RLC实体。
作为一个实施例,所述第一候选RLC实体为TM(Transparent Mode,透明模式)RLC实体。
作为一个实施例,所述第一候选RLC实体由发送侧和接收侧组成。
作为一个实施例,所述第一候选RLC实体被配置为发送RLC实体。
作为一个实施例,发送第一指示,所述第一指示被用于向所述第一RLC实体指示丢弃所述第一PDCP PDU;其中,所述第一RLC实体是所述第二候选RLC实体。
作为一个实施例,所述第一指示为层间指示。
作为一个实施例,所述第一PDCP实体向所述第一RLC实体发送所述第一指示;其中,所述第一RLC实体为所述第二候选RLC实体。
作为一个实施例,所述第一指示包括所述第一PDCP PDU的序列号。
作为一个实施例,当所述第一RLC SDU或者所述第一RLC SDU的分段(segment)都没有被传递给更底层时,所述第二候选RLC实体丢弃所述第一RLC SDU;其中,所述第一RLC SDU是所述第一PDCP PDU。
作为一个实施例,所述短语所述第一RLC SDU是所述第一PDCP PDU包括:所述第一RLC SDU是所述第一PDCP PDU的复制(duplication)。
作为一个实施例,所述更底层是RLC子层以下层。
作为一个实施例,所述更底层是MAC(Medium Access Control,媒体接入控制)子层。
作为一个实施例,所述第一RLC SDU的分段包括所述第一RLC SDU的至少1个比特(bit)。
作为一个实施例,当接收到所述第一指示时,如果所述第一RLC SDU或者所述第一RLC SDU的分段 都没有被传递给更底层时,所述第二候选RLC实体丢弃所述第一指示所指示的RLC SDU。
作为一个实施例,当所述第二候选RLC实体对应的逻辑信道被调度时,通过所述第二候选RLC实体传输的数据被传递给所述更底层。
作为一个实施例,当所述第一RLC SDU在所述第二候选RLC实体处理完成后,所述第一RLC SDU被传递给所述更底层。
实施例7
实施例7示例了根据本申请的一个实施例的一个信号处理流程图,如附图7所示。附图7中的步骤在第一节点执行。
在附图7中,在步骤S701中接收第一PDCP SDU;在步骤S702中开始第一计时器;在步骤S703中将第一PDCP PDU递交给第二候选RLC实体发送;在步骤S704中判断第一计时器的值是否大于第一阈值,如果是,执行步骤S705,如果否,跳回步骤S704;在步骤S705中判断是否接收到第一PDCP PDU成功发送的指示,如果是,跳到步骤S708,如果否,执行步骤S706;在步骤S706中将第一PDCP PDU递交给第一候选RLC实体发送;在步骤S707中指示第二候选RLC实体丢弃第一PDCP PDU。
作为一个实施例,附图7中的步骤在第一PDCP实体执行。
实施例8
实施例8示例了根据本申请的一个实施例的另一个信号处理流程图,如附图8所示。附图8中的步骤在第一节点执行。
在附图8中,在步骤S801中接收第一RLC SDU;在步骤S802中接收第一指示;在步骤S803中判断第一RLC SDU或所述第一RLC SDU的分段是否被传递给更底层,如果是,跳到步骤S805,如果否,执行步骤S804;在步骤S804中丢弃第一RLC SDU。
作为一个实施例,附图8中的步骤在第二候选RLC实体执行。
作为一个实施例,所述第一RLC SDU为所述第一PDCP PDU。
作为一个实施例,当所述第一RLC SDU或所述第一RLC SDU的分段被传递给更底层时,放弃丢弃所述第一RLC SDU。
实施例9
实施例9示例了根据本申请的一个实施例的中继传输的无线协议架构示意图,如附图9所示。
附图9中,在中继传输中,以数据从第一节点经过第三节点发送给第二节点为例(数据从第二节点经过第三节点发送给第一节点同理可得):第一目标数据在第一节点侧依次经过Uu-PDCP子层905,PC5-SRAP(Sidelink Relay Adaptation Protocol,副链路中继适配协议)子层904和PC5-RLC子层903的处理在PC5-MAC子层902生成第一目标MAC PDU,然后传递给PC5-PHY层901,再通过PC5空中接口传输给第三节点的PC5-PHY层911,再依次经过PC5-MAC子层912和PC5-RLC子层913的处理恢复出第一RLC数据;所述第一RLC数据经PC5-SRAP子层914和Uu-SRAP子层924处理后在Uu-RLC子层923被重新生成第二RLC数据,再经过Uu-MAC子层922的处理后生成第二目标MAC PDU并传递给Uu-PHY层921;然后通过Uu空中接口传输给第二节点的Uu-PHY层931,再经过Uu-MAC子层932恢复出第二目标MAC PDU,然后依次经过Uu-RLC子层933,Uu-SRAP子层934和Uu-PDCP子层935的处理恢复出第一目标数据。
附图9中的第三节点为层2U2N中继节点。
附图9中,在第三节点转发的数据经过MAC子层,RLC子层和SRAP子层处理但不经过PDCP子层处理;PC5空中接口是所述第一节点和所述第三节点之间的空中接口,PC5接口有关的协议实体PC5-SRAP904和PC5-SRAP914,PC5-RLC903和PC5-RLC913,PC5-MAC902和PC5-MAC912,PC5-PHY901和PC5-PHY911分别终结于所述第一节点和所述第三节点;Uu空中接口是所述第三节点与所述第二节点之间的空中接口,所述Uu空中接口的协议实体Uu-SRAP924和Uu-SRAP934,Uu-RLC923和Uu-RLC933,Uu-MAC922和Uu-MAC932,Uu-PHY921和Uu-PHY931分别分别终结于所述第三节点和所述第二节点; 较高层的协议实体Uu-RRC/SDAP906和Uu-RRC/SDAP936,Uu-PDCP905和Uu-PDCP935分别终止于所述第一节点和所述第二节点。
作为一个实施例,所述PC5-SRAP904为所述PC5-SRAP914的对端SRAP实体。
作为一个实施例,所述Uu-SRAP924为所述Uu-SRAP934的对端SRAP实体。
作为一个实施例,所述PC5-RLC903为所述PC5-RLC913的对端RLC实体。
作为一个实施例,所述Uu-RLC923为所述Uu-RLC933的对端RLC实体。
作为一个实施例,所述Uu-PDCP905为所述Uu-PDCP935的对端PDCP实体。
作为一个实施例,所述第一PDCP实体为所述Uu-PDCP905,所述第二候选RLC实体为所述PC5-RLC903,所述第二候选RLC实体的对端RLC实体为所述PC5-RLC913。
作为一个实施例,所述第二候选RLC实体位于第一节点,所述第二候选RLC实体的对端RLC实体位于第三节点。
作为一个实施例,所述第一候选RLC实体位于第一节点,所述第一候选RLC实体的对端RLC实体位于第二节点。
作为一个实施例,针对层2中继传输,RLC子层,MAC子层和PHY(物理)层负责每一跳(hop)的点对点(point-to-point)通信;PDCP子层和RRC/SDAP子层负责端到端(peer-to-peer)通信。
作为一个实施例,SRAP子层实现UE ID(用户设备标识)和承载标识决定。
作为一个实施例,SRAP子层实现出RLC信道(egress RLC channel)决定。
作为一个实施例,SRAP子层实现承载映射(Bearer mapping)功能。
作为一个实施例,SRAP子层实现路由(Routing)功能。
附图9中,所述路由功能将数据包从所述第一节点发送至所述第二节点。
附图9中,第二节点为NG-RAN节点,第一节点为UE。
作为一个实施例,附图9中的第一节点对应实施例2中的所述UE201。
作为一个实施例,附图9中的第三节点对应实施例2中的所述UE241
作为一个实施例,附图9中的第二节点对应实施例2中的所述gNB203。
实施例10
实施例10示例了根据本申请的一个实施例的第一PDCP实体,第一候选RLC实体和第二候选RLC实体示意图,如附图10所示。在附图10中,第一PDCP实体,第一候选RLC实体和第二候选RLC实体都位于第一节点。
作为一个实施例,所述第一PDCP实体与第一无线承载关联。
作为一个实施例,所述第一候选RLC实体和所述第二候选RLC实体服务的承载为所述第一无线承载,所述第一PDCP实体被用于发送所述第一无线承载的数据。
作为一个实施例,所述第一无线承载为DRB或SRB或MRB。
作为一个实施例,附图10示出的协议结构用于所述第一无线承载。
作为一个实施例,所述第一无线承载被配置为分裂承载(split bearer)。
作为一个实施例,附图10中的更高层协议实体是RRC,附图8是针对SRB的。
作为一个实施例,附图10中的更高层协议实体是SDAP,附图8是针对DRB或MRB的。
作为一个实施例,所述第一PDCP实体被配置PDCP恢复(recovery)。
作为一个实施例,所述第一PDCP实体被配置PDCP恢复包括:当所述第二候选RLC实体未在所述第一阈值指示的时长内成功发送RLC SDU时,所述PDCP PDU被所述第一PDCP实体递交给所述第一候选RLC实体发送。
作为一个实施例,从更高层协议实体接收的PDCP SDU经过所述第一PDCP实体的处理形成的PDCP PDU通过所述第一候选RLC实体或所述第二候选RLC实体二者之一发送。
作为一个实施例,所述第一候选RLC实体是针对上行链路通信的,所述第二候选RLC实体是针对副链路通信的。
作为上述实施例的一个子实施例,所述第一无线承载为上行链路无线承载。
作为一个实施例,所述第一候选RLC实体是针对副链路直连路径通信的,所述第二候选RLC实体是针对副链路非直连路径通信的
作为上述实施例的一个子实施例,所述第一无线承载为副链路无线承载(Sidelink Radio Bearer,SLRB)。
实施例11
实施例11示例了根据本申请的一个实施例的拓扑结构示意图,如附图11所示。
作为一个实施例,所述第一节点被配置多路径,所述多路径包括一个直连路径(direct path)和一个非直连路径(indirect path)。
作为一个实施例,所述直连路径是指数据从源节点到目的接收者之间仅通过一个空中接口传输。
作为一个实施例,所述非直连路径是指数据从源节点到目的接收者之间通过至少两个空中接口传输。
作为一个实施例,所述至少两个空中接口包括Uu空中接口和PC5空中接口。
作为一个实施例,所述至少两个空中接口包括至少两个PC5空中接口。
作为一个实施例,所述至少两个空中接口包括回程(backhaul)空中接口和接入(Access)空中接口。
作为一个实施例,当经过所述第三节点转发时,所述第一节点与所述第二节点之间的通信是非直连路径。
作为一个实施例,当不经过所述第三节点转发时,所述第一节点与所述第二节点之间的通信是直连路径。
作为上述两个实施例的一个子实施例,所述非直连路径为主路径。
作为上述两个实施例的一个子实施例,所述直连路径为主路径。
作为一个实施例,所述第一节点是一个UE。
作为一个实施例,所示第三节点是一个层2中继节点。
作为一个实施例,所示第三节点是一个层2 U2N中继UE。
作为一个实施例,所述第三节点与所述第一节点属于同一个小区组。
作为一个实施例,所述第三节点与所述第一节点属于不同的小区组。
作为一个实施例,所述第二节点是一个NG-RAN节点。
作为一个实施例,附图11中的第一节点对应实施例2中的所述UE201。
作为一个实施例,附图11中的第三节点对应实施例2中的所述UE241
作为一个实施例,附图11中的第二节点对应实施例2中的所述gNB203。
实施例12
实施例12示例了根据本申请的一个实施例的一个无线信号传输流程图,如附图12所示。附图12中,第一节点和第二节点之间通过Uu空中接口通信,第一节点和第三节点之间通过PC5空中接口通信,第三节点和第二节点之间通过Uu空中接口通信。
对于第一节点N121,在步骤S1211a中接收第一消息;在步骤S1211b中接收第一消息。
对于第二节点N122,在步骤S1221a中发送第一消息;在步骤S1221b中发送第一消息。
需要说明的是,虚线框F121和虚线框F122中的步骤二选一执行。
需要说明的是,虚线框F121中所述第一消息通过直连路径传输,虚线框F122中所述第一消息通过非直连路径,即通过中继转发传输。
需要说明的是,虽然未详细示出,但虚线框F122中步骤包括所述第三节点接收来自所述第二节点的所述第一消息,所述第三节点向所述第一节点转发所述第一消息。
作为一个实施例,所述第二节点是所述第一节点的服务小区的基站。
作为一个实施例,所述第二节点是所述第一节点的服务小区的TRP。
作为一个实施例,所述服务小区属于主小区组(master cell group)。
作为一个实施例,所述服务小区属于辅小区组(secondary cell group)。
作为一个实施例,所述服务小区为主小区(Primary Cell)。
作为一个实施例,所述服务小区为辅小区(Secondary Cell)。
作为一个实施例,所述第一收发机,接收第一消息,所述第一消息指示第一过期值和所述第一阈值;其中,所述第一过期值被用于确定所述第一计时器过期。
作为一个实施例,所述第一消息为高层消息。
作为一个实施例,所述第一消息为RRC(Radio Resource Control,无线资源控制)信令。
作为一个实施例,所述第一消息包括一个RRC信令中的全部或部分IE(Information Element,信息元素)。
作为一个实施例,所述第一消息包括一个RRC信令中的一个IE中的全部或部分域(field)。
作为一个实施例,所述第一消息包括所述第一PDCP实体的配置信息。
作为一个实施例,所述第一消息指示第一过期值和所述第一阈值。
作为一个实施例,所述第一消息包括第一子消息和第二子消息,所述第一子消息和所述第二子消息分别指示所述第一过期值和所述第一阈值。
作为一个实施例,所述第一子消息和所述第二子消息分别包括一个RRC信令中的全部或部分IE(Information Element,信息元素)。
作为一个实施例,所述第一子消息和所述第二子消息分别包括一个RRC信令中的一个IE中的全部或部分域(field)。
作为一个实施例,从所述空中接口接收所述第一消息。
作为一个实施例,当通过直连路径接收所述第一消息时,所述第一消息通过PDSCH(Physical Downlink Shared CHannel,物理下行共享信道)信道接收;当通过非直连路径接收所述第一消息时,所述第一消息通过PSSCH信道接收。
作为一个实施例,所述第一过期值被用于确定所述第一计时器过期。
作为一个实施例,在所述第一计时器处于运行状态时,在接下来的一个时间间隔中更新所述第一计时器,然后判断所述第一计时器是否过期。
作为一个实施例,所述一个时间间隔包括1毫秒。
作为一个实施例,所述一个时间间隔包括1个时隙(slot)的时间长度。
作为一个实施例,所述一个时间间隔包括1个子帧(subframe)的时间长度。
作为一个实施例,开始所述第一计时器时将所述第一计时器的值设为0,所述短语更新所述第一计时器包括:将所述第一计时器的值加1;当所述第一计时器的值为所述第一过期值时,所述第一计时器过期。
作为一个实施例,所述第一过期值被用于确定所述第一PDCP SDU在所述第一PDCP实体的最大驻留时间。
作为一个实施例,所述第一过期值被用于确定剩余数据包延时预算(remaining packet delay budget)。
作为一个实施例,在采用模式2(mode 2)资源分配中,所述第一过期值被用于资源选择。
作为上述实施例的一个子实施例,所述第一过期值被用于确定资源选择窗的最大值所指示的时长。
作为一个实施例,所述第一过期值减去所述第一阈值的差被用于确定所述第一PDCP PDU通过所述第二候选RLC实体的对端RLC实体所在的节点转发的最大传输延时。
作为一个实施例,所述第一过期值减去所述第一阈值的差为所述第一PDCP PDU通过所述第二候选RLC实体的对端RLC实体所在的节点转发的最大传输延时。
作为一个实施例,所述第一过期值减去所述第一阈值的差不小于所述第一PDCP PDU通过所述第二候选RLC实体的对端RLC实体所在的节点转发的最大传输延时。
作为一个实施例,所述第一过期值减去所述第一阈值的差大于所述第一PDCP PDU通过所述第二候选RLC实体的对端RLC实体所在的节点转发的最大传输延时。
作为一个实施例,所述第二节点将所述第一无线承载的数据单元在所述第一节点与所述第二节点之间的传输延时分成两部分传输延时之和,其中第一部分为在所述第一节点与所述第三节点之间的传输延时,第二部分为在所述第三节点与所述第二节点之间的传输延时,所述两部分传输延时之和不大于所述第一过期值所指示的时间长度;在所述第一节点与所述第三节点之间的传输延时不大于所述第一阈值所指示的时间长度。
作为一个实施例,所述第二候选RLC实体的对端RLC实体所在的节点为所述第三节点。
作为一个实施例,所述第二候选RLC实体的对端RLC实体所在的节点为中继节点。
作为一个实施例,所述第二候选RLC实体的对端RLC实体所在的节点为层2U2N中继UE。
作为一个实施例,所述第一计时器的所述过期值为所述第一过期值。
作为一个实施例,所述第二计时器的所述过期值为所述第一阈值。
实施例13
实施例13示例了根据本申请的一个实施例的第一节点中的处理装置的结构框图,如附图13所示。
在附图13中,第一节点处理装置1300包括第一收发机1301。所述第一节点1300是一个UE。
在实施例13中,第一收发机1301,接收第一PDCP SDU;作为接收所述第一PDCP SDU的响应,开始第一计时器;当所述第一计时器处于运行状态时,将第一PDCP PDU递交给第一RLC实体发送;其中,所述第一PDCP PDU为所述第一PDCP SDU经过第一PDCP实体处理后的数据单元;所述第一RLC实体为第一候选RLC实体与第二候选RLC实体二者中之一,所述第一RLC实体是所述第一候选RLC实体还是所述第二候选RLC实体与所述第一计时器的值有关;所述第一候选RLC实体和所述第二候选RLC实体分别与所述第一PDCP实体关联;所述第一候选RLC实体包括的数据单元通过直连路径发送;所述第二候选RLC实体包括的数据单元通过非直连路径发送。
作为一个实施例,当所述第一计时器的所述值大于第一阈值时,所述第一RLC实体为所述第一候选RLC实体。
作为一个实施例,当所述第一计时器的所述值大于第一阈值时,所述第一RLC实体为所述第一候选RLC实体;当所述第一计时器的所述值小于所述第一阈值时,所述第一RLC实体为所述第一候选RLC实体还是所述第二候选RLC实体与参考数据量有关;其中,所述参考数据量为所述第一PDCP实体中的PDCP数据量和所述第一候选RLC实体以及所述第二候选RLC实体中等待初始传输(initial transmission)的RLC数据量的总量。
作为一个实施例,当所述第一计时器的所述值大于第一阈值时,所述第一RLC实体为所述第一候选RLC实体;所述第一收发机1301,将所述第一PDCP PDU递交给所述第一候选RLC实体发送;其中,所述第一计时器的所述值大于所述第一阈值且所述第一计时器未过期;所述第一PDCP实体未从所述第二候选RLC实体接收到所述第一PDCP PDU成功发送的指示;所述第一RLC实体为所述第二候选RLC实体。
作为一个实施例,当所述第一计时器的所述值大于第一阈值时,所述第一RLC实体为所述第一候选RLC实体;所述第一收发机1301,将所述第一PDCP PDU递交给所述第一候选RLC实体发送;其中,所述第一计时器的所述值大于所述第一阈值且所述第一计时器未过期;所述第一PDCP实体未从所述第二候选RLC实体接收到所述第一PDCP PDU成功发送的指示;所述第一RLC实体为所述第二候选RLC实体;所述第一收发机1301,发送第一指示,所述第一指示被用于向所述第一RLC实体指示丢弃所述第一PDCP PDU;当第一RLC SDU或者所述第一RLC SDU的分段都没有被传递给更底层时,丢弃所述第一RLC SDU;其中,所述第一RLC SDU是所述第一PDCP PDU。
作为一个实施例,所述直连路径仅包括一个空中接口,所述非直连路径包括至少两个空中接口。
作为一个实施例,所述第一收发机1301,接收第一消息,所述第一消息指示第一过期值和所述第一阈值;其中,所述第一过期值被用于确定所述第一计时器过期;所述第一过期值减去所述第一阈值的差被用于确定所述第一PDCP PDU通过所述第二候选RLC实体的对端RLC实体所在的节点转发的最大传输延时。
作为一个实施例,所述第一收发机1301包括本申请附图4中的接收器454(包括天线452),接收处理器456,多天线接收处理器458和控制器/处理器459。
作为一个实施例,所述第一收发机1301包括本申请附图4中的接收器454(包括天线452),接收处理器456,多天线接收处理器458或控制器/处理器459中的至少之一。
作为一个实施例,所述第一收发机1301包括本申请附图4中的接收器454(包括天线452),发射处理器468,多天线发射处理器457和控制器/处理器459。
作为一个实施例,所述第一收发机1301包括本申请附图4中的接收器454(包括天线452),发射处理器468,多天线发射处理器457或控制器/处理器459中的至少之一。
作为一个实施例,所述第一收发机1301包括本申请附图4中的控制器/处理器459。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一类通信节点或者UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC(enhanced Machine Type Communication,增强机器类通信)设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二类通信节点或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP(Transmission and Reception Point,发射和接收点),中继卫星,卫星基站,空中基站,测试设备,例如模拟基站部分功能的收发装置,信令测试仪等无线通信设备。
本领域的技术人员应当理解,本发明可以通过不脱离其核心或基本特点的其它指定形式来实施。因此,目前公开的实施例无论如何都应被视为描述性而不是限制性的。发明的范围由所附的权利要求而不是前面的描述确定,在其等效意义和区域之内的所有改动都被认为已包含在其中。

Claims (14)

  1. 一种被用于无线通信的第一节点,其特征在于,包括:
    第一收发机,接收第一PDCP SDU;作为接收所述第一PDCP SDU的响应,开始第一计时器;当所述第一计时器处于运行状态时,将第一PDCP PDU递交给第一RLC实体发送;
    其中,所述第一PDCP PDU为所述第一PDCP SDU经过第一PDCP实体处理后的数据单元;所述第一RLC实体为第一候选RLC实体与第二候选RLC实体二者中之一,所述第一RLC实体是所述第一候选RLC实体还是所述第二候选RLC实体与所述第一计时器的值有关;所述第一候选RLC实体和所述第二候选RLC实体分别与所述第一PDCP实体关联;所述第一候选RLC实体包括的数据单元通过直连路径发送;所述第二候选RLC实体包括的数据单元通过非直连路径发送。
  2. 根据权利要求1所述的第一节点,其特征在于,当所述第一计时器的所述值大于第一阈值时,所述第一RLC实体为所述第一候选RLC实体。
  3. 根据权利要求2所述的第一节点,其特征在于,当所述第一计时器的所述值小于所述第一阈值时,所述第一RLC实体为所述第一候选RLC实体还是所述第二候选RLC实体与参考数据量有关;
    其中,所述参考数据量为所述第一PDCP实体中的PDCP数据量和所述第一候选RLC实体以及所述第二候选RLC实体中等待初始传输(initial transmission)的RLC数据量的总量。
  4. 根据权利要求2所述的第一节点,其特征在于,包括:
    所述第一收发机,将所述第一PDCP PDU递交给所述第一候选RLC实体发送;
    其中,所述第一计时器的所述值大于所述第一阈值且所述第一计时器未过期;所述第一PDCP实体未从所述第二候选RLC实体接收到所述第一PDCP PDU成功发送的指示;所述第一RLC实体为所述第二候选RLC实体。
  5. 根据权利要求4所述的第一节点,其特征在于,包括:
    所述第一收发机,发送第一指示,所述第一指示被用于向所述第一RLC实体指示丢弃所述第一PDCP PDU;当第一RLC SDU或者所述第一RLC SDU的分段都没有被传递给更底层时,丢弃所述第一RLC SDU;
    其中,所述第一RLC SDU是所述第一PDCP PDU。
  6. 根据权利要求1至5中任一权利要求所述的第一节点,其特征在于,所述直连路径仅包括一个空中接口,所述非直连路径包括至少两个空中接口。
  7. 根据权利要求2至6中任一权利要求所述的第一节点,其特征在于,包括:
    所述第一收发机,接收第一消息,所述第一消息指示第一过期值和所述第一阈值;
    其中,所述第一过期值被用于确定所述第一计时器过期;所述第一过期值减去所述第一阈值的差被用于确定所述第一PDCP PDU通过所述第二候选RLC实体的对端RLC实体所在的节点转发的最大传输延时。
  8. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一PDCP SDU;
    作为接收所述第一PDCP SDU的响应,开始第一计时器;
    当所述第一计时器处于运行状态时,将第一PDCP PDU递交给第一RLC实体发送;
    其中,所述第一PDCP PDU为所述第一PDCP SDU经过第一PDCP实体处理后的数据单元;所述第一RLC实体为第一候选RLC实体与第二候选RLC实体二者中之一,所述第一RLC实体是所述第一候选RLC实体还是所述第二候选RLC实体与所述第一计时器的值有关;所述第一候选RLC实体和所述第二候选RLC实体分别与所述第一PDCP实体关联;所述第一候选RLC实体包括的数据单元通过直连路径发送;所述第二候选RLC实体包括的数据单元通过非直连路径发送。
  9. 根据权利要求8所述的第一节点中的方法,其特征在于,当所述第一计时器的所述值大于第一阈值时,所述第一RLC实体为所述第一候选RLC实体。
  10. 根据权利要求9所述的第一节点中的方法,其特征在于,当所述第一计时器的所述值 小于所述第一阈值时,所述第一RLC实体为所述第一候选RLC实体还是所述第二候选RLC实体与参考数据量有关;
    其中,所述参考数据量为所述第一PDCP实体中的PDCP数据量和所述第一候选RLC实体以及所述第二候选RLC实体中等待初始传输(initial transmission)的RLC数据量的总量。
  11. 根据权利要求9所述的第一节点中的方法,其特征在于,包括:
    将所述第一PDCP PDU递交给所述第一候选RLC实体发送;
    其中,所述第一计时器的所述值大于所述第一阈值且所述第一计时器未过期;所述第一PDCP实体未从所述第二候选RLC实体接收到所述第一PDCP PDU成功发送的指示;所述第一RLC实体为所述第二候选RLC实体。
  12. 根据权利要求11所述的第一节点中的方法,其特征在于,包括:
    发送第一指示,所述第一指示被用于向所述第一RLC实体指示丢弃所述第一PDCP PDU;当第一RLC SDU或者所述第一RLC SDU的分段都没有被传递给更底层时,丢弃所述第一RLC SDU;
    其中,所述第一RLC SDU是所述第一PDCP PDU。
  13. 根据权利要求8至12中任一权利要求所述的第一节点中的方法,其特征在于,所述直连路径仅包括一个空中接口,所述非直连路径包括至少两个空中接口。
  14. 根据权利要求9至13中任一权利要求所述的第一节点中的方法,其特征在于,包括:
    接收第一消息,所述第一消息指示第一过期值和所述第一阈值;
    其中,所述第一过期值被用于确定所述第一计时器过期;所述第一过期值减去所述第一阈值的差被用于确定所述第一PDCP PDU通过所述第二候选RLC实体的对端RLC实体所在的节点转发的最大传输延时。
PCT/CN2023/111368 2022-08-11 2023-08-07 一种被用于无线通信中的方法和装置 WO2024032519A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210963689.2A CN117641617A (zh) 2022-08-11 2022-08-11 一种被用于无线通信中的方法和装置
CN202210963689.2 2022-08-11

Publications (1)

Publication Number Publication Date
WO2024032519A1 true WO2024032519A1 (zh) 2024-02-15

Family

ID=89850834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/111368 WO2024032519A1 (zh) 2022-08-11 2023-08-07 一种被用于无线通信中的方法和装置

Country Status (2)

Country Link
CN (1) CN117641617A (zh)
WO (1) WO2024032519A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110505160A (zh) * 2018-05-17 2019-11-26 华为技术有限公司 一种通信方法及装置
CN112867090A (zh) * 2021-01-14 2021-05-28 南京信息工程大学 一种军事作战通信链路选择机制度量方法
US20220386172A1 (en) * 2019-11-25 2022-12-01 Qualcomm Incorporated Method and apparatus to switch uplink transmission on uplink split bearer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110505160A (zh) * 2018-05-17 2019-11-26 华为技术有限公司 一种通信方法及装置
US20220386172A1 (en) * 2019-11-25 2022-12-01 Qualcomm Incorporated Method and apparatus to switch uplink transmission on uplink split bearer
CN112867090A (zh) * 2021-01-14 2021-05-28 南京信息工程大学 一种军事作战通信链路选择机制度量方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Discarding PDCP PDUs due to disordering in IAB network with HbH ARQ", 3GPP DRAFT; R2-1812854 DISCARDING PDCP PDUS DUE TO DISORDERING IN IAB NETWORK WITH HBH ARQ, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Gothenburg, Sweden; 20180820 - 20180824, 10 August 2018 (2018-08-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051522442 *

Also Published As

Publication number Publication date
CN117641617A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
CN114449538B (zh) 一种被用于中继无线通信中的方法和装置
CN114698153B (zh) 一种被用于副链路无线通信中的方法和装置
CN114726490B (zh) 一种被用于无线通信的方法和设备
CN114339881B (zh) 一种被用于无线通信中的方法和装置
WO2023217076A1 (zh) 一种被用于无线通信的方法和装置
CN112437442A (zh) 一种被用于无线通信的方法和设备
WO2022048508A1 (zh) 一种被用于中继无线通信中的方法和装置
WO2024032519A1 (zh) 一种被用于无线通信中的方法和装置
CN112751658B (zh) 一种被用于无线通信的节点中的方法和装置
CN115278929A (zh) 一种被用于无线通信的方法和设备
WO2024022343A1 (zh) 一种被用于无线通信中的方法和装置
CN114205774A (zh) 一种用于中继传输的方法和装置
US20240049326A1 (en) Method and device used for wireless communication
WO2022171165A1 (zh) 一种被用于中继无线通信中的方法和装置
WO2024046252A1 (zh) 一种被用于无线通信中的方法和装置
US11943745B2 (en) Method and device for sidelink wireless communication
WO2023246671A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023185520A1 (zh) 一种被用于无线通信的方法和装置
CN113965960B (zh) 一种副链路中继无线通信的方法和装置
WO2021027538A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN114006683B (zh) 一种副链路无线通信的方法和装置
WO2023208080A1 (zh) 一种被用于无线通信的方法和设备
CN117528703A (zh) 一种被用于无线通信中的方法和装置
WO2024088259A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023125177A1 (zh) 一种被用于无线通信中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851740

Country of ref document: EP

Kind code of ref document: A1