WO2024022308A1 - 一种重质烃蒸汽裂解产生烯烃的方法和系统 - Google Patents

一种重质烃蒸汽裂解产生烯烃的方法和系统 Download PDF

Info

Publication number
WO2024022308A1
WO2024022308A1 PCT/CN2023/109009 CN2023109009W WO2024022308A1 WO 2024022308 A1 WO2024022308 A1 WO 2024022308A1 CN 2023109009 W CN2023109009 W CN 2023109009W WO 2024022308 A1 WO2024022308 A1 WO 2024022308A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase material
heavy
separation
liquid
gas phase
Prior art date
Application number
PCT/CN2023/109009
Other languages
English (en)
French (fr)
Inventor
何细藕
吴德飞
范传宏
林江峰
王子宗
赵永华
白飞
邵晨
肖佳
石雨
Original Assignee
中国石油化工股份有限公司
中国石化工程建设有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石化工程建设有限公司 filed Critical 中国石油化工股份有限公司
Publication of WO2024022308A1 publication Critical patent/WO2024022308A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G55/00Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process
    • C10G55/02Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural serial stages only
    • C10G55/04Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural serial stages only including at least one thermal cracking step

Definitions

  • the present invention relates to the technical field of petrochemical industry, and specifically to a method and system for producing olefins through steam cracking of heavy hydrocarbons.
  • CN111196936A discloses a combined processing method and device for directly cracking crude oil to produce olefins. It is used to directly produce olefins from crude oil. It first uses pre-processing such as desalting and dehydration to remove impurities such as moisture, metals, and non-metals in the feed, and then The improved feed is sent to the first pipe row of the ethylene cracking convection section for heating. The heated feed is sent to the gas-liquid separator, and the separated diesel and lighter hydrocarbon gases are sent to the second pipe row of the convection section. and a radiant section, where steam cracking reactions are performed to produce olefins.
  • pre-processing such as desalting and dehydration to remove impurities such as moisture, metals, and non-metals in the feed
  • the improved feed is sent to the first pipe row of the ethylene cracking convection section for heating.
  • the heated feed is sent to the gas-liquid separator, and the separated diesel and lighter hydrocarbon gases are sent to
  • the liquid from the gas-liquid separator contains components such as atmospheric residual oil and is sent to the hydrogenation unit for further cracking.
  • the hydrogenation tail oil, light naphtha, etc. produced by the cracking are sent back to the second convection section as raw materials for ethylene cracking.
  • the other fractions produced are sent out as by-products or other raw materials.
  • CN107001955A discloses systems and methods for efficiently cracking hydrocarbon mixtures, such as mixtures including compounds with standard boiling temperatures greater than 450°C, 500°C or even greater than 550°C, such as whole crude oil.
  • CN101528894A discloses a method for processing liquid crude oil and/or natural gas condensate feedstock, including: subjecting the feedstock to an evaporation step to form a vapor product and a liquid product, subjecting the vapor product to vigorous thermal cracking, and subjecting the liquid product to After crude oil refinery processing technology.
  • CN101778929A discloses a method of using a feedstock containing condensate and crude oil for an olefin production unit.
  • the feedstock is evaporated and separated into gaseous and liquid hydrocarbons.
  • the feedstock is evaporated and separated into gaseous and liquid hydrocarbons.
  • the gaseous hydrocarbon stream is thermally cracked in the device. right Liquid hydrocarbons are recovered.
  • CN103210063A discloses a process for cracking heavy hydrocarbon feed.
  • a heavy hydrocarbon feed is delivered to a first zone of the vaporization unit to separate a first vapor stream and a first liquid stream.
  • the first liquid stream is conveyed to a second zone of the vaporization unit and is brought into intimate contact with countercurrent steam to produce a second vapor stream and a second liquid stream.
  • the second vapor stream is contacted with the wash liquid in the rectification section to form a rectified stream.
  • the first vapor stream and the rectified stream are cracked in the radiant section of the steam cracker to produce a cracked effluent.
  • the inventor of the present invention discovered through painstaking research that heavy hydrocarbons (crude oil, etc.) have a wide fraction and a high content of heavy hydrocarbons.
  • heavy hydrocarbons crude oil, etc.
  • direct steam cracking how to control the concentration of heavy hydrocarbons during the gasification process to prevent convection
  • the coking of the radiation section and the radiation section is very important.
  • non-volatile components are enriched in the first-stage liquid phase, resulting in a high content of non-volatile components in the first-stage flash evaporation liquid phase and directly enter the convection section.
  • the convection section is prone to coking;
  • the potential content of aromatic hydrocarbons in the first-stage flash vapor phase is high, direct steam cracking results in a waste of energy and a reduction in ethylene yield;
  • the first-stage flash vapor phase in the existing technology is easily entrained with non-volatile component, direct steam cracking will lead to coking in the radiant section.
  • the purpose of the present invention is to provide a method and system for steam cracking heavy hydrocarbons to produce olefins, which simplifies the atmospheric and vacuum devices in traditional methods and systems, is simple to operate, realizes flexible cutting of heavy hydrocarbons, and takes into account It simplifies the supply of raw materials for ethylene cracking units and refining-related processing units such as reforming units, simplifies the gas-liquid separation process, and realizes short-process reconstruction of the process. Its gas-liquid separation method is efficient and can effectively solve the multi-stage flash evaporation problem in the existing technology. It solves the problem of impurity entrainment in heavy components in the gas-liquid separation process, the utilization of aromatic hydrocarbons and the reduction of coking. It realizes long-term operation of the cracking furnace, further reduces the energy consumption of the ethylene unit, and has wide adaptability to crude oil.
  • the present invention relates to the following aspects.
  • a method for producing olefins through steam cracking of heavy hydrocarbons comprising the following steps:
  • the heavy hydrocarbons are subjected to a first separation (such as flash evaporation) to obtain a first gas phase material and a first liquid phase material,
  • the first gas phase material is partially condensed (such as fractional distillation, called second separation) to obtain a condensate (called the third heavy component, preferably with an initial boiling point temperature of ⁇ 165°C, and more preferably with a distillation range of 180- 380°C),
  • the first modified liquid phase material is subjected to a third separation (such as flash evaporation) to obtain a second gas phase material and a second liquid phase material,
  • the second gas phase material is subjected to steam cracking to obtain cracking products containing the olefins.
  • the final boiling point temperature of the heavy hydrocarbon is 540°C or above (preferably the initial boiling point temperature is 15°C and the final boiling point temperature is 750°C or above),
  • the API value of the heavy hydrocarbon is not less than 32 (preferably more than 38), and/or, the content of non-volatile components of the heavy hydrocarbon is less than 25wt% (preferably 0.1-5.5wt%) , based on the total weight of the heavy hydrocarbons, and/or the potential aromatic content of the heavy hydrocarbons is 10-40 wt%, based on the total weight of the heavy hydrocarbons.
  • the heavy hydrocarbon is selected from at least one of paraffinic crude oil, intermediate crude oil, naphthenic crude oil, condensate and refining products.
  • the temperature of the primary dilution steam is 180-400°C, preferably 200-350°C, and/or the first mixed material is subjected to the first
  • the temperature after heating is below 400°C, preferably 250-350°C, and/or the temperature of the secondary dilution steam is 400-630°C, preferably 450-600°C, and/or the first modified liquid
  • the weight ratio of the phase material to the primary dilution steam is 1: (0.1-0.5), preferably 1: (0.2-0.4), and/or the weight ratio of the first modified liquid phase material to the secondary dilution steam
  • the weight ratio is 1: (0.2-0.8), preferably 1: (0.3-0.65), and/or the temperature of the second mixed material is 280-360°C (preferably 310-340°C).
  • the weight ratio of the liquid hydrocarbon to the first liquid phase material is (0.1-0.85):1 (preferably (0.15-0.3):1).
  • the gasification rate of the heavy hydrocarbon (called the first gasification rate) is 15-60%, preferably 25 -45%.
  • the gasification rate of the second mixed material is 40-80%, preferably 50-75%.
  • first modified liquid phase material or the second mixed material is subjected to the third separation to obtain a gas phase material (called an initial gas phase material) and Liquid phase material (called primary liquid phase material), so that at least a part (such as accounting for less than 50wt% or less than 20wt% of the total weight) of the third heavy component and/or separation aid (also called cooling aid) is mixed with the
  • the initial gas phase materials are contacted in countercurrent to obtain the second gas phase materials.
  • the weight ratio of the second gas phase material to the third heavy component is 1: (0.01-0.35), preferably 1: (0.05-0.2)
  • the weight ratio of the second gas phase material to the separation aid is 1: (0.01-0.2), preferably 1: (0.05-0.15).
  • the separation aid is selected from at least one of liquid hydrocarbons and liquid water.
  • the liquid hydrocarbon is preferably selected from at least one of heavy naphtha, jet fuel and diesel.
  • a system for steam cracking heavy hydrocarbons to produce olefins including:
  • the first gas-liquid separator (8) is configured to enable the heavy hydrocarbons to undergo first separation (such as flash evaporation) to obtain a first gas phase material and a first liquid phase material,
  • a separation device such as a separation tower (7) is configured to enable partial condensation (such as fractional distillation, called second separation) of the first gas phase material to obtain a condensate (called a third heavy component, preferably its initial distillation
  • the point temperature is ⁇ 165°C, more preferably the distillation range is 180-380°C)
  • a conveying device configured to introduce at least a portion (such as more than 50 wt% or more than 80 wt% of the total weight) of the third heavy component into the first liquid phase material to obtain a first modified liquid phase material
  • the second gas-liquid separator (9) is configured to enable the first modified liquid phase material to undergo third separation (such as flash evaporation) to obtain a second gas phase material and a second liquid phase material,
  • a steam cracking device configured to steam crack the second gas phase material to obtain cracking products containing the olefins.
  • the present invention also relates to the following aspects.
  • a method for producing olefins through steam cracking of heavy hydrocarbons comprising the following steps:
  • step S2 also includes:
  • Making at least part of the first liquid phase material and primary dilution steam perform a first mixing to obtain a first mixed material; subjecting the first mixed material to a first heating and a second mixing with superheated secondary dilution steam , obtain the second mixed material;
  • the second gas phase material is subjected to a second heating and then enters the radiation section of the steam cracking device to undergo steam cracking to obtain cracking products containing olefins.
  • step S1 the temperature of the preheated heavy hydrocarbon is 200-400°C, preferably 240-370°C;
  • the first gas phase material contains a first light component
  • the first liquid phase material contains a first heavy component
  • the gasification rate of the preheated heavy hydrocarbon is 20-65%, preferably 30-50%.
  • step S2 the weight ratio of the first liquid phase material to the primary dilution steam is 1: (0.1-0.5), preferably 1: (0.2-0.4);
  • the post-processing includes one or more of reforming treatment, refining oil processing, and isomerization separation;
  • the method further includes: in step S2, causing at least part of the primary dilution steam to enter the third heating section (3A) for heating to obtain superheated primary dilution steam, and making the superheated primary dilution steam Perform first mixing with the first liquid phase material;
  • the temperature of the superheated primary dilution steam is 180-400°C, preferably 200-350°C;
  • the temperature of the first mixed material is 150-350°C, preferably 190-300°C;
  • the temperature of the first mixed material after the first heating is below 400°C, preferably 250-350°C;
  • the temperature of the superheated secondary dilution steam is 400-630°C, preferably 450-600°C;
  • the weight ratio of the first liquid phase material to the secondary dilution steam is 1: (0.2-0.8); preferably, it is 1: (0.3-0.65).
  • the second gas phase material includes carried steam and a second light component;
  • the second liquid phase material includes a second heavy component;
  • the second liquid phase material includes a second heavy component;
  • the final boiling point temperature of the second light component is 330-480°C; the initial boiling point temperature of the second heavy component is not higher than the final boiling point of the second light fraction;
  • step S2 also includes:
  • the weight ratio of the second gas phase mixture material to the third heavy component is 1: (0.01-0.2), preferably 1: (0.05-0.15);
  • the cooling aid is selected from one or both liquid hydrocarbons and/or water;
  • the separation aid is selected from one or both liquid hydrocarbons and/or water;
  • the weight ratio of the second gas phase mixture material to the water is 1: (0.01-0.2), preferably 1: (0.05-0.15);
  • the weight ratio of the second gas phase mixture material to the liquid hydrocarbon is 1: (0.01-0.2), preferably 1: (0.05-0.15);
  • the method further includes: the introduction method of the separation aid is selected from at least one of the following methods: along the axial direction of the second gas-liquid separator (9), the water introduction position is at the liquid hydrocarbon introduction position. above; or along the axial direction of the second gas-liquid separator (9), the introduction position of water is below the liquid hydrocarbon introduction position; or along the axial direction of the second gas-liquid separator (9), the introduction position of water The position is on the same plane as the liquid hydrocarbon introduction position.
  • the steam cracking device includes a convection section and a radiation section; along the height direction of the steam cracking device, the convection section includes a first heating section (1A ), optional heavy hydrocarbon preheating section (1B), optional second heating section (2), third heating section (3A), fourth heating section (4), fifth heating section (3B) and The sixth heating section (5);
  • step S1 also includes:
  • the heavy hydrocarbons to be preheated enter the first heating section (1A) for first preheating to obtain first preheated heavy hydrocarbons; combine at least part of the first preheated heavy hydrocarbons and the heat exchange medium Enter the heat exchanger (6A) respectively for heat exchange to obtain the second preheated heavy hydrocarbons; then the second preheated heavy hydrocarbons enter the first gas-liquid separation as the preheated heavy hydrocarbons.
  • device(8)
  • the heat exchange medium includes steam heated by the heater (6B), or steam heated by the second heating section (2), or steam from a steam source; optionally, the The temperature of the steam is 250-450°C; or,
  • At least part of the first preheated heavy hydrocarbons is introduced into the heater (6B) for heating to obtain a third preheated heavy hydrocarbon; and then the third preheated heavy hydrocarbons are used as the preheated heavy hydrocarbons.
  • Quality hydrocarbons enter the first gas-liquid separator (8); or,
  • the first preheated heavy hydrocarbons are desalted and then heat exchanged and/or heated, or the heavy hydrocarbons to be preheated are desalted and then the first preheating is performed.
  • a system for steam cracking heavy hydrocarbons to produce olefins includes a steam cracking device, a separation tower (7) and a first gas-liquid separator (8); the steam cracking device includes a convection section and a radiation section;
  • the first gas-liquid separator (8) is configured to allow preheated heavy hydrocarbons to enter it for first separation to obtain a first gas phase material and a first liquid phase material;
  • the radiant section of the steam cracking device is configured to steam crack at least part of the first liquid phase material to obtain cracking products containing olefins;
  • the separation tower (7) is configured to send at least part of the first gas phase material to the separation tower (7) Performing a second separation to obtain at least a third light component, a first intermediate component and a third heavy component;
  • the system also includes a post-processing device configured to post-process the first intermediate component, the post-processing device not including a steam cracking device.
  • the convection section is provided with a raw material heating inlet and a raw material heating outlet;
  • the radiation section is provided with a steam cracking inlet and a cracking product outlet;
  • the first gas-liquid separator (8) is provided with a gas-liquid separation inlet, an optional third heavy component reflux inlet, an optional cooling aid inlet, a first gas phase material outlet and a first liquid phase material outlet;
  • the gas-liquid separation inlet of the first gas-liquid separator (8) is connected to the raw material heating outlet of the convection section; the first liquid phase material outlet of the first gas-liquid separator (8) is connected to the radiation section.
  • the steam cracking inlet is connected;
  • the cooling aid inlet includes a liquid hydrocarbon inlet and/or a water inlet
  • the separation tower (7) is provided with a first gas phase material inlet, and a third light component outlet, a first middle distillate outlet and a third heavy component outlet arranged sequentially from top to bottom along the height direction of the separation tower (7). ;
  • the inlet of the first gas phase material of the separation tower (7) is connected with the first gas phase material outlet of the first gas-liquid separator (8);
  • the system also includes a second gas-liquid separator (9);
  • the second gas-liquid separator (9) is provided with a second mixed material inlet, a second gas phase material outlet and a second liquid phase material outlet, an optional third heavy component inlet and an optional separation aid inlet;
  • the separation aid inlet includes a liquid hydrocarbon inlet and/or a water inlet
  • the separation aid inlet is located above the second mixed material inlet;
  • the first liquid phase material outlet of the first gas-liquid separator (8) is connected with the second mixed material inlet of the second gas-liquid separator (9); and the second gas-liquid separator (9)
  • the communication pipeline between the second mixed material inlet of 9) and the first liquid phase material outlet of the first gas-liquid separator (8) is provided with a primary dilution steam inlet and a superheated secondary dilution steam inlet; along the In the flow direction of the material, the primary dilution steam inlet is arranged upstream of the superheated secondary dilution steam inlet; optionally, the outlet of the third heavy component of the separation tower (7) is respectively connected with the first The third heavy component return inlet of the gas-liquid separator (8) and the second gas-liquid separator Import connectivity for the third component of (9);
  • the outlet of the second gas phase material of the second gas-liquid separator (9) is connected with the steam cracking inlet of the radiant section.
  • the convection section includes a first heating section (1A), an optional heavy hydrocarbon preheating section ( 1B), optional second heating section (2), third heating section (3A), fourth heating section (4), fifth heating section (3B) and sixth heating section (5);
  • the heating inlet of the first heating section (1A) is used to introduce heavy hydrocarbons to be preheated;
  • the heating outlet of the first heating section (1A) is connected with the gas outlet of the first gas-liquid separator (8).
  • the liquid separation inlet is connected; preferably, a pressure regulating valve is provided on the introduction pipeline of the gas-liquid separation inlet of the first gas-liquid separator (8) to control the flow of water entering the first gas-liquid separator (8).
  • the preheating temperature of heavy hydrocarbons optionally, a pressure regulating valve is provided on the lead-out pipeline of the first gas phase material outlet to further control the gasification rate;
  • the heating inlet of the fourth heating section (4) is connected to the first liquid phase material outlet of the first gas-liquid separator (8) via a first pipeline; the heating inlet of the third heating section (3A) is connected to the first liquid phase material outlet of the first gas-liquid separator (8).
  • the primary steam source is connected; the heating outlet of the third heating section (3A) is connected to the first pipeline;
  • the heating outlet of the fourth heating section (4) is connected to the second mixed material inlet of the second gas-liquid separator (9) via a second pipeline; the heating inlet of the fifth heating section (3B) is connected to the second mixed material inlet of the second gas-liquid separator (9).
  • the secondary steam source is connected; the heating outlet of the fifth heating section (3B) is connected to the second pipeline;
  • the heating inlet of the sixth heating section (5) is connected to the second gas phase material outlet of the second gas-liquid separator (9); the heating outlet of the sixth heating section (5) is connected to the heating outlet of the radiation section.
  • the steam cracking inlet is connected;
  • the second liquid phase material outlet of the second gas-liquid separator (9) can be used to communicate with a hydrocracking or catalytic cracking device;
  • the second gas-liquid separator (9) is provided with a tray, a hydrocyclone separator, or a combination of both.
  • the system further includes a heavy hydrocarbon preheating unit, the heavy hydrocarbon preheating unit includes a heavy hydrocarbon heating inlet and a heavy hydrocarbon heating outlet;
  • the heavy hydrocarbon heating inlet is connected to the heating outlet of the first heating section (1A), and the heavy hydrocarbon heating outlet is connected to the gas-liquid separation inlet of the first gas-liquid separator (8);
  • the heavy hydrocarbon preheating unit includes a heat exchanger (6A) and an optional heater (6B);
  • the heat exchanger (6A) includes a first heavy hydrocarbon heating inlet and a heat exchange medium inlet. , the first heating outlet of heavy hydrocarbons and the heat exchange medium outlet after heat exchange; the first heating inlet of heavy hydrocarbons is formed as the heavy hydrocarbon heating inlet of the heavy hydrocarbon preheating unit, and the first heating inlet of heavy hydrocarbons
  • the heating inlet is connected with the heating outlet of the first heating section (1A); the first heavy hydrocarbon heating outlet is formed as the heavy hydrocarbon heating outlet of the heavy hydrocarbon preheating unit, and the first heavy hydrocarbon heating outlet is The heating outlet is connected with the gas-liquid separation inlet of the first gas-liquid separator (8);
  • the heater (6B) includes a first heating inlet for heat exchange medium and a first heating outlet for heat exchange medium;
  • the second heating section (2) includes a second heating inlet for heat exchange medium and a second heating outlet for heat exchange medium;
  • the first heating inlet of the heat exchange medium and the second heating inlet of the heat exchange medium are respectively used to communicate with the steam source;
  • the heat exchange medium inlet of the heat exchanger (6A) is connected to the first heating outlet of the heat exchange medium of the heater (6B), or the heat exchange medium inlet of the heat exchanger (6A) is connected to the second heat exchange medium inlet.
  • the second heating outlet of the heat exchange medium of the heating section (2) is connected; or the heat exchange medium inlet of the heat exchanger (6A) is connected with the steam source;
  • the heavy hydrocarbon preheating unit includes a heater (6B); the heater (6B) includes a second heating inlet for heavy hydrocarbons and a second heating outlet for heavy hydrocarbons; the second heating inlet for heavy hydrocarbons forms It is the heavy hydrocarbon heating inlet of the heavy hydrocarbon preheating unit, and the second heating inlet of the heavy hydrocarbon is connected with the heating outlet of the first heating section (1A); the second heating outlet of the heavy hydrocarbon forms It is the heavy hydrocarbon heating outlet of the heavy hydrocarbon preheating unit, and the second heavy hydrocarbon heating outlet is connected with the gas-liquid separation inlet of the first gas-liquid separator (8);
  • the heating outlet of the first heating section (1A) is connected to the heating inlet of the heavy hydrocarbon preheating section (1B); the heating outlet of the heavy hydrocarbon preheating section (1B) is connected to the heating inlet of the heavy hydrocarbon preheating section (1B).
  • the gas-liquid separation inlet of the first gas-liquid separator (8) is connected through a third pipeline;
  • the heat exchanger (6A) or heater (6B) is connected to a third pipeline.
  • the method and system provided by the present invention can achieve one of the following technical effects or a combination of all or part of them:
  • the first intermediate component can be reasonably processed and used in reforming units or as cracking feed. It is especially suitable for raw materials with high aromatic content potential in reforming units. Therefore, when two-stage separation is set up and the first gas phase component is separated, the adaptability range of heavy hydrocarbons (crude oil) is wide, and different distillation ranges of heavy hydrocarbons can be used. Cutting is carried out based on the properties of the components to achieve efficient utilization of different distillation range components of heavy hydrocarbons, such as cracking and reforming raw materials. Aromatic hydrocarbons do not participate in steam cracking, resulting in higher energy utilization efficiency and higher ethylene yield.
  • the third heavy component is introduced into the first liquid phase material, which can effectively adjust the specifications of the first liquid phase material and control the temperature of the first liquid phase material, and effectively inhibit the preheating and gasification process of heavy hydrocarbons in the fourth heating section. coking in the furnace to ensure long-term operation of the cracking furnace.
  • the vaporization rate of heavy hydrocarbons can be effectively adjusted according to the specifications of heavy hydrocarbons, so that the temperature of the material entering the second flash can be higher and the gas in the second flash can be higher.
  • the conversion rate can be higher, more second gas phase raw materials suitable for cracking can be effectively separated, the utilization rate of heavy hydrocarbons (crude oil) is high, and the ethylene production is high;
  • separation aids can reduce the non-ideal components of cracking from entering the radiant section, avoid gas coking in the radiant section furnace tube, extend the operating cycle, and achieve higher energy utilization efficiency
  • the first-stage flash evaporation no longer requires the entrainment of non-volatile components, or there is no need to worry about the entrainment of non-volatile components, thus reducing the complexity of the equipment.
  • Separating the first gas phase and incorporating the third heavy component into the first liquid phase material can allow the non-volatile components contained in the third heavy component (if entrained) to enter the first liquid phase material, and at the same time reduce the risk of The problem of enrichment of non-volatile components in the first liquid phase material, and it can also effectively adjust the specifications of the first liquid phase material and control the temperature of the first liquid phase material, effectively inhibiting the preheating and gasification of heavy hydrocarbons in the fourth heating section.
  • the coking during the process also improves the separation efficiency of the second flash evaporation.
  • Figure 1 is an exemplary flow chart of the steam cracking of heavy hydrocarbons to produce olefins provided by the present invention.
  • Figure 2 is an exemplary flow chart of the steam cracking of heavy hydrocarbons to produce olefins provided by the present invention.
  • Figure 3 is an exemplary flow chart of the steam cracking of heavy hydrocarbons to produce olefins provided by the present invention.
  • Figure 4 is an exemplary flow chart of the steam cracking of heavy hydrocarbons to produce olefins provided by the present invention.
  • Figure 5 is an exemplary flow chart of the steam cracking of heavy hydrocarbons to produce olefins provided by the present invention.
  • Figure 6 is a comparison chart of TBP curves before and after modification of heavy hydrocarbon components provided by the present invention.
  • Figure 7 is a comparison chart of TBP curves before and after modification of heavy hydrocarbon components provided by the present invention.
  • spatially relative terms such as “below”, “below”, “lower”, “upper”, “upper”, etc., may be used to describe an element or feature The relationship to another element or feature in the drawing. It will be understood that the spatially relative terms are intended to encompass different orientations of the item in use or operation in addition to the orientation depicted in the figures. For example, if the object in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the elements or features. Therefore, it shows The generic term “below” can encompass both the lower and upper directions. The objects may be otherwise oriented (e.g., rotated 90 degrees or at other orientations) and the spatially relative terms used herein interpreted accordingly.
  • first the terms “first”, “second”, etc. are used to distinguish two different elements or parts, and are not used to limit a specific position or relative relationship.
  • primary dilution steam and “secondary dilution steam” used are only used to distinguish the steam introduced in different steps, and do not contain actual meanings such as the properties of the steam itself.
  • each device used in the present invention may use a conventionally selected structure in the art, and is not particularly limited.
  • heavy hydrocarbons refer to wide-fraction mixed hydrocarbons whose final boiling point is generally above 540°C, for example, the initial boiling point temperature is 15°C and the final boiling point temperature is above 750°C.
  • the heavy hydrocarbons may be selected from one or more of the following raw materials: paraffinic crude oil, intermediate crude oil, naphthenic crude oil, condensate and refining products, etc.
  • refining products include gasoline, kerosene, diesel, tail oil, fuel oil, reformed oil, etc. that have been processed by refineries such as atmospheric and vacuum pressure, reforming, catalysis, and coking in a refinery.
  • the measurement method of initial boiling point, final boiling point, and distillation range is crude oil atmospheric and vacuum distillation, in which the atmospheric distillation analysis method adopts ASTM D-2892, and the vacuum distillation analysis method adopts ASTM D-5236.
  • API refers to Specific Gravity Index, the analytical method for which is ASTM D-2320.
  • non-volatile components specifically refer to components with a final boiling point exceeding 590°C, and the analysis method for non-volatile components adopts ASTM D6352.
  • the measurement method for aromatic potential content is atmospheric distillation and the analytical method is ASTM D-2892.
  • the gasification rate refers to the mass percentage of the gas phase material (without steam) to the total amount of feed (without steam).
  • the potential content of aromatic hydrocarbons refers to the weight ratio of the sum of the amount of all naphthenes converted into aromatic hydrocarbons in the raw material and the amount of aromatic hydrocarbons already contained in the raw material to all raw materials.
  • any two or more embodiments or aspects of the present invention can be combined arbitrarily, and the technical solution thus formed is part of the original disclosure content of this specification and also falls within the protection scope of the present invention. .
  • the present invention relates to a method for steam cracking heavy hydrocarbons to produce olefins.
  • the method for producing olefins by steam cracking heavy hydrocarbons is carried out in a system for producing olefins by steam cracking heavy hydrocarbons as described below. For this reason, what is not detailed in the methods section can be directly referred to the relevant content described below for the system, or vice versa.
  • the method for producing olefins through steam cracking of heavy hydrocarbons includes the step of subjecting the heavy hydrocarbons to a first separation to obtain a first gas phase material and a first liquid phase material.
  • a first separation it can be carried out in any manner known in the art.
  • any manner or method that can separate the heavy hydrocarbon into a gas phase and a liquid phase can be cited, especially It's flash.
  • the method for producing olefins by steam cracking heavy hydrocarbons also includes partially condensing the first gas phase material (called second separation) to obtain a condensate (called a third heavy component) A step of.
  • the partial condensation or the second separation it can be carried out in any manner known in the art.
  • any method that can further separate the first gas-liquid phase material into multiple components after cooling can be cited.
  • the first gas phase material is not directly sent to steam cracking.
  • the initial boiling point temperature of the third heavy component is ⁇ 165°C, and preferably its distillation range is 180-380°C.
  • This control is mainly based on comprehensive considerations of providing raw materials for reforming, saving investment, energy consumption, and improving the quality of the first liquid phase material. If the dry point of the third heavy component is less than 165°C, it means that the second separation is not clear and part of the reformate is lost. If the dry point of the third heavy component is greater than 380°C, then the amount of the first gas phase needs to be increased, and the diameter and number of plates of the separation tower for the second separation need to be increased, which will increase investment and energy consumption.
  • the distillation range of the third heavy component is 180-380°C, which is more suitable for upgrading the first liquid phase material. If the dry point is too low, if it is lower than 300°C, because it is easy to gasify, it does not achieve the purpose of reducing the content of gasified non-volatile components of the first liquid phase material. If the dry point is higher than 380°C, the investment in the first separation and the second separation will increase, and the energy consumption of the second separation will increase. .
  • the method of steam cracking heavy hydrocarbons to produce olefins further includes the step of introducing at least a portion of the third heavy component into the first liquid phase material to obtain a first modified liquid phase material. It is preferred here that more than 50 wt% or more than 80 wt% of the total weight of the third heavy component is introduced into the first liquid phase material. By introducing more than 50wt% or more than 80wt% of the total weight of the third heavy component, the distillation range of the first modified liquid phase material can be effectively changed, the range of change of the first modified liquid phase material in the convection section can be broadened, and the range of the first modified liquid phase material can be effectively prevented.
  • the fourth heating section (4) is coked and at the same time effectively adjusts the gasification rate of the second mixed material during three-stage separation.
  • the method for producing olefins through steam cracking of heavy hydrocarbons further includes the step of subjecting the first modified liquid phase material to a third separation to obtain a second gas phase material and a second liquid phase material.
  • a third separation any manner or method that can separate the first modified liquid phase material into a gas phase and a liquid phase (gas-liquid separation) can be cited, especially flash evaporation.
  • the method of steam cracking heavy hydrocarbons to produce olefins further includes the step of subjecting the second gas phase material to steam cracking to obtain cracking products containing the olefins.
  • the API value of the heavy hydrocarbon is not less than 32 (preferably above 38).
  • the content of non-volatile components of the heavy hydrocarbon is less than 25 wt% (preferably 0.1-5.5 wt%), based on the total weight of the heavy hydrocarbon.
  • the aromatic hydrocarbon potential content of the heavy hydrocarbon is 10-20 wt%, based on the total weight of the heavy hydrocarbon.
  • the aromatic hydrocarbons in the fraction with a final boiling point less than 180°C can be used as reforming raw materials.
  • the heavy hydrocarbons are preheated to a temperature of 200-400°C (preferably 240-300°C) before performing the first separation.
  • the final boiling point of the first gas phase material since the entrainment of non-volatile components by the first gas phase material is no longer considered a problem, there are no special restrictions on the final boiling point of the first gas phase material and the content of the non-volatile components. Those skilled in the art It can be determined flexibly according to the actual situation. Nevertheless, according to an embodiment of the present invention, from the perspective of process operation stability, the final boiling point is generally between 400°C and 400°C. Down.
  • the content of non-volatile components is generally less than 1 wt%, based on the total weight of the first gas phase material.
  • the first gas phase material is subjected to the second separation to obtain at least a third light component, a first intermediate component and the third heavy component.
  • the second separation is preferably carried out in a fractionation column, such as separation column 7 described below.
  • the present invention has no particular limitations on the implementation manner and method of the second separation, and those known in the art can be used.
  • the third light component is mainly composed of C 1 -C 6 components
  • the final boiling point temperature is generally ⁇ 90°C, and can be sent to other cracking furnaces for cracking
  • the first middle distillate is mainly composed of C 6 -C 10 components, has a distillation range of generally 80-170°C, and can be sent to the reforming unit.
  • the initial boiling point or final boiling point of each fraction in the present invention is a range value. In actual operation, it can be any temperature within the range value, and the present invention can select the separated fraction according to actual production needs.
  • the method for producing olefins by steam cracking of heavy hydrocarbons further includes subjecting the first intermediate component to at least one treatment selected from the group consisting of reforming treatment, refining treatment and isomerization separation.
  • at least one treatment selected from the group consisting of reforming treatment, refining treatment and isomerization separation.
  • the potential content of aromatic hydrocarbons in the first middle distillate is high, the potential content of aromatic hydrocarbons entering the gas phase of the radiant section can be reduced after treatment by the present invention.
  • the potential content of aromatic hydrocarbons should be low, the corresponding olefin yield should be high, and the energy consumption of cracking should be low.
  • the content of the non-volatile components of the third heavy component is 1 wt% or less (preferably 0.5 wt% or less), based on the total weight of the third heavy component.
  • the weights of the third heavy component and the first liquid phase material are determined based on the properties of heavy hydrocarbons.
  • the principle is that the third heavy component can be used to adjust the vaporization rate entering the second gas-liquid separator and control the preheating temperature of the first modified liquid phase material, effectively inhibiting the preheating and vaporization of heavy hydrocarbons in the fourth heating section (4) Coking during the process, low ratio adjustment is not obvious, and the control effect is poor. Either the preheating temperature cannot be controlled, or the reduction of non-volatile components is not obvious. Too high a ratio will lead to increased energy consumption, and high gasification temperature will easily Coking or the need to lower the temperature to avoid coking results in a low gasification rate.
  • the third heavy component can be used to adjust the vaporization rate entering the second gas-liquid separator.
  • the adjustment is not obvious at a low ratio, and an excessively high ratio will lead to increased energy consumption.
  • the first modified liquid phase material is mixed with a dilution steam
  • the steam is first mixed to obtain a first mixed material, and then the first mixed material is first heated, and then the first mixed material that has undergone the first heating is mixed with the secondary dilution steam for a second time, A second mixed material is obtained, and then the second mixed material is subjected to the third separation to obtain the second gas phase material and the second liquid phase material.
  • the temperature of the primary dilution steam is 180-400°C, preferably 200-350°C.
  • the temperature of the first mixed material after the first heating is 400°C or lower, preferably 250-350°C.
  • the temperature of the secondary dilution steam is 400-630°C, preferably 450-600°C.
  • the weight ratio of the first modified liquid phase material to the primary dilution steam is 1: (0.1-0.5), preferably 1: (0.2-0.4).
  • the weight ratio of the first modified liquid phase material to the secondary dilution steam is 1: (0.2-0.8), preferably 1: (0.3-0.65).
  • the temperature of the second mixed material is 320-400°C.
  • liquid hydrocarbons are further introduced into the first liquid phase material, and/or the first modified liquid phase material, and/or the first mixed material.
  • the weight ratio of the liquid hydrocarbon to the first liquid phase material is 1: (0.45-0.85) (preferably 1: (0.5-0.7)).
  • the gasification rate of the heavy hydrocarbons (called the first gasification rate) is 15-60%, preferably 25-45%.
  • the gasification rate (called the second gasification rate) of the first modified liquid phase material or the second mixed material is 40-80%. , preferably 50-70%.
  • the difference (absolute value) between the first gasification rate and the second gasification rate is 15%-50% (preferably 30%-40%).
  • This control is mainly based on comprehensive considerations of providing raw materials for reforming, saving investment in the second separation, and improving the quality of the first liquid phase material.
  • the first gasification rate is sufficient to meet the reforming feed and should not be too high.
  • the second gasification rate can be increased to increase the chemical yield of crude oil. Therefore, the second gasification rate is generally much higher than the first gasification rate.
  • the second gasification rate is generally lower than 80%, so the difference (absolute value) will be lower than 30%, which will cause the second gasification rate to make the dry point of the third heavy component greater than 380°C, failing to meet the requirements for the third heavy component.
  • the purpose of the liquid phase material modification is to increase the investment in the first separation and the second separation, and to increase the energy consumption of the second separation. If the first gasification rate is less than 15%, the difference (absolute value) will be greater than 50%, and the aromatic hydrocarbon material cut out by the second separation cannot meet the requirements of the reforming feed, and the light components will not enter the second gas phase. Many, the distillation range of the cracking raw material is too wide, so there are no suitable cracking conditions for efficient cracking.
  • the first modified liquid phase material or the second mixed material undergoes the third separation to obtain a gas phase material (called primary gas phase material) and a liquid phase material (called primary liquid phase). phase material), making at least a part (for example, accounting for less than 50 wt% or less than 20 wt% of the total weight) of the third heavy component countercurrently contact with the initial gas phase material to obtain the second gas phase material.
  • the third heavy component is in counter-current contact with the primary gas phase material, which can effectively reduce the content of heavy components in the primary gas phase material to meet the cracking requirements for heavy components entering the radiation section for cracking.
  • the purpose is to reduce coking and extend the principle cycle of the cracking furnace. Ultimately achieving low energy consumption and efficient cracking.
  • the first modified liquid phase material or the second mixed material undergoes the third separation to obtain a gas phase material (called primary gas phase material) and a liquid phase material (called primary liquid phase). phase material), and the separation aid (also called cooling aid) is counter-currently contacted with the initial gas phase material to obtain the second gas phase material.
  • the separation aid is in counter-current contact with the initial gas phase material, which can effectively adjust the gasification rate of heavy hydrocarbons and control the content of the heavy components of the second gas phase material, so as to meet the cracking requirements for the heavy components entering the radiation section for cracking.
  • the purpose is to achieve Reduce coking and extend the principle cycle of the cracking furnace, ultimately achieving low energy consumption and efficient cracking.
  • the weight ratio of the second gas phase material to the third heavy component is 1: (0.01-0.35), preferably 1: (0.05-0.2).
  • the weight ratio of the second gas phase material to the separation aid is 1: (0.01-0.2), preferably 1: (0.05-0.15).
  • the initial gas phase material is first in counter-current contact with the separation aid, and then is in counter-current contact with the third heavy component, or the initial gas phase material is first in counter-current contact with the third heavy component Countercurrent contact, and then countercurrent contact with the separation aid.
  • the separation aid is selected from at least one of liquid hydrocarbons and liquid water.
  • the liquid hydrocarbons include hydrocarbons with a final boiling point of 200-540°C (preferably 250-450°C or 300-400°C), preferably those selected from heavy naphtha, jet fuel and diesel. At least one.
  • the initial gas phase material first contacts the liquid water in countercurrent flow, and then contacts the liquid hydrocarbon in countercurrent flow, or the initial gas phase material first contacts the liquid hydrocarbon in countercurrent flow, and then contacts the liquid hydrocarbon in countercurrent flow. Counter-current contact with the liquid water, or simultaneous counter-current contact of the initial gas phase material with the liquid water and the liquid hydrocarbon.
  • the second gas phase material is subjected to a second heating to a temperature of 500-600°C (preferably 510-500°C) before the steam cracking.
  • the content of the non-volatile components of the second gas phase material is 1 wt% or less (preferably 0.5 wt% or less), based on the total weight of the second gas phase material. If the content of the non-volatile components of the second gas phase material does not meet this requirement, there may be a risk of coking in the radiation section.
  • a system for steam cracking heavy hydrocarbons to produce olefins including: a first gas-liquid separator (8) configured to enable the heavy hydrocarbons to undergo a first separation, Obtain the first gas phase material and the first liquid phase material; a separation device such as a separation tower (7), which is configured to enable the first gas phase material to undergo a second separation to obtain the third heavy component; a conveying device, which It is configured to be able to introduce at least a part of the third heavy component into the first liquid phase material to obtain the first modified liquid phase material; a second gas-liquid separator (9) is configured to be able to make the third heavy component A modified liquid phase material is subjected to a third separation to obtain a second gas phase material and a second liquid phase material; a steam cracking device configured to enable steam cracking of the second gas phase material to obtain cracking containing the olefins product.
  • a first gas-liquid separator (8) configured to enable the heavy hydrocarbons to undergo a first separation, Obtain the first gas
  • the step S1 further includes: causing the heavy hydrocarbons to be preheated to enter the first heating section for first preheating to obtain the first preheated heavy hydrocarbons;
  • the first preheated heavy hydrocarbons and the heat exchange medium enter the heat exchanger respectively for heat exchange to obtain the second preheated heavy hydrocarbons; and then the second preheated heavy hydrocarbons are used as the preheated heavy hydrocarbons.
  • Hydrocarbons enter the first gas-liquid separator; wherein the heat exchange medium includes steam heated by a heater, or steam heated by the second heating section, or steam from a steam source; optionally, The temperature of the steam is 250-450°C.
  • step S1 further includes: introducing at least part of the first preheated heavy hydrocarbons into a heater for heating to obtain a third preheated heavy hydrocarbon; and then causing the third preheated heavy hydrocarbons to Hot heavy hydrocarbons enter the first gas-liquid separator as the preheated heavy hydrocarbons.
  • step S1 further includes: introducing at least part of the first preheated heavy hydrocarbons from the first heating section into the heavy hydrocarbon preheating section for heating to obtain a fourth preheated heavy hydrocarbon. Heat heavy hydrocarbons; make the fourth preheated heavy hydrocarbons enter the first gas-liquid separator as the preheated heavy hydrocarbons.
  • step S1 further includes: subjecting the first preheated heavy hydrocarbon to desalting and then performing heat exchange and/or heating, or subjecting the heavy hydrocarbon to be preheated to After desalting, the first preheating is performed.
  • the step S1 also includes: causing the heavy hydrocarbons to be preheated to enter the first heating section 1A for first preheating to obtain the first preheated heavy hydrocarbons;
  • the first preheated heavy hydrocarbons and the heat exchange medium enter the heat exchanger 6A respectively for heat exchange to obtain the second preheated heavy hydrocarbons; and then the second preheated heavy hydrocarbons are used as the preheated heavy hydrocarbons.
  • Quality hydrocarbons enter the first gas-liquid separator 8; wherein the heat exchange medium includes steam heated by the heater 6B, or steam heated by the second heating section 2, or steam from a steam source.
  • the step S1 also includes: introducing at least part of the first preheated heavy hydrocarbon into the heater 6B for heating to obtain a third preheated heavy hydrocarbon; and then making the third preheated heavy hydrocarbon The three preheated heavy hydrocarbons enter the first gas-liquid separator 8 as the preheated heavy hydrocarbons.
  • step S1 further includes: entering at least part of the first preheated heavy hydrocarbons from the first heating section 1A into the heavy hydrocarbon preheating section 1B for heating, to obtain The fourth preheated heavy hydrocarbon is allowed to enter the first gas-liquid separator 8 as the preheated heavy hydrocarbon; or, alternatively, at least part of the gas from The first preheated heavy hydrocarbon in the first heating section 1A enters the heavy hydrocarbon preheating section 1B and then passes through the heat exchanger 6A and/or the heater 6B for heat exchange and/or heating to obtain the fourth preheated heavy hydrocarbon.
  • Heat heavy hydrocarbons causing the fourth preheated heavy hydrocarbons to enter the first gas-liquid separator 8 as the preheated heavy hydrocarbons; or, at least part of the gas from the first heating section 1A
  • the first preheated heavy hydrocarbons enter the heavy hydrocarbon preheating section 1B to obtain the fourth preheated heavy hydrocarbons, so that another part of the first preheated heavy hydrocarbons from the first heating section 1A enters the exchanger.
  • Heater 6A and/or heater 6B perform heat exchange and/or heating and then mix with the fourth preheated heavy hydrocarbons, so that the mixed heavy hydrocarbons enter the first gas as preheated heavy hydrocarbons.
  • Liquid separator 8. Specifically, the heavy hydrocarbon preheating method can be selected based on the actual heat required by the steam cracking system.
  • the heat exchange medium can be any heat exchange medium commonly used in the art, and is not limited to the listed steam.
  • the step S1 further includes: subjecting the first preheated heavy hydrocarbon to desalination treatment and then performing heat exchange and/or heating, so as to use the flue gas obtained from the desalination pretreatment to treat the third preheated heavy hydrocarbon. Preheat the heavy hydrocarbons for further heating; or, desalinize the heavy hydrocarbons to be preheated and then enter the first heating section 1A for first preheating.
  • the invention couples a steam cracking device with an electric desalting device and adds an external heater and a heat exchanger, which is beneficial to comprehensive utilization of energy, reducing energy consumption and increasing applicability to heavy hydrocarbons.
  • step S2 at least part of the primary dilution steam is allowed to enter the third heating section 3A for heating to obtain superheated primary dilution steam, and the superheated primary dilution steam is combined with The first liquid phase material is mixed for the first time; the temperature of the superheated primary dilution steam is 180-400°C, preferably 200-350°C.
  • the second gas phase material includes carried steam and a second light component; the second liquid phase material includes a second heavy component.
  • the second gas phase material includes carried steam and a second light component; the second liquid phase material includes a second heavy component.
  • the first light component accounts for 30-40% by weight of the total weight of heavy hydrocarbons, the initial boiling point temperature of the first light component is ⁇ 270°C, and the final boiling point temperature is 265-265°C. Between 275°C; the first heavy component is in equilibrium with the first light component; the final boiling point temperature of the second light component is 330-480°C; the second heavy component is in equilibrium with the first light component
  • the two light components are in phase balance;
  • the third light component mainly includes C1-C6 components, with a final boiling point temperature ⁇ 90°C, and is sent to other cracking furnaces for cracking;
  • the first middle distillate mainly includes C6-C10 components , the distillation range is 80-170°C, and is sent to the reforming unit; the third heavy component has a distillation range of 180-380°C, and mainly includes C11 and above components.
  • the initial boiling point or the final boiling point of each fraction is a range value, and in actual operation, it can be any temperature within the range value. Moreover, the present invention can select the separated fractions according to actual production needs.
  • the first intermediate component of the present invention has a high potential content of aromatic hydrocarbons and is not suitable for steam cracking. It can be flexibly sent to refining equipment such as reforming as raw material. If aromatic is suitable, aromatic will be used, if alkenes are suitable, alkene will be used, and if oil is suitable, oil will be used. .
  • the steam cracking device includes a convection section and a radiation section from top to bottom.
  • the convection section includes a first heating section 1A, an optional heavy hydrocarbon preheating section 1B, an optional second heating section 2, a third heating section 3A, The fourth heating section 4, the fifth heating section 3B and the sixth heating section 5.
  • the first mixed material enters the fourth heating section 4 for first heating, and then is mixed with the secondary dilution steam superheated by the fifth heating section 3B to obtain the second mixture. material.
  • the second gas phase material enters the sixth heating section 5 for second heating and then enters the radiation section for steam cracking.
  • the first gas-liquid separator 8 is configured to allow preheated heavy hydrocarbons to enter therein for first separation to obtain a first gas phase material and a first liquid phase material.
  • the radiant section of the steam cracking device is configured to steam crack at least part of the first liquid phase material to obtain cracking products containing olefins.
  • the separation tower 7 is configured to send at least part of the first gas phase material to the separation tower 7 for second separation to obtain at least a third light component, a first intermediate component and a third Triple components.
  • the separation tower 7 is a separation device commonly used in this field, including a conventional condenser, reboiler and other structures, which can be set according to actual needs.
  • the system further includes a post-processing device configured to perform the post-processing on the first intermediate component.
  • the convection section is provided with a raw material heating inlet and a raw material heating outlet
  • the radiation section is provided with a steam cracking inlet and a cracking product outlet.
  • the first gas-liquid separator 8 is provided with a gas-liquid separation inlet, an optional third heavy component reflux inlet, an optional cooling aid inlet, a first gas phase material outlet and a first liquid Phase material export.
  • the gas-liquid separation inlet of the first gas-liquid separator 8 is connected to the raw material heating outlet of the convection section, and the first liquid phase material outlet of the first gas-liquid separator 8 is connected to the steam cracking inlet of the radiation section.
  • the separation tower 7 is provided with a first gas phase material inlet, and a third light component outlet, a first middle fraction outlet and a third light component outlet and a third light component outlet which are arranged in sequence from top to bottom along the height direction of the separation tower 7 .
  • the inlet of the first gas phase material of the separation tower 7 is connected with the first gas phase material outlet of the first gas-liquid separator 8 .
  • the cooling aid inlet includes a liquid hydrocarbon inlet and/or a water inlet; optionally, the cooling aid inlet includes multiple, wherein at least one cooling aid inlet is a water inlet, and at least One cooling aid inlet is a liquid hydrocarbon inlet.
  • the second gas-liquid separator 9 is provided with a second mixed material inlet, a second gas phase material outlet and a second liquid phase material outlet, an optional third heavy component inlet and an optional Imports of separation aids.
  • the separation aid inlet includes a liquid hydrocarbon inlet and/or a water inlet.
  • the separation aid inlet includes a plurality of separation aid inlets, wherein at least one separation aid inlet is a water inlet, and at least one separation aid inlet is a liquid hydrocarbon inlet.
  • the separation aid inlet is located above the second mixed material inlet.
  • the first liquid phase material outlet of the first gas-liquid separator 8 is connected with the second mixed material inlet of the second gas-liquid separator 9 .
  • the communication pipeline between the second mixed material inlet of the second gas-liquid separator 9 and the first liquid phase material outlet of the first gas-liquid separator 8 is provided with a primary dilution steam inlet and a superheated secondary dilution steam inlet.
  • the primary dilution steam inlet is arranged upstream of the superheated secondary dilution steam inlet; optionally, the outlet of the third recombinant component of the separation tower 7 is respectively connected with the third recombinant component of the first gas-liquid separator 8
  • the partial return inlet is connected with the third component inlet of the second gas-liquid separator 9 .
  • the outlet of the second gas phase material of the second gas-liquid separator 9 is connected with the steam cracking inlet of the radiation section.
  • the convection section is provided with a first heating section 1A, an optional boiler feed water preheating section BFW, and an optional boiler feed water preheating section BFW from top to bottom.
  • the heating inlet of the first heating section 1A is used to introduce heavy hydrocarbons to be preheated; the outlet of the first heating section 1A is connected to the gas-liquid separation inlet of the first gas-liquid separator 8; the gas-liquid separation inlet of the first gas-liquid separator 8 A pressure regulating valve is provided on the introduction pipeline of the separation inlet to control the preheating temperature of the heavy hydrocarbons entering the first gas-liquid separator 8; optionally, a pressure regulating valve is provided on the lead-out pipeline of the first gas phase material outlet. , to further control the gasification rate.
  • the first liquid phase material outlet of the first gas-liquid separator 8 is connected to the heating inlet of the fourth heating section 4 via the first pipeline; the heating inlet of the third heating section 3A is connected to the primary steam source; The heating outlet of the hot section 3A is connected to the first pipeline.
  • the heating outlet of the fourth heating section 4 is connected to the second mixed material inlet of the second gas-liquid separator 9 via a second pipeline; the heating inlet of the fifth heating section 3B is connected to the secondary steam source; the heating of the fifth heating section 3B The outlet is connected to the second pipeline.
  • the heating inlet of the sixth heating section 5 is connected to the second gas phase material outlet of the second gas-liquid separator 9; the heating outlet of the sixth heating section 5 is connected to the steam cracking inlet of the radiation section.
  • the second liquid phase material outlet of the second gas-liquid separator 9 can be used to communicate with a hydrocracking or catalytic cracking device.
  • the second gas-liquid separator 9 is provided with a tray, a hydrocyclone separator or a combination thereof.
  • the system further includes a heavy hydrocarbon preheating unit for further heat exchange of the first preheated heavy hydrocarbons from the first heating section 1A to The temperature of the heavy hydrocarbons entering the first gas-liquid separator 8 is controlled.
  • the heavy hydrocarbon preheating unit includes a heavy hydrocarbon heating inlet and a heavy hydrocarbon heating outlet.
  • the heavy hydrocarbon heating inlet is connected to the heating outlet of the first heating section 1A, and the heavy hydrocarbon heating outlet is connected to the gas-liquid separation inlet of the first gas-liquid separator 8 .
  • the heavy hydrocarbon preheating unit includes a heat exchanger 6A and an optional heater 6B;
  • the heat exchanger 6A includes a first heating inlet for heavy hydrocarbons, a heat exchange medium inlet, and a heavy hydrocarbon inlet.
  • the first heating outlet and the heat exchange medium outlet after heat exchange;
  • the first heating inlet of heavy hydrocarbons forms a heavy hydrocarbon heating inlet of the heavy hydrocarbon preheating unit and is connected to the heating outlet of the first heating section 1A;
  • the first heating inlet of heavy hydrocarbons A heating outlet is formed as a heavy hydrocarbon heating outlet of the heavy hydrocarbon preheating unit, and the first heavy hydrocarbon heating outlet is connected with the gas-liquid separation inlet of the first gas-liquid separator 8 .
  • the heater 6B includes a first heating inlet for heat exchange medium and a first heating outlet for heat exchange medium; the second heating section 2 includes a second heating inlet for heat exchange medium and a second heating outlet for heat exchange medium.
  • the outlet; the first heating inlet of the heat exchange medium and the second heating inlet of the heat exchange medium are respectively used to communicate with the steam source.
  • the heat exchange medium inlet of the heat exchanger 6A is connected to the first heat exchange medium heating outlet of the heater 6B.
  • the heat exchange medium inlet of the heat exchanger 6A is connected to the second heating outlet of the heat exchange medium of the second heating section 2; or the heat exchange medium inlet of the heat exchanger 6A is connected to the steam source.
  • the heavy hydrocarbon preheating unit includes a heater 6B; the heater 6B includes a second heating inlet for heavy hydrocarbons and a second heating outlet for heavy hydrocarbons; the second heating inlet for heavy hydrocarbons is formed as The heavy hydrocarbon heating inlet of the heavy hydrocarbon preheating unit and the second heating inlet of the heavy hydrocarbon are connected with the heating outlet of the first heating section 1A; the second heating outlet of the heavy hydrocarbon is formed as the heavy hydrocarbon of the heavy hydrocarbon preheating unit.
  • the second heating outlet for heavy hydrocarbons is connected with the gas-liquid separation inlet of the first gas-liquid separator 8 .
  • the heating outlet of the first heating section 1A is connected with the heating inlet of the heavy hydrocarbon preheating section 1B, and the heating outlet of the heavy hydrocarbon preheating section 1B is connected with the first gas-liquid separator 8
  • the gas-liquid separation inlet is connected through a third pipeline; optionally, the heat exchanger 6A or heater 6B is connected to the third pipeline.
  • the system includes:
  • the heavy hydrocarbon preheating unit includes a heat exchanger 6A and a heater 6B;
  • the steam cracking device includes a convection section and a radiation section; along the height direction of the steam cracking device, the convection section is provided with a first heating section 1A, a boiler feed water preheating section BFW, a third heating section 3A, and a fourth heating section from top to bottom. 4.
  • the radiation section includes the steam cracking inlet and the cracking product outlet;
  • the heat exchanger 6A includes a first heating inlet for heavy hydrocarbons, a heat exchange medium inlet, a first heating outlet for heavy hydrocarbons, and an outlet for the heat exchange medium after heat exchange;
  • the separation tower 7 is provided with a first gas phase material inlet, and along the height direction of the separation tower 7, there are mutually independent third light component outlets, a first middle fraction outlet and a third heavy component outlet from top to bottom;
  • the first gas-liquid separator 8 is provided with a gas-liquid separation inlet, a third heavy component reflux inlet, a first gas phase material outlet and a first liquid phase material outlet;
  • the second gas-liquid separator 9 is provided with a second mixed material inlet, The second gas phase material outlet and the second liquid phase material outlet, as well as the third heavy component inlet and the separation aid inlet; wherein, the heating inlet of the first heating section 1A is used to introduce heavy hydrocarbons to be preheated; the first heating section 1A The heating outlet is connected with the first heating inlet of the heavy hydrocarbons of the heat exchanger 6A; the first heating outlet of the heavy hydrocarbons of the heat exchanger 6A is connected with the gas-liquid separation inlet of the first gas-liquid separator 8;
  • the first heating inlet of the heat exchange medium of heater 6B is connected with the steam source.
  • the first heating outlet of the medium is connected with the heat exchange medium inlet of the heat exchanger 6A;
  • the first liquid phase material outlet of the first gas-liquid separator 8 and the heating inlet of the fourth heating section 4 are connected through the first pipeline;
  • the heating inlet of the third heating section 3A is connected with the primary steam source;
  • the heating of the third heating section 3A The outlet is connected to the first pipeline;
  • the heating outlet of the fourth heating section 4 is connected to the second mixed material inlet of the second gas-liquid separator 9 via a second pipeline; the heating inlet of the fifth heating section 3B is connected to the secondary steam source; the heating of the fifth heating section 3B The outlet is connected to the second pipeline;
  • the heating inlet of the sixth heating section 5 is connected to the second gas phase material outlet of the second gas-liquid separator 9; the heating outlet of the sixth heating section 5 is connected to the steam cracking inlet of the radiation section;
  • the first gas phase material outlet of the first gas-liquid separator 8 is connected to the first gas phase material inlet of the separation tower 7, the third light component outlet of the separation tower is connected to other cracking furnaces, and the first intermediate component outlet is connected to the heavy component outlet.
  • the whole device; the third heavy component outlet of the separation tower 7 is respectively connected with the third heavy component reflux inlet of the first gas-liquid separator 8 and the third heavy component inlet of the second gas-liquid separator 9; the second gas-liquid separator
  • the second liquid phase material outlet of 9 is connected to the hydrocracking or catalytic cracking device;
  • the primary dilution steam enter the third heating section 3A for heating to obtain superheated primary dilution steam; mix at least part of the first liquid phase material with the superheated primary dilution steam to obtain the first mixed material ;
  • the first gas phase material contains the first light component, and the first liquid phase material contains the first heavy component;
  • the first gas phase material is sent to the separation tower 7 for the second separation to obtain the third light component , optional first intermediate component and third heavy component;
  • the first mixed material After the first mixed material enters the fourth heating section 4 for first heating, it is mixed with the superheated secondary dilution steam of the fifth heating section 3B for the second time to obtain the second mixed material;
  • the second mixed material enters the second gas-liquid separator 9 for the third separation to obtain a second gas phase material and a second liquid phase material;
  • the second gas phase material includes the carried steam and the second light group
  • the second liquid phase material contains a second heavy component
  • a portion of the third heavy component and/or cooling aid is introduced into the first heavy component through the bottom outlet liquid phase line of the first gas-liquid separator 8 to control the inner tube of the fourth heating section 4 Discharge wall temperature;
  • a portion of the third heavy component and separation aid are introduced through the gas phase space at the upper and/or middle portion of the second gas-liquid separator 9 and contacted with the second gas phase material, so that the second gas phase material is The carried heavy components enter the third heavy component and the separation aid;
  • the second gas phase material enters the sixth heating section 5 for second heating and then enters the radiation section of the steam cracking device to undergo steam cracking to obtain cracking products containing olefins.
  • the system is different from the system shown in Figure 1 in that: the steam cracking device is also provided with a third The second heating section 2 replaces the heater 6B in Figure 1; the heating outlet of the second heating section 2 is connected to the heat exchange medium inlet of the heat exchanger 6A; the heat exchange medium is the first steam heated by the second heating section 2.
  • the difference between this system and the system shown in Figure 1 is that the system does not include a heat exchanger 6A. ;
  • the heating outlet of the first heating section 1A is connected to the heating inlet of the heater 6B, and the heating outlet of the heater 6B is connected to the gas-liquid separation inlet of the first gas-liquid separator 8.
  • the system is different from the system shown in Figure 1 in that: the system does not include heater 6B;
  • the heat exchange medium is the third steam;
  • the heating outlet of the first heating section 1A is connected to the heating inlet of the heater 6B, and the heating outlet of the heater 6B is connected to the gas-liquid separation inlet of the first gas-liquid separator 8 .
  • the system is different from the system shown in Figure 1 in that: the system also includes a heavy hydrocarbon pre-processor.
  • the hot section 1B does not include the heat exchanger 6A and the heater 6B; the heating outlet of the first heating section 1A is connected to the heating inlet of the heavy hydrocarbon preheating section 1B, and the heating outlet of the heavy hydrocarbon preheating section 1B is connected to the first gas The gas-liquid separation inlet of the liquid separator 8.
  • FIG. 5 is the most preferred embodiment of the heat exchange unit of the present invention.
  • the heat source in the steam cracking device cannot support the heat required for the steam cracking reaction or the outlet of the first heating section 1A is not equipped with
  • setting up a reboiler set up a heat exchanger and/or heater in the steam cracking system, and introduce an external heat source to heat the reaction materials.
  • the above operating temperatures are the temperatures under normal operating conditions under the normal operating conditions of the cracking furnace.
  • the ethylene yield is calculated as the ratio of the weight of ethylene at the outlet of the radiant section of the cracking furnace to the weight of heavy hydrocarbons entering the radiant section for cracking
  • the chemical yield is calculated as the output chemicals The mass ratio of the total mass to the total processed heavy hydrocarbons.
  • the calculation of energy consumption in energy utilization efficiency is based on the energy (MW) required to produce one ton of ethylene in the refining unit.
  • the distillation range of the heavy hydrocarbons is:
  • the content of non-volatile components of the heavy hydrocarbons is 7wt%, and the potential content of aromatic hydrocarbons is 15wt%. Based on the total weight of the heavy hydrocarbons.
  • the method of steam cracking heavy hydrocarbons to produce olefins in Example 1 specifically includes the following steps:
  • the heavy hydrocarbons from the storage tank are first preheated through the first heating section 1A of the convection section of the steam cracking device.
  • the temperature of the first preheated heavy hydrocarbons is 115°C;
  • the heavy hydrocarbons are sent to the heat exchanger 6A for further heat exchange with the heat exchange medium to increase the temperature to obtain the second preheated heavy hydrocarbons;
  • the heat exchange medium is medium-pressure steam (temperature: 350°C) heated by the heater 6B.
  • the temperature of the second preheated heavy hydrocarbon is 280°C;
  • the content of non-volatile components of the first gas phase material is ⁇ 0.1wt%, based on the total weight of the first gas phase material;
  • the first liquid phase material is mixed with the superheated primary dilution steam of the third heating section 3A to obtain the first mixed material; the weight ratio of the first liquid phase fraction to the superheated primary dilution steam is 1:0.25; The temperature of the primary dilution steam is 340°C, and the temperature of the first mixed material is 260°C;
  • the first mixed material enter the fourth heating section 4 for first heating.
  • the temperature of the first heated mixed material is 315°C; combine the first heated first mixed material with the superheated material after passing through the fifth heating section 3B.
  • the secondary dilution steam is mixed for the second time to obtain the second mixed material; the first liquid
  • the weight ratio of the phase material to the superheated secondary dilution steam is 1:0.50; the temperature of the superheated secondary dilution steam is 560°C;
  • the temperature of the second mixed material is 335°C;
  • the second mixed material enters the second gas-liquid separator 9 for third separation to obtain a second gas phase material and a second liquid phase material;
  • the second gas phase material contains carried steam and a second light component;
  • the phase material contains the second heavy component (initial boiling point temperature ⁇ 430°C);
  • the gasification rate of the heavy hydrocarbons is 35%, and in the third separation, the gasification rate of the second mixed material is 72%;
  • the second gas phase material enters the sixth heating section 5 for second heating and then enters the radiant section of the steam cracking device for steam cracking; the steam cracking temperature is 800°C, and the residence time of the radiant furnace tube is 0.25s.
  • the distillation range of the first gas phase material is:
  • more than 95 wt% of the aromatic hydrocarbon material is enriched in the first gas phase material.
  • the distillation ranges of the first liquid phase material and the first modified liquid phase material are:
  • the gasification process of the first modified liquid phase material in the fourth heating section is accelerated, and there is no obvious difference after 70 days of continuous operation. If the coking phenomenon occurs, coking in the convection section can be avoided at a higher operating temperature, so that a higher chemical yield can be obtained.
  • the temperature of the first heated mixed material can be controlled at 315°C, and even if the temperature of the first mixed material rises to 340°C, there will be no obvious coking phenomenon.
  • the second mixed material in the third separation can adapt to higher temperatures.
  • the temperature of the second mixed material can reach a maximum of 350°C.
  • the distillation range of the second gas phase material is:
  • the ethylene yield is greater than 23wt% (based on the total amount of crude oil that enters the radiant section for cracking), and the triene yield is 42% (based on the total amount of crude oil that enters the radiant section for cracking),
  • the chemical yield is 71% (excluding PGO, PFO, and imported heavy oil, chemicals produced by crude oil cracking account for the mass proportion of crude oil)
  • the method of steam cracking heavy hydrocarbons to produce olefins in Example 1 specifically includes the following steps:
  • the heavy hydrocarbons from the storage tank are first preheated through the first heating section 1A of the convection section of the steam cracking device.
  • the temperature of the first preheated heavy hydrocarbons is 115°C;
  • the heavy hydrocarbons are sent to the heat exchanger 6A to further exchange heat with the heat exchange medium to increase the temperature to obtain the second preheated heavy hydrocarbons;
  • the heat exchange medium is the superheated medium-pressure steam (temperature is 350°C) after passing through the second heating section 2 °C), the temperature of the second preheated heavy hydrocarbon is 280°C;
  • the content of non-volatile components of the first gas phase material is ⁇ 0.1wt%, based on the total weight of the first gas phase material;
  • the first liquid phase material is mixed with the superheated primary dilution steam of the third heating section 3A to obtain the first mixed material; the weight ratio of the first liquid phase fraction to the superheated primary dilution steam is 1:0.25; The temperature of the primary dilution steam is 340°C, and the temperature of the first mixed material is 260°C;
  • the first mixed material enter the fourth heating section 4 for first heating.
  • the temperature of the first heated mixed material is 315°C; combine the first heated first mixed material with the superheated material after passing through the fifth heating section 3B.
  • the temperature of the second mixed material is 330°C;
  • the second mixed material enters the second gas-liquid separator 9 for third separation to obtain a second gas phase material and a second liquid phase material;
  • the second gas phase material contains carried steam and a second light component;
  • the phase material contains the second heavy component (initial boiling point temperature ⁇ 430°C);
  • the gasification rate of the heavy hydrocarbons is 30%, and in the third separation, the gasification rate of the second mixed material is 65%;
  • the second gas phase material enters the sixth heating section 5 for second heating and then enters the radiant section of the steam cracking device for steam cracking; the steam cracking temperature is 805°C, and the residence time of the radiant furnace tube is 0.25s.
  • the composition of the third heavy component and the first gas phase material is the same as in Example 1. Since the amount of the third heavy component introduced into the first liquid phase material is reduced by half compared with Example 1, the modification effect is limited. .
  • the distillation ranges of the first liquid phase material and the first modified liquid phase material in Example 2 are:
  • the gasification process of the first modified liquid phase material in the fourth heating section is accelerated. After 60 days of continuous operation, There is no obvious coking phenomenon at the end, and coking in the convection section can be avoided at a higher operating temperature, thus achieving a higher chemical yield.
  • Example 2 the temperature of the first mixed material after first heating can be controlled at 305°C, and even if the temperature of the first mixed material rises to 330°C, there is no obvious coking phenomenon.
  • the second mixed material in the third separation can adapt to higher temperatures.
  • the temperature of the second mixed material can reach a maximum of 340°C.
  • the distillation range of the second gas phase material is:
  • the ethylene yield is 22.5wt% (based on the total amount of crude oil entering the radiant section for cracking), the triene yield is 40%, and the chemical yield is 69% (except for PGO, PFO, and exported heavy oil, Chemicals produced by crude oil cracking account for the mass proportion of crude oil).
  • the heavy hydrocarbon AP I is 30, and the distillation range is as follows:
  • the method of steam cracking heavy hydrocarbons to produce olefins in Example 3 specifically includes the following steps:
  • the heavy hydrocarbons from the storage tank are first preheated through the first heating section 1A of the convection section of the steam cracking device.
  • the temperature of the first preheated heavy hydrocarbons is 115°C;
  • the heavy hydrocarbons are sent to the heat exchanger 6A to further exchange heat with the heat exchange medium to increase the temperature to obtain the second preheated heavy hydrocarbons;
  • the heat exchange medium is high-pressure steam (temperature is 450°C), and the second preheated heavy hydrocarbons are The temperature is 300°C;
  • the second preheated heavy hydrocarbon enters the first gas-liquid separator 8 as the preheated heavy hydrocarbon for the first separation to obtain the first gas phase material and the first liquid phase material; the first gasification rate of the first separation is 30%.
  • the content of non-volatile components of the first gas phase material is ⁇ 0.1wt%, based on the total weight of the first gas phase material;
  • the first liquid phase material is mixed with the superheated primary dilution steam of the third heating section 3A to obtain the first mixed material; the weight ratio of the first liquid phase fraction to the superheated primary dilution steam is 1:0.25; The temperature of the primary dilution steam is 340°C, and the temperature of the first mixed material is 260°C;
  • the first mixed material enters the fourth heating section 4 for first heating, and the temperature of the first heated first mixed material is 295°C; the first heated first mixed material and the superheated material after passing through the fifth heating section 3B
  • the secondary dilution steam is mixed for a second time to obtain a second mixed material; the weight ratio of the first liquid phase material and the superheated secondary dilution steam is 1:0.50; the temperature of the superheated secondary dilution steam is 560°C;
  • the temperature of the second mixed material is 330°C;
  • the second mixed material enters the second gas-liquid separator 9 for third separation to obtain a second gas phase material and a second liquid phase material;
  • the second gas phase material contains carried steam and a second light component;
  • the phase material contains the second heavy component (initial boiling point temperature ⁇ 430°C);
  • the gasification rate of the heavy hydrocarbons is 30%, and in the third separation, the gasification rate of the second mixed material is 50%;
  • the second gas phase material enters the sixth heating section 5 for second heating and then enters the radiant section of the steam cracking device for steam cracking; the steam cracking temperature is 800°C, and the residence time of the radiant furnace tube is 0.25s.
  • the first vaporization rate and the second vaporization rate are both low, and the difference between the first vaporization rate and the second vaporization rate (absolute value) is 20%.
  • Example 3 the temperature of the first heated mixed material can be controlled at 295°C, and the temperature of the first mixed material can be raised to a maximum of 300°C.
  • the second mixed material in the third separation can adapt to higher temperatures.
  • the temperature of the second mixed material can reach a maximum of 320°C.
  • the process is shortened and the energy utilization efficiency is improved.
  • the energy consumption per ton of ethylene in this embodiment is reduced by 8%.
  • the distillation range of the second gas phase material is:
  • the ethylene yield is 21wt% (based on the total amount of crude oil entering the radiant section for cracking), the triene yield is 37%, and the chemical yield is 55% (except for PGO, PFO, and imported heavy oil, Chemicals produced by crude oil cracking account for the mass proportion of crude oil).
  • the heavy hydrocarbon AP I is 30, and the distillation range is as follows:
  • the method of steam cracking heavy hydrocarbons to produce olefins in Example 4 specifically includes the following steps:
  • the heavy hydrocarbons from the storage tank are first preheated through the first heating section 1A of the convection section of the steam cracking device.
  • the temperature of the first preheated heavy hydrocarbons is 115°C;
  • the heavy hydrocarbons are sent to the electric heater 6B for heating to increase the temperature to obtain the second preheated heavy hydrocarbons, and the temperature of the second preheated heavy hydrocarbons is 400°C;
  • the second preheated heavy hydrocarbon enters the first gas-liquid separator 8 as the preheated heavy hydrocarbon for the first separation to obtain the first gas phase material and the first liquid phase material; the first gasification rate of the first separation is 50%.
  • the content of non-volatile components of the first gas phase material is ⁇ 0.1wt%, based on the total weight of the first gas phase material;
  • the third heavy component is obviously heavier than that of Example 1/2/3. In this solution, the material has no obvious modification effect on the first liquid phase material.
  • Embodiment 5 further includes the following steps:
  • the first intermediate component obtained by the third separation is sent to the reforming device for processing.
  • the first intermediate component reforming feed amount accounts for about 24wt% of the total crude oil.
  • Embodiment 6 further includes the following steps:
  • the second mixed material is subjected to the third separation to obtain gas phase material (called primary gas phase material) and liquid phase material (called primary liquid phase material), so that a total weight of 20wt% of the third heavy component and/or Or the separation aid (liquid water) is in counter-current contact with the initial gas phase material to obtain the second gas phase material.
  • primary gas phase material gas phase material
  • primary liquid phase material liquid phase material
  • the distillation ranges of the initial gas phase material and the second gas phase material are:
  • Example 6 It can be seen from Example 6 that by bringing 20 wt% of the total weight of the third heavy component and/or separation aid (liquid water) into countercurrent contact with the initial gas phase material, the second gas phase material becomes significantly lighter. Under the same conditions as those in Example 1, the final boiling point temperature of the two mixed materials can be reduced by about 10°C.
  • the process is shortened and the energy utilization efficiency is improved.
  • the energy consumption per ton of ethylene in this embodiment is reduced by 7.6%.
  • Example 2 The same as Example 1, except that the initial boiling point of the third heavy component is 140°C.
  • the ethylene yield was 23.2% and the chemical yield was 71.5%.
  • Example 2 The same as Example 1, except that the initial boiling point of the third heavy component is 400°C.
  • the ethylene yield was 20.5% and the chemical yield was 65%.
  • the process is shortened and the energy utilization efficiency is improved.
  • the energy consumption per ton of ethylene in this embodiment is reduced by 7%.
  • Example 5 The same as Example 5, except that the weight ratio of the third heavy component in the first gas phase to the first liquid phase material is 4%.
  • the first intermediate component obtained by the third separation is sent to the reforming device for processing.
  • the weight ratio of the first intermediate component reforming feed to the total amount of crude oil is about 18%. Compared with Example 5, a part of the aromatic hydrocarbon material is lost.
  • the distillation range of the third heavy component is as follows:
  • the final boiling point of the third heavy component is low, causing the distillation range of the second gas phase to become wider, and some aromatic hydrocarbon materials enter the second gas phase. It is not appropriate to select the optimal cracking conditions, which affects the cracking performance.
  • the ethylene yield is 22.3 wt% (based on the total amount of crude oil entering the radiant section for cracking), and the triene yield is 39%.
  • the chemical yield is 68% (excluding PGO, PFO, and imported heavy oil, chemicals produced by crude oil cracking account for the mass proportion of crude oil).
  • Embodiment 1 The same as Embodiment 1, except that the separation tower 7 is not provided to perform the second separation, And only the second gas phase material is sent to the radiant section of the steam cracking device for steam cracking.
  • the ethylene yield is reduced by 2% compared with Example 1, and the chemical yield is reduced by 20% compared with Example 1.
  • the pressure drop in the convection section becomes larger and coking occurs. Due to the decrease in ethylene yield, the energy consumption of the device increases by 2% (Kg standard oil/t ethylene).
  • Example 2 The same as Example 1, except that the separation tower 7 is not provided for the second separation, and the first gas phase material and the second gas phase material are sent together to the radiant section of the steam cracking device for steam cracking.
  • Example 1 Compared with Example 1, the ethylene yield decreased by 1.5%, and compared with Example 1, the chemical yield decreased by 10%. According to this plan, after 35 days of continuous operation, the pressure drop in the convection section becomes larger and coking occurs. Due to the decrease in ethylene yield, the energy consumption of the device increases by 1.5% (Kg standard oil/t ethylene).
  • the selection of heavy hydrocarbons is the same as that in the embodiment.
  • the difference is that the heavy hydrocarbons are first separated through an atmospheric and vacuum distillation device, and then the raw materials suitable for cracking are fed into the cracking furnace for cracking, and the raw materials suitable for reforming are fed into the heavy hydrocarbons.
  • the whole device is cracked.
  • the steam cracking furnace is selected as a conventional steam cracking process without a multi-stage flash evaporation device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明涉及一种重质烃蒸汽裂解产生烯烃的方法和系统。所述重质烃蒸汽裂解产生烯烃的方法包括如下步骤:使所述重质烃进行第一分离,得到第一气相物料和第一液相物料,使所述第一气相物料进行部分冷凝(第二分离),得到凝液(第三重组分),将至少一部分所述第三重组分引入所述第一液相物料,获得第一改质液相物料,使所述第一改质液相物料进行第三分离,得到第二气相物料和第二液相物料,使所述第二气相物料进行蒸汽裂解,得到包含所述烯烃的裂解产物。与现有技术相比,本发明的方法和系统能够抑制对流段结焦,而且重质烃(原油)利用率高、乙烯产量高。

Description

一种重质烃蒸汽裂解产生烯烃的方法和系统 技术领域
本发明涉及石油化工技术领域,具体地,涉及一种重质烃蒸汽裂解产生烯烃的方法和系统。
背景技术
与传统的裂解原料相比,重质烃(原油等)用作蒸汽裂解炉原料时,存在终沸点高(大于520℃)、含有胶质、沥青质等杂质,不易汽化以及易造成结焦等问题,因此在裂解炉的设计以及生产工艺流程上需要做相应的处理与改进以适用重质烃(原油等)的特性。
CN111196936A公开了一种原油直接裂解生产烯烃的组合加工方法及装置,用于采用原油直接生产烯烃,其先采用脱盐脱水等前处理脱除进料中的水分、金属、非金属等杂质,然后将改善后的进料送入乙烯裂解对流段第一管排进行加热,加热后的进料送入气液分离器中,分出的柴油以及更轻的烃类气体送入对流段第二管排以及辐射段,进行蒸汽裂解反应以产生烯烃。而气液分离器出来的液体含常压渣油等组分,送入加氢单元进一步裂化,裂化产生的加氢尾油、轻石脑油等作为乙烯裂解的原料送回到对流段第二管排,产生的其它馏分则作为副产品或其它原料外送。
CN107001955A公开了用于有效率地裂化烃混合物的系统和方法,所述烃混合物例如为包括标准沸腾温度大于450℃、500℃或甚至大于550℃的化合物的混合物,例如全原油。
CN101528894A公开了加工液体原油和/或天然气冷凝物原料的方法,包括:使所述原料经过蒸发步骤以形成蒸气产物和液体产物,使所述蒸气产物经过剧烈的热裂化,和使所述液体产物经过原油炼油厂加工工艺。
CN101778929A公开了对于烯烃生产装置使用含凝析油和原油的原料的方法。将所述原料进行蒸发并分离成气态烃和液态烃。将所述原料蒸发并分离成气态烃和液态烃。所述气态烃物流在所述装置中进行热裂解。对 液态烃进行回收。
CN103210063A公开了裂化重质烃进料的工艺。将重质烃进料输送到汽化单元的第一区以分离第一蒸气流和第一液体流。将第一液体流输送到汽化单元的第二区并与逆流蒸汽密切接触产生第二蒸气流和第二液体流。第二蒸气流在精馏段中与洗涤液体接触形成精馏后的物流。第一蒸气流和精馏后的物流在蒸汽裂化器的辐射段中裂化产生裂化后的流出物。
发明内容
本发明的发明人通过刻苦的研究发现,重质烃(原油等)馏分宽,重质烃含量高,当采用直接蒸汽裂解时,如何在气化过程中控制重质烃的浓度,防止在对流段和辐射段的结焦就显得非常重要。现有技术中,当采用多级闪蒸法处理原油时,非挥发性组分在一级液相中富集,导致第一级闪蒸液相非挥发性组分含量高,直接进入对流段导致对流段容易结焦;现有技术当第一级闪蒸气相芳烃潜含量高时,直接蒸汽裂解则导致能量浪费、乙烯收率降低;现有技术的第一级闪蒸气相容易夹带非挥发性组分,直接蒸汽裂解则导致辐射段结焦。
为此,本发明的目的是提供一种重质烃蒸汽裂解产生烯烃的方法及系统,简化了传统方法及系统中的常减压装置,操作简单,实现了对重质烃的灵活切割,兼顾了乙烯裂解装置和炼油相关处理装置如重整装置的原料供应,简化了气液分离流程,实现流程的短流程再造,其气液分离方法高效,可以有效解决现有技术中的多级闪蒸的不足,实现气液分离过程的重组分中的杂质夹带问题、芳烃的利用和减少结焦的问题,实现裂解炉长周期运行,进一步降低了乙烯装置的能耗,对原油的适应性广。
具体而言,本发明涉及以下方面的内容。
1.一种重质烃蒸汽裂解产生烯烃的方法,包括如下步骤:
使所述重质烃进行第一分离(比如闪蒸),得到第一气相物料和第一液相物料,
使所述第一气相物料进行部分冷凝(比如分馏,称为第二分离),得到凝液(称为第三重组分,优选其初馏点温度≥165℃,更优选其馏程为180-380℃),
将至少一部分(比如占总重量50wt%以上或80wt%以上)所述第三重组分引入所述第一液相物料,获得第一改质液相物料,
使所述第一改质液相物料进行第三分离(比如闪蒸),得到第二气相物料和第二液相物料,
使所述第二气相物料进行蒸汽裂解,得到包含所述烯烃的裂解产物。
2.根据前述或后述任一方面所述的方法,其中所述重质烃的终馏点温度为540℃以上(优选初馏点温度为15℃且终馏点温度为750℃以上),和/或,所述重质烃的API值不小于32(优选38以上),和/或,所述重质烃的非挥发性组分的含量为25wt%以下(优选0.1-5.5wt%),基于所述重质烃的总重量计,和/或,所述重质烃的芳烃潜含量为10-40wt%,基于所述重质烃的总重量计。
3.根据前述或后述任一方面所述的方法,其中所述重质烃选自石蜡基原油、中间基原油、环烷基原油、凝析油和炼化产品中的至少一种。
4.根据前述或后述任一方面所述的方法,其中所述重质烃在进行所述第一分离之前进行预热而温度达到200-400℃(优选240-300℃)。
5.根据前述或后述任一方面所述的方法,其中所述第一气相物料的非挥发性组分的含量为0.5wt%以下,基于所述第一气相物料的总重量计。
6.根据前述或后述任一方面所述的方法,其中使所述第一气相物料进行所述第二分离,至少获得第三轻组分(优选终馏点温度≤90℃)、第一中间组分(优选馏程为80-170℃)和所述第三重组分。
7.根据前述或后述任一方面所述的方法,还包括对所述第一中间组分进行选自重整处理、炼油加工和异构分离的至少一种处理。
8.根据前述或后述任一方面所述的方法,其中所述第三重组分的非挥发性组分的含量为1wt%以下(优选0.5wt%以下),基于所述第三重组分的总重量计。
9.根据前述或后述任一方面所述的方法,其中所述第三重组分与所述第一液相物料的重量比为5-25%(优选15%-18%)。
10.根据前述或后述任一方面所述的方法,其中使所述第一改质液相物料与一次稀释蒸汽进行第一混合,得到第一混合物料,然后使所述第一混合物料进行第一加热,接着使经过所述第一加热的所述第一混合物料与 二次稀释蒸汽进行第二混合,得到第二混合物料,然后使所述第二混合物料进行所述第三分离,得到所述第二气相物料和所述第二液相物料。
11.根据前述或后述任一方面所述的方法,其中所述一次稀释蒸汽的温度为180-400℃,优选200-350℃,和/或,所述第一混合物料进行所述第一加热后的温度为400℃以下,优选250-350℃,和/或,所述二次稀释蒸汽的温度为400-630℃,优选450-600℃,和/或,所述第一改质液相物料与所述一次稀释蒸汽的重量比为1:(0.1-0.5),优选1:(0.2-0.4),和/或,所述第一改质液相物料与所述二次稀释蒸汽的重量比为1:(0.2-0.8),优选1:(0.3-0.65),和/或,所述第二混合物料的温度为280-360℃(优选为310-340℃)。
12.根据前述或后述任一方面所述的方法,其中将液态烃进一步引入所述第一液相物料、和/或所述第一改质液相物料、和/或所述第一混合物料,所述液态烃与所述第一液相物料的重量比为(0.1-0.85):1(优选(0.15-0.3):1)。
13.根据前述或后述任一方面所述的方法,其中在所述第一分离中,所述重质烃的气化率(称为第一气化率)为15-60%,优选25-45%,在所述第三分离中,所述第二混合物料的气化率(称为第二气化率)为40-80%,优选50-75%。
14.根据前述或后述任一方面所述的方法,其中所述第一气化率与所述第二气化率的差值(绝对值)为15%-40%(优选20%-30%)。
15.根据前述或后述任一方面所述的方法,其中所述第一改质液相物料或所述第二混合物料进行所述第三分离,获得气相物料(称为初生气相物料)和液相物料(称为初生液相物料),使至少一部分(比如占总重量50wt%以下或20wt%以下)所述第三重组分和/或分离助剂(也称为冷却助剂)与所述初生气相物料逆流接触,获得所述第二气相物料。
16.根据前述或后述任一方面所述的方法,其中所述第二气相物料与所述第三重组分的重量比为1:(0.01-0.35),优选为1:(0.05-0.2),和/或,所述第二气相物料与所述分离助剂的重量比为1:(0.01-0.2),优选为1:(0.05-0.15)。
17.根据前述或后述任一方面所述的方法,其中所述初生气相物料先 与所述分离助剂逆流接触,然后再与所述第三重组分逆流接触,或者,所述初生气相物料先与所述第三重组分逆流接触,然后再与所述分离助剂逆流接触。
18.根据前述或后述任一方面所述的方法,其中所述分离助剂选自液态烃和液态水中的至少一种。
19.根据前述或后述任一方面所述的方法,其中所述初生气相物料先与所述液态水逆流接触,然后再与所述液态烃逆流接触,或者,所述初生气相物料先与所述液态烃逆流接触,然后再与所述液态水逆流接触,或者,所述初生气相物料与所述液态水和所述液态烃同时逆流接触。
20.根据前述或后述任一方面所述的方法,其中所述液态烃的终馏点为200-540℃(优选250-450℃或300-420℃),基于所述液态烃的总重量计,所述液态烃优选选自重石脑油、航煤油和柴油中的至少一种。
21.根据前述或后述任一方面所述的方法,其中所述第二气相物料在进行所述蒸汽裂解之前进行第二加热而温度达到500-600℃(优选510-550℃),所述第二气相物料的非挥发性组分的含量为1wt%以下(优选0.5wt%以下),基于所述第二气相物料的总重量计。
22.一种重质烃蒸汽裂解产生烯烃的系统,包括:
第一气液分离器(8),其被构造为能够使所述重质烃进行第一分离(比如闪蒸),得到第一气相物料和第一液相物料,
分离装置比如分离塔(7),其被构造为能够使所述第一气相物料进行部分冷凝(比如分馏,称为第二分离),得到凝液(称为第三重组分,优选其初馏点温度≥165℃,更优选其馏程为180-380℃),
输送装置,其被构造为能够将至少一部分(比如占总重量50wt%以上或80wt%以上)所述第三重组分引入所述第一液相物料,获得第一改质液相物料,
第二气液分离器(9),其被构造为能够使所述第一改质液相物料进行第三分离(比如闪蒸),得到第二气相物料和第二液相物料,
蒸汽裂解装置,其被构造为能够使所述第二气相物料进行蒸汽裂解,得到包含所述烯烃的裂解产物。
另一方面,本发明还涉及以下方面的内容。
1.一种重质烃蒸汽裂解产生烯烃的方法,所述方法包括如下步骤:
S1、使预热后的重质烃进入第一气液分离器(8)进行第一分离,得到第一气相物料和第一液相物料;
S2、使至少部分的所述第一液相物料进行蒸汽裂解,得到包含烯烃的裂解产物;使至少部分的第一气相物料送至分离塔(7)进行第二分离,得到至少包含第三轻组分、第一中间组分和第三重组分,对所述第一中间组分进行后处理,所述后处理不包括蒸汽裂解。
2.根据前述或后述任一方面所述的方法,其中,步骤S2中还包括:
使至少部分的所述第一液相物料与一次稀释蒸汽进行第一混合,得到第一混合物料;使所述第一混合物料进行第一加热后与过热后的二次稀释蒸汽进行第二混合,得到第二混合物料;
使所述第二混合物料进入第二气液分离器(9)进行第三分离,得到第二气相物料和第二液相物料;
使所述第二气相物料进行第二加热后进入蒸汽裂解装置的辐射段,进行蒸汽裂解,得到包含烯烃的裂解产物。
3.根据前述或后述任一方面所述的方法,其中,步骤S1中,所述预热后的重质烃温度为200-400℃,优选为240-370℃;
可选地,所述第一气相物料包含第一轻组分,所述第一液相物料包含第一重组分;
可选地,所述预热后的重质烃的气化率为20-65%,优选为30-50%。
4.根据前述或后述任一方面所述的方法,其中,步骤S2中,所述第一液相物料与所述一次稀释蒸汽的重量比为1:(0.1-0.5),优选为1:(0.2-0.4);
可选地,所述后处理包括重整处理、炼油的油品加工处理、正异构分离中的一种或几种;
可选地,该方法还包括:步骤S2中,使至少部分的所述一次稀释蒸汽进入第三加热段(3A)进行加热,得到过热后的一次稀释蒸汽,使所述过热后的一次稀释蒸汽与所述第一液相物料进行第一混合;
可选地,所述过热后的一次稀释蒸汽的温度为180-400℃,优选为200-350℃;
可选地,所述第一混合物料的温度为150-350℃,优选为190-300℃;
可选地,所述第一混合物料进行第一加热后的温度为400℃以下,优选为250-350℃;
可选地,所述过热后的二次稀释蒸汽的温度为400-630℃,优选为450-600℃;
可选地,所述第一液相物料与所述二次稀释蒸汽的重量比为1:(0.2-0.8);优选为1:(0.3-0.65)。
5.根据前述或后述任一方面所述的方法,其中,所述第二气相物料包含携带的蒸汽和第二轻组分;所述第二液相物料包含第二重组分;所述第二轻组分的终馏点温度为330-480℃;所述第二重组分的初馏点温度不高于所述第二轻馏分的终馏点;
可选地,步骤S2中还包括:
向所述第一重组分中引入至少部分的所述第三重组分和/或冷却助剂;
将至少部分的所述第三重组分和/或分离助剂引入所述第二气液分离器(9)的气相空间并与所述第二气相物料逆流接触;
可选地,使至少部分的第三重组分进行蒸汽裂解,得到包含烯烃的产物;
可选地,所述第二气相混合物料与所述第三重组分的重量比为1:(0.01-0.2),优选为1:(0.05-0.15);
可选地,所述冷却助剂选自液态烃和/或水中的一种或两种;
可选地,所述分离助剂选自液态烃和/或水中的一种或两种;
可选地,所述第二气相混合物料与所述水的重量比为1:(0.01-0.2),优选为1:(0.05-0.15);
可选地,所述第二气相混合物料与所述液态烃的重量比为1:(0.01-0.2),优选为1:(0.05-0.15);
可选地,该方法还包括:所述分离助剂引入方式选自以下方式中的至少一种:沿第二气液分离器(9)轴向方向,水的引入位置在液态烃引入位置的上方;或者沿第二气液分离器(9)轴向方向,水的引入位置在液态烃引入位置的下方;或者沿第二气液分离器(9)轴向方向,水的引入 位置与液态烃引入位置位于同一平面。
6.根据前述或后述任一方面所述的方法,其中,所述蒸汽裂解装置包括对流段和辐射段;沿所述蒸汽裂解装置的高度方向,所述对流段包括第一加热段(1A)、任选的重质烃预热段(1B)、任选的第二加热段(2)、第三加热段(3A)、第四加热段(4)、第五加热段(3B)和第六加热段(5);
可选地,步骤S1还包括:
使待预热的重质烃进入所述第一加热段(1A)进行第一预热,得到第一预热重质烃;将至少部分的所述第一预热重质烃和换热介质分别进入换热器(6A)进行换热,得到第二预热重质烃;然后使所述第二预热重质烃作为所述预热后的重质烃进入所述第一气液分离器(8);
可选地,所述换热介质包括经加热器(6B)加热后的蒸汽,或者经所述第二加热段(2)加热后的蒸汽,或者来自蒸汽源的蒸汽;可选地,所述蒸汽的温度为250-450℃;或者,
将至少部分的所述第一预热重质烃引入加热器(6B)进行加热,得到第三预热重质烃;然后使所述第三预热重质烃作为所述预热后的重质烃进入所述第一气液分离器(8);或者,
将至少部分的来自所述第一加热段(1A)的第一预热重质烃进入所述重质烃预热段(1B)进行加热,得到第四预热重质烃;使所述第四预热重质烃作为所述预热后的重质烃进入所述第一气液分离器(8);
可选地,使所述第一预热重质烃进行脱盐处理后再进行换热和/或加热,或者,使所述待预热的重质烃进行脱盐处理后再进行第一预热。
7.一种重质烃蒸汽裂解产生烯烃的系统,所述系统包括蒸汽裂解装置、分离塔(7)和第一气液分离器(8);所述蒸汽裂解装置包括对流段和辐射段;
所述第一气液分离器(8)被构造为使预热后的重质烃进入其中进行第一分离,得到第一气相物料和第一液相物料;
所述蒸汽裂解装置的辐射段被构造为使至少部分的所述第一液相物料进行蒸汽裂解,得到包含烯烃的裂解产物;
所述分离塔(7)被构造为使至少部分的第一气相物料送至分离塔(7) 进行第二分离,得到至少包含第三轻组分、第一中间组分和第三重组分;
所述系统还包括后处理装置,所述后处理装置被构造为对所述第一中间组分进行后处理,所述后处理装置不包括蒸汽裂解装置。
8.根据前述或后述任一方面所述的系统,其中,所述对流段设置有原料加热进口和原料加热出口;所述辐射段设置有蒸汽裂解入口和裂解产物出口;
所述第一气液分离器(8)上设置有气液分离进口、任选的第三重组分回流进口、任选的冷却助剂进口、第一气相物料出口和第一液相物料出口;所述第一气液分离器(8)的气液分离进口与所述对流段的原料加热出口连通;所述第一气液分离器(8)的第一液相物料出口与所述辐射段的蒸汽裂解入口连通;
所述冷却助剂进口包括液态烃进口和/或水进口;
所述分离塔(7)设置有第一气相物料进口,以及沿分离塔(7)高度方向,由上至下依次设置的第三轻组分出口、第一中间馏分出口和第三重组分出口;所述分离塔(7)的第一气相物料的进口与所述第一气液分离器(8)的第一气相物料出口连通;
可选地,该系统还包括第二气液分离器(9);
所述第二气液分离器(9)上设置有第二混合物料进口、第二气相物料出口和第二液相物料出口、任选的第三重组分进口以及任选的分离助剂进口;
所述分离助剂进口包括液态烃进口和/或水进口;
沿所述第二气液分离器(9)轴向方向,所述分离助剂进口位于所述第二混合物料进口的上方;
其中,所述第一气液分离器(8)的第一液相物料出口与所述第二气液分离器(9)的第二混合物料进口连通;并且所述第二气液分离器(9)的第二混合物料进口与所述第一气液分离器(8)的第一液相物料出口之间的连通管线上设置有一次稀释蒸汽进口和过热后的二次稀释蒸汽进口;沿物料的流动方向,所述一次稀释蒸汽进口设置于所述过热后的二次稀释蒸汽进口的上游;可选地,所述分离塔(7)的第三重组分的出口分别与所述第一气液分离器(8)的第三重组分回流进口和所述第二气液分离器 (9)的第三重组分进口连通;
所述第二气液分离器(9)的第二气相物料的出口与所述辐射段的蒸汽裂解入口相连通。
9.根据前述或后述任一方面所述的系统,其中,沿所述蒸汽裂解装置的高度方向,所述对流段包括第一加热段(1A)、任选的重质烃预热段(1B)、任选的第二加热段(2)、第三加热段(3A)、第四加热段(4)、第五加热段(3B)和第六加热段(5);
其中,所述第一加热段(1A)的加热进口用于引入待预热重质烃;所述第一加热段(1A)的加热出口与所述第一气液分离器(8)的气液分离进口连通;优选地,所述第一气液分离器(8)的气液分离进口的引入管线上设有压力调节阀,用以控制进入所述第一气液分离器(8)的重质烃的预热温度;可选地,所述第一气相物料出口的引出管线上设有压力调节阀,用以进一步控制气化率;
所述第四加热段(4)的加热进口与所述第一气液分离器(8)的第一液相物料出口经由第一管线连通;所述第三加热段(3A)的加热进口与一次蒸汽源连通;所述第三加热段(3A)的加热出口连接至所述第一管线;
所述第四加热段(4)的加热出口与所述第二气液分离器(9)的第二混合物料进口经由第二管线连通;所述第五加热段(3B)的加热进口与二次蒸汽源连通;所述第五加热段(3B)的加热出口连接至所述第二管线;
所述第六加热段(5)的加热进口与所述第二气液分离器(9)的第二气相物料出口连通;所述第六加热段(5)的加热出口与所述辐射段的蒸汽裂解进口连通;
可选地,所述第二气液分离器(9)的第二液相物料出口可用于与加氢裂化或催化裂解装置连通;
可选地,所述第二气液分离器(9)内部设置有塔盘、旋液分离器或二者组合的结构。
10.根据前述或后述任一方面所述的系统,其中,所述系统还包括重质烃预热单元,所述重质烃预热单元包括重质烃加热进口和重质烃加热出口;所述重质烃加热进口与所述第一加热段(1A)的加热出口连通,所述重质烃加热出口与所述第一气液分离器(8)的气液分离进口连通;
可选地,所述重质烃预热单元包括换热器(6A)和任选的加热器(6B);所述换热器(6A)包括重质烃第一加热进口、换热介质进口、重质烃第一加热出口和换热后换热介质出口;所述重质烃第一加热进口形成为所述重质烃预热单元的重质烃加热进口,所述重质烃第一加热进口与所述第一加热段(1A)的加热出口连通;所述重质烃第一加热出口形成为所述重质烃预热单元的重质烃加热出口,所述重质烃第一加热出口与所述第一气液分离器(8)的气液分离进口连通;
所述加热器(6B)包括换热介质第一加热进口和换热介质第一加热出口;所述第二加热段(2)包括换热介质第二加热进口和换热介质第二加热出口;所述换热介质第一加热进口和换热介质第二加热进口分别用于与蒸汽源连通;
所述换热器(6A)的换热介质进口与所述加热器(6B)的换热介质第一加热出口连通,或者所述换热器(6A)的换热介质进口与所述第二加热段(2)的换热介质第二加热出口连通;或者所述换热器(6A)的换热介质进口与蒸汽源连通;
或者所述重质烃预热单元包括加热器(6B);所述加热器(6B)包括重质烃第二加热进口和重质烃第二加热出口;所述重质烃第二加热进口形成为所述重质烃预热单元的重质烃加热进口,所述重质烃第二加热进口与所述第一加热段(1A)的加热出口连通;所述重质烃第二加热出口形成为所述重质烃预热单元的重质烃加热出口,所述重质烃第二加热出口与所述第一气液分离器(8)的气液分离进口连通;
可选地,所述第一加热段(1A)的加热出口与所述重质烃预热段(1B)的加热进口连通;所述重质烃预热段(1B)的加热出口与所述第一气液分离器(8)的气液分离进口经由第三管线连通;
可选地,所述换热器(6A)或加热器(6B)连接至第三管线。
技术效果
与现有技术相比,本发明提供的方法和系统可以取得以下技术效果之一或者其全部或部分的组合:
(1)第一中间组分可以合理处理,用于重整装置或用做裂解进料,用 于重整装置时特别适合于高芳烃潜含量原料,因此设置两级分离并对第一气相组分进行分离时,对重质烃(原油)的适应范围广,可以根据重质烃不同馏程组分的性质来进行切割,以实现对重质烃不同馏程组分进行高效利用如裂解和做重整原料等,芳烃不参与蒸汽裂解,能量利用效率更高,乙烯收率更高。
(2)第三重组分引入所述第一液相物料,可以有效调和第一液相物料的规格和控制第一液相物料的温度,有效抑制第四加热段重质烃预热气化过程中的结焦,确保裂解炉长周期运行,同时可以根据重质烃的规格,有效调节重质烃的汽化率,使得进入第二闪蒸的物料温度可以更高而由此第二闪蒸的气化率可以实现更高,有效分离出适合裂解的第二气相原料多,重质烃(原油)利用率高,乙烯产量高;
(3)引入分离助剂,可以减少裂解非理想组分不进入辐射段,避免气在辐射段炉管中结焦,延长运行周期,能量利用效率更高;
(4)第一级闪蒸对非挥发性组分夹带不再有要求,或者说不再担心非挥发性组分夹带问题,由此可以降低设备复杂度。对第一气相进行分离并将第三重组分并入到第一液相物料中,可以使第三重组分包含的非挥发性组分(如果夹带)进入第一液相物料中,同时可以减轻第一液相物料的非挥发性组分富集问题,而且还可以有效调和第一液相物料的规格和控制第一液相物料的温度,有效抑制第四加热段重质烃预热气化过程中的结焦,也提高了第二闪蒸的分离效率。
(5)采用本发明的方案,可以使得第二气相的组分的馏分中没有石脑油(≤干点180℃)的馏分,或者很少,其馏分的馏程范围比较窄,其裂解条件如COT的选择能兼顾各组分的高效裂解,烯烃收率高、能耗低。
附图说明
图1是本发明提供的重质烃蒸汽裂解产生烯烃一种示例性流程图。
图2是本发明提供的重质烃蒸汽裂解产生烯烃一种示例性流程图。
图3是本发明提供的重质烃蒸汽裂解产生烯烃一种示例性流程图。
图4是本发明提供的重质烃蒸汽裂解产生烯烃一种示例性流程图。
图5是本发明提供的重质烃蒸汽裂解产生烯烃一种示例性流程图。
图6是本发明提供的重质烃组分改质前后的TBP曲线对比图。
图7是本发明提供的重质烃组分改质前后的TBP曲线对比图。
附图标记说明
1A-第一加热段;BFW-锅炉给水预热段;1B-重质烃预热段;2-第二加
热段;3A-第三加热段;4-第四加热段;VHS-超高压蒸汽过热段;3B-第五加热段;5-第六加热段;6A-换热器;6B-加热器;7-分离塔;8-第一气液分离器;9-第二气液分离器。
具体实施方式
下面对本发明的具体实施方式进行详细说明,但是需要指出的是,本发明的保护范围并不受这些具体实施方式的限制,而是由附录的权利要求书来确定。
本说明书提到的所有出版物、专利申请、专利和其它参考文献全都引于此供参考。除非另有定义,本说明书所用的所有技术和科学术语都具有本领域技术人员常规理解的含义。在有冲突的情况下,以本说明书的定义为准。
当本说明书以词头“本领域技术人员公知”、“现有技术”或其类似用语来导出材料、物质、方法、步骤、装置或部件等时,该词头导出的对象涵盖本申请提出时本领域常规使用的那些,但也包括目前还不常用,却将变成本领域公认为适用于类似目的的那些。
除非另有其他明确表示,否则在整个说明书和权利要求书中,术语“包括”或其变换如“包含”或“包括有”等等将被理解为包括所陈述的元件或组成部分,而并未排除其他元件或其他组成部分。
在本发明的上下文中,为了描述的方便,可以使用空间相对术语,诸如“下面”、“下方”、“下”、“上面”、“上方”、“上”等,来描述一个元件或特征与另一元件或特征在附图中的关系。应理解的是,空间相对术语旨在包含除了在图中所绘的方向之外物件在使用或操作中的不同方向。例如,如果在图中的物件被翻转,则被描述为在其他元件或特征“下方”或“下”的元件将取向在所述元件或特征的“上方”。因此,示 范性术语“下方”可以包含下方和上方两个方向。物件也可以有其他取向(例如,旋转90度或其他取向)且应对本文使用的空间相对术语作出相应的解释。
在本发明的上下文中,术语“第一”、“第二”等是用以区别两个不同的元件或部位,并不是用以限定特定的位置或相对关系。
在本发明的上下文中,参数(例如,数量或条件)的所有数字值都应理解为在所有情况下均由术语“约”修饰,无论“约”是否实际上出现在该数字值之前。
在本发明的上下文中,使用的“一次稀释蒸汽”、“二次稀释蒸汽”等词仅用于在不同步骤中区分引入的蒸汽,而不含有蒸汽自身性质等实际含义。
在本发明的上下文中,在没有特别明确的情况下,本发明中采用的各装置可以使用本领域常规选择的结构,并没有特别的限定。
在本发明的上下文中,重质烃指的是宽馏分的混合烃,其终馏点一般为540℃以上,比如初馏点温度为15℃、终馏点温度在750℃以上。特别地,所述重质烃可以选自以下原料中的一种或多种:石蜡基原油、中间基原油、环烷基原油、凝析油和炼化产品等。在此,作为炼化产品,比如可以举出炼厂经过常减压、重整、催化、焦化等炼油装置加工后的汽油、煤油、柴油、尾油、燃料油、重整油等。
在本发明的上下文中,初馏点、终馏点、馏程的测量方法是原油常减压蒸馏,其中常压蒸馏分析方法采用ASTM D-2892,减压蒸馏分析方法采用ASTM D-5236。
在本发明的上下文中,API指的是比重指数,其分析方法采用ASTM D-2320。
在本发明的上下文中,非挥发性组分特指终馏点超过590℃的组分,非挥发性组分的分析方法采用ASTM D6352。
在本发明的上下文中,芳烃潜含量的测量方法是常压蒸馏,分析方法采用ASTM D-2892。
在本发明的上下文中,气化率指的是气相物料(不含蒸汽)与进料总量(不含蒸汽)的质量百分比。
本发明的上下文中,芳烃潜含量指的是原料的环烷烃全部转化为芳烃的量与原料中已含有的芳烃量之和与所有原料的重量比。
在没有明确指明的情况下,本说明书内所提到的所有百分数、份数、比率等都是以重量为基准的,而且压力是表压。
在本发明的上下文中,本发明的任何两个或多个实施方式或方面都可以任意组合,由此而形成的技术方案属于本说明书原始公开内容的一部分,同时也落入本发明的保护范围。
根据本发明的一种实施方式,涉及一种重质烃蒸汽裂解产生烯烃的方法。根据本发明,所述重质烃蒸汽裂解产生烯烃的方法在下文所述的重质烃蒸汽裂解产生烯烃的系统中进行。为此,在方法部分没有详述的内容,可以直接参照下文针对系统描述的相关内容,或者反之亦然。
根据本发明的一个实施方式,所述重质烃蒸汽裂解产生烯烃的方法包括使所述重质烃进行第一分离,得到第一气相物料和第一液相物料的步骤。在此,作为所述第一分离,可以按照本领域已知的任何方式进行,比如可以举出任何能够使所述重质烃分离为气相和液相(气液分离)的方式或方法,特别是闪蒸。
根据本发明的一个实施方式,所述重质烃蒸汽裂解产生烯烃的方法还包括使所述第一气相物料进行部分冷凝(称为第二分离),得到凝液(称为第三重组分)的步骤。在此,作为所述部分冷凝或第二分离,可以按照本领域已知的任何方式进行,比如可以举出任何能够使所述第一气相物料在冷却之后进一步气液分离为多个组分或馏分的方式或方法,特别是分馏。根据本发明,与现有技术不同,所述第一气相物料不直接送至蒸汽裂解。
根据本发明的一个实施方式,所述第三重组分的初馏点温度≥165℃,优选其馏程为180-380℃。这样控制主要是从为重整提供原料、节省投资、能耗和对第一液相物料进行改质的一个综合考虑。如果第三重组分的干点小于165℃,说明第二分离不清晰,损失了部分重整料。如果第三重组分的干点大于380℃,那么第一气相的量要增加,第二分离的分离塔直径和塔板数需要增加,会增加投资和能耗。此外,第三重组分其馏程为180-380℃比较适合用于对第一液相物料进行改质。干点太低的话如低于 300℃,由于容易气化,没有起到降低第一液相物料气化非挥发组分含量的目的,干点高于380℃则第一分离和第二分离投资增加、第二分离能耗增加。
根据本发明的一个实施方式,所述重质烃蒸汽裂解产生烯烃的方法还包括将至少一部分所述第三重组分引入所述第一液相物料,获得第一改质液相物料的步骤。在此优选的是,将占所述第三重组分的总重量50wt%以上或80wt%以上引入所述第一液相物料。通过引入所述第三重组分的总重量50wt%以上或80wt%以上,可以有效改变第一改质液相物料的馏程,拓宽第一改质液相物料在对流段变化的幅度,有效预防第四加热段(4)结焦,同时有效调节第二混合物料在三级分离时的气化率。
根据本发明的一个实施方式,所述重质烃蒸汽裂解产生烯烃的方法还包括使所述第一改质液相物料进行第三分离,得到第二气相物料和第二液相物料的步骤。在此,作为所述第三分离,可以举出任何能够使所述第一改质液相物料分离为气相和液相(气液分离)的方式或方法,特别是闪蒸。
根据本发明的一个实施方式,所述重质烃蒸汽裂解产生烯烃的方法还包括使所述第二气相物料进行蒸汽裂解,得到包含所述烯烃的裂解产物的步骤。
根据本发明的一个实施方式,所述重质烃的API值不小于32(优选38以上)。
根据本发明的一个实施方式,所述重质烃的非挥发性组分的含量为25wt%以下(优选0.1-5.5wt%),基于所述重质烃的总重量计。
根据本发明的一个实施方式,所述重质烃的芳烃潜含量为10-20wt%,基于所述重质烃的总重量计。采用本发明时,可以将终馏点小于180℃馏分中的芳烃进行作为重整原料。
根据本发明的一个实施方式,所述重质烃在进行所述第一分离之前进行预热而温度达到200-400℃(优选240-300℃)。
根据本发明,由于不再视第一气相物料夹带非挥发性组分为问题,因此对所述第一气相物料的终馏点及非挥发性组分的含量没有特别的限制,本领域技术人员可以根据实际情况灵活确定。虽然如此,根据本发明的一个实施方式,从方法操作稳定性的角度出发,所述终馏点一般在400℃一 下。非挥发性组分的含量一般为1wt%以下,基于所述第一气相物料的总重量计。
根据本发明的一个实施方式,使所述第一气相物料进行所述第二分离,至少获得第三轻组分、第一中间组分和所述第三重组分。所述第二分离优选在分馏塔(比如下文所述的分离塔7)中进行。本发明对于所述第二分离的实现方式和方法等没有特别的限定,可以采用本领域已知的那些。作为所述第二分离的分离结果,优选的是,所述第三轻组分主要由C1-C6组分构成,终馏点温度一般≤90℃,可以送去其它裂解炉裂解,而所述第一中间馏分主要由C6-C10组分构成,馏程一般为80-170℃,可以送去重整装置。应当理解的是本发明中各馏分的初馏点或终馏点均为范围值,在实际操作中可以为范围值内的任意温度,并且本发明可以根据实际生产需要对分离的馏分进行选择。
根据本发明的一个实施方式,所述重质烃蒸汽裂解产生烯烃的方法还包括对所述第一中间组分进行选自重整处理、炼油加工和异构分离的至少一种处理。当第一中间馏分中芳烃潜含量高时,通过本发明进行处理后可以降低进入辐射段气相中的芳烃潜含量,比现有的一级闪蒸及二级闪蒸方案的进入辐射段气相中的芳烃潜含量都要低,相应的烯烃收率都要高,裂解的能耗要低。
根据本发明的一个实施方式,所述第三重组分的非挥发性组分的含量为1wt%以下(优选0.5wt%以下),基于所述第三重组分的总重量计。
根据本发明的一个实施方式,所述第三重组分与所述第一液相物料的重量根据重质烃的性质进行确定。原则为第三重组分可以用做调节进入第二气液分离器的汽化率和控制第一改质液相物料的预热温度,有效抑制第四加热段(4)重质烃预热气化过程中的结焦,低比例调节不明显,控制效果差,要么控制不了预热温度,要么对非挥发组分的降低不明显,过高的比例会导致能耗提高,多了气化温度高容易结焦或为了避免结焦需要降低温度造成者气化率低。
根据本发明,第三重组分可以用做调节进入第二气液分离器的汽化率,低比例调节不明显,过高的比例会导致能耗提高。
根据本发明的一个实施方式,使所述第一改质液相物料与一次稀释蒸 汽进行第一混合,得到第一混合物料,然后使所述第一混合物料进行第一加热,接着使经过所述第一加热的所述第一混合物料与二次稀释蒸汽进行第二混合,得到第二混合物料,然后使所述第二混合物料进行所述第三分离,得到所述第二气相物料和所述第二液相物料。
根据本发明的一个实施方式,所述一次稀释蒸汽的温度为180-400℃,优选200-350℃。
根据本发明的一个实施方式,所述第一混合物料进行所述第一加热后的温度为400℃以下,优选250-350℃。
根据本发明的一个实施方式,所述二次稀释蒸汽的温度为400-630℃,优选450-600℃。
根据本发明的一个实施方式,所述第一改质液相物料与所述一次稀释蒸汽的重量比为1:(0.1-0.5),优选1:(0.2-0.4)。
根据本发明的一个实施方式,所述第一改质液相物料与所述二次稀释蒸汽的重量比为1:(0.2-0.8),优选1:(0.3-0.65)。
根据本发明的一个实施方式,所述第二混合物料的温度为320-400℃。
根据本发明的一个实施方式,将液态烃进一步引入所述第一液相物料、和/或所述第一改质液相物料、和/或所述第一混合物料。
根据本发明的一个实施方式,所述液态烃与所述第一液相物料的重量比为1:(0.45-0.85)(优选1:(0.5-0.7))。
根据本发明的一个实施方式,在所述第一分离中,所述重质烃的气化率(称为第一气化率)为15-60%,优选25-45%。
根据本发明的一个实施方式,在所述第三分离中,所述第一改质液相物料或所述第二混合物料的气化率(称为第二气化率)为40-80%,优选50-70%。
根据本发明的一个实施方式,所述第一气化率与所述第二气化率的差值(绝对值)为15%-50%(优选30%-40%)。这样控制主要是从为重整提供原料、节省第二分离的投资和对第一液相物料进行改质的一个综合考虑。对于宽馏分原油来说,第一气化率满足重整进料即可,不宜太高。第二气化率在满足长周期安全运行的角度,可提高,以提高原油的化学品收率,因此第二气化率一般是远高于第一气化率。如果第一气化率高于50%, 第二气化率一般低于80%,这样差值(绝对值)会低于30%,这会导致第二气化率会使得第三重组分的干点大于380℃,达不到对第一液相物料改质目的,且引起第一分离和第二分离投资增加、第二分离能耗增加。如果第一气化率低于15%,则差值(绝对值)会大于50%,则第二分离切割出来芳烃料无法满足重整进料的要求,且轻组分进入第二气相的较多,裂解原料馏程太宽,使得没有合适的裂解条件进行高效裂解。
根据本发明的一个实施方式,所述第一改质液相物料或所述第二混合物料进行所述第三分离,获得气相物料(称为初生气相物料)和液相物料(称为初生液相物料),使至少一部分(比如占总重量50wt%以下或20wt%以下)所述第三重组分与所述初生气相物料逆流接触,获得所述第二气相物料。第三重组分与所述初生气相物料逆流接触,可以有效降低初生气相物料重组分的含量,以满足裂解对进入辐射段裂解对重组分的要求,目的是实现减少结焦和延长裂解炉原则周期,最终实现低能耗高效裂解。
根据本发明的一个实施方式,所述第一改质液相物料或所述第二混合物料进行所述第三分离,获得气相物料(称为初生气相物料)和液相物料(称为初生液相物料),使分离助剂(也称为冷却助剂)与所述初生气相物料逆流接触,获得所述第二气相物料。分离助剂与所述初生气相物料逆流接触,可以有效调节重质烃气化率和控制第二气相物料重组分的含量,以,满足裂解对进入辐射段裂解对重组分的要求,目的是实现减少结焦和延长裂解炉原则周期,最终实现低能耗高效裂解。
根据本发明的一个实施方式,所述第二气相物料与所述第三重组分的重量比为1:(0.01-0.35),优选为1:(0.05-0.2)。
根据本发明的一个实施方式,所述第二气相物料与所述分离助剂的重量比为1:(0.01-0.2),优选为1:(0.05-0.15)。
根据本发明的一个实施方式,所述初生气相物料先与所述分离助剂逆流接触,然后再与所述第三重组分逆流接触,或者,所述初生气相物料先与所述第三重组分逆流接触,然后再与所述分离助剂逆流接触。
根据本发明的一个实施方式,所述分离助剂选自液态烃和液态水中的至少一种。在此,作为所述液态烃,可以举出终馏点为200-540℃(优选250-450℃或300-400℃)的烃,优选选自重石脑油、航煤油和柴油中的 至少一种。
根据本发明的一个实施方式,所述初生气相物料先与所述液态水逆流接触,然后再与所述液态烃逆流接触,或者,所述初生气相物料先与所述液态烃逆流接触,然后再与所述液态水逆流接触,或者,所述初生气相物料与所述液态水和所述液态烃同时逆流接触。
根据本发明的一个实施方式,所述第二气相物料在进行所述蒸汽裂解之前进行第二加热而温度达到500-600℃(优选510-500℃)。
根据本发明的一个实施方式,所述第二气相物料的非挥发性组分的含量为1wt%以下(优选0.5wt%以下),基于所述第二气相物料的总重量计。如果第二气相物料的非挥发性组分的含量不满足该要求,可能会存在辐射段结焦的风险。
根据本发明的一个实施方式,还涉及一种重质烃蒸汽裂解产生烯烃的系统,包括:第一气液分离器(8),其被构造为能够使所述重质烃进行第一分离,得到第一气相物料和第一液相物料;分离装置比如分离塔(7),其被构造为能够使所述第一气相物料进行第二分离,得到所述第三重组分;输送装置,其被构造为能够将至少一部分所述第三重组分引入所述第一液相物料,获得第一改质液相物料;第二气液分离器(9),其被构造为能够使所述第一改质液相物料进行第三分离,得到第二气相物料和第二液相物料;蒸汽裂解装置,其被构造为能够使所述第二气相物料进行蒸汽裂解,得到包含所述烯烃的裂解产物。
根据本发明的一个实施方式,所述步骤S1还包括:使待预热的重质烃进入所述第一加热段进行第一预热,得到第一预热重质烃;将至少部分的所述第一预热重质烃和换热介质分别进入换热器进行换热,得到第二预热重质烃;然后使所述第二预热重质烃作为所述预热后的重质烃进入所述第一气液分离器;其中所述换热介质包括经加热器加热后的蒸汽,或者经所述第二加热段加热后的蒸汽,或者来自蒸汽源的蒸汽;可选地,所述蒸汽的温度为250-450℃。
根据本发明的一个实施方式,所述步骤S1还包括:将至少部分的所述第一预热重质烃引入加热器进行加热,得到第三预热重质烃;然后使所述第三预热重质烃作为所述预热后的重质烃进入所述第一气液分离器。
根据本发明的一个实施方式,所述步骤S1还包括:将至少部分的来自所述第一加热段的第一预热重质烃进入所述重质烃预热段进行加热,得到第四预热重质烃;使所述第四预热重质烃作为所述预热后的重质烃进入所述第一气液分离器。
根据本发明的一个实施方式,所述步骤S1还包括:使所述第一预热重质烃进行脱盐处理后再进行换热和/或加热,或者使所述待预热的重质烃进行脱盐处理后再进行第一预热。
根据本发明的一个实施方式,所述步骤S1中还包括:使待预热的重质烃进入第一加热段1A进行第一预热,得到第一预热重质烃;将至少部分的所述第一预热重质烃和换热介质分别进入换热器6A进行换热,得到第二预热重质烃;然后使所述第二预热重质烃作为所述预热后的重质烃进入所述第一气液分离器8;其中所述换热介质包括经加热器6B加热后的蒸汽,或者经所述第二加热段2加热后的蒸汽,或者来自蒸汽源的蒸汽。
根据本发明的一个实施方式,所述步骤S1中还包括:将至少部分的所述第一预热重质烃引入加热器6B进行加热,得到第三预热重质烃;然后使所述第三预热重质烃作为所述预热后的重质烃进入所述第一气液分离器8。
根据本发明的一个实施方式,所述步骤S1中还包括:将至少部分的来自所述第一加热段1A的第一预热重质烃进入所述重质烃预热段1B进行加热,得到第四预热重质烃,使所述第四预热重质烃作为所述预热后的重质烃进入所述第一气液分离器8;或者,可选地,使至少部分的来自所述第一加热段1A的第一预热重质烃进入所述重质烃预热段1B后再经过换热器6A和/或加热器6B进行换热和/或加热,得到第四预热重质烃,使所述第四预热重质烃作为所述预热后的重质烃进入所述第一气液分离器8;或者,使至少部分的来自所述第一加热段1A的第一预热重质烃进入所述重质烃预热段1B,得到第四预热重质烃,使另一部分的来自所述第一加热段1A的第一预热重质烃进入换热器6A和/或加热器6B进行换热和/或加热后与所述第四预热重质烃混合,使混合后的重质烃作为预热后的重质烃进入所述第一气液分离器8。具体地,可根据蒸汽裂解系统实际需要的热量选择重质烃预热方式。
根据本发明的一个实施方式,所述换热介质可以为本领域常规使用的任意换热介质,并不局限于列举的所述蒸汽。
根据本发明的一个实施方式,所述步骤S1中还包括:使所述第一预热重质烃进行脱盐处理后再进行换热和/或加热,以利用脱盐预处理获得的烟气对第一预热重质烃进一步加热;或者,使所述待预热的重质烃进行脱盐处理后再进入第一加热段1A进行第一预热。本发明将蒸汽裂解装置与电脱盐装置进行耦合并增加外加热器和换热器,有利于能量的综合利用、降低能耗和增加对重质烃的适用性。
根据本发明的一个实施方式,所述步骤S2中,使至少部分的所述一次稀释蒸汽进入第三加热段3A进行加热,得到过热后的一次稀释蒸汽,使所述过热后的一次稀释蒸汽与所述第一液相物料进行第一混合;所述过热后的一次稀释蒸汽的温度为180-400℃,优选为200-350℃。
根据本发明的一个实施方式,所述第二气相物料包含携带的蒸汽和第二轻组分;所述第二液相物料包含第二重组分。优选的是,所述第二气相物料包含携带的蒸汽和第二轻组分;所述第二液相物料包含第二重组分。
根据本发明的一个实施方式,所述第一轻组分占重质烃总重量的30-40重量%,所述第一轻组分初馏点温度≤270℃,终馏点温度为265-275℃之间;所述第一重组分与所述第一轻组分相平衡;所述第二轻组分的终馏点温度为330-480℃;所述第二重组分与所述第二轻组分相平衡;所述第三轻组分主要包括C1-C6组分,终馏点温度≤90℃,送去其它裂解炉裂解;所述第一中间馏分主要包括C6-C10组分,馏程为80-170℃,送去重整装置;所述第三重组分的馏程为180-380℃,主要包括C11及以上组分。应当理解的是,本发明中各馏分的初馏点或终馏点均为范围值,在实际操作中可以为范围值内的任意温度。并且本发明可以根据实际生产需要对分离的馏分进行选择。本发明所述第一中间组分中芳烃潜含量较高,不宜送去蒸汽裂解,可以灵活送至重整等炼油装置做原料,做到宜芳则芳,宜烯则烯,宜油则油。
根据本发明的一个实施方式,所述蒸汽裂解装置包括由上至下的对流段和辐射段。沿所述蒸汽裂解装置的高度方向,所述对流段包括第一加热段1A、任选的重质烃预热段1B、任选的第二加热段2、第三加热段3A、 第四加热段4、第五加热段3B和第六加热段5。
根据本发明的一个实施方式,使所述第一混合物料进入第四加热段4进行第一加热,然后与经过第五加热段3B过热后的二次稀释蒸汽进行第二混合,得到第二混合物料。另外,使所述第二气相物料进入第六加热段5进行第二加热后进入所述辐射段进行蒸汽裂解。
根据本发明的一个实施方式,所述第一气液分离器8被构造为使预热后的重质烃进入其中进行第一分离,得到第一气相物料和第一液相物料。所述蒸汽裂解装置的辐射段被构造为使至少部分的所述第一液相物料进行蒸汽裂解,得到包含烯烃的裂解产物。
根据本发明的一个实施方式,所述分离塔7被构造为使至少部分的第一气相物料送至分离塔7进行第二分离,得到至少包含第三轻组分、第一中间组分和第三重组分。根据本发明,所述分离塔7为本领域常规使用的分离装置,其中包括常规冷凝器、再沸器等结构,具体可根据实际需要设置。
根据本发明的一个实施方式,所述系统还包括后处理装置,后处理装置被构造为对所述第一中间组分进行所述后处理。
根据本发明的一个实施方式,所述对流段设置有原料加热进口和原料加热出口,所述辐射段设置有蒸汽裂解入口和裂解产物出口。
根据本发明的一个实施方式,第一气液分离器8上设置有气液分离进口、任选的第三重组分回流进口、任选的冷却助剂进口、第一气相物料出口和第一液相物料出口。所述第一气液分离器8的气液分离进口与对流段的原料加热出口连通,所述第一气液分离器8的第一液相物料出口与辐射段的蒸汽裂解入口连通。
根据本发明的一个实施方式,所述分离塔7设置有第一气相物料进口,以及沿分离塔7高度方向,由上至下依次设置的第三轻组分出口、第一中间馏分出口和第三重组分出口。分离塔7的第一气相物料的进口与第一气液分离器8的第一气相物料出口连通。
根据本发明的一个实施方式,所述冷却助剂进口包括液态烃进口和/或水进口;可选地,所述冷却助剂进口包括多个,其中至少一个冷却助剂进口为水入口,至少一个冷却助剂进口为液态烃进口。
根据本发明的一个实施方式,所述第二气液分离器9上设置有第二混合物料进口、第二气相物料出口和第二液相物料出口、任选的第三重组分进口以及任选的分离助剂进口。所述分离助剂进口包括液态烃进口和/或水进口。
根据本发明的一个实施方式,所述分离助剂进口包括多个,其中至少一个分离助剂进口为水入口,至少一个分离助剂进口为液态烃进口。
根据本发明的一个实施方式,沿第二气液分离器9轴向方向,所述分离助剂进口位于所述第二混合物料进口的上方。
根据本发明的一个实施方式,所述第一气液分离器8的第一液相物料出口与第二气液分离器9的第二混合物料进口连通。第二气液分离器9的第二混合物料进口与第一气液分离器8的第一液相物料出口之间的连通管线上设置有一次稀释蒸汽进口和过热后的二次稀释蒸汽进口。沿物料的流动方向,一次稀释蒸汽进口设置于过热后的二次稀释蒸汽进口的上游;可选地,分离塔7的第三重组分的出口分别与第一气液分离器8的第三重组分回流进口和第二气液分离器9的第三重组分进口连通。所述第二气液分离器9的第二气相物料的出口与辐射段的蒸汽裂解入口相连通。
下面结合附图,对本发明的具体实施方式进行详细描述,但本发明并不限于此。
根据本发明的一个实施方式,如图1所示,沿蒸汽裂解装置的高度方向,对流段由上至下依次设置有第一加热段1A、任选的锅炉给水预热段BFW、任选的重质烃预热段1B、任选的第二加热段2、第三加热段3A、第四加热段4、任选的超高压蒸汽过热段VHS、第五加热段3B和第六加热段5。
第一加热段1A的加热进口用于引入待预热重质烃;第一加热段1A的出口与第一气液分离器8的气液分离进口连通;第一气液分离器8的气液分离进口的引入管线上设有压力调节阀,用以控制进入第一气液分离器8的重质烃的预热温度;可选地,第一气相物料出口的引出管线上设有压力调节阀,用以进一步控制气化率。
第一气液分离器8的第一液相物料出口与第四加热段4的加热进口经由第一管线连通;第三加热段3A的加热进口与一次蒸汽源连通;第三加 热段3A的加热出口连接至第一管线。
第四加热段4的加热出口与第二气液分离器9的第二混合物料进口经由第二管线连通;第五加热段3B的加热进口与二次蒸汽源连通;第五加热段3B的加热出口连接至第二管线。
第六加热段5的加热进口与第二气液分离器9的第二气相物料出口连通;第六加热段5的加热出口与辐射段的蒸汽裂解进口连通。
可选地,第二气液分离器9的第二液相物料出口可用于与加氢裂化或催化裂解装置连通。
可选地,第二气液分离器9内部设置有塔盘、旋液分离器或二者组合的结构。
根据本发明的一个实施方式,所述系统还包括重质烃预热单元,该重质烃预热单元用于对来自第一加热段1A的第一预热重质烃进行进一步换热,以控制进入第一气液分离器8的重质烃温度。
根据本发明的一个实施方式,所述重质烃预热单元包括重质烃加热进口和重质烃加热出口。重质烃加热进口与第一加热段1A的加热出口连通,重质烃加热出口与第一气液分离器8的气液分离进口连通。
根据本发明的一个实施方式,所述重质烃预热单元包括换热器6A和任选的加热器6B;换热器6A包括重质烃第一加热进口、换热介质进口、重质烃第一加热出口和换热后换热介质出口;重质烃第一加热进口形成为重质烃预热单元的重质烃加热进口,与第一加热段1A的加热出口连通;重质烃第一加热出口形成为重质烃预热单元的重质烃加热出口,所述重质烃第一加热出口与第一气液分离器8的气液分离进口连通。
根据本发明的一个实施方式,所述加热器6B包括换热介质第一加热进口和换热介质第一加热出口;第二加热段2包括换热介质第二加热进口和换热介质第二加热出口;换热介质第一加热进口和换热介质第二加热进口分别用于与蒸汽源连通。
根据本发明的一个实施方式,所述换热器6A的换热介质进口与加热器6B的换热介质第一加热出口连通。所述换热器6A的换热介质进口与第二加热段2的换热介质第二加热出口连通;或者换热器6A的换热介质进口与蒸汽源连通。
根据本发明的一个实施方式,所述重质烃预热单元包括加热器6B;加热器6B包括重质烃第二加热进口和重质烃第二加热出口;重质烃第二加热进口形成为重质烃预热单元的重质烃加热进口,重质烃第二加热进口与第一加热段1A的加热出口连通;重质烃第二加热出口形成为重质烃预热单元的重质烃第二加热出口,重质烃第二加热出口与第一气液分离器8的气液分离进口连通。
根据本发明的一个实施方式,所述第一加热段1A的加热出口与重质烃预热段1B的加热进口连通,重质烃预热段1B的加热出口与第一气液分离器8的气液分离进口经由第三管线连通;可选地,所述换热器6A或加热器6B连接至第三管线。
如图1所示,本发明提供的重质烃蒸汽裂解产生烯烃的系统的一种示例性实施方式中,该系统包括:
蒸汽裂解装置、重质烃预热单元、分离塔7、第一气液分离器8和第二气液分离器9;重质烃预热单元包括换热器6A、加热器6B;
蒸汽裂解装置包括对流段和辐射段;沿蒸汽裂解装置的高度方向,对流段由上至下一次设置有第一加热段1A、锅炉给水预热段BFW、第三加热段3A、第四加热段4、第五加热段3B和第六加热段5;辐射段包括蒸汽裂解进口和裂解产物出口;
换热器6A包括重质烃第一加热进口、换热介质进口、重质烃第一加热出口和换热后换热介质出口;
分离塔7上设置有第一气相物料进口,以及沿分离塔7高度方向,由上至下依次设置有彼此独立的第三轻组分出口、第一中间馏分出口和第三重组分出口;第一气液分离器8上设置有气液分离进口、第三重组分回流进口、第一气相物料出口和第一液相物料出口;第二气液分离器9上设置有第二混合物料进口、第二气相物料出口和第二液相物料出口、以及第三重组分进口和分离助剂进口;其中,第一加热段1A的加热进口用于引入待预热重质烃;第一加热段1A的加热出口与换热器6A的重质烃第一加热进口连通;换热器6A的重质烃第一加热出口与第一气液分离器8的气液分离进口连通;
加热器6B的换热介质第一加热进口与蒸汽源连通,加热器6B的换热 介质第一加热出口与换热器6A的换热介质进口连通;
第一气液分离器8的第一液相物料出口与第四加热段4的加热进口经由第一管线连通;第三加热段3A的加热进口与一次蒸汽源连通;第三加热段3A的加热出口连接至第一管线;
第四加热段4的加热出口与第二气液分离器9的第二混合物料进口经由第二管线连通;第五加热段3B的加热进口与二次蒸汽源连通;第五加热段3B的加热出口连接至第二管线;
第六加热段5的加热进口与第二气液分离器9的第二气相物料出口连通;第六加热段5的加热出口与辐射段的蒸汽裂解进口连通;
第一气液分离器8的第一气相物料出口与分离塔7的第一气相物料进口连通,分离塔的第三轻组分出口连接至其他裂解炉上,第一中间组分出口连接至重整装置;分离塔7的第三重组分出口分别与第一气液分离器8的第三重组分回流进口和第二气液分离器9的第三重组分进口连通;第二气液分离器9的第二液相物料出口连接于加氢裂化或催化裂解装置上;
采用图1所示的系统进行重质烃蒸汽裂解产生烯烃的具体工艺流程包括:
S1、使待预热的重质烃进入第一加热段1A进行第一预热,得到第一预热重质烃;使来自第一加热段1A的第一预热重质烃与经过加热器6B加热后的第二蒸汽分别进入换热器6A进行换热,得到第二预热重质烃;
将第二预热重质烃作为预热后的重质烃进入第一气液分离器8进行第一分离,得到第一气相物料和第一液相物料;
S2、使一次稀释蒸汽进入第三加热段3A进行加热,得到过热后的一次稀释蒸汽;使至少部分的所述第一液相物料与所述过热后的一次稀释蒸汽混合,得到第一混合物料;所述第一气相物料包含第一轻组分,所述第一液相物料包含第一重组分;使所述第一气相物料送入分离塔7进行第二分离,得到第三轻组分、任选的第一中间组分和第三重组分;
使所述第一混合物料进入第四加热段4进行第一加热后,与经过第五加热段3B的过热后的二次稀释蒸汽进行第二混合,得到第二混合物料;
使所述第二混合物料进入第二气液分离器9进行第三分离,得到第二气相物料和第二液相物料;所述第二气相物料包含携带的蒸汽和第二轻组 分;所述第二液相物料包含第二重组分;
将一部分的所述第三重组分和/或冷却助剂经由所述第一气液分离器8的底部出口液相管线上引入所述第一重组分,以控制第四加热段4的内管排壁温;
将一部分所述第三重组分和分离助剂经由所述第二气液分离器9上部和/或者中部的气相空间引入并与所述第二气相物料接触,以使所述第二气相物料中携带的重组分进入所述第三重组分和分离助剂;
使所述第二气相物料进入第六加热段5进行第二加热后进入蒸汽裂解装置的辐射段,进行蒸汽裂解,得到包含烯烃的裂解产物。
如图2所示,本发明提供的重质烃蒸汽裂解产生烯烃的系统的一种示例性实施方式中,该系统与图1所示的系统不同之处在于:蒸汽裂解装置中还设置有第二加热段2,替换图1中加热器6B;第二加热段2的加热出口与换热器6A的换热介质进口连通;换热介质为经过第二加热段2加热后的第一蒸汽。
如图3所示,本发明提供的重质烃蒸汽裂解产生烯烃的系统的一种示例性实施方式中,该系统与图1所示的系统不同之处在于:系统中不包括换热器6A;第一加热段1A的加热出口与加热器6B的加热进口连通,加热器6B的加热出口与第一气液分离器8的气液分离进口连通。
如图4所示,本发明提供的重质烃蒸汽裂解产生烯烃的系统的一种示例性实施方式中,该系统与图1所示的系统不同之处在于:系统中不包括加热器6B;换热介质为所述第三蒸汽;第一加热段1A的加热出口与加热器6B的加热进口连通,加热器6B的加热出口与第一气液分离器8的气液分离进口连通。
如图5所示,本发明提供的重质烃蒸汽裂解产生烯烃的系统的一种示例性实施方式中,该系统与图1所示的系统不同之处在于:系统中还包括重质烃预热段1B,不包括换热器6A和加热器6B;第一加热段1A的加热出口与重质烃预热段1B的加热进口连通,重质烃预热段1B的加热出口与第一气液分离器8的气液分离进口。
如图5所述的示例为本发明换热单元的最优选实施方式,当蒸汽裂解装置中的热源不能支撑蒸汽裂解反应所需热量或第一加热段1A出口未设 置再沸器时时,在蒸汽裂解系统中设置换热器和/或加热器,引入外部热源对反应物料进行加热。
以上操作温度均为裂解炉常规操作条件下的正常操作条件下的温度。
本发明涉及的各步骤中的参数及中参数的控制方法、技术原理等已在前述内容进行了详细描述,在此不再赘述。
实施例
以下采用实施例和对比例进一步详细地说明本发明,但本发明并不限于这些实施例。
在以下的实施例和对比例中,乙烯收率的计算方法是裂解炉辐射段出口乙烯的重量与进入辐射段裂解的重质烃重量之比,化学品收率的计算方法是产出化学品的总质量与总处理的重质烃的质量比。
在以下的实施例和对比例中,能量利用效率中能耗的计算是基于炼化装置生产每吨乙烯需要消耗的能量(MW)。
能耗的计算按国标《石油化工设计能耗计算标准》(GB/T 50441-2016)中规定的指标及计算方法进行计算。
实施例1
本实施例流程参见图1,采用API值为42的低硫石蜡基原油。
所述重质烃的馏程为:
所述重质烃的非挥发性组分的含量为7wt%,芳烃潜含量为15wt%,基 于所述重质烃的总重量计。
实施例1的重质烃蒸汽裂解产生烯烃的方法具体包括以下步骤:
S1、使来自储罐的重质烃经过初步预热后通过蒸汽裂解装置对流段的第一加热段1A进行第一预热,第一预热重质烃温度为115℃;将第一预热重质烃送入换热器6A与换热介质进一步换热以提高温度,得到第二预热重质烃;换热介质为经过加热器6B进行加热的中压蒸汽(温度为350℃),第二预热重质烃的温度为280℃;
将第二预热重质烃作为预热后的重质烃进入第一气液分离器8进行第一分离,得到第一气相物料和第一液相物料;
所述第一气相物料的非挥发性组分的含量为≤0.1wt%,基于所述第一气相物料的总重量计;
S2、使第一气相物料送入分离塔7进行第二分离,得到第三轻组分(终馏点温度为80℃)、第一中间组分(初馏点温度80℃,终馏点温度为165℃)和第三重组分。
第三重组分的馏程
第一液相物料与经过第三加热段3A的过热后的一次稀释蒸汽混合,得到第一混合物料;第一液相馏分与过热后的一次稀释蒸汽的重量比为1:0.25;过热后的一次稀释蒸汽的温度为340℃,第一混合物料的温度为260℃;
使第一混合物料进入第四加热段4进行第一加热,第一加热后的第一混合物料的温度为315℃;将第一加热后的第一混合物料与经过第五加热段3B过热后的二次稀释蒸汽进行第二混合,得到第二混合物料;第一液 相物料与过热后的二次稀释蒸汽的重量比为1:0.50;过热后的二次稀释蒸汽温度为560℃;
所述第二混合物料的温度为335℃;
使第二混合物料进入第二气液分离器9进行第三分离,得到第二气相物料和第二液相物料;第二气相物料包含携带的蒸汽和第二轻组分;所述第二液相物料包含第二重组分(初馏点温度≥430℃);
向所述第一液相物料引入99wt%的所述第三重组分,使得所述第三重组分与所述第一液相物料的重量比为17%;
在所述第一分离中,所述重质烃的气化率为35%,在所述第三分离中,所述第二混合物料的气化率为72%;
使第二气相物料进入第六加热段5进行第二加热后进入蒸汽裂解装置的辐射段,进行蒸汽裂解;蒸汽裂解温度为800℃,辐射炉管停留时间为0.25s。
实施例中,第一气相物料的馏程为:
在本实施例中,95wt%以上的芳烃料富集在第一气相物料中。
第一液相物料及第一改质液相物料馏程为:

如图6所示,通过第一液相物料与第一改质液相物料的对比,可以看出第一改质物料的TBP曲线在馏出量50%-90%之间,馏出温度平均降低了30℃左右,改质效果明显。
根据该实施例,由于在第一液相物料中引入了99wt%的第三重组分,加速了第一改质液相物料在第四加热段的气化过程,在连续运行70天之后没有明显结焦现象出现,可在较高的操作温度下避免对流段的结焦,从而也可以得到更高的化学品收率。
实施例中,第一加热后的第一混合物料温度可以控制在315℃,而且,所述第一混合物料温度即使升高至340℃,也没有明显结焦现象。
实施例中,通过引入改质料,第三分离中的第二混合物料可适应更高的温度,本实施例中第二混合物料温度最高可达到350℃。
第二气相物料的馏程为:
根据该实施例中第二气相物料的馏程,乙烯收率大于23wt%(基于进入辐射段裂解的原油总量),三烯收率为42%(基于进入辐射段裂解的原油总量),化学品收率为71%(除PGO、PFO、外送重油以外,原油裂解产生的化学品占原油的质量比例)
实施例2
本实施例流程参见图2,采用与实施例1相同性质的重质烃。
实施例1的重质烃蒸汽裂解产生烯烃的方法具体包括以下步骤:
S1、使来自储罐的重质烃经过初步预热后通过蒸汽裂解装置对流段的第一加热段1A进行第一预热,第一预热重质烃温度为115℃;将第一预热重质烃送入换热器6A与换热介质进一步换热以提高温度,得到第二预热重质烃;换热介质为经过第二加热段2的过热后的中压蒸汽(温度为350℃),第二预热重质烃的温度为280℃;
将第二预热重质烃作为预热后的重质烃进入第一气液分离器8进行第一分离,得到第一气相物料和第一液相物料;
所述第一气相物料的非挥发性组分的含量为≤0.1wt%,基于所述第一气相物料的总重量计;
S2、使第一气相物料送入分离塔7进行第二分离,得到第三轻组分(终馏点温度为80℃)、第一中间组分(初馏点温度80℃,终馏点温度为165℃)和第三重组分,所述第三重组分的馏程为:
第一液相物料与经过第三加热段3A的过热后的一次稀释蒸汽混合,得到第一混合物料;第一液相馏分与过热后的一次稀释蒸汽的重量比为1:0.25;过热后的一次稀释蒸汽的温度为340℃,第一混合物料的温度为260℃;
使第一混合物料进入第四加热段4进行第一加热,第一加热后的第一混合物料的温度为315℃;将第一加热后的第一混合物料与经过第五加热段3B过热后的二次稀释蒸汽进行第二混合,得到第二混合物料;第一液相物料与过热后的二次稀释蒸汽的重量比为1:0.50;过热后的二次稀释 蒸汽温度为560℃;
所述第二混合物料的温度为330℃;
使第二混合物料进入第二气液分离器9进行第三分离,得到第二气相物料和第二液相物料;第二气相物料包含携带的蒸汽和第二轻组分;所述第二液相物料包含第二重组分(初馏点温度≥430℃);
向所述第一液相物料引入40wt%的所述第三重组分,使得所述第三重组分与所述第一液相物料的重量比为8%;
在所述第一分离中,所述重质烃的气化率为30%,在所述第三分离中,所述第二混合物料的气化率为65%;
使第二气相物料进入第六加热段5进行第二加热后进入蒸汽裂解装置的辐射段,进行蒸汽裂解;蒸汽裂解温度为805℃,辐射炉管停留时间为0.25s。
根据该实施例,第三重组分与第一气相物料的组成同实施例1,由于向第一液相物料中引入的第三重组分的量较实施例1减少了一半,因此改质效果有限。
实施例2第一液相物料及第一改质液相物料馏程为:
如图7所示,通过第一液相物料与第一改质液相物料的对比,可以看出第一改质物料的TBP曲线在馏出量50%-90%之间,馏出温度平均降低了15℃左右,改质效果较实施例1减弱,但仍有改质效果。
根据该实施例,由于在第一液相物料中引入了50wt%的第三重组分,加速了第一改质液相物料在第四加热段的气化过程,在连续运行60天之 后没有明显结焦现象出现,可在较高的操作温度下避免对流段的结焦,从而也可以得到更高的化学品收率。
实施例2中,第一加热后的第一混合物料温度可以控制在305℃,而且,所述第一混合物料温度即使升高至330℃,也没有明显结焦现象。
实施例中,通过引入改质料,第三分离中的第二混合物料可适应更高的温度,本实施例中第二混合物料温度最高可达到340℃。
第二气相物料的馏程为:
根据该实施例,乙烯收率为22.5wt%(基于进入辐射段裂解的原油总量),三烯收率为40%,化学品收率为69%(除PGO、PFO、外送重油以外,原油裂解产生的化学品占原油的质量比例)。
实施例3
本实施例流程参见图4,重质烃AP I为30,馏程如下:
实施例3的重质烃蒸汽裂解产生烯烃的方法具体包括以下步骤:
S1、使来自储罐的重质烃经过初步预热后通过蒸汽裂解装置对流段的第一加热段1A进行第一预热,第一预热重质烃温度为115℃;将第一预热重质烃送入换热器6A与换热介质进一步换热以提高温度,得到第二预热重质烃;换热介质为高压蒸汽(温度为450℃),第二预热重质烃的温度为300℃;
将第二预热重质烃作为预热后的重质烃进入第一气液分离器8进行第一分离,得到第一气相物料和第一液相物料;第一分离的第一气化率为30%。
所述第一气相物料的非挥发性组分的含量为≤0.1wt%,基于所述第一气相物料的总重量计;
S2、使第一气相物料送入分离塔7进行第二分离,得到第三轻组分(终馏点温度为80℃)、第一中间组分(初馏点温度80℃,终馏点温度为165℃)和第三重组分,所述第三重组分的馏程为:
第一液相物料与经过第三加热段3A的过热后的一次稀释蒸汽混合,得到第一混合物料;第一液相馏分与过热后的一次稀释蒸汽的重量比为1:0.25;过热后的一次稀释蒸汽的温度为340℃,第一混合物料的温度为260℃;
使第一混合物料进入第四加热段4进行第一加热,第一加热后的第一混合物料的温度为295℃;将第一加热后的第一混合物料与经过第五加热段3B过热后的二次稀释蒸汽进行第二混合,得到第二混合物料;第一液相物料与过热后的二次稀释蒸汽的重量比为1:0.50;过热后的二次稀释蒸汽温度为560℃;
所述第二混合物料的温度为330℃;
使第二混合物料进入第二气液分离器9进行第三分离,得到第二气相物料和第二液相物料;第二气相物料包含携带的蒸汽和第二轻组分;所述第二液相物料包含第二重组分(初馏点温度≥430℃);
向所述第一液相物料引入99wt%的所述第三重组分,使得所述第三重组分与所述第一液相物料的重量比为12%;
在所述第一分离中,所述重质烃的气化率为30%,在所述第三分离中,所述第二混合物料的气化率为50%;
使第二气相物料进入第六加热段5进行第二加热后进入蒸汽裂解装置的辐射段,进行蒸汽裂解;蒸汽裂解温度为800℃,辐射炉管停留时间为0.25s。
根据该实施例,由于选用的原油API较低,馏程较重,因此第一气化率及第二气化率均偏低,第一气化率与第二气化率的差值(绝对值)为20%。
实施例3中,第一加热后的第一混合物料温度可以控制在295℃,而且,所述第一混合物料温度可最高升高至300℃。
实施例中,通过引入改质料,第三分离中的第二混合物料可适应更高的温度,本实施例中第二混合物料温度最高可达到320℃。
根据本实施例的方案,虽然选用的重质烃偏重,但在连续运行50天之后没有明显结焦现象出现。
根据该实施例,相比于常减压蒸馏加蒸汽裂解流程,流程变短,能量利用效率提升,本实施例每吨乙烯能耗减少8%。
第二气相物料的馏程为:

根据该实施例3,乙烯收率为21wt%(基于进入辐射段裂解的原油总量),三烯收率为37%,化学品收率为55%(除PGO、PFO、外送重油以外,原油裂解产生的化学品占原油的质量比例)。
实施例4
本实施例流程参见图3,重质烃AP I为30,馏程如下:
实施例4的重质烃蒸汽裂解产生烯烃的方法具体包括以下步骤:
S1、使来自储罐的重质烃经过初步预热后通过蒸汽裂解装置对流段的第一加热段1A进行第一预热,第一预热重质烃温度为115℃;将第一预热重质烃送入电加热器6B加热以提高温度,得到第二预热重质烃,第二预热重质烃的温度为400℃;
将第二预热重质烃作为预热后的重质烃进入第一气液分离器8进行第一分离,得到第一气相物料和第一液相物料;第一分离的第一气化率为50%。
由于第一气化率较实施例1/2/3均有大幅增加,因此分离塔7的负荷显著增加。
S5、所述第一气相物料的非挥发性组分的含量为≤0.1wt%,基于所述第一气相物料的总重量计;
S2、使第一气相物料送入分离塔7进行第二分离,得到第三轻组分(终 馏点温度为80℃)、第一中间组分(初馏点温度80℃,终馏点温度为165℃)和第三重组分,所述第三重组分的馏程为:
第三重组分明显重于实施例1/2/3,该方案本物料对第一液相物料的改质效果不明显。
根据本实施例的方案,但在连续运行45天之后没有明显结焦现象出现。
实施例5
本实施例流程参见实施例1。
其中实施例5还包括下面步骤:
第三分离得到的第一中间组分送至重整装置处理。第一中间组分重整进料量占原油总量的约24wt%。
根据本实施例的方案,但在连续运行70天之后没有明显结焦现象出现。
实施例6
本实施例流程参见实施例1。
其中实施例6还包括下面步骤:
所述第二混合物料进行所述第三分离,获得气相物料(称为初生气相物料)和液相物料(称为初生液相物料),使总重量20wt%的所述第三重组分和/或分离助剂(液态水)与所述初生气相物料逆流接触,获得所述第二气相物料。
初生气相物料及第二气相物料的馏程为:
通过实施例6可以看出,通过使总重量20wt%的所述第三重组分和/或分离助剂(液态水)与所述初生气相物料逆流接触,第二气相物料明显变轻,在第二混合物料与实施例1相同的条件下,终馏点温度可降低约10℃左右。
根据本实施例的方案,但在连续运行50天之后没有明显结焦现象出现。
根据该实施例,相比于常减压蒸馏加蒸汽裂解流程,流程变短,能量利用效率提升,本实施例每吨乙烯能耗减少7.6%。
实施例7
与实施例1相同,不同之处在于第三重组分的初馏点为140℃。
根据该实施例,乙烯收率为23.2%,化学品收率为71.5%。
根据本实施例的方案,但在连续运行50天之后没有明显结焦现象出现。
实施例8
与实施例1相同,不同之处在于第三重组分的初馏点为400℃。
根据该实施例,乙烯收率为20.5%,化学品收率为65%。
根据本实施例的方案,但在连续运行40天之后没有明显结焦现象出 现。
根据该实施例,相比于常减压蒸馏加蒸汽裂解流程,流程变短,能量利用效率提升,本实施例每吨乙烯能耗减少7%。
实施例9
与实施例5相同,不同之处在于第一气相所述第三重组分与所述第一液相物料的重量比为4%。
根据该实施例,第三分离得到的第一中间组分送至重整装置处理。第一中间组分重整进料量占原油总量的重量比约18%,与实施例5相比,损失了一部分芳烃料。
根据该实施例,第三重组分的馏程如下:
第三重组分馏程
根据本实施例,第三重组分的终馏点偏低,造成第二气相馏程范围变宽,部分芳烃料进入到第二气相,不宜选择最佳的裂解条件,影响裂解性能。
根据本实施例的方案,在连续运行60天之后没有明显结焦现象出现。
根据该实施例,乙烯收率为22.3wt%(基于进入辐射段裂解的原油总量),三烯收率为39%。化学品收率为68%(除PGO、PFO、外送重油以外,原油裂解产生的化学品占原油的质量比例)。
对比例1
与实施例1相同,不同之处在于不设置分离塔7进行所述第二分离, 并且仅将所述第二气相物料送入蒸汽裂解装置的辐射段进行蒸汽裂解。
根据该对比例,乙烯收率较实施例1降低2%,化学品收率较实施例1降低20%。根据本方案,在连续运行35天之后对流段压降变大,有结焦现象出现,由于乙烯收率下降,装置能耗增加2%(Kg标油/t乙烯)。
对比例2
与实施例1相同,不同之处在于不设置分离塔7进行所述第二分离,并且将所述第一气相物料与所述第二气相物料一起送入蒸汽裂解装置的辐射段进行蒸汽裂解。
根据该对比例,与实施例1相比,乙烯收率下降1.5%,与实施例1相比,化学品收率降低10%。根据本方案,在连续运行35天之后对流段压降变大,有结焦现象出现,由于乙烯收率下降,装置能耗提高1.5%(Kg标油/t乙烯)。
对比例3
本对比例中,重质烃的选择与实施例相同,不同之处在于重质烃先通过常减压蒸馏装置进行分离,然后适宜裂解的原料进裂解炉进行裂解,适宜重整的原料进重整装置进行裂解。其中蒸汽裂解炉选择为不含多级闪蒸装置的常规蒸汽裂解流程。通过上述常减压装置与常规蒸汽裂解炉、重整装置的结合,实现与实施例1相同的产品方案的目的。
由于本实施例流程新增了常减压装置的流程,增加了能耗,与实施例1相比,能量利用效率降低,整个装置能耗增加9.8%(Kg标油/t乙烯)。

Claims (22)

  1. 一种重质烃蒸汽裂解产生烯烃的方法,包括如下步骤:
    使所述重质烃进行第一分离(比如闪蒸),得到第一气相物料和第一液相物料,
    使所述第一气相物料进行部分冷凝(比如分馏,称为第二分离),得到凝液(称为第三重组分,优选其初馏点温度≥165℃,更优选其馏程为180-380℃),
    将至少一部分(比如占总重量50wt%以上或80wt%以上)所述第三重组分引入所述第一液相物料,获得第一改质液相物料,
    使所述第一改质液相物料进行第三分离(比如闪蒸),得到第二气相物料和第二液相物料,
    使所述第二气相物料进行蒸汽裂解,得到包含所述烯烃的裂解产物。
  2. 权利要求1所述的方法,其中所述重质烃的终馏点温度为540℃以上(优选初馏点温度为15℃且终馏点温度为750℃以上),和/或,所述重质烃的AP I值不小于32(优选38以上),和/或,所述重质烃的非挥发性组分的含量为25wt%以下(优选0.1-5.5wt%),基于所述重质烃的总重量计,和/或,所述重质烃的芳烃潜含量为10-40wt%,基于所述重质烃的总重量计。
  3. 权利要求1所述的方法,其中所述重质烃选自石蜡基原油、中间基原油、环烷基原油、凝析油和炼化产品中的至少一种。
  4. 权利要求1所述的方法,其中所述重质烃在进行所述第一分离之前进行预热而温度达到200-400℃(优选240-300℃)。
  5. 权利要求1所述的方法,其中所述第一气相物料的非挥发性组分的含量为0.5wt%以下,基于所述第一气相物料的总重量计。
  6. 权利要求1所述的方法,其中使所述第一气相物料进行所述第二分离,至少获得第三轻组分(优选终馏点温度≤90℃)、第一中间组分(优选馏程为80-170℃)和所述第三重组分。
  7. 权利要求6所述的方法,还包括对所述第一中间组分进行选自重整处理、炼油加工和异构分离的至少一种处理。
  8. 权利要求1所述的方法,其中所述第三重组分的非挥发性组分的含量为1wt%以下(优选0.5wt%以下),基于所述第三重组分的总重量计。
  9. 权利要求1所述的方法,其中所述第三重组分与所述第一液相物料的重量比为5-25%(优选15%-18%)。
  10. 权利要求1所述的方法,其中使所述第一改质液相物料与一次稀释蒸汽进行第一混合,得到第一混合物料,然后使所述第一混合物料进行第一加热,接着使经过所述第一加热的所述第一混合物料与二次稀释蒸汽进行第二混合,得到第二混合物料,然后使所述第二混合物料进行所述第三分离,得到所述第二气相物料和所述第二液相物料。
  11. 权利要求10所述的方法,其中所述一次稀释蒸汽的温度为180-400℃,优选200-350℃,和/或,所述第一混合物料进行所述第一加热后的温度为400℃以下,优选250-350℃,和/或,所述二次稀释蒸汽的温度为400-630℃,优选450-600℃,和/或,所述第一改质液相物料与所述一次稀释蒸汽的重量比为1:(0.1-0.5),优选1:(0.2-0.4),和/或,所述第一改质液相物料与所述二次稀释蒸汽的重量比为1:(0.2-0.8),优选1:(0.3-0.65),和/或,所述第二混合物料的温度为280-360℃(优选为310-340℃)。
  12. 权利要求1或10所述的方法,其中将液态烃进一步引入所述第一液相物料、和/或所述第一改质液相物料、和/或所述第一混合物料,所述液态烃与所述第一液相物料的重量比为1:(0.45-0.85)(优选1:(0.5-0.7))。
  13. 权利要求1所述的方法,其中在所述第一分离中,所述重质烃的气化率(称为第一气化率)为15-60%,优选25-45%,在所述第三分离中,所述第一改质液相物料或所述第二混合物料的气化率(称为第二气化率)为40-80%,优选50-70%。
  14. 权利要求1所述的方法,其中所述第一气化率与所述第二气化率的差值(绝对值)为15%-40%(优选20%-30%)。
  15. 权利要求1或10所述的方法,其中所述第一改质液相物料或所 述第二混合物料进行所述第三分离,获得气相物料(称为初生气相物料)和液相物料(称为初生液相物料),使至少一部分(比如占总重量50wt%以下或20wt%以下)所述第三重组分和/或分离助剂(也称为冷却助剂)与所述初生气相物料逆流接触,获得所述第二气相物料。
  16. 权利要求15所述的方法,其中所述第二气相物料与所述第三重组分的重量比为1:(0.01-0.35),优选为1:(0.05-0.2),和/或,所述第二气相物料与所述分离助剂的重量比为1:(0.01-0.2),优选为1:(0.05-0.15)。
  17. 权利要求15所述的方法,其中所述初生气相物料先与所述分离助剂逆流接触,然后再与所述第三重组分逆流接触,或者,所述初生气相物料先与所述第三重组分逆流接触,然后再与所述分离助剂逆流接触。
  18. 权利要求15所述的方法,其中所述分离助剂选自液态烃和液态水中的至少一种。
  19. 权利要求18所述的方法,其中所述初生气相物料先与所述液态水逆流接触,然后再与所述液态烃逆流接触,或者,所述初生气相物料先与所述液态烃逆流接触,然后再与所述液态水逆流接触,或者,所述初生气相物料与所述液态水和所述液态烃同时逆流接触。
  20. 权利要求12或15所述的方法,其中所述液态烃的终馏点为200-540℃(优选250-450℃或300-400℃),基于所述液态烃的总重量计,所述液态烃优选选自重石脑油、航煤油和柴油中的至少一种。
  21. 权利要求1所述的方法,其中所述第二气相物料在进行所述蒸汽裂解之前进行第二加热而温度达到500-600℃(优选510-550℃),所述第二气相物料的非挥发性组分的含量为1wt%以下(优选0.5wt%以下),基于所述第二气相物料的总重量计。
  22. 一种重质烃蒸汽裂解产生烯烃的系统,包括:
    第一气液分离器(8),其被构造为能够使所述重质烃进行第一分离(比如闪蒸),得到第一气相物料和第一液相物料,
    分离装置比如分离塔(7),其被构造为能够使所述第一气相物料进行部分冷凝(比如分馏,称为第二分离),得到凝液(称为第三重组分,优选其初馏点温度≥165℃,更优选其馏程为180-380℃),
    输送装置,其被构造为能够将至少一部分(比如占总重量50wt%以上或80wt%以上)所述第三重组分引入所述第一液相物料,获得第一改质液相物料,
    第二气液分离器(9),其被构造为能够使所述第一改质液相物料进行第三分离(比如闪蒸),得到第二气相物料和第二液相物料,
    蒸汽裂解装置,其被构造为能够使所述第二气相物料进行蒸汽裂解,得到包含所述烯烃的裂解产物。
PCT/CN2023/109009 2022-07-25 2023-07-25 一种重质烃蒸汽裂解产生烯烃的方法和系统 WO2024022308A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210878593.6A CN117487587A (zh) 2022-07-25 2022-07-25 一种重质烃蒸汽裂解产生烯烃的方法和系统
CN202210878593.6 2022-07-25

Publications (1)

Publication Number Publication Date
WO2024022308A1 true WO2024022308A1 (zh) 2024-02-01

Family

ID=89683514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/109009 WO2024022308A1 (zh) 2022-07-25 2023-07-25 一种重质烃蒸汽裂解产生烯烃的方法和系统

Country Status (2)

Country Link
CN (1) CN117487587A (zh)
WO (1) WO2024022308A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050209495A1 (en) * 2004-03-22 2005-09-22 Mccoy James N Process for steam cracking heavy hydrocarbon feedstocks
US20050261533A1 (en) * 2004-05-21 2005-11-24 Stell Richard C Cracking hydrocarbon feedstock containing resid utilizing partial condensation of vapor phase from vapor/liquid separation to mitigate fouling in a flash/separation vessel
WO2008131336A1 (en) * 2007-04-19 2008-10-30 Exxonmobil Chemical Patents Inc. Process for olefin production
CN112708459A (zh) * 2019-10-27 2021-04-27 中国石油化工股份有限公司 一种低碳烯烃的制备方法与系统
CN112745957A (zh) * 2019-10-31 2021-05-04 中国石油化工股份有限公司 一种原油制备低碳烯烃的方法与系统
US20210198585A1 (en) * 2019-12-27 2021-07-01 Saudi Arabian Oil Company Method to produce light olefins from crude oil

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050209495A1 (en) * 2004-03-22 2005-09-22 Mccoy James N Process for steam cracking heavy hydrocarbon feedstocks
US20050261533A1 (en) * 2004-05-21 2005-11-24 Stell Richard C Cracking hydrocarbon feedstock containing resid utilizing partial condensation of vapor phase from vapor/liquid separation to mitigate fouling in a flash/separation vessel
WO2008131336A1 (en) * 2007-04-19 2008-10-30 Exxonmobil Chemical Patents Inc. Process for olefin production
CN112708459A (zh) * 2019-10-27 2021-04-27 中国石油化工股份有限公司 一种低碳烯烃的制备方法与系统
CN112745957A (zh) * 2019-10-31 2021-05-04 中国石油化工股份有限公司 一种原油制备低碳烯烃的方法与系统
US20210198585A1 (en) * 2019-12-27 2021-07-01 Saudi Arabian Oil Company Method to produce light olefins from crude oil

Also Published As

Publication number Publication date
CN117487587A (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
JP7417579B2 (ja) 原油から化学製品用の統合された熱分解および水素化分解ユニット
US10017702B2 (en) Thermal cracking of crudes and heavy feeds to produce olefins in pyrolysis reactor
US11959032B2 (en) Process for mixing dilution steam with liquid hydrocarbons before steam cracking
CN101778929B (zh) 使用含凝析油和原油的原料生产烯烃
CN100371423C (zh) 一种烃类加氢裂化方法
CN106811234B (zh) 一种延迟焦化系统及其方法
CN1015903B (zh) 在蒸发重质烃过程中抑制焦质形成的方法
TW202104564A (zh) 利用氫加成及脫碳之混合用以轉化原油及冷凝物為化學品之方法
KR102551521B1 (ko) 탄화수소 증기를 생성하기 위한 공정 및 시스템
EP2300564A1 (en) Process and apparatus for cooling liquid bottoms from vapor-liquid separator by heat exchange with feedstock during steam cracking of hydrocarbon feedstocks
US11046893B2 (en) Process and a system for hydrocarbon steam cracking
WO2024022308A1 (zh) 一种重质烃蒸汽裂解产生烯烃的方法和系统
WO2024108854A1 (zh) 一种凝析油生产汽油和柴油的方法和系统
US7927556B2 (en) Catalytic naphtha reforming process
EP3110907A1 (en) A method for heating crude
CN105018139A (zh) 一种低能耗多产优质化工原料的加氢裂化方法
US2210901A (en) Process for cracking hydrocarbon oils
RU2550690C1 (ru) Нефтехимический кластер
CN116064093A (zh) 一种重质烃裂解生产烯烃的方法和系统
RU2108364C1 (ru) Способ получения низших олефинов из нефти
CN117050782A (zh) 一种短流程生成乙烯设备及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845518

Country of ref document: EP

Kind code of ref document: A1