WO2024022092A1 - 一种光学模组以及头戴显示设备 - Google Patents

一种光学模组以及头戴显示设备 Download PDF

Info

Publication number
WO2024022092A1
WO2024022092A1 PCT/CN2023/106469 CN2023106469W WO2024022092A1 WO 2024022092 A1 WO2024022092 A1 WO 2024022092A1 CN 2023106469 W CN2023106469 W CN 2023106469W WO 2024022092 A1 WO2024022092 A1 WO 2024022092A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical module
polarizing element
display screen
optical
Prior art date
Application number
PCT/CN2023/106469
Other languages
English (en)
French (fr)
Inventor
姜龙
吴玉登
赵博刚
Original Assignee
歌尔光学科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔光学科技有限公司 filed Critical 歌尔光学科技有限公司
Publication of WO2024022092A1 publication Critical patent/WO2024022092A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements

Definitions

  • the present invention relates to the field of near-eye display imaging technology, and more specifically, the present invention relates to an optical module and a head-mounted display device.
  • Augmented Reality (AR) technology and Virtual Reality (VR) technology have been applied and developed rapidly in, for example, smart wearable devices.
  • the core components of augmented reality technology and virtual reality technology are optical modules.
  • the quality of the image displayed by the optical module will directly determine the quality of the smart wearable device.
  • the spacing between the polarizing element and the spectroscopic element determines the foldable distance of the optical path and the degree to which the total length of the system can be reduced.
  • too large a spacing will cause components with spectroscopic elements to be installed.
  • the aperture is too large and the aperture of the components equipped with polarizing elements is too large, which will have an adverse impact on the overall miniaturization and balanced design of the pancake optical system. Therefore, how to better match the length dimension of the optical module on the optical axis and the width dimension of the optical module in the direction perpendicular to the optical axis, so that the optical module can achieve better system balance, needs to be solved. technical issues.
  • the purpose of the present invention is to provide a new technical solution for an optical module and a head-mounted display device.
  • the present invention provides an optical module, which includes:
  • the lens group including at least one lens
  • the optical module also includes a polarizing element, a spectroscopic element and a phase retarder.
  • the lens group includes a lens near the human eye, and the polarizing element is provided on either side of the lens; the spectroscopic element and the phase retarder The devices are arranged close to the display screen side relative to the polarizing element;
  • the effective diameter of the polarizing element is B1;
  • the total optical length of the optical module is TTL;
  • the optical module satisfies: 1.5 ⁇ B1/TTL ⁇ 3.8.
  • the total optical length TTL of the optical module is 10mm-30mm.
  • the distance A2 from the polarizing element to the light splitting element is 4.5mm-17mm.
  • the lens group has a side near the human eye, and the polarizing element is provided on the side near the human eye of the lens group;
  • the lens group includes at least two lenses, and the polarizing element is disposed between two adjacent lenses.
  • the lens group has a side near the display screen, and the light splitting element is provided on the side near the display screen of the lens group.
  • the phase retarder includes a first phase retarder
  • the lens group has a side near the human eye, and the first phase retarder is provided on the side near the human eye of the lens group; or the lens group includes at least two lenses, and is provided between two adjacent lenses. There is said first phase retarder;
  • the first phase retarder is arranged closer to the display screen side than the polarizing element.
  • the phase retarder includes a second phase retarder
  • the lens group has a near display screen side, and the second phase retarder is provided on the near display screen side of the lens group.
  • the optical module further includes a display screen, the size of the display screen is D1;
  • the distance from the polarizing element to the display screen is L1;
  • the optical module satisfies: -0.2 ⁇ (B1/2-D1/2)/L1 ⁇ 0.8.
  • the distance L1 from the polarizing element to the display screen is 10mm-30mm.
  • a head-mounted display device in a second aspect, includes:
  • optical module as described in the first aspect.
  • One technical effect of the present invention is that by controlling the ratio of the effective diameter B1 of the polarizing element and the total optical length TTL of the optical module, the optical module has better balance.
  • Figure 1 shows a schematic structural diagram of the optical module provided by the present invention.
  • Figure 2 shows the second structural schematic diagram of the optical module provided by the present invention.
  • Figure 3 shows the third structural schematic diagram of the optical module provided by the present invention.
  • Figure 4 shows a schematic diagram 4 of the structure of the optical module provided by the present invention.
  • Figure 5 shows a schematic structural diagram of the optical module provided by the present invention.
  • Figure 6 shows a schematic structural diagram of the optical module provided by the present invention.
  • Figure 7 shows a schematic structural diagram of the optical module provided by the present invention.
  • Figure 8 shows a schematic structural diagram of the optical module provided by the present invention.
  • Figure 9 shows a schematic structural diagram of the optical module provided by the present invention.
  • any specific values are to be construed as illustrative only and not as limiting. Accordingly, other examples of the exemplary embodiments may have different values.
  • the pancake optical system design uses polarizing elements to modulate polarized light to achieve limited transmission or reflection of light of a specific polarization state, thereby realizing folding of the optical path.
  • the spacing between the polarizing element and the spectroscopic element determines the foldable distance of the optical path and the degree to which the total length of the system can be reduced.
  • too large a spacing will cause components with spectroscopic elements to be installed.
  • the aperture is too large and the aperture of the components equipped with polarizing elements is too large, which will have an adverse impact on the overall miniaturization and balanced design of the pancake optical system. Therefore, how to better match the length dimension of the optical module on the optical axis and the width dimension of the optical module in the direction perpendicular to the optical axis, so that the optical module can achieve better system balance, needs to be solved. technical issues.
  • the first aspect of the present invention provides an optical module.
  • the optical module is a folded light path optical structure design, which can include at least one optical lens and can be applied to head mounted display devices.
  • display for example, a VR head-mounted device, which may include products such as VR glasses or VR helmets, which are not specifically limited in the embodiments of the present invention.
  • optical module and head-mounted display device provided by embodiments of the present invention will be described in detail below with reference to FIGS. 1 to 9 .
  • an embodiment of the present invention provides an optical module.
  • the optical module includes: a lens group 2, which includes at least one lens; the optical module also includes a polarizing element 3, The light splitting element 5 and the phase retarder, the lens group 2 includes a lens near the human eye, and the polarizing element 3 is provided on either side of the lens; the light splitting element 5 and the phase retarder are relative to The polarizing elements 3 are arranged close to the display screen side;
  • the effective diameter of the polarizing element 3 is B1.
  • the total optical length of the optical module is TTL.
  • the optical module satisfies: 1.5 ⁇ B1/TTL ⁇ 3.8.
  • the optical module mainly includes a lens group 2, a polarizing element 3, a light splitting element 5 and a phase retarder.
  • the lens group 2 includes at least one lens, and the function of the lens group 2 is to amplify the analytical light.
  • the function of the lens group 2 is to amplify the analytical light.
  • display devices such as VR (Virtual Reality, virtual reality)
  • the lens group 2 ensures that the user obtains a recognizable magnified picture.
  • the number of lenses in the optical structure of the folded light path can be up to three compared to the direct optical structure.
  • the optical module in order to realize the folded optical path, also includes a polarizing element 3, a light splitting element 5 and a phase retarder.
  • the lens group 2 includes a lens near the human eye, and the polarizing element 3 is disposed on either side of the lens; the light splitting element 5 and the phase retarder are both located relative to the polarizing element 3. Set close to the side of the display screen;
  • the light splitting element 5 is arranged on the side of the lens group 2 facing the display screen 1; the polarizing element 3 is arranged on the side of the lens group 2 facing away from the display screen 1, or the polarizing element 3 is arranged on one side of one lens in the lens group 2. ; Set a phase retarder on the side of the lens group 2 facing the display screen 1, or set a phase retarder on one side of one lens in the lens group.
  • the light splitting element 5 may be a semi-reflective and semi-transmissive film or a polarizing film.
  • the polarizing element 3 can be used to reflect S-polarized light through P-polarized light; alternatively, the polarizing reflective element can be used to reflect P-polarized light through S-polarized light.
  • the polarizing element 3 has a polarization transmission direction. Only when the light vibrates along the polarization transmission direction can it pass through the polarization element 3 smoothly. The vibration light in other directions is reflected when it encounters the polarization element 3 .
  • the polarizing element 3 may be a polarizing reflective film, a reflective polarizing plate, or other structures. This embodiment does not limit the specific installation position of the polarizing element 3, and it is sufficient to limit the effective diameter of the polarizing element 3 to B1.
  • the phase retarder can be used to change the polarization state of the light in the folded optical path structure.
  • linearly polarized light can be converted into circularly polarized light, or circularly polarized light can be converted into linearly polarized light.
  • the phase retarder can be a quarter wave plate.
  • the polarizing element 3 can be attached to the surface of the lens in the lens group 2, or the polarizing element 3 can be arranged on the optical component of the optical module, where the optical component can be located between two adjacent lenses, or the optical component can be located between between the lens and the human eye.
  • the total optical length of the optical module is TTL, and the total optical length is: the distance from the surface of the lens closest to the human eye that is set toward the human eye to the image plane (display screen 1).
  • the ratio relationship between the effective aperture B1 of the polarizing element 3 and the total optical length TTL of the optical module is defined, that is, 1.5 ⁇ B1/TTL ⁇ 3.8 is defined, so that the total optical length of the optical module is equal to the total optical length of the polarizing element 3
  • the effective aperture is balanced, and the system balance of the optical module is better.
  • the distance between the polarizing element 3 and the display screen 1 is closely related to the total optical length TTL of the optical module. That is, the distance between the polarizing element 3 and the display screen 1 is directly related to the total optical length TTL of the optical module. relationship.
  • the distance from the polarizing element 3 to the display screen 1 is equal to the total optical length TTL of the optical module; or when the polarizing element 3 is placed closest to On the surface of the lens of the human eye facing away from the human eye, the distance from the polarizing element 3 to the display screen 1 is slightly less than the total optical length TTL of the optical module (because the center thickness of the lens closest to the human eye is thinner ); or when the polarizing element 3 is placed between the human eye and the lens closest to the human eye, the distance from the polarizing element 3 to the display screen 1 may be slightly larger than the total optical length TTL of the optical module.
  • the distance from the polarizing element 3 to the display screen 1 is basically equal to the total optical length TTL of the optical module.
  • the distance from the polarizing element 3 to the display screen 1 can be slightly equal to the optical total of the optical module, Long TTL, so the distance from the polarizing element 3 to the display screen 1 is directly related to the total optical length TTL of the optical module.
  • This embodiment limits the ratio of the effective aperture B1 of the polarizing element 3 to the total optical length TTL of the optical module. relationship, which can better define the balance of the optical module.
  • the optical module is equipped with a polarizing element 3, wherein the polarizing element 3 is located closest to One side of the lens of the human eye, and the lens closest to the human eye is generally fixed to the human eye. Therefore, the position of the polarizing element 3 in this embodiment can be said to be relatively fixed at a distance from the human eye. That is to say, this embodiment selects a relatively fixed ratio relationship between the common surface of the optical module structure (the surface on which the polarizing element 3 is provided) and the total optical length TTL of the optical module to define the balance of the optical module. .
  • the distance between the polarizing element 3 and the human eye in this embodiment is relatively fixed, that is, the surface on which the polarizing element 3 is disposed is relatively fixed.
  • the lens group 2 includes two lenses, among which the lens close to the display screen 1, the distance from the display screen 1 is adjustable according to the size of the display screen 1; when the lens group 2 includes three lenses, among which two lenses are located close to the display screen 1.
  • the setting position of the lens between the lenses can also be adjusted.
  • the setting position of the lens is related to the diameter of the lens. When the setting position of the lens changes, the diameter of the corresponding lens can also be adjusted accordingly.
  • this embodiment selects a relatively fixed common surface of the optical module structure (the surface on which the polarizing element 3 is disposed) to reflect the effective aperture of the polarizing element 3. Therefore, this embodiment defines the difference between B1 and TTL. The ratio controls the balance of the optical module.
  • the balance of the optical module in this embodiment is mainly reflected in the balanced control of the total optical length of the optical module and the effective aperture of the polarizing element.
  • the optical module in this embodiment is a folded optical architecture. Compared with the direct optical architecture, , the number of lenses of the optical module of this embodiment is small, so the weight of the optical module of this embodiment is also lighter. Therefore, it can be said that the balance of the optical module in this embodiment is reflected in the balanced control of the total optical length of the optical module, the effective aperture of the optical module, and the weight of the optical module.
  • this embodiment selects a relatively fixed ratio between the common surface of the optical module structure (the surface on which the polarizing element 3 is provided) and the total optical length TTL of the optical module, which can better Reflecting the balance of the optical module, that is, by limiting the ratio of B1 to TTL, it can better reflect the relationship between the total length of the optical module and the effective aperture of the polarizing element 3, that is, by limiting the ratio of B1 to TTL.
  • the relationship can better reflect the matching relationship between the total length of the optical module and the effective aperture of the optical module.
  • the embodiment of the present invention considers the matching relationship between the effective aperture B1 of the polarizing element 3 and the effective aperture of the optical module, and considers the ratio of the effective aperture B1 of the polarizing element 3 to the total optical length TTL of the optical module.
  • the relationship makes the structure of the optical module balanced.
  • B1/TTL can range from 2 to 3.5.
  • the range of B1/TTL can be 2.5 ⁇ 3.
  • the range of B1/TTL may be 3 to 3.5.
  • the ratio between the effective aperture of the polarizing element 3 in the optical module and the total optical length of the optical module is not limited to the above three examples. Those skilled in the art can flexibly adjust it as needed. The embodiment of the present invention does not specifically limit this.
  • the total optical length TTL of the optical module is 10mm-30mm.
  • the effective diameter B1 of the polarizing element 3 is 40mm-65mm.
  • the effective diameter of the polarizing element 3 and the total optical length of the optical module are limited, so that the total optical length of the optical module and the effective diameter of the lens (or optical component) in the optical module are balanced and controlled.
  • the total optical length TTL of the optical module is limited, so that the balance and compactness of the optical module can be controlled and the volume of the optical module can be reduced.
  • the distance A2 from the polarizing element 3 to the light splitting element 5 is 4.5mm-17mm.
  • the distance from the polarizing element 3 to the spectroscopic element 5 is limited, that is, the length of the folded light path in the optical module is limited.
  • the effective aperture B1 of the polarizing element 3 is larger. Specifically, because the light emitted by the display screen 1 is expanded and transmitted, and the optical path is folded During the transmission process, the transmission is not parallel to the optical axis. Therefore, the longer the distance A2 between the spectroscopic element 5 and the polarizing element 3, the larger the effective aperture B1 of the polarizing element 3 is. In addition, the larger the effective diameter B1 of the polarizing element 3 is, the larger the diameter of the optical module system will be, which will have a negative effect on the balance of the system.
  • this embodiment limits the distance A2 from the polarizing element 3 to the spectroscopic element 5 so that the total optical length of the optical module is limited to an appropriate range, and the effective aperture of the polarizing element 3 is limited to an appropriate range. Therefore, The distance A2 from the polarizing element 3 to the splitting element 5 is limited, which can effectively control the ratio of the effective diameter B1 of the polarizing element 3 to the total optical length TTL of the optical module, so that the total optical length of the optical module is equal to the total optical length of the optical module.
  • the effective aperture of the lens (or optical component) is uniformly controlled.
  • the effective aperture B2 of the spectroscopic element 5 is 40mm-65mm.
  • the effective aperture of the spectroscopic element 5 is defined as B2, where the effective aperture of the spectroscopic element 5 is B2 and the distance A2 between the polarizing element 3 and the spectroscopic element 5, and there is a mutual influence between the two.
  • the total optical length of the optical module is shortened to a great extent; however, the larger the effective aperture B2 of the splitting element 5, the greater the effective aperture of the optical module becomes. Large, which reduces the fit between the total optical length of the optical module and the effective aperture of the optical module.
  • this embodiment limits the effective diameter B2 of the spectroscopic element 5 to this range. This allows the total optical length of the optical module and the effective aperture of the optical module to be balancedly controlled.
  • the lens group 2 has a side near the human eye, and the polarizing element 3 is provided on the side near the human eye of the lens group 2; or
  • the lens group 2 includes at least two lenses, and the polarizing element 3 is arranged between two adjacent lenses.
  • the installation position of the polarizing element 3 is limited so that the effective aperture of the first bearing component on which the polarizing element 3 is installed satisfies the difference relationship of B1/TTL.
  • the lens group 2 includes one lens, two lenses, or three lenses, etc.
  • the lens group 2 has a side near the human eye, and the lens group 2 has a lens disposed close to the human eye side.
  • a polarizing element 3 is provided on the eye side of the lens.
  • the lens has a surface arranged toward the human eye, and the polarizing element 3 is arranged on the surface, or the polarizing element 3 is arranged between the lens and the human eye.
  • the polarizing element 3 can be located between the lens and the human eye by means of optical components.
  • the lens group includes at least two lenses, wherein the at least two lenses include the lens closest to the human eye, that is, the lens closest to the human eye, that is (away from the display screen 1 lens), the lens closest to the human eye is used to directly transmit light to the human eye and form an image in the human eye.
  • At least two lenses include a first lens 21 and a second lens 22 , where the first lens 21 is disposed close to the human eye, and the second lens 22 is disposed close to the display screen 1 .
  • the polarizing element 3 is arranged between the first lens 21 and the second lens 22 , for example, the polarizing element 3 is arranged on the surface of the first lens 21 facing away from the human eye; or for another example, an additional optical component is arranged between the first lens 21 and the second lens 22 , set the polarizing element 3 on the optical component;
  • At least two lenses include a first lens 21 , a second lens 22 and a third lens 23 .
  • the first lens 21 is disposed close to the human eye, and the second lens 22 is located between the first lens 21 and the third lens 23 . Between the third lenses 23 , the third lens 23 is disposed closest to the display screen 1 .
  • the polarizing element 3 is disposed between the second lens 22 and the first lens 21 .
  • This embodiment does not limit the specific position of the polarizing element 3, so that the effective aperture of the first carrying component provided with the polarizing element 3 satisfies the difference relationship of B1/TTL.
  • the lens group 2 has a side near the display screen, and the light splitting element 5 is provided on the side near the display screen.
  • the lens group 2 has a side close to the display screen 1 , wherein the lens group 2 has a lens disposed close to the display screen 1 .
  • a light splitting element 5 is provided on the side of the lens near the display screen 1 .
  • the lens has a surface arranged toward the display screen 1 , and the light splitting element 5 is arranged on the surface, or the light splitting element 5 is arranged between the lens and the display screen 1 .
  • the light splitting element 5 can be located between the lens and the display screen 1 by means of optical components.
  • the lens group 2 only includes one lens, in which a light splitting element 5 is provided on the side of the lens near the display screen 1 .
  • the light splitting element 5 is attached to the surface of the lens facing the display screen 1 .
  • an optical component is provided between the lens and the display screen 1, and the spectroscopic element 5 is attached to the optical component.
  • the specific location of the spectroscopic element 5 is not particularly limited, as long as the effective aperture in which the spectroscopic element 5 is installed is limited to a reasonable range, and the structure of the optical module is balanced.
  • At least two lenses include a first lens 21 and a second lens 22 , where the first lens 21 is close to the human eye side and the second lens 22 is disposed adjacent to the display screen 1 .
  • the light splitting element 5 is disposed on the surface of the second lens 22 facing the display screen 1 (that is, away from the human eye).
  • At least two lenses include a first lens 21 , a second lens 22 and a third lens 23 .
  • the first lens 21 is disposed close to the human eye, and the second lens 22 is located between the first lens 21 and the third lens 23 . Between 23, The third lens 23 is located farthest from the human eye.
  • the light splitting element 5 is provided on the surface of the third lens 23 facing the display screen 1 .
  • This embodiment does not limit the specific position of the spectroscopic element 5, as long as the structure of the optical module can be balanced.
  • the phase retarder includes a first phase retarder 6; the lens group 2 has a side near the human eye, and the first phase retarder is provided on the side near the human eye of the lens group 2 6; Or the lens group 2 includes at least two lenses, and the first phase retarder 6 is provided between two adjacent lenses;
  • the first phase retarder 6 is arranged closer to the display screen side than the polarizing element 3 .
  • the lens group 2 has a side near the human eye.
  • the lens group 2 All have lenses arranged close to the human eye side.
  • a first phase retarder 6 is provided on the side of the lens near the human eye.
  • the lens has a surface facing the human eye, and the first phase retarder 6 is disposed on the surface, or the first phase retarder 6 is disposed between the lens and the human eye.
  • At least two lenses include a first lens 21 and a second lens 22 , where the first lens 21 is disposed close to the human eye, and the second lens 22 is disposed close to the display screen 1 . Between the first lens 21 and the second lens 22 , The first phase retarder 6 is disposed between the second lenses 22 .
  • the first phase retarder 6 is arranged closer to the display screen side relative to the polarizing element 3 .
  • the first phase retarder 6 and the polarizing element 3 are both disposed on the first surface (facing the human eye) of the first lens 21 , and the first phase retarder 6 is disposed closer to the first lens 21 than the polarizing element 3 , or the first phase retarder 6 is disposed closer to the first lens 21 than the polarizing element 3 .
  • a phase retarder 6 and the polarizing element 3 are both disposed on the second surface of the first lens 21 (disposed toward the second lens 22 ), and the first phase retarder 6 is disposed farther away from the first lens 21 than the polarizing element 3 .
  • the polarization state of the light passing through the first phase retarder 6 changes.
  • the light passing through the first phase retarder 6 for the first time is reflected by the polarizing element 3.
  • the reflected light is processed by the spectroscopic element 5 and passes through the first phase retarder 6 again.
  • Phase retarder 6, in which the light passing through the first phase retarder 6 for the second time is transmitted by the polarizing element 3 and transmitted to the human eye.
  • the phase retarder includes a second phase retarder; the lens group 2 has a near display screen side, and the second phase retarder is provided on the near display screen side of the lens group.
  • the lens group 2 whether the lens group 2 includes one lens, two lenses, or three lenses, etc., the lens group 2 has a side close to the display screen 1 , wherein the lens group 2 has a lens disposed close to the display screen 1 .
  • a second phase retarder is provided on the near display screen 1 side of the lens.
  • the lens has a surface disposed toward the display screen 1 , and a second two-bit retarder is disposed on the surface, or a second phase retarder is disposed between the lens and the display screen 1 .
  • the second phase retarder is arranged closer to the display screen side relative to the spectroscopic element 5 .
  • the optical module further includes a display screen 1, the size of the display screen 1 is D1; the distance from the polarizing element to the display screen 1 is L1; wherein the optical module satisfies :-0.2 ⁇ (B1/2-D1/2)/L1 ⁇ 0.8.
  • the optical module also includes a display screen 1, where the display screen 1 can be an LCD (Liquid Crystal Display), or an LED (Light Emitting Diode), or an OLED (Organic Light-Emitting Diode).
  • the display screen 1 can be an LCD (Liquid Crystal Display), or an LED (Light Emitting Diode), or an OLED (Organic Light-Emitting Diode).
  • Light-emitting diodes Micro-OLED (Micro-Organic Light-Emitting Diode), ULED (Ultra Light Emitting Diode) for ultimate luminescence Diode, or DMD (Digital Micro Mirror Device) digital micro mirror chip, etc.
  • the size of the display screen 1 is D1, where the size of the display screen 1 is defined as: the maximum size used to display an image.
  • the display screen 1 has a display area, and the maximum size of the area is The size of screen 1.
  • the brightness uniformity of the displayed image is adjusted (the smaller the difference, the higher the uniformity, the larger the difference, the lower the uniformity. ), so that when the user observes images from different viewing angles, the difference in brightness of the images at different viewing angles is smaller, that is, when the user observes the image in the center area and the image in the edge area, the difference in brightness perceived by the user is smaller. Small, the user's eyes are not easily tired when observing the screen, which improves the user experience.
  • the polarizing element 3 is the most critical and effective film layer for reflecting light in the folding light path.
  • the light emitted by the display screen 1 is folded between the polarizing element 3 and the light splitting element 5.
  • the display reflected by the polarizing element 3 The light direction of the edge area of the image in the screen 1 can basically correspond to the light direction of the edge field of view in the light source module.
  • the tangent value of the angle of the edge light is approximate to the effective aperture B1 of the polarizing element 3 and the size of the display screen 1
  • the difference in aperture is the ratio to the distance L1 from the polarizing element 3 to the display screen 1.
  • this embodiment limits the effective diameter B1 of the polarizing element 3 and the distance L1 from the polarizing element 3 to the display screen 1 , and the size D1 of the display screen 1.
  • the relationship between these three parameters enables (B1/2-D1/2)/L1 to basically reflect the brightness relationship between the light brightness of the edge field of view and the light brightness of the center field of view.
  • (B1/2-D1/2)/L1 is within this range, so that the polarizing element 3 and the display screen 1 have a good matching effect, and the effective diameter of the polarizing element 3 and the display screen 1 have a good matching effect.
  • (B1/2-D1/2)/L1 mainly adjusts the brightness of the edge field of view, so that the decrease range of the brightness of the edge field of view relative to the brightness of the center field of view is controlled within 30%, which meets the brightness of the image observed by the human eye. sensitivity.
  • the optical module satisfies: 1.5 ⁇ B1/TTL ⁇ 3.8, and satisfies: -0.2 ⁇ (B1/2-D1/2)/L1 ⁇ 0.8.
  • the optical module meets the balance requirements. Under the premise, the brightness of the imaging image visually observed by the user is uniform, that is, the brightness of the edge field of view and the brightness of the center field of view are uniform.
  • the distance L1 from the polarizing element 3 to the display screen 1 is 10mm-30mm.
  • the size D1 of the display screen 1 is 20mm-60mm.
  • the distance from the polarizing element 3 to the display screen 1 needs to be within this range.
  • This embodiment controls the distance from the polarizing element 3 to the display screen 1, on the one hand, so that (B1/2-D1/2)/L1 satisfies -0.2 ⁇ (B1/2-D1/2)/L1 ⁇ 0.8, reducing The difference between the light brightness of the edge field of view and the light brightness of the center field of view; on the other hand, by controlling the distance from the polarizing element 3 to the display screen 1, the overall optical length of the optical module is limited to a certain range, so that the optical module Meet the requirements of miniaturization and lightweight.
  • the size D1 of the display screen 1 is limited so that the lens group 2 in the optical module can be matched with display screens 1 of different sizes.
  • the size D1 of the display screen 1 is controlled so that (B1/2-D1/2)/L1 satisfies -0.2 ⁇ (B1/2-D1/2)/L1 ⁇ 0.8, reducing the edge field of view light brightness and center The difference in light brightness across the field of view.
  • a head-mounted display device includes: a housing; and the optical module as described above.
  • the head-mounted display device includes a housing, and the first aspect Optical module; or the head-mounted display device includes a housing and the optical module described in the second aspect.
  • the head-mounted display device is, for example, a VR head-mounted device, including VR glasses or VR helmets, etc. This embodiment of the present invention does not specifically limit this.
  • the specific implementation of the head-mounted display device according to the embodiment of the present invention may refer to the above-mentioned embodiments of the display module, and will not be described again here.
  • optical module provided by the embodiment of the present invention is specifically described below through nine embodiments.
  • an optical module provided by an embodiment of the present invention includes a display screen 1, a first lens 21, a second lens 22, a polarizing element 3, a light splitting element 5 and an aperture 4, wherein the first lens 21 has the same
  • the second lens 22 has a second surface that is adjacent to the first lens 21 and a first surface that faces the human eye; the second lens 22 has a first surface that is adjacent to the first lens 21 and a second surface that faces the display screen 1;
  • the light splitting element 5 is provided on the second surface of the second lens 22 , and the polarizing element 3 and the first phase retarder 6 are provided on the second surface of the first lens 21 .
  • the setting position of the diaphragm 4 is the position of the human eye.
  • the effective diameter B1 of the polarizing element 3 (the polarizing element 3 is arranged on the first lens 21, here also refers to the effective diameter B1 of the first lens 21 is 49.6mm) is 49.6mm, and the total optical length of the optical module
  • the TTL is 21.4mm; the size D1 of the display screen 1 is 34mm; the distance L1 from the polarizing element 3 to the display screen 1 is 18.9mm.
  • the effective aperture B2 of the spectroscopic element 5 (the spectroscopic element 5 is disposed on the second lens 22, here also refers to the effective aperture B2 of the second lens 22 is 50.8 mm) is 50.8 mm.
  • the distance A2 from the polarizing element 3 to the spectroscopic element 5 is 7.5 mm.
  • the optical parameters of the display screen 1, the first lens 21, the second lens 22 and the aperture 4 can be referred to Table 1:
  • This case is suitable for 100° FOV and 34mm (small screen) image surface size.
  • B1/TTL 2.318.
  • the optical module in this embodiment has better system balance.
  • This case is suitable for 100° FOV and 34mm image plane size, and the light incident angle of the edge field of view is -20.1°.
  • the light brightness of the field of view improves the uniformity of the brightness of the display screen 1.
  • an optical module provided by an embodiment of the present invention includes a display screen 1, a first lens 21, a second lens 22, a polarizing element 3, a light splitting element 5 and an aperture 4, wherein the first lens 21 has and The second lens 22 has a second surface arranged adjacently and a first surface facing the human eye side; the second lens 22 has a first surface arranged adjacent to the first lens 21 and a second surface facing the display screen 1;
  • the light splitting element 5 is provided on the second surface of the second lens 22 , and the polarizing element 3 and the first phase retarder 6 are provided on the second surface of the first lens 21 .
  • the setting position of the diaphragm 4 is the position of the human eye.
  • the effective aperture B1 of the polarizing element 3 (the polarizing element 3 is disposed on the first lens 21, here also refers to the effective aperture B1 of the first lens 21 is 48mm) is 48mm, and the total optical length TTL of the optical module is 25mm. ;
  • the size D1 of the display screen 1 is 46mm; the distance L1 from the polarizing element 3 to the display screen 1 is 21.1mm.
  • the effective aperture B2 of the spectroscopic element 5 (the spectroscopic element 5 is disposed on the second lens 22, here also refers to the effective aperture B2 of the second lens 22 being 51 mm) is 51 mm.
  • the distance A2 from the polarizing element 3 to the spectroscopic element 5 is 8.49mm.
  • the optical parameters of the display screen 1, the first lens 21, the second lens 22 and the aperture 4 can be referred to Table 2:
  • This embodiment is suitable for 100° FOV and 46mm (medium size screen) image surface size.
  • B1/TTL 1.92.
  • the optical module in this embodiment has better system balance.
  • the incident angle of light in the edge field of view is -0.9°.
  • the display brightness will decrease by 10% compared with the brightness at the 0° angle (center field of view), which means the light brightness of the edge field of view is reduced and the uniformity of the brightness of the display screen 1 is improved.
  • the optical module provided by the embodiment of the present invention includes a display screen 1, a first lens 21, a second lens 22, a polarizing element 3, a light splitting element 5 and an aperture 4, wherein the first lens 21 has and
  • the second lens 22 has a second surface arranged adjacently and a first surface facing the human eye side; the second lens 22 has a first surface arranged adjacent to the first lens 21 and a second surface facing the display screen 1;
  • the light splitting element 5 is provided on the second surface of the second lens 22 , and the polarizing element 3 and the first phase retarder 6 are provided on the first surface of the first lens 21 .
  • the setting position of the diaphragm 4 is the position of the human eye.
  • the effective aperture B1 of the polarizing element 3 (the polarizing element 3 is disposed on the first lens 21, here also refers to the effective aperture B1 of the first lens 21 is 44.5mm) is 44.5mm, and the total optical length TTL of the optical module is is 12mm; the size D1 of the display screen 1 is 26mm; the distance L1 from the polarizing element 3 to the display screen 1 is 12mm.
  • the effective aperture B2 of the spectroscopic element 5 (the spectroscopic element 5 is disposed on the second lens 22, here also refers to the effective aperture B2 of the second lens 22 is 46.34 mm) is 46.34 mm.
  • the distance A2 from the polarizing element 3 to the spectroscopic element 5 is 9.6088mm.
  • optical parameters of the display screen 1, the first lens 21, the second lens 22 and the aperture 4 can be referred to Table 3:
  • This embodiment is suitable for 100° FOV and 26mm (small screen) image surface size.
  • B1/TTL 3.708.
  • the optical module in this embodiment has better system balance.
  • the incident angle of light in the edge field of view is -41°.
  • the display brightness will be reduced by 30% compared with the brightness at the 0° angle (center field of view), that is, the light brightness of the edge field of view is reduced, and the uniformity of the brightness of the display screen 1 is improved.
  • an optical module provided by an embodiment of the present invention includes a display screen 1 , a first lens 21 , a second lens 22 , a polarizing element 3 , a light splitting element 5 and an aperture 4 , wherein the first lens 21 has and The second lens 22 is arranged adjacent to a second surface and a first surface facing the human eye side; the second lens 22 has a structure similar to that of the first lens 21 The adjacent first surface and the second surface facing the display screen 1;
  • the light splitting element 5 is provided on the second surface of the second lens 22 , and the polarizing element 3 and the first phase retarder 6 are provided on the first surface of the first lens 21 .
  • the setting position of the diaphragm 4 is the position of the human eye.
  • the effective aperture B1 of the polarizing element 3 (the polarizing element 3 is disposed on the first lens 21, here also refers to the effective aperture B1 of the first lens 21 is 47.6mm) is 47.6mm, and the total optical length TTL of the optical module is 20.89mm; the size D1 of the display screen 1 is 38mm; the distance L1 from the polarizing element 3 to the display screen 1 is 20.89mm.
  • the effective aperture B2 of the spectroscopic element 5 (the spectroscopic element 5 is disposed on the second lens 22, here also refers to the effective aperture B2 of the second lens 22 is 47.3 mm) is 47.3 mm.
  • the distance A2 from the polarizing element 3 to the spectroscopic element 5 is 8.2078mm.
  • optical parameters of the display screen 1, the first lens 21, the second lens 22 and the aperture 4 can be referred to Table 4:
  • This embodiment is suitable for 100° FOV and 38mm (medium size screen) image surface size.
  • B1/TTL 2.28.
  • the optical module in this embodiment has better system balance.
  • the incident angle of light in the edge field of view is -10°.
  • the display brightness will be reduced by less than 20% compared with the brightness at the 0° angle (center field of view), that is, the light brightness of the edge field of view is reduced, and the uniformity of the brightness of the display screen 1 is improved.
  • an optical module provided by an embodiment of the present invention includes a display screen 1, a first lens 21, a second lens 22, a third lens 23, a polarizing element 3, a light splitting element 5 and an aperture 4, wherein the first The lens 21 is arranged closest to the human eye, the third lens 23 is arranged closest to the display screen 1 , and the second lens 22 is located between the first lens 21 and the third lens 23 .
  • the first lens 21 has a second surface disposed adjacent to the second lens 22 and a first surface facing the human eye;
  • the third lens 23 has a first surface disposed adjacent to the second lens 22 and a first surface facing the human eye. display screen 1 second surface;
  • the spectroscopic element 5 is provided on the second surface of the third lens 23 , and the polarizing element 3 and the first phase retarder 6 are provided on the second surface of the first lens 21 .
  • the setting position of the diaphragm 4 is the position of the human eye.
  • the polarizing element 3 is provided (where the polarizing element 3 is provided on the first lens 21, which also refers to the effective diameter B1 of the first lens 21 as 40.26mm).
  • the effective diameter B1 is 40.26mm, and the total optical length of the optical module is TTL. is 13.6713mm; the size D1 of the display screen 1 is 26mm; the distance L1 from the polarizing element 3 to the display screen 1 is 11.1583mm.
  • the effective aperture B2 of the spectroscopic element 5 (the spectroscopic element 5 is disposed on the third lens 23, here also refers to the effective aperture B2 of the third lens 23 is 44.05 mm) is 44.05 mm.
  • the distance A2 from the polarizing element 3 to the spectroscopic element 5 is 9.6613mm.
  • the optical parameters of the display screen 1, the first lens 21, the second lens 22, the third lens 23 and the aperture 4 can be referred to Table 5:
  • This embodiment is suitable for 100° FOV and 26mm (small screen) image surface size.
  • B1/TTL 2.945.
  • the optical module in this embodiment has better system balance.
  • the incident angle of light in the edge field of view is -37.1°.
  • the display brightness will be reduced by less than 30% compared with the brightness at the 0° angle (center field of view), that is, the light brightness of the edge field of view is reduced, and the uniformity of the brightness of the display screen 1 is improved.
  • an optical module provided by an embodiment of the present invention includes a display screen 1 , a first lens 21 , a second lens 22 , a polarizing element 3 , a light splitting element 5 and an aperture 4 , where the first lens 21 has and Two lenses 22 A second surface arranged adjacently, and a first surface facing the human eye side; the second lens 22 has a first surface arranged adjacent to the first lens 21, and a second surface facing the display screen 1;
  • the light splitting element 5 is provided on the second surface of the second lens 22 , and the polarizing element 3 and the first phase retarder 6 are provided on the first surface of the first lens 21 .
  • the setting position of the diaphragm 4 is the position of the human eye.
  • the polarizing element 3 is provided (where the polarizing element 3 is provided on the first lens 21, which also refers to the effective diameter B1 of the first lens 21 as 53.7mm).
  • the effective diameter B1 is 53.7mm, and the total optical length TTL of the optical module is is 20.255mm; the size D1 of the display screen 1 is 44.9mm; the distance L1 from the polarizing element 3 to the display screen 1 is 20.255mm.
  • the effective aperture B2 of the spectroscopic element 5 (the spectroscopic element 5 is disposed on the second lens 22, here also refers to the effective aperture B2 of the second lens 22 is 58.1 mm) is 58.1 mm.
  • the distance A2 from the polarizing element 3 to the spectroscopic element 5 is 16.755mm.
  • optical parameters of the display screen 1, the first lens 21, the second lens 22 and the aperture 4 can be referred to Table 6:
  • This embodiment is suitable for 100° FOV and 44.9mm (medium size screen) image surface size.
  • B1/TTL 2.651.
  • the optical module in this embodiment has better system balance.
  • the incident angle of light in the edge field of view is -15.7°.
  • the display brightness will be reduced by less than 25% compared with the brightness at the 0° angle (center field of view), that is, the light brightness of the edge field of view is reduced, and the uniformity of the brightness of the display screen 1 is improved.
  • an optical module provided by an embodiment of the present invention includes a display screen 1 , a first lens 21 , a polarizing element 3 , a beam splitting element 5 and an aperture 4 .
  • the first lens 21 has a first lens facing the human eye. surface, and a second surface facing the display screen 1 side.
  • the light splitting element 5 is provided on the second surface of the first lens 21 , and the polarizing element 3 and the first phase retarder 6 are provided on the first surface of the first lens 21 .
  • the setting position of the diaphragm 4 is the position of the human eye.
  • the effective diameter B1 of the polarizing element 3 (where the polarizing element 3 is arranged on the first lens 21, which also refers to the effective diameter B1 of the first lens 21 is 42.36mm) is 42.36mm, and the total optical length TTL of the optical module is 12.8587mm; the size D1 of the display screen 1 is 25mm; the distance L1 from the polarizing element 3 to the display screen 1 is 12.887mm.
  • the effective aperture B2 of the spectroscopic element 5 (the spectroscopic element 5 is disposed on the first lens 21, here also refers to the effective aperture B2 of the first lens 21 is 42.36 mm) is 42.36 mm.
  • the distance A2 from the polarizing element 3 to the spectroscopic element 5 is 6.3874mm.
  • optical parameters of the display screen 1, the first lens 21 and the aperture 4 can be referred to Table 7:
  • This embodiment is suitable for 100° FOV and 25mm (small screen) image size.
  • B1/TTL 3.294.
  • the optical module in this embodiment has better system balance.
  • the incident angle of light in the edge field of view is -30.51°.
  • the display brightness will drop within 25%-30% compared to the 0° angle (center field of view), which means the light brightness of the edge field of view is reduced and the uniformity of the brightness of the display screen 1 is improved.
  • the optical module provided by the embodiment of the present invention includes a display screen 1, a first lens 21, a second lens 22, a third lens 23, a polarizing element 3, a light splitting element 5 and an aperture 4, wherein the first The lens 21 is arranged closest to the human eye, the third lens 23 is arranged closest to the display screen 1 , and the second lens 22 is located between the first lens 21 and the third lens 23 .
  • the first lens 21 has a second surface disposed adjacent to the second lens 22 and a first surface facing the human eye;
  • the third lens 23 has a first surface disposed adjacent to the second lens 22 and a first surface facing the human eye. display the second surface of screen 1;
  • the spectroscopic element 5 is provided on the second surface of the third lens 23 , and the polarizing element 3 and the first phase retarder 6 are provided on the second surface of the first lens 21 .
  • the setting position of the diaphragm 4 is the position of the human eye.
  • the effective diameter B1 of the polarizing element 3 (where the polarizing element 3 is arranged on the first lens 21, which also refers to the effective diameter B1 of the first lens 21 is 62.55mm) is 62.55mm, and the total optical length TTL of the optical module is 26.957mm; the size D1 of the display screen 1 is 56mm; the distance from the polarizing element 3 to the display screen 1 L1 is 24.089mm.
  • the effective aperture B2 of the spectroscopic element 5 (the spectroscopic element 5 is disposed on the third lens 23, here also refers to the effective aperture B2 of the third lens 23 is 62.44 mm) is 62.44 mm.
  • the distance A2 from the polarizing element 3 to the spectroscopic element 5 is 16.089mm.
  • the optical parameters of the display screen 1, the first lens 21, the second lens 22, the third lens 23 and the aperture 4 can be referred to Table 8:
  • This embodiment is suitable for 100° FOV and 56mm (large screen) image size.
  • B1/TTL 2.32.
  • the optical module in this embodiment has better system balance.
  • the incident angle of light in the edge field of view is -8.62°.
  • the display brightness will be reduced by less than 15% compared with the brightness at the 0° angle (center field of view), that is, the light brightness of the edge field of view is reduced, and the uniformity of the brightness of the display screen 1 is improved.
  • an optical module provided by an embodiment of the present invention includes a display screen 1 , a first lens 21 , a polarizing element 3 , a beam splitting element 5 and an aperture 4 .
  • the first lens 21 has a first lens facing the human eye. surface, and a second surface facing the display screen 1 side.
  • the light splitting element 5 is provided on the second surface of the first lens 21 , and the polarizing element 3 and the first phase retarder 6 are provided on the first surface of the first lens 21 .
  • the setting position of the diaphragm 4 is the position of the human eye.
  • the effective diameter B1 of the polarizing element 3 (where the polarizing element 3 is arranged on the first lens 21, which also refers to the effective diameter B1 of the first lens 21 is 44.34mm) is 44.34mm, and the total optical length of the optical module
  • the TTL is 12.8587mm; the size D1 of the display screen 1 is 25mm; the distance L1 from the polarizing element 3 to the display screen 1 is 12.887mm.
  • the effective aperture B2 of the spectroscopic element 5 (the spectroscopic element 5 is disposed on the first lens 21, here also refers to the effective aperture B2 of the first lens 21 is 44.34 mm) is 44.34 mm.
  • the distance A2 from the polarizing element 3 to the spectroscopic element 5 is 4.9943mm.
  • optical parameters of the display screen 1, the first lens 21 and the aperture 4 can be referred to Table 9:
  • This embodiment is suitable for 100° FOV and 25mm (small screen) image surface size.
  • B1/TTL 1.637.
  • the optical module in this embodiment has better system balance.
  • the incident angle of light in the edge field of view is 5°.
  • the display brightness will be reduced by less than 10% compared with the brightness at the 0° angle (center field of view), that is, the light brightness of the edge field of view is reduced, and the uniformity of the brightness of the display screen 1 is improved.
  • a head-mounted display device is also provided.
  • the head-mounted display device includes a housing and the above-mentioned optical module.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)

Abstract

一种光学模组以及头戴显示设备,光学模组包括:透镜组(2),透镜组(2)包括至少一个透镜(21,22);光学模组还包括偏振元件(3)、分光元件(5)和相位延迟器(6),透镜组(2)包括了近人眼侧的透镜(21),在该透镜(21)的任一侧设置有偏振元件(3);分光元件(5)和相位延迟器(6)相对于偏振元件(3),均靠近显示屏幕(1)侧设置;偏振元件(3)的有效口径为B1;光学模组的光学总长为TTL;其中光学模组满足于:1.5<B1/TTL<3.8。

Description

一种光学模组以及头戴显示设备
本申请要求于2022年7月26日提交中国专利局、申请号为202210886810.6、发明名称为“一种光学模组以及头戴显示设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及近眼显示成像技术领域,更具体地,本发明涉及一种光学模组以及头戴显示设备。
背景技术
近年来,增强现实(Augmented Reality,AR)技术及虚拟现实(Virtual Reality,VR)技术等,在例如智能穿戴设备中得到了应用并快速发展起来。增强现实技术和虚拟现实技术的核心部件均是光学模组。光学模组显示图像效果的好坏将直接决定着智能穿戴设备的质量。
其中在pancake光学系统设计方案中,偏振元件与分光元件之间的间距决定了光路可折叠的距离,以及决定了系统总长可缩减的程度,但是过大的间距又会导致设置有分光元件的部件的口径过大和设置有偏振元件的部件口径过大,对pancake光学系统整体小型化、均衡性设计产生不利的影响。因此如何使得光学模组在光轴上的长度尺寸,以及在与光轴垂直的方向上,光学模组的宽度尺寸得到更好的搭配,使得光学模组获得更好的系统均衡性是需要解决的技术问题。
发明内容
本发明的目的在于提供一种光学模组以及头戴显示设备的新技术方案。
第一方面,本发明提供了一种光学模组,所述光学模组包括:
透镜组,所述透镜组包括至少一个透镜;
所述光学模组还偏振元件、分光元件和相位延迟器,透镜组包括了近人眼侧的透镜,在该透镜的任一侧设置有所述偏振元件;所述分光元件和所述相位延迟器相对于所述偏振元件,均靠近显示屏幕侧设置;
所述偏振元件的有效口径为B1;
所述光学模组的光学总长为TTL;
其中所述光学模组满足于:1.5<B1/TTL<3.8。
可选地,所述光学模组的光学总长TTL为10mm-30mm。
可选地,所述偏振元件至所述分光元件的距离A2为4.5mm-17mm。
可选地,所述透镜组具有近人眼侧,在所述透镜组的近人眼侧设置有所述偏振元件;或者
所述透镜组包括至少两个透镜,在相邻两个透镜之间设置有所述偏振元件。
可选地,所述透镜组具有近显示屏幕侧,在所述透镜组的近显示屏幕侧设置有所述分光元件。
可选地,所述相位延迟器包括第一相位延迟器;
所述透镜组具有近人眼侧,在所述透镜组的近人眼侧设置有所述第一相位延迟器;或者所述透镜组包括至少两个透镜,在相邻两个透镜之间设置有所述第一相位延迟器;
其中所述第一相位延迟器相对于所述偏振元件更靠近显示屏幕侧设置。
可选地,所述相位延迟器包括第二相位延迟器;
所述透镜组具有近显示屏幕侧,在所述透镜组的近显示屏幕侧设置有所述第二相位延迟器。
可选地,所述光学模组还包括显示屏幕,所述显示屏幕的尺寸为D1;
所述偏振元件至所述显示屏幕的距离为L1;
其中所述光学模组满足于:-0.2<(B1/2-D1/2)/L1<0.8。
可选地,所述偏振元件至所述显示屏幕的距离L1为10mm-30mm。
第二方面,提供了一种头戴显示设备。所述头戴显示设备包括:
壳体;以及
如第一方面所述的光学模组。
本发明的一个技术效果在于,通过控制偏振元件的有效口径B1,与光学模组的光学总长TTL的比值,使得光学模组具有更好的均衡性。
通过以下参照附图对本说明书的示例性实施例的详细描述,本说明书的其它特征及其优点将会变得清楚。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一部分附图,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1所示为本发明提供的光学模组的结构示意图一。
图2所示为本发明提供的光学模组的结构示意图二。
图3所示为本发明提供的光学模组的结构示意图三。
图4所示为本发明提供的光学模组的结构示意图四。
图5所示为本发明提供的光学模组的结构示意图五。
图6所示为本发明提供的光学模组的结构示意图六。
图7所示为本发明提供的光学模组的结构示意图七。
图8所示为本发明提供的光学模组的结构示意图八。
图9所示为本发明提供的光学模组的结构示意图九。
附图标记说明:
1、显示屏幕;2、透镜组;21、第一透镜;22、第二透镜;23、第三透镜;3、偏
振元件;4、光阑;5、分光元件;6、第一相位延迟器。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术和设备可能不作详细讨论,但在适当情况下,所述技术和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
其中,在pancake光学系统设计方案中,pancake光学系统设计方案是利用偏振元件对偏振光的调制作用来实现对特定偏振态的光线限定性透射或者反射,从而实现光路的折叠。其中在pancake光学系统设计方案中,偏振元件与分光元件之间的间距决定了光路可折叠的距离,以及决定了系统总长可缩减的程度,但是过大的间距又会导致设置有分光元件的部件的口径过大和设置有偏振元件的部件口径过大,对pancake光学系统整体小型化、均衡性设计产生不利的影响。因此如何使得光学模组在光轴上的长度尺寸,以及在与光轴垂直的方向上,光学模组的宽度尺寸得到更好的搭配,使得光学模组获得更好的系统均衡性是需要解决的技术问题。
基于上述技术问题,本发明第一方面提供了一种光学模组,所述光学模组为一种折叠光路光学结构设计,其可以包含至少一个光学镜片,可应用于头戴显示设备(head mounted display,HMD)中,例如,VR头戴设备,如可以包括VR眼镜或者VR头盔等产品,本发明实施例中对此不做具体限制。
下面结合附图1至图9对本发明实施例提供的光学模组以及头戴显示设备进行详细地描述。
本发明实施例提供了一种光学模组,如图1至图9所示,光学模组包括:透镜组2,所述透镜组2包括至少一个透镜;所述光学模组还偏振元件3、分光元件5和相位延迟器,所述透镜组2包括了近人眼侧的透镜,在该透镜的任一侧设置有所述偏振元件3;所述分光元件5和所述相位延迟器相对于所述偏振元件3,均靠近显示屏幕侧设置;
所述偏振元件3的有效口径为B1。所述光学模组的光学总长为TTL。其中所述光学模组满足于:1.5<B1/TTL<3.8。
换句话说,光学模组主要包括透镜组2、偏振元件3、分光元件5和相位延迟器。
其中透镜组2包括至少一个透镜,透镜组2的作用在于放大解析光线。例如在VR(Virtual Reality,虚拟现实)等显示设备中,为了保证使用者获得放大后的显示画面,光线需要经过放大,通过透镜组2保证用户获得能够识别的放大画面。在折叠光路中,考虑到已经对光线折叠处理,相对于直射式光学架构,折叠光路的光学架构中透镜的数量可以至多是三个。
其中在该实施例中,为了实现折叠光路,光学模组还包括偏振元件3、分光元件5和相位延迟器。具体地,透镜组2包括了近人眼侧的透镜,在该透镜的任一侧设置有所述偏振元件3;所述分光元件5和所述相位延迟器相对于所述偏振元件3,均靠近显示屏幕侧设置;
例如在透镜组2中朝向显示屏幕1的一侧设置分光元件5;在透镜组2中背离显示屏幕1的一侧设置偏振元件3,或者在透镜组2中一个透镜的一侧设置偏振元件3;在透镜组2中朝向显示屏幕1的一侧设置相位延迟器,或者在透镜组中一个透镜的一侧设置相位延迟器。
在该实施例中,例如光线在经过分光元件5时,部分光线透射,另一部光线反射,这其中不考虑光线被吸收的情况。分光元件5可以是半反半透膜或者是偏光膜。
其中偏振元件3可用于透过P偏振光反射S偏振光;或者,偏振反射元件可用于透过S偏振光反射P偏振光。具体地,偏振元件3具有偏振透射方向,光线在沿偏振透射方向振动时,才能顺利通过偏振元件3,其余方向的振动光线,在遇到偏振元件3时光线被反射。例如偏振元件3可以为偏振反射膜、或者反射型偏振片等结构。本实施例对偏振元件3的具体设置位置不作限定,将偏振元件3的有效口径限定为B1即可。
在该实施例中,其中相位延迟器可用于改变折叠光路结构中光线的偏振状态。例如,能够将线偏振光转化为圆偏振光,又或者将圆偏振光转化为线偏振光。例如相位延迟器可以为四分之一波片。
其中偏振元件3可以贴设在透镜组2中透镜的表面上,或者偏振元件3可以设置在光学模组的光学部件上,其中光学部件可以位于相邻两个透镜之间,或者光学部件可以位于透镜和人眼之间。
其中光学模组的光学总长为TTL,光学总长为:最靠近人眼的透镜中朝向人眼设置的表面,到像面(显示屏幕1)的距离。
在该实施例中,限定了偏振元件3的有效口径B1,与光学模组的光学总长TTL的比值关系,即限定1.5<B1/TTL<3.8,使得光学模组的光学总长,与偏振元件3的有效口径取得均衡性,光学模组的系统均衡性更好。
具体地,和光学模组的光学总长TTL的关联性较强的为偏振元件3至显示屏幕1的距离,即偏振元件3至显示屏幕1的距离是与光学模组的光学总长TTL有一个直接的关联关系。
例如当偏振元件3设置在透镜组的近人眼侧的表面上,此时偏振元件3至显示屏幕1的距离是与光学模组的光学总长TTL相等的;或者当偏振元件3设置在最靠近人眼的透镜的,背离人眼侧的表面上,此时偏振元件3至显示屏幕1的距离是略小于光学模组的光学总长TTL(因为最靠近人眼的透镜的中心厚度是较薄的);或者当偏振元件3设置在人眼和最靠近人眼的透镜之间,偏振元件3至显示屏幕1的距离可能会略大于光学模组的光学总长TTL,但是由于人眼和最靠近人眼的透镜的距离是较短的(光学模组是近眼显示),因此偏振元件3至显示屏幕1的距离基本与光学模组的光学总长TTL相等。
综上所述,由于偏振元件3至显示屏幕1的距离是可以略等于光学模组的光学总 长TTL,因此偏振元件3至显示屏幕1的距离是与光学模组的光学总长TTL有一个直接的关联关系,本实施例限定偏振元件3的有效口径B1与光学模组的光学总长TTL的比值关系,可以更好的限定出光学模组的均衡性。
另外,参照图1-图9所示,无论透镜组2包括的是一个透镜、两个透镜、或者三个透镜,光学模组中均设置有偏振元件3,其中偏振元件3是设置在最靠近人眼的透镜的一侧,而且最靠近人眼的透镜与人眼之间的一般是固定设置的,因此本实施例偏振元件3的设置位置可以说是与人眼的距离是相对固定的,即本实施例选定了一个相对固定的,且为光学模组架构的共性面(设置有偏振元件3的表面)与光学模组的光学总长度TTL的比值关系限定了光学模组的均衡性。
其中本实施例偏振元件3的设置位置可以说是与人眼的距离是相对固定的,即设置有偏振元件3的表面是相对固定的。具体地,当透镜组2包括两个透镜,其中靠近显示屏幕1的透镜,与显示屏幕1的距离是根据显示屏幕1的尺寸大小可调的;当透镜组2包括三个透镜,其中位于两个透镜之间的透镜的设置位置也是可以调节的,其中透镜的设置位置,与透镜的口径相关,当透镜的设置位置发生改变,对应的透镜的口径也是相对应可以调节的。
因此总体来说,当透镜组2包括至少两个透镜时,最靠近人眼的透镜相对于其他透镜的设置位置是固定的。因此本实施例选定了一个相对固定的,且为光学模组架构的共性面(设置有偏振元件3的表面)用于体现偏振元件3的有效口径,因此本实施例通过限定B1与TTL的比值,控制了光学模组的均衡性。
其中本实施例中光学模组的均衡性主要体现在光学模组的光学总长度与偏振元件的有效口径的均衡控制,另外本实施例光学模组为折叠式光学架构,相对于直射式光学架构,本实施例光学模组的透镜数量少,因此本实施例光学模组的重量也是较轻的。因此可以说,本实施例光学模组的均衡性体现在了光学模组的光学总长度、光学模组的有效口径、以及光学模组的重量的均衡控制。
综上所述,本实施例选定了一个相对固定的,且为光学模组架构的共性面(设置有偏振元件3的表面)与光学模组的光学总长度TTL的比值,能够更好的体现光学模组的均衡性,即通过限定B1与TTL的比值关系,能够更好的体现光学模组的总长度,与偏振元件3的有效口径的搭配关系,也即通过限定B1与TTL的比值关系,能够更好的体现光学模组的总长度,与光学模组的有效口径的搭配关系。
因此,本发明实施例考虑设置有偏振元件3的有效口径B1,与光学模组的有效口径的搭配关系、以及考虑到偏振元件3的有效口径B1,与光学模组的光学总长度TTL的比值关系,使得光学模组的结构是均衡性的。
需要说明的是,在本发明的实施例中,本领域技术人员可以根据具体需要灵活调整光学模组中设置有偏振元件3的有效口径,与光学模组的光学总长的比值关系,只要使得比值关系控制在预设范围内即可。
例如,B1/TTL的范围可以为2~3.5。
又例如,B1/TTL的范围可以为2.5~3。
再例如,B1/TTL的范围可以为3~3.5。
在上述的各个比值范围之内,可以实现均衡性的光学模组系统。
当然,在本发明的实施例中,光学模组中偏振元件3的有效口径,与光学模组的光学总长的比值关系并不限于上述的三个例子,本领域技术人员可以根据需要灵活调整,本发明实施例对此不作具体限制。
在一个实施例中,所述光学模组的光学总长TTL为10mm-30mm。
在一个可选的实施例中,所述偏振元件3的有效口径B1为40mm-65mm。
在该实施例中,对偏振元件3的有效口径、以及光学模组光学总长进行限定,使得光学模组的光学总长,与光学模组中透镜(或者光学部件)的有效口径得到均衡性控制。
在该实施例中,对光学模组的光学总长TTL进行限定,使得光学模组的均衡性和紧凑性均能够得到控制,缩小光学模组的体积。
在一个实施例中,所述偏振元件3至所述分光元件5的距离A2为4.5mm-17mm。
在该实施例中,对偏振元件3至分光元件5的距离进行限定,也即对光学模组中折叠光路的长度进行限定。其中光线在偏振元件3至分光元件5的折叠光路越长,偏振元件3至分光元件5的距离越长,光学模组的整体的光学总长度越小。由于折叠光路的存在,折叠光路路径等效增加了透镜数量和反射面(分光元件5的反射、或者偏振元件3的反射)提供的加倍的光焦度特征,使得光学模组的整体的光学总长越小。
另外考虑到分光元件5与偏振元件3之间的距离A2越长,偏振元件3的有效口径B1是越大的,具体地,由于显示屏幕1发出的光线是被扩展性传输的,以及折叠光路在传输过程中并非是平行于光轴传输的,因此分光元件5与偏振元件3之间的距离A2越长,偏振元件3的有效口径B1是越大的。另外偏振元件3的有效口径B1越大,会扩大光学模组系统口径,对系统的均衡性会产生负面效果。
因此本实施例对偏振元件3至分光元件5的距离A2进行限定,使得光学模组的光学总长度限定在合适的范围内,以及使得偏振元件3的有效口径限定在合适的范围内,因此对偏振元件3至分光元件5的距离A2进行限定,能够有效地控制偏振元件3的有效口径B1,与光学模组的光学总长度TTL的比值,使得光学模组的光学总长,与光学模组中透镜(或者光学部件)的有效口径得到均衡性控制。
在一个可选的实施例中,分光元件5的有效口径B2为40mm-65mm。
在该实施例中,限定分光元件5的有效口径为B2,其中分光元件5的有效口径为B2与偏振元件3与分光元件5之间距离A2,两者是存在相互影响的关系。具体地,分光元件5的有效口径B2越大,可以允许偏振元件3与分光元件5之间的具有更大的间距,以增大光线在偏振元件3和分光元件5之间的折叠光路,当光线在偏振元件3和分光元件5之间的折叠光路延长后,则很大程度上缩短光学模组的光学总长;但是分光元件5的有效口径B2越大,反而使得光学模组的有效口径变大,使得光学模组的光学总长度、与光学模组的有效口径的适配度降低。
因此考虑到分光元件5的有效口径B2、与光学模组的光学总长度、以及与光学模组的有效口径的相互影响关系,本实施例将分光元件5的有效口径B2限定在此范围内,使得光学模组的光学总长度和光学模组的有效口径得到均衡控制。
在一个实施例中,所述透镜组2具有近人眼侧,在所述透镜组2的近人眼侧设置有所述偏振元件3;或者
所述透镜组2包括至少两个透镜,在相邻两个透镜之间设置有所述偏振元件3。
在该实施例中,对偏振元件3的设置位置进行限定,使得设置有偏振元件3的第一承载部件的有效口径满足B1/TTL的差值关系。
具体地,参照图1-图9,透镜组2无论包括了一个透镜、两个透镜或者三个透镜等,透镜组2均具有近人眼侧,透镜组2均具有靠近人眼侧设置的透镜。在该透镜的近人眼侧设置偏振元件3。例如该透镜具有朝向人眼设置的表面,在该表面上设置偏振元件3,或者在该透镜和人眼之间设置偏振元件3。其中偏振元件3可以借助于光学部件位于该透镜和人眼之间。
参照图1、图2、图5和图8,透镜组包括了至少两个透镜,其中至少两个透镜包括最靠近人眼的透镜,其中最靠近人眼的透镜,也即(远离显示屏幕1的透镜),最靠近人眼的透镜用于直接将光线传输至人眼,并在人眼中成像。
例如参照图1和图2所示,至少两个透镜包括第一透镜21和第二透镜22,其中第一透镜21靠近人眼设置,第二透镜22靠近显示屏幕1设置,在第一透镜21和第二透镜22之间设置偏振元件3,例如在第一透镜21中背离人眼的表面上设置偏振元件3;或者再例如,在第一透镜21和第二透镜22之间额外设置光学部件,在光学部件上设置偏振元件3;
例如参照图5和图8所示,至少两个透镜包括第一透镜21、第二透镜22和第三透镜23,其中第一透镜21靠近人眼设置,第二透镜22位于第一透镜21和第三透镜23之间,第三透镜23最靠近显示屏幕1设置。其中在第二透镜22和第一透镜21之间设置偏振元件3。
本实施例对偏振元件3的具体位置不作限定,使得设置有偏振元件3的第一承载部件的有效口径满足B1/TTL的差值关系。
在一个实施例中,所述透镜组2具有近显示屏幕侧,在所述透镜组2的近显示屏幕侧设置有所述分光元件5。
具体地,透镜组2无论包括了一个透镜、两个透镜或者三个透镜等,透镜组2均具有近显示屏幕1侧,其中透镜组2均具有靠近显示屏幕1侧设置的透镜。在该透镜的近显示屏幕1侧设置分光元件5。例如该透镜具有朝向显示屏幕1设置的表面,在该表面上设置分光元件5,或者在该透镜和显示屏幕1之间设置分光元件5。其中分光元件5可以借助于光学部件位于该透镜和显示屏幕1之间。
参照图7所示,透镜组2只包括了一个透镜,其中在该透镜的近显示屏幕1侧设置分光元件5。例如在该透镜的朝向显示屏幕1的表面上贴设分光元件5。或者在该透镜与显示屏幕1之间设置光学部件,将分光元件5贴设在该光学部件上。
本实施例对分光元件5的具体设置位置不作特别限定,只要将设置有分光元件5的有效口径限定在合理的范围内,光学模组的架构具备均衡性即可。
例如参照图1-图4所示,至少两个透镜包括第一透镜21和第二透镜22,其中第一透镜21靠近人眼侧,第二透镜22与显示屏幕1相邻设置。其中在第二透镜22朝向显示屏幕1(即背离人眼)的表面上设置分光元件5。
例如参图5所示,至少两个透镜包括第一透镜21、第二透镜22和第三透镜23,其中第一透镜21靠近人眼设置,第二透镜22位于第一透镜21和第三透镜23之间, 第三透镜23最远离人眼设置。在第三透镜23中朝向显示屏幕1的表面上设置分光元件5。
本实施例对分光元件5的具体位置不作限定,只要能够使得光学模组的架构具有均衡性即可。
在一个实施例中,所述相位延迟器包括第一相位延迟器6;所述透镜组2具有近人眼侧,在所述透镜组2的近人眼侧设置有所述第一相位延迟器6;或者所述透镜组2包括至少两个透镜,在相邻两个透镜之间设置有所述第一相位延迟器6;
其中所述第一相位延迟器6相对于所述偏振元件3更靠近显示屏幕侧设置。
具体地,参照图3、图4、图5、图7和图9,透镜组2无论包括了一个透镜、两个透镜或者三个透镜等,透镜组2均具有近人眼侧,透镜组2均具有靠近人眼侧设置的透镜。在该透镜的近人眼侧设置第一相位延迟器6。例如该透镜具有朝向人眼设置的表面,在该表面上设置第一相位延迟器6,或者在该透镜和人眼之间设置第一相位延迟器6。
参照图1和图2所示,至少两个透镜包括第一透镜21和第二透镜22,其中第一透镜21靠近人眼设置,第二透镜22靠近显示屏幕1设置,在第一透镜21和第二透镜22之间设置第一相位延迟器6。
在该实施例中,第一相位延迟器6相对于所述偏振元件3更靠近显示屏幕侧设置。例如第一相位延迟器6和偏振元件3均设置在第一透镜21的第一表面(朝向人眼)上,第一相位延迟器6相对于偏振元件3更靠近第一透镜21设置,或者第一相位延迟器6和偏振元件3均设置在第一透镜21的第二表面(朝向第二透镜22设置)上,第一相位延迟器6相对于偏振元件3更远离第一透镜21设置。
经过第一相位延迟器6的光线的偏振态发生改变,其中光线第一次经过第一相位延迟器6的光线被偏振元件3反射,反射后的光线经过分光元件5的处理,再次经过第一相位延迟器6,其中第二次经过第一相位延迟器6的光线被偏振元件3所透射并传输至人眼。
在一个实施例中,所述相位延迟器包括第二相位延迟器;所述透镜组2具有近显示屏幕侧,在所述透镜组的近显示屏幕侧设置有所述第二相位延迟器。
在该实施例中,透镜组2无论包括了一个透镜、两个透镜或者三个透镜等,透镜组2均具有近显示屏幕1侧,其中透镜组2均具有靠近显示屏幕1侧设置的透镜。在该透镜的近显示屏幕1侧设置第二相位延迟器。例如该透镜具有朝向显示屏幕1设置的表面,在该表面上设置第二两位延迟器,或者在该透镜和显示屏幕1之间设置第二相位延迟器。其中第二相位延迟器相对于分光元件5,其更靠近显示屏幕侧设置。
在一个实施例中,所述光学模组还包括显示屏幕1,所述显示屏幕1的尺寸为D1;所述偏振元件至所述显示屏幕1的距离为L1;其中所述光学模组满足于:-0.2<(B1/2-D1/2)/L1<0.8。
在该实施例中,光学模组还包括显示屏幕1,其中显示屏幕1可以是LCD(Liquid Crystal Display)液晶显示器,或者是LED(Light Emitting Diode)发光二极管,OLED(Organic Light-Emitting Diode)有机发光二极管,Micro-OLED(Micro-Organic Light-Emitting Diode)微型有机发光二极管、ULED(Ultra Light Emitting Diode)极致发光 二极管,或者DMD(Digital Micro mirror Device)数字微镜芯片等。
其中在该实施例中,显示屏幕1的尺寸为D1,其中显示屏幕1的尺寸定义为:用于显示图像画面的最大尺寸,例如显示屏幕1具有显示画面的区域,该区域的最大尺寸为显示屏幕1的尺寸。
在该实施例中,通过限定(B1/2-D1/2)/L1在此范围内,调节了显示图像的亮度均匀度(差异越小代表均匀度越高,差异越大代表均匀度越低),使得使用者在观察不同视角的图像时,不同视角下的图像的亮度差异性较小,也即使用者在观察中心区域的图像和边缘区域的图像时,视觉感受到的亮度差异性较小,使用者观察屏幕时眼睛不容易疲倦,提升了用户体验。
具体地,其中偏振元件3作为折叠光路中对光线进行反射的最关键以及最有效的膜层,显示屏幕1发出的光线在偏振元件3和分光元件5之间进行折叠,偏振元件3反射的显示屏幕1中图像边缘区域的光线走向,能够基本对应于光源模组中边缘视场的光线走向,具体地,边缘光线的角度的正切值近似于偏振元件3的有效口径B1与显示屏幕1的尺寸口径的差值,与偏振元件3至显示屏幕1的距离L1的比值。
因此本实施例为了更好的模拟显示屏幕1中图像中发出光线的入射角度(因为入射角度是不能准确控制),限定了偏振元件3的有效口径B1、偏振元件3至显示屏幕1的距离L1、以及显示屏幕1的尺寸D1,这三个参数的关系,使得(B1/2-D1/2)/L1能够基本反应边缘视场的光线亮度与中心视场的光线亮度的亮度关系。
具体地,(B1/2-D1/2)/L1在此范围内,使得偏振元件3与显示屏幕1具有好的搭配效果,以及偏振元件3的有效口径与显示屏幕1具有较好的搭配效果。具体地,(B1/2-D1/2)/L1主要调节了边缘视场的亮度,使得边缘视场亮度相对于中心视场的亮度的下降范围控制在30%以内,满足人眼观察图像亮度的敏感度。
因此在该实施例中,光学模组满足于:1.5<B1/TTL<3.8,以及满足于:-0.2<(B1/2-D1/2)/L1<0.8,光学模组在满足均衡性要求的前提下,使得使用者视觉观察到的成像图像亮度是均匀化的,即边缘视场亮度和中心视场亮度是均匀的。
在一个实施例中,所述偏振元件3至所述显示屏幕1的距离L1为10mm-30mm。
在一个可选的实施例中,所述显示屏幕1的尺寸D1为20mm-60mm。
在该实施例中,在光学模组中,无论偏振元件3设置在光学模组中的哪一位置,需要使得偏振元件3至显示屏幕1的距离满足在此范围内。本实施例对偏振元件3至显示屏幕1的距离进行控制,一方面使得(B1/2-D1/2)/L1满足于-0.2<(B1/2-D1/2)/L1<0.8,降低边缘视场光线亮度和中心视场光线亮度的差异;另一方面,通过对偏振元件3至显示屏幕1的距离进行控制,使得光学模组的整体光学总长限定在一定范围内,使得光学模组满足小型化、轻量化要求。
在该实施例中,对显示屏幕1的尺寸D1进行限定,使得光学模组中透镜组2能够搭配不同尺寸的显示屏幕1。另外对显示屏幕1的尺寸D1进行控制,使得(B1/2-D1/2)/L1满足于-0.2<(B1/2-D1/2)/L1<0.8,降低边缘视场光线亮度和中心视场光线亮度的差异。
根据本发明实施例第二方面,提供了一种头戴显示设备。所述头戴显示设备包括:壳体;以及如上述所述的光学模组。例如头戴显示设备包括壳体,和第一方面所述的 光学模组;或者头戴显示设备包括壳体、和第二方面所述的光学模组。
所述头戴显示设备例如为VR头戴设备,包括VR眼镜或者VR头盔等,本发明实施例对此不做具体限制。
本发明实施例的头戴显示设备的具体实施方式可以参照上述显示模组各实施例,在此不再赘述。
以下通过九个实施例对本发明实施例提供的光学模组进行具体说明。
实施例1
参照图1所示,本发明实施例提供的光学模组,包括显示屏幕1,第一透镜21、第二透镜22、偏振元件3、分光元件5和光阑4,其中第一透镜21具有与第二透镜22相邻设置的第二表面,和朝向人眼设置的第一表面;第二透镜22具有与第一透镜21相邻设置的第一表面、和朝向显示屏幕1的第二表面;
在第二透镜22的第二表面上设置分光元件5,在第一透镜21的第二表面上设置偏振元件3和第一相位延迟器6。其中光阑4的设置位置为人眼所在位置。
其中设置有偏振元件3的(其中偏振元件3设置在第一透镜21上,此处也指第一透镜21的有效口径B1为49.6mm)的有效口径B1为49.6mm,光学模组的光学总长TTL为21.4mm;显示屏幕1的尺寸D1为34mm;偏振元件3至显示屏幕1的距离L1为18.9mm。分光元件5(其中分光元件5设置在第二透镜22上,此处也指第二透镜22的有效口径B2为50.8mm)的有效口径B2为50.8mm。偏振元件3至分光元件5的距离A2为7.5mm。
其中显示屏幕1、第一透镜21、第二透镜22和光阑4的光学参数可以参照表1所示:
本案例适配100°FOV和34mm(小尺寸屏幕)像面大小,本实施例中B1/TTL=2.318,本实施例中光学模组具有较佳的系统均衡性。
本案例适配100°FOV和34mm像面大小,边缘视场的光线入射角度为-20.1°, 本实施例(B1/2-D1/2)/L1=0.333,此时控制边缘视场光线的显示亮度较0°角度(中心视场)下亮度会下降25%-30%,即降低了边缘视场的光线亮度,提升了显示屏幕1亮度的均匀度。
实施例2
参照图2所示,本发明实施例提供的光学模组,包括显示屏幕1,第一透镜21、第二透镜22、偏振元件3、分光元件5和光阑4,其中第一透镜21具有和第二透镜22相邻的设置的第二表面,和朝向人眼侧的第一表面;第二透镜22具有与第一透镜21相邻设置的第一表面、和朝向显示屏幕1的第二表面;
在第二透镜22的第二表面上设置分光元件5,在第一透镜21的第二表面上设置偏振元件3和第一相位延迟器6。其中光阑4的设置位置为人眼所在位置。
其中设置有偏振元件3(其中偏振元件3设置在第一透镜21上,此处也指第一透镜21的有效口径B1为48mm)的有效口径B1为48mm,光学模组的光学总长TTL为25mm;显示屏幕1的尺寸D1为46mm;偏振元件3至显示屏幕1的距离L1为21.1mm。分光元件5(其中分光元件5设置在第二透镜22上,此处也指第二透镜22的有效口径B2为51mm)的有效口径B2为51mm。偏振元件3至分光元件5的距离A2为8.49mm。
其中显示屏幕1、第一透镜21、第二透镜22和光阑4的光学参数可以参照表2所示:
本实施例适配100°FOV和46mm(中尺寸屏幕)像面大小,本实施例中B1/TTL=1.92,本实施例中光学模组具有较佳的系统均衡性。
本案例适配100°FOV和46mm像面大小,边缘视场的光线入射角度为-0.9°,本实施例(B1/2-D1/2)/L1=0.095,此时控制边缘视场光线的显示亮度较0°角度(中心视场)下亮度会下降10%,即降低了边缘视场的光线亮度,提升了显示屏幕1亮度的均匀度。
实施例3
参照图3所示,本发明实施例提供的光学模组,包括显示屏幕1,第一透镜21、第二透镜22、偏振元件3、分光元件5和光阑4,其中第一透镜21具有和第二透镜22相邻的设置的第二表面,和朝向人眼侧的第一表面;第二透镜22具有与第一透镜21相邻设置的第一表面、和朝向显示屏幕1的第二表面;
在第二透镜22的第二表面上设置分光元件5,在第一透镜21的第一表面上设置偏振元件3和第一相位延迟器6。其中光阑4的设置位置为人眼所在位置。
其中设置有偏振元件3(其中偏振元件3设置在第一透镜21上,此处也指第一透镜21的有效口径B1为44.5mm)的有效口径B1为44.5mm,光学模组的光学总长TTL为12mm;显示屏幕1的尺寸D1为26mm;偏振元件3至显示屏幕1的距离L1为12mm。分光元件5(其中分光元件5设置在第二透镜22上,此处也指第二透镜22的有效口径B2为46.34mm)的有效口径B2为46.34mm。偏振元件3至分光元件5的距离A2为9.6088mm。
其中显示屏幕1、第一透镜21、第二透镜22和光阑4的光学参数可以参照表3所示:
本实施例适配100°FOV和26mm(小尺寸屏幕)像面大小,本实施例中B1/TTL=3.708,本实施例中光学模组具有较佳的系统均衡性。
本案例适配100°FOV和26mm像面大小,边缘视场的光线入射角度为-41°,本实施例(B1/2-D1/2)/L1=0.77,此时控制边缘视场光线的显示亮度较0°角度(中心视场)下亮度会下降30%,即降低了边缘视场的光线亮度,提升了显示屏幕1亮度的均匀度。
实施例4
参照图4所示,本发明实施例提供的光学模组,包括显示屏幕1,第一透镜21、第二透镜22、偏振元件3、分光元件5和光阑4,其中第一透镜21具有和第二透镜22相邻的设置的第二表面,和朝向人眼侧的第一表面;第二透镜22具有与第一透镜21 相邻设置的第一表面、和朝向显示屏幕1的第二表面;
在第二透镜22的第二表面上设置分光元件5,在第一透镜21的第一表面上设置偏振元件3和第一相位延迟器6。其中光阑4的设置位置为人眼所在位置。
其中设置有偏振元件3(其中偏振元件3设置在第一透镜21上,此处也指第一透镜21的有效口径B1为47.6mm)的有效口径B1为47.6mm,光学模组的光学总长TTL为20.89mm;显示屏幕1的尺寸D1为38mm;偏振元件3至显示屏幕1的距离L1为20.89mm。分光元件5(其中分光元件5设置在第二透镜22上,此处也指第二透镜22的有效口径B2为47.3mm)的有效口径B2为47.3mm。偏振元件3至分光元件5的距离A2为8.2078mm。
其中显示屏幕1、第一透镜21、第二透镜22和光阑4的光学参数可以参照表4所示:
本实施例适配100°FOV和38mm(中尺寸屏幕)像面大小,本实施例中B1/TTL=2.28,本实施例中光学模组具有较佳的系统均衡性。
本案例适配100°FOV和38mm像面大小,边缘视场的光线入射角度为-10°,本实施例(B1/2-D1/2)/L1=0.23,此时控制边缘视场光线的显示亮度较0°角度(中心视场)下亮度会下降20%以内,即降低了边缘视场的光线亮度,提升了显示屏幕1亮度的均匀度。
实施例5
参照图5所示,本发明实施例提供的光学模组,包括显示屏幕1,第一透镜21、第二透镜22、第三透镜23、偏振元件3、分光元件5和光阑4,其中第一透镜21最靠近人眼设置,第三透镜23最靠近显示屏幕1设置,第二透镜22位于第一透镜21和第三透镜23之间。
其中第一透镜21具有和第二透镜22相邻的设置的第二表面,和朝向人眼侧的第一表面;第三透镜23具有与第二透镜22相邻设置的第一表面、和朝向显示屏幕1的 第二表面;
在第三透镜23的第二表面上设置分光元件5,在第一透镜21的第二表面上设置偏振元件3和第一相位延迟器6。其中光阑4的设置位置为人眼所在位置。
其中设置有偏振元件3的(其中偏振元件3设置在第一透镜21上,此处也指第一透镜21的有效口径B1为40.26mm)有效口径B1为40.26mm,光学模组的光学总长TTL为13.6713mm;显示屏幕1的尺寸D1为26mm;偏振元件3至显示屏幕1的距离L1为11.1583mm。分光元件5(其中分光元件5设置在第三透镜23上,此处也指第三透镜23的有效口径B2为44.05mm)的有效口径B2为44.05mm。偏振元件3至分光元件5的距离A2为9.6613mm。
其中显示屏幕1、第一透镜21、第二透镜22、第三透镜23和光阑4的光学参数可以参照表5所示:
本实施例适配100°FOV和26mm(小尺寸屏幕)像面大小,本实施例中B1/TTL=2.945,本实施例中光学模组具有较佳的系统均衡性。
本案例适配100°FOV和26mm像面大小,边缘视场的光线入射角度为-37.1°,本实施例(B1/2-D1/2)/L1=0.64,此时控制边缘视场光线的显示亮度较0°角度(中心视场)下亮度会下降30%以内,即降低了边缘视场的光线亮度,提升了显示屏幕1亮度的均匀度。
实施例6
参照图6所示,本发明实施例提供的光学模组,包括显示屏幕1,第一透镜21、第二透镜22、偏振元件3、分光元件5和光阑4,其中第一透镜21具有和第二透镜22 相邻的设置的第二表面,和朝向人眼侧的第一表面;第二透镜22具有与第一透镜21相邻设置的第一表面、和朝向显示屏幕1的第二表面;
在第二透镜22的第二表面上设置分光元件5,在第一透镜21的第一表面上设置偏振元件3和第一相位延迟器6。其中光阑4的设置位置为人眼所在位置。
其中设置有偏振元件3的(其中偏振元件3设置在第一透镜21上,此处也指第一透镜21的有效口径B1为53.7mm)有效口径B1为53.7mm,光学模组的光学总长TTL为20.255mm;显示屏幕1的尺寸D1为44.9mm;偏振元件3至显示屏幕1的距离L1为20.255mm。分光元件5(其中分光元件5设置在第二透镜22上,此处也指第二透镜22的有效口径B2为58.1mm)的有效口径B2为58.1mm。偏振元件3至分光元件5的距离A2为16.755mm。
其中显示屏幕1、第一透镜21、第二透镜22和光阑4的光学参数可以参照表6所示:
本实施例适配100°FOV和44.9mm(中尺寸屏幕)像面大小,本实施例中B1/TTL=2.651,本实施例中光学模组具有较佳的系统均衡性。
本案例适配100°FOV和44.9mm像面大小,边缘视场的光线入射角度为-15.7°,本实施例(B1/2-D1/2)/L1=0.217,此时控制边缘视场光线的显示亮度较0°角度(中心视场)下亮度会下降25%以内,即降低了边缘视场的光线亮度,提升了显示屏幕1亮度的均匀度。
实施例7
参照图7所示,本发明实施例提供的光学模组,包括显示屏幕1,第一透镜21、偏振元件3、分光元件5和光阑4,其中第一透镜21具有朝向人眼侧的第一表面,和朝向显示屏幕1侧的第二表面。
在第一透镜21的第二表面上设置分光元件5,在第一透镜21的第一表面上设置偏振元件3和第一相位延迟器6。其中光阑4的设置位置为人眼所在位置。
其中设置有偏振元件3(其中偏振元件3设置在第一透镜21上,此处也指第一透镜21的有效口径B1为42.36mm)的有效口径B1为42.36mm,光学模组的光学总长TTL为12.8587mm;显示屏幕1的尺寸D1为25mm;偏振元件3至显示屏幕1的距离L1为12.887mm。分光元件5(其中分光元件5设置在第一透镜21上,此处也指第一透镜21的有效口径B2为42.36mm)的有效口径B2为42.36mm。偏振元件3至分光元件5的距离A2为6.3874mm。
其中显示屏幕1、第一透镜21和光阑4的光学参数可以参照表7所示:
本实施例适配100°FOV和25mm(小尺寸屏幕)像面大小,本实施例中B1/TTL=3.294,本实施例中光学模组具有较佳的系统均衡性。
本案例适配100°FOV和25mm像面大小,边缘视场的光线入射角度为-30.51°,本实施例(B1/2-D1/2)/L1=0.675,此时控制边缘视场光线的显示亮度较0°角度(中心视场)下亮度会下降25%-30%以内,即降低了边缘视场的光线亮度,提升了显示屏幕1亮度的均匀度。
实施例8
参照图8所示,本发明实施例提供的光学模组,包括显示屏幕1,第一透镜21、第二透镜22、第三透镜23、偏振元件3、分光元件5和光阑4,其中第一透镜21最靠近人眼设置,第三透镜23最靠近显示屏幕1设置,第二透镜22位于第一透镜21和第三透镜23之间。
其中第一透镜21具有和第二透镜22相邻的设置的第二表面,和朝向人眼侧的第一表面;第三透镜23具有与第二透镜22相邻设置的第一表面、和朝向显示屏幕1的第二表面;
在第三透镜23的第二表面上设置分光元件5,在第一透镜21的第二表面上设置偏振元件3和第一相位延迟器6。其中光阑4的设置位置为人眼所在位置。
其中设置有偏振元件3(其中偏振元件3设置在第一透镜21上,此处也指第一透镜21的有效口径B1为62.55mm)的有效口径B1为62.55mm,光学模组的光学总长TTL为26.957mm;显示屏幕1的尺寸D1为56mm;偏振元件3至显示屏幕1的距离 L1为24.089mm。分光元件5(其中分光元件5设置在第三透镜23上,此处也指第三透镜23的有效口径B2为62.44mm)的有效口径B2为62.44mm。偏振元件3至分光元件5的距离A2为16.089mm。
其中显示屏幕1、第一透镜21、第二透镜22、第三透镜23和光阑4的光学参数可以参照表8所示:
本实施例适配100°FOV和56mm(大尺寸屏幕)像面大小,本实施例中B1/TTL=2.32,本实施例中光学模组具有较佳的系统均衡性。
本案例适配100°FOV和56mm像面大小,边缘视场的光线入射角度为-8.62°,本实施例(B1/2-D1/2)/L1=0.136,此时控制边缘视场光线的显示亮度较0°角度(中心视场)下亮度会下降15%以内,即降低了边缘视场的光线亮度,提升了显示屏幕1亮度的均匀度。
实施例9
参照图9所示,本发明实施例提供的光学模组,包括显示屏幕1,第一透镜21、偏振元件3、分光元件5和光阑4,其中第一透镜21具有朝向人眼侧的第一表面,和朝向显示屏幕1侧的第二表面。
在第一透镜21的第二表面上设置分光元件5,在第一透镜21的第一表面上设置偏振元件3和第一相位延迟器6。其中光阑4的设置位置为人眼所在位置。
其中设置有偏振元件3(其中偏振元件3设置在第一透镜21上,此处也指第一透镜21的有效口径B1为44.34mm)的有效口径B1为44.34mm,光学模组的光学总长 TTL为12.8587mm;显示屏幕1的尺寸D1为25mm;偏振元件3至显示屏幕1的距离L1为12.887mm。分光元件5(其中分光元件5设置在第一透镜21上,此处也指第一透镜21的有效口径B2为44.34mm)的有效口径B2为44.34mm。偏振元件3至分光元件5的距离A2为4.9943mm。
其中显示屏幕1、第一透镜21和光阑4的光学参数可以参照表9所示:
本实施例适配100°FOV和25mm(小尺寸屏幕)像面大小,本实施例中B1/TTL=1.637,本实施例中光学模组具有较佳的系统均衡性。
本案例适配100°FOV和46mm像面大小,边缘视场的光线入射角度为5°,本实施例(B1/2-D1/2)/L1=-0.031,此时控制边缘视场光线的显示亮度较0°角度(中心视场)下亮度会下降10%以内,即降低了边缘视场的光线亮度,提升了显示屏幕1亮度的均匀度。
根据本发明实施例的另一方面,还提供了一种头戴显示设备,所述头戴显示设备包括壳体,以及如上述所述的光学模组。
上文实施例中重点描述的是各个实施例之间的不同,各个实施例之间不同的优化特征只要不矛盾,均可以组合形成更优的实施例,考虑到行文简洁,在此则不再赘述。
虽然已经通过示例对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

Claims (10)

  1. 一种光学模组,其特征在于,包括:
    透镜组(2),所述透镜组(2)包括至少一个透镜;
    所述光学模组还包括偏振元件(3)、分光元件(5)和相位延迟器,所述透镜组(2)包括了近人眼侧的透镜,在该透镜的任一侧设置有所述偏振元件(3);所述分光元件(5)和所述相位延迟器相对于所述偏振元件(3),均靠近显示屏幕侧设置;
    所述偏振元件(3)的有效口径为B1;
    所述光学模组的光学总长为TTL;
    其中所述光学模组满足于:1.5<B1/TTL<3.8。
  2. 根据权利要求1所述的光学模组,其特征在于,所述光学模组的光学总长TTL为10mm-30mm。
  3. 根据权利要求1或2所述的光学模组,其特征在于,所述偏振元件(3)至所述分光元件(5)的距离A2为4.5mm-17mm。
  4. 根据权利要求1所述的光学模组,其特征在于,所述透镜组(2)具有近人眼侧,在所述透镜组(2)的近人眼侧设置有所述偏振元件(3);或者
    所述透镜组(2)包括至少两个透镜,在相邻两个透镜之间设置有所述偏振元件(3)。
  5. 根据权利要求1所述的光学模组,其特征在于,所述透镜组(2)具有近显示屏幕侧,在所述透镜组(2)的近显示屏幕侧设置有所述分光元件(5)。
  6. 根据权利要求1或4所述的光学模组,其特征在于,所述相位延迟器包括第一相位延迟器(6);
    所述透镜组(2)具有近人眼侧,在所述透镜组(2)的近人眼侧设置有所述第一相位延迟器(6);或者所述透镜组(2)包括至少两个透镜,在相邻两个透镜之间设置有所述第一相位延迟器(6);
    其中所述第一相位延迟器(6)相对于所述偏振元件(3)更靠近显示屏幕侧设置。
  7. 根据权利要求1所述的光学模组,其特征在于,所述相位延迟器包括第二相位延迟器;
    所述透镜组(2)具有近显示屏幕侧,在所述透镜组的近显示屏幕侧设置有所述第二相位延迟器。
  8. 根据权利要求1所述的光学模组,其特征在于,所述光学模组还包括显示屏幕(1),所述显示屏幕(1)的尺寸为D1;
    所述偏振元件(3)至所述显示屏幕(1)的距离为L1;
    其中所述光学模组满足于:-0.2<(B1/2-D1/2)/L1<0.8。
  9. 根据权利要求8所述的光学模组,其特征在于,所述偏振元件(3)至所述显示屏幕(1)的距离L1为10mm-30mm。
  10. 一种头戴显示设备,其特征在于,包括:
    壳体;以及
    如权利要求1-9中任一项所述的光学模组。
PCT/CN2023/106469 2022-07-26 2023-07-10 一种光学模组以及头戴显示设备 WO2024022092A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210886810.6A CN115079331A (zh) 2022-07-26 2022-07-26 一种光学模组以及头戴显示设备
CN202210886810.6 2022-07-26

Publications (1)

Publication Number Publication Date
WO2024022092A1 true WO2024022092A1 (zh) 2024-02-01

Family

ID=83242959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/106469 WO2024022092A1 (zh) 2022-07-26 2023-07-10 一种光学模组以及头戴显示设备

Country Status (2)

Country Link
CN (1) CN115079331A (zh)
WO (1) WO2024022092A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115079331A (zh) * 2022-07-26 2022-09-20 歌尔光学科技有限公司 一种光学模组以及头戴显示设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180088333A1 (en) * 2016-03-21 2018-03-29 Shenzhen Dlodlo New Technology Co., Ltd. Short-range optical amplification module, spectacles, helmet and vr system
CN208607440U (zh) * 2018-08-08 2019-03-15 青岛小鸟看看科技有限公司 一种短焦光学系统
CN110456509A (zh) * 2019-08-05 2019-11-15 青岛小鸟看看科技有限公司 显示光学装置以及头戴设备
CN213934434U (zh) * 2021-01-29 2021-08-10 南昌虚拟现实研究院股份有限公司 双目成像光学模组及虚拟现实设备
CN215181229U (zh) * 2021-06-08 2021-12-14 上海悠睿光学有限公司 光学模组和近眼显示装置
CN115079331A (zh) * 2022-07-26 2022-09-20 歌尔光学科技有限公司 一种光学模组以及头戴显示设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180088333A1 (en) * 2016-03-21 2018-03-29 Shenzhen Dlodlo New Technology Co., Ltd. Short-range optical amplification module, spectacles, helmet and vr system
CN208607440U (zh) * 2018-08-08 2019-03-15 青岛小鸟看看科技有限公司 一种短焦光学系统
CN110456509A (zh) * 2019-08-05 2019-11-15 青岛小鸟看看科技有限公司 显示光学装置以及头戴设备
CN213934434U (zh) * 2021-01-29 2021-08-10 南昌虚拟现实研究院股份有限公司 双目成像光学模组及虚拟现实设备
CN215181229U (zh) * 2021-06-08 2021-12-14 上海悠睿光学有限公司 光学模组和近眼显示装置
CN115079331A (zh) * 2022-07-26 2022-09-20 歌尔光学科技有限公司 一种光学模组以及头戴显示设备

Also Published As

Publication number Publication date
CN115079331A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
JP7204073B2 (ja) 指向性ディスプレイ用の光学積層体
US8259239B2 (en) Polarized head-mounted projection display
US8000020B2 (en) Substrate-guided imaging lens
US9025253B2 (en) Optical device having a light transmitting substrate with external light coupling means
WO2017128183A1 (zh) 短距离光学放大模组、放大方法及放大系统
JP5803082B2 (ja) 虚像表示装置
US10754162B2 (en) Projection apparatus and head-mounted display device
US10809609B2 (en) Projection apparatus
WO2023098056A1 (zh) 一种光学模组以及头戴显示设备
WO2014156599A1 (ja) 映像表示装置およびヘッドマウントディスプレイ
WO2023071214A1 (zh) 一种中继转向器、显示装置及近眼显示系统
WO2024022092A1 (zh) 一种光学模组以及头戴显示设备
WO2023098057A1 (zh) 一种光学模组以及头戴显示设备
WO2023092705A1 (zh) 光学模组和头戴显示设备
WO2024022106A1 (zh) 一种光学模组以及头戴显示设备
WO2022199194A1 (zh) 光学系统和穿戴式增强现实显示设备
WO2024022091A1 (zh) 光学模组以及头戴显示设备
WO2024001238A1 (zh) 光学模组以及头戴显示设备
WO2024020796A1 (zh) 光学模组以及头戴显示设备
WO2023245333A1 (zh) 光学模组以及头戴显示设备
CN218383492U (zh) 光学模组以及头戴显示设备
WO2024020797A1 (zh) 光学模组以及头戴显示设备
CN219957993U (zh) 光学模组以及头戴显示设备
CN218003853U (zh) 光学模组以及头戴显示设备
WO2023221239A1 (zh) 光学模组以及头戴显示设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845305

Country of ref document: EP

Kind code of ref document: A1