WO2023245333A1 - 光学模组以及头戴显示设备 - Google Patents

光学模组以及头戴显示设备 Download PDF

Info

Publication number
WO2023245333A1
WO2023245333A1 PCT/CN2022/099808 CN2022099808W WO2023245333A1 WO 2023245333 A1 WO2023245333 A1 WO 2023245333A1 CN 2022099808 W CN2022099808 W CN 2022099808W WO 2023245333 A1 WO2023245333 A1 WO 2023245333A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
display screen
optical module
human eye
polarizing element
Prior art date
Application number
PCT/CN2022/099808
Other languages
English (en)
French (fr)
Inventor
吴玉登
Original Assignee
歌尔光学科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔光学科技有限公司 filed Critical 歌尔光学科技有限公司
Priority to PCT/CN2022/099808 priority Critical patent/WO2023245333A1/zh
Publication of WO2023245333A1 publication Critical patent/WO2023245333A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • the embodiments of the present application relate to the field of near-eye display imaging technology, and more specifically, the embodiments of the present application relate to an optical module and a head-mounted display device.
  • Augmented Reality (AR) technology and Virtual Reality (VR) technology have been applied and developed rapidly in, for example, smart wearable devices.
  • the core components of augmented reality technology and virtual reality technology are optical modules.
  • the quality of the image displayed by the optical module will directly determine the quality of the smart wearable device.
  • the folded optical path solution can effectively reduce the total length of the optical system, but in the entire optical path structure, the lens (lens) on the side close to the display screen is closer to the light-emitting surface of the display screen, which will cause the appearance defects of the lens to be far away from the display.
  • Other optical elements on one side of the screen are then magnified, which is easily noticeable to the human eye, which will lead to poor imaging.
  • the purpose of this application is to provide a new technical solution for an optical module and a head-mounted display device.
  • this application provides an optical module, which includes:
  • a lens group the lens group is located on one side of the light-emitting surface of the display screen; the lens group includes a lens adjacent to the display screen; the lens has a surface facing the display screen, and the surface is in contact with the display screen.
  • the distance between the above display screens is A4;
  • the optical module also includes a polarizing element, a spectroscopic element and a first phase retarder.
  • the spectroscopic element is located on one side of the surface.
  • the polarizing element is located on the side of the lens away from the display screen.
  • the first phase retarder is located on the side of the lens away from the display screen.
  • a retarder is located between the polarizing element and the light splitting element;
  • the optical module satisfies: A4/F 2 >0.008, where F is the focal length of the optical module.
  • the effective focal length F of the optical module is 15mm-36mm.
  • the incident angle of the edge field of view of the optical module is: -41°-5°.
  • the distance A2 between the polarizing element and the light splitting element is 4mm-15mm.
  • the distance between the virtual image formed by the defect on the surface and the human eye is less than 120 mm.
  • the lens group includes a first lens disposed close to the human eye side, the first lens having a second surface facing the display screen and a first surface facing away from the display screen;
  • the polarizing element is provided on one side of the first surface, or the polarizing element is provided on one side of the second surface.
  • the lens group includes a first lens disposed close to the human eye side, the first lens having a second surface facing the display screen and a first surface facing away from the display screen;
  • the first phase retarder is provided on one side of the first surface, or the first phase retarder is provided on one side of the second surface;
  • the first phase retarder is arranged closer to the display screen than the polarizing element.
  • a head-mounted display device in a second aspect, includes:
  • optical module as described in the first aspect.
  • Figure 1 shows a schematic structural diagram of an optical module provided by an embodiment of the present application.
  • Figure 2 shows a second structural schematic diagram of an optical module provided by an embodiment of the present application.
  • Figure 3 shows the third structural schematic diagram of the optical module provided by the embodiment of the present application.
  • Figure 4 shows a schematic structural diagram 4 of an optical module provided by an embodiment of the present application.
  • Figure 5 shows a schematic structural diagram of an optical module provided by an embodiment of the present application.
  • Figure 6 shows a schematic diagram 6 of the structure of an optical module provided by an embodiment of the present application.
  • any specific values are to be construed as illustrative only and not as limiting. Accordingly, other examples of the exemplary embodiments may have different values.
  • the pancake optical system design uses polarizing elements to modulate polarized light to achieve limited transmission or reflection of light of a specific polarization state, thereby realizing folding of the optical path.
  • the length of the system can be reduced by increasing the distance between the polarizing element and the splitting element.
  • the reduction in system length further reduces the distance between the display screen and the lens surface. Defects on the lens surface closest to the display screen are amplified by the system and can be recognized by the human eye, affecting the experience.
  • it is simply by increasing the distance between the lens on the side close to the display screen and the light-emitting surface of the display screen in the optical path structure.
  • the lens on the side close to the display screen and the light-emitting surface of the display screen The distance between them is too large, which affects the total optical length of the optical module.
  • the optical module is a folded light path optical structure design, which can include at least one optical lens and can be applied to a head-mounted display device ( head mounted display (HMD), for example, a VR head-mounted device, which may include products such as VR glasses or VR helmets, which are not specifically limited in the embodiments of this application.
  • HMD head mounted display
  • VR head-mounted device which may include products such as VR glasses or VR helmets, which are not specifically limited in the embodiments of this application.
  • optical module and head-mounted display device provided by the embodiment of the present application will be described in detail below with reference to FIGS. 1 to 6 .
  • the embodiment of the present application provides an optical module, as shown in Figures 1 to 6.
  • the optical module includes: a display screen 1; a lens group 2, and the lens group 2 is located on one side of the light-emitting surface of the display screen 1 ;
  • the lens group 2 includes lenses adjacent to the display screen 1; the lens has a surface facing the display screen 1, and the distance between the surface and the display screen 1 is A4.
  • the optical module also includes a polarizing element 3, a spectroscopic element 5 and a first phase retarder 6.
  • the spectroscopic element 5 is located on one side of the surface, and the polarizing element 3 is located on the side of the lens away from the display screen.
  • the first phase retarder 6 is located between the polarizing element 3 and the spectroscopic element 5; wherein, the optical module satisfies: A4/F2>0.008, where F is the focal length of the optical module.
  • the optical module mainly includes a display screen 1, a lens group 2, a polarizing element 3, a light splitting element 5 and a first phase retarder 6.
  • the display screen 1 may be an LCD (Liquid Crystal Display), or an LED (Light Emitting Diode), an OLED (Organic Light-Emitting Diode), or a Micro-OLED (Micro-Organic Light-Emitting Diode).
  • LCD Liquid Crystal Display
  • LED Light Emitting Diode
  • OLED Organic Light-Emitting Diode
  • Micro-OLED Micro-Organic Light-Emitting Diode.
  • Micro organic light-emitting diodes ULED (Ultra Light Emitting Diode) extreme light-emitting diodes, or DMD (Digital Micro mirror Device) digital micromirror chips, etc.
  • the lens group 2 includes at least one lens, and the function of the lens group 2 is to amplify the analytical light.
  • the function of the lens group 2 is to amplify the analytical light.
  • display devices such as VR (Virtual Reality)
  • the lens group 2 ensures that the user obtains a recognizable magnified picture.
  • the number of lenses in the optical structure of the folded light path can be up to three compared to the direct optical structure.
  • the optical module also includes a polarizing element 3, a spectroscopic element 5 and a first phase retarder 6.
  • the light splitting element 5 is located in the lens adjacent to the display screen 1 and faces the surface of the display screen 1 .
  • the lens group includes a lens arranged adjacent to the display screen 1.
  • the lens has a surface facing the display screen, and the light splitting element 5 is arranged on one side of the surface.
  • the light splitting element 5 may be disposed on the surface, or the light splitting element 5 may be located between the lens and the display screen 1 .
  • the spectroscopic element 5 can be located between the lens and the display screen 1 by means of optical components.
  • the light splitting element 5 may be a semi-reflective and semi-transmissive film or a polarizing film.
  • the polarizing element 3 is located on the side of the lens away from the display screen 1. Specifically, whether the lens group includes one lens, two lenses or more lenses, as long as the polarizing element 3 is set on the lens (opposite to the display screen 1
  • the lens set adjacent to the lens can be located on the side facing away from the display screen 1. For example, it can be arranged on the surface of the lens facing away from the display screen 1 .
  • the polarizing element 3 can be used to reflect S-polarized light through P-polarized light; alternatively, the polarizing reflective element can be used to reflect P-polarized light through S-polarized light.
  • the polarizing element 3 has a polarization transmission direction. Only when the light vibrates along the polarization transmission direction can it pass through the polarization element 3 smoothly. The vibration light in other directions is reflected when it encounters the polarization element 3 .
  • the polarizing element 3 may be a polarizing reflective film, a reflective polarizing plate, or other structures.
  • the first phase retarder 6 is located between the spectroscopic element 5 and the polarizing element 3 .
  • the first phase retarder 6 is located between the light splitting element 5 and the polarizing element 3 .
  • the light splitting element 5 and the polarizing element 3 can also be provided as lenses in the lens group, that is, the lens and the first phase retarder 6 are both located between the light splitting element 5 and the polarizing element 3 .
  • the first phase retarder 6 can be used to change the polarization state of light in the folded optical path structure.
  • linearly polarized light can be converted into circularly polarized light, or circularly polarized light can be converted into linearly polarized light.
  • the first phase retarder 6 may be a quarter wave plate.
  • the lens group 2 is located on the light-emitting surface side of the display screen 1.
  • the light emitted by the display screen 1 is processed by the lens group, the spectroscopic element 5, the first phase retarder 6 and the polarizing element 3, and finally enters the human eye and is imaged.
  • the lens group 2 includes the lens closest to the display screen 1 , wherein the lens closest to the display screen 1 has a lens surface facing the display screen 1 .
  • the distance A4 between the surface and the display screen 1 and the focal length F of the optical module are limited within this range to avoid defects on the lens surface facing the display screen 1 among the lenses closest to the display screen 1 .
  • a phenomenon observed by the human eye is a phenomenon observed by the human eye.
  • the A4 can be optimized so that the virtual image caused by the surface defects is within the visual distance of the human eye. Outside, that is, the distance between the virtual image formed by the defects on the surface and the human eye is less than 120mm.
  • the defect of the lens closest to the display screen 1 and the surface facing the display screen 1 is not easy to cause. recognized by the human eye.
  • A4>XX display that is, A4>F*F/X'-F*F/VID
  • makes A4>0.008*F*F that is, this embodiment limits A4/F2>0.008, preventing the human eye from easily detecting the lens
  • the appearance defects on the screen will affect the imaging effect and cause poor user experience.
  • this embodiment limits the matching relationship between the distance A4 between the surface of the lens closest to the display screen 1 and the display screen 1 and the focal length F of the optical module, that is, by defining A4/F 2 >0.008 can make the defects on the lens surface closest to the display screen 1 difficult to be recognized by the human eye.
  • the range of A4/F 2 can be greater than 0.01.
  • the range of A4/F 2 may be greater than 0.015.
  • the ratio between the distance A4 between the surface facing the display screen 1 and the display screen 1 and the square of the focal length of the optical module is not limited to the above example.
  • Those skilled in the art can flexibly adjust according to needs, and the embodiments of the present application do not specifically limit this.
  • the focal length F of the optical module is 15mm-36mm.
  • the focal length F of the optical module is limited, where the focal length F of the optical module can refer to either the object-side focal length or the image-side focal length.
  • the object-side focal length and the image-side focal length Square focal lengths are equal.
  • both the object space and the image space are air, and the refractive index of the object space is the same as the refractive index of the image space.
  • Square focal lengths are equal.
  • This embodiment limits the focal length F of the optical module, which on the one hand shortens the total optical length of the optical module and reduces the volume of the optical module; on the other hand, limits the focal length F of the optical module within this range, so that The ratio between A4 and the square of the focal length F of the optical module satisfies the above ratio relationship to prevent the human eye from easily detecting appearance defects on the lens (the lens closest to the display screen 1), which in turn affects the effect of the imaging picture and results in poor user experience. Good phenomenon.
  • the distance A4 between the surface and the display screen 1 is 2mm-23mm.
  • the distance A4 between the surface of the lens closest to the display screen 1 and the surface facing the display screen 1 (that is, the lens surface closest to the display screen 1) and the display screen 1 is defined, where A4 can be For 2mm-8mm, 8mm-15mm, 15mm-20mm, 20mm-23mm.
  • This embodiment limits the distance A4 between the surface of the lens closest to the display screen 1 and the surface facing the display screen 1 (that is, the lens surface closest to the display screen 1) and the display screen 1.
  • the lens closest to the display screen 1 is In the lens, the distance between the surface facing the display screen 1 and the display screen 1 is controlled within an appropriate range, which meets the purpose of reducing the total optical length of the optical module.
  • the distance between the surface of the lens closest to the display screen 1 and the surface facing the display screen 1 is controlled within an appropriate range, so that the ratio of A4 to the square of the focal length F of the optical module satisfies the above ratio. relationship, to prevent the human eye from easily detecting appearance defects on the lens (the lens closest to the display screen 1), thereby affecting the effect of the imaging picture and causing a poor user experience.
  • the incident angle of the edge field of view is: -41°-5°.
  • the incident angle (light) to the edge field of view is reversible.
  • the optical module structure it is designed in the opposite direction of the transmission direction of the light emitted by the display screen, that is, it can be understood as the light of the display screen.
  • the incident angle of the edge field of view can be -1° ⁇ 5°, -10° ⁇ -1°, -20° ⁇ -10°, -35° ⁇ -20°.
  • This embodiment limits the incident angle of the edge field of view, that is, the angle of light emitted from the display screen 1 is limited to an appropriate range, thereby improving the brightness uniformity of the entire screen.
  • the distance A2 between the polarizing element 3 and the light splitting element 5 is 4mm-15mm.
  • the distance from the polarizing element 3 to the spectroscopic element 5 is limited, that is, the length of the folded light path in the optical module is limited.
  • the existence of the folded optical path the folded optical path equivalently increases the number of lenses and the doubled optical power characteristics provided by the reflective surface (reflection of the spectroscopic element 5, or reflection of the polarizing element 3), making the overall optical module more efficient. The smaller the total optical length.
  • the total optical length of the optical module can be reduced.
  • the total optical length of the optical module is reduced, which further reduces the distance A4 between the surface of the display screen 1 and the lens closest to the display screen 1. Defects on the surface of the lens closest to the display screen 1 will be optically The optical components on the side of the module away from the display screen are enlarged and easily recognized by the human eye, affecting the user's visual experience.
  • the distance between the polarizing element 3 and the spectroscopic element 5 is limited to this range, so that the total optical length in the optical module, the distance A4 in the lens closest to the display screen 1, and the distance A4 toward the surface of the display screen 1 are reasonably obtained.
  • the combination without particularly affecting the total optical length of the optical module, makes the ratio of A4 to the square of the focal length F of the optical module satisfy the above ratio relationship, making the lens surface defects less likely to be recognized by the human eye and preventing the human eye from It is easy to find appearance defects on the lens (the lens closest to the display screen 1), which in turn affects the imaging effect and results in poor user experience.
  • the virtual image of the defect on the surface is less than 120 mm from the human eye.
  • the defects on the lens surface closest to the display screen 1 are defined, and the distance between the virtual image formed and the human eye is less than 120 mm, so that the defects on the lens surface are not easily recognized by the human eye.
  • the visual distance of normal human eyes is generally from 120mm in front of the pupil to infinity (for example, it can be 700 ⁇ 800m).
  • the virtual image formed by an object is located outside the visual distance of the human eye, that is, the virtual image formed by an object
  • the distance between the virtual image and the human eye is less than 120mm. At this time, the human eye cannot recognize the virtual image formed by the object.
  • the ratio of the distance A4 between the surface of the lens closest to the display screen 1 and the surface of the display screen 1 and the square of the focal length F of the optical module is limited.
  • the ratio between the distance A4 from the display screen 1 and the square of the focal length F of the optical module satisfies the above range, and the defect on the surface of the lens closest to the display screen 1 will form a virtual image.
  • the distance from the human eye is less than 120mm.
  • the surface of the lens closest to the display screen 1 The distance between the virtual image formed by the defects and the human eye is less than 120mm.
  • X is the distance between the surface of the lens closest to the display screen 1 and the focus of the optical module
  • F is the focal length of the optical module
  • VID is the distance between the virtual image and the human eye designed in the optical module
  • the VID is generally 1.5m ⁇ 3m.
  • the distance between the virtual image formed and the human eye is less than 120 mm, making the defects on the lens surface difficult to be recognized by the human eye.
  • the lens group 2 includes a first lens 21 disposed close to the human eye side, the first lens having a second surface facing the display screen 1 and a first surface facing away from the display screen 1; in the The polarizing element 3 is provided on one side of the first surface, or the polarizing element 3 is provided on one side of the second surface.
  • the lens group 2 whether the lens group 2 includes one lens, two lenses, or three lenses, the lens group 2 has a side near the human eye, and the lens group 2 has a first lens disposed close to the human eye side.
  • the polarizing element 3 is provided on the first surface side of the first lens, or the polarizing element 3 is provided on the second surface side of the first lens.
  • the lens group 2 only includes one lens, in which the polarizing element 3 is provided on the side of the lens near the human eye.
  • the polarizing element 3 is attached to the surface of the lens facing the human eye (the first surface).
  • an optical component is arranged between the lens and the human eye, and the polarizing element 3 is attached to the optical component.
  • the lens group 2 includes at least two lenses. At least two lenses include a first lens 21 and a second lens 22, where the first lens 21 is placed close to the human eye, the second lens 22 is placed close to the display screen 1, and a polarizing element is placed between the first lens 21 and the second lens 22. 3.
  • the polarizing element 3 is provided on the surface (second surface) of the first lens 21 facing away from the human eye; or for another example, an additional optical component is provided between the first lens 21 and the second lens 22, and the optical component is Set up polarizing element 3.
  • the lens group 2 includes at least two lenses.
  • the at least two lenses include a first lens 21, a second lens 22 and a third lens 23, where the first lens 21 is placed close to the human eye, the second lens 22 is located between the first lens 21 and the third lens 23, and the third lens 21 is located close to the human eye. 23 closest to display screen 1 setting.
  • the polarizing element 3 is disposed between the second lens 22 and the first lens 21 , for example, the polarizing element 3 is disposed on the second surface of the first lens 21 facing away from the human eye.
  • the specific location of the polarizing element 3 is not particularly limited, as long as the distance between the polarizing element 3 and the spectroscopic element 5 satisfies the above-mentioned limited range.
  • the lens group 2 includes a first lens 21 disposed close to the human eye side, the first lens having a second surface facing the display screen 1 and a first surface facing away from the display screen 1;
  • the first phase retarder 6 is provided on one side of the first surface, or the first phase retarder 6 is provided on one side of the second surface;
  • the first phase retarder 6 is arranged closer to the display screen 1 than the polarizing element 3 .
  • the lens group 2 whether the lens group 2 includes one lens, two lenses, or three lenses, the lens group 2 has a side near the human eye, and the lens group 2 has a first lens disposed close to the human eye side.
  • the first phase retarder 6 is provided on the first surface side of the first lens, or the first phase retarder 6 is provided on the second surface side of the first lens.
  • the lens group 2 only includes one lens, in which a first phase retarder 6 is provided on the side of the lens near the human eye.
  • a first phase retarder 6 is provided on the surface of the lens facing the human eye (first surface).
  • an optical component is arranged between the lens and the human eye, and the first phase retarder 6 is attached to the optical component.
  • the lens group 2 includes at least two lenses.
  • the at least two lenses include a first lens 21 and a second lens 22, wherein the first lens 21 is disposed close to the human eye, the second lens 22 is disposed close to the display screen 1, and the first lens 21 is disposed between the first lens 21 and the second lens 22.
  • Phase retarder 6, for example, the first phase retarder 6 is provided on the surface (second surface) of the first lens 21 facing away from the human eye; or for another example, an additional optical system is provided between the first lens 21 and the second lens 22.
  • a first phase retarder 6 is provided on the optical component.
  • the lens group 2 includes at least two lenses.
  • the at least two lenses include a first lens 21, a second lens 22 and a third lens 23, where the first lens 21 is placed close to the human eye, the second lens 22 is located between the first lens 21 and the third lens 23, and the third lens 21 is located close to the human eye. 23 closest to display screen 1 setting.
  • the first phase retarder 6 is disposed between the second lens 22 and the first lens 21 , for example, the first phase retarder 6 is disposed on the second surface of the first lens 21 facing away from the human eye.
  • This embodiment does not specifically limit the specific location of the polarizing element 3 , as long as the first phase retarder 6 can be placed closer to the display screen 1 relative to the polarizing element 3 .
  • the first phase retarder 6 is disposed closer to the display screen side than the polarizing element 3 .
  • the first phase retarder 6 and the polarizing element 3 are both disposed on the first surface (facing the human eye) of the first lens 21 , and the first phase retarder 6 is disposed closer to the first lens 21 than the polarizing element 3 , or the first phase retarder 6 is disposed closer to the first lens 21 than the polarizing element 3 .
  • a phase retarder 6 and the polarizing element 3 are both disposed on the second surface of the first lens 21 (disposed toward the second lens 22 ), and the first phase retarder 6 is disposed farther away from the first lens 21 than the polarizing element 3 .
  • the polarization state of the light passing through the first phase retarder 6 changes.
  • the light passing through the first phase retarder 6 for the first time is reflected by the polarizing element 3.
  • the reflected light is processed by the spectroscopic element 5 and passes through the first phase retarder 6 again.
  • Phase retarder 6, in which the light passing through the first phase retarder 6 for the second time is transmitted by the polarizing element 3 and transmitted to the human eye.
  • a head-mounted display device includes: a housing; and the optical module as described above.
  • the head-mounted display device includes a housing and the optical module described in the first aspect; or the head-mounted display device includes a housing and the optical module described in the second aspect.
  • the head-mounted display device is, for example, a VR head-mounted device, including VR glasses or VR helmets, etc. This embodiment of the present application does not specifically limit this.
  • the specific implementation of the head-mounted display device according to the embodiment of the present application can refer to the above-mentioned embodiments of the display module, and will not be described again here.
  • optical module provided by the embodiments of the present application in detail through six embodiments.
  • an optical module provided by an embodiment of the present application includes a display screen 1 , a first lens 21 , a polarizing element 3 , a beam splitting element 5 and an aperture 4 .
  • the first lens 21 has a first lens facing the human eye. surface, and a second surface facing the display screen 1 side.
  • the light splitting element 5 is provided on the second surface of the first lens 21 , and the polarizing element 3 and the first phase retarder 6 are provided on the first surface of the first lens 21 .
  • the setting position of the diaphragm 4 is the position of the human eye.
  • the distance A4 between the second surface of the first lens 21 and the display screen 1 is 22.0973mm, the effective focal length F of the optical module is 28.79mm, and the distance A2 between the polarizing element 3 and the light splitting element 5 is 4.9943mm.
  • optical parameters of the display screen 1, the first lens 21, and the aperture 4 can be referred to Table 1:
  • This embodiment is suitable for 100° FOV and 46mm (medium size screen) image surface size.
  • A4/F*F 0.027>0.008.
  • on the second surface of the first lens 21 in the optical module The appearance defects are not easily recognized by the human eye.
  • the light incident angle of the edge field of view is 5°. At this angle, the display brightness of display screen 1 will be less than 10% lower than that at an angle of 0°, which reduces the edge field of view. The light brightness improves the uniformity of the brightness of the display screen 1.
  • the optical module provided by the embodiment of the present application includes a display screen 1, a first lens 21, a second lens 22, a polarizing element 3, a light splitting element 5 and an aperture 4.
  • the first lens 21 has the same structure as the first lens 21.
  • the second lens 22 has a second surface that is adjacent to the first lens 21 and a first surface that faces the human eye; the second lens 22 has a first surface that is adjacent to the first lens 21 and a second surface that faces the display screen 1;
  • the light splitting element 5 is provided on the second surface of the second lens 22 , and the polarizing element 3 and the first phase retarder 6 are provided on the second surface of the first lens 21 .
  • the setting position of the diaphragm 4 is the position of the human eye.
  • the distance A4 between the second surface of the second lens 22 and the display screen 1 is 11.4 mm
  • the effective focal length F of the optical module is 21.47 mm
  • the distance A2 between the polarizing element 3 and the light splitting element 5 is 7.5 mm.
  • the optical parameters of the display screen 1, the first lens 21, the second lens 22 and the aperture 4 can be referred to Table 2:
  • This embodiment is suitable for 100° FOV and 34mm (small screen) image size.
  • A4/F*F 0.025>0.008.
  • the second surface of the second lens 22 in the optical module The appearance defects are not easily recognized by the human eye.
  • the light incident angle of the edge field of view is -20.1°. At this angle, the display brightness of the display screen 1 will drop by 25%-30% compared with the brightness at the 0° angle. The light brightness of the edge field of view is improved, and the uniformity of the brightness of the display screen 1 is improved.
  • the optical module provided by the embodiment of the present application includes a display screen 1, a first lens 21, a second lens 22, a polarizing element 3, a light splitting element 5 and an aperture 4.
  • the first lens 21 has the same structure as the first lens 21.
  • the second lens 22 has a second surface that is adjacent to the first lens 21 and a first surface that faces the human eye; the second lens 22 has a first surface that is adjacent to the first lens 21 and a second surface that faces the display screen 1;
  • the light splitting element 5 is provided on the second surface of the second lens 22 , and the polarizing element 3 and the first phase retarder 6 are provided on the second surface of the first lens 21 .
  • the setting position of the diaphragm 4 is the position of the human eye.
  • the distance A4 between the second surface of the second lens 22 and the display screen 1 is 12.61 mm
  • the effective focal length F of the optical module is 28.16 mm
  • the distance A2 between the polarizing element 3 and the light splitting element 5 is 8.49 mm.
  • optical parameters of the display screen 1, the first lens 21, the second lens 22 and the aperture 4 can be referred to Table 3:
  • This embodiment is suitable for 100° FOV and 46mm (medium size screen) image surface size.
  • A4/F*F 0.016>0.008.
  • on the second surface of the second lens 22 in the optical module The appearance defects are not easily recognized by the human eye.
  • the light incident angle of the edge field of view is -0.9°. At this angle, the display brightness of display screen 1 will drop within 10% compared with the brightness at 0° angle, which reduces the edge viewing angle. The light brightness of the field improves the uniformity of the brightness of the display screen 1.
  • the optical module provided by the embodiment of the present application includes a display screen 1, a first lens 21, a second lens 22, a polarizing element 3, a light splitting element 5 and an aperture 4, wherein the first lens 21 has and The second lens 22 has a second surface arranged adjacently and a first surface facing the human eye side; the second lens 22 has a first surface arranged adjacent to the first lens 21 and a second surface facing the display screen 1;
  • the light splitting element 5 is provided on the second surface of the second lens 22 , and the polarizing element 3 and the first phase retarder 6 are provided on the first surface of the first lens 21 .
  • the setting position of the diaphragm 4 is the position of the human eye.
  • the distance A4 between the second surface of the second lens 22 and the display screen 1 is 2.3821mm
  • the effective focal length F of the optical module is 15.73mm
  • the distance A2 between the polarizing element 3 and the light splitting element 5 is 9.6088mm.
  • optical parameters of the display screen 1, the first lens 21, the second lens 22 and the aperture 4 can be referred to Table 4:
  • This embodiment is suitable for 100° FOV and 26mm (small screen) image surface size.
  • A4/F*F 0.010>0.008.
  • on the second surface of the second lens 22 in the optical module The appearance defects are not easily recognized by the human eye.
  • the light incident angle of the edge field of view is -41°. At this angle, the display brightness of the display screen 1 will be reduced by 30% compared with the brightness at the 0° angle, which reduces the edge viewing angle. The light brightness of the field improves the uniformity of the brightness of the display screen 1.
  • the optical module provided by the embodiment of the present application includes a display screen 1, a first lens 21, a second lens 22, a polarizing element 3, a light splitting element 5 and an aperture 4, wherein the first lens 21 has and The second lens 22 has a second surface arranged adjacently and a first surface facing the human eye side; the second lens 22 has a first surface arranged adjacent to the first lens 21 and a second surface facing the display screen 1;
  • the light splitting element 5 is provided on the second surface of the second lens 22 , and the polarizing element 3 and the first phase retarder 6 are provided on the first surface of the first lens 21 .
  • the setting position of the diaphragm 4 is the position of the human eye.
  • the distance A4 between the second surface of the second lens 22 and the display screen 1 is 7.5 mm
  • the effective focal length F of the optical module is 29.06 mm
  • the distance A2 between the polarizing element 3 and the light splitting element 5 is 14.51 mm.
  • the optical parameters of the display screen 1, the first lens 21, the second lens 22 and the aperture 4 can be referred to Table 5:
  • This embodiment is suitable for 100° FOV and 44.9mm (medium size screen) image surface size.
  • A4/F*F 0.009>0.008.
  • the second surface of the second lens 22 in the optical module Appearance defects are difficult to detect by the human eye.
  • the light incident angle of the edge field of view is -9.13°. At this angle, the display brightness of the display screen 1 will drop within 25% compared with the brightness at the 0° angle, which reduces the edge The light brightness of the field of view improves the uniformity of the brightness of the display screen 1.
  • the optical module provided by the embodiment of the present application includes a display screen 1, a first lens 21, a second lens 22, a third lens 23, a polarizing element 3, a light splitting element 5 and an aperture 4, wherein the first The lens 21 is arranged closest to the human eye, the third lens 23 is arranged closest to the display screen 1 , and the second lens 22 is located between the first lens 21 and the third lens 23 .
  • the first lens 21 has a second surface disposed adjacent to the second lens 22 and a first surface facing the human eye;
  • the third lens 23 has a first surface disposed adjacent to the second lens 22 and a first surface facing the human eye. display the second surface of screen 1;
  • the spectroscopic element 5 is provided on the second surface of the third lens 23 , and the polarizing element 3 and the first phase retarder 6 are provided on the second surface of the first lens 21 .
  • the setting position of the diaphragm 4 is the position of the human eye.
  • the distance A4 between the second surface of the third lens 23 and the display screen 1 is 10.5mm
  • the effective focal length F of the optical module is 35.08mm
  • the distance A2 between the polarizing element 3 and the spectroscopic element 5 is 10.5mm.
  • the optical parameters of the display screen 1, the first lens 21, the second lens 22, the third lens 23 and the aperture 4 can be referred to Table 6:
  • This embodiment is suitable for 100° FOV and 56mm (medium size screen) image surface size.
  • A4/F*F 0.009>0.008.
  • on the second surface of the third lens 23 in the optical module The appearance defects are not easily recognized by the human eye.
  • the light incident angle of the edge field of view is -6.36°. At this angle, the display brightness of display screen 1 will decrease by 15% compared with the brightness at 0° angle, which reduces the edge viewing angle. The light brightness of the field improves the uniformity of the brightness of the display screen 1.
  • a head-mounted display device is also provided.
  • the head-mounted display device includes a housing and the optical module as described above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种光学模组以及头戴显示设备。光学模组包括:显示屏幕(1);透镜组(2),透镜组(2)位于显示屏幕(1)的出光面一侧;透镜组(2)包括与显示屏幕(1)相邻的透镜;透镜具有朝向显示屏幕(1)的表面,表面与显示屏幕(1)的距离为A4;光学模组还包括偏振元件(3)、分光元件(5)和第一相位延迟器(6),分光元件(5)位于表面的一侧,偏振元件(3)位于透镜背离显示屏幕(1)一侧,第一相位延迟器(6)位于偏振元件(3)和分光元件(5)之间;其中,光学模组满足于:A4/F 2>0.008,其中F为光学模组的焦距。

Description

光学模组以及头戴显示设备 技术领域
本申请实施例涉及近眼显示成像技术领域,更具体地,本申请实施例涉及一种光学模组以及头戴显示设备。
背景技术
近年来,增强现实(Augmented Reality,AR)技术及虚拟现实(Virtual Reality,VR)技术等,在例如智能穿戴设备中得到了应用并快速发展起来。增强现实技术和虚拟现实技术的核心部件均是光学模组。光学模组显示图像效果的好坏将直接决定着智能穿戴设备的质量。
如今,很多智能穿戴设备例如VR设备中都采用了折叠光路的方案。折叠光路方案可有效减小光学系统总长,但是在整个光路结构中,靠近显示屏幕一侧的镜片(透镜)与显示屏幕的发光表面较为接近,而这会导致该镜片外观方面的缺陷经远离显示屏幕一侧的其他光学元件之后被放大,这就容易让人眼察觉到,这将会导致成像画面不佳。
发明内容
本申请的目的在于提供一种光学模组以及头戴显示设备的新技术方案。
第一方面,本申请提供了一种光学模组,所述光学模组包括:
显示屏幕;
透镜组,所述透镜组位于所述显示屏幕的出光面一侧;所述透镜组包括与所述显示屏幕相邻的透镜;所述透镜具有朝向所述显示屏幕的表面,所述表面与所述显示屏幕的距离为A4;
所述光学模组还包括偏振元件、分光元件和第一相位延迟器,所述分光元件位于所述表面的一侧,所述偏振元件位于所述透镜背离显示屏幕一侧,所述第一相位延迟器位于所述偏振元件和所述分光元件之间;
其中,所述光学模组满足于:A4/F 2>0.008,其中F为光学模组的焦距。
可选地,所述光学模组的有效焦距F为15mm-36mm。
可选地,所述光学模组的边缘视场的入射角度为:-41°-5°。
可选地,所述偏振元件与所述分光元件之间的距离A2为4mm-15mm。
可选地,所述表面上缺陷的所成虚像距人眼的距离小于120mm。
可选地,在所述透镜组包括靠近人眼侧设置的第一透镜,所述第一透镜具有朝向显示屏幕的第二表面和背离显示屏幕的第一表面;
在所述第一表面的一侧设置有所述偏振元件,或者在所述第二表面的一侧设置有所述偏振元件。
可选地,在所述透镜组包括靠近人眼侧设置的第一透镜,所述第一透镜具有朝向显示屏幕的第二表面和背离显示屏幕的第一表面;
在所述第一表面的一侧设置有所述第一相位延迟器,或者在所述第二表面的一侧设置有所述第一相位延迟器;
其中所述第一相位延迟器相对于所述偏振元件更靠近显示屏幕设置。
第二方面,提供了一种头戴显示设备。所述头戴显示设备包括:
壳体;以及
如第一方面所述的光学模组。
根据本申请的实施例,通过控制最靠近显示屏幕的透镜中,朝向显示屏幕的表面与显示屏幕的距离,与光学模组的焦距的平方的比值关系,使得最靠近显示屏幕的透镜中,朝向显示屏幕的表面缺陷不易被人眼观察到,提升使用者的视觉体验。
通过以下参照附图对本说明书的示例性实施例的详细描述,本说明书的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本说明书的实施例,并且连同其说明一起用于解释本说明书的原理。
图1所示为本申请实施例提供的光学模组的结构示意图一。
图2所示为本申请实施例提供的光学模组的结构示意图二。
图3所示为本申请实施例提供的光学模组的结构示意图三。
图4所示为本申请实施例提供的光学模组的结构示意图四。
图5所示为本申请实施例提供的光学模组的结构示意图五。
图6所示为本申请实施例提供的光学模组的结构示意图六。
附图标记说明:
1、显示屏幕;2、透镜组;21、第一透镜;22、第二透镜;23、第三透镜;3、偏振元件;4、光阑;5、分光元件;6、第一相位延迟器。
具体实施方式
现在将参照附图来详细描述本申请的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本申请的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本申请及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术和设备可能不作详细讨论,但在适当情况下,所述技术和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
其中,在pancake光学系统设计方案中,pancake光学系统设计方案是利用偏振元件对偏振光的调制作用来实现对特定偏振态的光线限定性透射或者反射,从而实现光路的折叠。使用pancake设计方案时,通过加大偏振元件与分光元件的距离,可以使得系统长度缩减。系统长度的缩减使得显示屏幕和透镜表面的距离进一步缩减,距离显示屏幕最近的透镜表面存在的缺陷被系统放大,能够被人眼所识别,影响体验。目前为了解决这一 技术问题,只是单纯的通过增大光路结构中靠近显示屏幕一侧的透镜与显示屏幕的发光面之间的距离,但是当靠近显示屏幕一侧的透镜与显示屏幕的发光面之间的距离过大,反而影响了光学模组的光学总长。
基于上述技术问题,本申请实施例第一方面提供了一种光学模组,所述光学模组为一种折叠光路光学结构设计,其可以包含至少一个光学镜片,可应用于头戴显示设备(head mounted display,HMD)中,例如,VR头戴设备,如可以包括VR眼镜或者VR头盔等产品,本申请实施例中对此不做具体限制。
下面结合附图1至图6对本申请实施例提供的光学模组以及头戴显示设备进行详细地描述。
本申请实施例提供了一种光学模组,如图1至图6所示,光学模组包括:显示屏幕1;透镜组2,所述透镜组2位于所述显示屏幕1的出光面一侧;所述透镜组2包括与所述显示屏幕1相邻的透镜;所述透镜具有朝向所述显示屏幕1的表面,所述表面与所述显示屏幕1的距离为A4。
所述光学模组还包括偏振元件3、分光元件5和第一相位延迟器6,所述分光元件5位于所述表面的一侧,所述偏振元件3位于所述透镜背离显示显示屏幕一侧,所述第一相位延迟器6位于所述偏振元件3和所述分光元件5之间;其中,所述光学模组满足于:A4/F2>0.008,其中F为光学模组的焦距。
换句话说,光学模组主要包括了显示屏幕1、透镜组2、偏振元件3、分光元件5和第一相位延迟器6。
其中显示屏幕1可以是LCD(Liquid Crystal Display)液晶显示器,或者是LED(Light Emitting Diode)发光二极管,OLED(Organic Light-Emitting Diode)有机发光二极管,Micro-OLED(Micro-Organic Light-Emitting Diode)微型有机发光二极管、ULED(Ultra Light Emitting Diode)极致发光二极管,或者DMD(Digital Micro mirror Device)数字微镜芯片等。
其中透镜组2包括至少一个透镜,透镜组2的作用在于放大解析光线。例如在VR(Virtual Reality,虚拟现实)等显示设备中,为了保证使用者获得放大后的显示画面,光线需要经过放大,通过透镜组2保证用户获得能够识别的放大画面。在折叠光路中,考虑到已经对光线折叠处理,相对于直 射式光学架构,折叠光路的光学架构中透镜的数量可以至多是三个。
其中为了实现折叠光路,光学模组还包括了偏振元件3、分光元件5和第一相位延迟器6。
其中分光元件5位于:与所述显示屏幕1相邻的透镜中,朝向显示屏幕1的表面。具体地,透镜组包括了与显示屏幕1相邻设置的透镜,该透镜具有朝向显示屏幕的表面,在该表面的一侧设置分光元件5。具体地,分光元件5可以设置在该表面上,或者分光元件5可以位于该透镜和显示屏幕1之间。例如分光元件5可以借助于光学部件位于该透镜和显示屏幕1之间。
在该实施例中,例如光线在经过分光元件5时,部分光线透射,另一部光线反射,这其中不考虑光线被吸收的情况。分光元件5可以是半反半透膜或者是偏光膜。
其中偏振元件3位于:该透镜背离显示屏幕1的一侧,具体地,无论透镜组包括一个透镜、两个透镜或者更多透镜时,只要将偏振元件3设置在该透镜(与显示屏幕1相邻设置的透镜)背离显示屏幕1的一侧即可。例如可以设置在该透镜背离显示屏幕1的表面上。
其中偏振元件3可用于透过P偏振光反射S偏振光;或者,偏振反射元件可用于透过S偏振光反射P偏振光。具体地,偏振元件3具有偏振透射方向,光线在沿偏振透射方向振动时,才能顺利通过偏振元件3,其余方向的振动光线,在遇到偏振元件3时光线被反射。例如偏振元件3可以为偏振反射膜、或者反射型偏振片等结构。
在该实施例中,第一相位延迟器6位于分光元件5和偏振元件3之间。其中在不考虑透镜组中透镜的情况下,第一相位延迟器6位于分光元件5和偏振元件3之间。例如分光元件5和偏振元件3还可以设置透镜组中透镜,即透镜和第一相位延迟器6均位于分光元件5和偏振元件3之间。
在该实施例中,其中第一相位延迟器6可用于改变折叠光路结构中光线的偏振状态。例如,能够将线偏振光转化为圆偏振光,又或者将圆偏振光转化为线偏振光。例如第一相位延迟器6可以为四分之一波片。
其中透镜组2位于显示屏幕1的出光面一侧,显示屏幕1发出的光线 经过透镜组、分光元件5、第一相位延迟器6和偏振元件3的处理,最终进入人眼并成像。透镜组2包括了最靠近显示屏幕1的透镜,其中最靠近显示屏幕1的透镜,具有朝向显示屏幕1的透镜表面。
本申请实施例将所述表面与显示屏幕1的距离A4,与光学模组的焦距F限定在此范围内,避免了最靠近显示屏幕1的透镜中,朝向显示屏幕1的透镜表面的缺陷容易被人眼所观察到的现象。
具体地,因正常人眼的可视距离一般从瞳孔前120mm至无穷远(例如可以为700m~800m),基于此可以优化A4使得该表面的缺陷所成的虚像,在人眼的可视距离外,即该表面的缺陷所成的虚像,与人眼之间的距离小于120mm。
为了将该表面的缺陷所成的虚像,与人眼之间的距离小于120mm,基于几何光学中的牛顿公式X*X’=F*F(1),其中X为最靠近显示屏幕1的透镜中,朝向显示屏幕1的表面(即存在缺陷的避免),距光学模组的焦点的距离;X’为最靠近显示屏幕1的透镜中,朝向显示屏幕1的表面的缺陷所成的虚像,与人眼的距离。F为光学模组的焦距。
在已知X’的情况下,即已知最靠近显示屏幕1的透镜中,朝向显示屏幕1的表面的缺陷所成的虚像,与人眼的距离的情况下(本实施例要求X’小于120mm),可以得到X,即可以得到最靠近显示屏幕1的透镜中,朝向显示屏幕1的表面(即存在缺陷的避免),距光学模组的焦点的距离。即X=F*F/X’(2)。
以及基于一般情况下光学模组设计的虚像与人眼的距离VID为1.5m~3m。基于此可以得到显示屏幕1的发光面距光学模组的焦点的距离为X display=F*F/VID(3)。
当最靠近显示屏幕1的透镜中,朝向显示屏幕1的表面,与显示屏幕1的距离A4>X-X display,此时最靠近显示屏幕1的透镜中,朝向显示屏幕1的表面的缺陷是不容易被人眼所识别的。
由于A4>X-X display,即A4>F*F/X’-F*F/VID,使得A4>0.008*F*F,即本实施例限定A4/F2>0.008,避免了人眼容易发现该透镜上的外观缺陷,进而影响到成像画面的效果,造成用户体验不佳的现象。
其中光学模组满足几何光学中的牛顿公式X*X’=F*F(1),具体地,其中在物方焦距和像方焦距不相等的情况下,几何光学中的牛顿公式X*X’=f*f’,其中f为物方焦距,f’为像方焦距。由于根据f/n=-f’/n’,其中f为物方焦距,f’为像方焦距,n为物方空间的折射率,n’为像方空间的折射率,当物方空间和像方空间的折射率相同时,物方焦距和像方焦距相等。在该光学模组中,物方空间和像方空间均是空气,物方空间的折射率和像方空间的折射率相同,因此物方焦距和像方焦距是相等的,因此本实施例统一限定为光学模组的焦距F,因此本实施例光学模组满足的几何光学中的牛顿公式为X*X’=F*F(1)。
综上所述,本实施例限定最靠近显示屏幕1的透镜中,朝向显示屏幕1的表面与显示屏幕1的距离A4,与光学模组的焦距F的搭配关系,也即通过限定A4/F 2>0.008,能够使得最靠近显示屏幕1的透镜表面的缺陷不容易被人眼所识别。
需要说明的是,在本申请的实施例中,本领域技术人员可以根据具体需要灵活调整最靠近显示屏幕1的透镜中,朝向显示屏幕1的表面与显示屏幕1的距离A4,与光学模组的焦距的平方的比值关系,只要使得比值关系控制在预设范围内即可。
例如,A4/F 2的范围可以为大于0.01。
又例如,A4/F 2的范围可以为大于0.015。
当然,在本申请的实施例中,最靠近显示屏幕1的透镜中,朝向显示屏幕1的表面与显示屏幕1的距离A4,与光学模组的焦距的平方的比值关系并不限于上述例子,本领域技术人员可以根据需要灵活调整,本申请实施例对此不作具体限制。
在一个实施例中,所述光学模组的焦距F为15mm-36mm。
在该实施例中,对光学模组的焦距F进行限定,其中光学模组的焦距F既可以指物方焦距,也可以指像方焦距,在该光学模组的架构中,物方焦距和像方焦距是相等的。
具体地,在该光学模组中,物方空间和像方空间均是空气,物方空间的折射率和像方空间的折射率相同,根据f/n=-f’/n’,其中f为物方焦距, f’为像方焦距,n为物方空间的折射率,n’为像方空间的折射率,当物方空间和像方空间的折射率相同时,物方焦距和像方焦距相等。
本实施例对光学模组的焦距F进行限定,一方面使得光学模组的光学总长缩短,缩小了光学模组的体积;另一方面,将光学模组的焦距F限定在此范围内,使得A4与光学模组的焦距F的平方的比值满足上述比值关系,避免人眼容易发现该透镜(最靠近显示屏幕1的透镜)上的外观缺陷,进而影响到成像画面的效果,造成用户体验不佳的现象。
在一个可选的实施例中,所述表面与所述显示屏幕1的距离A4为2mm-23mm。
在一个可选的实施例中,对最靠近显示屏幕1的透镜中,朝向显示屏幕1的表面(即与显示屏幕1距离最近的透镜表面)距显示屏幕1的距离A4进行限定,其中A4可以为2mm-8mm、8mm-15mm、15mm-20mm、20mm-23mm。本实施例对最靠近显示屏幕1的透镜中,朝向显示屏幕1的表面(即与显示屏幕1距离最近的透镜表面)距显示屏幕1的距离A4进行限定,一方面将最靠近显示屏幕1的透镜中,朝向显示屏幕1的表面距显示屏幕1的距离,控制在合适的范围内,满足于缩小光学模组的光学总长度的目的。另一方面,将最靠近显示屏幕1的透镜中,朝向显示屏幕1的表面距显示屏幕1的距离,控制在合适的范围内,使得A4与光学模组的焦距F的平方的比值满足上述比值关系,避免人眼容易发现该透镜(最靠近显示屏幕1的透镜)上的外观缺陷,进而影响到成像画面的效果,造成用户体验不佳的现象。
在一个实施例中,所述边缘视场的入射角度为:-41°-5°。
在该实施例中,对边缘视场的入射角度(光线是可逆的,在设计光学模组架构时,是沿着显示屏幕发出光线传输方向的反方向设计的,即可以理解为显示屏幕的光线的出射角度)进行限定,例如边缘视场的入射角度可以为-1°~5°,-10°~-1°,-20°~-10°,-35°~-20°。本实施例对边缘视场的入射角度进行限定,即将显示屏幕1出射的光线角度限定在合适的范围内,提升了整体画面的亮度均匀度。
在一个实施例中,所述偏振元件3与所述分光元件5之间的距离A2 为4mm-15mm。
在该实施例中,对偏振元件3至分光元件5的距离进行限定,也即对光学模组中折叠光路的长度进行限定。其中光线在偏振元件3至分光元件5的折叠光路越长,偏振元件3至分光元件5的距离越长,光学模组的整体的光学总长度越小。具体地,折叠光路的存在,折叠光路路径等效增加了透镜数量和反射面(分光元件5的反射、或者偏振元件3的反射)提供的加倍的光焦度特征,使得光学模组的整体的光学总长越小。
因此通过增大偏振元件3至分光元件5的距离,可以使得光学模组的光学总长缩减。但是光学模组的光学总长缩减,使得显示屏幕1和最靠近显示屏幕1透镜中,朝向显示屏幕1的表面的距离A4进一步缩小,距显示屏幕1最近的透镜的表面存在的缺陷,会被光学模组中的远离显示屏幕一侧的光学元件放大,很容易被人眼所识别,影响使用者视觉体验。
在本实施例中,将偏振元件3和分光元件5的距离限定在此范围内,使得光学模组中的光学总长、最靠近显示屏幕1透镜中,朝向显示屏幕1的表面的距离A4得到合理的搭配,在不特别影响光学模组的光学总长的前提下,使得A4与光学模组的焦距F的平方的比值满足上述比值关系,使得透镜表面缺陷不容易被人眼所识别,避免人眼容易发现该透镜(最靠近显示屏幕1的透镜)上的外观缺陷,进而影响到成像画面的效果,造成用户体验不佳的现象。
在一个实施例中,所述表面上缺陷的所成虚像距人眼的距离小于120mm。
在该实施例中,限定最靠近显示屏幕1的透镜表面上的缺陷,所成的虚像,与人眼的距离小于120mm,使得透镜表面上的缺陷不容易被人眼所识别。
具体地,正常人眼的可视距离一般从瞳孔前120mm至无穷远处(例如可以是700~800m),当一个物体所成的虚像位于人眼的可视距离外,即一个物体所成的虚像,与人眼的距离小于120mm,此时人眼是识别不到该物体所成的虚像的。
因此根据上述的论述,对最靠近显示屏幕1的透镜中,朝向显示屏幕 1的表面,与显示屏幕1的距离A4与光学模组的焦距F的平方的比值进行限定,当最靠近显示屏幕1的透镜中,朝向显示屏幕1的表面,与显示屏幕1的距离A4与光学模组的焦距F的平方的比值关系满足上述范围,最靠近显示屏幕1的透镜表面上的缺陷,所成的虚像,与人眼的距离是小于120mm的。
其中,当最靠近显示屏幕1的透镜中,朝向显示屏幕1的表面,与显示屏幕1的距离A4与光学模组的焦距F的平方的比值关系满足上述范围,最靠近显示屏幕1的透镜表面上的缺陷,所成的虚像,与人眼的距离是小于120mm的,具体地,根据X=F 2/X’,X display=F 2/VID,A4>X-X display,当X’距离越小,A4的距离越大。(上文中已经阐述,在此不在重复阐述)。
其中X为最靠近显示屏幕1的透镜中,朝向显示屏幕1的表面,与光学模组中焦点的距离,F为光学模组的焦距,X’为虚像与人眼距离,X display为屏幕距离光学模组的焦点的距离,VID为光学模组中设计的虚像与人眼距离,VID一般为1.5m~3m。
因此当限定最靠近显示屏幕1的透镜表面上的缺陷,所成的虚像,与人眼的距离小于120mm,使得透镜表面上的缺陷不容易被人眼所识别。
在一个实施例中,所述透镜组2包括靠近人眼侧设置的第一透镜21,所述第一透镜具有朝向显示屏幕1的第二表面和背离显示屏幕1的第一表面;在所述第一表面的一侧设置有所述偏振元件3,或者在所述第二表面的一侧设置有所述偏振元件3。
在该实施例中,透镜组2无论包括了一个透镜、两个透镜或者三个透镜等,透镜组2均具有近人眼侧,透镜组2均具有靠近人眼侧设置的第一透镜。在第一透镜的第一表面一侧设置偏振元件3,或者在第一透镜的第二表面的一侧设置偏振元件3。
在该实施例中,参照图1所示,透镜组2只包括了一个透镜,其中在该透镜的近人眼侧设置偏振元件3。例如在该透镜的朝向人眼的表面上(第一表面)贴设偏振元件3。或者在该透镜与人眼之间设置光学部件,将偏振元件3贴设在该光学部件上。
参照图2和图5所示,例如透镜组2包括了至少两个透镜。至少两个 透镜包括第一透镜21和第二透镜22,其中第一透镜21靠近人眼设置,第二透镜22靠近显示屏幕1设置,在第一透镜21和第二透镜22之间设置偏振元件3,例如在第一透镜21中背离人眼的表面(第二表面)上设置偏振元件3;或者再例如,在第一透镜21和第二透镜22之间额外设置光学部件,在光学部件上设置偏振元件3。
参照图6所示,例如透镜组2包括了至少两个透镜。至少两个透镜包括第一透镜21、第二透镜22和第三透镜23,其中第一透镜21靠近人眼设置,第二透镜22位于第一透镜21和第三透镜23之间,第三透镜23最靠近显示屏幕1设置。其中在第二透镜22和第一透镜21之间设置偏振元件3,例如在第一透镜21背离人眼的第二表面上设置偏振元件3。
本实施例对偏振元件3的具体设置位置不作特别限定,只要能够使得偏振元件3与分光元件5之间的距离满足上述限定范围即可。
在一个实施例中,所述透镜组2包括靠近人眼侧设置的第一透镜21,所述第一透镜具有朝向显示屏幕1的第二表面和背离显示屏幕1的第一表面;
在所述第一表面的一侧设置有所述第一相位延迟器6,或者在所述第二表面的一侧设置有所述第一相位延迟器6;
其中所述第一相位延迟器6相对于所述偏振元件3更靠近显示屏幕1设置。
在该实施例中,透镜组2无论包括了一个透镜、两个透镜或者三个透镜等,透镜组2均具有近人眼侧,透镜组2均具有靠近人眼侧设置的第一透镜。在第一透镜的第一表面一侧设置第一相位延迟器6,或者在第一透镜的第二表面的一侧设置第一相位延迟器6。
在该实施例中,参照图1所示,透镜组2只包括了一个透镜,其中在该透镜的近人眼侧设置第一相位延迟器6。例如在该透镜的朝向人眼的表面上(第一表面)设置第一相位延迟器6。或者在该透镜与人眼之间设置光学部件,将第一相位延迟器6贴设在该光学部件上。
参照图2和图5所示,例如透镜组2包括了至少两个透镜。至少两个透镜包括第一透镜21和第二透镜22,其中第一透镜21靠近人眼设置,第 二透镜22靠近显示屏幕1设置,在第一透镜21和第二透镜22之间设置第一相位延迟器6,例如在第一透镜21中背离人眼的表面(第二表面)上设置第一相位延迟器6;或者再例如,在第一透镜21和第二透镜22之间额外设置光学部件,在光学部件上设置第一相位延迟器6。
参照图6所示,例如透镜组2包括了至少两个透镜。至少两个透镜包括第一透镜21、第二透镜22和第三透镜23,其中第一透镜21靠近人眼设置,第二透镜22位于第一透镜21和第三透镜23之间,第三透镜23最靠近显示屏幕1设置。其中在第二透镜22和第一透镜21之间设置第一相位延迟器6,例如在第一透镜21背离人眼的第二表面上设置第一相位延迟器6。
本实施例对偏振元件3的具体设置位置不作特别限定,只要能够使得第一相位延迟器6相对于所述偏振元件3更靠近显示屏幕1设置即可
具体地,第一相位延迟器6相对于所述偏振元件3更靠近显示屏幕侧设置。例如第一相位延迟器6和偏振元件3均设置在第一透镜21的第一表面(朝向人眼)上,第一相位延迟器6相对于偏振元件3更靠近第一透镜21设置,或者第一相位延迟器6和偏振元件3均设置在第一透镜21的第二表面(朝向第二透镜22设置)上,第一相位延迟器6相对于偏振元件3更远离第一透镜21设置。
经过第一相位延迟器6的光线的偏振态发生改变,其中光线第一次经过第一相位延迟器6的光线被偏振元件3反射,反射后的光线经过分光元件5的处理,再次经过第一相位延迟器6,其中第二次经过第一相位延迟器6的光线被偏振元件3所透射并传输至人眼。
根据本申请实施例第二方面,提供了一种头戴显示设备。所述头戴显示设备包括:壳体;以及如上述所述的光学模组。例如头戴显示设备包括壳体,和第一方面所述的光学模组;或者头戴显示设备包括壳体、和第二方面所述的光学模组
所述头戴显示设备例如为VR头戴设备,包括VR眼镜或者VR头盔等,本申请实施例对此不做具体限制。
本申请实施例的头戴显示设备的具体实施方式可以参照上述显示模组 各实施例,在此不再赘述。
以下通过六个实施例对本申请实施例提供的光学模组进行具体说明。
实施例1
参照图1所示,本申请实施例提供的光学模组,包括显示屏幕1,第一透镜21、偏振元件3、分光元件5和光阑4,其中第一透镜21具有朝向人眼侧的第一表面,和朝向显示屏幕1侧的第二表面。
在第一透镜21的第二表面上设置分光元件5,在第一透镜21的第一表面上设置偏振元件3和第一相位延迟器6。其中光阑4的设置位置为人眼所在位置。
其中第一透镜21的第二表面与显示屏幕1的距离A4为22.0973mm,光学模组的有效焦距F为28.79mm;偏振元件3与所述分光元件5之间的距离A2为4.9943mm。
其中显示屏幕1、第一透镜21、和光阑4的光学参数可以参照表1所示:
Figure PCTCN2022099808-appb-000001
本实施例适配100°FOV和46mm(中尺寸屏幕)像面大小,本实施例中A4/F*F=0.027>0.008,本实施例中光学模组中第一透镜21的第二表面上的外观缺陷不易被人眼所识别。
本案例适配100°FOV和46mm像面大小,边缘视场的光线入射角度为5°,在此角度下显示屏幕1显示亮度较0°角度下亮度会下降10%以内,降低了边缘视场的光线亮度,提升了显示屏幕1亮度的均匀度。
实施例2
参照图2所示,本申请实施例提供的光学模组,包括显示屏幕1,第一透镜21、第二透镜22、偏振元件3、分光元件5和光阑4,其中第一透镜21具有与第二透镜22相邻设置的第二表面,和朝向人眼设置的第一表面;第二透镜22具有与第一透镜21相邻设置的第一表面、和朝向显示屏幕1的第二表面;
在第二透镜22的第二表面上设置分光元件5,在第一透镜21的第二表面上设置偏振元件3和第一相位延迟器6。其中光阑4的设置位置为人眼所在位置。
其中第二透镜22的第二表面与显示屏幕1的距离A4为11.4mm,光学模组的有效焦距F为21.47mm;偏振元件3与所述分光元件5之间的距离A2为7.5mm。
其中显示屏幕1、第一透镜21、第二透镜22和光阑4的光学参数可以参照表2所示:
Figure PCTCN2022099808-appb-000002
本实施例适配100°FOV和34mm(小尺寸屏幕)像面大小,本实施例中A4/F*F=0.025>0.008,本实施例中光学模组中第二透镜22的第二表面上的外观缺陷不易被人眼所识别。
本案例适配100°FOV和34mm像面大小,边缘视场的光线入射角度为-20.1°,在此角度下显示屏幕1显示亮度较0°角度下亮度会下降25%-30%内,降低了边缘视场的光线亮度,提升了显示屏幕1亮度的均匀度。
实施例3
参照图3所示,本申请实施例提供的光学模组,包括显示屏幕1,第一透镜21、第二透镜22、偏振元件3、分光元件5和光阑4,其中第一透镜21具有与第二透镜22相邻设置的第二表面,和朝向人眼设置的第一表面;第二透镜22具有与第一透镜21相邻设置的第一表面、和朝向显示屏幕1的第二表面;
在第二透镜22的第二表面上设置分光元件5,在第一透镜21的第二表面上设置偏振元件3和第一相位延迟器6。其中光阑4的设置位置为人眼所在位置。
其中第二透镜22的第二表面与显示屏幕1的距离A4为12.61mm,光学模组的有效焦距F为28.16mm;偏振元件3与所述分光元件5之间的距离A2为8.49mm。
其中显示屏幕1、第一透镜21、第二透镜22和光阑4的光学参数可以参照表3所示:
Figure PCTCN2022099808-appb-000003
本实施例适配100°FOV和46mm(中尺寸屏幕)像面大小,本实施例中A4/F*F=0.016>0.008,本实施例中光学模组中第二透镜22的第二表面上的外观缺陷不易被人眼所识别。
本案例适配100°FOV和46mm像面大小,边缘视场的光线入射角度为-0.9°,在此角度下显示屏幕1显示亮度较0°角度下亮度会下降10%内,降低了边缘视场的光线亮度,提升了显示屏幕1亮度的均匀度。
实施例4
参照图4所示,本申请实施例提供的光学模组,包括显示屏幕1,第一透镜21、第二透镜22、偏振元件3、分光元件5和光阑4,其中第一透镜21具有和第二透镜22相邻的设置的第二表面,和朝向人眼侧的第一表面;第二透镜22具有与第一透镜21相邻设置的第一表面、和朝向显示屏幕1的第二表面;
在第二透镜22的第二表面上设置分光元件5,在第一透镜21的第一表面上设置偏振元件3和第一相位延迟器6。其中光阑4的设置位置为人眼所在位置。
其中第二透镜22的第二表面与显示屏幕1的距离A4为2.3821mm,光学模组的有效焦距F为15.73mm;偏振元件3与所述分光元件5之间的距离A2为9.6088mm。
其中显示屏幕1、第一透镜21、第二透镜22和光阑4的光学参数可以参照表4所示:
Figure PCTCN2022099808-appb-000004
本实施例适配100°FOV和26mm(小尺寸屏幕)像面大小,本实施例中A4/F*F=0.010>0.008,本实施例中光学模组中第二透镜22的第二表面上的外观缺陷不易被人眼所识别。
本案例适配100°FOV和26mm像面大小,边缘视场的光线入射角度为-41°,在此角度下显示屏幕1显示亮度较0°角度下亮度会下降30%内,降低了边缘视场的光线亮度,提升了显示屏幕1亮度的均匀度。
实施例5
参照图5所示,本申请实施例提供的光学模组,包括显示屏幕1,第一透镜21、第二透镜22、偏振元件3、分光元件5和光阑4,其中第一透镜21具有和第二透镜22相邻的设置的第二表面,和朝向人眼侧的第一表面;第二透镜22具有与第一透镜21相邻设置的第一表面、和朝向显示屏幕1的第二表面;
在第二透镜22的第二表面上设置分光元件5,在第一透镜21的第一表面上设置偏振元件3和第一相位延迟器6。其中光阑4的设置位置为人眼所在位置。
其中第二透镜22的第二表面与显示屏幕1的距离A4为7.5mm,光学模组的有效焦距F为29.06mm;偏振元件3与所述分光元件5之间的距离A2为14.51mm。
其中显示屏幕1、第一透镜21、第二透镜22和光阑4的光学参数可以参照表5所示:
Figure PCTCN2022099808-appb-000005
本实施例适配100°FOV和44.9mm(中尺寸屏幕)像面大小,本实施例中A4/F*F=0.009>0.008,本实施例中光学模组中第二透镜22的第二表面上的外观缺陷不易被人眼所识别。
本案例适配100°FOV和44.9mm像面大小,边缘视场的光线入射角度为-9.13°,在此角度下显示屏幕1显示亮度较0°角度下亮度会下降25%内,降低了边缘视场的光线亮度,提升了显示屏幕1亮度的均匀度。
实施例6
参照图6所示,本申请实施例提供的光学模组,包括显示屏幕1,第一透镜21、第二透镜22、第三透镜23、偏振元件3、分光元件5和光阑4,其中第一透镜21最靠近人眼设置,第三透镜23最靠近显示屏幕1设置,第二透镜22位于第一透镜21和第三透镜23之间。
其中第一透镜21具有和第二透镜22相邻的设置的第二表面,和朝向人眼侧的第一表面;第三透镜23具有与第二透镜22相邻设置的第一表面、和朝向显示屏幕1的第二表面;
在第三透镜23的第二表面上设置分光元件5,在第一透镜21的第二表面上设置偏振元件3和第一相位延迟器6。其中光阑4的设置位置为人眼所在位置。
其中第三透镜23的第二表面与显示屏幕1的距离A4为10.5mm,光学模组的有效焦距F为35.08mm;其中偏振元件3至分光元件5的距离A2为10.5mm。
其中显示屏幕1、第一透镜21、第二透镜22、第三透镜23和光阑4的光学参数可以参照表6所示:
Figure PCTCN2022099808-appb-000006
本实施例适配100°FOV和56mm(中尺寸屏幕)像面大小,本实施例中A4/F*F=0.009>0.008,本实施例中光学模组中第三透镜23的第二表面上 的外观缺陷不易被人眼所识别。
本案例适配100°FOV和56mm像面大小,边缘视场的光线入射角度为-6.36°,在此角度下显示屏幕1显示亮度较0°角度下亮度会下降15%内,降低了边缘视场的光线亮度,提升了显示屏幕1亮度的均匀度。
根据本申请实施例的另一方面,还提供了一种头戴显示设备,所述头戴显示设备包括壳体,以及如上述所述的光学模组。
上文实施例中重点描述的是各个实施例之间的不同,各个实施例之间不同的优化特征只要不矛盾,均可以组合形成更优的实施例,考虑到行文简洁,在此则不再赘述。
虽然已经通过示例对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

Claims (8)

  1. 一种光学模组,其特征在于,包括:
    显示屏幕(1);
    透镜组(2),所述透镜组(2)位于所述显示屏幕(1)的出光面一侧;所述透镜组(2)包括与所述显示屏幕(1)相邻的透镜;所述透镜具有朝向所述显示屏幕(1)的表面,所述表面与所述显示屏幕(1)的距离为A4;
    所述光学模组还包括偏振元件(3)、分光元件(5)和第一相位延迟器(6),所述分光元件(5)位于所述表面的一侧,所述偏振元件(3)位于所述透镜背离显示屏幕(1)一侧,所述第一相位延迟器(6)位于所述偏振元件(3)和所述分光元件(5)之间;
    其中,所述光学模组满足于:A4/F 2>0.008,其中F为光学模组的焦距。
  2. 根据权利要求1所述的光学模组,其特征在于,所述光学模组的有效焦距F为15mm-36mm。
  3. 根据权利要求1或2所述的光学模组,其特征在于,所述光学模组的边缘视场的入射角度为:-41°-5°。
  4. 根据权利要求1-3任一项所述的光学模组,其特征在于,所述偏振元件(3)与所述分光元件(5)之间的距离A2为4mm-15mm。
  5. 根据权利要求1-4任一项所述的光学模组,其特征在于,所述表面上缺陷的所成虚像距人眼的距离小于120mm。
  6. 根据权利要求1-5任一项所述的光学模组,其特征在于,所述透镜组(2)包括靠近人眼侧设置的第一透镜(21),所述第一透镜(21)具有朝向显示屏幕(1)的第二表面和背离显示屏幕(1)的第一表面;
    在所述第一表面的一侧设置有所述偏振元件(3),或者在所述第二表面的一侧设置有所述偏振元件(3)。
  7. 根据权利要求1-6任一项所述的光学模组,其特征在于,所述透镜组(2)包括靠近人眼侧设置的第一透镜(21),所述第一透镜(21)具有朝向显示屏幕(1)的第二表面和背离显示屏幕(1)的第一表面;
    在所述第一表面的一侧设置有所述第一相位延迟器(6),或者在所述第二表面的一侧设置有所述第一相位延迟器(6);
    其中所述第一相位延迟器(6)相对于所述偏振元件(3)更靠近显示屏幕(1)设置。
  8. 一种头戴显示设备,其特征在于,包括:
    壳体;以及
    如权利要求1-7中任一项所述的光学模组。
PCT/CN2022/099808 2022-06-20 2022-06-20 光学模组以及头戴显示设备 WO2023245333A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/099808 WO2023245333A1 (zh) 2022-06-20 2022-06-20 光学模组以及头戴显示设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/099808 WO2023245333A1 (zh) 2022-06-20 2022-06-20 光学模组以及头戴显示设备

Publications (1)

Publication Number Publication Date
WO2023245333A1 true WO2023245333A1 (zh) 2023-12-28

Family

ID=89378881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099808 WO2023245333A1 (zh) 2022-06-20 2022-06-20 光学模组以及头戴显示设备

Country Status (1)

Country Link
WO (1) WO2023245333A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3443858A (en) * 1966-02-23 1969-05-13 Farrand Optical Co Inc Infinite optical image-forming apparatus
US6262841B1 (en) * 1997-11-24 2001-07-17 Bruce D. Dike Apparatus for projecting a real image in space
CN110515208A (zh) * 2019-08-22 2019-11-29 双莹科技股份有限公司 短距离的光学系统
CN211627942U (zh) * 2020-03-26 2020-10-02 青岛歌尔声学科技有限公司 光学系统及虚拟现实设备
CN213934434U (zh) * 2021-01-29 2021-08-10 南昌虚拟现实研究院股份有限公司 双目成像光学模组及虚拟现实设备
CN114236828A (zh) * 2021-11-30 2022-03-25 歌尔光学科技有限公司 一种光学系统以及头戴显示设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3443858A (en) * 1966-02-23 1969-05-13 Farrand Optical Co Inc Infinite optical image-forming apparatus
US6262841B1 (en) * 1997-11-24 2001-07-17 Bruce D. Dike Apparatus for projecting a real image in space
CN110515208A (zh) * 2019-08-22 2019-11-29 双莹科技股份有限公司 短距离的光学系统
CN211627942U (zh) * 2020-03-26 2020-10-02 青岛歌尔声学科技有限公司 光学系统及虚拟现实设备
CN213934434U (zh) * 2021-01-29 2021-08-10 南昌虚拟现实研究院股份有限公司 双目成像光学模组及虚拟现实设备
CN114236828A (zh) * 2021-11-30 2022-03-25 歌尔光学科技有限公司 一种光学系统以及头戴显示设备

Similar Documents

Publication Publication Date Title
JP7303557B2 (ja) 拡張現実ディスプレイ
US7206134B2 (en) Compact electronic viewfinder
US8094377B2 (en) Head-mounted optical apparatus using an OLED display
US5991084A (en) Compact compound magnified virtual image display with a reflective/transmissive optic
US7982972B2 (en) Image observation apparatus and image observation system
US6603443B1 (en) Compact display system controlled by eye position sensory system
US7002751B2 (en) Image display apparatus
WO2022135106A1 (zh) 一种成像光路和头戴显示设备
US20200089017A1 (en) Head-mounted display and optical device thereof
JP6229711B2 (ja) 映像表示装置およびヘッドマウントディスプレイ
JP2002107658A (ja) 画像観察光学系
WO2008023367A1 (en) Substrate-guided optical device
WO2023098056A1 (zh) 一种光学模组以及头戴显示设备
US11435584B2 (en) Large field of view see through head mounted display having magnified curved intermediate image
WO2024022092A1 (zh) 一种光学模组以及头戴显示设备
WO2024022106A1 (zh) 一种光学模组以及头戴显示设备
WO2024022091A1 (zh) 光学模组以及头戴显示设备
WO2023245333A1 (zh) 光学模组以及头戴显示设备
US7675685B2 (en) Image display apparatus
WO2024020796A1 (zh) 光学模组以及头戴显示设备
TWI829434B (zh) 光學鏡頭模組、光機模組以及頭戴式顯示裝置
JP2002090692A (ja) 画像表示装置
CN217606187U (zh) 光学模组以及头戴显示设备
TWI798853B (zh) 擴增實境顯示裝置
WO2024020797A1 (zh) 光学模组以及头戴显示设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947114

Country of ref document: EP

Kind code of ref document: A1