WO2024021875A1 - 激光雷达芯片和激光雷达 - Google Patents

激光雷达芯片和激光雷达 Download PDF

Info

Publication number
WO2024021875A1
WO2024021875A1 PCT/CN2023/098488 CN2023098488W WO2024021875A1 WO 2024021875 A1 WO2024021875 A1 WO 2024021875A1 CN 2023098488 W CN2023098488 W CN 2023098488W WO 2024021875 A1 WO2024021875 A1 WO 2024021875A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical switch
polarization
grating coupler
dual
array
Prior art date
Application number
PCT/CN2023/098488
Other languages
English (en)
French (fr)
Inventor
郑学哲
李晨蕾
Original Assignee
无锡驭风智研科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡驭风智研科技有限公司 filed Critical 无锡驭风智研科技有限公司
Publication of WO2024021875A1 publication Critical patent/WO2024021875A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4911Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4913Circuits for detection, sampling, integration or read-out
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • This application relates to the technical field of lidar, and in particular to a lidar chip and lidar.
  • Common all-solid-state lidar includes optical phased array (OPA) lidar and focal plane switch array, which have advantages over mechanical lidar in terms of size, weight and speed.
  • OPA optical phased array
  • the all-solid-state lidar using the traditional focal plane switch array mode maps each angle in the field of view into a pixel on the focal plane, and each pixel is composed of only one optical antenna and one switch.
  • the input laser from the light source can be output to any grating coupler unit of the emission array through a cascaded switch array circuit. Therefore, by switching the light source input to different emission grating channels through the switch array, the two-dimensional beam scanning required by lidar can be achieved.
  • the traditional focal plane switch array all-solid-state lidar can only receive and process the reflected light of a single polarization state, causing the radar to lose part of the information to be measured, and its detection range and detection accuracy will be correspondingly limited. How to provide a lidar that can improve detection range and accuracy is an urgent problem to be solved.
  • a laser radar chip includes a beam splitter, a beam splitter, a receiver and a transmitter.
  • the transmitter is a focal plane switch array transmitter.
  • the transmitter includes an optical switch array and a grating coupler array.
  • the optical switch The array includes a plurality of optical switches, the grating coupler array includes a plurality of grating couplers, the grating coupler array is connected to the optical splitter through the optical switch array, and the optical splitter is simultaneously connected to the receiver, The grating coupler array is connected to the receiver through the beam splitter, and the beam splitter is connected to the optical splitter;
  • the lidar chip receives a laser signal, outputs measurement light to the focal plane switch array transmitter through the spectrometer, and outputs local oscillator light to the receiver through the spectrometer;
  • the optical switch array introduces the measurement light into the corresponding grating coupler in the grating coupler array through the corresponding optical switch, and emits it through the grating coupler;
  • the reflected echo received by the grating coupler is polarized and split by the beam splitter and then transmitted to the receiver;
  • the grating coupler is a dual-polarization grating coupler.
  • the lidar chip further includes an echo coupler, which is connected to the optical splitter, the optical switch array and the beam splitter respectively; the echo coupler The measurement light transmitted from the beam splitter is transmitted to the optical switch array, and the reflected echo received by the optical switch array from the grating coupler is transmitted to the beam splitter.
  • the optical switch is a dual-polarization optical switch.
  • the dual-polarized optical switch includes an input end, a first output end, and a second output end.
  • the input end is connected to the first output end of the upper-stage dual-polarized optical switch or an echo coupler.
  • the second output end is connected to the input end or grating coupler of the next-stage dual-polarization optical switch.
  • the dual-polarization optical switch receives the measurement light through the input end, and passes the first output end and the grating coupler.
  • One of the second output terminals outputs measurement light; the dual polarization light switch outputs measurement light through the first output terminal when in the first state, and the dual polarization light switch outputs measurement light through the second output terminal when in the second state.
  • the second output terminal outputs measurement light.
  • the light split by the beam splitter is mixed with the local oscillator light and then transmitted to the receiver.
  • the dual-polarization grating coupler is a polarization-insensitive grating coupler, and a single port of the polarization-insensitive grating coupler is connected to the dual-polarization optical switch to receive the TE and TM The polarized light is output to the dual-polarized light switch.
  • the dual-polarization grating coupler is a polarization beam splitter grating
  • the transmitter further includes a polarization beam combiner, and both ports of the polarization beam splitter grating are connected to the polarization beam combiner, so The polarization beam combiner is connected to the dual polarization light switch;
  • the dual polarization grating coupler converts the received light with TE and TM polarization states into TE polarized light and then transmits it to the polarization beam combiner, the The polarization beam combiner polarizes and combines the two TE polarized lights and then outputs TE and TM polarized light to the dual-polarized light switch.
  • the dual-polarization optical switch is a phase change material optical switch.
  • the phase change material optical switch is in the first state/second state when the phase change material is in a crystalline state, and the phase change material optical switch is in the second state when the phase change material is in an amorphous state.
  • State/first state; the switching control method between the crystalline state and the amorphous state of the phase change material includes external electrode heating, laser pulse or electrical pulse stimulation.
  • the lidar chip is further provided with an electrical contact point that is electrically connected to an external processor, and the electrical contact point is electrically connected to the receiver and the optical switch.
  • a laser radar includes a housing, a laser located in the housing, a processor, a collimating lens system and the above-mentioned laser radar chip.
  • the laser provides a laser signal for the laser radar chip
  • the processor is used to control the laser radar chip.
  • the collimating lens system guides the light emitted by the lidar chip out.
  • lidar chips, lidar, and focal plane switch array transmitters use dual-polarization grating couplers to transmit and receive signals to achieve polarization-insensitive detection, which effectively improves the detection range and accuracy of lidar.
  • Figure 1 is a structural block diagram of a laser radar chip in an embodiment
  • FIG. 2 is a structural block diagram of a lidar chip in another embodiment
  • Figure 3 is a schematic structural diagram of a laser radar chip in an embodiment
  • Figure 4 is a schematic side view of beam scanning of a phase change material optical switch in an embodiment
  • Figure 5 is a schematic diagram of the "ON" state of the optical switch unit in an embodiment
  • Figure 6 is a schematic diagram of the "OFF" state of the optical switch unit in an embodiment
  • Figure 7 is a schematic diagram of the principle of a dual-polarization grating coupler in an embodiment
  • Figure 8 is a schematic diagram of the principle of a dual-polarization grating coupler in another embodiment
  • Figure 9 is a schematic structural diagram of a lidar chip in another embodiment
  • Figure 10 is a schematic structural diagram of a phase change material optical switch in an embodiment
  • Figure 11 is an A-A’ cross-sectional view of the phase change material optical switch in Figure 10;
  • Figure 12 is a B-B’ cross-sectional view of the phase change material optical switch in Figure 10;
  • Figure 13 is a C-C’ cross-sectional view of the phase change material optical switch in Figure 10;
  • Figure 14 is a schematic structural diagram of a phase change material optical switch in another embodiment
  • Figure 15 is an A-A’ cross-sectional view of the phase change material optical switch in Figure 14;
  • Figure 16 is a B-B’ cross-sectional view of the phase change material optical switch in Figure 14;
  • Figure 17 is a C-C’ cross-sectional view of the phase change material optical switch in Figure 14.
  • connection in the following embodiments should be understood as “electrical connection”, “communication connection”, etc. if the connected circuits, modules, units, etc. have the transmission of electrical signals or data between each other.
  • lidar technology has received more and more attention and developed rapidly.
  • Lidar beam control can be achieved mechanically.
  • an all-solid-state lidar is required.
  • Common all-solid-state lidars include optical phased array lidar and There are two methods of focal plane switch array, which have advantages over mechanical lidar in terms of size, weight and speed.
  • the OPA beam scanning range is limited by its output beam side lobes.
  • the spacing between phased array transmitting antenna units should theoretically be less than 1/2 wavelength.
  • the waveguide spacing generally needs to be much larger than the wavelength of the light wave.
  • focal plane switch arrays to achieve the beam scanning required for lidar can well avoid the above-mentioned OPA problems. It is a pixel that maps every angle in the field of view to the focal plane, and each pixel consists of only one optical antenna and one switch (this helps improve monolithic integration).
  • the input laser from the light source can be output to any grating coupler unit of the emission array through a cascaded switch array line.
  • the emission array is placed at the focal plane position of a collimating lens.
  • the beams emitted by different gratings are due to their relative position relative to the optical axis of the lens. Different positions form collimated beams at different angles after passing through the lens. Therefore, by switching the light source input to different emission grating channels through the switch array, the two-dimensional beam scanning required by lidar can be achieved.
  • Common switch arrays include MZI (Mach–Zehnder Interferometer) optical switches and MEMS (Micro-Electro-Mechanical System) optical switches.
  • Laser radar using cascaded MZI optical switches mostly uses thermal adjustment. Due to the working nature of the MZI optical switch itself, it is mainly limited by size and high power consumption, making it difficult to implement a large number of channels on a single chip; while using MEMS Optical switches have the advantages of small size, low power consumption and fast switching speed.
  • MEMS optical switches on silicon substrates have very high process requirements.
  • the receiving end can only handle single polarization (such as TE (Transverse Electric Wave, Transverse Electric Wave)). Radio wave) mode).
  • single polarization such as TE (Transverse Electric Wave, Transverse Electric Wave)
  • Radio wave mode
  • OPA technical solutions and focal plane switch array technical solutions are mainly due to complex design and process, large array unit size, and high power consumption.
  • LiDAR due to its limited polarization selectivity of waveguides and coupling gratings, allows the receiving end to only process information of a single polarization (such as TE mode), thus limiting the precision and accuracy of LiDAR.
  • a lidar chip is provided.
  • the lidar chip 100 includes a spectrometer 110, a beam splitter (not shown in the figure), a receiver 200 and a transmitter 300.
  • the transmitter 300 is a focal plane switch array emitter.
  • the emitter 300 includes an optical switch array and a grating coupler array.
  • the optical switch array includes a plurality of optical switches 310.
  • the grating coupler array includes a plurality of grating couplers 360.
  • the grating coupler array passes light
  • the switch array is connected to the optical splitter 110, and the optical splitter 110 is also connected to the receiver 200.
  • the grating coupler array is connected to the receiver 200 through the beam splitter, and the beam splitter is connected to the optical splitter 110.
  • the lidar chip 100 receives the laser signal, outputs the measurement light to the focal plane switch array transmitter through the spectrometer 110, and simultaneously outputs the local oscillator light to the receiver 200 through the spectrometer 110; the optical switch array transmits the measurement light through the corresponding optical switch 310. It is introduced into the corresponding grating coupler 360 in the grating coupler array and emitted through the grating coupler 360; the reflected echo received by the grating coupler 360 is polarized and split by the beam splitter and then transmitted to the receiver 200.
  • the type of grating coupler 360 in the transmitter 300 is not unique.
  • a single polarization grating coupler or a dual polarization grating coupler can be used.
  • the grating coupler 360 adopts a dual-polarization grating coupler.
  • the dual-polarization grating coupler refers to a grating coupler that can receive two polarization waves.
  • the lidar chip 100 also includes an echo coupler 120.
  • the echo coupler 120 is connected to the optical splitter 110, the optical switch array and the beam splitter respectively; the echo coupler 120 transmits the measurement light transmitted from the optical splitter 110. to the optical switch array, and transmits the reflected echo received by the optical switch array from the grating coupler 360 to the beam splitter.
  • the reflected echo received by the grating coupler 360 may be directly transmitted to the beam splitter connected to the receiver 200 , or may be transmitted to the beam splitter connected to the receiver 200 through an optical switch array. In this embodiment, the reflected echo received by the grating coupler 360 is transmitted to the beam splitter through the optical switch array.
  • the optical switch array is a dual-polarized optical switch array, that is, the optical switch 310 in the optical switch array adopts a dual-polarized optical switch.
  • Dual polarization optical switch refers to an optical switch that allows two polarization waves to pass through.
  • the focal plane switch array transmitter uses a dual-polarization optical switch to control the optical path of measurement light transmission, and uses a dual-polarization grating coupler to transmit and receive signals. Polarization-insensitive detection is achieved through optical path control.
  • the optical switch 310 can be divided into a row-selective optical switch unit 320 and a column-selective optical switch unit 340.
  • the specific type of the optical switch 310 is not unique.
  • the optical switch 310 is a phase change material optical switch.
  • Phase change material optical switches are made of phase change materials and other waveguide materials. Phase change materials can alternately change between crystalline and amorphous states when subjected to external stimulation, and phase change materials can alternate between crystalline and amorphous states. The refractive index and material loss between them will also change.
  • phase change material optical switch can be controlled to switch between phase matching and phase mismatching states, corresponding to the "ON” or “OFF” state of the switch, thereby achieving control of the transmission optical path of the measurement light.
  • Phase-change material optical switches are used for switching, which can reduce device size and power consumption compared to MZI optical switches.
  • the switching speed of phase-change material optical switches can reach nanoseconds, and the switching frequency can reach GHz. Therefore, even horizontal beam scanning of thousands of sampling points can be completed in microseconds.
  • the power consumption of the phase-change material optical switch is effectively reduced compared with the thermally controlled cascade MZI optical switch; the entire lidar transmission and reception can be implemented on a single chip, with a smaller size; a single wavelength can be used to achieve full Solid-state large-angle high-quality two-dimensional beam scanning is expected to achieve low cost and high reliability.
  • a phase change material optical switch is used to control the optical path of measurement light transmission. The switch switching speed is fast and the power consumption is low. Multi-channel beam scanning can be quickly completed, and multi-channel expansion can be supported on a single lidar chip. Implementing more array units on a single lidar chip can achieve a larger field of view and scanning accuracy.
  • the lidar chip 100 is a PIC (Photonic Integrated Circuit) microcontroller.
  • the receiver 200 and the transmitter 300 can be formed on an SOI (Silicon-On-Insulator, silicon on an insulating substrate) substrate.
  • the lidar chip 100 is also provided with electrical contact points that are electrically connected to the external processor, and the electrical contact points are electrically connected to the receiver 200 and the optical switch 310 .
  • the light split by the beam splitter is mixed with the local oscillator light and then transmitted to the receiver 200 .
  • the lidar chip 100 splits the chirped continuous wave laser signal with a wavelength of ⁇ to obtain the measurement light and the local oscillator light
  • the receiver 200 mixes the local oscillator light and the light after polarization splitting through the beam splitter. frequency and balanced light detection processing to obtain target object information.
  • the light beam emitted from the grating coupler 360 passes through the collimating lens system of the laser radar and then is emitted to the target object; the reflected echo of the target object returns to the grating coupler 360 after passing through the collimating lens system.
  • the lidar chip 100 is located at the focal plane of the collimating lens system, and the receiver 200 can use a coherent detection receiver.
  • the relevant phase change material optical switch in the focal plane switch array transmitter performs state switching to determine the optical path for transmitting the measurement light
  • the measurement light is transported along the optical path to the corresponding grating coupler 360 and emitted from the surface of the lidar chip 100.
  • the outgoing beam is collimated by a collimating lens system placed above the lidar chip 100 to form radar scanning beams in different spatial directions.
  • the measurement light After the measurement light enters the focal plane switch array emitter, by controlling the row selective optical switch unit 320 and the column selective optical switch unit 340, it can be switched to cause the grating coupler 360 of any array unit to emit perpendicularly to the surface of the lidar chip 100.
  • the reflected echo formed by the radar scanning beam after being reflected by the target object returns to the receiver 200 through the same optical path.
  • the receiver 200 performs signal processing based on the reflected echo and the local oscillator light to obtain the target object information, thereby realizing the detection of the target object. For example, the receiver 200 mixes the reflected echo and the local oscillator light and detects the spatial orientation, distance and moving speed of the target object through balanced light detection.
  • the echo coupler 120 may use a 50/50 split optical coupler or a circulator to reduce optical loss. After the reflected echo signal is mixed with the local oscillator light, the spatial orientation, distance, and moving speed of the target object can be detected through balanced light detection.
  • the optical switch 310 includes a row selection optical switch unit 320 and a column selection optical switch unit 340.
  • the row selection optical switch unit 320 is connected in sequence and then connected to the receiver 200 through the echo coupler 120.
  • each row selection optical switch unit 320 is respectively connected to two or more column selection optical switch units 340 connected in sequence
  • each column selection optical switch unit 340 is respectively connected to a corresponding grating coupler 360.
  • the row selection optical switch unit 320 and the corresponding column selection optical switch unit 340 can be arranged in the same row, and the column selection optical switch units 340 in the same row are connected in sequence and then connected to the corresponding row selection optical switch unit 320.
  • the row selection optical switch unit 320 and the column selection optical switch unit 340 are arranged in an array to form a focal plane switch array, and optical signals are transmitted between the optical switch units through an array waveguide.
  • the array waveguide may be a silicon array waveguide or a silicon nitride array waveguide.
  • the array waveguide can focus the beam through free space wavelets on the silicon layer of the SOI substrate, or it can first couple the optical signal of the array waveguide to the dielectric layer waveguide placed above it, and then focus the beam through free space wavelets on the dielectric layer. Bundle.
  • the row selection optical switch unit 320 located on the side far away from the receiver 200 can be connected according to the connection relationship, that is, the row selection optical switch unit 320 located at the end. , is called the row selection optical switch unit 320 located at the end; other row selection optical switch units not at the end can be called row selection optical switch units 320 located at the non-end.
  • the row selection optical switch unit 320 located at the non-end is connected to a column selection optical switch unit 340 connected in sequence.
  • the measurement light is transmitted to the next Row selection optical switch unit 320; when the row selection optical switch unit located at the non-end is in the second state, the measurement light is transmitted to the corresponding column selection optical switch unit 340.
  • the row selection optical switch unit 320 located at the end is connected to two column selection optical switch units 340 connected in sequence.
  • the measurement light is transmitted to one of the column selection optical switch units 340;
  • the row selection optical switch unit 320 located at the end is in the second state, the measurement light is transmitted to another column selection optical switch unit 340.
  • the column selection optical switch unit 340 is in the first state, the measurement light is transmitted to the next column selection optical switch unit 340; when the column selection optical switch unit 340 is in the second state, the measurement light is transmitted to the corresponding grating coupler 360.
  • the column selection optical switch units 340 of the same path are arranged in the same row, and the row selection optical switch unit 320 located at the end is connected to the two row and row selection optical switch units 340. That is to say, the number of row selective optical switch units 320 can be one less than the number of rows of the focal plane switch array. By switching the state of the row selective optical switch unit 320 located at the end, two rows of optical transmission control can be achieved and costs can be reduced.
  • the row selection optical switch unit 320 located at the end is connected to a column selection optical switch unit 340 connected in sequence, the row selection optical switch unit 320 located at the end is set to the second state, and the measurement The light is transmitted to the corresponding column select optical switch unit 340.
  • a row selection optical switch unit 320 is provided corresponding to each row of the focal plane switch array. The row selection optical switch unit 320 located at the end can be fixedly set to the second state, and after receiving the measurement light, it is directly transmitted to The corresponding column selects the optical switch unit 340.
  • the row selection optical switch unit 320 and the column selection optical switch unit 340 are both optical switch units using phase change materials. It can be understood that the selection of the optical switch unit depends on the different connection relationships between the optical switch units at the focal plane switch array emitter. The corresponding relationship between the state and the transmission direction of the measurement light will also be different, that is, the first state can be the "ON"/"OFF” state corresponding to the optical switch unit, and the second state can be the "OFF" state corresponding to the optical switch unit. "/"ON" status.
  • the state of the optical switch of the phase change material can be controlled by controlling the phase change material to switch between a crystalline state and an amorphous state.
  • the phase change material optical switch is in the first state/second state when the phase change material is in a crystalline state, and the phase change material optical switch is in the second state/first state when the phase change material is in an amorphous state.
  • the state switching methods of phase change materials include external electrode heating, laser pulses or electrical pulse stimulation.
  • the "ON" (“OFF") state of the phase change material optical switch can correspond to either the crystalline state or the amorphous state, as long as the waveguide size of the phase change material waveguide in the phase change material optical switch meets the phase matching (mismatch) condition That’s it.
  • the phase change material can alternately change between the crystalline and amorphous states through external stimulation, such as external electrode heating, laser pulse or electrical pulse stimulation, thereby realizing the state switching of the optical switch of the phase change material.
  • the following explanation takes the first state of the phase change material optical switch as the "ON” state and the second state as the "OFF” state as an example.
  • the grating coupler 360 adopts a single polarization grating coupler 362, and the lidar chip 100 is a single polarization coherent lidar photonic chip.
  • the linear frequency modulated measurement light passes through the row selection optical switch unit 320.
  • the optical signal directly passes through the row selection optical switch unit 320 without a direction change, and the optical signal continues to be transmitted in the longitudinal direction until Arrive at the next row selection optical switch unit 320 and then make a selection; when the row selection optical switch unit 320 is in the "OFF" state, the optical signal is coupled, and the optical signal enters the array row and is transmitted laterally until it reaches the next column selection optical switch unit 340.
  • Direction selection is
  • the measurement light coupled to the array rows enters the column selection optical switch unit 340 in turn.
  • the optical signal When the column selection optical switch unit 340 is in the "ON” state, the optical signal continues to be transmitted on the lateral channel.
  • the column selection optical switch unit 340 When the column selection optical switch unit 340 is in the "OFF" state, the optical signal will be coupled to the single polarization grating coupler 362, and the single polarization grating coupler 362 will vertically emit the optical signal transmitted along the plane from the surface of the lidar chip 100 to the free space.
  • a collimating lens system 400 is placed in free space, and its distance from the single polarization grating coupler 362 is the focal length of the lens.
  • the collimating lens system 400 may specifically include a lens that emits light from the single polarization grating coupler 362.
  • the outgoing optical signal is collimated by the lens and emitted to the target object.
  • measurement light can be emitted from M ⁇ N emission points, and different scanning angles can be generated through the collimating lens system 400 to scan distant target objects.
  • the receiver 200 mixes the reflected echo and the local oscillator light to obtain two optical signals, and performs balanced light detection based on the two optical signals to obtain the target object information, thereby realizing the detection of the target object.
  • the dual-polarized optical switch includes an input port0, a first output port1 and a second output port2.
  • the input port0 is connected to the first port of the upper-level dual-polarized optical switch.
  • the output port1 or the echo coupler 120 is connected, and the second output port2 is connected with the input port0 of the next-stage dual-polarization optical switch or the grating coupler 360.
  • the dual-polarization optical switch receives the measurement light through the input port0 and passes it through One of the first output port port1 and the second output port port2 outputs measurement light; the dual-polarized light switch outputs measurement light through the first output port port1 when it is in the first state, and the dual-polarized light switch outputs measurement light through the third output port when it is in the second state.
  • the second output port port2 outputs measurement light.
  • the input port port0 of the first row selection optical switch unit 320 is connected to the echo coupler 120, and the first output port of the first row selection optical switch unit 320 port1 is connected to the input port port0 of the next row selection optical switch unit 320, and the second output port port of the first row selection optical switch unit 320 is connected to the input port0 of the first column selection optical switch unit 340 in the same row.
  • the first output port port1 of one column selection optical switch unit 340 is connected to the input port pot0 of the next column selection optical switch unit 340, and the second output port port2 of the first column selection optical switch unit 340 is connected to the corresponding grating coupling. 360.
  • the two row selection optical switch units 320 cascaded after the first row selection optical switch unit 320
  • the connection relationship between the output terminals is similar to that of the first row selection optical switch unit 320.
  • the column selection optical switch unit 340 cascaded after the first column selection optical switch unit 340 in the same row has a connection relationship between its two output terminals and the first row selection optical switch unit 340.
  • the column selection optical switch unit 340 is similar and will not be described again here.
  • the row selection optical switch unit 320 and the column selection optical switch unit 340 as both optical switch units using phase change materials
  • the input port port0 of the optical switch unit is connected.
  • the optical signal is directly output through the first output port port1 of the optical switch unit without changing direction; when the optical switch unit is in the "OFF" state, the optical signal is coupled and output from the input port port0 to the second output port port2.
  • the row selection optical switch unit 320 is switched to the "OFF” state, the optical signal is coupled, and is coupled from the input port port0 to the second output port port2.
  • the optical signal enters the array row and is laterally transmitted to the column selection optical switch unit 340.
  • Direction selection If the column selection optical switch unit 340 is in the "OFF” state, the optical signal will be coupled to the second output port port2 of the column selection optical switch unit 340 connected to the single polarization grating coupler 362 and output.
  • grating coupler 360 is a dual polarization grating coupler. Specifically, both the row selection optical switch unit 320 and the column selection optical switch unit 340 are phase change material dual-polarization optical switch units. By selecting the thickness and width of the waveguide of the optical switch unit, a dual-polarization optical switch unit can be realized. That is, under a certain waveguide cross-section design, the TE can be made corresponding to the "ON" or "OFF" state of the optical switch unit.
  • the dual-polarization grating coupler can be a single-port or dual-port dual-polarization grating coupler.
  • the single-port dual-polarization grating coupler can be directly connected to the corresponding column selection optical switch unit 340 .
  • the dual-port dual-polarization grating coupler can be directly connected to the corresponding column selection optical switch unit 340 . Then it can be connected to the corresponding column selection optical switch unit 340 through a polarization beam combiner.
  • the receiver 200 mixes the reflected echo and the local oscillator light to obtain four optical signals, and performs balanced light detection based on the four optical signals to obtain the target object. information to achieve the detection of target objects.
  • connection between the dual-polarization grating coupler and the dual-polarization optical switch unit can have two connection schemes as shown in Figure 7 and Figure 8.
  • the dual-polarization grating coupler is a polarization-insensitive grating coupler.
  • a single port of the polarization-insensitive grating coupler is connected to a dual-polarization optical switch to receive TE and TM polarized signals. The light of this state is output to the dual-polarized light switch.
  • the dual-polarization grating coupler is a single-port output polarization-insensitive grating coupler, that is, when the incident light has two polarization states of TE/TM, the TE/TM polarization of the light coupled to the SOI chip is from one port output, the port can be directly connected to the column-selective optical switch unit 340 based on phase change materials.
  • the two polarization states of TE and TM pass through the column-selective optical switch unit 340 and return to the receiver 200 along the original optical path.
  • the dual polarization grating coupler is a polarization beam splitting grating.
  • the transmitter 300 also includes a polarization beam combiner 380.
  • the dual ports of the polarization beam splitting grating are connected to the polarization beam combiner 380.
  • the beam combiner 380 is connected to the dual polarization light switch; the dual polarization grating coupler converts the received light with TE and TM polarization states into TE polarized light and then transmits it to the polarization beam combiner 380.
  • the polarization beam combiner 380 pairs two channels.
  • the TE polarized light is polarized and combined, and then the TE and TM polarized light are output to the dual-polarized light switch.
  • the dual-polarization grating coupler is a dual-port output polarization beam splitter grating, that is, the TE/TM polarization is output from the two ports of the grating coupler in TE mode respectively, an inverted polarization beam splitter is required.
  • -Polarization combiner 380 The two TE components are synthesized by TE/TM through the polarization combiner 380 and output to the same port. The output port of the polarization combiner 380 is then connected to the column selection optical switch unit 340, so that the signal to be measured Follow the original path back to receiver 200.
  • the row selection optical switch unit 320 and the column selection optical switch unit 340 are designed as dual-polarization optical switch units, and the grating coupler 360 is a dual-polarization grating coupler.
  • the transmitter 300 can receive the reflected light signal of the target object.
  • the TE component and TM component realize polarization-insensitive detection, achieve the best detection sensitivity and distance, and can take into account the detection accuracy and accuracy of both polarization states.
  • the row selection optical switch unit 320 and the column selection optical switch unit 340 are both dual-polarization optical switch units of phase change materials, and the grating coupler 360 is a dual-polarization grating coupler 364, then
  • the lidar chip 100 is a dual-polarization coherent lidar photonic chip.
  • the transmitter 300 also includes a polarization beam combiner 380.
  • Each dual-polarization grating coupler 364 is connected to the corresponding column selection optical switch unit 340 through a polarization beam combiner 380.
  • the dual polarization grating coupler 364 serves as the emitting device of the focal plane switch array and is connected to the cross port of the column selection optical switch unit 340 through the polarization combiner 380 .
  • the TE and TM are separated by the polarization beam splitter, and mixed with the split local oscillator light and balanced light detection respectively, and the two polarization component signals are detected. Finally, it is synthesized into a laser radar detection signal through digital signal processing.
  • the phase change material optical switch may specifically include an input waveguide, an output waveguide, and a coupling waveguide located between the input waveguide and the output waveguide.
  • the coupling waveguide Located between the input waveguide and the output waveguide, the coupling waveguide is a hybrid waveguide with phase change material.
  • One end of the input waveguide forms the input port port0, and the other end forms the first output port port1.
  • the output waveguide is adjacent to the first output port port1.
  • One end forms the second output port port2, and the coupling waveguide is used to selectively guide the light coming from the input port port0 to the first output port port1 or the second output port port2.
  • the input waveguide can be a silicon waveguide or a silicon nitride waveguide
  • the output waveguide can also be a silicon waveguide or a silicon nitride waveguide.
  • the coupling waveguide may be a hybrid waveguide composed of a phase change material waveguide and a silicon waveguide, that is, the hybrid waveguide is composed of a silicon waveguide and a phase change material waveguide covered thereon.
  • the coupling waveguide includes a waveguide layer and a phase change material layer formed above the waveguide layer.
  • waveguide 1, waveguide 2, and waveguide 3 are silicon waveguides or silicon nitride waveguides, and waveguide 4 is a phase change material waveguide.
  • Waveguide 1 serves as the input waveguide of the phase change material optical switch
  • waveguide 2 serves as the output waveguide of the phase change material optical switch
  • waveguide 3 and waveguide 4 serve as coupling waveguides.
  • one end 11 of the waveguide 1 serves as the input end port0 of the phase change material optical switch
  • the other end 12 serves as the first output end port1 of the phase change material optical switch
  • the end 22 of the waveguide 2 adjacent to the first output end port1 serves as a phase change port.
  • the coupling waveguide composed of an intermediate silicon waveguide and a phase change material waveguide serves as an intermediate bridge for coupling.
  • the effective refractive index corresponding to different modes of the coupling waveguide composed of the phase change material waveguide and the silicon waveguide is different.
  • the modes of the input waveguide, the output waveguide and the hybrid waveguide can be in phase. Switching between matching and phase mismatch states, that is, the optical signal is output alternately in the first output port port1 and the second output port port2, corresponding to the "ON" or "OFF" state of the switch.
  • a phase change material optical switch in another embodiment, includes an input waveguide and an output waveguide, and the output waveguide is a hybrid waveguide with phase change material.
  • One end of the input waveguide forms the input port port0, and the other end forms the first output port port1.
  • the end of the output waveguide adjacent to the first output port port1 forms the second output port port2.
  • the output waveguide is used to selectively incoming from the input port port0.
  • the light is guided to the first output port port1 or the second output port port2.
  • the input waveguide may be a silicon waveguide or a silicon nitride waveguide
  • the output waveguide may be a hybrid waveguide composed of a phase change material waveguide and a silicon waveguide.
  • the output waveguide includes a waveguide layer and a phase change material layer formed above the waveguide layer.
  • the input waveguide includes an input section, an input coupling section and a first output section
  • the output waveguide includes an output coupling section and a second output section
  • the input coupling section and the output coupling section are of equal length and are arranged side by side
  • the phase change material layer is located at the output
  • the ends of the coupling section, the first output section and the second output section form a first output port port1 and a second output port port2 respectively.
  • waveguide 1 and waveguide 2 are silicon waveguides or silicon nitride waveguides
  • waveguide 3 is a phase change material waveguide.
  • Waveguide 1 serves as the input waveguide of the phase change material optical switch
  • waveguide 2 and waveguide 3 serve as the output waveguide of the phase change material optical switch.
  • one end 11 of the waveguide 1 serves as the input end port0 of the phase change material optical switch
  • the other end 12 serves as the first output end port1 of the phase change material optical switch
  • the end 22 of the waveguide 2 adjacent to the first output end port1 serves as a phase change port.
  • the output waveguide is a hybrid waveguide composed of silicon waveguide and phase change material.
  • a lidar including a housing, a laser located in the housing, a processor, a collimating lens system, and the above-mentioned lidar chip.
  • the laser provides laser signals for the lidar chip
  • the processor is used to Controlling the work of the laser and lidar chip, the collimating lens system guides the light emitted by the lidar chip out.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本申请涉及一种激光雷达芯片和激光雷达,激光雷达芯片包括分光器、分束器、接收器和发射器,发射器为焦平面开关阵列发射器,发射器包括光开关阵列和光栅耦合器阵列,光栅耦合器阵列通过光开关阵列连接分光器,分光器同时与接收器相连,光栅耦合器阵列通过分束器与接收器连接,分束器与分光器相连;激光雷达芯片接收激光信号,通过分光器输出测量光至焦平面开关阵列发射器,同时通过分光器输出本振光至接收器;光开关阵列通过相应的光开关来将测量光导入到光栅耦合器阵列中相应的光栅耦合器,并通过光栅耦合器出射;光栅耦合器接收到的反射回波通过分束器进行偏振分束后传输至接收器;光栅耦合器为双偏振光栅耦合器。

Description

激光雷达芯片和激光雷达
本申请要求于2022年7月25日提交中国专利局、申请号为202210874886.7、发明名称为“激光雷达芯片和激光雷达”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及激光雷达技术领域,特别是涉及一种激光雷达芯片和激光雷达。
背景技术
随着科技的发展和社会的不断进步,激光雷达技术得到了越来越多的关注和迅猛发展。常见的全固态激光雷达包括光学相控阵(Optical Phased Array,OPA)激光雷达和焦平面开关阵列两种方式,其在尺寸、重量和速度上都具有机械式激光雷达无法比拟的优势。
传统焦平面开关阵列方式的全固态激光雷达,将视场内每个角度都映像成焦平面的一个像素,每个像素仅由一个光学天线和一个开关组成。光源输入激光可以通过一个级联的开关阵列线路输出到发射阵列的任意一个光栅耦合器单元。因此通过开关阵列切换光源输入到不同的发射光栅通道,就可以实现激光雷达所需的二维光束扫描。然而传统焦平面开关阵列方式的全固态激光雷达只能接收处理单一偏振态的反射光,导致雷达会丢失一部分待测信息,其探测距离和探测准确性就会相应受限。如何提供一种能提高探测距离和准确性的激光雷达,是一个亟待解决的问题。
技术问题
基于此,有必要针对上述问题,提供一种能够提高探测距离和准确性的激光雷达芯片和激光雷达。
技术解决方案
一种激光雷达芯片,包括分光器、分束器、接收器和发射器,所述发射器为焦平面开关阵列发射器,所述发射器包括光开关阵列和光栅耦合器阵列,所述光开关阵列包括多个光开关,所述光栅耦合器阵列包括多个光栅耦合器,所述光栅耦合器阵列通过所述光开关阵列连接所述分光器,所述分光器同时与所述接收器相连,所述光栅耦合器阵列通过所述分束器与所述接收器连接,所述分束器与所述分光器相连;
所述激光雷达芯片接收激光信号,通过所述分光器输出测量光至所述焦平面开关阵列发射器,同时通过所述分光器输出本振光至所述接收器;
所述光开关阵列通过相应的光开关来将所述测量光导入到所述光栅耦合器阵列中相应的光栅耦合器,并通过所述光栅耦合器出射;
所述光栅耦合器接收到的反射回波通过所述分束器进行偏振分束后传输至所述接收器;
所述光栅耦合器为双偏振光栅耦合器。
在其中一个实施例中,所述激光雷达芯片还包括回波耦合器,所述回波耦合器分别连接所述分光器、所述光开关阵列和所述分束器;所述回波耦合器将从所述分光器传来的测量光传输至所述光开关阵列,并将所述光开关阵列从光栅耦合器接收到的反射回波传输至所述分束器。
在其中一个实施例中,所述光开关为双偏振光开关。
在其中一个实施例中,所述双偏振光开关包括输入端、第一输出端和第二输出端,所述输入端与上一级双偏振光开关的第一输出端或回波耦合器相连,所述第二输出端与下一级的双偏振光开关的输入端或光栅耦合器相连,所述双偏振光开关通过所述输入端接收测量光,并通过所述第一输出端和所述第二输出端中的一个输出测量光;所述双偏振光开关在处于第一状态时通过所述第一输出端输出测量光,所述双偏振光开关在处于第二状态时通过所述第二输出端输出测量光。
在其中一个实施例中,所述分束器分束后的光分别与所述本振光混频后传输至所述接收器。
在其中一个实施例中,所述双偏振光栅耦合器为偏振不敏感光栅耦合器,所述偏振不敏感光栅耦合器的单端口与所述双偏振光开关连接,将接收到的具有TE和TM偏振态的光输出至所述双偏振光开关。
在其中一个实施例中,所述双偏振光栅耦合器为偏振分束光栅,所述发射器还包括偏振合束器,所述偏振分束光栅的双端口均连接所述偏振合束器,所述偏振合束器连接所述双偏振光开关;所述双偏振光栅耦合器将接收到的具有TE和TM偏振态的光均转换为TE偏振光后传输至所述偏振合束器,所述偏振合束器对两路TE偏振态的光进行偏振合束后输出TE和TM偏振光至所述双偏振光开关。
在其中一个实施例中,所述双偏振光开关为相变材料光开关。
在其中一个实施例中,所述相变材料光开关在相变材料为晶态时处于第一状态/第二状态,所述相变材料光开关在相变材料为非晶态时处于第二状态/第一状态;所述相变材料晶态和非晶态的切换控制方式包括外部电极加热、激光脉冲或电脉冲刺激。
在其中一个实施例中,所述激光雷达芯片上还设有与外部处理器相电性连接的电接触点,所述电接触点与所述接收器和所述光开关相电性连接。
一种激光雷达,包括壳体、设于壳体内的激光器、处理器、准直透镜系统和上述的激光雷达芯片,所述激光器为所述激光雷达芯片提供激光信号,所述处理器用于控制所述激光器和所述激光雷达芯片的工作,所述准直透镜系统将所述激光雷达芯片发出的光导引出去。
有益效果
上述激光雷达芯片和激光雷达,焦平面开关阵列发射器中利用双偏振光栅耦合器进行信号收发,实现偏振不敏感探测,有效提高了激光雷达的探测距离和准确性。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一实施例中激光雷达芯片的结构框图;
图2为另一实施例中激光雷达芯片的结构框图;
图3为一实施例中激光雷达芯片的结构原理图;
图4为一实施例中相变材料光开关光束扫描侧视示意图;
图5为一实施例中光开关单元“ON”状态示意图;
图6为一实施例中光开关单元“OFF”状态示意图;
图7为一实施例中双偏振光栅耦合器的原理示意图;
图8为另一实施例中双偏振光栅耦合器的原理示意图;
图9为另一实施例中激光雷达芯片的结构原理图;
图10为一实施例中相变材料光开关的结构示意图;
图11为图10中相变材料光开关的A-A’剖视图;
图12为图10中相变材料光开关的B-B’剖视图;
图13为图10中相变材料光开关的C-C’剖视图;
图14为另一实施例中相变材料光开关的结构示意图;
图15为图14中相变材料光开关的A-A’剖视图;
图16为图14中相变材料光开关的B-B’剖视图;
图17为图14中相变材料光开关的C-C’剖视图。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
可以理解,以下实施例中的“连接”,如果被连接的电路、模块、单元等相互之间具有电信号或数据的传递,则应理解为“电连接”、“通信连接”等。
自动驾驶、空间光通信、生物传感等领域的迅猛发展,不断推动着三维成像技术的发展,因而激光雷达技术得到了越来越多的关注和迅猛发展。激光雷达波束控制可以通过机械方式实现,然而,为实现大孔径、高分辨率、低损耗的激光雷达,这就需要全固态的激光雷达,常见的全固态激光雷达包括光学相控阵激光雷达和焦平面开关阵列两种方式,其在尺寸、重量和速度上都具有机械式激光雷达无法比拟的优势。
然而采用OPA实现激光雷达所需的大角度、高分辨率光束扫描,除了需要精确的相位控制,还有多个挑战需要攻克。1)OPA光束扫描范围受限于其输出光束旁瓣。为了消除旁瓣,相控阵发射天线单元间距理论上要小于1/2波长。而通常即使用波导光栅作为发射单元,为了有效抑制发射单元间的串扰,波导间距一般也需要远大于光波波长。虽然使用随机间距波导光栅阵列可以一定程度上抑制旁瓣,但不可避免会增大噪声。2)实现高分辨率光束扫描,需要大口径OPA。而为了抑制旁瓣影响,发射天线单元间距需要尽可能小,这就导致OPA阵列规模庞大。二维OPA往往需要有几万甚至几十万个相控发射单元,工程实现的难度超大。因此现有OPA通常使用一维相控波导阵列加波导光栅输出阵列的方案,通过波导相位控制实现在一维方向上进行扫描,通过改变光波波长导致波导光栅输出角度变化来要实现第二维度的扫描。问题是为了实现激光雷达所需的扫描范围,如30°,需要很大范围的波长调谐才能实现,如200nm。而这样的大范围可调激光器成本昂贵,很难满足激光雷达产品需求。
而使用焦平面开关阵列的方法实现激光雷达所需的光束扫描可以很好地避免上述OPA的问题。它是将视场内每个角度都映像成焦平面的一个像素,每个像素仅由一个光学天线和一个开关组成(这有助于提高单片集成度)。光源输入激光可以通过一个级联的开关阵列线路输出到发射阵列的任意一个光栅耦合器单元,将发射阵列放置于一个准直透镜的焦面位置,不同光栅发射的光束由于其相对透镜光轴的位置不同,经过透镜后形成不同角度的准直光束。因此通过开关阵列切换光源输入到不同的发射光栅通道,就可以实现激光雷达所需的二维光束扫描。
常见的开关阵列包括MZI(Mach–Zehnder Interferometer,马赫-曾德尔干涉仪)光开关和MEMS(Micro-Electro-Mechanical System,微机电系统)光开关。采用级联MZI光开关实现激光雷达多采用热调方式,由于MZI光开关本身的工作性质,其主要受限于尺寸和高功耗,很难在单片上实现非常多的通道;而采用MEMS光开关,则具有尺寸小,功耗低开关速度快等优势,然而硅基片上MEMS光开关对工艺要求非常高。
此外,无论是光学相控阵激光雷达还是焦平面光开关阵列激光雷达,由于其受限于波导与耦合光栅的偏振选择性,使得接收端仅能够处理单偏振(如TE(Transverse Electric Wave,横电波)模式)的信息,然而对于待测物体来说,即使入射光为单偏振模式,其经过不同物体表面反射光可能不再是单一偏振态,如果仅能接收处理单一偏振态的反射光,那么激光雷达有可能会丢失一部分待测信息,其探测距离和准确性就会相应受限。
因此,为了实现大孔径、高分辨率、快速的全固态激光雷达,同时减小器件尺寸,降低功耗,实现更多的阵列单元进而实现更大的视场角和扫描精度,同时能够兼顾两种偏振态的信息调高系统的精度和准确性是目前全固态激光雷达亟待解决的关键问题。
基于前述的OPA技术方案以及焦平面开关阵列技术方案的缺陷,主要是由于设计和工艺复杂,阵列单元尺寸较大,功耗高等问题;同时无论是光学相控阵激光雷达还是焦平面光开关阵列激光雷达,由于其受限于波导与耦合光栅的偏振选择性,使得接收端仅能够处理单偏振(如TE模式)的信息,从而限制激光雷达的精度和准确性。
在一个实施例中,提供了一种激光雷达芯片,如图1所示,激光雷达芯片100包括分光器110、分束器(图中未示出)、接收器200和发射器300,发射器300为焦平面开关阵列发射器,发射器300包括光开关阵列和光栅耦合器阵列,光开关阵列包括多个光开关310,光栅耦合器阵列包括多个光栅耦合器360,光栅耦合器阵列通过光开关阵列连接分光器110,分光器110同时与接收器200相连,光栅耦合器阵列通过分束器与接收器200连接,分束器与分光器110相连。激光雷达芯片100接收激光信号,通过分光器110输出测量光至焦平面开关阵列发射器,同时通过分光器110输出本振光至接收器200;光开关阵列通过相应的光开关310来将测量光导入到光栅耦合器阵列中相应的光栅耦合器360,并通过光栅耦合器360出射;光栅耦合器360接收到的反射回波通过分束器进行偏振分束后传输至接收器200。发射器300中光栅耦合器360的类型并不唯一,可采用单偏振光栅耦合器,也可采用双偏振光栅耦合器。本实施例中,光栅耦合器360采用双偏振光栅耦合器,双偏振光栅耦合器即是指可接收两种偏振波的光栅耦合器。
进一步地,激光雷达芯片100还包括回波耦合器120,回波耦合器120分别连接分光器110、光开关阵列和分束器;回波耦合器120将从分光器110传来的测量光传输至光开关阵列,并将光开关阵列从光栅耦合器360接收到的反射回波传输至分束器。光栅耦合器360接收到的反射回波可以是直接传输至与接收器200连接的分束器,也可以是通过光开关阵列传输至与接收器200连接的分束器。本实施例中,光栅耦合器360接收到的反射回波通过光开关阵列传输至分束器,光开关阵列为双偏振光开关阵列,即光开关阵列中的光开关310采用双偏振光开关,双偏振光开关即是指允许两种偏振波通过的光开关。焦平面开关阵列发射器中采用双偏振光开关控制测量光传输的光路,并利用双偏振光栅耦合器进行信号收发,通过光路控制实现偏振不敏感探测。
其中,根据光开关310在发射器300中所在位置不同,可将光开关310分为行选择光开关单元320和列选择光开关单元340。光开关310的具体类型并不唯一,在一个实施例中,光开关310为相变材料光开关。相变材料光开关采用相变材料和其他波导材料制作而成,相变材料在受到外部刺激时,可以在晶态和非晶态之间交替变化,且相变材料在晶态和非晶态之间所具有的折射率和材料损耗也会发生变化,因此当相变材料状态变化时,相变材料波导和其他波导材料所组成的混合波导中所对应的有效折射率不同,利用这一原理可以控制相变材料光开关在相位匹配和相位失配状态中切换,对应开关的“ON”或“OFF”状态,从而实现对测量光的传输光路控制。
采用相变材料光开关进行开关切换,相对于MZI光开关可减小器件尺寸,降低功耗。其中,相变材料光开关的开关速度可达纳秒级,开关频率可以达到GHz,因此即使数千采样点的水平波束扫描也可以在微秒量级完成。同时,相变材料光开关的功耗与热控级联MZI光开关相比得到了有效减小;整个激光雷达发射及接收可以于单一芯片上实现,尺寸较小;采用单一波长就可以实现全固态大角度高质量二维光束扫描,可望实现低成本和高可靠性。本实施例中,采用相变材料光开关控制测量光传输的光路,开关切换速度快且功耗低,可快速完成多通道的波束扫描,能够支持在单个激光雷达芯片上进行多通道的扩展,在单个激光雷达芯片上实现更多的阵列单元进而实现更大的视场角和扫描精度。
此外,激光雷达芯片100是PIC(Photonic Integrated Circuit 光子集成芯片)单片机,具体可在SOI(Silicon-On-Insulator,绝缘衬底上的硅)衬底上形成接收器200和发射器300。进一步地,激光雷达芯片100上还设有与外部处理器相电性连接的电接触点,电接触点与接收器200和光开关310相电性连接。
在一个实施例中,分束器分束后的光分别与本振光混频后传输至接收器200。具体地,激光雷达芯片100对波长为λ的线性调频连续波激光信号进行分束得到测量光和本振光,接收器200根据本振光和经过分束器进行偏振分束后的光进行混频和平衡光探测处理,得到目标物体信息。进一步地,光栅耦合器360出射的光束经过激光雷达的准直透镜系统后发射至目标物体;目标物体的反射回波经过准直透镜系统后返回光栅耦合器360。其中,激光雷达芯片100位于准直透镜系统的焦平面处,接收器200可采用相干探测接收器,在对焦平面开关阵列发射器中相关相变材料光开关进行状态切换确定传输测量光的光路后,测量光沿光路输送至对应光栅耦合器360从激光雷达芯片100表面出射,出射光束经置于激光雷达芯片100上方的准直透镜系统准直,形成不同空间方向的雷达扫描光束。测量光进入焦平面开关阵列发射器后通过控制行选择光开关单元320、列选择光开关单元340,可以切换致任意阵列单元的光栅耦合器360垂直于激光雷达芯片100表面出射。雷达扫描光束在被目标物体反射后形成的反射回波,通过同一光路返回进入接收器200,接收器200根据反射回波和本振光进行信号处理得到目标物体信息,实现对目标物体的探测。例如,接收器200将反射回波和本振光混频后通过平衡光探测,实现对目标物体空间方位、距离以及移动速度的探测。回波耦合器120可以采用50/50分光耦合器,也可以采用环形器以减小光损耗。反射回波信号与本振光混频后通过平衡光探测可实现对目标物体空间方位、距离、以及移动速度的探测。
在一个实施例中,如图1所示,光开关310包括行选择光开关单元320和列选择光开关单元340,行选择光开关单元320依次连接后经过回波耦合器120与接收器200连接,各行选择光开关单元320分别对应与两个以上依次连接的列选择光开关单元340相连接,各列选择光开关单元340分别与对应一光栅耦合器360连接。其中,可将行选择光开关单元320与相应的列选择光开关单元340同行设置,同一行的列选择光开关单元340依次连接后与对应的行选择光开关单元320连接。行选择光开关单元320和列选择光开关单元340阵列设置形成焦平面开关阵列,光开关单元之间通过阵列波导传输光信号,阵列波导可以是硅阵列波导或氮化硅阵列波导。阵列波导可以是在SOI衬底的硅层通过自由空间子波聚焦合束,也可以先将阵列波导的光信号耦合到置于其上方的介质层波导,然后在介质层通过自由空间子波聚焦合束。
如图1所示,可将依次连接后的行选择光开关单元320中,按照连接关系将位于远离接收器200一侧的行选择光开关单元320,即位于最末端的行选择光开关单元320,称为位于末端的行选择光开关单元320;其他未处于末端的行选择光开关单元,则可称为位于非末端的行选择光开关单元320。在一个实施例中,位于非末端的行选择光开关单元320连接一路依次连接的列选择光开关单元340,位于非末端的行选择光开关单元320处于第一状态时,测量光传输至下一个行选择光开关单元320;位于非末端的行选择光开关单元处于第二状态时,测量光传输至对应的列选择光开关单元340。
位于末端的行选择光开关单元320连接两路依次连接的列选择光开关单元340,位于末端的行选择光开关单元320处于第一状态时,测量光传输至其中一路列选择光开关单元340;位于末端的行选择光开关单元320处于第二状态时,测量光传输至另一路列选择光开关单元340。列选择光开关单元340处于第一状态时,测量光传输至下一个列选择光开关单元340;列选择光开关单元340处于第二状态时,测量光传输至对应的光栅耦合器360。
其中,同一路的列选择光开关单元340同行设置,位于末端的行选择光开关单元320与两行列选择光开关单元340相连接。也就是说,行选择光开关单元320的数量可以比焦平面开关阵列的行数少一个,通过对位于末端的行选择光开关单元320进行状态切换,可实现两行光传输控制,降低成本。
在另一个实施例中,如图2所示,位于末端的行选择光开关单元320连接一路依次连接的列选择光开关单元340,位于末端的行选择光开关单元320设置为第二状态,测量光传输至对应的列选择光开关单元340。可以理解,位于非末端的行选择光开关单元320,以及不同行中列选择光开关单元340的切换原理与上文中类似,在此不再赘述。本实施例中,对应焦平面开关阵列的每一行都设置一个行选择光开关单元320,可将位于末端的行选择光开关单元320固定设置为第二状态,在接收到测量光后直接传输给对应的列选择光开关单元340。
其中,行选择光开关单元320和列选择光开关单元340均为采用相变材料的光开关单元,可以理解,根据光开关单元在焦平面开关阵列发射器的连接关系不同,光开关单元的选择状态与测量光的传输方向之间的对应关系也会有所不同,即第一状态可以是对应光开关单元的“ON”/“OFF”状态,第二状态可以是对应光开关单元的“OFF”/“ON”状态。
具体地,可通过控制相变材料在晶态和非晶态之间切换,从而控制相变材料光开关的状态。在一个实施例中,相变材料光开关在相变材料为晶态时处于第一状态/第二状态,相变材料光开关在相变材料为非晶态时处于第二状态/第一状态;相变材料的状态切换方式包括外部电极加热、激光脉冲或电脉冲刺激。其中,相变材料光开关的“ON”(“OFF”)状态既可以对应晶态也可以是非晶态,只要相变材料光开关中相变材料波导的波导尺寸满足相位匹配(失配)条件即可。可通过外部刺激如外部电极加热,激光脉冲或者电脉冲刺激等方式,使相变材料在晶态和非晶态之间交替变化,从而实现对相变材料光开关的状态切换。
为便于理解,以下均以相变材料光开关的第一状态为“ON”状态,第二状态为“OFF”状态为例进行解释说明。
如图3所示,光栅耦合器360采用单偏振光栅耦合器362,则激光雷达芯片100为单偏振相干激光雷达光子芯片。线性调频的测量光经过行选择光开关单元320,当行选择光开关单元320处于“ON”状态时,光信号直接通过行选择光开关单元320,不发生方向改变,光信号继续在纵向上传输直到抵达下一个行选择光开关单元320再进行选择;当行选择光开关单元320处于“OFF”状态时,光信号发生耦合,光信号进入阵列行横向传输,直到抵达下一个列选择光开关单元340进行方向选择。
耦合到阵列行的测量光依次进入列选择光开关单元340,当列选择光开关单元340处于“ON”状态时,光信号在横向通道上继续传输,当列选择光开关单元340处于“OFF”状态时,光信号会耦合到单偏振光栅耦合器362,单偏振光栅耦合器362将沿平面传输的光信号从激光雷达芯片100表面垂直发射到自由空间。如图4所示,在自由空间中放置一个准直透镜系统400,其距离单偏振光栅耦合器362的距离为透镜焦距,准直透镜系统400具体可包括透镜,从单偏振光栅耦合器362发射出来的光信号经透镜准直发射到目标物体。通过控制每个光开关单元的状态,可以在M×N个发射点出射测量光,经过准直透镜系统400产生不同的扫描角度对远处目标物体进行扫描。对应地,接收器200接收到反射回波后,将反射回波和本振光混频得到两路光信号,根据两路光信号进行平衡光探测得到目标物体信息,实现对目标物体的探测。
在一个实施例中,如图5和图6所述,双偏振光开关包括输入端port0、第一输出端port1和第二输出端port2,输入端port0与上一级双偏振光开关的第一输出端port1或回波耦合器120相连,第二输出端port2与下一级的双偏振光开关的输入端port0或光栅耦合器360相连,双偏振光开关通过输入端port0接收测量光,并通过第一输出端port1和第二输出端port2中的一个输出测量光;双偏振光开关在处于第一状态时通过第一输出端port1输出测量光,双偏振光开关在处于第二状态时通过第二输出端port2输出测量光。具体地,依次连接后的行选择光开关单元320中,第一个行选择光开关单元320的输入端port0与回波耦合器120连接,第一个行选择光开关单元320的第一输出端port1与下一个行选择光开关单元320的输入端port0连接,第一个行选择光开关单元320的第二输出端port与同行第一个列选择光开关单元340的输入端port0连接,同行第一个列选择光开关单元340的第一输出端port1与下一个列选择光开关单元340的输入端pot0连接,同行第一个列选择光开关单元340的第二输出端port2连接对应的光栅耦合器360。可以理解,除了最末端的行选择光开关单元320和最末端的列选择光开关单元340之外,位于第一个行选择光开关单元320之后级联的行选择光开关单元320,其两个输出端的连接关系与第一个行选择光开关单元320类似,同一行中位于第一个列选择光开关单元340之后级联的列选择光开关单元340,其两个输出端的连接关系与第一个列选择光开关单元340类似,在此不再赘述。
同样以行选择光开关单元320和列选择光开关单元340均为采用相变材料的光开关单元为例,当光开关单元处于“ON”状态时,由光开关单元的输入端port0接入的光信号直接通过光开关单元的第一输出端port1输出,不发生方向改变;当光开关单元处于“OFF”状态时,光信号发生耦合,从输入端port0耦合到第二输出端port2 输出。例如,将行选择光开关单元320切换为“OFF”状态时,光信号发生耦合,从输入端port0耦合到第二输出端port2输出,光信号进入阵列行横向传输抵达列选择光开关单元340进行方向选择。若列选择光开关单元340处于“OFF”状态,则光信号会耦合到列选择光开关单元340连接有单偏振光栅耦合器362的第二输出端port2输出。
在一个实施例中,光栅耦合器360为双偏振光栅耦合器。具体地,行选择光开关单元320和列选择光开关单元340均为相变材料双偏振的光开关单元。可通过对光开关单元的波导厚度和宽度的选择,实现双偏振的光开关单元,即在一定的波导横截面设计下,对应光开关单元的“ON”或“OFF”状态时,能够使TE和TM(Transverse Magnetic Wave,横磁波)模式同时满足相位匹配或相位失配条件,即“ON”(“OFF”)状态下,TE和TM偏振态能够同时从光开关单元的端口port1(port2)输出。其中,双偏振光栅耦合器可以是单端口或双端口的双偏振光栅耦合器,单端口的双偏振光栅耦合器可以直接与对应的列选择光开关单元340连接,双端口的双偏振光栅耦合器则可通过偏振合束器与对应的列选择光开关单元340连接。光栅耦合器360采用双偏振光栅耦合器时,接收器200接收到反射回波后,将反射回波和本振光混频得到四路光信号,根据四路光信号进行平衡光探测得到目标物体信息,实现对目标物体的探测。
具体地,双偏振光栅耦合器与双偏振光开关单元的连接可以有如图7和图8两种连接方案。
在一个实施例中,如图7所示,双偏振光栅耦合器为偏振不敏感光栅耦合器,偏振不敏感光栅耦合器的单端口与双偏振光开关连接,将接收到的具有TE和TM偏振态的光输出至双偏振光开关。具体地,当双偏振光栅耦合器是单端口输出的偏振不敏感光栅耦合器时,即当入射光为TE/TM两种偏振态,其耦合到SOI芯片上的光TE/TM偏振均从一个端口输出,则可将该端口直接与基于相变材料的列选择光开关单元340相连,TE、TM两种偏振态经过列选择光开关单元340并沿光路原路返回到接收器200。
在另一个实施例中,如图8所示,双偏振光栅耦合器为偏振分束光栅,发射器300还包括偏振合束器380,偏振分束光栅的双端口连接偏振合束器380,偏振合束器380连接双偏振光开关;双偏振光栅耦合器将接收到的具有TE和TM偏振态的光均转换为TE偏振光后传输至偏振合束器380,偏振合束器380对两路TE偏振态的光进行偏振合束后输出TE和TM偏振光至双偏振光开关。具体地,当双偏振光栅耦合器是双端口输出的偏振分束光栅时,即TE/TM偏振从光栅耦合器的两个端口以TE模式分别输出,此时需要一个倒置的偏振分束器——偏振合束器380,两个TE分量通过偏振合束器380合成TE/TM到同一端口输出,将偏振合束器380的输出端口再与列选择光开关单元340相连接,使待测信号沿原路返回到接收器200。
本实施例中,将行选择光开关单元320和列选择光开关单元340设计为双偏振光开关单元,且光栅耦合器360选择双偏振光栅耦合器,发射器300能接收目标物体反射光信号中的TE分量和TM分量,实现偏振不敏感探测,达到最佳探测灵敏度和距离,能够兼顾两种偏振态的检测精度和准确性。
在一个实施例中,如图9所示,行选择光开关单元320和列选择光开关单元340均为相变材料双偏振的光开关单元,光栅耦合器360为双偏振光栅耦合器364,则激光雷达芯片100为双偏振相干激光雷达光子芯片。发射器300还包括偏振合束器380,各双偏振光栅耦合器364分别通过一偏振合束器380与对应的列选择光开关单元340连接。双偏振光栅耦合器364作为焦平面开关阵列的发射器件,通过偏振合束器380连接到列选择光开关单元340的交叉端口。而含TE、TM分量的回波信号进入接收器200后通过偏振分束器将TE、TM分离,分别与分束后的本振光混频及平衡光探测,探测到的两个偏振分量信号最后经数字信号处理合成为激光雷达探测信号。
在一个实施例中,当双偏振光开关采用相变材料光开关时,相变材料光开关具体可包括并排设置的输入波导、输出波导和位于输入波导、输出波导之间的耦合波导,耦合波导位于输入波导和所述输出波导之间,耦合波导为带有相变材料的混合波导,输入波导的一端形成输入端port0,另一端形成第一输出端port1,输出波导与第一输出端port1临近的一端形成第二输出端port2,耦合波导用于选择性的将从输入端port0进来的光导引至第一输出端port1或第二输出端port2。其中,输入波导和输出波导的具体类型并不唯一,输入波导可以是硅波导或氮化硅波导,输出波导也可以是硅波导或氮化硅波导。对应地,耦合波导可以是相变材料波导与硅波导组成的混合波导,即混合波导由硅波导及其上覆盖的相变材料波导组成。本实施例中,耦合波导包括波导层和形成在波导层上方的相变材料层。如图10-图13所示,波导1、波导2、波导3为硅波导或氮化硅波导,波导4为相变材料波导。波导1作为相变材料光开关的输入波导,波导2作为相变材料光开关的输出波导,波导3和波导4作为耦合波导。
具体地,波导1的一端11作为相变材料光开关的输入端port0,另一端12作为相变材料光开关的第一输出端port1,波导2与第一输出端port1临近的一端22作为相变材料光开关的第二输出端port2。中间硅波导和相变材料波导组成的耦合波导起到耦合的中间桥梁作用。当相变材料状态变化时,相变材料波导和硅波导所组成的耦合波导不同模式所对应的有效折射率不同,利用这一原理,输入波导、输出波导的模式与混合波导的模式可以在相位匹配和相位失配状态中切换,即光信号在第一输出端口port1和第二输出端port2中交替输出,对应开关的“ON”或“OFF”状态。
在另一个实施例中,相变材料光开关包括输入波导和输出波导,输出波导为带有相变材料的混合波导。输入波导的一端形成输入端port0,另一端形成第一输出端port1,输出波导与第一输出端port1临近的一端形成第二输出端port2,输出波导用于选择性的将从输入端port0进来的光导引至第一输出端port1或第二输出端port2。其中,输入波导可以是硅波导或者氮化硅波导,输出波导可以是相变材料波导与硅波导组成的混合波导。本实施例中,输出波导包括波导层和形成在波导层上方的相变材料层。进一步地,输入波导包括输入段、输入耦合段和第一输出段,输出波导包括输出耦合段和第二输出段,输入耦合段和输出耦合段的长度相当且并排设置,相变材料层位于输出耦合段,第一输出段和第二输出段的端部分别形成第一输出端port1和第二输出端port2。
如图14-图17所示,波导1、波导2为硅波导或氮化硅波导,波导3为相变材料波导。波导1作为相变材料光开关的输入波导,波导2和波导3作为相变材料光开关的输出波导。具体地,波导1的一端11作为相变材料光开关的输入端port0,另一端12作为相变材料光开关的第一输出端port1,波导2与第一输出端port1临近的一端22作为相变材料光开关的第二输出端port2。输出波导即为硅波导与相变材料组成的混合波导,当相变材料在晶态与非晶态之间转换时,由于模式匹配和模式失配,光信号可以直通或者耦合进输出波导中。
以上即是提供了相变材料光开关两种不同的结构,图10-图13所示结构与图14-图17所示结构相比,具有损耗小、消光比大的优势。
在一个实施例中,还提供了一种激光雷达,包括壳体、设于壳体内的激光器、处理器、准直透镜系统和上述激光雷达芯片,激光器为激光雷达芯片提供激光信号,处理器用于控制激光器和激光雷达芯片的工作,准直透镜系统将激光雷达芯片发出的光导引出去。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (11)

  1. 一种激光雷达芯片,其特征在于,包括分光器、分束器、接收器和发射器,所述发射器为焦平面开关阵列发射器,所述发射器包括光开关阵列和光栅耦合器阵列,所述光开关阵列包括多个光开关,所述光栅耦合器阵列包括多个光栅耦合器,所述光栅耦合器阵列通过所述光开关阵列连接所述分光器,所述分光器同时与所述接收器相连,所述光栅耦合器阵列通过所述分束器与所述接收器连接,所述分束器与所述分光器相连;
    所述激光雷达芯片接收激光信号,通过所述分光器输出测量光至所述焦平面开关阵列发射器,同时通过所述分光器输出本振光至所述接收器;
    所述光开关阵列通过相应的光开关来将所述测量光导入到所述光栅耦合器阵列中相应的光栅耦合器,并通过所述光栅耦合器出射;
    所述光栅耦合器接收到的反射回波通过所述分束器进行偏振分束后传输至所述接收器;
    所述光栅耦合器为双偏振光栅耦合器。
  2. 根据权利要求1所述的激光雷达芯片,其特征在于,所述激光雷达芯片还包括回波耦合器,所述回波耦合器分别连接所述分光器、所述光开关阵列和所述分束器;所述回波耦合器将从所述分光器传来的测量光传输至所述光开关阵列,并将所述光开关阵列从光栅耦合器接收到的反射回波传输至所述分束器。
  3. 在根据权利要求2所述的激光雷达芯片,其特征在于,所述光开关为双偏振光开关。
  4. 根据权利要求3所述的激光雷达芯片,其特征在于,所述双偏振光开关包括输入端、第一输出端和第二输出端,所述输入端与上一级双偏振光开关的第一输出端或回波耦合器相连,所述第二输出端与下一级的双偏振光开关的输入端或光栅耦合器相连,所述双偏振光开关通过所述输入端接收测量光,并通过所述第一输出端和所述第二输出端中的一个输出测量光;所述双偏振光开关在处于第一状态时通过所述第一输出端输出测量光,所述双偏振光开关在处于第二状态时通过所述第二输出端输出测量光。
  5. 根据权利要求4所述的激光雷达芯片,其特征在于,所述分束器分束后的光分别与所述本振光混频后传输至所述接收器。
  6. 根据权利要求4所述的激光雷达芯片,其特征在于,所述双偏振光栅耦合器为偏振不敏感光栅耦合器,所述偏振不敏感光栅耦合器的单端口与所述双偏振光开关连接,将接收到的具有TE和TM偏振态的光输出至所述双偏振光开关。
  7. 根据权利要求4所述的激光雷达芯片,其特征在于,所述双偏振光栅耦合器为偏振分束光栅,所述发射器还包括偏振合束器,所述偏振分束光栅的双端口均连接所述偏振合束器,所述偏振合束器连接所述双偏振光开关;所述双偏振光栅耦合器将接收到的具有TE和TM偏振态的光均转换为TE偏振光后传输至所述偏振合束器,所述偏振合束器对两路TE偏振态的光进行偏振合束后输出TE和TM偏振光至所述双偏振光开关。
  8. 根据权利要求4所述的激光雷达芯片,其特征在于,所述双偏振光开关为相变材料光开关。
  9. 根据权利要求8所述的激光雷达芯片,其特征在于,所述相变材料光开关在相变材料为晶态时处于第一状态/第二状态,所述相变材料光开关在相变材料为非晶态时处于第二状态/第一状态;所述相变材料晶态和非晶态的切换控制方式包括外部电极加热、激光脉冲或电脉冲刺激。
  10. 根据权利要求1所述的激光雷达芯片,其特征在于,所述激光雷达芯片上还设有与外部处理器相电性连接的电接触点,所述电接触点与所述接收器和所述光开关相电性连接。
  11. 一种激光雷达,其特征在于,包括壳体、设于壳体内的激光器、处理器、准直透镜系统和权利要求1所述的激光雷达芯片,所述激光器为所述激光雷达芯片提供激光信号,所述处理器用于控制所述激光器和所述激光雷达芯片的工作,所述准直透镜系统将所述激光雷达芯片发出的光导引出去。
PCT/CN2023/098488 2022-07-25 2023-06-06 激光雷达芯片和激光雷达 WO2024021875A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210874886.7A CN114942424B (zh) 2022-07-25 2022-07-25 激光雷达芯片和激光雷达
CN202210874886.7 2022-07-25

Publications (1)

Publication Number Publication Date
WO2024021875A1 true WO2024021875A1 (zh) 2024-02-01

Family

ID=82910982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098488 WO2024021875A1 (zh) 2022-07-25 2023-06-06 激光雷达芯片和激光雷达

Country Status (2)

Country Link
CN (1) CN114942424B (zh)
WO (1) WO2024021875A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114942424B (zh) * 2022-07-25 2022-11-25 苏州旭创科技有限公司 激光雷达芯片和激光雷达
CN115128581B (zh) * 2022-08-31 2022-12-20 上海羲禾科技有限公司 一种硅光芯片及基于硅光芯片的激光雷达
CN115509034B (zh) * 2022-09-14 2023-09-22 中山大学 一种硫系相变超表面调控装置及调控装置加工方法
CN115407313B (zh) * 2022-10-31 2023-03-24 北京摩尔芯光半导体技术有限公司 多通道激光雷达
CN115421151B (zh) * 2022-11-02 2023-03-10 北京摩尔芯光半导体技术有限公司 激光雷达
CN115508858A (zh) * 2022-11-10 2022-12-23 武汉光谷航天三江激光产业技术研究院有限公司 多波束线性调频脉冲相干激光三维成像系统及方法
CN116087915B (zh) * 2023-04-10 2023-06-30 深圳市速腾聚创科技有限公司 光芯片、激光雷达、自动驾驶系统及可移动设备
CN117452376A (zh) * 2023-08-15 2024-01-26 深圳市速腾聚创科技有限公司 光芯片、fmcw激光雷达及可移动设备
CN116908811B (zh) * 2023-09-12 2023-12-12 深圳市速腾聚创科技有限公司 光芯片、激光雷达及可移动设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109655975A (zh) * 2019-01-16 2019-04-19 浙江大学 一种基于相变材料的可擦除集成光波导监测器件
US20210349186A1 (en) * 2020-05-05 2021-11-11 The Charles Stark Draper Laboratory, Inc. Multi-Mode Signal LiDAR Collection Methods and Systems
CN114063045A (zh) * 2021-11-17 2022-02-18 Nano科技(北京)有限公司 基于光芯片的双偏振激光雷达接收端
CN114325636A (zh) * 2020-09-27 2022-04-12 北京万集科技股份有限公司 激光雷达芯片、激光雷达及其激光探测方法
CN114942424A (zh) * 2022-07-25 2022-08-26 苏州旭创科技有限公司 激光雷达芯片和激光雷达

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11226403B2 (en) * 2017-07-12 2022-01-18 GM Global Technology Operations LLC Chip-scale coherent lidar with integrated high power laser diode
JP7145436B2 (ja) * 2017-12-27 2022-10-03 パナソニックIpマネジメント株式会社 光学装置
EP3948340A4 (en) * 2019-03-29 2022-12-14 OURS Technology, LLC SWITCHABLE COHERENT PIXEL ARRAY FOR FREQUENCY MODULATED CW LIGHT DETECTION AND TELEMETRY
US20220003842A1 (en) * 2020-07-02 2022-01-06 Robert Bosch Gmbh Lidar Module With Monolithic Array
CN213659025U (zh) * 2020-10-13 2021-07-09 苏州旭创科技有限公司 一种光接收组件及光模块
US10983200B1 (en) * 2020-12-21 2021-04-20 Aeva, Inc. Techniques for on-chip polarization management
CN214750920U (zh) * 2021-02-07 2021-11-16 苏州旭创科技有限公司 偏振转换耦合结构及光子集成芯片和光学组件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109655975A (zh) * 2019-01-16 2019-04-19 浙江大学 一种基于相变材料的可擦除集成光波导监测器件
US20210349186A1 (en) * 2020-05-05 2021-11-11 The Charles Stark Draper Laboratory, Inc. Multi-Mode Signal LiDAR Collection Methods and Systems
CN114325636A (zh) * 2020-09-27 2022-04-12 北京万集科技股份有限公司 激光雷达芯片、激光雷达及其激光探测方法
CN114063045A (zh) * 2021-11-17 2022-02-18 Nano科技(北京)有限公司 基于光芯片的双偏振激光雷达接收端
CN114942424A (zh) * 2022-07-25 2022-08-26 苏州旭创科技有限公司 激光雷达芯片和激光雷达

Also Published As

Publication number Publication date
CN114942424B (zh) 2022-11-25
CN114942424A (zh) 2022-08-26

Similar Documents

Publication Publication Date Title
WO2024021875A1 (zh) 激光雷达芯片和激光雷达
US11880000B2 (en) Switchable coherent pixel array for frequency modulated continuous wave light detection and ranging
CN218213445U (zh) 激光雷达芯片和激光雷达
WO2020224007A1 (zh) 基于一维光相控阵的三维扫描激光雷达
CA2062890C (en) Reversible time delay beamforming optical architecture for phased-array antennas
WO2023044990A1 (zh) 一种硅基可重构微波光子多波束形成网络芯片
CN113382322B (zh) 一种基于光开关的收发可切换波束形成芯片
CN117425837A (zh) 具有二维硅光子MEMS开关阵列的伪单站LiDAR
CN113608228A (zh) 一种基于Blass矩阵的二维多波束激光雷达快速扫描装置和方法
WO2024045550A1 (zh) 激光雷达的发射模块、收发装置和激光雷达
CN109524772B (zh) 一种5g圆极化多波束天线
CN115343691B (zh) 探测系统
Zhang et al. Two-Dimensional High-Efficiency Transceiver Integrated Optical Phased Array with Dual-Port Antenna
CN116388818A (zh) 一种基于波长选择开关的收发共用波束形成网络
CN111740786B (zh) 一种集成光波导波束赋形装置
CN114280575A (zh) 一种基于微环光开关网络的激光雷达光学芯片
US20240219631A1 (en) Silicon-based reconfigurable microwave photonic multi-beam forming network chip
CN110720053A (zh) 相控阵发射装置、激光雷达和自动驾驶设备
US12025741B2 (en) Three-dimensional scanning LiDAR based on one-dimensional optical phased arrays
CN116908812B (zh) 半固态激光雷达系统
CN118311538A (zh) 光学相控阵芯片及激光雷达发射装置
WO2023285817A1 (en) Steerable optical reflector and optical switch
WO2023121888A1 (en) Ranging using a shared path optical coupler
CN118020000A (zh) 开关式像素阵列LiDAR传感器与光电子集成电路
CN117616302A (zh) 光检测和测距系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845088

Country of ref document: EP

Kind code of ref document: A1