WO2020224007A1 - 基于一维光相控阵的三维扫描激光雷达 - Google Patents

基于一维光相控阵的三维扫描激光雷达 Download PDF

Info

Publication number
WO2020224007A1
WO2020224007A1 PCT/CN2019/087748 CN2019087748W WO2020224007A1 WO 2020224007 A1 WO2020224007 A1 WO 2020224007A1 CN 2019087748 W CN2019087748 W CN 2019087748W WO 2020224007 A1 WO2020224007 A1 WO 2020224007A1
Authority
WO
WIPO (PCT)
Prior art keywords
array
dimensional
receiving
module
coherent
Prior art date
Application number
PCT/CN2019/087748
Other languages
English (en)
French (fr)
Inventor
陆梁军
许维翰
周林杰
陈建平
刘娇
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Priority to US17/060,052 priority Critical patent/US20210018599A1/en
Publication of WO2020224007A1 publication Critical patent/WO2020224007A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the invention belongs to the field of photoelectric detection, in particular to a three-dimensional scanning laser radar based on a one-dimensional optical phased array.
  • lidar has increasingly become an indispensable core device in autonomous driving with its ultra-high resolution accuracy, active light-emitting detection methods, and mature point cloud modeling methods. By emitting the detection light and receiving the reflected signal light, the lidar can find the target and carry out ranging; the detection and ranging in the entire field of view can image the environment. There are many ways to realize detection and imaging.
  • the former can be roughly divided into coherent detection and incoherent detection, and will affect the fineness of radial detection; the latter is divided into scanning imaging and non-scanning It will determine the real-time of angular refresh.
  • the imaging problem has been realized by mechanical scanning. Because the mechanical system has moving parts, considering the mechanical wear, structural reliability, Due to the precision of motion control and the influence of inertia under acceleration environment, it is difficult for the mechanical scanning scheme to achieve high-speed and large-angle beam rotation at the same time, and it also has significant disadvantages in terms of volume and power consumption.
  • the pure solid-state scanning solution not only completely get rid of the mechanical components that limit the scanning speed, but also can use flexible beamforming to concentrate the detection light power on the digitally changing detection direction with extremely high directional gain, thereby breaking other The conflicting relationship caused by the imaging principle in the scheme.
  • the component complexity required for three-dimensional scanning will still explode with the required fineness squared relationship O(n 2 ) This is also the main reason why the "wavelength tuning + one-dimensional optical phased array" hybrid architecture is widely used in the field of optical phased arrays.
  • the emission angle of the grating antenna will change with the wavelength; on this basis, arranging these grating antennas side by side to form a one-dimensional phased array can be achieved by changing the phase relationship between the elements. Angular scanning is realized in an angular direction, and finally the task of three-dimensional scanning is completed with O(n+1) complexity.
  • thermo-optical switches Use thermo-optical switches to output the detection light to sub-arrays with different grating periods to realize a new single-wavelength multi-linear scanning architecture.
  • the optical phased array achieves beamforming through interference
  • the round-trip optical path between the detection target and the radar needs to be within the coherence length, which requires the laser to have the characteristics of narrow linewidth; at the same time, the angle tuning efficiency of the grating antenna is generally not high .
  • the laser needs to achieve a wide range of wavelength tuning; finally, the laser needs to support high power output for radar applications. At the same time, it meets the above performance requirements and needs to be compatible with C-band integrated optical platforms optimized for optical communication applications.
  • Various stringent requirements will lead to a significant increase in laser cost.
  • the number of resolvable points in the corresponding direction of the wavelength tuning is proportional to the number of periods of the grating antenna.
  • the grating antenna may need to reach a centimeter size.
  • the process error will lead to the accumulation of random phase errors and significant loss;
  • the finite mode field constraint of the dielectric waveguide will lead to adjacent channels when they are closely juxtaposed
  • the phase crosstalk between the phased arrays and the effective scanning range of the phased array direction and the effective fineness of the grating antenna direction construct a pair of contradictory relationships.
  • such a passive grating antenna array will also occupy a larger chip area and increase the overall cost of the chip system.
  • the present invention provides a three-dimensional scanning lidar based on a one-dimensional optical phased array, which is an integrated optical chip system: at the hardware level, the present invention is aimed at lidar applications and is based on integrated
  • the photonic platform uses the decomposition of the transceiver complexity to reduce the design difficulty and component cost. Based on the phased array principle, it realizes the direction-selective transceiver, and at the same time uses coherent detection and incoherent detection to complement each other, giving full play to the pure solid-state scanning method.
  • the present invention is a terminal sensor device, which can provide lidar data for specific tasks by supplementing the external light source and control circuit, so it can be flexibly modified and multi-sensor fusion according to application requirements and installation methods. It has the characteristics of modularity. Finally, the present invention has obvious advantages in scanning speed, processing cost, overall power consumption, system size, etc., and has extremely high application value.
  • a three-dimensional scanning lidar based on a one-dimensional optical phased array includes a narrow linewidth laser light source and a high-speed integrated circuit controller, and is characterized in that it also includes a transmitter, a coherent receiver, and an incoherent receiver.
  • the end includes a detection light input waveguide, a first beam splitter module, a phase shifter array module, and a coupling suppression sub-wavelength pitch one-dimensional emission array in sequence along the detection light direction output by the narrow linewidth laser light source;
  • the coherent The receiving end includes a sparsely spaced mode spot conversion one-dimensional receiving array and a coherent receiving module along the direction of the signal light reflected by the target, a reference light input waveguide along the reference light direction output by the narrow linewidth laser light source, and a second beam splitter Module and coherent receiving module;
  • the incoherent receiving end includes a spatial optical module and a linear photoelectric sensor in sequence along the direction of the signal light reflected by the target, and the output terminal of the linear photoelectric sensor is connected with the high-speed
  • the second input terminal of the integrated circuit controller is connected; the control terminal of the phase shifter of the transmitting terminal phase shifter array module, the control terminal of the coherent receiving module of the coherent receiving terminal and the output terminal of the high-speed integrated circuit controller Connecte
  • the narrow linewidth laser light source can be mixed and integrated with the chip system, or provided by a separate external host.
  • the detection light output by the narrow linewidth laser light source enters the chip from the detection light input waveguide, and is distributed to the N-way waveguide by the first beam splitter module.
  • N the light wave of the output channel
  • the amplitude follows the Chebyshev distribution.
  • N is greater than 64
  • the channel's light wave amplitude follows the Taylor-Kaiser distribution; after that, the probe light will pass through the N-channel phase shifter array, and finally suppress the sub-wavelength spacing from the N-channel coupling.
  • the three-dimensional emitting array leaves the emitting end and enters the free space to illuminate the target, where: N is greater than or equal to 4, the emitting array is a uniform array, and the sub-wavelength refers to a specific range between one-half the working wavelength and one-time working wavelength. The specific value is determined by the number of channels and the scanning range.
  • the working wavelength range covers 1500nm to 1600nm.
  • the reference light output by the narrow linewidth laser light source enters the chip from the reference light input waveguide, and the reference light second beam splitter module distributes the single input reference light power to the M-way waveguide
  • the light wave amplitude of the output channel is distributed according to Chebyshev
  • M is greater than 64 the light wave amplitude of the channel is distributed according to Taylor-Kaiser distribution; and interpolating the value for the geometric relationship of the actual receiving array elements
  • the sparsely spaced mode spot conversion receiving array has M channels, and at the same time, the signal light reflected by the target will be coupled into the chip system from the sparsely spaced mode spot conversion receiving array (201) of the M channel, from the second beam splitting
  • the M-channel reference light from the receiver module (203) and the M-channel signal light from the M-channel sparsely spaced mode spot conversion receiving array (201) from the receiving antenna are photoelectrically detected in the coherent receiving module to generate target distance information.
  • the electrical signal where: M is greater than or equal to 4, and M and N may not be equal, the receiving array is a non-uniformly spaced sparse array, and a cylindrical mirror with a curved surface perpendicular to the array direction is used to maximize the effective receiving area of the coherent receiving end .
  • the signal light reflected from the target returns to the incoherent receiving end from the large-aperture lens optical module and is focused on the plane where the linear array photoelectric sensor is located, and is controlled by the linear array photoelectric sensor Be received separately.
  • the coupling suppression sub-wavelength spacing one-dimensional transmitting array is arranged along the horizontal direction, and the directional beam obtained by the interference is a strip beam along the meridian direction, and can perform one-dimensional linear scanning in the azimuth direction; at the same time
  • the M-channel sparsely spaced mode spot conversion receiving array of the coherent receiving end receiving antenna and the linear photoelectric sensor are both arranged along the vertical direction. According to the principle of reversibility of the light path, the relationship between the receiving array and the photoelectric sensor element
  • the direction selectivity is a stripe area along the latitude line.
  • the former can perform one-dimensional linear scanning in the elevation angle direction, and the latter can receive and distinguish all the echoes in the elevation angle direction at the same time, so as to achieve three-dimensional scanning; obviously, the others
  • the orthogonal arrangement of transceivers and the decomposition of the complexity of transceivers other than the strict orthogonal approach also follow the above principles.
  • the first beam splitter module and the second beam splitter module adopt cascaded directional couplers or star couplers.
  • the phase shifter in the phase shifter array module and the coherent receiving module adopts thermal or electrical modulation phase shifters, and the phase shift of each phase shifter is connected by the high-speed integrated circuit controller through the phase shifter.
  • the phase shifter drive circuit is controlled by the phase shifter drive circuit.
  • the phase shifter drive circuit can be monolithically integrated or realized by a CMOS integrated circuit on another chip when multi-chip packaging.
  • the phase shifter drive circuit and the overall control loop are connected by a high-speed circuit.
  • the coupling suppression sub-wavelength spacing one-dimensional emission array adopts a curved waveguide array structure, a waveguide array structure with alternating widths or inserting a metamaterial structure between the waveguides to suppress coupling, so as to realize sub-wavelength spacing arrangement.
  • the one-dimensional receiving array uses an inverted tapered structure for mode spot conversion, and its geometric size shrinks from a standard rectangular waveguide to a square-section tip structure allowed by the technology level. At the same time, the geometric size of the waveguide mode spot will gradually expand and have Polarization insensitive characteristics, and then increase the effective receiving area.
  • the coherent receiving module uses a balanced detector to receive the reference light and the signal light at the same time.
  • a balanced detector By matching the phase shift of the reference light, coherent reception with high directional gain and common mode suppression is realized, and the signal-to-noise ratio of the receiving and sending process is improved, and the The phase-shifted or frequency-shifted electrical signal under the current working mode is output to the signal processing module, and finally restored to the distance or speed information of the current object.
  • the transmitting end and the coherent receiving end can be monolithically integrated or hybrid integrated on a silicon, silicon nitride or III-V semiconductor compound platform, and three-dimensional integration can be performed using the advantages of the respective materials.
  • the linear array photoelectric sensor adopts single-photon avalanche diodes for photoelectric conversion, and forms a one-dimensional array in a CCD manner.
  • the high-speed integrated circuit module can be implemented by, but not limited to, typical integrated circuits such as Field-Programmable Gate Array (FPGA, Field-Programmable Gate Array), Application-Specific Integrated Circuit (ASIC, Application-Specific Integrated Circuit); chip system and control
  • FPGA Field-Programmable Gate Array
  • ASIC Application-Specific Integrated Circuit
  • MCM Multi-Chip Module
  • SIP System In Package
  • the light source can be, but not limited to, discrete narrow linewidth lasers connected by optical fibers, based on transfer-printing, III-V bonding or three-dimensional packaging technology (3D integration). ) Hybrid integrated III-V/Si narrow linewidth laser and other typical light source implementation methods, the specific choice depends on the system performance and process conditions.
  • the present invention has beneficial effects mainly in the following aspects:
  • the present invention uses the method of receiving and sending complexity decomposition to decompose the square relationship O(n 2 ) of component complexity and scanning fineness during three-dimensional scanning into two sets of orthogonal linear relationships O(2n ), can achieve single-wavelength three-dimensional scanning or use additional wavelength resources to achieve multi-beam applications.
  • Linearly complex transceiver arrays and linear photoelectric sensors have significant advantages in cost and control circuit complexity.
  • the present invention does not contain any moving parts, and the angular refresh speed limit depends entirely on the physical limit of light propagation between the radar and the target.
  • the thermal modulation phase shifter or other phase shifters used can be It has been further improved in terms of power consumption and bandwidth.
  • an all-solid-state device there is no mechanical wear or deformation in the system, and it can maintain stable operation in an environment with rapid acceleration.
  • the present invention is a pure solid-state three-dimensional scanning lidar.
  • the beamforming directions of two adjacent working moments are independent of each other and are digitally controlled by a host computer. Therefore, detection resources can be flexibly allocated in the field of view to achieve The targeted intelligent detection effectively reduces the burden on the back-end data processing circuit and the entire automatic driving system.
  • the optical phased array chip of the present invention can significantly reduce the cost of the chip through mass production with the help of semiconductor optoelectronics integration technology; in addition, the present invention has the feature of modularization and supports different types of light sources and peripheral control circuits, both An integrated chip system design can be realized, and a distributed system can also be formed by multiple terminal sensors matched by a high-performance host.
  • Figure 1 is a diagram of the system architecture of a one-dimensional optical phased array three-dimensional scanning lidar chip of the present invention.
  • Figure 2 is a schematic diagram of the overall structure and detection principle of an embodiment of the present invention.
  • Fig. 3 is a flowchart of a fusion incoherent and coherent detection method adopted by an embodiment of the present invention.
  • Fig. 4 is a trident end-face coupling structure adopted at the silicon nitride input end in the embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the structure and principle of the silicon nitride integrated beam splitting in the embodiment of the present invention, in which (a) is a cascade directional coupler structure, and (b) is a star coupler structure.
  • Figure 6 shows (a) a typical Taylor-Kaiser amplitude distribution and (b) the corresponding far field of the one-dimensional phased array using this distribution.
  • FIG. 7 is a schematic diagram of a silicon-based integrated doped thermal phase shifter array in an embodiment of the present invention.
  • Fig. 8 is a schematic diagram of a silicon-based integrated coupling suppression sub-wavelength interval emission array structure in an embodiment of the present invention, in which (a) only a coupling suppression structure using a curved waveguide array, (b) a coupling suppression structure with alternating waveguide widths, ( c) The coupling suppression structure of the dielectric metamaterial is adopted.
  • FIG. 9 is a schematic diagram of a silicon-based integrated sparsely spaced mode spot conversion receiving array in an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the structure of a coherent receiving array in an embodiment of the present invention, and the sub-figure is a partial enlarged view.
  • the present invention is based on a one-dimensional optical phased array three-dimensional scanning lidar, including a narrow linewidth laser light source and a high-speed integrated circuit controller, which is characterized in that it also includes a transmitting terminal Tx, a coherent receiving terminal Rc And the incoherent receiving terminal Ri,
  • the transmitting terminal Tx includes a detection light input waveguide 101, a first beam splitter module 102, and a phase shifter array module 103 in sequence along the detection light direction output by the narrow linewidth laser light source And coupling suppression sub-wavelength pitch one-dimensional transmitting array 104;
  • the coherent receiving end Rc includes a sparsely spaced mode spot transform one-dimensional receiving array 201 along the direction of the signal light reflected by the target and a coherent receiving module 204 along the narrow line
  • the incoherent receiving end Ri includes a transmitting
  • An embodiment of a three-dimensional scanning lidar based on a one-dimensional optical phased array including three main components of a transmitting terminal Tx, a coherent receiving terminal Rc, and an incoherent receiving terminal Ri;
  • the transmitting terminal includes a silicon nitride waveguide input terminal 101, and silicon nitride
  • the integrated beam splitter module 102, the silicon-based integrated phase shifter array module 103 and the silicon-based integrated coupling suppression sub-wavelength spacing one-dimensional transmitting array 104, the coherent receiving end includes: the silicon-based integrated sparsely spaced mode spot conversion one-dimensional receiving array 201.
  • the electrical domain control of the phase shifter in the array module 103 and the signal processing of the coherent receiver silicon-based integrated coherent receiver module 203 and the linear array photoelectric sensor 302 of the incoherent receiver are implemented by a high-speed integrated circuit controller module outside the optical chip system; For performance and installation needs, the light source used in the system can be mixed and integrated with the chip system, or provided by a separate external module.
  • the probe light enters the free space from the launch end of the one-dimensional phased array arranged in the horizontal direction and interferes in the far field and forms a beam in the meridian direction.
  • all targets in the corresponding azimuth angle in the field of view Both will be illuminated and the laser will be reflected back to the radar system in diffuse reflection.
  • the reflected signal light will pass through a large-aperture optical system composed of a ball lens and a cylindrical lens to converge on the plane where the linear photoelectric sensor is located, where the ball lens (hereinafter referred to as "focusing lens”) corresponds to
  • the focal plane coincides with the plane of the linear array photoelectric sensor, and the focal plane corresponding to the cylindrical mirror with the arc in the sagittal direction (hereinafter referred to as the "magnifying glass”) is behind the plane of the linear array photoelectric sensor; therefore, the principle of reversibility of the optical path is used to analyze the linear array photoelectric sensor.
  • the array element will form an upright magnified virtual image on the sagittal plane.
  • the effective receiving length of the array element in this direction will increase, which means that the parallel light incident at different azimuth angles will be as much as possible.
  • the focusing lens converges the incident parallel light at different elevation angles to different array elements.
  • the convergence process in the meridian plane is not affected by the cylindrical lens, so the incoherent receiving end can distinguish the field of view
  • the receiving area of each element corresponds to a line of latitude, and the linear array extending along the vertical direction covers all latitudes in the field of view.
  • a one-dimensional optical phased array extending in the vertical direction is magnified by a sagittal cylindrical mirror with similar optical principles into a "square" array with a larger receiving area, in which each element is magnified Stretched into a receiving window with the same size in the vertical direction and more slender in the horizontal direction.
  • the signal light received from different array elements will be coherently combined with the pre-phase-shifted reference light in the silicon-based integrated coherent receiving module, and output as a photocurrent; because the parallel light incident at different elevation angles will correspond to different phase relationships of the array elements, Only the echoes in the elevation angle direction that are coherent and coherent with the preset phase of the reference light of each channel will be amplified by the reference light, so it can be received with direction selectivity.
  • each reference light preset phase combination of the silicon-based coherent receiving module corresponds to a line of latitude.
  • the preset phase combination By changing the preset phase combination, the parallel light returning from different pitch angle directions in free space can be distinguished.
  • the coherent receiving end and the transmitting end shown in FIG. 2 are two discrete chips, if the transceiver array formed by the compact surface emitting grating coupler is arranged orthogonally according to the same specification, the coherent receiving end and the transmitting end can also be monolithically integrated.
  • the actual detection target is the intersection of the longitude line at the transmitting end and the latitude line at the receiving end.
  • the targets on the entire meridian at different elevation angles will be simultaneously recognized and received by different array elements of the linear photoelectric sensor, and direct detection of the pulse system is performed.
  • the number of array elements and even the array element distribution at the incoherent receiving end can directly correspond to the top multi-line mechanical lidar in the standard market, providing coarse scanning with relatively low precision in the pitch angle direction, thereby making full use of the cost Advantage.
  • the coherent receiving end due to the sparse design of the one-dimensional receiving array, a relatively small number of array elements can be used to achieve high-precision pitch angle resolution; in addition, the frequency modulated continuous wave system adopted by the coherent receiving end helps With the same electrical domain clock overhead, the accuracy of radial ranging is improved, and the effective detection range is even increased by means of reference light amplification.
  • the only shortcoming is that because coherent detection is actually another form of sampling averaging, its radial refresh speed is low, and the detection resources need to be fixed in the current detection direction during the ranging process, which ultimately limits the real-time refresh of the angular field of view. Sex.
  • any frame of the field of view is composed of an incoherent search frame and a coherent ranging frame.
  • the transmitter performs continuous directional angle scanning, taking detection at a certain directional angle as an example, when all the pitch echo pulses on the meridian have returned to the corresponding array element or the waiting time exceeds the maximum detection distance
  • the system will scan the next direction angle until the azimuth scan covers the entire field of view, and obtains the approximate distribution of the target in the field of view.
  • the host computer will also analyze and record synchronously during the scanning process, which is critical for automatic driving tasks. The goal.
  • the transmitter and the coherent receiver will use randomly addressed discrete beam scanning to perform angular and radial high-precision ranging of key targets, so as to give full play to the advantages of optical phased array and coherent detection.
  • the upper computer will perform data fusion on the detection results of the search frame and the ranging frame, and synthesize them into a field of view frame.
  • this embodiment it is also feasible for this embodiment to implement speed measurement using the fusion system, or to change the number of search frames and ranging frames in one field of view frame.
  • the embodiment adopts a silicon-silicon nitride multilayer integrated platform, which combines the advantages of silicon nitride waveguide with high power tolerance, compact silicon-based waveguide structure, small bending radius, and rich modulation methods.
  • the probe light enters the chip from the silicon nitride input terminal as shown in Figure 4 and then is split into the phased array sub-channel by the silicon nitride beam splitter as shown in Figure 5 and then delivered to the power tolerance by the interlayer coupler.
  • Low silicon waveguide Low silicon waveguide.
  • the wiring of all silicon waveguides or silicon nitride waveguides in the multi-layer platform follows the interlayer layout and adjacent layer coupling specifications, thereby improving the coupling efficiency between layers and suppressing crosstalk during signal routing.
  • the transmitter needs to irradiate the probe light energy to the target to the maximum, and at the same time avoid interference when the side lobes irradiate the nearby target, aliasing is required. In other words, it is necessary to always maintain a high level in the field of view.
  • the energy concentration of the main lobe and lower peak side lobe In order to meet the above requirements, combined with the phased array design experience, the output array of the embodiment adopts a sub-wavelength spaced uniform array, and the light wave amplitude output by the array element needs to meet the typical sidelobe suppression distribution.
  • the probe light that is power split and coupled into the silicon waveguide will pass through the silicon-based doped thermal phase shifter array as shown in FIG. 7 and undergo different phase modulations, so that each array
  • the detection light output by the array element satisfies the condition of coherence and constructiveness in the current scanning direction, thereby realizing beamforming.
  • the bending radius of each channel in the curved waveguide array is different, so the corresponding fundamental mode transmission constant is different, and the mode mismatch between the different channels destroys the coupling conditions between the channels and realizes the coupling suppression.
  • the bending radius will also increase significantly, and the difference in waveguide transmission constants becomes smaller and smaller and converges to the fundamental mode propagation constant in a straight waveguide. Therefore, the curved waveguide array cannot support the coupling suppression when the number of channels is large. .
  • the curved waveguide array structure can be used to suppress the coupling of some channels on both sides.
  • a waveguide array structure with alternating widths can be used to force the fundamental mode propagation constants of adjacent channels to be different, thereby introducing mode loss.
  • insert a silicon-based metamaterial structure between the waveguides to limit the evanescent field depth of the external mode field of the waveguide geometry, thereby limiting the evanescent field coupling from the source. Since the metamaterial structure generally requires 80nm and finer process accuracy, when the process level is not satisfied or the cost pressure is significant, the waveguide suppression structure with alternate widths can be mainly used in conjunction with the curved waveguide structure to achieve coupling suppression.
  • the cylindrical mirror can stretch the one-dimensional receiving array in the horizontal direction, the receiving window corresponding to the receiving array element itself still needs to reach a certain area, and the receiving array needs to have a relatively large vertical direction. Large length. Since the signal light returning from the target is the echo after diffuse reflection, the receiving array does not require the concentration of the power in the direction of the main lobe after coherent beam combination; however, the main lobe of the receiving array still needs to maintain maximum detection for the side lobes Inhibition relationship required by the distance to avoid aliasing caused by closer targets. While taking into account the direction selectivity of the receiving array, reducing the number of required channels and avoiding crosstalk between the receiving windows of the array elements requires a sparse design.
  • the non-uniform channel spacing and the channel light wave amplitude specification that imitates the transmitting array are first generated by randomization and interpolation, and then globally optimized by the particle swarm algorithm. Finally, the sparse receiving array design of the coherent receiving end and the corresponding modified reference light
  • the beam splitting structure is realized.
  • the schematic diagram of the sparse array structure is shown in FIG. 9, the beam splitting structure is the same as that shown in FIG. 5, and the specific implementation parameters are different.
  • the mode spot conversion structure at the end of the array element in Figure 9 is used to gradually compress the geometrical size of the waveguide, so that the optical mode gradually expands and has polarization-independent characteristics.
  • the basic principle is coupled with the end face.
  • the common inverted cone coupling structure is similar, so I won’t repeat it here.
  • the silicon-based coherent detection structure of the coherent receiving end adopts the silicon germanium balanced detection structure as shown in Figure 10.
  • the specific principle is similar to that of common balanced detectors.
  • it can also be achieved by adding on-chip capacitance and on-chip inductance.
  • the method realizes the improvement of the electrical domain bandwidth of the balanced detection structure, and the related techniques and principles are general technologies, which will not be repeated here.
  • the geometrical optical system, avalanche photodiode array used in the incoherent receiving end, and the pulse width modulation, transimpedance amplifier chip, control and signal processing circuit and host computer used in the laser radar system or devices As a general technology, related devices have been commercialized and can be provided by mainstream semiconductor manufacturers.
  • the optional discrete external light source and high-power optical fiber of the system are general technologies, and the tunable external cavity on the silicon-silicon nitride multilayer platform is mixed and integrated to form a III-V/Si external cavity laser
  • the present invention and its embodiments can cooperate with related designs to form an active lidar system.
  • each component of the present invention is a linear array, the control complexity is low.
  • the performance of the 3D scanning lidar system, corresponding aperture synthesis and data can be further improved. Fusion is a general technology, so I won’t repeat it here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种基于一维光相控阵的三维扫描激光雷达,包括发射端(Tx)、相干接收端(Rc)和非相干接收端(Ri),均为一维阵列。该雷达能够降低三维扫描相控阵的相位控制复杂度,并避免使用成本高昂的可调谐激光器和串扰较大的光栅阵列天,且仍具有纯固态三维扫描方案在速度和集成度上的显著优势,具有很高的实用价值。

Description

基于一维光相控阵的三维扫描激光雷达 技术领域
本发明属于光电探测领域,特别是一种基于一维光相控阵的三维扫描激光雷达。
背景技术
伴随着自动驾驶技术的日新月异,以高级驾驶辅助系统(ADAS,Advanced Driving Assistant System)和自动载具(Robotic Cars)为应用场合的解决方案将迎来市场化的关键时期。实时精确地感知车辆四周的环境不仅是一个应用需求,而且也是关乎交通安全以及市场信任的关键因素。在传感器融合的大背景下,激光雷达以其超高的分辨精度,主动发光式的探测手段,以及成熟的点云建模方式,日益成为自动驾驶中不可或缺的核心器件。通过发射探测光并接收反射的信号光,激光雷达可以发现目标并进行测距;在整个视场范围内进行探测与测距,则可以对环境进行成像。探测和成像有众多的实现方式,以硬件层的视角而言,前者可以大致划分为相干探测和非相干探测,并且将影响径向探测的精细度;后者则分为扫描式成像和非扫描式成像,并将决定角向刷新的实时性。在激光雷达发展的早期阶段,大量测距方面的工程应用使得前者得到了充分发展,成像问题则一直由机械扫描的方式予以实现,由于机械系统具有运动部件,考虑到机械磨损、结构可靠性、运动控制的精度、以及加速度环境下惯性的影响,机械扫描方案很难同时实现高速、大角度的光束旋转,此外在体积和功耗上也具有显著劣势。
为了通过小型化、集成化提高性能和产能,并最终以更高的性价比占据市场,一些基于微机电(MEMS,Micro-Electro-Mechanical System)振镜的混合固态方案已经得到了产业界的积极开发,但由于混合固态系统始终含有运动部件,在高速运行时仍然面临显著的谐振与形变问题,该方案只能小幅提高扫描速度;此外,由于机械扫描是连续调节过程,两个相邻瞬间的探测方向不可突变,所以无法灵活地分配探测资源。与相机原理类似的非扫描式激光雷达同样不能灵活地分配探测资源,不仅如此,该方案需要高响应度、低噪声的大规模面阵传感器,由于阵列复杂度按照探测精细度的平方关系快速恶化,该方案难以同时实现高精度与高实时性的环境感知,最后,由于“激光闪光灯”需要照亮整个视场,在自动驾驶所需的中长工作距离上,该方案在传感器成本和探测距离之间构造了另一对矛盾关系。
所以,纯固态扫描方案,不仅彻底摆脱了限制扫描速度的机械元件,同时还能 借助灵活的波束成形以极高的方向增益将探测光功率集中在数字式变化的探测方向上,从而打破了其他方案中由成像原理导致的矛盾关系。然而,无论是基于离散收发元件开关选通方式的扫描,或者基于光相控阵技术的扫描,三维扫描时所需的元件复杂度仍然会以所需精细度的平方关系O(n 2)爆炸式增长,这也是目前光相控阵领域广泛采用“波长调谐+一维光相控阵”混合架构的主要原因。通过改变可调谐激光器的输入波长,光栅天线的发射角度将会随着波长变化;在此基础上,并排布置这些光栅天线构成一维相控阵,则能通过改变阵元间的相位关系在另一个角度方向上实现角度扫描,最终以O(n+1)的复杂度完成三维扫描的任务。
2009年比利时微电子研究中心在Optics Express(Vol.34,No.9,pp.1477-1479,2009)上首次展示了这一架构。在后续报道的工作中:麻省理工学院的大规模二维面阵在Nature(Vol.493,pp.195–199,2013)上展示了光相控阵在远场形成任意图案的能力,实验验证了其工艺可控性与波束成形的灵活性,也从另一个侧面展示了二维相控阵控制复杂度可能导致的问题;2015年,加州大学圣芭芭拉分校的研究团队沿用“波长调谐+一维光相控阵”架构,配合使用其所擅长的硅-III/V族材料混合集成工艺,在Optics Express(Vol.23,No.5,pp.195–199,2015)上报道了首个集成有片上光源的光相控阵三维扫描发射机,达到了较高的完成度;2016年,INTEL公司继续沿用该架构在Optica(Vol.3,No.8,pp.887-890,2016)上发表了硅基平台实现的无混叠高性能稀疏相控阵列,该工作在扫描范围和可分辨点数目上均取得显著突破,光束精细度在两个旋转轴上均达到0.14°,逼近了传统机械式激光雷达中光学系统的聚焦能力;2017年,麻省理工先后在Optics Letter上展示了氮化硅平台上的超大规模静态阵列(Vol.42,No.1,pp.21-24,2017)和基于调频连续波的硅基集成激光雷达系统(Vol.42,No.20,pp.4091-4094,2017),前者刷新了光束精细度上的记录,达到0.02°,后者实现了傍轴布置的一体化收发,而且也集成了锗硅探测器,然而以上工作仍然继承了“波长调谐+一维光相控阵”的常规架构;2018年至2019年年初国内外陆续报道一些直接在硅上沉积氮化硅材料作为光栅天线的规模化设计(European Conference on Optical Communication(ECOC),DOI:10.1109/ECOC.2018.8535530;Optics Express,Vol.26,No.3,pp.2528-2534,2018),用于光相控阵的III-V/Si混合集成电光移相器(Opt.Express,Vol.27,No.3,pp.3642-3663,2019),同时自动化稀疏阵列设计(Optics Express,Vol.26,No.15,pp.19154-19170,2018)和动态片上校准(Optics Express,Vol.26,No.3,pp.3199-3210,2018)也得到了广泛探索;同样在2018年,INTEL公司正式公布了一份光相控阵专利(WO/2018/125403),该设计方案继续使用“波长调谐+一维光相控阵”架构,并提出采用多个具有细微差异的子阵列合成一个发射阵列,依靠游标效应使 不同子阵的干涉主极大相互错开,实现无混叠发射。2018年国内在光学相控阵或激光相控阵方面的专利申请也开始逐渐增加,其中“一种基于热光开关和硅光相控阵的单波长多线扫描系统”(CN201810240144)专利提出了使用热光开关将探测光输出到光栅周期不同的子阵列,实现单波长的多线性扫描的新架构,该方案尽管不需要使用波长可调谐激光器,但随着其线数的增加,开关尺寸、子阵数目和控制电路复杂度会成为严重问题,乃至回归到O(n 2)复杂度,最终限制光相控阵的波束精细度以及整体的输出功率以及片上插损;“基于波分复用的集成多波束光相控阵延迟网络”(CN201810424574)和“一种基于硅基的多波束光学相控阵天线”(CN201810695911)专利分别从两种技术路径给出了多波束光学相控阵的实现方案,但这些工作主要围绕如何在相控阵之前增加光子回路实现更加复杂的波束控制功能这个问题展开,并没有详细给出光相控阵本身的设计以及激光雷达系统的构成方式;“一种基于金属缝隙波导的光学相控阵芯片发射端”(CN201810619456)与“宽范围扫描的宽带激光相控阵系统”(CN201810558205)专利则采用不同的光学天线及去耦合设计方案,将光学天线间隔降低到半个到一个波长之间,从而提高发射侧天线集成密度,实现大范围无混叠波束旋转,但是相控阵的波束精细度和相控阵的总尺寸是成反比的,为了同传统空间光学精细的远场分辨率竞争,这些高密度集成的光学天线的总数将达到数千到数万之间,极大地增加了控制电路复杂度与上位机的负担。更早一些的“有源光相控阵光子集成芯片及其制备方法”(CN 201611027155)专利主要介绍了基于III/V族平台的光子相控阵制备工艺,由于III/V平台波导芯层-包层折射率差远小于硅基,波导模式分布较宽,其器件尺寸与弯曲半径均较大,通道间耦合更加严重,加之III/V族芯片成本高昂,于芯片设计而言理论性能不高,于规模产量而言则没有突出优势。
如前所述,学术界大部分工作围绕“波长调谐+一维光相控阵”混合架构展开。但是该方案的主要问题非常突出:
由于光相控阵通过干涉实现波束成形,探测目标和雷达之间的往返光程需要在相干长度之内,这要求激光器具有窄线宽的特性;同时,由于光栅天线的角度调谐效率一般不高,激光器需要实现大范围的波长调谐;最后,激光器需要支持雷达应用的高功率输出。同时满足以上性能要求,而且还需要兼容针对光通信应用优化的C波段集成光学平台,种种苛刻要求将导致激光器成本显著提高。
在另一方面,波长调谐对应方向的可分辨点数和光栅天线的周期数成正比,为了实现较高的精细度,光栅天线可能需要达到厘米尺寸。对于单根天线而言,工艺误差将导致随机相位误差的累积以及显著的损耗;对于并置这些大尺寸天线构成相控阵而言,介质波导有限模场束缚将导致紧密并置时相邻通道间的相位串扰,进而 在相控阵方向有效扫描范围和光栅天线方向有效精细度之间构造一对矛盾关系。此外,这样的无源光栅天线阵列也会占用较大的芯片面积,增加了芯片系统的整体成本。
发明内容
针对上述实现方案中存在的缺陷,本发明提供一种基于一维光相控阵的三维扫描激光雷达,是一种集成光学芯片系统:在硬件层面而言,本发明针对激光雷达应用,基于集成光子平台,借助收发复杂度分解同时降低设计难度和组件成本,基于相控阵原理实现具有方向选择性的收发,并同时采用相干探测和非相干探测手段互为补充,充分发挥纯固态扫描方式的核心优势;在系统层面而言,本发明为终端传感器件,通过补充配置外部光源和控制电路即可为具体任务提供激光雷达数据,所以可以按照应用需求和安装方式进行灵活改造以及多传感器融合,具有模块化的特点。最后,本发明在扫描速度、加工成本、整体功耗、系统尺寸等方面具有明显优势,具有极高的应用价值。
为实现上述目的,本发明的技术解决方案如下:
一种基于一维光相控阵的三维扫描激光雷达,包括窄线宽激光光源与高速集成电路控制器,其特征在于,还包括发射端、相干接收端和非相干接收端,所述的发射端包括沿所述的窄线宽激光光源输出的探测光方向依次的探测光输入波导、第一分束器模块、移相器阵列模块和耦合抑制亚波长间距一维发射阵列;所述的相干接收端包括沿目标反射的信号光方向的稀疏间隔模斑变换一维接收阵列和相干接收模块,沿所述的窄线宽激光光源输出的参考光方向的参考光输入波导、第二分束器模块和相干接收模块;所述的非相干接收端包括沿目标反射的信号光方向依次的空间光学模块和线阵光电传感器,所述的线阵光电传感器的输出端与所述的所述的高速集成电路控制器的第2输入端相连;所述的发射端移相器阵列模块的移相器的控制端、相干接收端的相干接收模块的控制端与所述的高速集成电路控制器的输出端相连,所述的相干接收端的相干接收模块的输出端与所述的高速集成电路控制器的第1输入端相连。
所述的窄线宽激光光源可以和芯片系统一起混合集成,或由分立的外部主机提供。
所述的窄线宽激光光源输出的探测光从探测光输入波导进入芯片,并由第一分束器模块分配到N路波导中,为了便于加工,当N小于等于64时,输出通道的光波振幅按照切比雪夫分布,当N大于64后,通道的光波振幅按照泰勒-凯泽分布;其后, 探测光将经过N通道的移相器阵列,最终从N通道的耦合抑制亚波长间距一维发射阵列离开发射端,进入自由空间照射目标,其中:N大于等于4,发射阵列为均匀阵列,所述的亚波长指二分之一的工作波长到一倍的工作波长之间的一个特定值,具体取值由通道数目和扫描范围决定,工作波长范围覆盖1500nm至1600nm。
所述的相干接收端,所述的窄线宽激光光源输出的参考光从参考光输入波导进入芯片,并由参考光第二分束器模块将单路输入的参考光功率分配到M路波导中,当M小于等于64时,输出通道的光波振幅按照切比雪夫分布,当M大于64后,通道的光波振幅按照泰勒-凯泽分布;并针对实际接收阵列的阵元几何关系插值得出;所述的稀疏间隔模斑变换接收阵列具有M通道,与此同时,由目标反射的信号光将从M通道的稀疏间隔模斑变换接收阵列(201)耦合进入芯片系统,来自第二分束器模块(203)的M通道参考光和来自接收天线的M通道的稀疏间隔模斑变换接收阵列(201)的M通道信号光在所述的相干接收模块中进行光电探测,产生含有目标距离信息的电信号,其中:M大于等于4,且M和N可以不相等,接收阵列为非均匀间隔稀疏阵列,并配合使用曲面与阵列方向垂直的柱面镜,最大限度提高相干接收端的有效接收面积。
所述的非相干接收端,来自目标反射的信号光从大口径透镜光学模块处返回非相干接收端并聚焦在所述的线阵光电传感器所在的平面上,并由所述的线阵光电传感器予以分别接收。
所述的耦合抑制亚波长间距一维发射阵列沿着水平方向布置,其干涉得到的定向波束是沿着经线方向的条形波束,并能在方位角方向上进行一维线性扫描;与此同时,所述的相干接收端接收天线的M通道的稀疏间隔模斑变换接收阵列与所述的线阵光电传感器均沿着竖直方向布置,由光路可逆原理可知,接收阵列与光电传感器阵元的方向选择性是沿着纬线方向的条形区域,前者能在俯仰角方向进行一维线性扫描,后者则能同时接收所有俯仰角方向的回波并予以分辨,从而实现三维扫描;显然,其他方式的收发正交布置以及严格正交方式之外的收发复杂度分解方式也遵循以上原理。
所述的第一分束器模块和第二分束器模块采用级联定向耦合器或星型耦合器。
所述的移相器阵列模块与相干接收模块内的移相器采用热调或者电调移相器,每路移相器的相移量由所述的高速集成电路控制器通过相连的移相器驱动电路控制,所述的移相器驱动电路既可以单片集成,也可以由多芯片封装时另一块芯片上的CMOS集成电路实现,移相器驱动电路和总控制回路通过高速电路连接。
所述的耦合抑制亚波长间距一维发射阵列采用弯曲波导阵列结构、宽度交替改变的波导阵列结构或者在波导间插入超材料结构抑制耦合,实现亚波长间距排列。
所述的一维接收阵列使用倒锥形结构进行模斑变换,其几何尺寸从标准矩形波导收缩至工艺水平允许的方形截面尖端结构,与此同时,波导模斑的几何尺寸将逐渐扩展并具备偏振不敏感的特性,进而增大有效接收面积。
所述的相干接收模块使用平衡探测器同时接收参考光与信号光,通过对参考光进行匹配相移,实现高方向增益且共模抑制的相干接收,提高收发过程的信噪比,并将含有当前工作制式下的相移或频移的电信号输出给信号处理模块,最终恢复为当前对象的距离或速度信息。
所述的发射端和相干接收端可以在硅、氮化硅或者III-V半导体化合物平台上进行单片或者混合集成,并利用各自材料优势进行三维集成。
所述的线阵光电传感器采用单光子雪崩二极管进行光电转换,并以CCD方式构成一维阵列。
所述的高速集成电路模块可以采用但不限于采用现场可编程门阵列(FPGA,Field-Programmable Gate Array),专用集成电路(ASIC,Application-Specific Integrated Circuit)等典型集成电路实现;芯片系统和控制电路可以采用多芯片组件(MCM,Multi-Chip Module)或系统级封装(SIP,System In a Package)进行光电混合封装。
所述的光源可以采用但不限于采用光纤连接的分立式窄线宽激光器,基于转印技术(transfer-printing)、III-V键合技术(III-V bonding)或者立体封装技术(3D integration)的混合集成的III-V/Si窄线宽激光器等典型光源实现方式,具体选择取决于系统性能和工艺条件。
本发明和现有技术相比,有益效果主要体现在如下方面:
1、本发明采用收发复杂度分解的方式将三维扫描时元件复杂度和扫描精细度的平方关系O(n 2)分解成激光雷达发送端和接收端的两组相互正交的线性关系O(2n),能够实现单波长三维扫描或借助额外的波长资源实现多波束应用,线性复杂度的收发阵列及线阵光电传感器在成本和控制电路复杂度上具有显著优势。
2、本发明不含任何运动部件,角向刷新速度限制完全取决于光在雷达和目标间传播的物理极限,伴随着光通信技术的进步,采用的热调移相器或者其他移相器可以在功耗和带宽等方面得到进一步提高。同时,作为一个全固态器件,系统中不存在机械磨损或形变,在加速度迅速变化的环境中可以维持稳定工作。
3、本发明为纯固态三维扫描式激光雷达,两个相邻工作瞬间的波束成形方向相互独立,并由上位机进行数字式的控制,所以能够在视场内灵活地分配探测资源,实现有针对性的智能探测,有效降低了后端数据处理电路乃至整个自动驾驶系统的 负担。
4、本发明中光相控阵芯片借助半导体光电子集成工艺,通过大规模批量生产,可以将芯片成本显著降低;此外,本发明具有模块化的特征,支持不同类型的光源和外围控制电路,既可以实现一体化的芯片系统设计,也可以由高性能主机配套的多部终端传感器构成分布式系统。
附图说明
图1为本发明一维光相控阵三维扫描激光雷达芯片系统架构图。
图2为本发明实施例整体结构及探测原理示意图。
图3为本发明实施例采用的融合非相干和相干探测方式流程图。
图4为本发明实施例中氮化硅输入端采用的三叉戟端面耦合结构。
图5为本发明实施例中氮化硅集成分束结构及原理示意图,其中(a)为级联定向耦合器结构,(b)为星型耦合器结构。
图6为(a)一种典型的泰勒-凯泽振幅分布和(b)采用该分布的一维相控阵对应的远场。
图7为本发明实施例中硅基集成掺杂热调移相器阵列示意图。
图8为本发明实施例中硅基集成的耦合抑制亚波长间隔发射阵列结构示意图,其中(a)只采用弯曲波导阵列的耦合抑制结构,(b)采用波导宽度交替变化的耦合抑制结构,(c)采用介质超材料的耦合抑制结构。
图9为本发明实施例中硅基集成稀疏间隔模斑变换接收阵列示意图。
图10为本发明实施例中相干接收阵列结构示意图,子图为局部放大图。
具体实施方式
为了进一步阐明本方案的目的、技术方案及核心优势,下文结合附图和实施例,对本发明进行进一步详细说明。请注意,下述具体实施例仅起解释目的,并不用于限定本发明。同时,实施例中不同实现方案涉及到的技术特征只要彼此未构成冲突,就可以相互结合。
参考图1,由图可见,本发明基于一维光相控阵的三维扫描激光雷达,包括窄线宽激光光源与高速集成电路控制器,其特点在于,还包括发射端Tx、相干接收端Rc和非相干接收端Ri,所述的发射端Tx包括沿所述的窄线宽激光光源输出的探测光方向依次的探测光输入波导101、第一分束器模块102、移相器阵列模块103和耦 合抑制亚波长间距一维发射阵列104;所述的相干接收端Rc包括沿目标反射的信号光方向的稀疏间隔模斑变换一维接收阵列201和相干接收模块204,沿所述的窄线宽激光光源输出的参考光方向的参考光输入波导202、第二分束器模块203和相干接收模块204;所述的非相干接收端Ri包括沿目标反射的信号光方向依次的空间光学模块301和线阵光电传感器302,所述的线阵光电传感器302的输出端与所述的所述的高速集成电路控制器的第2输入端相连;所述的发射端移相器阵列模块103的移相器的控制端、相干接收端的相干接收模块203的控制端与所述的高速集成电路控制器的输出端相连,所述的相干接收端的相干接收模块203的输出端与所述的高速集成电路控制器的第1输入端相连。
基于一维光相控阵的三维扫描激光雷达实施例,包括发送端Tx、相干接收端Rc和非相干接收端Ri三个主要组成部分;发送端包括氮化硅波导输入端101、氮化硅集成分束器模块102、硅基集成移相器阵列模块103和硅基集成的耦合抑制亚波长间距一维发射阵列104,相干接收端包括:硅基集成的稀疏间隔模斑变换一维接收阵列201、参考光输入端202、氮化硅集成分束器模块203和硅基集成相干接收模块204,非相干接收端包括透镜光学模块301和线阵光电传感器302;发射端硅基集成移相器阵列模块103中移相器的电域控制和相干接收端硅基集成相干接收模块203、非相干接收端的线阵光电传感器302的信号处理由光芯片系统外的高速集成电路控制器模块实现;按照性能及安装的需要,系统使用的光源既可以和芯片系统一起混合集成,也可以由分立的外部模块提供。
如图2所示,探测光从布置在水平方向上的一维相控阵发射端进入自由空间后在远场中干涉并形成经线方向的波束,此时视场中对应方位角上的所有目标都将被照亮,并以漫反射形式将激光反射回到雷达系统。
在非相干接收端,反射的信号光将经过一个球透镜和一个柱透镜组合而成的大口径光学系统汇聚在线阵光电传感器所在的平面上,其中球透镜(后称“聚焦镜”)对应的焦平面和线阵光电传感器平面重合,弧面在弧矢方向的柱面镜(后称“放大镜”)对应的焦平面在线阵光电传感器平面后;故而以光路可逆原理分析,由于线阵光电传感器在放大镜的一倍焦距以内,阵元将在弧矢平面上成正立放大的虚像,故而该方向上阵元的有效接收长度将增加,这意味着不同方位角入射的平行光都将尽可能多地被传感器阵元接收;与此同时聚焦镜则将不同俯仰角入射的平行光汇聚到不同的阵元,子午平面中的汇聚过程不受柱面镜的影响,所以非相干接收端可以分辨视场中不同俯仰角上返回的平行光,每个阵元的接收区域对应一条纬线,沿着竖直方向延伸的线阵覆盖视场内的所有纬度。
在相干接收端,沿着竖直方向延伸的一维光相控阵被一个光学原理类似的弧矢方向柱面镜放大为接收面积更大的“方形”阵列,其中每个阵元都被放大镜拉伸为一个竖直方向大小不变,水平方向更加细长的接收窗口。从不同阵元接收的信号光将在硅基集成相干接收模块和预先相移的参考光相干合束,并输出为光电流;由于不同俯仰角入射的平行光将对应不同的阵元相位关系,只有与各通道参考光预置相位处处相干相长的俯仰角方向的回波会被参考光放大,所以可以进行有方向选择性的接收。以光路可逆原理,硅基相干接收模块的每个参考光预置相位组合对应一条纬线,通过改变预置相位组合即可分辨自由空间中不同俯仰角方向返回的平行光。尽管图2中展示的相干接收端与发射端是两块分立芯片,若按照相同规范正交布置紧凑型面发射光栅耦合器构成的收发阵列,相干接收端与发射端也可以单片集成。
对于上述激光雷达系统而言,实际探测的目标是发射端经线和接收端纬线的交点。对于非相干端而言,在发射端方位角扫描的任意瞬间,整条经线上不同俯仰角上的目标将被线阵光电传感器不同阵元同时识别和接收,进行脉冲制式的直接探测。在给出的实施例中,非相干接收端阵元数乃至阵元分布可以直接对标市场顶尖的多线机械式激光雷达,提供俯仰角方向精细度相对较低的粗扫描,从而充分发挥成本优势。对于相干接收端而言,由于一维接收阵列采用了稀疏设计,可以以相对较少的阵元数实现精细度很高的俯仰角分辨;此外,相干接收端采用的调频连续波制式有助于以相同的电域时钟开销,提高径向测距精度,甚至以参考光放大的方式增加有效探测距离。唯一不足的是,由于相干探测实际上是另一种形式的采样平均,其径向刷新速度较低,测距过程中探测资源需要固定在当前探测方向上,最终限制角向视场刷新的实时性。
所以在本实施例中,我们采用图3所示的非相干和相干结合的探测方式,即:任意一个视场帧由一个非相干搜索帧和一个相干测距帧组成。在非相干搜索帧中,发射端进行连续的方向角扫描,以某一个方向角上的探测为例,当该经线上所有俯仰角回波脉冲均已返回对应阵元或等待时间超过最大探测距离的往返时延后,系统将扫描下一个方向角,直至方位角扫描覆盖整个视场,并取得视场中目标大致分布情况,上位机也将在扫描过程中同步分析记录对自动驾驶任务比较关键的目标。基于非相干搜索帧的分析结果,发射端和相干接收端将借助随机寻址的离散波束扫描对关键目标进行角向和径向的高精度测距,从而充分发挥光相控阵与相干探测的优势。最终上位机将对搜索帧和测距帧的探测结果进行数据融合,并合成为视场帧。显然,采用该融合制式实现速度测量,或者改变一个视场帧中搜索帧和测距帧的数目对于本实施例而言也是可行的。
在上述方案的基础上,实施例采用硅-氮化硅多层集成平台,融合氮化硅波导功 率容限高,硅基波导结构紧凑、弯曲半径小、调制手段丰富的优势,在高功率的探测光从如图4所示的氮化硅输入端进入芯片后由图5所示的氮化硅分束器功率分束到相控阵子通道后再由层间耦合器输送给功率容限较低的硅波导。
在上述方案的基础上,多层平台中所有硅波导或氮化硅波导的布线均遵循间层布置,邻层耦合的规范,从而提高层间耦合效率,抑制信号路由时的串扰。
在上述方案的基础上,由于发射端需要将探测光能量最大限度地照射到目标上,同时避免干涉旁瓣照射近处目标时构成混叠,换言之,需要在视场范围内始终保持较高的主瓣能量集中度与较低的旁瓣峰值。为了满足以上需求,结合相控阵设计经验,实施例输出阵列采用亚波长间隔均匀阵列,同时阵元输出的光波振幅需要满足典型的旁瓣抑制分布。具体而言,我们对通道数N小于等于64的阵列,修改图5中氮化硅分束器的相关结构参数,使功率分束后输出通道的光波振幅按照切比雪夫分布,当N大于64后,基于相同方式使通道的光波振幅按照泰勒-凯泽分布。这两种分布等效于傅里叶变换中的窗函数,能够在兼顾主瓣精细度的同时将远场中旁瓣峰值抑制到工作距离内无混叠条件给定的水平。相应设计效果如图6所示。
在上述方案的基础上,功率分束并耦合到硅波导中的探测光将经过如图7所示的硅基掺杂热调移相器阵列,并分别经历不同的相位调制,从而使得阵列各阵元输出的探测光满足当前扫描方向上相干相长的条件,进而实现波束成形。
在上述方案的基础上,为了抑制亚波长间隔时介质波导之间可能存在的通道串扰,需要在发射端输出阵列处配合使用图8所示的三种耦合抑制手段。其中,弯曲波导阵列中各通道弯曲半径不同,故而对应基模传输常数不同,不同通道间模式失配从而破坏了各通道间的耦合条件,实现了耦合抑制。但是随着通道数目的增加,弯曲半径也将显著增加,波导传输常数的差异越来越小并收敛于直波导中的基模传播常数,所以弯曲波导阵列不能支持通道数较大时的耦合抑制。在通道数N大于64后对两侧部分通道可以沿用弯曲波导阵列结构进行耦合抑制,对于中心通道可以使用宽度交替改变的波导阵列结构,迫使相邻通道的基模传播常数不同,从而引入模式失配,抑制串扰;或者在波导间插入硅基超材料结构,限制波导几何尺寸外模场的消逝场深度,从而从源头上限制消逝场耦合。由于超材料结构一般需要80nm及更加精细的工艺精度,所以在工艺水平不满足,或者成本压力显著时,可以主要采取宽度交替改变的波导抑制结构配合使用弯曲波导结构实现耦合抑制。
在上述方案的基础上,尽管使用柱面镜能够在水平方向上拉伸一维接收阵列,接收阵列阵元本身对应的接收窗口仍然需要达到一定面积,同时接收阵列需要在竖直方向上具有较大的长度。由于从目标处返回的信号光是漫反射后的回波,接收阵 列对相干合束后来自主瓣方向的功率没有集中程度方面的要求;但是,接收阵列的主瓣对于旁瓣仍需要保持最大探测距离要求的抑制关系,从而避免较近目标造成的混叠。在兼顾接收阵列方向选择性的同时,降低所需的通道数目,避免阵元接收窗口之间相互串扰需要稀疏化的设计。在实施例中,非均匀的通道间隔以及模仿发射阵列的通道光波振幅规范首先通过随机化和插值产生,并经过粒子群算法全局优化,最终由相干接收端的稀疏接收阵列设计以及相应修改的参考光分束结构予以实现。稀疏阵列结构示意图如图9所示,分束结构与图5所示原理相同,具体实现参数不同。
在上述方案的基础上,为了扩大阵元的接收窗口,采用图9中阵元末端的模斑变换结构逐渐压缩波导几何尺寸,使得光模式逐渐扩展并具有偏振无关特性,其基本原理与端面耦合时常见的倒锥形耦合结构类似,此处不与赘述。
在上述方案的基础上,相干接收端的硅基相干探测结构采用如图10所示的锗硅平衡探测结构,具体原理与常见的平衡探测器类似,此外,还可以通过添加片上电容和片上电感的方式实现平衡探测结构电域带宽的提升,相关技法及原理为通用技术,此处不与赘述。
在上述方案的基础上,非相干接收端使用的几何光学系统、雪崩光电二极管阵列,以及激光雷达系统中使用的脉冲宽度调制、跨阻放大器芯片、控制及信号处理电路以及上位机等手段或器件为通用技术,相关器件均已产品化,并可以由主流半导体厂商提供。
在上述方案的基础上,系统可选的分立式外部光源及高功率光纤为通用技术,和硅-氮化硅多层平台上的可调谐外腔混合集成构成III-V/Si外腔激光器有众多典型的实现手段属于通用技术,本发明及其实施例可以配合相关设计构成有源的激光雷达系统。
在上述方案的基础上,由于本发明各组件均为线性阵列,控制复杂度低,通过增加多组类似器件并进行多芯片联动可以进一步提高三维扫描激光雷达系统的性能,相应的孔径合成以及数据融合属于通用技术,此处不与赘述。
同领域的科研或产业部门人员容易理解,以上内容仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (13)

  1. 一种基于一维光相控阵的三维扫描激光雷达,包括窄线宽激光光源与高速集成电路控制器,其特征在于,还包括发射端(Tx)、相干接收端(Rc)和非相干接收端(Ri),所述的发射端(Tx)包括沿所述的窄线宽激光光源输出的探测光方向依次的探测光输入波导(101)、第一分束器模块(102)、移相器阵列模块(103)和耦合抑制亚波长间距一维发射阵列(104);所述的相干接收端(Rc)包括沿目标反射的信号光方向的稀疏间隔模斑变换一维接收阵列(201)和相干接收模块(204),沿所述的窄线宽激光光源输出的参考光方向的参考光输入波导(202)、第二分束器模块(203)和相干接收模块(204);所述的非相干接收端(Ri)包括沿目标反射的信号光方向依次的空间光学模块(301)和线阵光电传感器(302),所述的线阵光电传感器(302)的输出端与所述的高速集成电路控制器的第2输入端相连;所述的发射端移相器阵列模块(103)的移相器的控制端、相干接收端的相干接收模块(203)的控制端与所述的高速集成电路控制器的输出端相连,所述的相干接收端的相干接收模块(203)的输出端与所述的高速集成电路控制器的第1输入端相连。
  2. 根据权利要求1所述的三维扫描激光雷达,其特征在于,所述的窄线宽激光光源可以和芯片系统一起混合集成,或由分立的外部主机提供。
  3. 根据权利要求1所述的三维扫描激光雷达,其特征在于,所述的窄线宽激光光源输出的探测光从探测光输入波导(101)进入芯片,并由第一分束器模块(102)分配到N路波导中,当N小于等于64时,输出通道的光波振幅按照切比雪夫分布,当N大于64后,通道的光波振幅按照泰勒-凯泽分布;其后,探测光将经过N通道的移相器阵列(103),最终从N通道的耦合抑制亚波长间距一维发射阵列(104)离开发射端,进入自由空间照射目标,其中:N大于等于4,发射阵列为均匀阵列,所述的亚波长指二分之一的工作波长到一倍的工作波长之间的一个特定值,具体取值由通道数目和扫描范围决定,工作波长范围覆盖1500nm至1600nm。
  4. 如权利要求1或3所述的三维扫描激光雷达,其特征在于,所述的相干接收端,所述的窄线宽激光光源输出的参考光从参考光输入波导(202)进入芯片,并由参考光第二分束器模块(203)将单路输入的参考光功率分配到M路波导中,当M小于等于64时,输出通道的光波振幅按照切比雪夫分布,当M大于64后,通道的光波振幅按照泰勒-凯泽分布;并针对实际接收阵列的阵元几何关系插值得出;所述的稀疏间隔模斑变换接收阵列(201)具有M通道,与此同时,由目标反射的信号光将从M通道的稀疏间隔模斑变换接收阵列(201)耦合进入芯片系统,来自第二分束器模块(203)的M通道参考光和来自接收天线的M通道的稀疏间隔模斑变换接收阵列 (201)的M通道信号光在所述的相干接收模块(204)中进行光电探测,产生含有目标距离信息的电信号,其中:M大于等于4,接收阵列为非均匀间隔稀疏阵列,并配合使用曲面与阵列方向垂直的柱面镜,最大限度提高相干接收端的有效接收面积。
  5. 如权利要求1所述的三维扫描激光雷达,其特征在于,所述的非相干接收端,来自目标反射的信号光从大口径透镜光学模块(301)处返回非相干接收端并聚焦在所述的线阵光电传感器(302)所在的平面上,并由所述的线阵光电传感器(302)予以分别接收。
  6. 如权利要求1所述的三维扫描激光雷达,其特征在于,所述的耦合抑制亚波长间距一维发射阵列(104)沿着水平方向布置,其干涉得到的定向波束是沿着经线方向的条形波束,并能在方位角方向上进行一维线性扫描;与此同时,所述的相干接收端接收天线的M通道的稀疏间隔模斑变换接收阵列(201)与所述的线阵光电传感器(302)均沿着竖直方向布置,由光路可逆原理可知,接收阵列与光电传感器阵元的方向选择性是沿着纬线方向的条形区域,前者能在俯仰角方向进行一维线性扫描,后者则能同时接收所有俯仰角方向的回波并予以分辨,从而实现三维扫描;显然,其他方式的收发正交布置以及严格正交方式之外的收发复杂度分解方式也遵循以上原理。
  7. 如权利要求1所述的三维扫描激光雷达,其特征在于,所述的第一分束器模块(102)和第二分束器模块(203)采用级联定向耦合器或星型耦合器。
  8. 如权利要求1所述的三维扫描激光雷达,其特征在于,所述的移相器阵列模块(103)与相干接收模块(204)内的移相器采用热调或者电调移相器,每路移相器的相移量由所述的高速集成电路控制器通过相连的移相器驱动电路控制,所述的移相器驱动电路既可以单片集成,也可以由多芯片封装时另一块芯片上的CMOS集成电路实现,移相器驱动电路和总控制回路通过高速电路连接。
  9. 如权利要求1所述的三维扫描激光雷达,其特征在于,所述的耦合抑制亚波长间距一维发射阵列(104)采用弯曲波导阵列结构、宽度交替改变的波导阵列结构或者在波导间插入超材料结构抑制耦合,实现亚波长间距排列。
  10. 如权利要求1所述的三维扫描激光雷达,其特征在于,所述的一维接收阵列(201)使用倒锥形结构进行模斑变换,其几何尺寸从标准矩形波导收缩至工艺水平允许的方形截面尖端结构,与此同时,波导模斑的几何尺寸将逐渐扩展并具备偏振不敏感的特性,进而增大有效接收面积。
  11. 如权利要求1所述的三维扫描激光雷达,其特征在于,所述的相干接收模块(204)使用平衡探测器同时接收参考光与信号光,通过对参考光进行匹配相移,实现高方向增益且共模抑制的相干接收,提高收发过程的信噪比,并将含有当前工 作制式下的相移或频移的电信号输出给信号处理模块,最终恢复为当前对象的距离或速度信息。
  12. 如权利要求1所述的三维扫描激光雷达,其特征在于,所述的发射端和相干接收端可以在硅、氮化硅或者III-V半导体化合物平台上进行单片或者混合集成,并利用各自材料优势进行三维集成。
  13. 如权利要求1至12任一项所述的三维扫描激光雷达,其特征在于,所述的线阵光电传感器(302)采用单光子雪崩二极管进行光电转换,并以CCD方式构成一维阵列。
PCT/CN2019/087748 2019-05-05 2019-05-21 基于一维光相控阵的三维扫描激光雷达 WO2020224007A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/060,052 US20210018599A1 (en) 2019-05-05 2020-09-30 Three-dimensional scanning lidar based on one-dimensional optical phased arrays

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910367089.8 2019-05-05
CN201910367089.8A CN110109083B (zh) 2019-05-05 2019-05-05 基于一维光相控阵的三维扫描激光雷达

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/060,052 Continuation US20210018599A1 (en) 2019-05-05 2020-09-30 Three-dimensional scanning lidar based on one-dimensional optical phased arrays

Publications (1)

Publication Number Publication Date
WO2020224007A1 true WO2020224007A1 (zh) 2020-11-12

Family

ID=67488051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/087748 WO2020224007A1 (zh) 2019-05-05 2019-05-21 基于一维光相控阵的三维扫描激光雷达

Country Status (3)

Country Link
US (1) US20210018599A1 (zh)
CN (1) CN110109083B (zh)
WO (1) WO2020224007A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114063096A (zh) * 2022-01-17 2022-02-18 洛伦兹(宁波)科技有限公司 激光收发扫描装置和激光雷达系统

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10746923B2 (en) * 2018-06-27 2020-08-18 Taiwan Semiconductor Manufacturing Company, Ltd. Photonic semiconductor device and method
US11320584B2 (en) * 2019-05-08 2022-05-03 Clemson University Deeply sub-wavelength all-dielectric waveguide design and method for making the same
CN110376592B (zh) * 2019-07-23 2022-02-11 吉林大学 一种声光调控的光学相控阵激光雷达
CN112764050B (zh) * 2019-10-21 2024-02-23 武汉万集光电技术有限公司 激光雷达测量方法及激光雷达系统
US11228119B2 (en) * 2019-12-16 2022-01-18 Palo Alto Research Center Incorporated Phased array antenna system including amplitude tapering system
EP4115222A4 (en) * 2020-03-02 2024-03-06 Univ Michigan Regents HIGHLY EFFICIENT OPTICAL END-FIRE 3D PHASE ARRAY BASED ON A MULTI-LAYER PLATFORM
CN113359142A (zh) * 2020-03-06 2021-09-07 上海禾赛科技有限公司 激光雷达及其测距方法
CN113466886B (zh) * 2020-03-30 2024-02-27 深圳市速腾聚创科技有限公司 雷达测距方法
CN112147639A (zh) * 2020-07-17 2020-12-29 中国工程物理研究院应用电子学研究所 一种mems一维激光雷达和数码相机测绘装置及方法
CN112051582A (zh) * 2020-09-28 2020-12-08 国科光芯(海宁)科技股份有限公司 一种阵列式相干测距芯片及其系统
CN112630753B (zh) * 2020-12-18 2023-05-23 上海交通大学 光学相控阵芯片的校正系统及校正方法
CN112946599B (zh) * 2021-02-04 2022-05-06 哈尔滨工业大学(威海) 一种基于稀布阵列的雷达空间谱估计方法
CN113552588B (zh) * 2021-07-13 2023-12-26 西安电子科技大学 一种光学相控阵成像仪
CN113534099B (zh) * 2021-07-13 2024-04-09 西安电子科技大学 一种opa扫描动态成像方法及成像系统
CN113589317A (zh) * 2021-07-29 2021-11-02 北京摩尔芯光科技有限公司 一种激光雷达和二维扫描方法
CN115685220A (zh) * 2021-07-30 2023-02-03 北京万集科技股份有限公司 目标探测方法、opa激光雷达及计算机可读存储介质
KR20240033051A (ko) * 2021-08-19 2024-03-12 헤사이 테크놀로지 씨오., 엘티디. 개별적으로 어드레스 가능하고 스캔 가능하며 통합 가능한 레이저 방출기를 갖는 라이다
KR102337648B1 (ko) * 2021-08-23 2021-12-09 (주)웨이옵틱스 라이다 센서용 광위상배열 디바이스
CN116338634A (zh) * 2021-12-24 2023-06-27 深圳市速腾聚创科技有限公司 波导组件、集成芯片及激光雷达
CN114721006B (zh) * 2022-06-08 2022-09-02 中国人民解放军国防科技大学 高精度单像素成像方法及系统
CN115032611B (zh) * 2022-08-11 2022-11-15 之江实验室 一种基于光子技术的分布式太赫兹雷达探测系统及方法
CN115166696B (zh) * 2022-09-06 2022-12-20 北京摩尔芯光半导体技术有限公司 用于激光雷达的扫描转镜组、激光雷达装置
CN115639543B (zh) * 2022-12-14 2023-05-23 深圳市速腾聚创科技有限公司 调频连续波激光雷达及自动驾驶设备
CN116106862B (zh) * 2023-04-10 2023-08-04 深圳市速腾聚创科技有限公司 光芯片、激光雷达、自动驾驶系统及可移动设备
CN116106932B (zh) * 2023-04-13 2023-06-27 深圳煜炜光学科技有限公司 一种车载激光雷达装置及其控制方法
CN116224298B (zh) * 2023-05-09 2023-08-04 深圳市速腾聚创科技有限公司 激光雷达和可移动设备
CN116500624B (zh) * 2023-06-29 2023-10-20 天津知海科技有限公司 恢复成像方法、装置、电子设备及可读存储介质
CN117092619B (zh) * 2023-10-18 2024-01-12 吉林大学 一种相干激光雷达收发芯片及制备方法
CN117630998B (zh) * 2024-01-25 2024-04-26 西南交通大学 基于时距转换的高频振动标靶坐标动态测量装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105527772A (zh) * 2015-12-29 2016-04-27 北京大学 一种光学相控阵
CN106410607A (zh) * 2016-11-17 2017-02-15 清华大学 有源光相控阵光子集成芯片及其制备方法
CN107567592A (zh) * 2015-04-07 2018-01-09 闪光股份有限公司 小型激光雷达系统
CN108693504A (zh) * 2017-06-09 2018-10-23 深圳市涵光半导体有限公司 相控阵激光发射单元及控制方法、激光雷达
CN109270550A (zh) * 2018-09-11 2019-01-25 清华大学 扫描光束发射器件、激光雷达装置及探测方法
CN109444851A (zh) * 2018-11-19 2019-03-08 深圳市速腾聚创科技有限公司 激光发射机构及相控阵激光雷达

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103048662B (zh) * 2012-12-18 2016-02-17 北京航空航天大学 一种三波束全光纤相干调频连续波激光雷达
US10132928B2 (en) * 2013-05-09 2018-11-20 Quanergy Systems, Inc. Solid state optical phased array lidar and method of using same
US9523766B2 (en) * 2014-09-19 2016-12-20 Institut National D'optique Phase error correction in synthetic aperture imaging
US9625582B2 (en) * 2015-03-25 2017-04-18 Google Inc. Vehicle with multiple light detection and ranging devices (LIDARs)
US10281254B2 (en) * 2016-09-20 2019-05-07 Rosemount Aerospace Inc. Phased array LIDAR in ordnance control
CN106769952B (zh) * 2017-03-02 2019-09-13 南京红露麟激光雷达科技有限公司 基于非相干光源的气体差分吸收激光雷达
DE102017214575A1 (de) * 2017-08-21 2019-02-21 Astyx Gmbh Abbildendes Radarsystem mit einem Empfangsarray zur Winkelbestimmung von Objekten in zwei Dimensionen durch eine gespreizte Anordnung der Empfangsantennen einer Dimension
CN108897003B (zh) * 2018-05-03 2021-05-04 北京理工大学 一种双模控制的相控阵激光雷达系统及方法
CN109100743A (zh) * 2018-09-07 2018-12-28 中国科学院上海光学精密机械研究所 主被动复合激光全息雷达

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107567592A (zh) * 2015-04-07 2018-01-09 闪光股份有限公司 小型激光雷达系统
CN105527772A (zh) * 2015-12-29 2016-04-27 北京大学 一种光学相控阵
CN106410607A (zh) * 2016-11-17 2017-02-15 清华大学 有源光相控阵光子集成芯片及其制备方法
CN108693504A (zh) * 2017-06-09 2018-10-23 深圳市涵光半导体有限公司 相控阵激光发射单元及控制方法、激光雷达
CN109270550A (zh) * 2018-09-11 2019-01-25 清华大学 扫描光束发射器件、激光雷达装置及探测方法
CN109444851A (zh) * 2018-11-19 2019-03-08 深圳市速腾聚创科技有限公司 激光发射机构及相控阵激光雷达

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114063096A (zh) * 2022-01-17 2022-02-18 洛伦兹(宁波)科技有限公司 激光收发扫描装置和激光雷达系统

Also Published As

Publication number Publication date
CN110109083A (zh) 2019-08-09
CN110109083B (zh) 2023-06-27
US20210018599A1 (en) 2021-01-21

Similar Documents

Publication Publication Date Title
WO2020224007A1 (zh) 基于一维光相控阵的三维扫描激光雷达
CN109991582B (zh) 硅基混合集成激光雷达芯片系统
TWI780120B (zh) 模組式三維光學感測系統(二)
CN111007483B (zh) 一种基于硅光芯片的激光雷达
US11874362B2 (en) Integrated two-dimensional multi-beam lidar transmitter based on butler matrix
US11555923B2 (en) LIDAR system with speckle mitigation
CN111722237B (zh) 基于透镜和集成光束收发器的激光雷达探测装置
US20190025431A1 (en) Precisely controlled chirped diode laser and coherent lidar system
JP2023120335A (ja) 周波数変調連続波光を検出および距離測定のためのスイッチング可能なコヒーレントピクセルアレイ
US20220050187A1 (en) Scan-less 3d optical sensing devices and associated lidar based on stacking of integrated photonic chips, wavelength division demultiplexing and position-to-angle conversion of a lens
CN114002703A (zh) 一种三维成像的全固态激光雷达装置
Wu et al. Multi-beam optical phase array for long-range LiDAR and free-space data communication
CN113589317A (zh) 一种激光雷达和二维扫描方法
WO2022246024A1 (en) Lidar with microlens array and integrated photonic switch array
CN113608228A (zh) 一种基于Blass矩阵的二维多波束激光雷达快速扫描装置和方法
CN115343691B (zh) 探测系统
CN115047428A (zh) 激光雷达
CN111740786A (zh) 一种集成光波导波束赋形装置
CN112130130B (zh) 硅光芯片以及激光雷达系统
CN216248307U (zh) 激光雷达系统
US20230366986A1 (en) LiDAR array with vertically-coupled transceivers
Yu et al. Focal plane array with small-scale grating antenna receiving array for LiDAR
CN117706521A (zh) 一种收发模块及激光雷达
CN112130130A (zh) 硅光芯片以及激光雷达系统
WO2023121888A1 (en) Ranging using a shared path optical coupler

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19927831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19927831

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19927831

Country of ref document: EP

Kind code of ref document: A1