WO2023044990A1 - 一种硅基可重构微波光子多波束形成网络芯片 - Google Patents

一种硅基可重构微波光子多波束形成网络芯片 Download PDF

Info

Publication number
WO2023044990A1
WO2023044990A1 PCT/CN2021/123519 CN2021123519W WO2023044990A1 WO 2023044990 A1 WO2023044990 A1 WO 2023044990A1 CN 2021123519 W CN2021123519 W CN 2021123519W WO 2023044990 A1 WO2023044990 A1 WO 2023044990A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
array
download
silicon
microwave
Prior art date
Application number
PCT/CN2021/123519
Other languages
English (en)
French (fr)
Inventor
陆梁军
倪子恒
周林杰
陈建平
刘娇
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Publication of WO2023044990A1 publication Critical patent/WO2023044990A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12145Switch
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12147Coupler
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/1215Splitter

Definitions

  • the invention relates to the technical field of integrated microwave photonics, in particular to a silicon-based reconfigurable microwave photonic multi-beam forming network chip.
  • Ordinary phased array radar is phase-controlled electronically scanned array radar.
  • a large number of individually controlled small antenna units are arranged to form an antenna array.
  • Each antenna unit is controlled by an independent phase-shifting unit.
  • the electromagnetic waves emitted by each antenna unit of the phased array are synthesized by interference into a radar main lobe beam whose emission direction is close to straight, and the inhomogeneity of each antenna unit will form side lobes.
  • Phased array radar fundamentally solves various congenital problems of traditional mechanical scanning radar. Under the same aperture and operating wavelength, the scanning speed, target update rate, multi-target tracking ability, resolution, versatility, Electronic countermeasures are far superior to traditional radar.
  • the new phased array radar In order to improve the anti-jamming ability, the new phased array radar must have as large a bandwidth as possible; in order to improve the resolution and recognition ability of the radar and solve the multi-target imaging problem, it is required that the new phased array radar must have a large instantaneous bandwidth and have multiple Beam emission capability; in order to combat the threat of anti-radiation, spread spectrum signals with large instantaneous bandwidth are also required.
  • Traditional coaxial cable delay lines, surface acoustic wave (SAW) delay lines, and charge-coupled devices (CCD) cannot meet the needs. Magnetostatic wave device technology and superconducting delay line technology are still far away from practical application.
  • optical beamformers have been reported in the past decades. Among them, most of them are based on optical phase shifters, switchable fiber delay matrices, liquid crystal polarization switching devices, wavelength tunable lasers, and dispersive optical elements, etc. However, most of these are composed of discrete devices, which will bring problems such as large system size and poor stability, and most of them are only single beamforming networks. In order to reduce system size, quality and power consumption, and improve stability and practical level, integrated photonic technology is an inevitable choice for the development of high-performance and high-stability beamformers. At the same time, in order to improve radar anti-jamming capability and survivability, make full use of transmit beam energy, increase radar data rate and beamforming flexibility, it is necessary to establish an ultra-wideband reconfigurable multi-beamforming network.
  • the definition of different sub-arrays allows the presentation of up to four spatially multiplexed beams oriented in different directions, limited by the characteristics of discrete devices, their adjustment accuracy is small, and their stability is poor.
  • the research team of Zhejiang University (Opt.Commun., 2021, 489) also adopted the method of dividing sub-arrays to expand the original 2D beamforming scheme to beamforming with multiple beams that can be independently controlled, which is relatively easy to implement
  • this solution requires complex connections between multiple chips, and the integration level is low.
  • the maximum number of multi-beam formation and the number of array elements required for single beam formation are fixed, and the back-end also needs to add a microwave power distribution structure. Less flexibility and practicality.
  • the object of the present invention is to provide a network chip for microwave photon phased array radar, which realizes large instantaneous bandwidth, high resolution and reconfigurable microwave photon multi-beam formation.
  • the technical solution adopted by the present invention is a silicon-based reconfigurable microwave photonic multi-beam forming network chip, including a fiber coupler, an optical switch array, an optical splitter, an ultra-wideband continuously adjustable optical true delay line array and detector array; the fiber coupler is used to input the single-sideband modulated optical signal of microwave photon phased array radar, and the optical switch array and optical splitter are used to form array elements used for microwave photon multi-beam and microwave photon single beam
  • the ultra-broadband continuously adjustable optical delay line array is used to independently adjust the delay on each microwave array element, and the detector array is used to output microwave signals.
  • the aforementioned silicon-based reconfigurable microwave photonic multi-beam forming network chip includes N fiber couplers, an N ⁇ N optical switch array, N 1 ⁇ M optical splitters, N ⁇ M super Broadband continuously adjustable optical true delay line array and N ⁇ M detector array;
  • the input signals of the N fiber couplers are N-channel carrier wavelength ⁇
  • the modulated signal is a single-sideband modulated optical signal of a microwave signal to be transmitted
  • the output ends of the N fiber couplers are respectively connected to the N input ends of the N ⁇ N optical switch array
  • the N output ends of the N ⁇ N optical switch array are respectively connected to the N 1 ⁇
  • the input ends of the M optical splitters are connected, and the output ends of the N 1 ⁇ M optical splitters are respectively connected with the input ends of the N ⁇ M ultra-broadband continuous adjustable optical true delay line array, so
  • the output terminals of the N ⁇ M ultra-broadband continuously adjustable optical delay line array are respectively connected to the input terminals of the N ⁇ M detector array, and the output signal
  • the optical fiber coupler adopts a grating coupler structure or a mode spot converter structure to realize optical coupling between the optical fiber and the chip.
  • the N ⁇ N optical switch array is composed of several 2 ⁇ 2 optical switch units and waveguide cross junctions in the topology of Benes, Crossbar or double-layer network structure, and the 2 ⁇ 2 optical switch units adopt Mach-amplifier Del interferometer structure, the waveguide cross junction adopts a multi-mode interference structure; the 2 ⁇ 2 optical switch unit integrates a thermally adjustable phase shifter or an electrically adjustable phase shifter for switching the optical switch state; adjusting the N The optical switch state of the ⁇ N optical switch array performs different routing paths to realize the function of a reconfigurable optical splitter.
  • the beam splitting ratio of the input beam and output beam of the N ⁇ N optical switch array can be reconfigured to 1:2, 1: 4, ..., or 1:N.
  • the 1 ⁇ M optical splitter splits the input light into M output channels evenly, and is composed of a cascaded 1 ⁇ 2 splitter or a 1 ⁇ M multimode interferometer structure, and the 1 ⁇ 2 splitter
  • the device adopts a multi-mode interferometer structure or a Y-shaped bifurcated structure.
  • the N ⁇ M ultra-broadband continuously adjustable optical true delay array is composed of N ⁇ M identical adjustable true delay lines in parallel.
  • the adjustable true delay line is composed of a first high-Q up-download tunable optical filter, a second high-Q up-download tunable optical filter and a cascaded micro-ring delay line, the first high
  • the Q value upload and download adjustable optical filter and the second high Q value upload and download adjustable optical filter have the same size; the input end of the adjustable delay line is the same as the input of the first high Q value upload and download adjustable filter connected to each other, the straight-through end and the download end of the first high-Q up-download adjustable filter are respectively connected to the input end of the cascaded micro-ring delay line and the download end of the second high-Q up-download filter,
  • the output end of the cascaded micro-ring delay line is connected to the through end of the second high-Q upload and download filter, and the output end of the second high-Q upload and download filter is connected to the cascaded micro-ring
  • the output terminals of the delay line are connected.
  • the cascaded microring delay line is composed of a plurality of microrings cascaded, wherein the free spectral ranges of the first and second microrings are the same, both are FSR1, starting from the pth microring (p> 2), the free spectral range of the microring is 2 p-2 ⁇ FSR 1 ;
  • the coupling regions of the plurality of microrings include a Mach-Zehnder interferometer structure, and the Mach-Zehnder interferometer is integrated for the coupling coefficient Adjustable thermal or electrical phase shifters;
  • the multiple microrings are integrated with thermal or electrical phase shifters for microring resonant wavelength adjustment, so that the carrier wavelength ⁇ falls on the first microring antiresonance point around the wavelength.
  • the first high-Q up-download tunable optical filter and the second high-Q up-download tunable optical filter are composed of a micro-ring up-download filter with a high-Q value, and the micro-ring
  • the center wavelength of the download filter is consistent with the carrier wavelength ⁇ of the input signal, and is used to separate the carrier and modulation signals of the input signal.
  • the microring up-download filter adopts a wide waveguide through the coupling area of the microring, and the curved part of the microring adopts an Euler curved waveguide structure to reduce the loss of the microring waveguide and improve the Q value.
  • the N ⁇ M detector array converts the delayed optical signal into a microwave signal, which is amplified by a back-end circuit and then output by an antenna, and the detector is composed of a vertical or horizontal PIN structure.
  • it is prepared by using silicon-based integrated optoelectronic technology combined with heterogeneous integration technology of germanium, silicon nitride and III-V group materials.
  • the present invention has the following beneficial effects: using mature integrated photon technology, using the method of dividing sub-arrays to generate multiple beams for emission, using an optical switch array to realize the reconstruction of the number of beams formed and the number of array elements used in a single beam , use the integrated adjustable optical delay line to form a delay network to independently adjust the direction of each beam emission, realize large instantaneous bandwidth, high resolution, reconfigurable multi-beam forming, and greatly improve the flexibility of microwave photonic radar beam forming and basic performance; 1.
  • the N ⁇ N optical switch array is adopted, and its topology is designed.
  • the input microwave optical signal is simultaneously output on different sub-arrays or multiple sub-arrays; 2.
  • the ultra-wideband continuous adjustable delay unit part introduces a high-Q micro-ring filter to separate the carrier wave and modulation wave of the microwave optical signal, which improves the The utilization rate of the flat delay bandwidth at the anti-resonance point of the cascaded microring optical delay line greatly improves the working bandwidth of the input microwave signal of the system; 3.
  • the deflection angles of each beam formed are delayed by different ultra-broadband microwave photons
  • the delay difference of adjacent adjustable delay lines in the unit is determined, so the deflection angles of each beam can be independently controlled without interfering with each other; 4.
  • the structure and control are simple, using integrated photon technology, with small size and low power consumption The advantages.
  • Fig. 1 is a schematic diagram of the overall structure of a silicon-based reconfigurable microwave photonic multi-beam forming network chip according to the present invention.
  • Fig. 2 is a schematic structural diagram of an embodiment of a silicon-based reconfigurable microwave photonic multi-beam forming network chip using a 4 ⁇ 4 optical switch array.
  • Fig. 3 is a structural diagram of a 2 ⁇ 2 multimode interference structure optical switch unit in a silicon-based reconfigurable microwave photonic multi-beam forming network chip.
  • Fig. 4 is a structural diagram of a 2 ⁇ 2 directional coupler structure optical switch unit in a silicon-based reconfigurable microwave photonic multi-beam forming network chip.
  • Fig. 5 is a structural diagram of a 1 ⁇ 2 multimode interference structure optical beam splitter in a silicon-based reconfigurable microwave photonic multi-beam forming network chip.
  • Fig. 6 is a structure diagram of a 1 ⁇ 2 Y beam splitter structure optical beam splitter in a silicon-based reconfigurable microwave photonic multi-beam forming network chip.
  • Fig. 7 is a schematic diagram of a silicon-based reconfigurable microwave photonic multi-beam forming network chip using a 4 ⁇ 4 optical switch array to form a single beam emission state.
  • Fig. 8 is a schematic diagram of a silicon-based reconfigurable microwave photonic multi-beam forming network chip using a 4 ⁇ 4 optical switch array to form a dual-beam emission state.
  • Fig. 9 is a schematic diagram of four-beam emission state formation of a silicon-based reconfigurable microwave photonic multi-beam forming network chip using a 4 ⁇ 4 optical switch array.
  • Figure 10 is a schematic diagram of the structure and working principle of an ultra-wideband continuously adjustable delay unit in a silicon-based reconfigurable microwave photonic multi-beam forming network chip.
  • Fig. 11 is a detailed diagram of the structure of a high-Q microring filter used in an ultra-broadband continuously adjustable delay unit in a silicon-based reconfigurable microwave photonic multi-beam forming network chip.
  • Fig. 12 is a detailed diagram of the microring-assisted Mach-Zehnder interference structure adopted by the ultra-broadband continuous adjustable delay unit cascaded microring delay line in a silicon-based reconfigurable microwave photonic multi-beamforming network chip.
  • the present invention implements a silicon-based reconfigurable microwave photon multi-beam forming network chip, the overall structure of which is shown in FIG. 1 .
  • the embodiment shown in FIG. 2 is a specific embodiment of the present invention in the case of using a 4 ⁇ 4 optical switch array.
  • the structure specifically includes a 4 ⁇ 4 optical switch array, 4 1 ⁇ 4 optical splitters, 16 ultra-broadband continuously adjustable optical true delay line arrays and 16 detector arrays; the input signals of the 4 fiber couplers are 4
  • the channel carrier wavelength is ⁇
  • the modulation signal is a single-sideband modulated optical signal of a microwave signal to be transmitted.
  • the output ends of the four fiber couplers are respectively connected to the four input ends of the 4 ⁇ 4 optical switch array, and the four The four output ends of the ⁇ 4 optical switch array are respectively connected to the input ends of the four 1 ⁇ 4 optical splitters, and the output ends of the four 1 ⁇ 4 optical splitters are respectively connected to the 16 super
  • the input terminals of the broadband continuously adjustable optical delay line array are connected, the output terminals of the 16 ultra-wideband continuously adjustable optical delay line arrays are respectively connected with the input terminals of the 16 detector arrays, and the 16 The output signal of the detector array is a microwave signal with a maximum number of beams equal to 4.
  • the optical switch unit in the embodiment may adopt an optical switch unit based on a 2 ⁇ 2 directional coupler structure or a 2 ⁇ 2 multimode interference structure.
  • the 1 ⁇ 4 optical splitter in the embodiment can be formed by cascading 1 ⁇ 2 multimode interference structures or 1 ⁇ 2 Y-type beam splitters.
  • a single optical switch in a 4 ⁇ 4 optical switch array has three states: crossover, straight-through, and 3-dB splitting.
  • the working state of each optical switch is changed by adjusting the voltage applied by the phase shifter on the two arms.
  • Fig. 7 is a schematic diagram of a silicon-based reconfigurable microwave photonic multi-beam forming network chip based on a 4 ⁇ 4 optical switch array to form a single beam emission state.
  • a silicon-based reconfigurable microwave photon multi-beam forming network chip using a 4 ⁇ 4 optical switch array controls the optical switches s(1,1), s(1,2) and s(2,2 ) is in the 3-dB splitting state, and the optical switches s(1, 3), s(2, 3), s(3, 3) and s(4, 3) are in the through state, the SSB microwave optical signal is in The transmission path in the beamforming network chip is shown in Figure 7. At this time, all 16 microwave transmitting array elements are used to transmit one beam.
  • Fig. 8 is a schematic diagram of a silicon-based reconfigurable microwave photonic multi-beam forming network chip using a 4 ⁇ 4 optical switch array to form a dual-beam emission state.
  • a silicon-based reconfigurable microwave photon multi-beam forming network chip using a 4 ⁇ 4 optical switch array is used to control the optical switches s(2, 2) and s(3, 2) to be in the 3-dB splitting state , the optical switches s(1, 1), s(2, 1), s(3, 3) and s(4, 3) are in the through state, and the optical switches s(1, 3) and s(2, 3) are both
  • the transmission path of the SSB microwave optical signal in the beamforming network chip is shown in Figure 8. At this time, dual beamforming can be realized, and every 8 microwave transmitting array elements participate in the transmission of 1 beam.
  • Fig. 9 is a schematic diagram of four-beam emission state formation of a silicon-based reconfigurable microwave photonic multi-beam forming network chip using a 4 ⁇ 4 optical switch array.
  • the control optical switches s(1,1), s(2,1), s(1,2 ), s(4, 2), s(1, 3) and s(3, 3) are all in the through state
  • the transmission path of the single sideband microwave optical signal in the beamforming network chip is shown in Figure 9, at this time
  • the four sub-arrays transmit different input beams, and every four microwave transmitting array elements participate in the formation of one beam.
  • Fig. 10 is a schematic diagram of the structure and working principle of an ultra-broadband continuously adjustable delay unit of a silicon-based reconfigurable microwave photonic multi-beam forming network chip. As shown in Figure 10, it consists of a first high-Q up-download tunable optical filter, a second high-Q up-download tunable optical filter, and a cascaded micro-ring delay line.
  • the size of the adjustable optical filter is the same as that of the second high-Q value up-download adjustable optical filter; the input end of the adjustable delay line is connected with the input end of the first high-Q value up-download adjustable filter, and the first high-Q value
  • the straight-through end and the download end of the value upload and download adjustable filter are respectively connected to the input end of the cascaded micro-ring delay line and the download end of the second high-Q value up-download filter, and the output end of the cascaded micro-ring delay line is connected to the The straight-through end of the second high-Q up-download filter is connected, and the output end of the second high-Q up-download filter is connected with the output end of the cascaded micro-ring delay line.
  • the central wavelength of the microring uplink and download filter is consistent with the carrier wavelength ⁇ of the input signal, and is used to separate the carrier and modulation signals of the input signal.
  • the working process of a single delay unit is as follows: after the SSB modulated optical signal (comprising a carrier and a sideband signal) passes through a high-Q microring filter, the carrier is filtered out (as shown in Figure 10 As shown in A), where the sideband signal is delayed by the cascaded micro-ring type continuous adjustable delay line (as shown in B of Figure 10), the carrier wave passes through a section of waveguide and then passes through the same high-Q value The micro-ring filter recombines the carrier with the sideband signal passing through the continuously adjustable delay line (as shown in C in Figure 10), realizing the entire carrier separation and recombination process.
  • a cascaded micro-ring delay line consists of four micro-rings (MRRs), denoted as R1, R2, R3, and R4.
  • a 2 ⁇ 2 symmetrical MZI adjustable coupler is used on the bus waveguide and the microring coupling area to adjust the equivalent coupling coefficient.
  • a thermo-optic (TO) phase shifter is placed in the lower arm of the MZI coupler, and the applied The voltage on the upper arm is used to control the phase difference between the two arms to adjust the coupling coefficient.
  • the equivalent coupling coefficient of MRR can be adjusted from 0 to 1.
  • the waveguide on the MRR is integrated with another thermal phase shifter to tune the resonant wavelength. There are etched air grooves next to each thermal phase shifter to prevent thermal crosstalk.
  • Fig. 11 is a detailed diagram of the microring-assisted Mach-Zehnder interference structure used in the ultra-wideband continuously adjustable delay unit cascaded microring delay line in the embodiment.
  • the single MRR adopted by the ultra-wideband continuous adjustable delay unit cascaded micro-ring delay line in this embodiment is formed by connecting one of the input ports and output ports of an equal-arm MZI, and the transmission matrix is used below The method is used to describe the transmission characteristics and delay characteristics of the structure.
  • the transfer function of the structure obtained after the microring propagates for one week is:
  • 2 cos 2 ⁇ d .
  • the adjustment of MRR is realized by controlling two phase shifters.
  • the phase difference ⁇ d on the MZI affects the coupling coefficient of the microring.
  • the common phase ⁇ c of the MZI and the phase ⁇ on the microring affect the resonance position of the microring.
  • Fig. 12 is a detailed diagram of the structure of the high-Q micro-ring filter adopted by the ultra-wideband continuously adjustable delay unit in the embodiment.
  • the coupling region of the high-Q microring filter adopts a wide waveguide
  • the bending part of the microring adopts an Euler bending structure to improve the Q value.
  • this embodiment adopts two front and rear microring uplink and download filter structures to realize carrier and signal sideband separation and synthesis, wherein the carrier is output from the download terminal (Drop), and the signal sideband is directly output from the through terminal (Through).
  • the spectrum changes of the microwave optical signal before and after passing through the microring filter are shown in A, B, C and D in Fig. 10 of the accompanying drawings.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明涉及一种硅基可重构微波光子多波束形成网络芯片,包括光纤耦合器、光开关阵列、光分路器、超宽带连续可调光真延迟线阵列和探测器阵列;所述光纤耦合器用于输入微波光子相控阵雷达的单边带调制光信号,所述光开关阵列和光分路器用于形成微波光子多波束和微波光子单波束所用阵元数目的重构,所述超宽带连续可调光真延迟线阵列用于独立地调节每个微波阵元上的延迟,所述探测器阵列用于输出微波信号。有益效果是用于微波光子相控阵雷达,实现大瞬时带宽、高分辨率、可重构微波光子多波束形成。

Description

一种硅基可重构微波光子多波束形成网络芯片 【技术领域】
本发明涉及集成微波光子学技术领域,具体涉及一种硅基可重构微波光子多波束形成网络芯片。
【背景技术】
普通的相控阵雷达即相位控制电子扫描阵列雷达,利用大量个别控制的小型天线单元排列成天线阵面,每个天线单元都由独立的移相单元控制,通过控制各天线单元发射信号的相位,可以改变空间中各天线单元发射信号的干涉图样,从而控制波束发射的方向。相控阵各天线单元发射的电磁波通过干涉合成一个发射方向接近笔直的雷达主瓣波束,各天线单元的不均匀性会形成旁瓣。相控阵雷达从根本上解决了传统机械扫描雷达的种种先天问题,在相同的孔径与操作波长下,相控阵的扫描速度、目标更新速率、多目标追踪能力、分辨率、多功能性、电子对抗能力等都远优于传统雷达。
为了提高抗干扰能力,新型相控阵雷达必须具有尽可能大的带宽;为了提高雷达的分辨率、识别能力并解决多目标成像问题,要求新型相控阵雷达必须具有大的瞬时带宽并具备多波束发射能力;为了对抗反辐射的威胁,也要求采用大瞬时带宽的扩频信号。传统的同轴电缆延迟线、声表面波(SAW)延迟线、电荷耦合器件(CCD)均不能满足需要。静磁波器件技术和超导延迟线技术离实用化还很遥远。
随着光纤通信技术的飞速发展,各种激光光源、光探测器、光调制器、光开关等有源及无源器件已经高度商业化、市场化。微波光子技术也应运而生,对比传统的电子技术具有瞬时带宽大、损耗低、抗电磁干扰等优点。因此,利 用光学真延迟技术研制相控阵雷达的波束形成网络便作为可以突破电子瓶颈的解决方案而成为研究热点。
过去几十年,各种光学波束形成器的方案已经被报道。其中,它们大多基于光学移相器、可切换光纤延迟矩阵、液晶偏振切换器件、波长可调谐激光器和色散光学元件等。然而这些绝大部分由分立器件构成,会带来系统庞大、稳定性差等问题,并且大多都只是单波束成形网络。为了降低系统体积、质量和功耗、提高稳定性和实用化水平,集成光子技术是发展高性能高稳定性波束形成器的必然选择。同时,为提高雷达抗干扰能力和生存能力、充分利用发射波束能量、提高雷达数据率和波束形成的灵活性,需要建立超宽带的可重构多波束形成网络。
目前学术界对于微波光子多波束形成的研究大多停留在分立器件层面上,少数集成方案仍存在明显缺陷。分立器件方面,2016年,西班牙的Beatriz Ortega和Jose Mora等人(IEEE Photon.J.,2016,8(3))提出了一种具有较宽角度偏转范围的二维阵列天线的波束成形网络,该网络利用子阵列天线划分实现多波束功能。该系统使用固定的多波长激光器,并将啁啾光纤布拉格光栅与光纤延迟线结合使用,为阵列天线馈电。根据不同具体的应用,不同子阵列的定义允许呈现多达四个在不同方向上定向的空间复用光束,受分立器件特性限制,其调节精度较小,稳定性较差。集成方案方面,2021年浙江大学的研究团队(Opt.Commun.,2021,489)也采用划分子阵列的方法可以将原有2D波束形成方案扩展为多波束可独立控制的波束形成,比较易于实现,然而该方案需要将多个芯片之间进行复杂连接,集成度较低,最大形成多波束的数量和单个波束形成所需阵元数固定不变,并且后端还需要加入微波功率分配结构,灵活性和 实用性较差。
【发明内容】
本发明的目的是,提供一种用于微波光子相控阵雷达,实现大瞬时带宽、高分辨率、可重构微波光子多波束形成的网络芯片。
为实现上述目的,本发明采取的技术方案是一种硅基可重构微波光子多波束形成网络芯片,包括光纤耦合器、光开关阵列、光分路器、超宽带连续可调光真延迟线阵列和探测器阵列;所述光纤耦合器用于输入微波光子相控阵雷达的单边带调制光信号,所述光开关阵列和光分路器用于形成微波光子多波束和微波光子单波束所用阵元数目的重构,所述超宽带连续可调光真延迟线阵列用于独立地调节每个微波阵元上的延迟,所述探测器阵列用于输出微波信号。
优选地,上述的一种硅基可重构微波光子多波束形成网络芯片,包括N个光纤耦合器、一个N×N光开关阵列、N个1×M光分路器、N×M路超宽带连续可调光真延迟线阵列和N×M路探测器阵列;所述N个光纤耦合器的输入信号为N路载波波长为λ、调制信号为待发射微波信号的单边带调制光信号,所述N个光纤耦合器的输出端分别与所述N×N光开关阵列的N个输入端相连接,所述N×N光开关阵列的N个输出端分别与所述N个1×M光分路器的输入端相连接,所述N个1×M光分路器的输出端分别与所述N×M路超宽带连续可调光真延迟线阵列的输入端相连接,所述N×M路超宽带连续可调光真延迟线阵列的输出端分别与所述N×M路探测器阵列的输入端相连接,所述N×M路探测器阵列输出信号为最大波束数等于N的微波信号。
优选地,所述光纤耦合器采用光栅耦合器结构或者模斑变换器结构,用于实现光纤和芯片的光学耦合。
优选地,所述N×N光开关阵列由若干个2×2光开关单元和波导交叉结以 Benes、Crossbar或者双层网络结构的拓扑结构组成,所述2×2光开关单元采用马赫-增德尔干涉器结构,所述波导交叉结采用多模干涉结构;所述2×2光开关单元集成了用于实现光开关状态切换的热调移相器或者电调移相器;调节所述N×N光开关阵列光开关状态进行不同路由路径,实现可重构光分路器功能,所述N×N光开关阵列输入光束和输出光束的分束比可重构为1:2,1:4,…,或1:N。
优选地,所述1×M分光分路器将输入光平均分束到M路输出,采用级联1×2分路器或者1×M多模干涉器结构构成,所述1×2分路器采用多模干涉器结构或Y型分叉结构。
优选地,所述的N×M路超宽带连续可调光真延迟阵列由N×M个相同的可调真延迟线并行构成。
优选地,所述可调真延迟线由第一高Q值上下载可调光滤波器、第二高Q值上下载可调光滤波器和级联微环延迟线构成,所述第一高Q值上下载可调光滤波器和第二高Q值上下载可调光滤波器尺寸相同;所述可调延迟线的输入端与所述第一高Q值上下载可调滤波器的输入端相连接,所述第一高Q值上下载可调滤波器的直通端和下载端分别与级联微环延迟线的输入端和第二高Q值上下载滤波器的下载端相连接,所述级联微环延迟线的输出端与所述第二高Q值上下载滤波器的直通端相连接,所述第二高Q值上下载滤波器的输出端与所述级联微环延迟线的输出端相连接。
优选地,所述级联微环延迟线由多个微环级联构成,其中第一个和第二个微环的自由光谱范围相同,均为FSR1,从第p个微环起(p>2),微环自由光谱范围为2 p-2×FSR 1;所述多个微环的耦合区域包括一个马赫-增德尔干涉器结构,所述马赫-增德尔干涉器上集成用于耦合系数调节的热调或者电调移相器; 所述多个微环上集成用于微环谐振波长调节的热调或者电调移相器,使得载波波长λ落在第一个微环反谐振点波长附近。
优选地,所述第一高Q值上下载可调光滤波器和第二高Q值上下载可调光滤波器由一个具有高Q值的微环上下载滤波器构成,所述微环上下载滤波器滤波的中心波长与输入信号的载波波长λ一致,用于实现输入信号的载波与调制信号分离。
优选地,所述微环上下载滤波器通过微环的耦合区域采用宽波导、微环弯曲部分采用欧拉弯曲波导结构降低微环波导损耗,提高Q值。
优选地,所述N×M路探测器阵列将延迟后的光信号转换成微波信号,通过后端电放大后由天线输出,所述探测器由垂直或者水平PIN结构构成。
优选地,采用硅基集成光电子技术,结合锗、氮化硅和III-V族材料异质集成技术制备。
与现有技术相比,本发明有如下有益效果:采用成熟的集成光子技术,利用划分子阵列的方法产生发射多波束,利用光开关阵列实现形成波束数目和单波束所用阵元数目的重构,利用集成可调光真延迟线构成延时网络独立地调节每个波束发射的方向,实现大瞬时带宽、高分辨率、可重构的多波束形成,大幅提升微波光子雷达波束形成的灵活性和基本性能;1、采用了N×N光开关阵列,并对其拓扑结构进行设计,通过调整光开关状态的方式可对形成波束数和单波束所需阵元数进行重构,还可以控制输入的微波光信号在不同的子阵列或多个子阵列上同时输出;2、超宽带连续可调延时单元部分引入高Q微环滤波器对微波光信号的载波和调制波进行分离,提高了对级联微环型光延时线反谐振点处平坦延时带宽的利用率,大大提高了系统输入微波信号的工作带宽;3、形成的各个波束偏转角度由不同的超宽带微波光子延时单元中相邻路可调 延时线的延时差决定,因此各个波束的偏转角度可以分别独立控制,互不干扰;4、结构与控制简单,采用集成光子技术,具有尺寸小、功耗低的优点。
【附图说明】
图1是本发明所述的一种硅基可重构微波光子多波束形成网络芯片总体结构示意图。
图2是采用4×4光开关阵列的一种硅基可重构微波光子多波束形成网络芯片实施例结构示意图。
图3是一种硅基可重构微波光子多波束形成网络芯片中2×2多模干涉结构光开关单元结构图。
图4是一种硅基可重构微波光子多波束形成网络芯片中2×2定向耦合器结构光开关单元结构图。
图5是一种硅基可重构微波光子多波束形成网络芯片中1×2多模干涉结构光分束器结构图。
图6是一种硅基可重构微波光子多波束形成网络芯片中1×2Y型分束器结构光分束器结构图。
图7是采用4×4光开关阵列的一种硅基可重构微波光子多波束形成网络芯片单波束发射状态形成示意图。
图8是采用4×4光开关阵列的一种硅基可重构微波光子多波束形成网络芯片双波束发射状态形成示意图。
图9是采用4×4光开关阵列的一种硅基可重构微波光子多波束形成网络芯片四波束发射状态形成示意图。
图10是一种硅基可重构微波光子多波束形成网络芯片中超宽带连续可调 延迟单元结构和工作原理示意图。
图11是一种硅基可重构微波光子多波束形成网络芯片中超宽带连续可调延迟单元采用的高Q微环滤波器结构细节图。
图12是一种硅基可重构微波光子多波束形成网络芯片中超宽带连续可调延迟单元级联微环延迟线采用的微环辅助型马赫曾德干涉结构细节图。
【具体实施方式】
本发明实现一种硅基可重构微波光子多波束形成网络芯片,其总体结构如图1所示。图2所示的实施例是本发明在采用4×4光开关阵列情况下的一种具体实施例。结构具体包括一个4×4光开关阵列、4个1×4光分路器、16路超宽带连续可调光真延迟线阵列和16路探测器阵列;4个光纤耦合器的输入信号为4路载波波长为λ、调制信号为待发射微波信号的单边带调制光信号,4个光纤耦合器的输出端分别与所述4×4光开关阵列的4个输入端相连接,所述4×4光开关阵列的4个输出端分别与所述4个1×4光分路器的输入端相连接,所述4个1×4光分路器的输出端分别与所述16路超宽带连续可调光真延迟线阵列的输入端相连接,所述16路超宽带连续可调光真延迟线阵列的输出端分别与所述16路探测器阵列的输入端相连接,所述16路探测器阵列输出信号为最大波束数等于4的微波信号。
如图3和图4所示,实施例中的光开关单元可以采用基于2×2定向耦合器结构或2×2多模干涉结构的光开关单元。如图5和图6所示,实施例中的1×4光分路器可以由1×2多模干涉结构或1×2Y型分束器级联而成。
1、多波束的重构过程
4×4光开关阵列中单个光开关有交叉、直通、3-dB分光三种状态,各个光开关的工作状态通过调节两臂上移相器所加电压来改变。这里s(i,j)(i=1、 2、3、4,j=1、2、3)代表第i行,第j列的光开关,下面分别说明单波束(单波束利用十六个阵元进行发射)、双波束(单波束利用八个阵元进行发射)、四波束(单波束利用四个阵元进行发射)三种不同的多波束发射状态的实现过程:
图7是基于4×4光开关阵列的一种硅基可重构微波光子多波束形成网络芯片单波束发射状态形成示意图。在本实施例采用4×4光开关阵列的一种硅基可重构微波光子多波束形成网络芯片中,控制光开关s(1,1)、s(1,2)和s(2,2)处于3-dB分光状态,光开关s(1,3)、s(2,3)、s(3,3)和s(4,3)均处于直通状态时,单边带微波光信号在波束形成网络芯片中的传输路径如图附图7所示,此时全部16个微波发射阵元用来实现1个波束的发射。
图8是采用4×4光开关阵列的一种硅基可重构微波光子多波束形成网络芯片双波束发射状态形成示意图。在本实施例采用4×4光开关阵列的一种硅基可重构微波光子多波束形成网络芯片中,控制光开关s(2,2)和s(3,2)处于3-dB分光状态,光开关s(1,1)、s(2,1)、s(3,3)和s(4,3)处于直通状态,光开关s(1,3)和s(2,3)均处于交叉状态时,单边带微波光信号在波束形成网络芯片中的传输路径如附图8所示,此时可实现双波束形成,每8个微波发射阵元参与1个波束的发射。
图9是采用4×4光开关阵列的一种硅基可重构微波光子多波束形成网络芯片四波束发射状态形成示意图。在本实施例采用4×4光开关阵列的一种硅基可重构微波光子多波束形成网络芯片中,控制光开关s(1,1)、s(2,1)、s(1,2)、s(4,2)、s(1,3)和s(3,3)均处于直通状态,光开关s(3,1)、s(4,1)、s(2,2)、s(3,2)、s(2,3)和s(4,3)均处于交叉 状态时,单边带微波光信号在波束形成网络芯片中的传输路径如附图9所示,此时四个子阵列发射不同的输入波束,每4个微波发射阵元参与1个波束的形成。
2、超宽带可调延时单元结构及工作原理。
图10是一种硅基可重构微波光子多波束形成网络芯片超宽带连续可调延迟单元结构和工作原理示意图。如附图10所示,它由第一高Q值上下载可调光滤波器、第二高Q值上下载可调光滤波器和级联微环延迟线构成,第一高Q值上下载可调光滤波器和第二高Q值上下载可调光滤波器尺寸相同;可调延迟线的输入端与第一高Q值上下载可调滤波器的输入端相连接,第一高Q值上下载可调滤波器的直通端和下载端分别与级联微环延迟线的输入端和第二高Q值上下载滤波器的下载端相连接,级联微环延迟线的输出端与第二高Q值上下载滤波器的直通端相连接,第二高Q值上下载滤波器的输出端与级联微环延迟线的输出端相连接。微环上下载滤波器滤波的中心波长与输入信号的载波波长λ一致,用于实现输入信号的载波与调制信号分离。本实施例中单个延时单元工作过程为:单边带调制的光信号(包含载波和一侧的边带信号)经过高Q值微环滤波器后,其中的载波被滤出(如图10的A所示),其中的边带信号单独由级联微环型的连续可调延迟线进行延时调节(如图10的B所示),载波经过一段波导后再通过同样的高Q值微环滤波器将载波重新和经过连续可调延时线的边带信号进行合束(如图10的C所示),实现整个载波分离和再合成过程。
级联微环延迟线由四个微环(MRR)组成,分别表示为R1,R2,R3和R4。四个MRR的往返时间τ i(i=1、2、3、4)设计为30ps、30ps、60ps和120ps。总线波导和微环耦合区域上使用了2×2对称MZI的可调耦合器以调整 等效耦合系数,将一个热光(TO)移相器放置在MZI耦合器的下臂中,通过调节施加在上臂的电压以控制两臂的相位差以调整耦合系数,理论上可以将MRR的等效耦合系数从0调整到1。在MRR上的波导与另一个热移相器器集成在一起,以调节谐振波长。在每个热移相器旁边均有刻蚀的空气沟槽以防止热串扰。
图11是实施例中超宽带连续可调延迟单元级联微环延迟线采用的微环辅助型马赫曾德干涉结构细节图。如附图11所示,本实施例中超宽带连续可调延迟单元级联微环延迟线采用的单个MRR,由一个等臂的MZI的其中一个输入端口与输出端口相连而成,下面使用传输矩阵法来描述该结构的传输特性和延时特性。
对于一个等臂的MZI,并且MMI为3dB耦合器,则有:
Figure PCTCN2021123519-appb-000001
而经过微环传播一周后得到过该结构后的传输函数为:
Figure PCTCN2021123519-appb-000002
Figure PCTCN2021123519-appb-000003
其中,θ r为微环上的相位变化,一部由光经过环一周后所走的光程引入(ωτ),另一部分由微环上的热移相器引入(θ),ω和τ分别表示输入光的频率和光在微环上传播一周所需要的时间,
Figure PCTCN2021123519-appb-000004
是微环谐振器传输函数的极点,ρ r
Figure PCTCN2021123519-appb-000005
为共轭复数对,z -1=αe -jωτ为微环内光的传输函数,由此可以得到微环的等效耦合系数为k=1-|ρ r| 2=cos 2Δφ d
对MRR的调节通过控制两个移相器实现,MZI上的相位差Δφ d影响着微环的耦合系数,通过调节Δφ d理论上可以实现微环的耦合系数从0~1变化。MZI的公共相位φ c和微环上的相位θ影响着微环的谐振位置。当MZI处于直通状态 (κ=0)时,光信号不经过微环,整个结构成为零延迟的单个波导。当MZI处于交叉状态(κ=1)时,光仅通过微环一次。这时它等效于延迟时间为τ的延迟线。
图12是实施例中超宽带连续可调延迟单元采用的高Q微环滤波器结构细节图。如附图12所示,该高Q值微环滤波器耦合区采用宽波导,微环弯曲部分采用欧拉弯曲结构提高Q值。具体来讲,本实施例采用前后两个微环上下载滤波器结构实现载波和信号边带分离和合成,其中载波从下载端(Drop)输出,信号边带直接通过从直通端(Through)输出,微波光信号经过微环滤波器前后的频谱变化情况如附图图10中A、B、C和D所示。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和补充,这些改进和补充也应视为本发明的保护范围。

Claims (12)

  1. 一种硅基可重构微波光子多波束形成网络芯片,其特征在于:其结构包括光纤耦合器、光开关阵列、光分路器、超宽带连续可调光真延迟线阵列和探测器阵列;所述光纤耦合器用于输入微波光子相控阵雷达的单边带调制光信号,所述光开关阵列和光分路器用于形成微波光子多波束和微波光子单波束所用阵元数目的重构,所述超宽带连续可调光真延迟线阵列用于独立地调节每个微波阵元上的延迟,所述探测器阵列用于输出微波信号。
  2. 根据权利要求1所述的一种硅基可重构微波光子多波束形成网络芯片,其特征在于:包括N个光纤耦合器、一个N×N光开关阵列、N个1×M光分路器、N×M路超宽带连续可调光真延迟线阵列和N×M路探测器阵列;所述N个光纤耦合器的输入信号为N路载波波长为λ、调制信号为待发射微波信号的单边带调制光信号,所述N个光纤耦合器的输出端分别与所述N×N光开关阵列的N个输入端相连接,所述N×N光开关阵列的N个输出端分别与所述N个1×M光分路器的输入端相连接,所述N个1×M光分路器的输出端分别与所述N×M路超宽带连续可调光真延迟线阵列的输入端相连接,所述N×M路超宽带连续可调光真延迟线阵列的输出端分别与所述N×M路探测器阵列的输入端相连接,所述N×M路探测器阵列输出信号为最大波束数等于N的微波信号。
  3. 根据权利要求2所述的一种硅基可重构微波光子多波束形成网络芯片,其特征在于:所述光纤耦合器采用光栅耦合器结构或者模斑变换器结构,用于实现光纤和芯片的光学耦合。
  4. 根据权利要求2所述的一种硅基可重构微波光子多波束形成网络芯片,其特征在于:所述N×N光开关阵列由若干个2×2光开关单元和波导交叉结以Benes、Crossbar或者双层网络结构的拓扑结构组成,所述2×2光开关单元采 用马赫-增德尔干涉器结构,所述波导交叉结采用多模干涉结构;所述2×2光开关单元集成了用于实现光开关状态切换的热调移相器或者电调移相器;调节所述N×N光开关阵列光开关状态进行不同路由路径,实现可重构光分路器功能,所述N×N光开关阵列输入光束和输出光束的分束比可重构为1:2,1:4,…,或1:N。
  5. 根据权利要求2所述的一种硅基可重构微波光子多波束形成网络芯片,其特征在于:所述1×M分光分路器将输入光平均分束到M路输出,采用级联1×2分路器或者1×M多模干涉器结构构成,所述1×2分路器采用多模干涉器结构或Y型分叉结构。
  6. 根据权利要求2所述的一种硅基可重构微波光子多波束形成网络芯片,其特征在于:所述的N×M路超宽带连续可调光真延迟阵列由N×M个相同的可调真延迟线并行构成。
  7. 根据权利要求6所述的一种硅基可重构微波光子多波束形成网络芯片,其特征在于:所述可调真延迟线由第一高Q值上下载可调光滤波器、第二高Q值上下载可调光滤波器和级联微环延迟线构成,所述第一高Q值上下载可调光滤波器和第二高Q值上下载可调光滤波器尺寸相同;所述可调延迟线的输入端与所述第一高Q值上下载可调滤波器的输入端相连接,所述第一高Q值上下载可调滤波器的直通端和下载端分别与级联微环延迟线的输入端和第二高Q值上下载滤波器的下载端相连接,所述级联微环延迟线的输出端与所述第二高Q值上下载滤波器的直通端相连接,所述第二高Q值上下载滤波器的输出端与所述级联微环延迟线的输出端相连接。
  8. 根据权利要求7所述的一种硅基可重构微波光子多波束形成网络芯片,其特征在于:所述级联微环延迟线由多个微环级联构成,其中第一个和第二个 微环的自由光谱范围相同,均为FSR 1,从第p个微环起(p>2),微环自由光谱范围为2 p-2×FSR 1;所述多个微环的耦合区域包括一个马赫-增德尔干涉器结构,所述马赫-增德尔干涉器上集成用于耦合系数调节的热调或者电调移相器;所述多个微环上集成用于微环谐振波长调节的热调或者电调移相器,使得载波波长λ落在第一个微环反谐振点波长附近。
  9. 根据权利要求7所述的一种硅基可重构微波光子多波束形成网络芯片,其特征在于:所述第一高Q值上下载可调光滤波器和第二高Q值上下载可调光滤波器由一个具有高Q值的微环上下载滤波器构成,所述微环上下载滤波器滤波的中心波长与输入信号的载波波长λ一致,用于实现输入信号的载波与调制信号分离。
  10. 根据权利要求9所述的一种硅基可重构微波光子多波束形成网络芯片,其特征在于:所述微环上下载滤波器通过微环的耦合区域采用宽波导、微环弯曲部分采用欧拉弯曲波导结构降低微环波导损耗,提高Q值。
  11. 根据权利要求2所述的一种硅基可重构微波光子多波束形成网络芯片,其特征在于:所述N×M路探测器阵列将延迟后的光信号转换成微波信号,通过后端电放大后由天线输出,所述探测器由垂直或者水平PIN结构构成。
  12. 根据权利要求2所述的一种硅基可重构微波光子多波束形成网络芯片,其特征在于:采用硅基集成光电子技术,结合锗、氮化硅和III-V族材料异质集成技术制备。
PCT/CN2021/123519 2021-09-24 2021-10-13 一种硅基可重构微波光子多波束形成网络芯片 WO2023044990A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111122981.3A CN113885128B (zh) 2021-09-24 2021-09-24 一种硅基可重构微波光子多波束形成网络芯片
CN202111122981.3 2021-09-24

Publications (1)

Publication Number Publication Date
WO2023044990A1 true WO2023044990A1 (zh) 2023-03-30

Family

ID=79006604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/123519 WO2023044990A1 (zh) 2021-09-24 2021-10-13 一种硅基可重构微波光子多波束形成网络芯片

Country Status (2)

Country Link
CN (1) CN113885128B (zh)
WO (1) WO2023044990A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117784313A (zh) * 2024-02-28 2024-03-29 之江实验室 基于循环阵列波导光栅的二维光子卷积运算芯片及系统
CN117784313B (zh) * 2024-02-28 2024-06-07 之江实验室 基于循环阵列波导光栅的二维光子卷积运算芯片及系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114531205B (zh) * 2022-01-13 2022-09-23 之江实验室 一种可编程二维同时多波束光控相控阵接收机芯片及多波束控制方法
CN114567384B (zh) * 2022-02-17 2023-06-27 上海交通大学 通用型硅基光子毫米波/太赫兹芯片及其传递系统和方法
CN114740617B (zh) * 2022-04-08 2023-06-30 中国科学院光电技术研究所 一种大视场高分辨全固态光学扫描系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103941235A (zh) * 2014-02-26 2014-07-23 上海交通大学 全光控相控阵雷达发射机
CN108303689A (zh) * 2018-01-19 2018-07-20 浙江大学 一种光控雷达阵列动态可重构和差波束的装置
CN108761439A (zh) * 2018-05-07 2018-11-06 上海交通大学 基于波分复用的集成多波束光相控阵延迟网络
US20180321569A1 (en) * 2017-05-04 2018-11-08 The Charles Stark Draper Laboratory, Inc. Chip scale optical systems
CN110233678A (zh) * 2019-05-15 2019-09-13 上海交通大学 基于硅基集成微波光子接收处理芯片

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2562197Y (zh) * 2002-07-09 2003-07-23 华中科技大学 一种低串扰的n×n光交换结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103941235A (zh) * 2014-02-26 2014-07-23 上海交通大学 全光控相控阵雷达发射机
US20180321569A1 (en) * 2017-05-04 2018-11-08 The Charles Stark Draper Laboratory, Inc. Chip scale optical systems
CN108303689A (zh) * 2018-01-19 2018-07-20 浙江大学 一种光控雷达阵列动态可重构和差波束的装置
CN108761439A (zh) * 2018-05-07 2018-11-06 上海交通大学 基于波分复用的集成多波束光相控阵延迟网络
CN110233678A (zh) * 2019-05-15 2019-09-13 上海交通大学 基于硅基集成微波光子接收处理芯片

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GAO HUI, DENG YE;ZHANG JINPING;ZHOU ZHIPENG: "Analysis and Prospects of Phased Array Radar Based on Microwave Photonics", JOURNAL OF RADARS, vol. 8, no. 2, 1 April 2019 (2019-04-01), pages 251 - 261, XP093054253, ISSN: 2095-283X, DOI: 10.12000/JR18105 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117784313A (zh) * 2024-02-28 2024-03-29 之江实验室 基于循环阵列波导光栅的二维光子卷积运算芯片及系统
CN117784313B (zh) * 2024-02-28 2024-06-07 之江实验室 基于循环阵列波导光栅的二维光子卷积运算芯片及系统

Also Published As

Publication number Publication date
CN113885128B (zh) 2022-08-09
CN113885128A (zh) 2022-01-04

Similar Documents

Publication Publication Date Title
WO2023044990A1 (zh) 一种硅基可重构微波光子多波束形成网络芯片
CN108761439B (zh) 基于波分复用的集成多波束光相控阵延迟网络
US7084811B1 (en) Agile optical wavelength selection for antenna beamforming
US10686523B1 (en) Co-boresighted optical and RF phased array and photonic integrated circuit
EP3064956B1 (en) Fully optically controlled phased array radar transmitter
CN111181683B (zh) 一种基于微波光子的超宽带接收机的装置及设计方法
CN108535699A (zh) 微波光子数字波束形成方法、装置及宽带数字阵列雷达
US5761351A (en) Wavelength-addressable optical time-delay network and phased array antenna incorporating the same
US5977911A (en) Reactive combiner for active array radar system
CN110501779B (zh) 微环延时矩阵及微波光子集成多波束相控阵芯片、系统
CN106027134B (zh) 一种光子微波相控阵收发系统及其方法
WO2023134702A1 (zh) 一种可编程二维同时多波束光控相控阵接收机芯片及多波束控制方法
CN108448252B (zh) 一种大带宽、大角度、连续扫描光控相控阵天线接收装置及方法
US11394116B2 (en) Dual optical and RF phased array and photonic integrated circuit
CN114157391A (zh) 波束赋形装置及其波束赋形方法
CN113985521A (zh) 硅-氮化硅三维集成偏振无关波长选择光开关阵列芯片
US8610625B2 (en) Method and apparatus for transmitting and receiving phase-controlled radiofrequency signals
CN111487602A (zh) 光相控阵列、激光雷达及光功率分配方法
CN116865900A (zh) 一种全光同时多频段多波束相控阵发射机及其方法
CN117040575A (zh) 一种多波长调制的相干光学接收多波束形成装置及方法
CN108847892A (zh) 一种基于光子学的宽带射频波束形成方法及装置
CN114567384A (zh) 通用型硅基光子毫米波/太赫兹芯片及其传递系统和方法
US20020186920A1 (en) Coupler assisted tunable add/drop filter
Steeg et al. 2D mm-wave beam steering via optical true-time delay and leaky-wave antennas
Liu et al. Millimeter wave beamsteering with true time delayed integrated optical beamforming network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE