WO2024021556A1 - 一种靶向前列腺特异性膜抗原的放射性金属配合物及其标记配体 - Google Patents

一种靶向前列腺特异性膜抗原的放射性金属配合物及其标记配体 Download PDF

Info

Publication number
WO2024021556A1
WO2024021556A1 PCT/CN2023/074194 CN2023074194W WO2024021556A1 WO 2024021556 A1 WO2024021556 A1 WO 2024021556A1 CN 2023074194 W CN2023074194 W CN 2023074194W WO 2024021556 A1 WO2024021556 A1 WO 2024021556A1
Authority
WO
WIPO (PCT)
Prior art keywords
psma
solution
membrane antigen
specific membrane
mobile phase
Prior art date
Application number
PCT/CN2023/074194
Other languages
English (en)
French (fr)
Inventor
朱霖
王然
靳文斌
孔繁渊
Original Assignee
北京师范大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京师范大学 filed Critical 北京师范大学
Priority to CN202380008287.XA priority Critical patent/CN116547293A/zh
Priority to PCT/CN2023/074194 priority patent/WO2024021556A1/zh
Publication of WO2024021556A1 publication Critical patent/WO2024021556A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/06General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/107General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06008Dipeptides with the first amino acid being neutral
    • C07K5/06017Dipeptides with the first amino acid being neutral and aliphatic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the invention relates to a radioactive metal complex targeting prostate-specific membrane antigen (PSMA) and its labeled ligand, and belongs to the technical field of radiopharmaceutical chemistry.
  • PSMA prostate-specific membrane antigen
  • Prostate Cancer refers to a malignant tumor that occurs in the prostate epithelium. It is one of the most common malignant tumors in the male genitourinary system and the sixth leading cause of cancer death. In recent years, nuclear medicine has been increasingly used in the diagnosis and treatment of prostate cancer.
  • Positron emission computed tomography PET
  • SPECT single photon emission computed tomography
  • Needle molecules radioactive metal complexes are one type of probe molecules
  • detecting the rays emitted by the decay of the nuclide a three-dimensional image of the distribution of the probe molecules in the body can be obtained.
  • nuclear medicine imaging can non-invasively and accurately reflect the location of lesions in the body, making it safer and more reliable.
  • the corresponding radioactive therapeutic drug can be obtained.
  • This type of drug is enriched in targeted tissues and organs, and uses radiation particles released by nuclide decay to cause irreversible damage to the DNA of targeted cells, induce chromosomal deletions and aberrations, and kill diseased cells, thereby achieving the purpose of treatment. Radiotherapy drugs cause less damage to healthy tissue than traditional radiation therapy.
  • PSMA Prostate Specific Membrane Antigen
  • Prostate Specific Membrane Antigen is usually highly expressed in prostate cancer and has become the target of a variety of radioactive diagnostic or therapeutic drugs.
  • PSMA-targeted metal radionuclide-labeled diagnostic or therapeutic complexes have emerged one after another.
  • probes are usually composed of radionuclides, bifunctional chelators, linking groups and targeting groups ( Figure 1), and the Glu-Urea-Lys (GUL) structure, as the key unit of PSMA targeting probes, has recently been Got a lot of attention.
  • [ 68 Ga]Ga-HBED-CC-PSMA-11 ( Figure 2) was approved by the FDA as the first prostate cancer PET diagnostic drug. Due to its convenient labeling method and high radiochemical yield and good imaging properties, it has become the most widely used PSMA-targeted radioactive metal complex.
  • the prostate cancer treatment drug [ 177 Lu]Lu-PSMA-617 ( Figure 3) was also approved by the FDA in 2021. Compared with [ 68 Ga]Ga-HBED-CC-PSMA-11, the new molecule [ 177 Lu]Lu-PSMA-617 maintains the original targeting PSMA group GUL and replaces the bifunctional chelator HBED-CC For DOTA, it is labeled with the therapeutic nuclide Lu-177. At the same time, modifications are made on the linking group part to increase the lipid solubility of the molecule and promote It improves the internalization of molecules, prolongs tumor uptake and accelerates renal clearance, giving this radioactive metal complex significant clinical therapeutic advantages.
  • the PSMA prostate cancer diagnostic drug [ 68 Ga]Ga-HBED-CC-PSMA-11 has defects such as high uptake in non-target organs (such as kidneys), which affects the detection of primary prostate cancer lesions located in the pelvis and [ 177 Lu]Lu-PSMA-617 has problems such as the tumor uptake and retention properties of therapeutic drugs that need to be improved.
  • a new generation of diagnostic and therapeutic drugs targeting PSMA continues to be developed and researched in order to improve the metabolic properties in the body and increase tumor uptake.
  • the second generation [ 68 Ga]Ga-HBED-CC-PSMA-093 (patent name: UREA-BASED PROSTATE SPECIFIC MEMBRANE ANTIGEN (PSMA) INHIBITORS FOR IMAGING AND THERAPY, patent number: EP3397968B1, Figure 4), and the Compared with the first generation [ 68 Ga]Ga-HBED-CC-PSMA-11, a more lipid-soluble linking group is used, which results in higher tumor uptake, significantly reduced bladder uptake in the body, and is more beneficial to the primary focus of prostate cancer. The detection has important clinical diagnostic value.
  • AAZTA (6-(bis(2-(tert-butoxy)-2-oxoethyl)amino)-1,4-bis(2-tert-butoxy-2-oxoethyl ester)
  • This bifunctional chelator has been used to connect to a variety of targeting groups such as fibroblast activation inhibitors, gastrin-releasing peptide receptor antagonists, RGD peptides, TOC cyclic peptides, etc.
  • targeting groups such as fibroblast activation inhibitors, gastrin-releasing peptide receptor antagonists, RGD peptides, TOC cyclic peptides, etc.
  • RGD peptides gastrin-releasing peptide receptor antagonists
  • TOC cyclic peptides etc.
  • Related radioactive metal complexes are also Under development research.
  • a new synthetic method is provided to overcome the shortcomings in the existing technology and prepare radiopharmaceuticals and their new labeled ligands that can be used for tumor diagnosis and treatment: by improving the intermediate linking group, combining the PSMA targeting group with The metal chelating agent AAZTA is used for labeling of radioactive metal nuclides such as 44/47 Sc, 64 Cu, 68 Ga, 111 In, 177 Lu, etc. for diagnosis or treatment. It is intended to increase the uptake of radioactive metal complexes by tumors and accelerate the treatment of radioactive metal nuclides. Metabolic clearance of target organs and improvement of tumor diagnosis or treatment have become technical problems that urgently need to be solved in this technical field.
  • One of the purposes of the present invention is to provide a labeled ligand targeting prostate-specific membrane antigen, the complex of which exhibits high affinity and specificity for prostate-specific membrane antigen, and is expected to improve the coordination of tumors with radioactive metals. It has excellent in vivo pharmacokinetic properties and can quickly and easily label a variety of diagnostic and therapeutic radionuclides; and, the labeling formula targeting prostate-specific membrane antigen
  • the synthesis of the compound avoids the production of various by-products, increases the yield, and solves problems such as difficulty in subsequent purification.
  • Another object of the present invention is to provide a method for preparing the above-mentioned labeled ligand targeting prostate-specific membrane antigen.
  • a method for preparing a labeled ligand targeting prostate-specific membrane antigen the steps are as follows:
  • the bifunctional linker AAZTA is 5-(6-(bis(2-(tert-butoxy)-2-oxoethyl)amino)-1,4-bis( 2-tert-Butoxy-2-oxoethyl)-1,4-diaza-6-yl)valeric acid.
  • the base is N,N-diisopropylethylamine, and the added amount is 3-5 equivalents;
  • the condensation agent is 1-hydroxybenzotriazole and 1-ethyl- (3-dimethylaminopropyl)carbodiimide hydrochloride, the added amount is 1.5 equivalents;
  • the added amount of AAZTA is 1 equivalent;
  • the acid is trifluoroacetic acid, the added amount is 5 ml.
  • the specific synthesis steps of the labeled ligand targeting prostate-specific membrane antigen are as follows:
  • Another object of the present invention is to provide a radioactive metal complex targeting prostate-specific membrane antigen
  • the radioactive metal complex contains a diagnostic or therapeutic nuclide and can show high affinity and specificity for prostate-specific membrane antigen. It is expected to improve the uptake of the radioactive metal complex by tumors and accelerate the metabolism of non-target organs. It has It has excellent in vivo pharmacokinetic properties and is a potential integrated drug for prostate cancer diagnosis and treatment.
  • a radioactive metal complex targeting prostate-specific membrane antigen its structural formula is shown in Figure 8.
  • Another object of the present invention is to provide a method for preparing the above-mentioned radioactive metal complex targeting prostate-specific membrane antigen.
  • the reaction process is: mix uniformly, the reaction temperature is 50°C, the reaction time is 5 min, and cooled to room temperature.
  • the test conditions of the high-performance liquid chromatography with radioactive detector are: the first mobile phase is 0.1% trifluoroacetic acid aqueous solution (v/v), and the second mobile phase is 0.1% trifluoroacetic acid.
  • Fluoroacetic acid acetonitrile solution (v/v) gradient elution conditions are: 0-12 minutes, 95%-19% of the first mobile phase; 12-13 minutes, 19%-95% of the first mobile phase; 13- 15 min, 95% of first mobile phase; mobile phase flow rate is 1 ml/min.
  • the reaction process is: mix uniformly, the reaction temperature is 50°C, the reaction time is 5 minutes, and the mixture is cooled to room temperature.
  • the test conditions of the high-performance liquid chromatography with radioactive detector are: the first mobile phase is 0.1% trifluoroacetic acid aqueous solution (v/v), and the second mobile phase is 0.1% trifluoroacetic acid.
  • Fluoroacetic acid acetonitrile solution (v/v) gradient elution conditions are: 0-2 minutes, 95% of the first mobile phase; 2-10 minutes, 95%-60% of the first mobile phase; 10-12 minutes, 60%-95% of the first mobile phase; 12-15 minutes, 95% of the first mobile phase; the flow rate of the mobile phase is 1 ml/min.
  • the radioactive metal complex targeting prostate-specific membrane antigen of the present invention carries a diagnostic or therapeutic nuclide, exhibits high affinity and specificity for prostate-specific membrane antigen, and has better cellular uptake and internalization. It is expected to improve the uptake of radioactive metal complexes by tumors and accelerate the metabolism of non-target organs. It has excellent in vivo pharmacokinetic properties and overcomes the inadequacies in the in vivo pharmacokinetic properties of existing prostate-specific membrane antigen-targeting radioactive drugs. It is good and difficult to take into account the shortcomings of diagnosis and treatment, so it is a potential integrated drug for prostate cancer diagnosis and treatment.
  • the labeled ligand (AAZTA-PSMA-093) in the present invention is prepared through the amine-carboxylic condensation reaction of the bifunctional chelating agent AAZTA and the targeting group PSMA-093. Since both AAZTA and PSMA contain a large number of carboxylic acid groups that are sensitive to this reaction, in order to prevent the production of various by-products, which will lead to lower yields, difficulty in subsequent purification and other problems, the present invention uses different protective groups to protect carboxylic acids at different positions. Group protection enables the selection of specific groups to participate in the reaction in specific reaction steps, ensuring the orderly progress of the reaction.
  • Figure 1 is a schematic diagram of the structure of a radioactive metal complex.
  • Figure 2 shows the structural formula of Ga-68 labeled PSMA-11.
  • Figure 3 shows the structural formula of Lu-177 labeled PSMA-617.
  • Figure 4 shows the structural formula of Ga-68 labeled PSMA-093.
  • Figure 5 shows the structural formula of the bifunctional chelating agent AAZTA.
  • Figure 6 is a general structural formula of a labeled ligand targeting prostate-specific membrane antigen in Example 1 of the present invention.
  • Figure 7 is a synthesis reaction equation of a labeled ligand targeting prostate-specific membrane antigen in Example 1 of the present invention.
  • Figure 8 is the general structural formula of the radioactive metal complex targeting prostate-specific membrane antigen in Example 1 of the present invention.
  • Figure 9 is the [ 68 Ga]Ga-AAZTA-PSMA-093 labeling reaction equation in Example 1 of the present invention.
  • Figure 10 is the [ 177 Lu]Lu-AAZTA-PSMA-093 labeling reaction equation in Example 2 of the present invention.
  • Figure 11 is a radio-HPLC spectrum of the labeling reaction solution of [ 68 Ga]Ga-AAZTA-PSMA-093 prepared in Example 1 of the present invention.
  • Figure 12 is a radio-HPLC spectrum of the labeling reaction solution of [ 177 Lu]Lu-AAZTA-PSMA-093 prepared in Example 2 of the present invention.
  • Figure 13 shows the uptake/internalization of [ 68 Ga]Ga-AAZTA-PSMA-093 and [ 68 Ga]Ga-PSMA-093 by 22Rv1-FOLH1-oe (PSMA positive) cells in vitro in Comparative Example 1 of the present invention.
  • Quantity-time graph, n 3.
  • the reagents and raw materials used in the preparation methods and detection methods described in the following examples and comparative examples are commercially available commodities, and the equipment used is commonly used equipment.
  • Step 1 Synthesis of 68Ga -labeled labeled ligands targeting prostate-specific membrane antigen
  • AAZTA-PSMA-093 is di-tert-butyl (((S)-6-((S)-2-(2-(4-(S)-2-(5-(6-(bis(2-(tert)) Butoxy)-2-oxoethyl)amino)-1,4-bis(2-tert-butoxy)-2-oxyethyl)-1,4-diaza-6-yl)pentan Amino)acetamido)-3-(tert-butoxy)-3-oxopropyl)phenoxy)ethylamino)-3-phenylpropionamido)-1-(tert-butoxy)- 1-oxohexan-2-yl)carbamoyl)-L-glutamic acid;
  • Carbonyl-L-lysine tert-butyl ester hydrochloride H-Lys(Z)-OtBu HCl, 4.47 g, 12.0 mmol
  • triethylamine 2.80 ml, 2.04 g, 20.2 mmol
  • L-glutamic acid di-tert-butyl ester hydrochloride Glu-OtBu (OtBu) HCl, 2.90 g, 9.83 mmol
  • triethylamine 2.80 ml, 2.04 g, 20.2 mmol
  • Step 2 68 Ga labeling of labeled ligands targeting prostate-specific membrane antigen
  • the test conditions of the high-performance liquid chromatography with radioactive detector described in the above steps are: the first mobile phase is 0.1% trifluoroacetic acid aqueous solution (v/v), and the second mobile phase is 0.1% trifluoroacetic acid acetonitrile solution (v /v), gradient elution conditions are: 0-12 minutes, 95%-19% of the first mobile phase; 12-13 minutes, 19%-95% of the first mobile phase; 13-15 minutes, 95% of the first mobile phase
  • the first mobile phase, the flow rate of the mobile phase is 1 ml/min.
  • Step 1 Synthesis of 177 Lu-labeled labeled ligand targeting prostate-specific membrane antigen
  • AAZTA-PSMA-093 is di-tert-butyl (((S)-6-((S)-2-(2-(4-(S)-2-(5-(6-(bis(2-(tert)) Butoxy)-2-oxoethyl)amino)-1,4-bis(2-tert-butoxy)-2-oxyethyl)-1,4-diaza-6-yl)pentan Amino)acetamido)-3-(tert-butoxy)-3-oxopropyl)phenoxy)ethylamino)-3-phenylpropionamido)-1-(tert-butoxy)- 1-oxohexan-2-yl)carbamoyl)-L-glutamic acid;
  • Step 2 177Lu labeling of labeled ligands targeting prostate-specific membrane antigen
  • a dimethyl sulfoxide solution containing 40 nanomoles of the labeled precursor AAZTA-PSMA-093 was added to 150 ⁇ l of a sodium acetate buffer solution with a concentration of 3 mol/L, and then 422 ⁇ l of 0.05 mol/L sodium acetate buffer solution was added.
  • Hydrochloric acid solution and 6 microliters of 3 mol/L sodium acetate buffer solution Add 25 microliters of the purchased [ 177 Lu]LuCl 3 hydrochloric acid solution to the mixed solution containing the labeled precursor, mix evenly, and react at 50 degrees Celsius for 15 minutes. Cool to room temperature, use high-performance liquid chromatography (radio-HPLC) with a radioactivity detector to measure the labeling rate, and obtain [ 177 Lu]Lu-AAZTA-PSMA-093 with a radiochemical purity greater than 95%;
  • the test conditions of the high-performance liquid chromatography with radioactive detector described in the above steps are: the first mobile phase is 0.1% trifluoroacetic acid aqueous solution (v/v), and the second mobile phase is 0.1% trifluoroacetic acid acetonitrile solution (v /v), gradient elution conditions are: 0-2 minutes, 95% of the first mobile phase; 2-10 minutes, 95%-60% of the first mobile phase; 10-12 minutes, 60%-95% of the first mobile phase First mobile phase; 12-15 minutes, 95% of the first mobile phase, mobile phase flow rate is 1 ml/min.
  • the cell density is approximately 5 ⁇ 10 5 /well; after 48 hours, aspirate the culture medium and use
  • the cells were washed twice with phosphate buffered saline solution of Ca 2+ and Mg 2+ , and 20 picomoles of [ 68 Ga]Ga-AAZTA-PSMA-093 or [ 68 Ga]Ga-PSMA with an activity of 2 ⁇ C were added to each well.
  • the cell density is approximately 1.5 ⁇ 10 5 /well; after 48 hours, aspirate the culture medium and use
  • the cells were washed twice with phosphate buffered saline solution of Ca 2+ and Mg 2+ , and 20 picomoles of [ 177 Lu]Lu-AAZTA-PSMA-093 or [ 177 Lu]Lu-PSMA with an activity of 2 ⁇ C were added to each well.
  • the radioactive metal complex targeting prostate-specific membrane antigen of the present invention contains glutamic acid-ureido-lysine as a PSMA targeting group, which ensures the specificity of binding of the radioactive metal complex to prostate-specific membrane antigen. ; Contains L-phenylalanine-o-(carboxymethyl)-L-tyrosine as a connecting group, which can adjust the lipid solubility of the molecule, help promote cellular internalization, and increase tumor uptake of probe molecules.
  • AAZTA (2,2'-(6-(bis(carboxymethyl)amino)-6-(4-carboxybutyl)-1,4-diaza-1,4 -Diyl)diacetic acid) as a bifunctional linker can achieve labeling of a variety of radionuclides under mild conditions.
  • Cell uptake and internalization experiments show that 68 Ga and 177 Lu labeled AAZTA-PSMA-093 have higher cellular uptake than [ 68 Ga]Ga-PSMA-093 or [ 177 Lu]Lu-PSMA-617 , the amount of intracellular internalization is also equivalent to the two groups of positive controls. It is expected to have higher tumor uptake and ideal pharmacokinetic properties in tumor patients with positive expression of prostate-specific membrane antigen, and has the potential to be used as an integrated radiopharmaceutical for diagnosis and treatment. potential.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Optics & Photonics (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

提供了一种靶向前列腺特异性膜抗原的放射性金属配合物及其标记配体,属于放射性药物化学技术领域;放射性金属配合物的结构通式如下,放射性金属配合物的标记时间为5-15min,标记产率>95%,radio-HPLC测定产品放射化学纯度>95%,产物表现出对前列腺特异性膜抗原的高亲和力和高特异性,是较有潜力的诊疗一体化靶向前列腺特异性膜抗原放射性金属配合物。

Description

一种靶向前列腺特异性膜抗原的放射性金属配合物及其标记配体 技术领域
本发明涉及一种靶向前列腺特异性膜抗原(PSMA)的放射性金属配合物及其标记配体,属于放射性药物化学技术领域。
背景技术
前列腺癌(Prostate Cancer,PCa)是指发生在前列腺上皮的恶性肿瘤,是男性泌尿生殖系统最常见的恶性肿瘤之一,也是第六大癌症死因。近年来,核医学在前列腺癌的诊断和治疗上得到了愈加广泛的应用。
正电子发射计算机断层扫描(positron emission computed tomography,PET)和单光子发射计算机断层扫描(single photon emission computed tomography,SPECT)是核医学领域非常重要的两种成像技术,通常依托放射性核素标记的探针分子(放射性金属配合物属于探针分子中的一种)来实现。放射性探针进入体内后,会在病灶区域特异性积累,通过探测核素衰变放出的射线,即可获取探针分子在体内分布的三维图像。相比传统诊断方式,核医学成像可以无创、精准地反映体内病灶位置,更加安全可靠。
若将上述探针使用β-粒子治疗核素或α粒子治疗核素进行标记,则可得到相应的放射性治疗药物。此类药物在靶向组织器官富集,利用核素衰变释放的辐射粒子,对靶向细胞DNA造成不可逆的损伤,诱导染色体缺失、畸变,杀死病变细胞,从而达到治疗目的。与传统放疗相比,放射性治疗药物对健康组织的损伤更小。
众所周知,前列腺特异性膜抗原(Prostate Specific Membrane Antigen,PSMA)通常在前列腺癌中高度表达,现已成为多种放射性诊断或治疗药物的靶点。近年来,PSMA靶向的金属放射性核素标记的诊断或治疗的配合物研究层出不穷。此类探针通常由放射性核素、双功能螯合剂、连接基团和靶向基团构成(图1),而Glu-Urea-Lys(GUL)结构作为PSMA靶向探针的关键单元,最近受到了相当多的关注。2020年12月,[68Ga]Ga-HBED-CC-PSMA-11(图2)作为首个前列腺癌PET诊断药物,获FDA批准上市,由于具有便捷的标记方法,较高的放射化学产率和良好的显像性质,目前已成为应用最为广泛的PSMA靶向放射性金属配合物。
前列腺癌治疗药物[177Lu]Lu-PSMA-617(图3)也于2021年获FDA批准上市。与[68Ga]Ga-HBED-CC-PSMA-11相比,[177Lu]Lu-PSMA-617新分子保持了原有的靶向PSMA基团GUL,而将双功能螯合剂HBED-CC替换为DOTA,使其能够满足治疗核素Lu-177的标记。同时,在连接基团部分进行修饰,增加了分子脂溶性,促进 了分子的内化,延长了肿瘤摄取并加快肾脏清除,使该放射性金属配合物具备明显的临床治疗优势。
目前,由于PSMA前列腺癌诊断药物[68Ga]Ga-HBED-CC-PSMA-11存在非靶脏器(例如肾脏)摄取高而影响位于盆骨处的前列腺癌原发灶检出的缺陷和[177Lu]Lu-PSMA-617治疗药物肿瘤摄取和滞留性质有待提高等问题,新一代靶向PSMA的诊疗药物继续被开发和研究,以期改善体内代谢性质、提高肿瘤摄取量。其中,第二代的[68Ga]Ga-HBED-CC-PSMA-093(专利名称:UREA-BASED PROSTATE SPECIFIC MEMBRANE ANTIGEN(PSMA)INHIBITORS FOR IMAGING AND THERAPY,专利号:EP3397968B1,图4),与第一代的[68Ga]Ga-HBED-CC-PSMA-11相比,使用了脂溶性更强的连接基团,使得肿瘤摄取更高、体内膀胱摄取显著降低而更有利于前列腺癌原发灶的检出,具有重要临床诊断价值。其遗憾在于,使用HBED-CC作为双功能螯合剂,可以标记的金属核素种类有限,无法兼顾治疗类放射性核素(如Lu-177)的标记,大大限制其应用范围。
以AAZTA(5-(6-(双(2-(叔丁氧基)-2-氧代乙基)氨基)-1,4-双(2-叔丁氧基-2-氧代乙酯)-1,4-二氮杂-6-基)戊酸,图5)及其衍生物为代表的新型双功能螯合剂,近年来在放射性药物领域发展迅速。该双功能螯合剂目前已经用于与成纤维蛋白细胞激活抑制剂,胃泌素释放肽受体拮抗剂,RGD多肽,TOC环肽等多种靶向基团连接,相关放射性金属配合物也在开发研究当中。但是,由于AAZTA与PSMA靶向基团中均含有大量敏感的羧酸基团,直接通过缩合反应制备标记配体,有可能产生多种副产物,进而导致产率降低、后续纯化困难等问题。
因此,提供一种新的合成方法,克服现有技术中的缺点,制备可用作肿瘤诊断和治疗的放射性药物及其新型标记配体:通过改进中间连接基团,将PSMA靶向基团与金属螯合剂AAZTA连接,用于诊断或治疗放射性金属核素例如44/47Sc、64Cu、68Ga、111In、177Lu等的标记,拟提高肿瘤对放射性金属配合物的摄取量、加速非靶器官代谢清除、改善肿瘤诊断或治疗效果,成为该技术领域亟需解决的技术难题。
发明内容
本发明的目的之一在于提供一种靶向前列腺特异性膜抗原的标记配体,其配合物表现出对前列腺特异性膜抗原的高亲和性和高特异性,有望提高肿瘤对放射性金属配合物的摄取、加速非靶器官代谢,具有优良的体内药代动力学性质,且能够快捷简便地标记多种诊断及治疗型放射性核素;并且,所述靶向前列腺特异性膜抗原的标记配体的合成,避免产生多种副产物,产率提高,解决了后续纯化困难等问题。
本发明的上述目的是通过以下技术方案实现的:
一种靶向前列腺特异性膜抗原的标记配体,其结构式如图6所示。
本发明的另一目的是提供上述靶向前列腺特异性膜抗原的标记配体的制备方法。
本发明的上述目的是通过以下技术方案实现的:
一种靶向前列腺特异性膜抗原的标记配体的制备方法,其步骤如下:
(1)双功能连接剂AAZTA的合成;
(2)前列腺特异性膜抗原靶向基团PSMA-093的合成;
(3)在碱和缩合剂的存在下,使AAZTA与PSMA-093进行缩合反应,利用酸脱去保护基团后,所得产物为靶向前列腺特异性膜抗原的标记配体。
反应式如图7所示。
优选地,步骤(1)中,所述双功能连接剂AAZTA为5-(6-(双(2-(叔丁氧基)-2-氧代乙基)氨基)-1,4-双(2-叔丁氧基-2-氧代乙酯)-1,4-二氮杂-6-基)戊酸。
优选地,步骤(3)中,所述碱为N,N-二异丙基乙胺,加入量为3-5当量;所述缩合剂为1-羟基苯并三唑和1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐,加入量均为1.5当量;所述AAZTA的加入量为1当量;所述酸为三氟乙酸,加入量为5毫升。
优选地,所述靶向前列腺特异性膜抗原的标记配体的具体合成步骤如下:
将二叔丁基(((S)-6-((S(S)-2-(2-(4-((S,-2-(2-氨基乙酰胺)-3-(叔丁氧基)-3-氧代丙基)苯氧基)乙酰胺基)-3-苯基丙酰胺基)-1-(叔丁氧基)-1-氧代己烷-2-基)氨基甲酰基)-L-谷氨酸溶于无水N,N-二甲基甲酰胺中,向混合溶液中依次加入1-羟基苯并三唑,N,N-二异丙基乙胺和1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐,将5-(6-(双(2-(叔丁氧基)-2-氧代乙基)氨基)-1,4-双(2-叔丁氧基-2-氧代乙酯)-1,4-二氮杂-6-基)戊酸溶解于无水N,N-二甲基甲酰胺中,滴加入上述溶液,室温下反应2.5d;向混合物中加入饱和氯化钠溶液和乙酸乙酯,萃取,有机相使用饱和氯化钠溶液洗涤两次,加入无水硫酸钠干燥,过滤除去固体杂质;利用减压旋蒸除去有机溶剂,所得浓缩液经简单硅胶柱色谱纯化,得到白色固体化合物;将得到的白色固体化合物溶于三氟乙酸中,在室温下反应5h,加入二氯甲烷溶液稀释,减压旋蒸除去溶剂,所得白色固体溶于二甲基亚砜中,经Semi pre-HPLC纯化,得到白色固体化合物AAZTA-PSMA-093。
本发明的再一目的是提供一种靶向前列腺特异性膜抗原的放射性金属配合物, 该放射性金属配合物带有诊断或治疗核素,能够表现出对前列腺特异性膜抗原的高亲和性和高特异性,有望提高肿瘤对放射性金属配合物的摄取、加速非靶器官代谢,具有优良的体内药代动力学性质,是较有潜力的前列腺癌诊疗一体化药物。
本发明的上述目的是通过以下技术方案实现的:
一种靶向前列腺特异性膜抗原的放射性金属配合物,其结构式如图8所示。
本发明的另一目的在于提供上述靶向前列腺特异性膜抗原的放射性金属配合物的制备方法。
本发明的上述目的是通过以下技术方案实现的(以M=Ga-68,Lu-177为例):
技术方案1:
一种靶向前列腺特异性膜抗原的68Ga标记的放射性金属配合物([68Ga]Ga-AAZTA-PSMA-093)的制备,其步骤如下:
(1)将制备得到的AAZTA-PSMA-093(标记配体)溶于二甲基亚砜,加入醋酸钠缓冲溶液,得到标记配体的醋酸钠缓冲液;
(2)用高纯盐酸溶液淋洗锗镓发生器(iThemba laboratories,740MBq,20mCi),得到[68Ga]GaCl3盐酸溶液;
(3)将步骤(2)制备所得的[68Ga]GaCl3盐酸溶液加入步骤(1)制备的标记配体的醋酸钠缓冲溶液中,进行反应,用带放射性检测器的高效液相色谱(radio-HPLC)测定其标记率,得到放射化学产率大于95%的[68Ga]Ga-AAZTA-PSMA-093。
优选地,步骤(3)中,所述反应过程为:混合均匀,反应温度为50℃,反应时间为5min,冷却至室温。
反应式如图9所示。
优选地,步骤(3)中,所述带放射性检测器的高效液相色谱的测试条件为:第一流动相为0.1%三氟乙酸水溶液(v/v),第二流动相为0.1%三氟乙酸乙腈溶液(v/v),梯度洗脱条件为:0-12分钟,95%-19%的第一流动相;12-13分钟,19%-95%的第一流动相;13-15分钟,95%的第一流动相;流动相的流速为1毫升/分钟。
技术方案2:
一种靶向前列腺特异性膜抗原的177Lu标记的放射性金属配合物([177Lu]Lu-AAZTA-PSMA-093)的制备,其步骤如下:
(1)将制备得到的AAZTA-PSMA-093(标记配体)溶于二甲基亚砜,加入盐酸溶液和醋酸钠缓冲溶液,得到含标记配体的混合溶液;
(2)将[177Lu]LuCl3盐酸溶液加入含标记配体的混合溶液中,进行反应,用带放射性检测器的高效液相色谱(radio-HPLC)测定其标记率,得到放射化学产率大于95%的[177Lu]Lu-AAZTA-PSMA-093。
优选地,步骤(2)中,所述反应过程为:混合均匀,反应温度为50℃,反应时间为5min,冷却至室温。
反应式如图10所示。
优选地,步骤(2)中,所述带放射性检测器的高效液相色谱的测试条件为:第一流动相为0.1%三氟乙酸水溶液(v/v),第二流动相为0.1%三氟乙酸乙腈溶液(v/v),梯度洗脱条件为:0-2分钟,95%的第一流动相;2-10分钟,95%-60%的第一流动相;10-12分钟,60%-95%的第一流动相;12-15分钟,95%的第一流动相;流动相的流速为1毫升/分钟。
有益效果:
本发明的靶向前列腺特异性膜抗原的放射性金属配合物,带有诊断或治疗核素,表现出对前列腺特异性膜抗原的高亲和性和高特异性,具有较好的细胞摄取与内化率,有望提高肿瘤对放射性金属配合物的摄取、加速非靶器官代谢,具有优良的体内药代动力学性质,克服了现有靶向前列腺特异性膜抗原放射性药物体内药代动力学性质不佳,难以兼顾诊断和治疗等缺陷,是较有潜力的前列腺癌诊疗一体化药物。
本发明中的标记配体(AAZTA-PSMA-093),通过双功能螯合剂AAZTA与靶向基团PSMA-093进行胺羧缩合反应制备得到。由于AAZTA与PSMA中均含有大量对该反应敏感的羧酸基团,为了防止产生多种副产物,进而导致产率降低、后续纯化困难等问题,本发明采用不同保护基对不同位置的羧酸基团进行保护,实现了在特定反应步骤选取特定基团参与反应,保证了反应的有序进行。
下面通过附图和具体实施方式对本发明做进一步说明,但并不意味着对本发明保护范围的限制。
附图说明
图1为放射性金属配合物结构示意图。
图2为Ga-68标记的PSMA-11的结构式。
图3为Lu-177标记的PSMA-617的结构式。
图4为Ga-68标记的PSMA-093的结构式。
图5为双功能螯合剂AAZTA的结构式。
图6为本发明实施例1靶向前列腺特异性膜抗原的标记配体的结构通式。
图7为本发明实施例1靶向前列腺特异性膜抗原的标记配体的合成反应方程式。
图8为本发明实施例1靶向前列腺特异性膜抗原的放射性金属配合物的结构通式
图9为本发明实施例1中[68Ga]Ga-AAZTA-PSMA-093标记反应方程式。
图10为本发明实施例2中[177Lu]Lu-AAZTA-PSMA-093标记反应方程式。
图11为本发明实施例1中制备的[68Ga]Ga-AAZTA-PSMA-093的标记反应液的radio-HPLC图谱。
图12为本发明实施例2中制备的[177Lu]Lu-AAZTA-PSMA-093的标记反应液的radio-HPLC图谱。
图13为本发明对照实施例1中体外22Rv1-FOLH1-oe(PSMA阳性)细胞摄取/内化[68Ga]Ga-AAZTA-PSMA-093和[68Ga]Ga-PSMA-093的摄取/内化量-时间曲线图,n=3。
图14为本发明对照实施例1中体外22Rv1-FOLH1-oe(PSMA阳性)细胞摄取实验分析[68Ga]Ga-AAZTA-PSMA-093和[68Ga]Ga-PSMA-093与前列腺特异性膜抗原的特异性结合图,n=3。
图15为本发明对照实施例2中体外22Rv1-FOLH1-oe(PSMA阳性)细胞摄取/内化[177Lu]Lu-AAZTA-PSMA-093和[177Lu]Lu-PSMA-617的摄取/内化量-时间曲线图,n=3。
图16为本发明对照实施例2中体外22Rv1-FOLH1-oe(PSMA阳性)细胞摄取实验分析[177Lu]Lu-AAZTA-PSMA-093和[177Lu]Lu-PSMA-617与前列腺特异性膜抗原的特异性结合图,n=3。
具体实施方式
除非特别说明,以下实施例和对比实施例中所述的制备方法和检测方法中所用的试剂和原料均为市场上可购得的商品,所用设备均为常用设备。
除非特别说明,以下实施例和对比实施例中所述的浓度和比例均为质量单位。
实施例1([68Ga]Ga-AAZTA-PSMA-093)
步骤1:68Ga标记的靶向前列腺特异性膜抗原的标记配体的合成
AAZTA-PSMA-093即二叔丁基(((S)-6-((S)-2-(2-(4-(S)-2-(5-(6-(双(2-(叔丁氧基)-2-氧代乙基)氨基)-1,4-双(2-叔丁氧)-2-氧基乙基)-1,4-二氮杂杂-6-基)戊酰胺基)乙酰胺基)-3-(叔丁氧基)-3-氧代丙基)苯氧基)乙氨基)-3-苯基丙酰胺基)-1-(叔丁氧基)-1-氧代己烷-2-基)氨基甲酰基)-L-谷氨酸;
合成反应方程式如图7所示;
合成方法:
化合物1的合成:将6-溴己酸甲酯(1.60毫升,2.09克,10.0毫摩尔)溶于20毫升PEG-400中,加入亚硝酸钠(2.05克,29.7毫摩尔),混合物于室温下搅拌反应10小时,所得反应液加入饱和食盐水和石油醚,萃取,有机相用饱和食盐水洗涤3次,无水硫酸钠干燥,过滤,滤液减压旋蒸除去溶剂,浓缩液使用硅胶柱色谱纯化(石油醚/乙酸乙酯=4/1,v/v),得到黄色油状化合物1(1.01克,5.76毫摩尔,产率:57.6%);
化合物1的确认:
1HNMR(600MHz,CDCl3)δ:4.37(td,2H,J=7.0,1.5Hz),3.66(d,3H,J=2.0Hz),2.32(td,2H,J=7.4,1.8Hz),2.05-1.98(m,2H),1.70-1.64(m,2H),1.44-1.38(m,2H).
HRMS理论分子量C7H13NO4Na[M+Na]+198.0736,实测分子量198.0729;
化合物2的合成:将N,N'-二苄基乙二胺(1.35毫升,1.37毫克,5.71毫摩尔)溶于10毫升乙醇中,加入多聚甲醛(516毫克,17.2毫摩尔),混合物于80摄氏度下搅拌反应1.5小时,将化合物1(998毫克,5.69毫摩尔)溶于14毫升乙醇,滴加入上述反应液中,所得反应液冷却至室温,搅拌反应35小时,而后,减压旋蒸,除去溶剂,浓缩液使用硅胶柱色谱纯化(石油醚/乙酸乙酯=4/1,v/v),得到淡黄色油状化合物2(1.51克,3.44毫摩尔,产率:60.2%);
化合物2的确认:
1HNMR(600MHz,CDCl3)δ:7.33-7.22(m,10H),3.72(d,2H,J=13.1Hz),3.64(s,3H),3.56(d,2H,J=13.0Hz),3.49(d,2H,J=14.2Hz),2.94(d,2H,J=14.2Hz),2.60(qd,4H,J=18.5,9.6Hz),2.09(t,2H,J=7.6Hz),1.59-1.52(m,2H),1.30(dt,2H,J=14.4,7.2Hz),0.80-0.72(m,2H);
HRMS理论分子量C25H34N3O4[M+H]+440.2549,实测分子量440.2537;
化合物3的合成:将化合物2(1.47克,3.35毫摩尔)溶于20毫升甲醇中,加入10%Pd/C(175毫克),混合物于氢气气氛中30摄氏度下搅拌反应11.5小时,所得反应液使用硅藻土抽滤,滤液减压旋蒸,除去溶剂,得到无色油状化合物3(807.7毫克,3.35毫摩尔,产率:100%);
化合物3的确认:
1HNMR(600MHz,CDCl3)δ:3.60(d,3H,J=4.7Hz),2.92-2.82(m,2H),2.80-2.72(m,2H),2.67(dd,2H,J=13.5,4.7Hz),2.55(dd,2H,J=7.5,4.6Hz),2.26(td,2H,J= 7.5,4.6Hz),1.88(s,4H),1.56(dd,2H,J=7.0,2.6Hz),1.28(d,4H,J=4.5Hz);
HRMS理论分子量C11H24N3O2[M+H]+230.1863,实测分子量230.1864;
化合物4的合成:将化合物3(795毫克,3.47毫摩尔)溶于25毫升乙腈中,加入无水碳酸钾(2.83克,20.5毫摩尔),冰水浴条件下,将溴乙酸叔丁酯(3.00毫升,3.96克,20.3毫摩尔)滴加入上述反应液中,室温搅拌反应60小时,所得反应液过滤,除去碳酸钾,滤液减压旋蒸,除去溶剂,浓缩液使用硅胶柱色谱纯化(石油醚/乙酸乙酯=4/1,v/v),得到淡黄色油状化合物4(1.05克,1.53毫摩尔,产率:44.1%);
化合物4的确认:
1HNMR(400MHz,CDCl3)δ:3.61(d,6H,J=16.8Hz),3.20(s,4H),2.98(d,2H,J=14.1Hz),2.82-2.70(m,2H),2.62(d,3H,J=13.9Hz),2.30(t,2H,J=7.6Hz),1.65-1.49(m,4H),1.42(d,36H,J=3.2Hz),1.25(d,2H,J=7.6Hz),0.96-0.75(m,2H).
HRMS理论分子量C35H64N3O10[M+H]+686.4586,实测分子量686.4584;
化合物5的合成:将化合物4(1.00克,1.46毫摩尔)溶于20毫升四氢呋喃中,冰水浴条件下滴加浓度为1摩尔/升的氢氧化钠溶液(12.0毫升,12.0毫摩尔),室温搅拌反应84小时,所得反应液滴加浓度为1摩尔/升的盐酸调pH为7,所得溶液加入饱和食盐水和乙酸乙酯,萃取,水相使用乙酸乙酯洗涤3次,合并有机相,无水硫酸钠干燥,过滤,滤液减压旋蒸,除去溶剂,浓缩液使用硅胶柱色谱纯化(石油醚/乙酸乙酯=1/2,v/v),得到淡黄色油状化合物5(608毫克,0.905毫摩尔,产率:62.0%);
化合物5的确认:
1HNMR(600MHz,CDCl3)δ:3.61(s,4H),3.24(br s,4H),3.01(br s,2H)2.78(br s,2H),2.66(br s,3H),2.37(br s,2H),1.69-1.52(m,4H),1.44(d,38H,J=6.6Hz);
HRMS理论分子量C34H62N3O10[M+H]+672.4429,实测分子量672.4423;
化合物6的合成:将三光气(1.20克,4.03毫摩尔)溶于10毫升二氯甲烷中,于-20摄氏度下搅拌20分钟,将溶于75毫升二氯甲烷的N(ε)-苄氧羰基-L-赖氨酸叔丁酯盐酸盐(H-Lys(Z)-OtBu HCl,4.47克,12.0毫摩尔)和三乙胺(2.80毫升,2.04克,20.2毫摩尔)缓慢滴加至上述溶液中,然后,将溶于50毫升二氯甲烷的L-谷氨酸二叔丁基酯盐酸盐(Glu-OtBu(OtBu)HCl,2.90克,9.83毫摩尔)和三乙胺(2.80毫升,2.04克,20.2毫摩尔)缓慢滴加至上述溶液中,反应液室温下搅拌反应18小时,浓缩后,使用硅胶柱色谱纯化(石油醚/乙酸乙酯=1/1,v/v),得到无色油状 化合物6(3.04克,4.89毫摩尔,产率:48.9%);
化合物6的确认:
1HNMR(400MHz,CDCl3)δ:7.40-7.27(m,5H),5.57-4.99(m,4H),4.33(dd,2H,J=12.2,8.7Hz),3.17(br s,2H),2.28(dd,2H,J=15.2,8.5Hz),2.13-1.98(m,1H),1.93-1.68(m,2H),1.67-1.57(m,1H),1.55-1.30(m,31H);
HRMS理论分子量C32H52N3O9[M+H]+622.3698,实测分子量622.3690;
化合物7的合成:将化合物6(2.25克,3.62毫摩尔)溶于20毫升四氢呋喃中,加入10%Pd/C(192毫克),混合物于氢气气氛中室温下搅拌反应12小时,所得反应液使用硅藻土抽滤,滤液减压旋蒸,除去溶剂,得到棕色油状化合物7(1.20克,2.46毫摩尔,产率:68.0%);
化合物7的确认:
1HNMR(600MHz,CDCl3)δ:5.36(t,2H,J=7.8Hz),4.30(dq,2H,J=7.5,5.3Hz),2.65(t,2H,J=6.9Hz),2.33-2.20(m,2H),2.06-2.00(m,2H),1.85-1.77(m,1H),1.73(ddt,1H,J=13.5,10.4,5.3Hz),1.67(s,2H),1.61-1.53(m,1H),1.42(d,18H,J=0.5Hz),1.39(s,9H),1.33-1.26(m,1H);
HRMS理论分子量C24H46N3O7[M+H]+488.3330,实测分子量488.3334;
化合物8的合成:将N-苄氧羰基-L-苯丙氨酸(N-Cbz-L-Phe,1.42克,4.73毫摩尔)溶于11毫升N,N-二甲基甲酰胺中,于0摄氏度下加入1-羟基苯并三唑(HOBt,872毫克,6.45毫摩尔),N,N-二异丙基乙胺(DIPEA,2.20毫升,1.72克,12.9毫摩尔),1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐(EDCl,1.24克,6.45毫摩尔);将化合物7(2.10克,4.30毫摩尔)溶解于15毫升N,N-二甲基甲酰胺中,滴加入上述溶液,反应液室温下搅拌反应27小时,加入饱和氯化钠溶液和乙酸乙酯萃取,有机相使用饱和氯化钠溶液洗涤三次,加入无水硫酸钠干燥,过滤,滤液浓缩后,使用硅胶柱色谱纯化(二氯甲烷/甲醇/氨水=95/5/0.5,v/v/v),得到白色固体化合物8(1.29克,1.67毫摩尔,产率:38.9%);
化合物8的确认:
1HNMR(600MHz,CDCl3)δ:7.46(br s,1H),7.35-7.09(m,10H),6.71(br s,1H),6.51(br s,1H),5.97(br s,1H),5.02(d,1H,J=12.3Hz),4.84(d,1H,J=12.7Hz),4.52(d,2H,J=35.3Hz),4.32(d,1H,J=28.6Hz),3.45-3.35(m,1H),3.04-2.89(m,3H),2.43-2.29(m,2H),2.11-2.02(m,1H),1.87-1.79(m,1H),1.65-1.50(m,2H),1.46-1.35(m,27H),1.33-1.23(m,2H),1.18(br s,1H),1.10(br s,1H);
HRMS理论分子量C41H61N4O10[M+H]+769.4382,实测分子量769.4390;
化合物9的合成:将化合物8(1.29克,1.67毫摩尔)溶于20毫升无水乙醇中,加入10%Pd/C(88.1毫克),混合物于氢气气氛中室温下搅拌反应27小时,所得反应液使用硅藻土抽滤,滤液减压旋蒸,除去溶剂,得到棕色油状化合物9(981毫克,1.55毫摩尔,产率:92.5%);
化合物9的确认:
1HNMR(600MHz,CDCl3)δ:7.33-7.18(m,5H),5.40(dd,2H,J=10.6,8.1Hz),4.30(dtd,2H,J 28.9,8.0,4.9Hz),3.59(dd,1H,J=9.3,4.2Hz),3.30-3.16(m,3H),2.67(dd,1H,J=13.7,9.3Hz),2.37-2.23(m,2H),2.09-2.01(m,1H),1.88-1.70(m,3H),1.65-1.56(m,1H),1.51-1.46(m,2H),1.45-1.41(m,27H),1.37-1.28(m,2H);
HRMS理论分子量C33H55N4O8[M+H]+635.4014,实测分子量635.4011;
化合物10的合成:将L-酪氨酸叔丁酯(L-Tyr-OtBu,2.36克,9.95毫摩尔)溶于17毫升N,N-二甲基甲酰胺中,于0摄氏度下加入1-羟基苯并三唑(HOBt,2.03克,15.0毫摩尔),N,N-二异丙基乙胺(DIPEA,5.00毫升,3.91克,30.3毫摩尔),1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐(EDCl,2.83克,14.8毫摩尔),将N-Cbz-L-丙氨酸(Cbz-Gly-OH,2.09克,9.97毫摩尔)溶解于17毫升N,N-二甲基甲酰胺中,滴加入上述溶液,反应液室温下搅拌反应19小时,加入饱和氯化钠溶液和乙酸乙酯,萃取,有机相使用饱和氯化钠溶液洗涤三次,加入无水硫酸钠干燥,过滤,滤液浓缩后,使用硅胶柱色谱纯化(二氯甲烷/甲醇/氨水=95/5/0.5,v/v/v),得到白色固体化合物10(3.72克,8.69毫摩尔,产率:86.9%);
化合物10的确认:
1HNMR(400MHz,(CD3)2SO)δ:9.20(br s,1H),8.04(d,2H,J=7.7Hz),7.50-7.20(m,6H),6.99(d,2H,J=8.3Hz),6.66(d,2H,J=8.3Hz),5.03(s,2H),4.30(dd,1H,J=14.4,7.4Hz),3.62(dd,2H,J=6.1,2.4Hz),2.90-2.72(m,2H),1.33(s,9H);
HRMS理论分子量C23H28N2O6Na[M+Na]+451.1839,实测分子量451.1848;
化合物11的合成:将化合物10(2.80克,6.54毫摩尔)溶于35毫升乙腈中,加入溴乙酸甲酯(1.22毫升,2.00克,13.1毫摩尔)和无水碳酸钾(1.81克,13.1毫摩尔),室温搅拌反应11小时,所得反应液过滤,除去碳酸钾,滤液减压旋蒸,除去溶剂,浓缩液使用硅胶柱色谱纯化(石油醚/乙酸乙酯=1/1,v/v),得到无色油状化合物11(2.98毫克,5.94毫摩尔,产率:90.9%);
化合物11的确认
1HNMR(600MHz,CDCl3)δ:7.38-7.33(m,5H),7.05(d,2H,J=7.6Hz),6.79(d,2H,J=7.9Hz),6.45(d,1H,J=6.9Hz),5.41(br s,1H),5.12(d,2H,J=1.2Hz),4.70(dd,1H,J=12.3,6.0Hz),4.57(d,2H,J=1.3Hz),3.91-3.76(m,5H),3.02(d,2H,J=4.4Hz),1.40(d,9H,J=1.3Hz);
HRMS理论分子量C26H32N2O8K[M+K]+539.1790,实测分子量539.1795;
化合物12的合成:将化合物11(3.91克,7.81毫摩尔)溶于35毫升甲醇中,室温下滴加浓度为1摩尔/升的氢氧化钠溶液(21.0毫升,21.0毫摩尔),室温搅拌反应2小时;所得反应液滴加浓度为1摩尔/升的盐酸调pH为4,所得溶液加入饱和食盐水和乙酸乙酯,萃取,水相使用乙酸乙酯洗涤三次,合并有机相,无水硫酸钠干燥,过滤,滤液减压旋蒸,除去溶剂,浓缩液使用硅胶柱色谱纯化(二氯甲烷/甲醇/氨水=90/10/0.1,v/v/v),得到淡黄色油状化合物12(590毫克,1.21毫摩尔,产率:15.5%);
化合物12的确认:
1HNMR(400MHz,CDCl3)δ:8.45(br s,1H),7.39-7.28(m,5H),7.01(d,2H,J=8.0Hz),6.78(d,2H,J=8.5Hz),6.19(br s,1H),5.73(br s,1H),5.11(s,2H),4.70(d,1H,J=7.3Hz),4.52(s,2H),3.84(d,2H,J=4.4Hz),3.09-2.86(m,2H),1.42(s,9H);
HRMS理论分子量C25H31N2O8[M+H]+487.2074,实测分子量487.2081;
化合物13的合成:将化合物9(959毫克,1.51毫摩尔)溶于15毫升N,N-二甲基甲酰胺中,于0摄氏度下加入1-羟基苯并三唑(HOBt,237毫克,1.75毫摩尔),N,N-二异丙基乙胺(DIPEA,0.60毫升,469毫克,3.63毫摩尔),1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐(EDCl,337毫克,1.75毫摩尔),将化合物12(569毫克,1.17毫摩尔)溶解于15毫升N,N-二甲基甲酰胺中,滴加入上述溶液,反应液室温下搅拌反应13.5小时,加入饱和氯化钠溶液和乙酸乙酯,萃取,有机相使用饱和氯化钠溶液洗涤三次,加入无水硫酸钠,干燥,过滤,滤液浓缩后,使用硅胶柱色谱纯化(二氯甲烷/甲醇/氨水=95/5/0.5,v/v/v),得到白色固体化合物13(725毫克,0.657毫摩尔,产率:56.2%);
化合物13的确认:
1HNMR(600MHz,CDCl3)δ:8.09(br s,1H),7.56(br s,1H),7.39-7.28(m,5H),7.28-7.17(m,5H),6.87(d,2H,J=7.7Hz),6.59(d,2H,J=7.8Hz),5.80(br s,1H),5.06(d,2H,J=12.1Hz),4.92(d,1H,J=12.0Hz),4.81(br s,1H),4.76-4.59(m,1H),4.52(br s,1H),4.41(br s,2H),4.05(d,1H,J=14.3Hz),3.86(dd,1H,J=17.4,3.3Hz), 3.44(br s,2H),3.27-3.17(m,2H),3.15-2.96(m,2H),2.88(br s,1H),2.44-2.28(m,2H),2.12-2.02(m,1H),1.87-1.79(m,1H),1.58(d,2H,J=6.3Hz),1.53-1.28(m,36H),1.28-1.19(m,2H),1.05(br s,1H);
HRMS理论分子量C58H83N6O15[M+H]+1103.5910,实测分子量1103.5927;
化合物14的合成:将化合物13(714毫克,0.647毫摩尔)溶于15毫升四氢呋喃中,加入10毫升无水乙醇和10%Pd/C(70.8毫克),混合物于氢气气氛中室温下搅拌反应26小时,所得反应液使用硅藻土抽滤,滤液减压旋蒸,除去溶剂,得到棕色油状化合物14(622毫克,0.642毫摩尔,产率:99.2%);
化合物14的确认:
1HNMR(600MHz,CDCl3)δ:7.73(br s,1H),7.64(d,1H,J=7.6Hz),7.25-7.09(m,5H),7.01(d,2H,J=8.4Hz),6.70(d,2H,J=8.4Hz),6.48(br s,1H),5.72(br s,1H),5.14-4.88(m,2H),4.72(dd,1H,J=14.2,6.1Hz),4.50-4.25(m,4H),3.45-3.30(m,2H),3.31-2.87(m,4H),2.41-2.27(m,2H),2.12-2.05(m,1H),1.88-1.77(m,1H),1.69-1.51(m,2H),1.50-1.34(m,36H),1.27-1.18(m,3H),1.17-1.05(m,1H);
HRMS理论分子量C50H77N6O13[M+H]+969.5543,实测分子量969.5529;
化合物15的合成:将化合物14(218毫克,0.225毫摩尔)溶于10毫升N,N-二甲基甲酰胺中,于0摄氏度下加入1-羟基苯并三唑(HOBt,32.8毫克,0.243毫摩尔),N,N-二异丙基乙胺(DIPEA,0.07毫升,63.8毫克,0.494毫摩尔),1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐(EDCl,43.7毫克,0.228毫摩尔),将化合物5(103毫克,0.153毫摩尔)溶解于8毫升N,N-二甲基甲酰胺中,滴加入上述溶液,反应液室温下搅拌反应2.5天,加入饱和氯化钠溶液和乙酸乙酯,萃取,有机相使用饱和氯化钠溶液洗涤三次,加入无水硫酸钠,干燥,过滤,滤液浓缩后,使用硅胶柱色谱纯化(二氯甲烷/甲醇/氨水=96/4/0.4,v/v/v),得到白色固体化合物15(193毫克,0.119毫摩尔,产率:79.4%);
化合物15的确认:
1HNMR(600MHz,CDCl3)δ:7.76(d,1H,J=8.0Hz),7.58(d,1H,J=7.9Hz),7.34-7.10(m,8H),7.00(dd,1H,J=32.8,8.1Hz),6.88(br s,1H),6.77-6.53(m,2H),5.92-5.72(m,1H),5.29-4.81(m,1H),4.78-4.56(m,1H),4.51-4.17(m,3H),4.04(br s,1H),3.97-3.72(m,1H),3.62(s,2H),3.55-3.22(m,6H),3.18-2.77(m,9H),2.69(br s,1H),2.43-2.14(m,4H),2.11-1.91(m,1H),1.89-1.76(m,1H),1.71-1.00(m,86H),0.86(t,1H,J=7.0Hz);
HRMS理论分子量C84H136N9O22[M+H]+1622.9794,实测分子量1622.9839;
化合物AAZTA-PSMA-093的合成:将化合物15(101毫克,0.062毫摩尔)溶于5毫升三氟乙酸中,混合物于室温下搅拌反应5小时,反应液减压旋蒸,除去溶剂,所得白色固体溶于7.4毫升二甲基亚砜中,使用半制备HPLC进行纯化,得到白色固体化合物AAZTA-PSMA-093(2.4毫克,0.00204毫摩尔,产率:3.3%);
化合物AAZTA-PSMA-093的确认:
HRMS理论分子量C52H73N9O22[M+2H]2+587.7429,实测分子量587.7420;
步骤2:靶向前列腺特异性膜抗原的标记配体的68Ga标记
[68Ga]Ga-AAZTA-PSMA-093标记反应方程式如图9所示;
将含20纳摩尔的标记前体AAZTA-PSMA-093的二甲基亚砜溶液加入150微升的浓度为3摩尔/升的醋酸钠缓冲溶液中,用高纯盐酸溶液淋洗锗镓发生器(iThemba laboratories,740兆贝克勒尔,20毫居),将所得的300微升[68Ga]GaCl3盐酸溶液加入标记前体的醋酸钠缓冲溶液中,混合均匀,加水稀释,反应液总体积为500微升,50摄氏度反应5分钟,冷却至室温,用带放射性检测器的高效液相色谱(radio-HPLC)测定其标记率,得到放射化学纯度大于95%的[68Ga]Ga-AAZTA-PSMA-093。
如图11所示,为本发明实施例1中制备的[68Ga]Ga-AAZTA-PSMA-093的标记反应液的radio-HPLC图谱,图谱显示,[68Ga]Ga-AAZTA-PSMA-093的放射化学纯度大于98%。
上述步骤所述的带放射性检测器的高效液相色谱的测试条件为:第一流动相为0.1%三氟乙酸水溶液(v/v),第二流动相为0.1%三氟乙酸乙腈溶液(v/v),梯度洗脱条件为:0-12分钟,95%-19%的第一流动相;12-13分钟,19%-95%的第一流动相;13-15分钟,95%的第一流动相,流动相的流速为1毫升/分钟。
实施例2([177Lu]Lu-AAZTA-PSMA-093)
步骤1:177Lu标记的靶向前列腺特异性膜抗原的标记配体的合成
AAZTA-PSMA-093即二叔丁基(((S)-6-((S)-2-(2-(4-(S)-2-(5-(6-(双(2-(叔丁氧基)-2-氧代乙基)氨基)-1,4-双(2-叔丁氧)-2-氧基乙基)-1,4-二氮杂杂-6-基)戊酰胺基)乙酰胺基)-3-(叔丁氧基)-3-氧代丙基)苯氧基)乙氨基)-3-苯基丙酰胺基)-1-(叔丁氧基)-1-氧代己烷-2-基)氨基甲酰基)-L-谷氨酸;
合成反应方程式与合成方法与实施例1中步骤1相同;
步骤2:靶向前列腺特异性膜抗原的标记配体的177Lu标记
[177Lu]Lu-AAZTA-PSMA-093标记反应方程式如图10所示;
将含40纳摩尔的标记前体AAZTA-PSMA-093的二甲基亚砜溶液加入150微升的浓度为3摩尔/升的醋酸钠缓冲溶液中,再加入422微升的0.05摩尔/升的盐酸溶液和6微升的3摩尔/升的醋酸钠缓冲溶液,将购买的25微升[177Lu]LuCl3盐酸溶液加入含标记前体的混合溶液中,混合均匀,50摄氏度反应15分钟,冷却至室温,用带放射性检测器的高效液相色谱(radio-HPLC)测定其标记率,得到放射化学纯度大于95%的[177Lu]Lu-AAZTA-PSMA-093;
如图12所示,为本发明实施例1中制备的[177Lu]Lu-AAZTA-PSMA-093的标记反应液的radio-HPLC图谱,图谱显示,[177Lu]Lu-AAZTA-PSMA-093的放射化学纯度大于98%;
上述步骤所述的带放射性检测器的高效液相色谱的测试条件为:第一流动相为0.1%三氟乙酸水溶液(v/v),第二流动相为0.1%三氟乙酸乙腈溶液(v/v),梯度洗脱条件为:0-2分钟,95%的第一流动相;2-10分钟,95%-60%的第一流动相;10-12分钟,60%-95%的第一流动相;12-15分钟,95%的第一流动相,流动相的流速为1毫升/分钟。
对照实施例1
[68Ga]Ga-AAZTA-PSMA-093体外22Rv1-FOLH1-oe细胞摄取及内化
(1)将22Rv1-FOLH1-oe(PSMA阳性)细胞接种在6孔板中,于培养箱中培养48小时,细胞密度约为5×105/孔;48小时后吸走培养液,用含Ca2+和Mg2+的磷酸缓冲盐溶液清洗细胞两次,每孔细胞加入20皮摩尔活度为2微居的[68Ga]Ga-AAZTA-PSMA-093或[68Ga]Ga-PSMA-093,分别作为实验组和阳性对照组,在37摄氏度下孵育10、30、60、90和120分钟,使用1毫升2纳摩尔/毫升的PSMA-11在60分钟时阻断细胞摄取,孵育结束后,吸出孵育液,用磷酸缓冲盐溶液快速洗涤细胞三次,终止细胞摄取;每孔细胞加入0.5毫升浓度为50毫摩尔/升的甘氨酸溶液洗涤细胞两次,收集洗涤液进行放射性计数;用氢氧化钠溶液裂解全部细胞,收集裂解液进行放射性计数。针对上述操作,每个组别每个时相平行重复三次;
(2)由体外细胞摄取实验结果可知:[68Ga]Ga-AAZTA-PSMA-093在体外22Rv1-FOLH1-oe(PSMA阳性)细胞中存在较高摄取,且随孵育时间增加成上升趋势,自孵育30分钟起,后续各个时相的细胞摄取量均高于阳性对照组[68Ga]Ga-PSMA-093的细胞摄取量;[68Ga]Ga-AAZTA-PSMA-093与[68Ga]Ga-PSMA-093具有相近的细胞内化量;
如图13所示,本发明对比实施例1中,体外22Rv1-FOLH1-oe(PSMA阳性) 细胞摄取/内化[68Ga]Ga-AAZTA-PSMA-093和[68Ga]Ga-PSMA-093的摄取/内化量-时间曲线图,n=3;
如图14所示,本发明对比实施例1中,体外22Rv1-FOLH1-oe(PSMA阳性)细胞摄取实验分析[68Ga]Ga-AAZTA-PSMA-093和[68Ga]Ga-PSMA-093与前列腺特异性膜抗原的特异性结合图,n=3,未加入PSMA-11组和加入PSMA-11组细胞摄取的显著性差异显示:[68Ga]Ga-AAZTA-PSMA-093和[68Ga]Ga-PSMA-093与前列腺特异性膜抗原特异性结合。说明新型PSMA靶向标记配体在兼顾更多种类核素标记的同时保持了与PSMA-093相当的特异性。
对照实施例2
[177Lu]Lu-AAZTA-PSMA-093体外22Rv1-FOLH1-oe细胞摄取及内化
(1)将22Rv1-FOLH1-oe(PSMA阳性)细胞接种在6孔板中,于培养箱中培养48小时,细胞密度约为1.5×105/孔;48小时后吸走培养液,用含Ca2+和Mg2+的磷酸缓冲盐溶液清洗细胞两次,每孔细胞加入20皮摩尔活度为2微居的[177Lu]Lu-AAZTA-PSMA-093或[177Lu]Lu-PSMA-617,分别作为实验组和阳性对照组,在37摄氏度下孵育10、30、60、90和120分钟,使用1毫升2纳摩尔/毫升的PSMA-11在60分钟时阻断细胞摄取,孵育结束后,吸出孵育液,用磷酸缓冲盐溶液快速洗涤细胞三次,终止细胞摄取;每孔细胞加入0.5毫升浓度为50毫摩尔/升的甘氨酸溶液洗涤细胞两次,收集洗涤液进行放射性计数;用氢氧化钠溶液裂解全部细胞,收集裂解液进行放射性计数。针对上述操作,每个组别每个时相平行重复三次;
(2)由体外细胞摄取实验结果可知:[177Lu]Lu-AAZTA-PSMA-093在体外22Rv1-FOLH1-oe(PSMA阳性)细胞中存在较高摄取,且随孵育时间增加成上升趋势,自孵育10分钟起,后续各个时相的细胞摄取量均显著高于阳性对照组[177Lu]Lu-PSMA-617的细胞摄取量;[177Lu]Lu-AAZTA-PSMA-093与[177Lu]Lu-PSMA-617具有相近的细胞内化量;
如图15所示,本发明对照实施例2中,体外22Rv1-FOLH1-oe(PSMA阳性)细胞摄取/内化[177Lu]Lu-AAZTA-PSMA-093和[177Lu]Lu-PSMA-617的摄取/内化量-时间曲线图,n=3;
如图16所示,本发明对照实施例2中,体外22Rv1-FOLH1-oe(PSMA阳性)细胞摄取实验分析[177Lu]Lu-AAZTA-PSMA-093和[177Lu]Lu-PSMA-617与前列腺特异性膜抗原的特异性结合图,n=3,未加入PSMA-11组和加入PSMA-11组细胞摄取的显著性差异显示:[177Lu]Lu-AAZTA-PSMA-093和[177Lu]Lu-PSMA-617与前列 腺特异性膜抗原特异性结合。说明新型PSMA靶向标记配体在兼顾多核素标记的同时,具备了较PSMA-617更强的亲和性,且保持了与PSMA-617相当的特异性。
本发明的靶向前列腺特异性膜抗原的放射性金属配合物含有谷氨酸-脲基-赖氨酸作为PSMA靶向基团,保证了该放射性金属配合物与前列腺特异性膜抗原结合的特异性;含有L-苯丙氨酸-o-(羧甲基)-L-酪氨酸作为连接基团,可以调节分子脂溶性,有助于促进细胞内化,能够增加探针分子的肿瘤摄取,改善其体内药代动力学;含有AAZTA(2,2'-(6-(双(羧甲基)氨基)-6-(4-羧基丁基)-1,4-二氮杂-1,4-二基)二乙酸)作为双功能连接剂,可以实现在较温和条件内多种放射性核素的标记。细胞摄取及内化实验表明,68Ga和177Lu标记的AAZTA-PSMA-093相较于[68Ga]Ga-PSMA-093或[177Lu]Lu-PSMA-617均有更高的细胞摄取量,细胞内化量也与两组阳性对照相当,预期在前列腺特异性膜抗原阳性表达的肿瘤患者体内能够有较高的肿瘤摄取以及理想的药代动力学性质,具有作为诊疗一体化放射性药物的潜力。
以上所述,仅为本发明的较佳实施例而已,故不能依次限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。

Claims (9)

  1. 一种靶向前列腺特异性膜抗原的标记配体,其结构通式如下所示:
  2. 如权利要求1所述靶向前列腺特异性膜抗原的标记配体的制备方法,其步骤如下:在碱和缩合剂的存在下,使AAZTA与PSMA-093进行缩合反应,利用酸脱去保护基团后,所得产物为靶向前列腺特异性膜抗原的标记配体。
  3. 如权利要求2所述的靶向前列腺特异性膜抗原的标记配体的制备方法,其特征在于:所述碱为N,N-二异丙基乙胺,加入量为3-5当量;所述缩合剂为1-羟基苯并三唑和1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐,加入量均为1.5当量;所述AAZTA为5-(6-(双(2-(叔丁氧基)-2-氧代乙基)氨基)-1,4-双(2-叔丁氧基-2-氧代乙酯)-1,4-二氮杂-6-基)戊酸,加入量为1当量;所述酸为三氟乙酸,加入量为5毫升。
  4. 如权利要求2所述的靶向前列腺特异性膜抗原的标记配体的制备方法,其特征在于:所述靶向前列腺特异性膜抗原的标记配体的具体合成步骤如下:
    将二叔丁基(((S)-6-((S(S)-2-(2-(4-((S,-2-(2-氨基乙酰胺)-3-(叔丁氧基)-3-氧代丙基)苯氧基)乙酰胺基)-3-苯基丙酰胺基)-1-(叔丁氧基)-1-氧代己烷-2-基)氨基甲酰基)-L-谷氨酸溶于无水N,N-二甲基甲酰胺中,向混合溶液中依次加入1-羟基苯并三唑,N,N-二异丙基乙胺和1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐;将5-(6-(双(2-(叔丁氧基)-2-氧代乙基)氨基)-1,4-双(2-叔丁氧基-2-氧代乙酯)-1,4-二氮杂-6-基)戊酸溶解于无水N,N-二甲基甲酰胺中,滴加入上述溶液,室温下反应2.5d;向混合物中加入饱和氯化钠溶液和乙酸乙酯,萃取,有机相使用饱和氯化钠溶液洗涤两次,加入无水硫酸钠干燥,过滤除去固体杂质;利用减压旋蒸除去有机溶剂,所得浓缩液经简单硅胶柱色谱纯化,得到白色固体化合物;将得到的白色固体化合物溶于三氟乙酸 中,在室温下反应5h,加入二氯甲烷溶液稀释,减压旋蒸除去溶剂,所得白色固体溶于二甲基亚砜中,经Semi pre-HPLC纯化得到白色固体化合物AAZTA-PSMA-093。
  5. 一种靶向前列腺特异性膜抗原的放射性金属配合物,其结构通式如下:
  6. 如权利要求5所述靶向前列腺特异性膜抗原的放射性金属配合物的制备方法,其步骤如下:将制备得到的AAZTA-PSMA-093(标记配体)溶解在二甲基亚砜中,加入醋酸钠缓冲溶液,加入放射性金属化合物溶液,混合均匀,加热,得到靶向前列腺特异性膜抗原的放射性金属配合物。
  7. 如权利要求6所述的靶向前列腺特异性膜抗原的放射性金属配合物的制备方法,其特征在于:所述放射性金属化合物为MCl3;M=44/47Sc,64Cu,68Ga,111In,177Lu。
  8. 如权利要求6所述的靶向前列腺特异性膜抗原的放射性金属配合物的制备方法,其具体步骤如下:
    将制备得到的AAZTA-PSMA-093(标记配体)溶于二甲基亚砜,再加入醋酸钠缓冲溶液,得到标记配体的醋酸钠缓冲液,用高纯盐酸溶液淋洗锗镓发生器,将所得的[68Ga]GaCl3盐酸溶液加入标记配体的醋酸钠缓冲溶液中,混合均匀,50摄氏度反应5分钟,冷却至室温,用带放射性检测器的高效液相色谱(radio-HPLC)测定其标记率,得到放射化学产率大于95%的[68Ga]Ga-AAZTA-PSMA-093;带放射性检测器的高效液相色谱的测试条件为:第一流动相为0.1%三氟乙酸水溶液(v/v),第二流动相为0.1%三氟乙酸乙腈溶液(v/v),梯度洗脱条件为:0-12分钟,95%-19%的第一流动相;12-13分钟,19%-95%的第一流动相;13-15分钟,95%的第一流动相;流动相的流速为1毫升/分钟。
  9. 如权利要求6所述的靶向前列腺特异性膜抗原的放射性金属配合物(M=177Lu)的制备方法,其具体步骤如下:
    将制备得到的AAZTA-PSMA-093(标记配体)溶于二甲基亚砜,再加入盐酸溶 液和醋酸钠缓冲溶液,得到含标记配体的混合溶液,将[177Lu]LuCl3盐酸溶液加入含标记配体的混合溶液中,混合均匀,50摄氏度反应15分钟,冷却至室温,用带放射性检测器的高效液相色谱(radio-HPLC)测定其标记率,得到放射化学产率大于95%的[177Lu]Lu-AAZTA-PSMA-093;
    带放射性检测器的高效液相色谱的测试条件为:第一流动相为0.1%三氟乙酸水溶液(v/v),第二流动相为0.1%三氟乙酸乙腈溶液(v/v),梯度洗脱条件为:0-2分钟,95%的第一流动相;2-10分钟,95%-60%的第一流动相;10-12分钟,60%-95%的第一流动相;12-15分钟,95%的第一流动相;流动相的流速为1毫升/分钟。
PCT/CN2023/074194 2023-02-02 2023-02-02 一种靶向前列腺特异性膜抗原的放射性金属配合物及其标记配体 WO2024021556A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202380008287.XA CN116547293A (zh) 2023-02-02 2023-02-02 一种靶向前列腺特异性膜抗原的放射性金属配合物及其标记配体
PCT/CN2023/074194 WO2024021556A1 (zh) 2023-02-02 2023-02-02 一种靶向前列腺特异性膜抗原的放射性金属配合物及其标记配体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/074194 WO2024021556A1 (zh) 2023-02-02 2023-02-02 一种靶向前列腺特异性膜抗原的放射性金属配合物及其标记配体

Publications (1)

Publication Number Publication Date
WO2024021556A1 true WO2024021556A1 (zh) 2024-02-01

Family

ID=87454676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/074194 WO2024021556A1 (zh) 2023-02-02 2023-02-02 一种靶向前列腺特异性膜抗原的放射性金属配合物及其标记配体

Country Status (2)

Country Link
CN (1) CN116547293A (zh)
WO (1) WO2024021556A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170189568A1 (en) * 2015-12-31 2017-07-06 Five Eleven Pharma Inc. Urea-based prostate specific membrane antigen (psma) inhibitors for imaging and therapy
CN111909105A (zh) * 2020-07-22 2020-11-10 西南医科大学附属医院 前列腺特异性膜抗原抑制剂、其金属标记物及制法和应用
CN113004371A (zh) * 2021-03-01 2021-06-22 上海蓝纳成生物技术有限公司 一种长循环半衰期的前列腺特异性膜抗原靶向化合物及其制备方法和应用
CN113372285A (zh) * 2021-05-28 2021-09-10 西南医科大学附属医院 前列腺特异性膜抗原抑制剂、其放射性核素标记物及制法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170189568A1 (en) * 2015-12-31 2017-07-06 Five Eleven Pharma Inc. Urea-based prostate specific membrane antigen (psma) inhibitors for imaging and therapy
CN111909105A (zh) * 2020-07-22 2020-11-10 西南医科大学附属医院 前列腺特异性膜抗原抑制剂、其金属标记物及制法和应用
CN113004371A (zh) * 2021-03-01 2021-06-22 上海蓝纳成生物技术有限公司 一种长循环半衰期的前列腺特异性膜抗原靶向化合物及其制备方法和应用
CN115427427A (zh) * 2021-03-01 2022-12-02 烟台蓝纳成生物技术有限公司 一种前列腺特异性膜抗原靶向化合物及其制备方法和应用
CN113372285A (zh) * 2021-05-28 2021-09-10 西南医科大学附属医院 前列腺特异性膜抗原抑制剂、其放射性核素标记物及制法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIN WOO SEOK, SAHU PRANABESH, PARK SUNG MIN, JEON JUN HA, KIM NAM IL, LEE JAE HYEON, OH JEONG SEOK: "Design of Self-Healing EPDM/Ionomer Thermoplastic Vulcanizates by Ionic Cross-Links for Automotive Application", POLYMERS, MOLECULAR DIVERSITY PRESERVATION INTERNATIONAL (M DP I) AG., CH, vol. 14, no. 6, CH , pages 1156, XP093133931, ISSN: 2073-4360, DOI: 10.3390/polym14061156 *

Also Published As

Publication number Publication date
CN116547293A (zh) 2023-08-04

Similar Documents

Publication Publication Date Title
Chansaenpak et al. [18 F]-Group 13 fluoride derivatives as radiotracers for positron emission tomography
CN109438517B (zh) 一种与羰基金属核心配位的双功能连接剂的配合物及其制备方法
US10927132B2 (en) Transmetalation methods for the synthesis of PET and SPECT imaging agents
Cai et al. Synthesis of a novel bifunctional chelator AmBaSar based on sarcophagine for peptide conjugation and 64Cu radiolabelling
JP3397338B2 (ja) ポリペプチド類
Shetty et al. Synthesis of novel 68Ga-labeled amino acid derivatives for positron emission tomography of cancer cells
CN115286697B (zh) 一种双重靶向化合物及其制备方法和应用
JP5318874B2 (ja) 放射性フッ素化方法
CN115260160B (zh) 一种靶向成纤维细胞活化蛋白fap的化合物及其制备方法和应用
CN115010629B (zh) 前列腺特异性膜抗原抑制剂、其核素标记物及制法和应用
Priem et al. A novel sulfonated prosthetic group for [18 F]-radiolabelling and imparting water solubility of biomolecules and cyanine fluorophores
US20120029177A1 (en) Heterocycle-amino acid derivatives for targeting cancer tissue and radioactive or non-radioactive labeled compounds thereof
WO2024021556A1 (zh) 一种靶向前列腺特异性膜抗原的放射性金属配合物及其标记配体
CN114031652B (zh) 一种含环己烷的葡萄糖衍生物及其应用
WO2010133851A1 (en) Preparation of labelled compounds
US10196421B2 (en) Nucleophile-reactive sulfonated compounds for the (radio)labelling of (bio)molecules; precursors and conjugates thereof
CN115368342B (zh) 成纤维细胞活性蛋白抑制剂、其放射性核素标记物及制备方法和应用
CN114805109B (zh) 氟[18f]沙芬酰胺的高效制备方法及pet显像剂应用
US20220072165A1 (en) Radiodrug for diagnostic/therapeutic use in nuclear medicine and radio-guided medicine
CN114853827B (zh) 一种葡萄糖衍生配体化合物及其制备方法和应用
WO2023231452A1 (zh) 含硝基芳香杂环基团的psma靶向放射性金属配合物及其制备
Iannone DEVELOPMENT OF NEW “GENERAL PURPOSE” METHODS TO INTRODUCE FLUORINE-18 IN BIOLOGICALLY ACTIVE MOLECULES
EP3096799B1 (en) Labeled molecular agents for imaging cystine/glutamate antiporter
Lin et al. Radioiodination of protein using 2, 3, 5, 6-tetrafluorophenyl 3-(nido-carboranyl) propionate (TCP) as a potential bi-functional linker: Synthesis and biodistribution in mice
CN116284225A (zh) 一种新型生长抑素类似物及其分子探针、制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23844775

Country of ref document: EP

Kind code of ref document: A1