WO2024021066A1 - 电池箱体、电池以及用电装置 - Google Patents

电池箱体、电池以及用电装置 Download PDF

Info

Publication number
WO2024021066A1
WO2024021066A1 PCT/CN2022/109108 CN2022109108W WO2024021066A1 WO 2024021066 A1 WO2024021066 A1 WO 2024021066A1 CN 2022109108 W CN2022109108 W CN 2022109108W WO 2024021066 A1 WO2024021066 A1 WO 2024021066A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
area
bearing
battery
plate
Prior art date
Application number
PCT/CN2022/109108
Other languages
English (en)
French (fr)
Inventor
姚鹏程
薛丹月
王鹏
陈兴地
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202280006398.2A priority Critical patent/CN116391294A/zh
Priority to PCT/CN2022/109108 priority patent/WO2024021066A1/zh
Priority to CN202223534119.6U priority patent/CN219321496U/zh
Publication of WO2024021066A1 publication Critical patent/WO2024021066A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/236Hardness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and more specifically, to a battery box, a battery and a power-consuming device.
  • Battery cells are widely used in electronic devices, such as mobile phones, laptops, battery cars, electric cars, electric airplanes, electric ships, electric toy cars, electric toy ships, electric toy airplanes, electric tools, etc.
  • the present application provides a battery box, battery and electrical device, which can improve the safety of the battery.
  • a battery box including: a frame that encloses a first opening; a load-bearing plate used to connect the battery cells; the load-bearing plate covers the first opening; the load-bearing plate includes There is at least one reinforced area and at least one load-bearing area, and the thickness of the reinforced area is greater than the thickness of the load-bearing area.
  • the thickness of the reinforced area on the bearing plate is increased by arranging the reinforcing area on the bearing plate, which can improve the bearing capacity of the bearing plate, thereby increasing the local stiffness of the bearing plate, thereby increasing the overall stiffness of the box, and thus Improved battery safety performance.
  • the number of the reinforcement areas and the load-bearing areas includes multiple, and the multiple reinforcement areas and the multiple load-bearing areas are alternately distributed along the first direction.
  • the first direction intersects the thickness direction of the bearing plate.
  • the load-bearing area and the reinforcement area can be designed to strengthen the weak areas in the box in a targeted manner, making the arrangement of the reinforcement area and the load-bearing area more flexible.
  • At least two reinforcement zones extend to different widths in the first direction.
  • each reinforced area when set, it can be set according to different degrees of weak areas in the box.
  • the number of reinforcement areas and load-bearing areas includes multiple, and the average thickness H1 of the multiple reinforcement areas and the average thickness H2 of the multiple load-bearing areas satisfy the relationship, 0mm ⁇ H1-H2 ⁇ 20mm.
  • the greater the difference between the average thickness of the reinforced area and the average thickness of the load-bearing area the greater the overall weight of the reinforced area and the higher the material cost.
  • This technical solution limits the average thickness of the reinforcement area and the average thickness of the load-bearing area to 0mm ⁇ H1-H2 ⁇ 20mm, so as to ensure that the average thickness difference between the two areas is reduced as much as possible while improving the rigidity of the box.
  • the minimum thickness H3 of the load-bearing area satisfies 0.2mm ⁇ H3 ⁇ 20mm.
  • the load-bearing area is the basic load-bearing capacity of the load-bearing plate.
  • This technical solution limits the thickness of the load-bearing area to 0.2mm ⁇ H3 ⁇ 20mm to balance the load-bearing capacity and material cost of the load-bearing plate.
  • the minimum thickness H3 of the load-bearing area satisfies 0.5mm ⁇ H3 ⁇ 10mm.
  • the average thickness of the load-bearing plate is H
  • the weight of the battery is M
  • H and M satisfy the relationship: 0.002mm/kg ⁇ H/M ⁇ 100mm/kg.
  • the average thickness of the load-bearing plate is H
  • the weight of the battery is M
  • H and M satisfy the relationship: 0.01mm/kg ⁇ H/M ⁇ 0.5mm/kg.
  • the thickness difference between the load-bearing area and the reinforcement area with the largest thickness is h1 and satisfies 0 mm ⁇ h1 ⁇ 100 mm
  • the thickness difference between the load-bearing area and the reinforcement area with the smallest thickness is h2 and satisfies 0 mm ⁇ h2 ⁇ 10 mm.
  • the reinforcement area protrudes toward the side facing away from the battery cell.
  • the greater the thickness difference between the reinforcement area and the load-bearing area the more space the reinforcement area takes up on the side facing away from the battery cell. Conducive to the assembly of other parts.
  • the smaller the thickness difference between the reinforced area and the load-bearing area the closer the load-bearing properties of the reinforced area and the load-bearing area will be. If the thickness difference between the reinforced area and the load-bearing area is too small, then the load-bearing performance of the reinforced area will be similar to that of the load-bearing area. , unable to reflect the strengthening effect.
  • This technical solution limits the maximum thickness difference to 0mm ⁇ h1 ⁇ 100mm and the minimum thickness difference to 0mm ⁇ h2 ⁇ 10mm to balance the space occupied by the load-bearing plate and the load-bearing performance.
  • the reinforcement area and the load-bearing area are fixedly connected to each other.
  • the reinforcement area and the load-bearing area are fixedly connected through welding and other methods to improve the connection strength between the reinforcement area and the load-bearing area. Avoid separation between the reinforcement area and the load-bearing area and reduce the possibility of box seal failure.
  • the reinforcing area and the load-bearing area are an integrally formed body.
  • the reinforcement area and the load-bearing area adopt an integrated structure to reduce production costs.
  • the carrier plate includes a substrate and a laminate plate.
  • the laminate plates are stacked in different areas on the side of the substrate away from the battery cells to form a reinforcement area.
  • the area of the substrate that is not covered by the laminate plate forms a load-bearing area.
  • dividing the load-bearing plate into a base plate and a laminated plate can reduce the manufacturing process.
  • the laminated plate can adapt to different load-bearing strengths, reduce the need for non-standard parts, and further reduce manufacturing costs.
  • the substrate includes at least one recessed portion, and the laminate plate is embedded in the recessed portion to form a reinforced area.
  • the substrate can form a recess according to the structure of the peripheral components to improve the adaptability of the substrate and peripheral components.
  • the integrated outer surface can reduce the possibility of sealing failure caused by external impact force on the load-bearing plate. , improve the reliability of the battery box. .
  • the materials of the substrate and the laminated plate are different, the stiffness of the laminated plate is greater than that of the substrate, and the weight of the laminated plate per unit area is less than the weight of the substrate per unit area.
  • the laminated board is made of materials with high stiffness and low weight, which can reduce the weight of the reinforced area and thereby reduce the overall weight of the load-bearing board.
  • the first surface of the carrying area facing the battery cells and the second surface of the reinforcing area facing the battery cells are on the same plane.
  • the first surface and the second surface are on the same plane, which avoids the unevenness of the battery cells when they are installed on the load-bearing plate, thereby avoiding the uneven force on the battery cells that may cause the battery cells to explode. Phenomenon.
  • a sealing member is further included, and the sealing member is disposed between the load-bearing plate and the box body, and the edge portions of each reinforced area and each load-bearing area in the second direction abut against the sealing member and are connected to the box body.
  • the sealing member can seal between the load-bearing plate and the box, preventing foreign matter or water vapor from entering between the load-bearing plate and the box, thereby increasing the service life of the battery cells.
  • an embodiment of the present application provides a battery, including a battery cell; and a plurality of boxes according to any embodiment of the first aspect, the box being used to accommodate the battery cells.
  • a thermal management component is also included.
  • the thermal management component is used to adjust the temperature of the battery cell; in the thickness direction, the orthographic projection of a part of the thermal management component on the carrier plate coincides with at least part of the reinforcement area. .
  • embodiments of the present application provide an electrical device, including a plurality of batteries according to any embodiment of the second aspect, and the batteries are used to provide electric energy.
  • Figure 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • FIG. 2 is an exploded schematic diagram of a battery provided by some embodiments of the present application.
  • Figure 3 is a schematic structural diagram of a battery box provided by some embodiments of the present application.
  • Figure 4 is a schematic structural diagram of a load-bearing plate of a battery box provided by some embodiments of the present application.
  • Figure 5 is a schematic cross-sectional structural diagram of A-A in Figure 4.
  • Figure 6 is a schematic cross-sectional structural diagram of another load-bearing plate of the battery box provided by some embodiments of the present application.
  • Figure 7 is a schematic cross-sectional structural diagram of another load-bearing plate of the battery box provided by some embodiments of the present application.
  • bearing plate 210. Bearing area; 210a. First surface; 220, reinforced area; 220a, second surface; 201, substrate; 201a, recessed portion; 202, laminated board;
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can be a fixed connection
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • “Plural” appearing in this application means two or more (including two).
  • battery cells may include lithium ion secondary battery cells, lithium ion primary battery cells, lithium sulfur battery cells, sodium lithium ion battery cells, sodium ion battery cells or magnesium ion battery cells, etc.
  • the embodiments of the present application are not limited to this.
  • the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited to this.
  • the battery cell includes an electrode assembly and an electrolyte.
  • the electrode assembly includes a positive electrode piece, a negative electrode piece and a separator. Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector; the positive electrode current collector includes a positive electrode coating area and a positive electrode tab connected to the positive electrode coating area.
  • the positive electrode coating area The positive electrode active material layer is coated, and the positive electrode tab is not coated with the positive electrode active material layer.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material layer includes a positive electrode active material.
  • the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector; the negative electrode current collector includes a negative electrode coating area and a negative electrode tab connected to the negative electrode coating area.
  • the negative electrode coating area The negative electrode active material layer is coated, and the negative electrode tab is not coated with the negative electrode active material layer.
  • the negative electrode current collector may be made of copper, and the negative electrode active material layer may include a negative electrode active material.
  • the negative electrode active material may be carbon or silicon.
  • the separator may be made of polypropylene (PP) or polyethylene (PE).
  • the battery cell also includes a casing, and a receiving cavity for accommodating the electrode assembly is formed inside the casing.
  • the shell can protect the electrode assembly from the outside to prevent external foreign matter from affecting the charging or discharging of the electrode assembly.
  • the battery cells are stored in the box to form a battery pack, and the power of the battery cells is transferred to external electrical appliances through circuits.
  • the box has a load-bearing plate. One side of the load-bearing plate is connected to external components, and the other side is connected to the battery cell. The more battery cells the load-bearing plate can carry, the greater the capacity of the battery pack.
  • the inventor found through research that as the required capacity of the battery increases, the load-bearing strength of local areas on the load-bearing plate will be insufficient, which will lead to deformation or even damage in local areas, reducing the safety of the battery.
  • the battery box includes a frame and a load-bearing plate, and the frame encloses to form a first opening.
  • the load-bearing plate is used to connect the battery cells.
  • the load-bearing plate covers the first opening.
  • the load-bearing plate includes at least one reinforcement area and at least one load-bearing area.
  • the thickness of the reinforcement area is greater than the thickness of the load-bearing area.
  • Electrical devices can be vehicles, cell phones, portable devices, laptops, ships, spacecraft, electric toys and power tools, etc.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles, etc.
  • spacecraft include aircraft, rockets, space shuttles, spaceships, etc.
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric ship toys and electric airplane toys, etc.
  • electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • Electric drills Electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • the following embodiments take the electrical device as a vehicle as an example.
  • Figure 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • a battery 2000 is disposed inside the vehicle 1000 .
  • the battery 2000 may be disposed at the bottom, head, or tail of the vehicle 1000 .
  • the battery 2000 may be used to power the vehicle 1000 , for example, the battery 2000 may serve as an operating power source for the vehicle 1000 .
  • the vehicle 1000 may also include a controller 3000 and a motor 4000.
  • the controller 3000 is used to control the battery 2000 to provide power to the motor 4000, for example, to meet the power requirements for starting, navigation and driving of the vehicle 1000.
  • the battery 2000 can not only be used as an operating power source for the vehicle 1000 , but can also be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000 .
  • Figure 2 is an exploded schematic diagram of a battery provided by some embodiments of the present application.
  • the battery 2000 includes a box 2010 and a battery cell 2020 .
  • the battery cell 2020 is accommodated in the box 2010 .
  • the battery cell 2020 may be one or multiple. If there are multiple battery cells 2020, the multiple battery cells 2020 can be connected in series, in parallel, or in mixed connection. Mixed connection means that the multiple battery cells 2020 are connected in series and in parallel. Multiple battery cells 2020 can be directly connected in series, parallel, or mixed together, and then the whole composed of multiple battery cells 2020 can be accommodated in the box 2010; of course, multiple battery cells 2020 can also be connected in series first. They may be connected in parallel or mixed to form a battery module, and multiple battery modules may be connected in series, parallel or mixed to form a whole, and be accommodated in the box 2010 .
  • Figure 3 is a schematic structural diagram of a battery box provided by some embodiments of the present application.
  • Figure 4 is a schematic structural diagram of a load-bearing plate of a battery box provided by some embodiments of the present application.
  • Figure 5 is a schematic cross-sectional structural diagram of A-A in Figure 4.
  • the box 2010 of the battery 2000 includes a frame 100 and a carrying plate 200 .
  • the frame 100 encloses the first opening.
  • the carrier plate 200 is used to connect the battery cells 2020.
  • the carrier plate 200 covers the first opening.
  • the carrier plate 200 includes at least one reinforced area 220 and at least one bearing area 210. The thickness of the reinforced area 220 is greater than the thickness of the bearing area 210.
  • the frame 100 encloses and forms a frame of the box 2010, and is used to limit the number and energy of the battery cells 2020.
  • the frame 100 can be made of various materials, such as copper, iron, aluminum, steel, aluminum alloy, etc.
  • the bezel 100 forms a frame with opposing bottoms and tops.
  • the carrier plate 200 is covered with the first opening, and the frame formed by the carrier plate 200 and the frame 100 encloses a receiving cavity for accommodating the battery cells 2020 .
  • the side of the carrier plate 200 facing the accommodation cavity is connected to the battery cell 2020 .
  • the battery cells 2020 in the battery box 2010 are located below the carrier plate 200 .
  • Both the reinforcement area 220 and the side of the load-bearing area 210 facing the accommodation cavity can support the battery cells 2020.
  • the thickness of the reinforcement area 220 in the load-bearing plate 200 is greater than the thickness of the load-bearing area 210.
  • the load-bearing performance of the reinforcement area 220 is compared to The stronger the load-bearing performance of the load-bearing area 210, the better the load-carrying capacity of the battery cells 2020.
  • the thickness of each reinforcement zone 220 may be the same. In other examples of this embodiment, the thickness of each reinforced area 220 may be different. In some further examples of this embodiment, the thickness of each reinforced area 220 may be different.
  • the thickness of the reinforced area 220 on the bearing plate 200 is increased by arranging the reinforced area 220 on the bearing plate 200, which can improve the bearing capacity of the bearing plate 200, thereby increasing the local stiffness of the bearing plate 200, thereby improving the
  • the overall rigidity of the box 2010 further improves the safety performance of the battery.
  • the number of the reinforcing areas 220 and the bearing areas 210 includes multiple, and the multiple reinforcing areas 220 and the multiple bearing areas 210 are alternately distributed along the first direction X.
  • the first direction intersects the thickness direction of the bearing plate.
  • the alternating distribution of the reinforcement areas 220 and the load-bearing areas 210 can be in various distribution situations.
  • the reinforcement area 220 and the load-bearing area 210 may be alternately distributed in such a manner that the reinforcement area 220, the load-bearing area 210, the reinforcement area 220, and the load-bearing area 210 are alternately distributed in sequence.
  • the alternating distribution pattern of the reinforcing area 220 and the bearing area 210 may be that the reinforcing area 220, the reinforcing area 220, the bearing area 210, the reinforcing area 220, and the reinforcing area 220 are alternately distributed in sequence.
  • the alternating distribution of the reinforced areas 220 and the load-bearing areas 210 may be based on the load-bearing requirements of the box 2010, with the reinforced areas 220 being set up in areas with weak load-bearing strength, and the load-bearing areas 210 being set up in areas with sufficient load-bearing strength.
  • the widths of all the load-bearing areas 210 in the load-bearing plate 200 along the first direction may be different from each other, or the widths of the other portion of the bearing areas 210 along the first direction X may be the same.
  • the width of all reinforced areas 220 in the load-bearing plate 200 along the first direction X may be the same as the width of the load-bearing area 210 along the first direction X, or may be different from the width of the load-bearing area 210 along the first direction X.
  • a part of the reinforced areas 220 in the load-bearing plate 200 may have the same width along the first direction X, and the other part of the reinforced areas 220 may have different widths along the first direction If not, the width of the other part of the reinforced area 220 along the first direction X may also be the same.
  • the load-bearing area 210 and the reinforcement area 220 can be designed to strengthen the weak areas in the box 2010 in a targeted manner, making the arrangement of the reinforcement area 220 and the load-bearing area 210 more flexible.
  • At least two reinforcement zones 220 extend in different widths in the first direction X.
  • each reinforced area 220 when set, it can be set according to different degrees of weak areas in the box 2010, so as to reduce the area with redundant load-bearing performance in the box 2010 and reduce the weight of the box 2010. .
  • the number of the reinforcement areas 220 and the load-bearing areas 210 includes multiple, and the average thickness H1 of the multiple reinforcement areas 220 and the average thickness H2 of the multiple load-bearing areas 210 satisfy the relationship, 0mm ⁇ H1-H2 ⁇ 20mm.
  • the embodiment of the present application can make the average thickness of all the load-bearing areas 210 in the load-bearing plate 200 the same as the thickness of each load-bearing area 210, thereby reducing the manufacturing size of the load-bearing area 210 and reducing the manufacturing cost.
  • the value of H1-H2 is 0.1mm, 0.5mm, 1mm, 2mm, 3mm, 5mm, 10mm, 15mm or 20mm.
  • the average thickness H1 of the reinforcement area 220 and the average thickness H2 of the load-bearing area 210 are limited to 0mm ⁇ H1-H2 ⁇ 20mm, so as to ensure that the average thickness of the two areas is reduced as much as possible while improving the stiffness of the box 2010. gap.
  • the minimum thickness H3 of the load-bearing area 210 satisfies the relationship, 0.2mm ⁇ H3 ⁇ 20mm; optionally, 0.5mm ⁇ H3 ⁇ 10mm.
  • the minimum thickness of the load-bearing area 210 is 0.2mm, 0.3mm, 0.5mm, 1mm, 2mm, 5mm, 10mm, 15mm or 19mm.
  • the bearing area 210 is the basic bearing of the bearing plate 200.
  • the thickness H3 of the load-bearing area 210 is limited to 0.2 mm ⁇ H3 ⁇ 20 mm to balance the load-bearing capacity and material cost of the load-bearing plate 200 .
  • the average thickness of the load-bearing plate 200 is H, and the weight of the battery core is M.
  • H and M satisfy: 0.002mm/kg ⁇ H/M ⁇ 100mm/kg; optionally, 0.01mm/kg ⁇ H /M ⁇ 0.5mm/kg.
  • the relationship between the average thickness of the load-bearing plate 200 and the weight of the battery core is limited to 0.002 mm/kg ⁇ H/M ⁇ 100 mm/kg to balance the structural strength requirements of the load-bearing plate 200 and the energy density requirements of the battery core.
  • the thickness difference between the load-bearing area 210 and the reinforcement area 220 with the largest thickness is h1, which satisfies 0mm ⁇ h1 ⁇ 100mm
  • the thickness difference between the load-bearing area 210 and the reinforcement area 220 with the smallest thickness is h2, which satisfies 0mm ⁇ h2 ⁇ 10mm.
  • the value of h1 is 1mm, 2mm, 5mm, 10mm, 15mm, 20mm, 30mm, 50mm or 100mm.
  • the value of h2 is 0.1mm, 0.2mm, 0.5mm, 1mm, 1.5mm, 2mm, 3mm, 5mm or 10mm.
  • the reinforced area 220 protrudes toward the side facing away from the battery cell 2020.
  • the load-bearing performance of the load-bearing area 210 is similar and cannot reflect the strengthening effect.
  • the maximum thickness difference is limited to 0mm ⁇ h1 ⁇ 100mm, and the minimum thickness difference is limited to 0mm ⁇ h2 ⁇ 10mm to balance the space occupied by the load-bearing plate 200 and the load-bearing performance.
  • the reinforcement area 220 and the load-bearing area 210 are fixedly connected to each other; optionally, the reinforcement area 220 and the load-bearing area 210 are welded to each other. In other examples, the reinforcing area 220 and the load-bearing area 210 may be fixedly connected through bolts, glue, or the like. This prevents the reinforcement area 220 and the load-bearing area 210 from being separated after the load-bearing plate 200 loads the battery cells 2020, thereby reducing the possibility of sealing failure of the box 2010.
  • the reinforcing area 220 and the load-bearing area 210 are an integrally formed body.
  • the reinforcement area 220 and the load-bearing area 210 can be integrally formed through casting, 3D printing and other processes to reduce the manufacturing cost of the load-bearing plate 200 and facilitate the large-scale production of the load-bearing plate 200 .
  • FIG. 6 is a schematic cross-sectional structural diagram of another carrier plate 200 of the battery box provided by some embodiments of the present application.
  • FIG. 7 is a schematic cross-sectional structural diagram of another carrier plate 200 of the battery box provided by some embodiments of the present application.
  • the carrier plate 200 includes a substrate 201 and a laminated plate 202.
  • the laminated plate 202 is stacked in different areas on the side of the substrate 201 away from the battery unit 2020 to form a reinforcement area. 220, the area of the substrate 201 not covered by the laminated board 202 forms the carrying area 210.
  • the substrate 201 can be used as the basic load-bearing area 210 in the load-bearing plate 200.
  • a weak load-bearing area will appear on the load-bearing plate 200.
  • a laminated plate 202 is provided on the side of the base plate 201 corresponding to the weak load-bearing area away from the battery cell 2020, thereby strengthening the strength of this area. load carrying performance.
  • the laminated plates 202 can have different thicknesses and widths, and the laminated plates 202 can also have the same thickness and width, so that the laminated plates 202 can be accurately increased according to the load-bearing capacity required to carry the weak areas.
  • the load-bearing plate 200 is divided into a base plate 201 and a laminated plate 202, which can reduce the manufacturing process.
  • the laminated plate 202 can adapt to different load-bearing strengths, reducing the need for non-standard components and further reducing manufacturing costs.
  • the substrate 201 includes at least one recessed portion 201a, and the laminate plate 202 is embedded in the recessed portion 201a to form a reinforced area 220.
  • the recessed portion 201a in the substrate 201 is recessed in a direction away from the battery cell 2020.
  • the gap between the recessed portion 201a and the battery cell 2020 is provided with the laminated plate 202.
  • the gap between the recessed portion 201a and the laminated plate 202 is The connection is fixed by welding, bolting, gluing, etc. to improve the adaptability of the load-bearing plate 200 and the outer peripheral components of the box 2010.
  • the integrated outer surface can reduce the possibility of sealing failure of the load-bearing plate 200 caused by external impact force. Possibility to improve the reliability of the battery box 2010.
  • the materials of the substrate 201 and the laminated plate 202 are different, the stiffness of the laminated plate 202 is greater than the stiffness of the substrate 201, and the weight of the laminated plate 202 per unit area is smaller than the weight of the substrate 201 per unit area.
  • the laminated plate 202 is made of a material with high stiffness and low weight, which can reduce the weight of the reinforcement area 220 and thereby reduce the overall weight of the load-bearing plate 200 .
  • the materials of the substrate 201 and the stacked plate 202 include steel, carbon steel and aluminum alloy.
  • steel, carbon steel and aluminum alloy all have better stiffness and lighter weight.
  • the first surface 210 a of the carrying area 210 facing the battery cell 2020 and the second surface 220 a of the reinforcing area 220 facing the battery cell 2020 are on the same plane.
  • the first surface 210a and the second surface 220a are on the same plane, which avoids the unevenness of the battery cells 2020 when they are installed on the carrier plate 200, thus avoiding the uneven force on the battery cells 2020 and causing the battery cells to malfunction.
  • the phenomenon of explosion in 2020 is not limited to.
  • the battery box 2010 further includes a sealing member.
  • the sealing member is disposed between the load-bearing plate 200 and the box 2010 .
  • the edges of each reinforced area 220 and each load-bearing area 210 in the second direction are in contact with each other. to the seal and connected to the box 2010.
  • the materials of seals include rubber, silicone, nylon, engineering plastics, etc.
  • the sealing member can seal between the load-bearing plate 200 and the box 2010 to prevent foreign matter or water vapor from entering between the load-bearing plate 200 and the box 2010, thereby increasing the service life of the battery cell 2020.
  • the present application also provides a battery 2000, including a battery cell 2020 and a plurality of battery boxes 2010 according to any of the above embodiments.
  • the box 2010 is used to accommodate the battery cells 2020.
  • the battery cells 2020 are bonded to the carrier plate 200 to ensure that the battery cells 2020 do not move within the box 2010 .
  • the battery 2000 also includes a thermal management component 2030 for regulating the temperature of the battery cell 2020.
  • a thermal management component 2030 for regulating the temperature of the battery cell 2020.
  • the orthographic projection of a portion of the thermal management component 2030 on the carrier plate 200 coincides with at least part of the reinforcement area 220 .
  • the present application also provides an electrical device, including a plurality of batteries 2000 according to any of the above embodiments, and the batteries are used to provide electric energy.
  • the present application provides a battery box 2010 .
  • the battery box 2010 includes a frame 100 and a carrying plate 200 .
  • the frame 100 encloses the first opening.
  • the carrier plate 200 is used to connect the battery cells 2020.
  • the carrier plate 200 covers the enclosure to form a first opening.
  • the carrier plate 200 includes at least one reinforced area 220 and at least one bearing area 210.
  • the thickness of the reinforced area 220 is greater than that of the bearing area 210. thickness.
  • the plurality of reinforcement areas 220 and the plurality of load-bearing areas 210 are alternately distributed along the first direction X.
  • the minimum thickness H3 of the load-bearing area 210 satisfies the relationship, 0.2mm ⁇ H3 ⁇ 20mm; optional, 0.5mm ⁇ H3 ⁇ 10mm.
  • the average thickness of the load-bearing plate 200 is H, and the weight of the battery is M.
  • H and M satisfy: 0.002mm/kg ⁇ H/M ⁇ 100mm/kg; optional, 0.01mm/kg ⁇ H/M ⁇ 0.5mm/kg .
  • the reinforcement area 220 and the bearing area 210 are fixedly connected to each other.
  • the first surface 210a of the bearing area 210 facing the battery cell 2020 and the second surface 220a of the reinforcing area 220 facing the battery cell 2020 are on the same level.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Battery Mounting, Suspending (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

一种电池(2000)的箱体(2010)、电池(2000)以及用电装置。箱体(2010)包括:边框(100),围合形成第一开口;承载板(200),用于连接电池单体(2020),承载板(200)盖合于第一开口,承载板(200)包括至少一个加强区(220)和至少一个承载区(210),加强区(220)的厚度大于承载区(210)的厚度。通过在承载板(200)上设置加强区(220),可以提高承载板(200)的承载能力,以提高承载板(200)的局部刚度,从而提高箱体(2010)的整体刚度,进而提高了电池(2000)的安全性能。

Description

电池箱体、电池以及用电装置 技术领域
本申请涉及电池技术领域,并且更具体地,涉及一种电池的箱体、电池以及用电装置。
背景技术
电池单体广泛用于电子设备,例如手机、笔记本电脑、电瓶车、电动汽车、电动飞机、电动轮船、电动玩具汽车、电动玩具轮船、电动玩具飞机和电动工具等等。
如何提高电池单体的安全性,是电池技术中的一个研究方向。
发明内容
本申请提供了一种电池的箱体、电池以及用电装置,其能够提高电池的安全性。
第一方面,本申请实施例提供了一种电池的箱体,包括:边框,围合形成第一开口;承载板,用于连接电池单体,承载板盖合于第一开口,承载板包括至少一个加强区和至少一个承载区,加强区的厚度大于承载区的厚度。
在上述技术方案中,通过在承载板上设置加强区将承载板上加强区的厚度增加,这可以提高承载板的承载能力,以提高承载板的局部刚度,从而提高箱体的整体刚度,进而提高了电池的安全性能。
在一些实施方式中,加强区和承载区的数量均包括多个,多个加强区和多个承载区沿第一方向交替分布。第一方向与承载板厚度方向相交。
在上述技术方案中,承载区和加强区可以在设计时可以针对性的加强箱体中的薄弱区,使得加强区和承载区的布置更加灵活。
在一些实施方式中,至少两个加强区在第一方向上的延伸宽度不同。
在上述技术方案中,每个加强区在设置时,可以根据箱体中不同程度的薄弱区针对性的设置。
在一些实施方式中,加强区和承载区的数量均包括多个,多个加强区的平均厚度H1与多个承载区的平均厚度H2满足关系,0mm<H1-H2≤20mm。
在上述技术方案中,加强区的平均厚度比承载区的平均厚度的差距越大,加强区的整体重量多大,物料成本越高。加强区的平均厚度比承载区的平均厚度的差距越相近,箱体的整体刚度提升的越小,承载板的承载能力提升的越小。该技术方案将加强区的平均厚度与承载区的平均厚度限定在,0mm<H1-H2≤20mm,以保证提升箱体刚度的前提下,尽可能的降低两个区域的平均厚度差距。
在一些实施方式中,承载区的最小厚度H3满足0.2mm≤H3≤20mm。
在上述技术方案中,承载区为承载板的基础承载,承载区的厚度越小,承载板的承载能力越差,箱体的整体刚度越低。承载区的厚度越大,承载板的物料成本越高,箱体的整体重量越重。该技术方案将承载区的厚度限定在0.2mm<H3<20mm,以平衡承载板的承载能力和物料成本。
在一些实施方式中,承载区的最小厚度H3满足0.5mm≤H3≤10mm。
在一些实施方式中,承载板的平均厚度为H,电池的重量为M,H和M满足关系:0.002mm/kg≤H/M≤100mm/kg。
在上述技术方案中,当H/M的值过大,会造成重量浪费,能量密度过低;当H/M的值过小,无法满足结构强度,会出现起火爆炸等安全事故。该技术方案将承载板的平均厚度限定与电芯重量的关系限定为0.002mm/kg<H/M≤100mm/kg,以平衡承载板的结构强度要求和电芯的能量密度要求。
在一些实施方式中,承载板的平均厚度为H,电池的重量为M,H和M满足关系:0.01mm/kg≤H/M≤0.5mm/kg。
在一些实施方式中,承载区与具有最大厚度的加强区的厚度差为h1满足0mm<h1≤100mm,承载区与具有最小厚度的加强区的厚度差为h2满足0mm<h2≤10mm。
在上述技术方案中,加强区是向背向电池单体的一侧凸出的,加强 区与承载区的厚度差越大,那么加强区对背向电池单体一侧占用的空间越多,不利于其他部件的装配。加强区与承载区的厚度差越小,加强区和承载区的承载性能就越相近,加强区与承载区的厚度差如果过小,那么此加强区的承载性能与承载区的承载性能就相近,无法体现出加强效果。该技术方案将最大厚度差限定在0mm<h1≤100mm,最小厚度差限定在0mm<h2≤10mm,以平衡承载板占用空间和承载性能。
在一些实施方式中,加强区与承载区相互固定连接设置。
在上述技术方案中,加强区和承载区通过焊接等方式固定连接,提高加强区和承载区的连接强度。避免加强区和承载区发生分离现象,减小箱体密封失效的可能性。
在一些实施方式中,加强区与承载区为一体成型体。
在上述技术方案中,加强区和承载区采用一体成型的结构,降低制作成本。
在一些实施方式中,承载板包括基板及层叠板,层叠板在基板背离电池单体的一侧层叠设置于不同的区域形成加强区,基板未被层叠板覆盖的区域形成承载区。
在上述技术方案中,将承载板分为基板和层叠板,可以减少制作工序,层叠板可以适配不同的承载强度,减少非标准部件的需求,进一步降低制造成本。
在一些实施方式中,基板包括至少一个凹陷部,层叠板嵌设于凹陷部形成加强区。
在上述技术方案中,基板可以根据周边部件的结构形成凹陷部,提高基板与周边部件的适配性,同时,一体化的外表面可以减小外部冲击力对承载板造成的密封失效的可能性,提高电池箱体的可靠性。。
在一些实施方式中,基板及层叠板的材质不相同,层叠板的刚度大于基板的刚度,且层叠板在单位面积内的重量小于基板在单位面积内的重量。
在上述技术方案中,采用刚度大且重量小的材质制作层叠板,可以降低加强区的重量,从而降低承载板的整体重量。
在一些实施方式中,承载区朝向电池单体的第一表面与加强区朝向电池单体的第二表面处于同一平面。
在上述技术方案中,第一表面和第二表面处于同一平面,避免电池单体安装在承载板上时出现凹凸不平的现象,从而避免电池单体受力不均匀从而引发电池单体发生爆炸的现象。
在一些实施方式中,还包括密封件,密封件设置于承载板和箱体之间,各加强区和各承载区在第二方向上的边缘部均抵接于密封件并连接至箱体。
在上述技术方案中,密封件可以将承载板和箱体之间进行密封,避免承载板和箱体之间有异物或者水汽等进入,提高电池单体的使用寿命。
第二方面,本申请实施例提供了一种电池,包括电池单体;以及多个第一方面任一实施方式的箱体,箱体用于容纳电池单体。
在一些实施方式中,还包括热管理部件,热管理部件用于调节电池单体的温度;在厚度方向上,一部分的热管理部件在承载板上的正投影与所述加强区的至少部分重合。
第三方面,本申请实施例提供了一种用电装置,包括多个第二方面任一实施方式的电池,电池用于提供电能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的爆炸示意图;
图3为本申请一些实施例提供的电池的箱体的结构示意图;
图4为本申请一些实施例提供的电池箱体的一种承载板的结构示意图;
图5为图4中A-A的剖面结构示意图;
图6为本申请一些实施例提供的电池箱体的又一种承载板的剖面结构示意图;
图7为本申请一些实施例提供的电池箱体的又一种承载板的剖面结构示意图;
在附图中,附图并未按照实际的比例绘制。
标记说明:
1000、车辆;2000、电池;2010、箱体;2020、电池单体;2030、热管理部件;3000、控制器;4000、马达;
100、边框;
200、承载板;210、承载区;210a。第一表面;220、加强区;220a、第二表面;201、基板;201a、凹陷部;202、层叠板;
X、第一方向。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的 独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“三种,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池单体、锂离子一次电池单体、锂硫电池单体、钠锂离子电池单体、钠离子电池单体或镁离子电池单体等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。
电池单体包括电极组件和电解液,电极组件包括正极极片、负极极片和隔离件。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面;正极集流体包括正极涂覆区和连接于正极涂覆区的正极极耳,正极涂覆区涂覆有正极活性物质层,正极极耳未涂覆正极活性物质层。以锂离子电池单体为例,正极集流体的材料可以为铝,正极活性物质层包括正极活性物质,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面;负极集流体包括负极涂覆区和连接于负 极涂覆区的负极极耳,负极涂覆区涂覆有负极活性物质层,负极极耳未涂覆负极活性物质层。负极集流体的材料可以为铜,负极活性物质层包括负极活性物质,负极活性物质可以为碳或硅等。隔离件的材质可以为聚丙烯(polypropylene,PP)或聚乙烯(polyethylene,PE)等。
电池单体还包括外壳,外壳内部形成用于容纳电极组件的容纳腔。外壳可以从外侧保护电极组件,以避免外部的异物影响电极组件的充电或放电。
电池单体收纳在箱体中形成电池包,通过电路将电池单体的电量传递至外部的电器中。一般情况下,箱体具有承载板,承载板的一侧与外部的部件连接,另一侧与电池单体连接。承载板所能承载的电池单体数量越多,电池包具有的容量越大。
发明人通过研究发现,随着电池所需的容量增加,承载板上会出现局部区域的承载强度不足,进而导致局部区域出现变形甚至破损,降低电池的安全性。
鉴于此,本申请实施例提供了一种技术方案,在该技术方案中,电池的箱体包括边框和承载板,边框围合形成第一开口。承载板用于连接电池单体,承载板盖合于第一开口,承载板包括至少一个加强区和至少一个承载区,加强区的厚度大于承载区的厚度。该技术方案通过在承载板上设置加强区将承载板上加强区的厚度增加,这可以提高承载板的承载能力,以提高承载板的局部刚度,从而提高箱体的整体刚度,进而提高了电池的安全性能。
本申请实施例描述的技术方案适用于电池以及使用电池的用电装置。
用电装置可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动 螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电装置不做特殊限制。
以下实施例为了方便说明,以用电装置为车辆为例进行说明。
图1为本申请一些实施例提供的车辆的结构示意图。
如图1所示,车辆1000的内部设置有电池2000,电池2000可以设置在车辆1000的底部或头部或尾部。电池2000可以用于车辆1000的供电,例如,电池2000可以作为车辆1000的操作电源。
车辆1000还可以包括控制器3000和马达4000,控制器3000用来控制电池2000为马达4000供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池2000不仅仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
图2为本申请一些实施例提供的电池的爆炸示意图。
如图2所示,电池2000包括箱体2010和电池单体2020,电池单体2020容纳于箱体2010内。
在电池2000中,电池单体2020可以是一个,也可以是多个。若电池单体2020为多个,多个电池单体2020之间可串联或并联或混联,混联是指多个电池单体2020中既有串联又有并联。多个电池单体2020之间可直接串联或并联或混联在一起,再将多个电池单体2020构成的整体容纳于箱体2010内;当然,也可以是多个电池单体2020先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体2010内。
图3为本申请一些实施例提供的电池的箱体的结构示意图。图4为本申请一些实施例提供的电池箱体的一种承载板的结构示意图。图5为图4中A-A的剖面结构示意图。
如图2至图5所示,本申请实施例的电池2000的箱体2010包括边框100和承载板200。边框100围合形成第一开口。承载板200用于连接电池单体2020,承载板200盖合于第一开口,承载板200包括至少一个加强 区220和至少一个承载区210,加强区220的厚度大于承载区210的厚度。
边框100围合形成箱体2010的框架,用于限定电池单体2020容纳数量和能量。边框100的材质可以是多种,比如,铜、铁、铝、钢、铝合金等。边框100形成的框架具有相对的底部和顶部。
承载板200盖合在第一开口,承载板200与边框100形成的框架围合形成容纳腔,用于容纳电池单体2020。承载板200朝向容纳腔的一侧与电池单体2020连接。在本实施例的一些示例中,电池箱体2010内的电池单体2020位于承载板200的下方。
加强区220和承载区210朝向容纳腔的一侧都可以承载电池单体2020,承载板200中的加强区220的厚度大于承载区210的厚度,相应的,加强区220的承载性能相较于承载区210的承载性能更强,对电池单体2020的承载能力也就越好。在本实施例的一些示例中,各个加强区220的厚度可以是相同的。在本实施例的另一些示例中,各个加强区220的厚度可以是不相同的。在本实施例的又一些示例中,各个加强区220的厚度可以是不相同的。
在本申请实施例中,通过在承载板200上设置加强区220将承载板200上加强区220的厚度增加,这可以提高承载板200的承载能力,以提高承载板200的局部刚度,从而提高箱体2010的整体刚度,进而提高了电池的安全性能。
在一些实施例中,加强区220和承载区210的数量均包括多个,多个加强区220和多个承载区210沿第一方向X交替分布。第一方向与承载板厚度方向相交。
加强区220和承载区210的交替分布可以是多种分布情况的。在一些实施例中,加强区220和承载区210的交替分布方式可以是加强区220、承载区210、加强区220、承载区210依次交替分布。在另一些实施例中,加强区220和承载区210的交替分布方式可以是加强区220、加强区220、承载区210、加强区220、加强区220依次交替分布。在又一些实施例中,加强区220和承载区210的交替分布方式可以是按照箱体2010的承载需求,在承载薄弱区设置加强区220,在承载强度足够的区域设置承载区210。
承载板200中的全部承载区210沿第一方向X的宽度可以是相同的,也可以是一部分承载区210沿第一方向X的宽度相同,另一部分承载区210沿第一方向X的宽度不同,进一步的,另一部分承载区210沿第一方向X的宽度可以互不相同,也可以另一部分承载区210沿第一方向X的宽度相同。同样的,承载板200中的全部加强区220沿第一方向X的宽度可以和承载区210沿第一方向X的宽度相同,也可以和承载区210沿第一方向X的宽度不同。承载板200中的一部分加强区220可以沿第一方向X的宽度相同,另一部分加强区220沿第一方向X的宽度不同,进一步的,另一部分加强区220沿第一方向X的宽度可以互不相同,也可以另一部分加强区220沿第一方向X的宽度相同。
在本实施例中,承载区210和加强区220可以在设计时可以针对性的加强箱体2010中的薄弱区,使得加强区220和承载区210的布置更加灵活。
在一些实施例中,至少两个加强区220在第一方向X上的延伸宽度不同。
在本实施例中,每个加强区220在设置时,可以根据箱体2010中不同程度的薄弱区针对性的设置,以减少箱体2010中承载性能冗余的区域,减少箱体2010的重量。
在一些实施例中,加强区220和承载区210的数量均包括多个,多个加强区220的平均厚度H1与多个承载区210的平均厚度H2满足关系,0mm<H1-H2≤20mm。
本申请实施例可以使承载板200中全部承载区210的平均厚度与每个承载区210的厚度相同,从而减少承载区210的制作尺寸,降低制造成本。
示例性地,H1-H2的值为0.1mm、0.5mm、1mm、2mm、3mm、5mm、10mm、15mm或20mm。
加强区220的平均厚度比承载区210的平均厚度的差距越大,加强区220的整体重量多大,物料成本越高。加强区220的平均厚度比承载区210的平均厚度的差距越相近,箱体2010的整体刚度提升的越小,承载板 200的承载能力提升的越小。本实施例将加强区220的平均厚度H1与承载区210的平均厚度H2限定在0mm<H1-H2≤20mm,以保证提升箱体2010刚度的前提下,尽可能的降低两个区域的平均厚度差距。
在一些实施例中,承载区210的最小厚度H3满足关系,0.2mm≤H3≤20mm;可选的,0.5mm≤H3≤10mm。示例性地,承载区210的最小厚度为0.2mm、0.3mm、0.5mm、1mm、2mm、5mm、10mm、15mm或19mm。
承载区210为承载板200的基础承载,承载区210的厚度越小,承载板200的承载能力越差,箱体2010的整体刚度越低。承载区210的厚度越大,承载板200的物料成本越高,箱体2010的整体重量越重。本实施例将承载区210的厚度H3限定在0.2mm≤H3≤20mm,以平衡承载板200的承载能力和物料成本。
在一些实施例中,承载板200的平均厚度为H,电芯的重量为M,H和M满足:0.002mm/kg≤H/M≤100mm/kg;可选的,0.01mm/kg≤H/M≤0.5mm/kg。
当H/M的值过大,会造成重量浪费,能量密度过低;当H/M过小,无法满足结构强度,会出现起火爆炸等安全事故。本实施例将承载板200的平均厚度限定与电芯重量的关系限定为0.002mm/kg≤H/M≤100mm/kg,以平衡承载板200的结构强度要求和电芯的能量密度要求。
在一些实施例中,承载区210与具有最大厚度的加强区220的厚度差为h1满足0mm<h1≤100mm,承载区210与具有最小厚度的加强区220的厚度差为h2满足0mm<h2≤10mm。示例性地,h1的值为1mm、2mm、5mm、10mm、15mm、20mm、30mm、50mm或100mm。h2的值为0.1mm、0.2mm、0.5mm、1mm、1.5mm、2mm、3mm、5mm或10mm。
加强区220是向背向电池单体2020的一侧凸出的,加强区220与承载区210的厚度差越大,那么加强区220对背向电池单体2020一侧占用的空间越多,不利于其他部件的装配。加强区220与承载区210的厚度差越小,加强区220和承载区210的承载性能就越相近,加强区220与承载区210的厚度差如果过小,那么此加强区220的承载性能与承载区210的承载 性能就相近,无法体现出加强效果。本实施例将最大厚度差限定在0mm<h1≤100mm,最小厚度差限定在0mm<h2≤10mm,以平衡承载板200占用空间和承载性能。
在一些实施例中,加强区220与承载区210相互固定连接设置;可选的,加强区220与承载区210相互焊接。在另一些示例中,加强区220和承载区210可以通过螺栓、胶粘等固定连接。以使承载板200在承载电池单体2020后,加强区220和承载区210不发生分离现象,减小箱体2010密封失效的可能性。
在一些实施例中,加强区220与承载区210为一体成型体。
在本实施例中,加强区220和承载区210可以通过铸造、3D打印等工艺一体成型,以降低承载板200的制作成本,以便承载板200的规模化生产。
图6为本申请一些实施例提供的电池箱体的又一种承载板200的剖面结构示意图。图7为本申请一些实施例提供的电池箱体的又一种承载板200的剖面结构示意图。
请一并参照图6至图7,在一些实施例中,承载板200包括基板201及层叠板202,层叠板202在基板201背离电池单体2020的一侧层叠设置于不同的区域形成加强区220,基板201未被层叠板202覆盖的区域形成承载区210。
基板201可以作为承载板200中基础承载区210,在承载板200上会出现承载薄弱区,在承载薄弱区对应的基板201背离电池单体2020的一侧设置层叠板202,从而加强此区域的承载性能。
层叠板202可以具有不同的厚度和宽度,层叠板202也可以具有相同的厚度和宽度,以使层叠板202可以根据承载薄弱区所需的承载能力进行精确的提高。本实施例中,将承载板200分为基板201和层叠板202,可以减少制作工序,层叠板202可以适配不同的承载强度,减少非标准部件的需求,进一步降低制造成本。
在一些实施例中,基板201包括至少一个凹陷部201a,层叠板202嵌设于凹陷部201a形成了加强区220。
在本实施例中,基板201中的凹陷部201a朝远离电池单体2020的方向凹陷,凹陷部201a与电池单体2020之间的间隙设置层叠板202,凹陷部201a与层叠板202之间利用焊接、螺栓、黏贴等方式固定连接,以提高承载板200与箱体2010外周边部件的适配性,同时,一体化的外表面可以减小外部冲击力对承载板200造成的密封失效的可能性,提高电池箱体2010的可靠性。
在一些实施例中,基板201及层叠板202的材质不相同,层叠板202的刚度大于基板201的刚度,且层叠板202在单位面积内的重量小于基板201在单位面积内的重量。
本实施例中采用刚度大且重量小的材质制作层叠板202,可以降低加强区220的重量,从而降低承载板200的整体重量。
在一些实施例中,基板201及层叠板202的材质包括钢、碳钢和铝合金。
本实施例中钢、碳钢和铝合金都具有较好的刚度以及较轻的重量。
请继续参阅图6,在一些实施例中,承载区210朝向电池单体2020的第一表面210a与加强区220朝向电池单体2020的第二表面220a处于同一平面。
本实施例中第一表面210a和第二表面220a处于同一平面,避免电池单体2020安装在承载板200上时出现凹凸不平的现象,从而避免电池单体2020受力不均匀从而引发电池单体2020发生爆炸的现象。
在一些实施例中,电池的箱体2010还包括密封件,密封件设置于承载板200和箱体2010之间,各加强区220和各承载区210在第二方向上的边缘部均抵接于密封件并连接至箱体2010。
密封件的材质包括橡胶、硅胶、尼龙、工程塑料等。
本实施例中密封件可以将承载板200和箱体2010之间进行密封,避免承载板200和箱体2010之间有异物或者水汽等进入,提高电池单体2020的使用寿命。
在一些实施例中,本申请还提供了一种电池2000,包括电池单体2020以及多个以上任一实施例的电池的箱体2010,箱体2010用于容纳电 池单体2020。
在一些实施例中,电池单体2020粘接于承载板200,以保证电池单体2020在箱体2010内不发生移动。
在一些实施例中,电池2000还包括热管理部件2030,热管理部件2030用于调节电池单体2020的温度。在厚度方向上,一部分的热管理部件2030在承载板200上的正投影与所述加强区220的至少部分重合。
在一些实施例中,本申请还提供了一种用电装置,包括多个以上任一实施例的电池2000,电池用于提供电能。
在一些实施例中,参照图2至图5,本申请提供了一种电池箱体2010。电池箱体2010包括边框100和承载板200。边框100围合形成第一开口。承载板200用于连接电池单体2020,承载板200盖合于围合形成第一开口,承载板200包括至少一个加强区220和至少一个承载区210,加强区220的厚度大于承载区210的厚度。多个加强区220和多个承载区210沿第一方向X交替分布。承载区210的最小厚度H3满足关系,0.2mm≤H3≤20mm;可选的,0.5mm≤H3≤10mm。承载板200的平均厚度为H,电池的重量为M,H和M满足:0.002mm/kg≤H/M≤100mm/kg;可选的,0.01mm/kg≤H/M≤0.5mm/kg。加强区220与承载区210相互固定连接设置。承载区210朝向电池单体2020的第一表面210a与加强区220朝向电池单体2020的第二表面220a处于同一水平面。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (19)

  1. 一种电池的箱体,包括:
    边框,围合形成第一开口;
    承载板,用于连接电池单体,所述承载板盖合于所述第一开口,所述承载板包括至少一个承载区和至少一个加强区,所述加强区的厚度大于所述承载区的厚度。
  2. 根据权利要求1所述的箱体,其中,所述加强区和所述承载区的数量均包括多个,所述多个加强区和所述多个承载区沿第一方向交替分布,所述第一方向与所述承载板厚度方向相交。
  3. 根据权利要求2所述的箱体,其中,至少两个所述加强区在所述第一方向上的延伸宽度不同。
  4. 根据权利要求1所述的箱体,其中,所述加强区和所述承载区的数量均包括多个,所述多个加强区的平均厚度H1与所述多个承载区的平均厚度H2满足关系,0mm<H1-H2≤20mm。
  5. 根据权利要求1-4任一项所述的箱体,其中,所述承载区的最小厚度H3满足0.2mm≤H3≤20mm。
  6. 根据权利要求5所述的箱体,其中,所述承载区的最小厚度H3满足0.5mm≤H3≤10mm。
  7. 根据权利要求1-6任一项所述的箱体,其中,所述承载板的平均厚度为H,所述电池的重量为M,H和M满足关系:0.002mm/kg≤H/M≤100mm/kg。
  8. 根据权利要求7所述的箱体,其中,所述承载板的平均厚度为H,所述电池的重量为M,H和M满足关系:0.01mm/kg≤H/M≤0.5mm/kg。
  9. 根据权利要求1-8任一项所述的箱体,其中,所述承载区与具有最大厚度的所述加强区的厚度差为h1满足0mm<h1≤100mm,所述承载区与具有最小厚度的所述加强区的厚度差为h2满足0mm<h2≤10mm。
  10. 根据权利要求1所述的箱体,其中,所述加强区与所述承载区相互固定连接设置。
  11. 根据权利要求1所述的箱体,其中,所述加强区与所述承载区为一体成型体。
  12. 根据权利要求1-9任一项所述的箱体,其中,所述承载板包括基板及层叠板,所述层叠板在所述基板背离所述电池单体的一侧层叠设置于不同的区域形成所述加强区,所述基板未被所述层叠板覆盖的区域形成所述承载区。
  13. 根据权利要求12所述的箱体,其中,所述基板包括至少一个凹陷部,所述层叠板嵌设于所述凹陷部形成所述加强区。
  14. 根据权利要求12所述的箱体,其中,所述基板及所述层叠板的材质不相同,所述层叠板的刚度大于所述基板的刚度,且所述层叠板在单位面积内的重量小于所述基板在单位面积内的重量。
  15. 根据权利要求1-14任一项所述的箱体,其中,所述承载区朝向所述电池单体的第一表面与所述加强区朝向所述电池单体的第二表面处于同一平面。
  16. 根据权利要求1-15任一项所述的箱体,其中,还包括密封件,所述密封件设置于所述承载板和所述箱体之间,各所述加强区和各所述承载区在第二方向上的边缘部均抵接于所述密封件并连接至所述箱体。
  17. 一种电池,包括:
    电池单体;以及
    如权利1-16任一项所述的箱体,所述箱体用于容纳所述电池单体。
  18. 根据权利要求17所述的电池,其中,还包括热管理部件,所述热管理部件用于调节所述电池单体的温度;
    在所述厚度方向上,一部分的所述热管理部件在所述承载板上的正投影与所述加强区的至少部分重合。
  19. 一种用电装置,其中,包括如权利要求17-18任一项所述的电池,所述电池用于提供电能。
PCT/CN2022/109108 2022-07-29 2022-07-29 电池箱体、电池以及用电装置 WO2024021066A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280006398.2A CN116391294A (zh) 2022-07-29 2022-07-29 电池箱体、电池以及用电装置
PCT/CN2022/109108 WO2024021066A1 (zh) 2022-07-29 2022-07-29 电池箱体、电池以及用电装置
CN202223534119.6U CN219321496U (zh) 2022-07-29 2022-12-28 电池箱体、电池以及用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/109108 WO2024021066A1 (zh) 2022-07-29 2022-07-29 电池箱体、电池以及用电装置

Publications (1)

Publication Number Publication Date
WO2024021066A1 true WO2024021066A1 (zh) 2024-02-01

Family

ID=86981040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109108 WO2024021066A1 (zh) 2022-07-29 2022-07-29 电池箱体、电池以及用电装置

Country Status (2)

Country Link
CN (2) CN116391294A (zh)
WO (1) WO2024021066A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107732079A (zh) * 2017-11-11 2018-02-23 中航锂电(洛阳)有限公司 电池箱体侧壁、电池箱及车辆
CN209071470U (zh) * 2018-12-29 2019-07-05 蜂巢能源科技有限公司 电池包的下壳体
JP2020053132A (ja) * 2018-09-25 2020-04-02 株式会社Fts バッテリーケース用ロアトレー
CN211088367U (zh) * 2020-01-08 2020-07-24 摩登汽车有限公司 电池箱和电池包总成
CN211125761U (zh) * 2019-12-31 2020-07-28 苏州银禧新能源复合材料有限公司 一种复合材料电池箱结构
CN213184488U (zh) * 2020-09-15 2021-05-11 北京车和家信息技术有限公司 一种电池模组框体结构、电池包及电动汽车
CN113352866A (zh) * 2020-03-04 2021-09-07 比亚迪股份有限公司 一种电池托盘、电池包及电动汽车
CN217134559U (zh) * 2022-03-29 2022-08-05 比亚迪股份有限公司 一种用于承载动力电池的托盘、电池包及电动汽车

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107732079A (zh) * 2017-11-11 2018-02-23 中航锂电(洛阳)有限公司 电池箱体侧壁、电池箱及车辆
JP2020053132A (ja) * 2018-09-25 2020-04-02 株式会社Fts バッテリーケース用ロアトレー
CN209071470U (zh) * 2018-12-29 2019-07-05 蜂巢能源科技有限公司 电池包的下壳体
CN211125761U (zh) * 2019-12-31 2020-07-28 苏州银禧新能源复合材料有限公司 一种复合材料电池箱结构
CN211088367U (zh) * 2020-01-08 2020-07-24 摩登汽车有限公司 电池箱和电池包总成
CN113352866A (zh) * 2020-03-04 2021-09-07 比亚迪股份有限公司 一种电池托盘、电池包及电动汽车
CN213184488U (zh) * 2020-09-15 2021-05-11 北京车和家信息技术有限公司 一种电池模组框体结构、电池包及电动汽车
CN217134559U (zh) * 2022-03-29 2022-08-05 比亚迪股份有限公司 一种用于承载动力电池的托盘、电池包及电动汽车

Also Published As

Publication number Publication date
CN116391294A (zh) 2023-07-04
CN219321496U (zh) 2023-07-07

Similar Documents

Publication Publication Date Title
EP4160796A1 (en) Box, battery, powered device, and assembly method for box
US20230089208A1 (en) Battery, power consumption apparatus, and method and apparatus for producing battery
CN218414808U (zh) 电池单体、电池以及用电装置
US20220384916A1 (en) Battery cell, battery, electrical device, and battery cell manufacturing method and device
JP7434360B2 (ja) 電池、電気装置及び電池の製造方法及び製造システム
US20230411761A1 (en) Battery, electric apparatus, and method and apparatus for manufacturing battery
WO2023197905A1 (zh) 端盖组件、电池单体、电池和用电设备
CN219180684U (zh) 电池的箱体、电池以及用电装置
WO2023155555A1 (zh) 电池单体、电池和用电设备
WO2024021064A1 (zh) 电池以及用电装置
WO2024021066A1 (zh) 电池箱体、电池以及用电装置
CN219017779U (zh) 电池单体、电池及用电设备
CN217740656U (zh) 端盖组件、电池单体、电池及用电设备
WO2024021068A1 (zh) 电池箱体、电池以及用电装置
CN219180656U (zh) 电池单体、电池及用电设备
CN220492107U (zh) 电池的盖体、电池箱体、电池和用电装置
EP4280354A1 (en) Battery case, battery, electric device, and method and device for preparing battery
CN216354489U (zh) 电池箱体、电池及用电设备
CN219017704U (zh) 极片、电极组件、电池单体、电池及用电设备
US20230395906A1 (en) End cap, battery cell, battery and power consuming device
CN217719809U (zh) 电池以及用电装置
EP4354576A1 (en) Battery cell and manufacturing method and system therefor, battery and electric device
WO2024055255A1 (zh) 电池和用电设备
WO2023220881A1 (zh) 端盖、电池单体、电池及用电设备
WO2023240551A1 (zh) 端盖组件、电池单体、电池及用电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952513

Country of ref document: EP

Kind code of ref document: A1