WO2024020833A1 - 一种定位系统、方法 - Google Patents

一种定位系统、方法 Download PDF

Info

Publication number
WO2024020833A1
WO2024020833A1 PCT/CN2022/108157 CN2022108157W WO2024020833A1 WO 2024020833 A1 WO2024020833 A1 WO 2024020833A1 CN 2022108157 W CN2022108157 W CN 2022108157W WO 2024020833 A1 WO2024020833 A1 WO 2024020833A1
Authority
WO
WIPO (PCT)
Prior art keywords
controller
vehicle
positioning
communication device
satellite data
Prior art date
Application number
PCT/CN2022/108157
Other languages
English (en)
French (fr)
Inventor
贾晓林
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/108157 priority Critical patent/WO2024020833A1/zh
Publication of WO2024020833A1 publication Critical patent/WO2024020833A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/75Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems using transponders powered from received waves, e.g. using passive transponders, or using passive reflectors

Definitions

  • This application relates to the field of smart vehicle technology, and in particular to a positioning system and method.
  • Positioning and timing systems are key components of smart cars, including emergency call (ecall), map navigation, smart driving and other functions that require the use of this system.
  • emergency call ecall
  • map navigation smart driving and other functions that require the use of this system.
  • positioning can be achieved through low-precision algorithm modules carried in vehicle communication devices (such as T-Box).
  • vehicle communication devices such as T-Box
  • positioning can be achieved through a high-precision algorithm module carried in a combined positioning module, where the combined positioning module and the vehicle-mounted communication device are deployed independently.
  • GNSS Global Navigation Satellite System
  • This application provides a positioning system and method to provide positioning information of different precisions, which can meet the positioning requirements of different application functions while saving hardware costs.
  • a positioning system including a first Global Navigation Satellite System (GNSS) antenna, a vehicle-mounted communication device, and a controller.
  • the first GNSS antenna is connected to the vehicle-mounted communication device, and the controller is connected to the vehicle-mounted communication device. connected; the first GNSS antenna is used to: obtain satellite data and transmit the satellite data to the vehicle-mounted communication device; the vehicle-mounted communication device is used to: determine the first inertial measurement unit (IMU) based on satellite data and/or first inertial measurement unit (IMU) data. positioning information; and transmit the satellite data to the controller; the controller is configured to: determine the second positioning information according to the satellite data and the second IMU data; wherein the accuracy of the second positioning information is higher than the accuracy of the first positioning information.
  • IMU inertial measurement unit
  • the positioning system provided by the embodiments of the present application can perform both low-precision positioning (such as first positioning information) and high-precision positioning (such as second positioning information), so it can meet the positioning requirements of different application functions in vehicle scenarios. , and the positioning system only needs to design a set of GNSS antennas. Compared with the existing technology, it can save a set of GNSS antennas, coaxial cables, connectors, power dividers and other components, so it can also reduce the hardware cost of the positioning system.
  • the controller is used to determine the second positioning information based on satellite data, second IMU data, and real-time dynamic carrier phase difference technology (Real Time Kinematic, RTK) data.
  • the second IMU data and the first IMU data may be the same or different (or the sources of the second IMU data and the first IMU data may be the same or different).
  • the controller further integrates RTK data for positioning calculations based on satellite data and second IMU data, which can further improve the positioning accuracy of the controller.
  • the controller is an intelligent driving controller or an intelligent cockpit controller, or a controller that integrates multiple functions of driving control, cockpit control, or body control.
  • the controller can be integrated into an existing controller that requires high-precision positioning without having to set up a separate module specifically for high-precision positioning, which can further reduce hardware costs.
  • the vehicle-mounted communication device is also used to: determine time information based on satellite data; distribute the time information to the controller, and then the controller can determine the local reference time based on the time information distributed by the vehicle-mounted communication device.
  • the controller and the vehicle-mounted communication device can unify the time base, which can simplify the time management solution of the positioning system.
  • the controller and the vehicle-mounted communication device are connected through a Controller Area Network-Flexible Data-Rate (CAN-FD) communication link with a flexible data rate or a vehicle-mounted Ethernet communication link; the vehicle-mounted The communication device is used to transmit satellite data to the controller through the CAN-FD communication link or the vehicle Ethernet communication link.
  • CAN-FD Controller Area Network-Flexible Data-Rate
  • the transmission delay of satellite data can be reduced, the reliability of data transmission can be improved, and the positioning efficiency of the controller can be improved.
  • the vehicle-mounted communication device is used to transmit satellite data to the controller when the controller is turned on and initialization is completed and functions normally.
  • the vehicle communication device does not need to send satellite data to the controller, which can avoid invalid transmission of satellite data in the above scenarios, save equipment energy consumption, and improve the efficiency of data transmission. reliability.
  • the vehicle-mounted communication device is further configured to: provide a first positioning service based on the first positioning information; and the controller is further configured to: provide a second positioning service based on the second positioning information.
  • the positioning system can provide positioning services with different positioning accuracy to meet the application requirements of different application functions.
  • the system further includes: an application function module, configured to: when receiving the first positioning service and the second positioning service, provide application functions according to the second positioning service.
  • the application function when the application function receives two positioning services, it will give priority to the high-precision positioning service to provide the application function to ensure the positioning capability.
  • the application functions include one or more of map navigation, vehicle to everything (V2X), smart driving, and emergency calling.
  • V2X vehicle to everything
  • smart driving smart driving
  • emergency calling emergency calling
  • a positioning method including: a vehicle-mounted communication device for acquiring satellite data from a first GNSS antenna; a vehicle-mounted communication device for determining first positioning information based on satellite data and/or first inertial measurement unit IMU data; The vehicle-mounted communication device is used to transmit satellite data to the controller; wherein the satellite data is used to determine second positioning information, and the accuracy of the second positioning information is higher than the accuracy of the first positioning information.
  • the controller is an intelligent driving controller or an intelligent cockpit controller, or a controller that integrates multiple functions of driving control, cockpit control, or body control.
  • the method further includes: the vehicle-mounted communication device is used to determine the time information based on the satellite data; the vehicle-mounted communication device is used to distribute the time information to the controller.
  • the controller and the vehicle-mounted communication device are connected through a CAN-FD communication link or a vehicle-mounted Ethernet communication link; the vehicle-mounted communication device is used to transmit satellite data to the controller, including: the vehicle-mounted communication device is used to transmit the satellite data to the controller through A CAN-FD communication link or an onboard Ethernet communication link transmits satellite data to the controller.
  • the vehicle-mounted communication device is used to transmit satellite data to the controller, including: when the controller is turned on and initialization is completed and the function is normal, the vehicle-mounted communication device transmits satellite data to the controller.
  • the method also includes:
  • the vehicle-mounted communication device is used to provide the first positioning service according to the first positioning information.
  • a positioning method including: a controller for receiving satellite data from a vehicle-mounted communication device; the controller for determining second positioning information based on satellite data and second IMU data; wherein the accuracy of the second positioning information is higher than The accuracy of the first positioning information, which is the positioning information determined by the vehicle-mounted communication device.
  • the controller is configured to determine the second positioning information based on satellite data and the second IMU data, including: the controller is configured to determine the second positioning information based on the satellite data, the second IMU data, and the RTK data.
  • the controller is an intelligent driving controller or an intelligent cockpit controller, or a controller that integrates multiple functions of driving control, cockpit control, or body control.
  • the method further includes: the controller is configured to receive time information from the vehicle-mounted communication device.
  • the controller is connected to the vehicle-mounted communication device through a CAN-FD communication link or a vehicle-mounted Ethernet communication link; the controller is used to receive satellite data from the vehicle-mounted communication device, including: the controller is used to communicate through CAN-FD link or vehicle Ethernet communication link receives satellite data from the vehicle communication device.
  • the controller is used to receive satellite data from the vehicle-mounted communication device, including: when the controller is turned on and initialization is completed and the function is normal, the controller is used to receive satellite data from the vehicle-mounted communication device.
  • the method further includes: the controller is configured to provide a second positioning service according to the second positioning information.
  • a fourth aspect provides a communication device, including modules/units/technical means for implementing the method described in the second aspect.
  • the communication device includes: a receiving module, used to obtain satellite data from the first GNSS antenna; a processing module, used to determine the first positioning information according to the satellite data and/or the first inertial measurement unit IMU data; and a sending module. For transmitting satellite data to the controller; wherein the satellite data is used to determine second positioning information, and the accuracy of the second positioning information is higher than the accuracy of the first positioning information.
  • the controller is an intelligent driving controller or an intelligent cockpit controller, or a controller that integrates multiple functions of driving control, cockpit control, or body control.
  • the processing module is also used to determine time information based on satellite data; the sending module is also used to distribute time information to the controller.
  • the communication device and the controller are connected through a CAN-FD communication link or a vehicle-mounted Ethernet communication link; the sending module is used to: transmit the satellite to the satellite through the CAN-FD communication link or the vehicle-mounted Ethernet communication link. Data is transferred to the controller.
  • the sending module is used to transmit satellite data to the controller when the controller is turned on and initialization is completed and functions normally.
  • the processing module is further configured to: provide the first positioning service according to the first positioning information.
  • a controller including modules/units/technical means for implementing the method described in the third aspect.
  • the controller includes: a receiving module for receiving satellite data from a vehicle-mounted communication device; a processing module for determining second positioning information based on satellite data and second IMU data; wherein the second positioning information has high accuracy. Based on the accuracy of the first positioning information, the first positioning information is the positioning information determined by the vehicle-mounted communication device.
  • the processing module is configured to determine the second positioning information based on satellite data, second IMU data, and RTK data.
  • the controller is an intelligent driving controller or an intelligent cockpit controller, or a controller that integrates multiple functions of driving control, cockpit control, or body control.
  • the receiving module is also used to receive time information from the vehicle-mounted communication device.
  • the controller and the vehicle-mounted communication device are connected through the CAN-FD communication link or the vehicle-mounted Ethernet communication link; the receiving module is used to: receive the signal from the vehicle-mounted communication device through the CAN-FD communication link or the vehicle-mounted Ethernet communication link.
  • the communication device receives satellite data.
  • the receiving module is used to: receive satellite data from the vehicle-mounted communication device when the controller is turned on and initialization is completed and the function is normal.
  • the processing module is further configured to provide a second positioning service based on the second positioning information.
  • a sixth aspect provides a communication device, including: at least one processor and an interface circuit; the interface circuit is used to receive signals from other devices other than the device and send or receive signals to the processor or send signals from the processor to Other devices other than the device, the processor uses logic circuits or executes code instructions to implement as described in the second aspect or any possible design of the second aspect or the third aspect or any possible design of the third aspect Methods.
  • a computer-readable storage medium is provided.
  • Computer programs or instructions are stored in the storage medium.
  • the second aspect or any one of the second aspects is implemented. Possible designs or methods described in the third aspect or any possible design of the third aspect.
  • a computer program product is provided. Instructions are stored in the computer program product.
  • the computer program product When the computer program product is run on a computer, it causes the computer to execute the second aspect or any possible design of the second aspect or the third aspect. Or the method described in any possible design of the third aspect.
  • a terminal device including the positioning system as described in the first aspect or any possible design of the first aspect.
  • Figure 1 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • FIGS. 1A and Figure 2B are schematic diagrams of two possible vehicle positioning systems
  • Figure 3 is a schematic structural diagram of a positioning system provided by an embodiment of the present application.
  • Figure 4 is a schematic structural diagram of a specific positioning system provided by an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of another specific positioning system provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of another specific positioning system provided by an embodiment of the present application.
  • Figure 7 is a flow chart of a method for switching between a high-precision positioning mode and a low-precision positioning mode provided by an embodiment of the present application;
  • Figure 8 is a flow chart of a positioning method provided by an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a controller provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the technical solutions provided by the embodiments of this application can be applied to terminal devices with positioning functions.
  • the terminal device may be an intelligent device with positioning function, including but not limited to: intelligent transportation equipment, such as cars, ships, drones, trains, trucks, trucks, etc.; intelligent manufacturing equipment, such as robots, industrial equipment, intelligent Logistics, smart factories, etc.; smart home equipment, such as TVs, sweeping robots, etc.
  • the terminal device may also be a computer device with positioning function, such as a desktop computer, personal computer, server, etc.
  • the terminal device may also be a portable electronic device with positioning capabilities, such as a mobile phone, a tablet computer, a handheld computer, a headset, a speaker, a wearable device (such as a smart watch), a vehicle-mounted device, a virtual reality device, or an augmented reality device. wait.
  • a portable electronic device with positioning capabilities such as a mobile phone, a tablet computer, a handheld computer, a headset, a speaker, a wearable device (such as a smart watch), a vehicle-mounted device, a virtual reality device, or an augmented reality device. wait.
  • this article mainly takes the terminal equipment as a vehicle-mounted equipment as an example.
  • FIG. 1 a schematic diagram of an application scenario is provided for an embodiment of the present application.
  • functions such as emergency calls (ecalls), map navigation, and intelligent driving all need to be implemented by relying on the vehicle positioning system.
  • FIG. 2A is a schematic diagram of a possible vehicle-mounted positioning system.
  • the system includes: Telematic Box (T-Box), Global Navigation Satellite System (GNSS) antenna, gateway, airbag, In-Vehicle Infotainment (IVI) navigation module, etc.
  • T-Box includes an MCU and a GNSS chip.
  • the GNSS chip can process the analog satellite signals received by the GNSS antenna to obtain digital satellite signals.
  • the MCU can perform positioning calculations based on the digital satellite signals output by the GNSS chip to obtain position, speed, and time. and other information.
  • T-Box can also obtain IMU information from the local (such as the onboard inertial measurement unit (IMU)) or the IMU module of the airbag (the IMU module of the airbag is taken as an example in Figure 2A). Then combine the IMU information for fusion positioning. In the system shown in Figure 2A, the positioning and timing of the entire vehicle positioning system are distributed by T-Box.
  • IMU onboard inertial measurement unit
  • the system shown in Figure 2A can only perform low-precision positioning (that is, the GNSS chip in the T-Box is a low-precision GNSS chip) and cannot meet the high-precision requirements of application functions such as smart driving. Positioning needs.
  • FIG. 2B is a schematic diagram of another possible vehicle-mounted positioning system.
  • This system additionally adds a combined positioning module (including a microcontroller unit (MCU) or system on chip (SOC)), as well as a high-precision GNSS chip, etc. ), specially used to carry high-precision positioning functions, the combined positioning module and T-BOX are deployed independently; 2. Deploy two independent sets of GNSS antennas.
  • the specific implementation method is, for example, dual GNSS antennas or a single antenna + power splitter + simultaneous Axis cable deployment method (Figure 2B takes the deployment of two independent sets of GNSS antennas as an example).
  • One set of GNSS antennas is responsible for transmitting satellite signals to the T-Box for low-precision positioning, and the other set of GNSS antennas is responsible for transmitting satellite signals to the T-Box. Transmit to the combined positioning module for high-precision positioning.
  • the GNSS chip in the T-Box can be called a low-precision GNSS chip, and the GNSS chip in the combined positioning module can be called a high-precision GNSS chip.
  • high-precision GNSS chips correspond to more satellite searches (i.e., searched satellites).
  • low-precision GNSS chips generally support the global positioning system ( Global Positioning System, GPS) single frequency L1
  • high-precision GNSS chip can support dual frequency or multi-frequency, such as GPS L1/L2/L5, Beidou B1/B2/B3, etc.
  • L1, L2, and L5 represent the three frequency bands in GPS
  • B1, B2, and B3 represent the three frequency bands in BeiDou navigation satellite system (BDS).
  • BDS BeiDou navigation satellite system
  • T-BOX and the combined positioning module each generate one kind of time, resulting in two base times in the system (for example, after both T-BOX and the combined positioning module distribute time to the intelligent driving controller, there are two kinds of reference times on the intelligent driving controller.
  • Time the business side of the intelligent driving controller uses the time generated by the combined positioning module as the base time, and the management side uses the time generated by the T-BOX as the base time).
  • System time management is relatively complex.
  • embodiments of the present application provide a positioning system and method.
  • FIG. 3 is a schematic structural diagram of a positioning system provided by an embodiment of the present application.
  • the system includes a first global navigation satellite system GNSS antenna 11, a vehicle-mounted communication device 12, and a controller 13, where the first GNSS antenna 11 and the vehicle-mounted The communication device 12 is connected, and the controller 13 is connected with the vehicle-mounted communication device 12 .
  • the first GNSS antenna 11 1. The first GNSS antenna 11:
  • the first GNSS antenna 11 is used to acquire satellite data.
  • the first GNSS antenna 11 can receive satellite signals sent by satellites, and the satellite signals are analog signals.
  • a satellite periodically broadcasts its own ephemeris data (Ephemeris Information), and the first GNSS antenna 11 can receive ephemeris data broadcast by one or more satellites.
  • Ephemeris Information ephemeris Information
  • the embodiments of the present application do not limit the number and type of satellites.
  • the types of satellites include but are not limited to GPS, Global Navigation Satellite System (GLONASS), and BeiDou navigation satellite system. Satellites such as BDS), Quasi-Zenith Satellite System (QZSS), and/or Satellite Based Augmentation Systems (SBAS).
  • the satellite data can be transmitted to the vehicle-mounted communication device 12 .
  • Vehicle-mounted communication device 12 is a vehicle-mounted communication device 12
  • the vehicle-mounted communication device 12 is used to determine the first positioning information based on satellite data and/or first inertial measurement unit (Inertial Measurement Unit, IMU) data.
  • IMU Inertial Measurement Unit
  • the vehicle-mounted communication device 12 includes a GNSS chip 121 and a processing chip.
  • the processing chip is, for example, an MCU 122 .
  • the satellite data output by the first GNSS antenna 11 is an analog signal, and the GNSS chip 121 is used to perform analog-to-digital conversion, ephemeris analysis, and other processing on the satellite data output by the first GNSS antenna 11 to obtain satellite data in the form of digital signals.
  • the number of satellite searches of the GNSS chip 121 is greater than the preset value. In this way, it can be ensured that the satellite data output by the GNSS chip 121 has high accuracy and can simultaneously meet the positioning requirements of the vehicle-mounted communication device 12 and the controller 13 .
  • the MCU 122 is provided with a first position, velocity, time (Position Velocity time, PVT) calculation module (the specific implementation of this module can be a computer program or instructions, etc.), which is used to calculate the satellite data output by the GNSS chip 121, and obtain The position, speed, time and other information of the positioned device (such as the terminal device where the positioning system is located, such as a vehicle or a vehicle-mounted terminal).
  • a first position, velocity, time (Position Velocity time, PVT) calculation module the specific implementation of this module can be a computer program or instructions, etc.
  • the MCU122 can also be equipped with a first dead reckoning (Dead Reckoning, DR) module, which is used to perform positioning calculations based on the first IMU data to obtain position, driving trajectory and other information.
  • dead reckoning is to obtain the displacement and heading of the vehicle from the previous position based on the vehicle speed and vehicle angular velocity, and then combine the previous position to calculate the vehicle's current position.
  • the first IMU data can be obtained from the IMU in the airbag, or from a local device (such as an onboard IMU), which is not limited by this application. Setting up the first DR module can ensure that positioning calculations can be achieved even when the satellite signal quality is poor (for example, the satellite signal is affected by factors such as wireless signal obstruction and multipath interference in tunnels, jungles, high-rise areas, etc.).
  • the MCU 122 can perform positioning based on PVT technology, can also perform positioning based on DR technology, or can perform integrated positioning based on PVT technology and DR technology, which is not limited in this application.
  • MCU122 can also be equipped with a communication module (such as a vehicle wireless communication technology (vehicle to everything, V2X) module) to implement communication between the vehicle and other devices.
  • V2X vehicle to everything
  • V2X is a new generation of information and communication technology that connects vehicles with everything, where V represents the vehicle and X represents any object that interacts with the vehicle.
  • X mainly includes vehicles, people, roadside infrastructure and networks, etc.
  • the communication module can also be implemented based on other technologies, such as cellular communication technology, etc., which is not limited by this application.
  • the vehicle-mounted communication device 12 may be a T-Box.
  • the controller 13 is connected to the vehicle-mounted communication device 12.
  • the vehicle-mounted communication device 12 can also transmit satellite data (specifically, for example, satellite data in the form of digital signals output by the GNSS chip 121) to the controller 13 for use.
  • the controller 13 performs positioning.
  • the controller 13 is configured to determine the second positioning information according to the satellite data (for example, in the form of a digital signal) and/or the second IMU data transmitted by the vehicle-mounted communication device 12 .
  • the sources of the second IMU data and the first IMU data may be the same or different.
  • the first IMU data comes from the airbag, and the first IMU data comes from the local onboard IMU, which is not limited by this application.
  • the local onboard IMU can be integrated in the controller 13 or set outside the controller 13 without limitation.
  • the controller 13 can be provided with a second PVT calculation module and a second DR module, which are used to calculate satellite data and second IMU data respectively through PVT technology and DR technology. Fusion positioning calculation, and then output the second positioning information.
  • the specific implementation of the second PVT solution module can be referred to the above first PVT solution module, and the specific implementation of the second DR module can be referred to the above first DR module, which will not be described again here.
  • the source of satellite data for positioning calculation by the controller 13 and the vehicle-mounted communication device 12 is the satellite data obtained by the first GNSS antenna 11, but the difference is that the controller 13 and the vehicle-mounted communication device 12 are in
  • different data in the satellite data can be selected for positioning calculation.
  • the accuracy of the data part used by the controller 13 is higher than the accuracy of the data part used by the vehicle-mounted communication device 12.
  • the data used by the controller 13 corresponds to Search more stars, so that the accuracy of the second positioning information determined by the controller 13 is higher than the accuracy of the first positioning information determined by the vehicle-mounted communication device 12 .
  • the satellite data output by the GNSS chip 121 in the vehicle-mounted communication device 12 includes data in the GPS L1 frequency band, data in the Beidou B1 frequency band, and data in the Beidou B2 frequency band.
  • the vehicle-mounted communication device 12 determines the first positioning information based on the data of the GPS L1 frequency band (i.e., single frequency), and the controller 13 determines the first positioning information based on the data of the GPS L1 frequency band, the data of the Beidou B1 frequency band, and the data of the Beidou B2 frequency band (i.e., multi-frequency). Second positioning information.
  • the accuracy of the first IMU data is lower than the accuracy of the second IMU data. In this way, the accuracy of the second positioning information determined by the controller 13 is higher than the accuracy of the first positioning information determined by the vehicle-mounted communication device 12 . Accuracy.
  • the positioning system provided in the embodiments of the present application can perform both low-precision positioning and high-precision positioning. Therefore, it can meet the positioning requirements of different application functions in vehicle scenarios, and the entire positioning system only needs to be designed
  • a set of GNSS antennas i.e., the first GNSS antenna 11
  • a set of GNSS antennas can save a set of GNSS antennas, coaxial cables, connectors, power splitters and other components compared to the existing technology, thereby also reducing the hardware cost of the positioning system.
  • this article takes the example of providing two different precision positioning information (i.e., the first positioning information and the second positioning information). In practical applications, it can also be extended to provide two or more different precision positioning information.
  • Solution for example, refer to the deployment method of the controller 13, and deploy a controller that can provide third positioning information.
  • the accuracy of the third positioning information is not used for the accuracy of the second positioning information, and is different from the accuracy of the first positioning service. Accuracy.
  • the controller 13 may specifically determine the second positioning information based on satellite data, second IMU data, and real-time dynamic carrier phase difference technology (Real Time Kinematic, RTK) data.
  • RTK Real Time Kinematic
  • the controller 13 can combine PCT technology, DR technology and RTK technology for integrated positioning.
  • the controller 13 may also be provided with an RTK module for calculating RTK data.
  • the RTK data can be obtained from the ground station (such as a reference station, central station, etc.) by the vehicle-mounted communication device 12 and forwarded to the controller 13 .
  • RTK positioning technology is a real-time dynamic positioning technology based on carrier phase difference, including conventional RTK positioning technology and network RTK technology.
  • RTK positioning technology requires a reference station.
  • the reference station continuously receives GNSS satellite information and can provide its own high-precision position information in real time.
  • RTK positioning technology can achieve centimeter-level positioning in open and unobstructed outdoor environments.
  • the reference station continuously observes GNSS satellite information and transmits the observation results to the terminal equipment where the positioning system is located (such as a vehicle-mounted terminal).
  • the vehicle-mounted terminal uses the Differential Global Navigation Satellite System (DGNSS) algorithm to calculate its precise position based on the GNSS satellite information of the reference station and its own GNSS observation results, and the accuracy can reach centimeter level.
  • DDGNSS Differential Global Navigation Satellite System
  • Network RTK technology is a positioning technology based on conventional RTK technology.
  • the basic principle of network RTK technology is to set up multiple reference stations and central stations in a large area.
  • the central station is a device with data computing and processing capabilities.
  • the reference station continuously observes GNSS satellite information according to regulations and sends the observation results to the central station.
  • the central station determines the differential correction information based on the initial position information sent by the vehicle-mounted terminal, and sends it to the vehicle-mounted terminal.
  • the initial position information is the position information initially determined by the vehicle-mounted terminal based on satellite signals.
  • network RTK positioning technology can be divided into virtual reference station technology (Virtual Reference Station, VRS), master-auxiliary station technology (Master-Auxiliary Concept, MAC), area correction number technology (Flachen Korrektur Parameter, FKP), etc.
  • VRS Virtual Reference Station
  • MAC Master-Auxiliary Concept
  • FKP area correction number technology
  • the controller 13 performs fusion positioning calculation based on satellite data, second IMU data and RTK data, which can further improve the positioning accuracy of the controller 13 .
  • the controller 13 can be integrated into an existing controller that requires high-precision positioning, so that this type of controller can obtain high-precision positioning information faster, thereby improving service quality.
  • the controller 13 may be an intelligent driving controller, or an intelligent cabin controller, or a controller that integrates multiple functions of driving control, cabin control, or body control.
  • the controller 13 is integrated into the intelligent driving controller 14 .
  • the vehicle-mounted communication device 12 is also used to determine time information based on satellite data and distribute the time information to vehicle components.
  • the vehicle components include vehicle-mounted components that require time information on the vehicle, including but not limited to the intelligent driving controller 14 (or controller 13), intelligent cockpit controller, gateway, etc.
  • the entire vehicle component can determine the local reference time based on the time information distributed by the vehicle-mounted communication device 12 .
  • the base time includes the time of the management plane and the time of the business plane.
  • the management plane time is mainly used for event processing records of each processing module inside the controller 13, such as when the over-the-air technology (Over the Air Technology, OTA) upgrade was performed, when what fault was discovered, etc.; data plane time Mainly for the time synchronization of the controller 13 (for example, time stamp management of radar, camera, etc.), fusion processing of various sensors, path planning and vehicle control issuance, etc., mainly to provide time for the business layer.
  • OTA Over the Air Technology
  • the time information can be passed through the Time-Sensitive Networking (TSN) Ethernet (Eth) interface, or the Controller Area Network (Controller Area Network, CAN) (specifically, for example, with flexible data rate Controller Area Network-Flexible Data-Rate (CAN-FD)) + Pulse per second (PPS) interface, etc., are distributed to vehicle components through the gateway for timing.
  • TSN Time-Sensitive Networking
  • CAN-FD Controller Area Network
  • PPS Pulse per second
  • the interface in this article can also be described as a communication link or a transmission channel (for example, the CAN-FD interface can be described as a CAN-FD communication link).
  • this article takes the vehicle scenario as an example. Ethernet in the vehicle scenario can also be called vehicle Ethernet.
  • the positioning system may also include a gateway 15, an airbag 16, an IVI navigation module 17, etc.
  • the link between the gateway 15 and the airbag 16, IVI navigation module 17, controller 13, etc. is a CAN-FD or Eth communication link.
  • the vehicle-mounted communication device 12 can distribute the time information to the airbag 16, the IVI navigation module 17, the controller 13, etc. via the gateway.
  • FIG. 6 is only an example and not a specific limitation.
  • each component in the vehicle positioning system can unify the time base, which can simplify the time management solution of the vehicle equipment.
  • the controller 13 determines the local reference time based on the time information distributed by the vehicle-mounted communication device 12, and the controller 13 can perform PVT settlement on satellite data.
  • the relevant calculation of the time information is omitted or the time information is discarded after performing PVT settlement on the satellite data to obtain the time information, thereby ensuring the consistency of the reference time of the controller 13 and the reference time of the vehicle-mounted communication device 12 .
  • the time information is generated by the vehicle-mounted communication device 12, it has high real-time performance. Compared with the controller 13 receiving the satellite data and then determining the time information based on the satellite data, it is possible to avoid delays in link forwarding of satellite data. It can improve the accuracy of vehicle time by eliminating the problem of inaccurate time information caused by delays.
  • a dedicated transmission channel is provided between the controller 13 and the vehicle-mounted communication device 12 for the vehicle-mounted communication device 12 to transmit satellite data to the controller 13, such as but not limited to: CAN-FD communication link. roads, vehicle Ethernet communication links, etc.
  • the dedicated transmission channel between the controller 13 and the vehicle-mounted communication device 12 is a CAN-FD or Eth communication link.
  • the transmission delay of satellite data can be reduced, the reliability of data transmission can be improved, and the positioning efficiency of the controller 13 can be improved.
  • the initialization speed of the controller 13 (such as SOC) is slower than the initialization speed of the vehicle communication device 12 (such as T-Box), and some scenarios (such as low battery power, starting extreme power saving scenarios) If the controller 13 does not turn on or functions abnormally, the vehicle communication device 12 specifically transmits the satellite data to the controller 13 when the controller 13 is turned on and initialization is completed and the function is normal.
  • the vehicle-mounted communication device 12 is also configured to provide a first positioning service based on the first positioning information (specifically, for example, generate a first positioning service based on the first positioning information and time information); the controller 13 is also configured to provide a first positioning service based on the first positioning information and time information.
  • the second positioning information provides a second positioning service (specifically, for example, the second positioning service is generated based on the second positioning information and time information).
  • the application function module on the vehicle-mounted device may subscribe to the first positioning service from the vehicle-mounted communication device 12 and/or subscribe to the second positioning service from the controller 13, and then provide corresponding application functions based on the first positioning service and/or the second positioning service.
  • the application functions include but are not limited to one or more of map navigation, vehicle wireless communication V2X, smart driving, emergency calling, etc.
  • the application function module may be the smart driving controller 14, and the smart driving controller 14 may provide smart driving services (such as automatic driving, or assisted driving, etc.) to the user based on the second positioning service. ).
  • smart driving services such as automatic driving, or assisted driving, etc.
  • the application function module may be a vehicle navigation system (for example, the vehicle navigation system is integrated in the smart cockpit controller), and the vehicle navigation system may provide map navigation services to users based on the first positioning service. .
  • the positioning system can provide positioning services with different positioning accuracy to vehicle-mounted devices to meet the application requirements of different application functions.
  • the application function module when the application function module only receives the first positioning service, it provides the application function according to the first positioning service; when the application function module receives the first positioning service and the second positioning service, it provides the application function according to the second positioning service.
  • Services provide application functionality. In other words, when the application function receives only one positioning service, it provides the application function based on the received positioning service. When it receives two or more positioning services, it gives priority to the high-precision positioning service to provide the application function.
  • a method for switching between a high-precision positioning mode and a low-precision positioning mode is provided in an embodiment of the present application.
  • the process includes:
  • T-Box (corresponding to the above-mentioned vehicle communication device 12) generates low-precision positioning information (corresponding to the above-mentioned first positioning information) and time information; the time information is distributed to the vehicle components through the gateway for timing; T-Box Generate low-precision positioning services (corresponding to the above-mentioned first positioning service) to ensure the emergency call function of the vehicle.
  • low-precision positioning services can be provided to application function modules such as the IVI navigation module to meet the basic navigation and positioning functions of the vehicle;
  • T-Box monitors the status of the intelligent driving controller (corresponding to the above-mentioned controller 13) and determines whether the initialization of the intelligent driving controller is completed; if it is completed, continue to execute S703, otherwise return to S701;
  • S703 and T-Box transmit satellite data to the intelligent driving controller through a dedicated transmission channel;
  • T-Box distributes time information to the intelligent driving controller through the gateway;
  • RTK data from the ground station is forwarded to the intelligent driving controller via T-Box;
  • the intelligent driving controller generates high-precision positioning information (corresponding to the above-mentioned second positioning information) based on satellite data, IMU data, RTK data, etc., and generates high-precision positioning services (corresponding to the above-mentioned second positioning service) based on the high-precision positioning information and time information. );
  • Application function modules such as T-Box and IVI navigation module switch to high-precision positioning mode and call the high-precision positioning service provided by the smart driver to provide vehicle positioning, V2X, IVI navigation and other functions;
  • T-Box and IVI navigation module switch to low-precision positioning mode.
  • the low-precision positioning service based on T-Box provides emergency calls, Basic navigation and positioning functions.
  • an embodiment of the present application also provides a positioning method, including:
  • the first GNSS antenna 11 acquires satellite data and transmits the satellite data to the vehicle-mounted communication device 12; accordingly, the vehicle-mounted communication device 12 receives the satellite data;
  • the vehicle-mounted communication device 12 determines the first positioning information based on the satellite data and/or the first inertial measurement unit IMU data;
  • the vehicle-mounted communication device 12 is used to transmit satellite data to the controller 13; accordingly, the controller 13 receives the satellite data;
  • the vehicle-mounted communication device 12 determines the first positioning information and then transmits the satellite data to the controller 13, or the satellite data can be transmitted to the controller 13. The first positioning information is then determined, and the satellite data can be transmitted to the controller 13 while the first positioning information is being determined.
  • the controller 13 determines the second positioning information according to the satellite data and the second IMU data; wherein the accuracy of the second positioning information is higher than the accuracy of the first positioning information.
  • an embodiment of the present application also provides a communication device, which includes modules/units/technical means for implementing the method executed by the above-mentioned vehicle communication device 12 .
  • the device includes:
  • the receiving module 901 is used to obtain satellite data from the first GNSS antenna
  • Processing module 902 configured to determine first positioning information according to the satellite data and/or the first inertial measurement unit IMU data;
  • the sending module 903 is used to transmit the satellite data to the controller; wherein the satellite data is used to determine second positioning information, and the accuracy of the second positioning information is higher than the accuracy of the first positioning information.
  • an embodiment of the present application also provides a controller, including modules/units/technical means for implementing the method executed by the above controller 13 .
  • the controller includes:
  • the receiving module 1001 is used to receive satellite data from the vehicle-mounted communication device
  • the processing module 1002 is used to determine the second positioning information according to the satellite data and the second IMU data;
  • the accuracy of the second positioning information is higher than the accuracy of the first positioning information
  • the first positioning information is the positioning information determined by the vehicle-mounted communication device.
  • an embodiment of the present application also provides a communication device, which includes: at least one processor 1101 and an interface circuit 1102; the interface circuit 1102 is used to receive messages from other devices other than the device 1100 The signal is transmitted to the processor 1101 or the signal from the processor 1101 is sent to other devices outside the device.
  • the processor 1101 is used to implement the above-mentioned vehicle communication device 12 or controller 13 through logic circuits or execution code instructions. method of execution.
  • the processor mentioned in the embodiments of this application can be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor may be a general-purpose processor implemented by reading software code stored in memory.
  • the processor can be a central processing unit (Central Processing Unit, CPU), or other general-purpose processor, digital signal processor (Digital Signal Processor, DSP), or application specific integrated circuit (Application Specific Integrated Circuit, ASIC) , off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Random Access Memory
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Eate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous link dynamic random access memory
  • Synchlink DRAM, SLDRAM direct memory bus random access memory
  • Direct Rambus RAM Direct Rambus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • embodiments of the present application also provide a computer-readable storage medium, including a program or instructions.
  • the program or instructions When the program or instructions are run on a computer, the above-mentioned vehicle communication device 12 or controller 13 and the like are executed. method is executed.
  • embodiments of the present application also provide a computer program product containing instructions.
  • the instructions are stored in the computer program product.
  • the instructions are run on the computer, the above-mentioned vehicle communication device 12 or controller 13 etc.
  • the executed method is executed.
  • embodiments of the present application also provide a terminal device, including the above positioning system.
  • the terminal device can be a vehicle, a drone, a helicopter, an airplane, a ship, an intelligent transportation device, or a smart home device, etc.
  • the embodiments of this application do not limit the specific form of the terminal device.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.
  • “at least one” refers to one or more, and “plurality” refers to two or more.
  • “And/or” describes the relationship between associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects are in an “or” relationship; in the formula of this application, the character “/” indicates that the related objects are in a “division” relationship. Relationship.
  • “Including at least one of A, B and C” may mean: including A; including B; including C; including A and B; including A and C; including B and C; including A, B and C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)

Abstract

一种定位系统、方法,用以实现提供不同精度的定位信息,可以满足不同应用功能的定位需求,同时节省硬件成本。定位系统包括第一GNSS天线(11)、车载通信装置(12)、控制器(13);第一GNSS天线(11)用于获取卫星数据,将卫星数据传输给车载通信装置(12);车载通信装置(12)用于根据卫星数据和/或第一IMU数据确定第一定位信息,将卫星数据传输给控制器(13);控制器(13)用于根据卫星数据、第二IMU数据确定第二定位信息;其中,第二定位信息的精度高于第一定位信息的精度。该定位系统既可以做低精度的定位,又可以做高精度的定位,可以满足车载场景中不同应用功能的定位需求,并且只需要设计一套GNSS天线,因此还可以降低硬件成本。

Description

一种定位系统、方法 技术领域
本申请涉及智能车技术领域,尤其涉及一种定位系统、方法。
背景技术
定位和授时系统是智能车的关键组成部分,包括紧急呼叫(ecall)、地图导航、智能驾驶等功能均需要使用该系统。随着智能驾驶技术的迅速发展,对高性能导航定位技术成为需求越发强烈。
在没有高精度定位诉求(例如智能驾驶诉求)的情况下,定位可以通过承载在车载通信装置(例如T-Box)中的低精度算法模块实现。在有高精度定位诉求的情况下,定位则可以通过承载在组合定位模块中的高精算法模块实现,其中组合定位模块与车载通信装置独立部署。
然而,在有高精度定位诉求的情况下,需要部署2套独立的全球导航卫星系统(Global Navigation Satellite System,GNSS)天线系统,分别供组合定位模块和车载通信装置使用,存在硬件成本高的问题。
发明内容
本申请提供一种定位系统、方法,用以实现提供不同精度的定位信息,可以满足不同应用功能的定位需求,同时节省硬件成本。
第一方面,提供一种定位系统,包括第一全球导航卫星系统(Global Navigation Satellite System,GNSS)天线、车载通信装置、控制器,第一GNSS天线与车载通信装置相连,控制器与车载通信装置相连;第一GNSS天线用于:获取卫星数据,将卫星数据传输给车载通信装置;车载通信装置用于:根据卫星数据和/或第一惯性测量单元(Inertial Measurement Unit,IMU)数据确定第一定位信息;以及,将卫星数据传输给控制器;控制器用于:根据卫星数据、第二IMU数据确定第二定位信息;其中,第二定位信息的精度高于第一定位信息的精度。
本申请实施例提供的定位系统既可以做低精度的定位(如第一定位信息),又可以做高精度的定位(如第二定位信息),因此可以满足车载场景中不同应用功能的定位需求,并且该定位系统只需要设计一套GNSS天线,相对于现有技术,可以节省一套GNSS天线、同轴线缆、连接器、功分器等器件,因此还可以降低定位系统的硬件成本。
一种可能的设计中,控制器用于:根据卫星数据、第二IMU数据以及实时动态载波相位差分技术(Real Time Kinematic,RTK)数据确定第二定位信息。其中,第二IMU数据与第一IMU数据可以相同或不同(或者说第二IMU数据与第一IMU数据的来源可以相同或不同)。
该设计中,控制器在卫星数据、第二IMU数据的基础上,进一步融合了RTK数据做定位计算,可以进一步提高控制器的定位精度。
一种可能的设计中,控制器为智能驾驶控制器或智能座舱控制器,或者,集成了驾驶控制、座舱控制、或车身控制中的多个功能的控制器。
如此,控制器可以集成在已有的需要高精度定位的控制器中,而无需单独设置一个模块专门做高精度定位,可以进一步减少硬件成本。
一种可能的设计中,车载通信装置还用于:根据卫星数据确定时间信息;将时间信息分发给控制器,进而控制器可以基于车载通信装置分发的时间信息确定本地基准时间。
如此,控制器和车载通信装置可以统一时间基准,可以简化定位系统的时间管理方案。
一种可能的设计中,控制器与车载通信装置通过具有灵活数据速率的控制器局域网络(Controller Area Network-Flexible Data-Rate,CAN-FD)通信链路或车载以太网通信链路相连;车载通信装置用于:通过CAN-FD通信链路或车载以太网通信链路将卫星数据传输给控制器。
如此,可以降低卫星数据的传输时延,提升数据传输的可靠性,进而提高控制器的定位效率。
一种可能的设计中,车载通信装置用于:在控制器开启且初始化完成且功能正常时,将卫星数据传输给控制器。
如此,在控制器初始化未完成或未开启或者功能异常等场景下,车载通信装置无需向控制器发送卫星数据,可以避免卫星数据在上述场景下的无效传输,节省设备能耗,提升数据传输的可靠性。
一种可能的设计中,车载通信装置还用于:根据第一定位信息提供第一定位服务;控制器还用于:根据第二定位信息提供第二定位服务。
如此,定位系统可以提供不同定位精度的定位服务,以满足不同应用功能的应用需求。
一种可能的设计中,系统还包括:应用功能模块,用于:在接收到第一定位服务和第二定位服务时,根据第二定位服务提供应用功能。
如此,应用功能在收到两种定位服务时,优先选择高精度的定位服务提供应用功能,以保证定位能力。
一种可能的设计中,应用功能包括地图导航、车用无线通信(vehicle to everything,V2X)、智能驾驶、紧急呼叫中的一种或多种。
当然,此处仅为示例而非限定,实际还可以包括其它应用功能。
第二方面,提供一种定位方法,包括:车载通信装置用于从第一GNSS天线获取卫星数据;车载通信装置用于根据卫星数据和/或第一惯性测量单元IMU数据确定第一定位信息;车载通信装置用于将卫星数据传输给控制器;其中,卫星数据用于确定第二定位信息,第二定位信息的精度高于第一定位信息的精度。
一种可能的设计中,控制器为智能驾驶控制器或智能座舱控制器,或者,集成了驾驶控制、座舱控制、或车身控制中的多个功能的控制器。
一种可能的设计中,方法还包括:车载通信装置用于根据卫星数据确定时间信息;车载通信装置用于将时间信息分发给控制器。
一种可能的设计中,控制器与车载通信装置通过CAN-FD通信链路或车载以太网通信链路相连;车载通信装置用于将卫星数据传输给控制器,包括:车载通信装置用于通过CAN-FD通信链路或车载以太网通信链路将卫星数据传输给控制器。
一种可能的设计中,车载通信装置用于将卫星数据传输给控制器,包括:在控制器开启且初始化完成且功能正常时,车载通信装置将卫星数据传输给控制器。
一种可能的设计中,方法还包括:
车载通信装置用于根据第一定位信息提供第一定位服务。
第三方面,提供一种定位方法,包括:控制器用于从车载通信装置接收卫星数据;控制器用于根据卫星数据、第二IMU数据确定第二定位信息;其中,第二定位信息的精度高于第一定位信息的精度,第一定位信息为车载通信装置确定的定位信息。
一种可能的设计中,控制器用于根据卫星数据、第二IMU数据确定第二定位信息,包括:控制器用于根据卫星数据、第二IMU数据以及RTK数据确定第二定位信息。
一种可能的设计中,控制器为智能驾驶控制器或智能座舱控制器,或者,集成了驾驶控制、座舱控制、或车身控制中的多个功能的控制器。
一种可能的设计中,方法还包括:控制器用于接收来自车载通信装置的时间信息。
一种可能的设计中,控制器与车载通信装置通过CAN-FD通信链路或车载以太网通信链路相连;控制器用于从车载通信装置接收卫星数据,包括:控制器用于通过CAN-FD通信链路或车载以太网通信链路从车载通信装置接收卫星数据。
一种可能的设计中,控制器用于从车载通信装置接收卫星数据,包括:在控制器开启且初始化完成且功能正常时,控制器用于从车载通信装置接收卫星数据。
一种可能的设计中,方法还包括:控制器用于根据第二定位信息提供第二定位服务。
第四方面,提供一种通信装置,包括用于实现上述第二方面所述方法的模块/单元/技术手段。示例性的,通信装置包括:接收模块,用于从第一GNSS天线获取卫星数据;处理模块,用于根据卫星数据和/或第一惯性测量单元IMU数据确定第一定位信息;发送模块,用于将卫星数据传输给控制器;其中,卫星数据用于确定第二定位信息,第二定位信息的精度高于第一定位信息的精度。
一种可能的设计中,控制器为智能驾驶控制器或智能座舱控制器,或者,集成了驾驶控制、座舱控制、或车身控制中的多个功能的控制器。
一种可能的设计中,处理模块还用于:根据卫星数据确定时间信息;发送模块还用于:将时间信息分发给控制器。
一种可能的设计中,该通信装置与控制器通过CAN-FD通信链路或车载以太网通信链路相连;发送模块用于:通过CAN-FD通信链路或车载以太网通信链路将卫星数据传输给控制器。
一种可能的设计中,发送模块用于:在控制器开启且初始化完成且功能正常时,将卫星数据传输给控制器。
一种可能的设计中,处理模块还用于:根据第一定位信息提供第一定位服务。
第五方面,提供一种控制器,包括用于实现上述第三方面所述方法的模块/单元/技术手段。示例性的,该控制器包括:接收模块,用于从车载通信装置接收卫星数据;处理模块,用于根据卫星数据、第二IMU数据确定第二定位信息;其中,第二定位信息的精度高于第一定位信息的精度,第一定位信息为车载通信装置确定的定位信息。
一种可能的设计中,处理模块用于:根据卫星数据、第二IMU数据以及RTK数据确定第二定位信息。
一种可能的设计中,控制器为智能驾驶控制器或智能座舱控制器,或者,集成了驾驶控制、座舱控制、或车身控制中的多个功能的控制器。
一种可能的设计中,接收模块还用于:接收来自车载通信装置的时间信息。
一种可能的设计中,控制器与车载通信装置通过CAN-FD通信链路或车载以太网通信 链路相连;接收模块用于:通过CAN-FD通信链路或车载以太网通信链路从车载通信装置接收卫星数据。
一种可能的设计中,接收模块用于:在控制器开启且初始化完成且功能正常时,从车载通信装置接收卫星数据。
一种可能的设计中,处理模块还用于:用于根据第二定位信息提供第二定位服务。
第六方面,提供一种通信装置,包括:至少一个处理器和接口电路;接口电路用于接收来自装置之外的其它装置的信号并发送或接收至处理器或将来自处理器的信号发送给装置之外的其它装置,处理器通过逻辑电路或执行代码指令用于实现如第二方面或第二方面任一种可能的设计或第三方面或第三方面任一种可能的设计中所述的方法。
第七方面,提供一种计算机可读存储介质,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如第二方面或第二方面任一种可能的设计或第三方面或第三方面任一种可能的设计中所述的方法。
第八方面,提供一种计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行如第二方面或第二方面任一种可能的设计或第三方面或第三方面任一种可能的设计中所述的方法。
第九方面,提供一种终端设备,包括如第一方面或第一方面中任一种可能的设计中所述的定位系统。
上述第二方面至第九方面的具体设计和有益效果可以参见第一方面中的对应设计和有益效果,不再赘述。
附图说明
图1为本申请实施例提供一种应用场景示意图;
图2A、图2B为两种可能的车载定位系统的示意图;
图3为本申请实施例提供的一种定位系统的结构示意图;
图4为本申请实施例提供的一种具体的定位系统的结构示意图;
图5为本申请实施例提供的另一种具体的定位系统的结构示意图;
图6为本申请实施例提供的另一种具体的定位系统的结构示意图;
图7为本申请实施例提供的一种高精定位模式与低精定位模式的切换方法的流程图;
图8为本申请实施例提供的一种定位方法的流程图;
图9为本申请实施例提供的一种通信装置的结构示意图;
图10为本申请实施例提供的一种控制器的结构示意图;
图11为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
下面将结合附图,对本申请实施例进行详细描述。
本申请实施例提供的技术方案可以应用于具有定位功能的终端设备。其中,终端设备可以是具有定位功能的智能设备,例如包括但不限于:智能运输设备,诸如汽车、轮船、无人机、火车、货车、卡车等;智能制造设备,诸如机器人、工业设备、智能物流、智能工厂等;智能家居设备,诸如电视、扫地机器人等。或者,终端设备也可以是具有定位功 能的计算机设备,例如台式机、个人计算机、服务器等。还应当理解的是,终端设备也可以是具有定位能力的便携式电子设备,诸如手机、平板电脑、掌上电脑、耳机、音响、穿戴设备(如智能手表)、车载设备、虚拟现实设备、增强现实设备等。
本申请实施例对终端设备的具体类型不作任何限制,为方便描述,本文主要以终端设备为车载设备为例。
示例性的,参见图1,为本申请实施例提供一种应用场景示意图,在车载场景中,紧急呼叫(ecall)、地图导航、智能驾驶等功能均需要依靠车载定位系统实现。
参见图2A,为一种可能的车载定位系统的示意图。该系统包括:通讯盒子(Telematic Box,T-Box)、全球导航卫星系统(Global Navigation Satellite System,GNSS)天线、网关、安全气囊、车载信息娱乐系统(In-Vehicle Infotainment,IVI)导航模块等。T-Box中包括MCU和GNSS芯片,GNSS芯片可以对GNSS天线接收到的模拟卫星信号进行处理,得到数字卫星信号,MCU可以根据GNSS芯片输出的数字卫星信号进行定位计算,得到位置、速度、时间等信息,另外T-Box还可以从本地(如板载惯性测量单元(Inertial Measurement Unit,IMU))或安全气囊的IMU模块中获取IMU信息(图2A中以安全气囊的IMU模块为例),进而结合IMU信息做融合定位。图2A所示系统中,整个车载定位系统的定位和授时均由T-Box进行分发。
然而,受限于T-Box的性能,图2A所示的系统只能做低精度的定位(即T-Box中的GNSS芯片为低精GNSS芯片),无法满足智能驾驶等应用功能的高精度定位需求。
参见图2B,为另一种可能的车载定位系统的示意图。与图2A所示的系统不同的是:1、该系统额外增加了组合定位模块(包括微控制单元(Microcontroller Unit,MCU)或片上系统(System On Chip,SOC),以及高精度的GNSS芯片等),专门用于承载高精定位功能,组合定位模块与T-BOX分别独立部署;2、部署两套独立的GNSS天线,具体实现方式例如是双GNSS天线或者是单天线+功分器+同轴线缆的部署方式(图2B中以部署两套独立的GNSS天线为例),一套GNSS天线负责将卫星信号传输给T-Box做低精度的定位,另一套GNSS天线负责将卫星信号传输给组合定位模块做高精度的定位。
其中,T-Box中的GNSS芯片可以称为低精GNSS芯片,组合定位模块中的GNSS芯片可以称为高精GNSS芯片。
可以理解的,本文中的高精度和低精度是一种相对概念。一种可能的实现方式中,高精GNSS芯片相对低精GNSS芯片的区别,主要是高精GNSS芯片对应的搜星(即搜索的卫星)更多,例如低精GNSS芯片一般支持全球定位系统(Global Positioning System,GPS)单频L1,高精GNSS芯片可以支持双频或多频,具体例如GPS L1/L2/L5、北斗B1/B2/B3等。其中L1、L2、L5表示GPS中的3个频段,B1、B2、B3表示北斗卫星导航系统(BeiDou navigation satellite System,BDS)中的3个频段,具体参见GPS和BDS中的相关定义。
然而,图2B所示的系统需增加计算芯片(如MCU/SOC等)和GNSS天线来实现组合定位模块,其硬件成本较高。其次,T-BOX和组合定位模块各自生成一种时间,导致系统存在两种基准时间(例如T-BOX和组合定位模块都将时间分发给智能驾驶控制器后,智能驾驶控制器上存在2种时间,智能驾驶控制器的业务面使用组合定位模块生成的时间作为基准时间,管理面使用T-BOX生成的时间作为基准时间),系统时间管理相对复杂。
为了解决上述一个或多个技术问题,本申请实施例提供一种定位系统、方法。
参见图3,为本申请实施例提供的一种定位系统的结构示意图,该系统包括第一全球 导航卫星系统GNSS天线11、车载通信装置12、以及控制器13,其中第一GNSS天线11与车载通信装置12相连,控制器13与车载通信装置12相连。
1、第一GNSS天线11:
第一GNSS天线11用于获取卫星数据。示例性的,第一GNSS天线11可以接收卫星发出的卫星信号,该卫星信号为模拟信号。具体例如,卫星会周期性地广播自身的星历数据(Ephemeris Information),第一GNSS天线11可以接收一个或多个卫星广播的星历数据。
可以理解的,本申请实施例不限制卫星的数量和类型,例如卫星的类型包括但不限于是GPS、全球导航卫星系统(Global Navigation Satellite System,GLONASS)、北斗卫星导航系统(BeiDou navigation satellite System,BDS)、准天顶卫星系统(Quasi-Zenith Satellite System,QZSS)、和/或星基增强系统(Satellite Based Augmentation Systems,SBAS)等的卫星。
第一GNSS天线11获得卫星数据之后,可以将卫星数据传输给车载通信装置12。
2、车载通信装置12:
车载通信装置12用于根据卫星数据和/或第一惯性测量单元(Inertial Measurement Unit,IMU)数据确定第一定位信息。
在具体实现时,如图4所示,车载通信装置12包括一个GNSS芯片121和一个处理芯片,处理芯片具体例如为MCU122。
第一GNSS天线11输出的卫星数据为模拟信号,GNSS芯片121用于对第一GNSS天线11输出的卫星数据进行模数转换、星历解析等处理,得到数字信号形式的卫星数据。
一种可能的设计中,GNSS芯片121的搜星数量大于预设值,这样,可以保证GNSS芯片121输出的卫星数据具有较高的精度,能够同时满足车载通信装置12和控制器13的定位需求。
MCU122中设置有第一位置、速度、时间(Position Velocity time,PVT)解算模块(该模块的具体实现可以是计算机程序或指令等),用于对GNSS芯片121输出的卫星数据进行计算,得到被定位设备(如该定位系统所在终端设备,如车辆或车载终端)的位置、速度、时间等信息。
可选的,如图4所示,MCU122中还可以设置第一航位推算(Dead Reckoning,DR)模块,用于根据第一IMU数据进行定位计算,得到位置、行驶轨迹等信息。具体而言,航位推算是根据车辆速度与车辆角速度,获取车辆距离上一个位置的位移与航向,并结合上一个位置,推算出车辆的当前位置的。其中,第一IMU数据可以从安全气囊中的IMU获取,或者是从本地(如板载IMU)获取,本申请不做限制。设置第一DR模块,可以保证卫星信号质量较差时(例如卫星信号在隧道、丛林、高楼区域等受到无线信号遮挡、多径干扰等因素的影响)也可以实现定位计算。
可以理解的,在具体实现时,MCU122可以基于PVT技术做定位,也可以基于DR技术做定位,还可以基于PVT技术和DR技术做融合定位,本申请不做限制。
可选的,如图4所示,MCU122还可以设置通信模块(例如车用无线通信技术(vehicle to everything,V2X)模块),用于实现车辆与其它设备通信。其中,V2X是将车辆与一切事物相连接的新一代信息通信技术,其中V代表车辆,X代表任何与车交互信息的对象,当前X主要包含车、人、交通路侧基础设施和网络等。当然,实际应用中通信模块还可以基于其它技术实现,例如蜂窝通信技术等,本申请不做限制。
一种可能示例中,车载通信装置12可以是T-Box。
在本申请实施例中,控制器13与车载通信装置12相连,车载通信装置12还可以将卫星数据(具体例如是GNSS芯片121输出的数字信号形式的卫星数据)传输给控制器13,以供控制器13进行定位。
3、控制器13:
控制器13用于根据车载通信装置12传输的(例如数字信号形式的)卫星数据和/或第二IMU数据确定第二定位信息。其中,第二IMU数据和第一IMU数据的来源可以相同或不同。一种可能的示例,第一IMU数据来自安全气囊,第一IMU数据来自本地板载IMU,本申请不做限制。其中,本地板载IMU可以集成在控制器13中,或者是设置在控制器13外,不做限制。
在具体实现时,如图4所示,控制器13中可以设置第二PVT解算模块和第二DR模块,分别用于对卫星数据和进行第二IMU数据计算,通过PVT技术和DR技术进行融合定位计算,进而输出第二定位信息。其中第二PVT解算模块的具体实现可以参考上文第一PVT解算模块,第二DR模块的具体实现可以参考上文第一DR模块,此处不再赘述。
一种可能的设计中,控制器13和车载通信装置12进行定位计算的卫星数据的来源均是第一GNSS天线11获取到的卫星数据,但不同的是,控制器13和车载通信装置12在做定位计算时,可以选择该卫星数据中的不同数据进行定位计算,例如,控制器13使用的数据部分精度高于车载通信装置12使用的数据部分的精度,具体例如控制器13使用的数据对应更多的搜星,这样,控制器13确定出的第二定位信息的精度高于车载通信装置12确定出的第一定位信息的精度。
例如,车载通信装置12中GNSS芯片121输出的卫星数据包括GPS L1频段的数据、北斗B1频段的数据、以及北斗B2频段的数据。车载通信装置12基于GPS L1频段的数据(即单频)确定第一定位信息,而控制器13基于GPS L1频段的数据、北斗B1频段的数据、以及北斗B2频段的数据(即多频)确定第二定位信息。
一种可能的设计中,第一IMU数据的精度低于第二IMU数据的精度,这样,控制器13确定出的第二定位信息的精度高于车载通信装置12确定出的第一定位信息的精度。
通过以上描述可知,本申请实施例中提供的定位系统既可以做低精度的定位,又可以做高精度的定位,因此可以满足车载场景中不同应用功能的定位需求,并且整套定位系统只需要设计一套GNSS天线(即第一GNSS天线11),相对于现有技术,可以节省一套GNSS天线、同轴线缆、连接器、功分器等器件,因此还可以降低定位系统的硬件成本。
需要说明的是,本文是以提供两种不同精度的定位信息(即第一定位信息和第二定位信息)为例,在实际应用中,还可以扩展到提供两种以上不同精度的定位信息的方案,例如参考控制器13的部署方式,再部署一个控制器,该控制器可以提供第三定位信息,第三定位信息的精度不用于第二定位信息的精度,且不同于第一定位服务的精度。
一种可能的设计中,控制器13具体可以根据卫星数据、第二IMU数据以及实时动态载波相位差分技术(Real Time Kinematic,RTK)数据确定第二定位信息。换而言之,控制器13可以结合PCT技术、DR技术以及RTK技术做融合定位。示例性的,如图4所示,控制器13中还可以设置RTK模块,用于对RTK数据进行计算。其中,RTK数据可以由车载通信装置12从地面站(如参考站、中心站等)获取,并转发给控制器13。
可以理解的,RTK定位技术是基于载波相位差分的实时动态定位技术,包括常规RTK 定位技术和网络RTK技术。
RTK定位技术的实现需要有参考站,参考站持续接收GNSS卫星信息,并能实时提供自身的高精度位置信息。RTK定位技术在室外空旷无遮挡环境下可以达到厘米级定位。常规RTK定位技术中,参考站持续观测GNSS卫星信息,并将观测结果传送给该定位系统所在的终端设备(如车载终端)。车载终端根据参考站的GNSS卫星信息和自身的GNSS观测结果,采用差分全球卫星导航系统(Differential Global Navigation Satellite System,DGNSS)的算法解算自身的精确位置,精度可达到厘米级。
网络RTK技术是基于常规RTK技术建立的一种定位技术。网络RTK技术的基本原理是在一个较大的区域内设置多个参考站和中心站。中心站是具有数据计算和处理能力的设备。参考站按规定持续观测GNSS卫星信息,并将观测结果发送给中心站。中心站根据车载终端发送的初始位置信息,确定差分改正信息,并发送车载终端。初始位置信息为车载终端根据卫星信号初步确定的位置信息。按照技术算法,网络RTK定位技术可以分为虚拟参考站技术(Virtual Reference Station,VRS),主辅站技术(Master-Auxiliary Concept,MAC),区域改正数技术(Flachen Korrektur Parameter,FKP)等。
如此,控制器13基于卫星数据、第二IMU数据以及RTK数据做融合定位计算,可以进一步提高控制器13的定位精度。
一种可能的设计中,控制器13可以集成在已有的需要高精度定位的控制器中,这样可以使得该类控制器可以更快获得高精度的定位信息,进而提高服务质量。例如,控制器13可以是智能驾驶控制器,或者,智能座舱控制器,或者,集成了驾驶控制、座舱控制、或车身控制等中的多个功能的控制器。一种具体的示例中,如图5所示,控制器13集成在智能驾驶控制器14中。
如此,无需单独设置一个模块专门做高精度定位,可以进一步减少硬件成本。
一种可能的设计中,车载通信装置12还用于根据卫星数据确定时间信息;将时间信息分发给整车部件。其中,整车部件包括车辆上需要时间信息的车载部件,例如包括但不限于智能驾驶控制器14(或者控制器13)、智能座舱控制器、网关等。相应的,整车部件可以基于车载通信装置12分发的时间信息确定本地基准时间。
其中,该基准时间包括管理面的时间和业务面的时间。管理面时间主要是用于控制器13内部的各个处理模块事件处理记录,比如在哪个时间进行了空中下载技术(Over the Air Technology,OTA)升级,在哪个时间发现了什么故障等;数据面时间主要是为了控制器13的时间同步(例如,雷达、相机等的时间戳管理),各传感器的融合处理,路径规划和车辆控制下发等,主要是为业务层提供时间。
在具体实现时,时间信息可以通过时间敏感网络(Time-Sensitive Networking,TSN)以太网(Ethernet,Eth)接口,或者控制器局域网络(Controller Area Network,CAN)(具体例如是具有灵活数据速率的控制器局域网络(Controller Area Network-Flexible Data-Rate,CAN-FD))+秒脉冲(Pulse per second,PPS)接口等,经过网关分发给整车部件进行授时。可以理解的,本文中的接口也可以描述为通信链路或传输通道等(例如CAN-FD接口可以描述为CAN-FD通信链路)。另外,本文是以车载场景为例,车载场景中的以太网还可以称为车载以太网。
例如图6所示,定位系统还可以包括网关15、安全气囊16、IVI导航模块17等,网关和车载通信装置12之间同时存在两种通信链路,即CAN-FD通信链路和Eth通信链路, 网关15和安全气囊16、IVI导航模块17、控制器13等之间为CAN-FD或Eth通信链路。车载通信装置12可以经过网关将时间信息分发给安全气囊16、IVI导航模块17、控制器13等。应理解,图6仅为一种示例而非具体限定。
如此,车载定位系统中的各个组件可以统一时间基准,可以简化车载设备的时间管理方案。以控制器13为例,控制器13在收到车载通信装置12分发的时间信息后,基于车载通信装置12分发的时间信息确定本地基准时间,而控制器13在对卫星数据进行PVT结算时可以省去时间信息的相关计算或者在对卫星数据进行PVT结算得到时间信息后丢弃该时间信息,进而保证控制器13的基准时间和车载通信装置12的基准时间的一致性。并且,由于时间信息是车载通信装置12生成,实时性高,相较于控制器13收到卫星数据后再去根据卫星数据确定时间信息而言,能够避免由于卫星数据在链路转发上的时延导致的时间信息不准确的问题,能够提高整车时间的准确性。
一种可能的设计中,控制器13与车载通信装置12之间设置有专用传输通道,用于车载通信装置12在将卫星数据传输给控制器13,例如包括但不限于:CAN-FD通信链路、车载以太网通信链路等。例如图6,是以控制器13与车载通信装置12之间的专用传输通道为CAN-FD或Eth通信链路。
如此,可以降低卫星数据的传输时延,提升数据传输的可靠性,提高控制器13的定位效率。
一种可能的设计中,考虑到控制器13(例如SOC)的初始化速度相对车载通信装置12(如T-Box)的初始化速度慢,且部分场景(例如电池电量不足,开始极致省电场景)导致控制器13不开启或者功能异常等,车载通信装置12具体是在控制器13开启且初始化完成且功能正常时,将卫星数据传输给控制器13。
如此,可以避免卫星数据无效传输,节省能耗,提升数据传输的可靠性。
一种可能的设计中,车载通信装置12还用于根据第一定位信息提供第一定位服务(具体例如基于第一定位信息和时间信息生成第一定位服务);控制器13还用于根据第二定位信息提供第二定位服务(具体例如基于第二定位信息和时间信息生成第二定位服务)。车载设备上的应用功能模块可以向车载通信装置12订阅第一定位服务和/或向控制器13订阅第二定位服务,进而依据第一定位服务和/或第二定位服务提供相应的应用功能。其中,应用功能包括但不限于是地图导航、车用无线通信V2X、智能驾驶、紧急呼叫等中的一种或多种。
示例性的,以应用功能是智能驾驶为例,应用功能模块可以是智能驾驶控制器14,智能驾驶控制器14可以根据第二定位服务给用户提供智能驾驶服务(例如自动驾驶、或辅助驾驶等)。
示例性的,以应用功能是地图导航为例,应用功能模块可以是车载导航系统(例如车载导航系统是集成在智能座舱控制器),车载导航系统可以根据第一定位服务给用户提供地图导航服务。
如此,定位系统可以向车载设备提供不同定位精度的定位服务,以满足不同应用功能的应用需求。
一种可能的设计中,当应用功能模块仅收到第一定位服务时,根据第一定位服务提供应用功能;当应用功能模块接收到第一定位服务和第二定位服务时,根据第二定位服务提供应用功能。换而言之,应用功能在只收到一种定位服务时,基于收到的定位服务提供应 用功能,在收到两种及以上定位服务时,优先选择高精度的定位服务提供应用功能。
作为一种具体的示例,参见图7,为本申请实施例提供的一种高精定位模式与低精定位模式的切换方法,流程包括:
S701、整车启动后,T-Box(对应上述车载通信装置12)生成低精度定位信息(对应上述第一定位信息)和时间信息;时间信息通过网关分发给整车部件进行授时;T-Box生成低精度定位服务(对应上述第一定位服务),保障车辆的紧急呼叫功能,另外还可以提供低精度定位服务给如IVI导航模块等应用功能模块,以满足车辆的基本导航定位功能;
S702、T-Box监测智能驾驶控制器(对应上述控制器13)的状态,判断智能驾驶控制器是否初始化完成;若完成则继续执行S703,否则回到S701;
S703、T-Box通过专用传输通道将卫星数据传输给智能驾驶控制器;T-Box将时间信息通过网关分发到智能驾驶控制器;地面站的RTK数据经由T-Box转发到智能驾驶控制器;
S704、智能驾驶控制器基于卫星数据、IMU数据、RTK数据等生成高精度定位信息(对应上述第二定位信息),基于高精度定位信息和时间信息生成高精度定位服务(对应上述第二定位服务);T-Box、IVI导航模块等应用功能模块切换到高精度定位模式,调用智能驾驶器提供的高精度定位服务,以提供整车定位、V2X、IVI导航等功能;
S705、当整车处于极致省电场景或者智能驾驶控制器功能异常时,T-Box、IVI导航模块等应用功能模块切换到低精度定位模式,基于T-Box的低精度定位服务提供紧急呼叫、基本导航定位等功能。
如此,可以实现整车级定位冗余设计,根据场景切换定位模式,提升方案可用性。
可以理解的,上述各设计方式可以分别单独实施,也可以相互结合实施。
基于相同的技术构思,参见图8,本申请实施例还提供一种定位方法,包括:
S801、第一GNSS天线11获取卫星数据,将卫星数据传输给车载通信装置12;相应的,车载通信装置12接收卫星数据;
S802、车载通信装置12根据卫星数据和/或第一惯性测量单元IMU数据确定第一定位信息;
S803、车载通信装置12用于将卫星数据传输给控制器13;相应的,控制器13接收卫星数据;
需要说明的是,本申请对S802和S803的先后顺序不做限定,例如车载通信装置12确定出第一定位信息后再将卫星数据传输给控制器13,也可以将卫星数据传输给控制器13后再确定第一定位信息,还可以一边确定第一定位信息一边将卫星数据传输给控制器13。
S804、控制器13根据卫星数据、第二IMU数据确定第二定位信息;其中,第二定位信息的精度高于第一定位信息的精度。
上述各个方法步骤的具体实现方式可以参考上文中的相关描述,此处不再赘述。
基于相同的技术构思,参见图9,本申请实施例还提供一种通信装置,该装置包括用于实现上述车载通信装置12所执行的方法的模块/单元/技术手段。该装置包括:
接收模块901,用于从第一GNSS天线获取卫星数据;
处理模块902,用于根据所述卫星数据和/或第一惯性测量单元IMU数据确定第一定位信息;
发送模块903,用于将所述卫星数据传输给控制器;其中,所述卫星数据用于确定第 二定位信息,所述第二定位信息的精度高于所述第一定位信息的精度。
基于相同的技术构思,参见图10,本申请实施例还提供一种控制器,包括用于实现上述控制器13所执行的方法的模块/单元/技术手段。该控制器包括:
接收模块1001,用于从车载通信装置接收卫星数据;
处理模块1002,用于根据所述卫星数据、第二IMU数据确定第二定位信息;
其中,所述第二定位信息的精度高于第一定位信息的精度,所述第一定位信息为所述车载通信装置确定的定位信息。
上述各个模块执行相应功能的具体实现方式参考上述定位系统中的相关描述,此处不再赘述。
基于相同的技术构思,参见图11,本申请实施例还提供一种通信装置,该装置包括:至少一个处理器1101和接口电路1102;接口电路1102用于接收来自该装置1100之外的其它装置的信号并传输至处理器1101或将来自处理器1101的信号发送给该装置之外的其它装置,处理器1101通过逻辑电路或执行代码指令用于实现上述车载通信装置12或控制器13等所执行的方法。
应理解,本申请实施例中提及的处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
示例性的,处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Eate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
基于相同技术构思,本申请实施例还提供一种计算机可读存储介质,包括程序或指令,当所述程序或指令在计算机上运行时,使得如上述车载通信装置12或控制器13等所执行的方法被执行。
基于相同技术构思,本申请实施例还提供一种包含指令的计算机程序产品,该计算机程序产品中存储有指令,当其在计算机上运行时,使得如上述车载通信装置12或控制器13等所执行的方法被执行。
基于相同技术构思,本申请实施例还提供一种终端设备,包括上述定位系统。终端设备可以是车辆、无人机、直升机、飞机、轮船、智能运输设备、或智能家居设备等。本申请实施例对终端设备的具体形态不做限定。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。“包括A,B和C中的至少一个”可以表示:包括A;包括B;包括C;包括A和B;包括A和C;包括B和C;包括A、B和C。

Claims (28)

  1. 一种定位系统,其特征在于,包括第一全球导航卫星系统GNSS天线、车载通信装置、控制器,所述第一GNSS天线与所述车载通信装置相连,所述控制器与所述车载通信装置相连;
    所述第一GNSS天线用于:获取卫星数据,将所述卫星数据传输给所述车载通信装置;
    所述车载通信装置用于:根据所述卫星数据和/或第一惯性测量单元IMU数据确定第一定位信息;以及,将所述卫星数据传输给所述控制器;
    所述控制器用于:根据所述卫星数据、第二IMU数据确定第二定位信息;
    其中,所述第二定位信息的精度高于所述第一定位信息的精度。
  2. 如权利要求1所述的系统,其特征在于,所述控制器用于:根据所述卫星数据、所述第二IMU数据以及实时动态载波相位差分技术RTK数据确定所述第二定位信息。
  3. 如权利要求1或2所述的系统,其特征在于,所述控制器为智能驾驶控制器或智能座舱控制器,或者,集成了驾驶控制、座舱控制、或车身控制中的多个功能的控制器。
  4. 如权利要求1-3任一项所述的系统,其特征在于,所述车载通信装置还用于:根据所述卫星数据确定时间信息;将所述时间信息分发给所述控制器。
  5. 如权利要求1-4任一项所述的系统,其特征在于,所述控制器与所述通过具有灵活数据速率的控制器局域网络CAN-FD通信链路或车载以太网通信链路相连;
    所述车载通信装置用于:通过所述CAN-FD通信链路或所述车载以太网通信链路将所述卫星数据传输给所述控制器。
  6. 如权利要求1-5任一项所述的系统,其特征在于,所述车载通信装置用于:在所述控制器开启且初始化完成且功能正常时,将所述卫星数据传输给所述控制器。
  7. 如权利要求6所述的系统,其特征在于,
    所述车载通信装置还用于:根据所述第一定位信息提供第一定位服务;
    所述控制器还用于:根据所述第二定位信息提供第二定位服务。
  8. 如权利要求6所述的系统,其特征在于,所述系统还包括:
    应用功能模块,用于:在接收到所述第一定位服务和所述第二定位服务时,根据所述第二定位服务提供应用功能。
  9. 如权利要求8所述的系统,其特征在于,所述应用功能包括地图导航、车用无线通信V2X、智能驾驶、紧急呼叫中的一种或多种。
  10. 一种定位方法,其特征在于,包括:
    车载通信装置用于从第一GNSS天线获取卫星数据;
    所述车载通信装置用于根据所述卫星数据和/或第一惯性测量单元IMU数据确定第一定位信息;
    所述车载通信装置用于将所述卫星数据传输给控制器;其中,所述卫星数据用于确定第二定位信息,所述第二定位信息的精度高于所述第一定位信息的精度。
  11. 如权利要求10所述的方法,其特征在于,所述控制器为智能驾驶控制器或智能座舱控制器,或者,集成了驾驶控制、座舱控制、或车身控制中的多个功能的控制器。
  12. 如权利要求10或11所述的方法,其特征在于,还包括:
    所述车载通信装置用于根据所述卫星数据确定时间信息;
    所述车载通信装置用于将所述时间信息分发给所述控制器。
  13. 如权利要求10-12任一项所述的方法,其特征在于,所述控制器与所述通过CAN-FD通信链路或车载以太网通信链路相连;
    所述车载通信装置用于将所述卫星数据传输给控制器,包括:
    所述车载通信装置用于通过所述CAN-FD通信链路或所述车载以太网通信链路将所述卫星数据传输给所述控制器。
  14. 如权利要求10-13任一项所述的方法,其特征在于,所述车载通信装置用于将所述卫星数据传输给控制器,包括:
    在所述控制器开启且初始化完成且功能正常时,所述车载通信装置将所述卫星数据传输给所述控制器。
  15. 如权利要求14所述的方法,其特征在于,所述方法还包括:
    所述车载通信装置用于根据所述第一定位信息提供第一定位服务。
  16. 一种定位方法,其特征在于,包括:
    控制器用于从车载通信装置接收卫星数据;
    所述控制器用于根据所述卫星数据、第二IMU数据确定第二定位信息;
    其中,所述第二定位信息的精度高于第一定位信息的精度,所述第一定位信息为所述车载通信装置确定的定位信息。
  17. 如权利要求16所述的方法,其特征在于,所述控制器用于根据所述卫星数据、第二IMU数据确定第二定位信息,包括:
    所述控制器用于根据所述卫星数据、所述第二IMU数据以及RTK数据确定所述第二定位信息。
  18. 如权利要求16或17所述的方法,其特征在于,所述控制器为智能驾驶控制器或智能座舱控制器,或者,集成了驾驶控制、座舱控制、或车身控制中的多个功能的控制器。
  19. 如权利要求16-18任一项所述的方法,其特征在于,所述方法还包括:
    所述控制器用于接收来自所述车载通信装置的时间信息。
  20. 如权利要求16-19任一项所述的方法,其特征在于,所述控制器与所述通过CAN-FD通信链路或车载以太网通信链路相连;
    所述控制器用于从车载通信装置接收卫星数据,包括:
    所述控制器用于通过所述CAN-FD通信链路或所述车载以太网通信链路从所述车载通信装置接收所述卫星数据。
  21. 如权利要求16-20任一项所述的方法,其特征在于,所述控制器用于从车载通信装置接收卫星数据,包括:
    在所述控制器开启且初始化完成且功能正常时,所述控制器用于从车载通信装置接收卫星数据。
  22. 如权利要求21所述的方法,其特征在于,所述方法还包括:
    所述控制器用于根据所述第二定位信息提供第二定位服务。
  23. 一种通信装置,其特征在于,包括:
    接收模块,用于从第一GNSS天线获取卫星数据;
    处理模块,用于根据所述卫星数据和/或第一惯性测量单元IMU数据确定第一定位信息;
    发送模块,用于将所述卫星数据传输给控制器;其中,所述卫星数据用于确定第二定位信息,所述第二定位信息的精度高于所述第一定位信息的精度。
  24. 一种控制器,其特征在于,包括:
    接收模块,用于从车载通信装置接收卫星数据;
    处理模块,用于根据所述卫星数据、第二IMU数据确定第二定位信息;
    其中,所述第二定位信息的精度高于第一定位信息的精度,所述第一定位信息为所述车载通信装置确定的定位信息。
  25. 一种通信装置,其特征在于,包括:至少一个处理器和接口电路;
    所述接口电路用于接收来自所述装置之外的其它装置的信号并发送或接收至所述处理器或将来自所述处理器的信号发送给所述装置之外的其它装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求10-15中任一项所述的方法,或者用于实现如权利要求16-22中任一项所述的方法。
  26. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求10-15中任一项所述的方法,或者,实现如权利要求16-22中任一项所述的方法。
  27. 一种计算机程序产品,其特征在于,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行如权利要求10-15中任一项所述的方法,或者,执行如权利要求16-22中任一项所述的方法。
  28. 一种终端设备,其特征在于,包括如权利要求1-9任一项所述的定位系统。
PCT/CN2022/108157 2022-07-27 2022-07-27 一种定位系统、方法 WO2024020833A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/108157 WO2024020833A1 (zh) 2022-07-27 2022-07-27 一种定位系统、方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/108157 WO2024020833A1 (zh) 2022-07-27 2022-07-27 一种定位系统、方法

Publications (1)

Publication Number Publication Date
WO2024020833A1 true WO2024020833A1 (zh) 2024-02-01

Family

ID=89704786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108157 WO2024020833A1 (zh) 2022-07-27 2022-07-27 一种定位系统、方法

Country Status (1)

Country Link
WO (1) WO2024020833A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207895314U (zh) * 2018-03-21 2018-09-21 安徽安凯汽车股份有限公司 一种新型的智能驾驶新能源汽车
US20180273032A1 (en) * 2015-11-30 2018-09-27 Huawei Technologies Co., Ltd. Automatic Driving Navigation Method, Apparatus, and System, In-Vehicle Terminal, and Server
CN208596231U (zh) * 2018-08-06 2019-03-12 上海汽车集团股份有限公司 一种车载通讯终端
CN110308469A (zh) * 2018-03-20 2019-10-08 郑州宇通客车股份有限公司 一种用于车辆的高精度定位系统、车辆
CN110723151A (zh) * 2019-09-24 2020-01-24 华为技术有限公司 智能驾驶系统初始化方法和装置
CN111123933A (zh) * 2019-12-24 2020-05-08 华为技术有限公司 车辆轨迹规划的方法、装置、智能驾驶域控制器和智能车
CN113945956A (zh) * 2021-10-15 2022-01-18 北京路凯智行科技有限公司 车载定位系统以及包括其的矿山车辆

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180273032A1 (en) * 2015-11-30 2018-09-27 Huawei Technologies Co., Ltd. Automatic Driving Navigation Method, Apparatus, and System, In-Vehicle Terminal, and Server
CN110308469A (zh) * 2018-03-20 2019-10-08 郑州宇通客车股份有限公司 一种用于车辆的高精度定位系统、车辆
CN207895314U (zh) * 2018-03-21 2018-09-21 安徽安凯汽车股份有限公司 一种新型的智能驾驶新能源汽车
CN208596231U (zh) * 2018-08-06 2019-03-12 上海汽车集团股份有限公司 一种车载通讯终端
CN110723151A (zh) * 2019-09-24 2020-01-24 华为技术有限公司 智能驾驶系统初始化方法和装置
CN111123933A (zh) * 2019-12-24 2020-05-08 华为技术有限公司 车辆轨迹规划的方法、装置、智能驾驶域控制器和智能车
CN113945956A (zh) * 2021-10-15 2022-01-18 北京路凯智行科技有限公司 车载定位系统以及包括其的矿山车辆

Similar Documents

Publication Publication Date Title
US20180106906A1 (en) Positioning processing system, method, computer program, positioning processing device, and user terminal
CN109870714B (zh) 传输信息的方法、传输装置、定位服务器及移动终端
US20190195982A1 (en) Method for carrying out distance measurements between the transportation vehicles of a vehicle convoy and transportation vehicle module for use in the method and transportation vehicle
US8350755B2 (en) Method and system for propagating GNSS assistance data among communication devices in a GNSS group
WO2019121746A1 (en) Broadcast and utilization of precise gnss correction data
EP4206743A1 (en) Method for vehicle positioning, related apparatus, device, and storage medium
EP4220602A1 (en) Parking information transmission method and apparatus
CN109597109B (zh) 一种定位方法、定位装置及定位系统
CN101395491A (zh) 用于使用测量缝合进行位置确定的方法
WO2022143746A1 (zh) 非陆地网络定位方法、装置、设备及存储介质
US20200174135A1 (en) Positioning Method, Device, and System
CN102740228A (zh) 一种位置信息共享方法、装置及系统
JPWO2019233039A5 (zh)
CN107430198B (zh) 汽车自组织实时动态漫游网络
US20130079000A1 (en) Efficient use of assistance data services in dual/mult-sim terminals
CN106576214B (zh) 在没有gnss信号的情况下的时间戳产生
US20100039323A1 (en) Method and system for global position reference map (gprm) for agps
CN108780157B (zh) 利用动态校准和/或动态加权的汽车航位推测
US20230026317A1 (en) Clock Calibration Method and Apparatus
CN113064185A (zh) 一种定位方法、终端及服务器
EP3545504A1 (en) Prediction based client control
WO2011056879A2 (en) Methods and apparatuses using mixed navigation system constellation sources for time setting
US20170019763A1 (en) Method and apparatus for sharing data between positioning devices
WO2024020833A1 (zh) 一种定位系统、方法
Magno et al. Combining LoRa and RTK to achieve a high precision self-sustaining geo-localization system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952297

Country of ref document: EP

Kind code of ref document: A1