CN108780157B - 利用动态校准和/或动态加权的汽车航位推测 - Google Patents

利用动态校准和/或动态加权的汽车航位推测 Download PDF

Info

Publication number
CN108780157B
CN108780157B CN201780019270.9A CN201780019270A CN108780157B CN 108780157 B CN108780157 B CN 108780157B CN 201780019270 A CN201780019270 A CN 201780019270A CN 108780157 B CN108780157 B CN 108780157B
Authority
CN
China
Prior art keywords
gnss
information
dead reckoning
data
calibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780019270.9A
Other languages
English (en)
Other versions
CN108780157A (zh
Inventor
罗伯特·席林
凯文·罗克福德
大卫·乔丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anzher Software Co ltd
Original Assignee
Anzher Software Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anzher Software Co ltd filed Critical Anzher Software Co ltd
Priority to CN202211418665.5A priority Critical patent/CN115755135A/zh
Publication of CN108780157A publication Critical patent/CN108780157A/zh
Application granted granted Critical
Publication of CN108780157B publication Critical patent/CN108780157B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • G01S19/49Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an inertial position system, e.g. loosely-coupled
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/396Determining accuracy or reliability of position or pseudorange measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明公开了一种含有处理器可执行指令的计算机可读介质,所述处理器可执行指令被配置为执行以下步骤:(i)监测基于从GNSS卫星(56a‑56n)接收到的信号(GNSS_A‑GNSS_N)而计算的位置信息的位置精度,(ii)如果所述位置精度通过质量检查,则使用所述位置信息连续执行对从一个或多个传感器(140a‑140n)接收到的数据的校准,以及(iii)如果所述位置精度未通过所述质量检查,则停止对从所述传感器接收到的所述数据的所述校准,其中由从所述传感器接收到的所述数据计算航位推测信息。

Description

利用动态校准和/或动态加权的汽车航位推测
技术领域
本发明整体涉及全球定位,并且更具体地讲,涉及利用动态校准和/或动态加权的汽车航位推测。
背景技术
常规解决方案以固定加权将航位推测(DR)与全球导航卫星系统(GNSS)解决方案混合。固定加权会影响位置精度。即使当GNSS解决方案受到多路径干扰或拥塞的影响时,也连续地更新车辆传感器的校准。此类利用不精确GNSS信息的校准会导致校准不良。
常规汽车航位推测软件使用在车辆总线上通信的车辆传感器信息(即,车轮掣动、车辆速度传感器(VSS)、陀螺仪)、或车辆传感器信息与集成传感器(即,陀螺仪、加速度计)的组合。首先校准车辆传感器信息以便补充所获取的GNSS位置。航位推测解决方案可在没有GNSS卫星信息的情况下(即,在隧道或停车库中)提供位置。常规软件在确定位置坐标后即开始传感器的校准,而不论坐标的精度如何(即,城市峡谷和其他多路径场景可引入误差)。此类常规方法会引起校准不精确。一旦实现了校准,就不断更新该校准,即使是在不太精确的区域(即,GNSS不太精确的城市峡谷)中也是如此。
希望实现利用动态校准和/或动态加权的汽车航位推测软件。
发明内容
本发明涉及含有处理器可执行指令的计算机可读介质,这些处理器可执行指令被配置为执行以下步骤:(i)监测基于从GNSS卫星接收到的信号而计算的位置信息的位置精度,(ii)如果位置精度通过质量检查,则使用位置信息连续执行对从一个或多个传感器接收到的数据的校准,以及(iii)如果位置精度未通过质量检查,则停止对从传感器接收到的数据的校准,其中由从传感器接收到的数据计算航位推测信息。
在上述计算机可读介质方面的一些实施方案中,使用航位推测信息以及基于从GNSS卫星接收到的信号而计算的位置信息来确定车辆的位置。在实现使用航位推测信息和位置信息来确定车辆的位置的一些实施方案中,这些指令还可包括基于位置精度来执行对航位推测信息以及基于从GNSS卫星接收到的信号而计算的位置信息的动态加权。在实现动态加权的一些实施方案中,动态加权可被实现为在确定车辆的位置时防止航位推测信息所引起的精度降低。在实现动态加权的一些实施方案中,动态加权可被配置为在露天条件下偏向于基于从GNSS卫星接收到的信号而计算的位置信息胜过航位推测信息。在实现动态加权的一些实施方案中,动态加权可被配置为当基于从GNSS卫星接收到的信号而计算的位置信息的位置精度被确定为较差时增加对航位推测信息的倚重。
在上述计算机可读介质方面的一些实施方案中,这些指令还可包括在实现初始校准之后执行对从传感器接收到的数据的校准的更新。在实现校准的更新的一些实施方案中,可在位置精度通过质量检查时执行校准的更新。在实现校准的更新的一些实施方案中,可在位置精度未通过质量检查时停止校准的更新。
本发明还涵盖涉及包括天线、处理器和存储器的装置的方面。天线可被配置为从GNSS卫星接收信号。处理器可被配置为执行指令。存储器可被配置为存储指令,这些指令在被执行时,执行以下步骤:(i)监测基于从GNSS卫星接收到的信号而计算的位置信息的位置精度,(ii)如果位置精度通过质量检查,则使用位置信息连续执行对来自一个或多个传感器的数据的校准,以及(iii)如果位置精度未通过质量检查,则停止对从传感器接收到的数据的校准。可由从传感器接收到的数据计算航位推测信息。
本发明还涵盖涉及用于校准从传感器接收到的航位推测信息所用的数据的方法的方面。该方法可包括基于从GNSS卫星接收到的信号来计算位置坐标的步骤。该方法可包括监测基于来自GNSS卫星的信号而计算的位置坐标的位置精度的步骤。如果位置精度通过质量检查,则该方法可使用位置坐标来连续执行对从一个或多个传感器接收到的数据的校准。如果位置精度未通过质量检查,则该方法可停止对从传感器接收到的数据的校准。可由从传感器接收到的数据计算航位推测信息。
在上述方法方面的一些实施方案中,可使用航位推测信息以及基于从GNSS卫星接收到的信号而计算的位置坐标来确定车辆的位置。在实现使用航位推测信息和位置信息来确定车辆的位置的一些实施方案中,该方法还可包括基于位置精度来执行对航位推测信息以及基于从GNSS卫星接收到的信号而计算的位置坐标的动态加权。在实现动态加权的一些实施方案中,动态加权可被实现为在确定车辆的位置时防止航位推测信息所引起的精度降低。在实现动态加权的一些实施方案中,动态加权可被配置为在露天条件下偏向于由从GNSS卫星接收到的信号计算的位置坐标胜过航位推测信息。在实现动态加权的一些实施方案中,动态加权可被配置为当基于从GNSS卫星接收到的信号而计算的位置坐标的位置精度被确定为较差时增加对航位推测信息的倚重。
在上述方法方面的一些实施方案中,当确定车辆的位置时,航位推测信息可用于补充基于从GNSS卫星接收到的信号而计算的位置坐标。在实现校准的更新的一些实施方案中,可在航位推测信息用于补充基于从GNSS卫星接收到的信号而计算的位置坐标之前校准从传感器接收到的数据。
在上述方法方面的一些实施方案中,传感器可包括车轮掣动传感器、陀螺仪、加速度计和车辆速度传感器中的至少一者。
在上述方法方面的一些实施方案中,位置精度可能由于城市峡谷、多路径误差及其他障碍物中的至少一者而未通过质量检查。
附图说明
本发明的实施方案将从以下具体实施方式和所附权利要求书以及附图中显而易见,其中:
图1是示出露天环境的示意图;
图2是示出不可接受的容差环境的示意图;
图3是示出动态加权环境的示意图;
图4是多个传感器的环境的示意图;
图5是示出模块的示意图;
图6是校准过程的流程图;
图7是示出动态加权过程的流程图;
图8是示出替代动态加权过程的流程图;并且
图9是流程图,示出了基于所监测的趋势对来自传感器的输入的系数进行细化的过程。
具体实施方式
本发明的实施方案包括提供(i)可用于车辆或其他移动设备中的航位推测,(ii)航位推测的动态校准,(iii)航位推测数据和GNSS位置信息的动态加权,(iv)在处于航位推测模式时基于在位置精度足够时所收集的趋势数据对校准参数的预测性调整,和/或(v)具有最小开销的解决方案。
示例性实施方式使用全球导航卫星系统(GNSS)或全球定位系统(GPS)。可由从GNSS或GPS接收到的信号计算位置信息(例如,坐标)。可确定位置信息的位置精度。当由来自GNSS的信号计算的位置精度在可接受的容差内时,这些坐标可用于执行航位推测的传感器的校准。可接受的容差可以是可根据特定实施方式的设计标准来预先配置的参数。在实现校准(例如,初始校准)之后,可继续对该校准的更新以便考虑变化条件(例如,轮胎压力变化、陀螺仪漂移等)。
一般在所计算的GNSS解决方案在可接受的容差内(例如,由从GNSS接收到的信号计算的位置信息的位置精度通过质量检查)时执行更新。当所计算的GNSS解决方案不在可接受的容差内时,或当GNSS卫星不可用时,中止对该校准的更新,直到GNSS精度恢复到可接受的容差内时为止。
在航位推测信息与所计算的GNSS解决方案(例如,位置信息)混合的情况下,该加权将为基于GNSS解决方案的精度(例如,位置精度)的动态加权。在一个示例中,在露天环境中可需要极少航位推测。可对死区(诸如城市峡谷)中的航位推测信息施加更重的权重。混合解决方案可提供一般在城市峡谷中更精确的“融合”解决方案。在利用优异GNSS解决方案的露天中,航位推测混合可略微增加总开销并且可仅略微影响总精度。动态加权可被实现为在确定位置时防止航位推测信息所引起的精度降低(例如,基于由从GNSS接收到的信号计算的位置信息的位置精度的可靠性)。在一个示例中,动态加权在露天条件下可偏向于由从GNSS接收到的信号计算的位置信息胜过航位推测信息。在另一个示例中,当由从GNSS接收到的信号计算的位置信息的位置精度被确定为较差时,动态加权可增加对航位推测信息的倚重。
参见图1,示出了露天环境中的系统50的示意图。该露天环境可为位置信息的位置精度的可接受的容差环境的示例。系统50一般包括车辆52、卫星56a-56n和基站58。车辆50可包括装置(或模块或电路)100。结合图5更详细地描述模块100。虽然示出的是车辆52,但装置100可在移动设备(例如,蜂窝电话、平板计算设备、计算机、独立GPS设备、健身监测设备、智能手表等)中实现。在一个示例中,移动设备可在移动的车辆内操作。
车辆52被示出为连接到卫星56a-56n。在一个示例中,卫星56a-56n可为GNSS的一部分。一般来讲,可连接卫星56a-56n中的四个或更多个。在另一个示例中,可通过GPS型连接来实现对卫星56a-56n的连接。卫星56a-56n可提供信号(例如,GNSS_A-GNSS_N)。装置100被示出为处于露天环境中(例如,装置100与卫星56a-56n之间很少和/或没有干扰和/或多路径误差)。例如,在露天环境系统50中,信号GNSS_A-GNSS_N的信噪比可较高(例如,信号GNSS_A-GNSS_N可为可靠的)。
车辆52还可被配置为连接到基站58。一般而言,基站58可被实现为固定基站,诸如蜂窝塔、用户安装的固定基站或另一种类型的固定基站。虽然仅示出了基站58,但一般超过一个基站58可被实现为提供用于计算位置信息的信号。在一些实施方案中,基站58可连接到卫星56a-56n,由信号GNSS_A-GNSS_N计算位置信息,并且向车辆52提供位置信息。可通过蜂窝网络连接(例如,3G、4G LTE等)、Wi-Fi连接、GPS型连接和/或另一种类型的连接来实现对基站58的连接。对基站58的连接的类型可根据特定实施方式的设计标准而改变。装置100被示出为处于露天环境中(例如,装置100与基站58之间很少和/或没有干扰和/或多路径误差)。
模块100被示出为位于车辆52中。模块100可被实现为单个单元(例如,安装的设备和/或模块)和/或分布式单元。例如,模块100的各种部件可在车辆52之中和/或之上的各种位置处实现,并且由电子网络来连接,该电子网络连接一个或多个所述部件并实现以数字信号的形式共享信息(例如,串行总线、由接线和/或接口连接的电子总线、无线接口等)。在一些实施方案中,模块100可在车辆52的信息娱乐模块中实现。车辆52之中和/或之上的模块100的位置可根据特定实施方式的设计标准而改变。
在一些实施方案中,装置100可被配置为接收卫星56a-56n和/或基站58所发送的信号GNSS_A-GNSS_N。装置100可被配置为基于信号GNSS_A-GNSS_N中的数据来计算车辆52的位置信息(例如,位置数据、坐标等)。由于露天环境系统50可为具有有限和/或没有干扰和/或多路径误差的示例,因此由信号GNSS_A-GNSS_N计算的位置信息的位置精度可在可接受的容差内(例如,通过质量检查)。在露天环境系统50中,装置100可使用由从卫星56a-56n和/或基站58接收到的信号GNSS_A-GNSS_N计算的位置信息来校准航位推测的传感器数据。
在露天环境系统50中,装置100可使用由从卫星56a-56n和/或基站58接收到的信号GNSS_A-GNSS_N计算的定位位置信息来确定车辆52的当前位置(例如,不依赖于航位推测数据来补充位置数据)。在一些实施方案中,可在露天环境系统50中使用一些航位推测数据(例如,偏向于位置信息胜过航位推测信息的混合解决方案)。在一些实施方案中,装置100可在露天环境系统50中监测传感器校准的趋势。这些趋势可用于外推对纯航位推测模式下操作时的校准参数的调整。
质量检查可为在计算位置信息(例如,GNSS解决方案)时确定的水平精度和/或三维精度。装置100可连接到卫星56a-56n的不同组合。在一个示例中,装置100可使用从卫星56a、56d、56i和56m接收到的信号GNSS_A、GNSS_D、GNSS_I和GNSS_M来计算一个GNSS解决方案(例如,位置信息)。在另一个示例中,装置100可使用从卫星56b、56c、56e、56f和56l接收到的信号GNSS_B、GNSS_C、GNSS_E、GNSS_F和GNSS_L来计算另一个GNSS解决方案(例如,位置信息)。如果基于信号GNSS_A、GNSS_D、GNSS_I和GNSS_M的GNSS解决方案以及基于信号GNSS_B、GNSS_C、GNSS_E、GNSS_F和GNSS_L的GNSS解决方案重合(或适当接近),则位置信息的位置精度可为可靠的(例如,车辆52可处于露天环境系统50中)。如果基于信号GNSS_A、GNSS_D、GNSS_I和GNSS_M的GNSS解决方案以及基于信号GNSS_B、GNSS_C、GNSS_E、GNSS_F和GNSS_L的GNSS解决方案不重合(或不适当接近),则位置信息的位置精度可为不可靠的,并且装置100可依赖于航位推测(或航位推测与位置信息的组合)来确定车辆52的位置坐标。用于确定位置信息是否可靠的阈值可根据特定实施方式的设计标准而改变。
参见图2,示出了不可接受的容差环境中的系统50’的示意图。不可接受的容差环境系统50’可包括车辆52、卫星56、基站58、装置100和/或本地条件60。卫星56a-56n被示出为向车辆52提供信号GNSS_A’-GNSS_N’。信号GNSS_A’-GNSS_N’的信噪比可较差。不可接受的容差环境50’可为由GNSS卫星56a-56n所提供的信号(例如,GNSS_A’-GNSS_N’)计算的位置信息被确定为较差的时候。本地条件60被表示为阻碍信号GNSS_A’-GNSS_N’在装置100与卫星56a-56n和/或装置100与基站58之间的传输的一片树林。例如,由于本地条件60,信号GNSS_A’-GNSS_N’可具有较差质量和/或可未接收到信号传输(例如,位置精度的不可接受的容差)。
本地条件60可为可影响位置信息(例如,位置坐标)的确定的任何类型的干扰和/或多路径因素。本地条件60可降低由信号GNSS_A’-GNSS_N’计算的位置信息的可靠性。例如,本地条件60可归因于电离层干扰、噪声、密集城区所引起的信号衰减、高层建筑物所引起的信号衰减等。本地条件60的类型和/或原因可根据特定实施方式的设计标准而改变。
由于不可接受的容差环境系统50’可为具有较差质量和/或无信号传输的示例,因此由卫星56a-56n所提供的信号GNSS_A’-GNSS_N’计算的位置信息的位置精度可在不可接受的容差内(例如,未通过质量检查)。在不可接受的容差环境系统50’中,装置100可不使用由信号GNSS_A’-GNSS_N’中的数据和/或基站58计算的位置信息来校准航位推测的传感器的数据。在不可接受的容差环境系统50’中,装置100可不使用由信号GNSS_A’-GNSS_N’中的数据和/或基站58计算的位置信息来确定车辆52的位置。在不可接受的容差环境系统50’中,装置100可使用航位推测信息来确定车辆52的位置(例如,装置100可在纯航位推测模式下操作)。
在一些实施方案中,在不可接受的容差环境系统50’中,可暂时禁用传感器的校准,直到所计算的GNSS解决方案的位置精度在可接受的容差内为止。在一些实施方案中,在不可接受的容差环境系统50’中,在可接受的容差环境内时确定的趋势可用于外推对纯航位推测模式下操作时的校准参数的调整。
参见图3,示出了动态加权环境中的系统50”的示意图。动态加权环境系统50”可为可接受的容差环境(例如,通过质量检查)的示例。动态加权环境系统50”可包括车辆52、卫星56a-56n、基站58、本地条件60’和/或装置100。卫星56a-56n被示出为向车辆52提供信号GNSS_A”-GNSS_N”。信号GNSS_A”-GNSS_N”的信噪比可为可接受的(例如,中等可靠的)。动态加权环境系统50”可为由GNSS卫星56a-56n所提供的信号(例如,GNSS_A”-GNSS_N”)计算的位置信息被确定为可接受但可具有一些误差的时候。本地条件60’被表示为部分阻碍信号GNSS_A”-GNSS_N”在装置100与卫星56a-56n和/或装置100与基站58之间的传输的单棵树。例如,可接收到卫星56a-56n的信号传输,但由于本地条件60’,该信号可具有一些误差(例如,位置精度的可接受的容差)。
由于动态加权环境系统50”可为具有一些误差的示例,因此由信号GNSS_A”-GNSS_N”计算的位置信息的位置精度可在可接受的容差内。在动态加权环境系统50”中,装置100可使用由信号GNSS_A”-GNSS_N”和/或基站58计算的位置信息以及航位推测信息来确定车辆52的位置。对所计算的位置信息和航位推测信息的倚重(例如,加权)的量可基于GNSS解决方案(例如,所计算的位置信息)的位置精度来动态地改变。在一个示例中,当本地条件60’引起更少误差时,可向位置信息施加比航位推测信息更大的权重。在另一个示例中,当本地条件60’引起更多误差时,可向航位推测信息施加比位置信息更大的权重。向位置信息和/或航位推测信息施加的加权的量可根据特定实施方式的设计标准而改变。
参见图4,示出了车辆52的示意图150。示出了对GNSS卫星56a-56n的连接。在一个示例中,车辆52(或车辆52的部件)可连接到卫星56a-56n中的四个或更多个以接收信号GNSS_A-GNSS_N。示出了多个传感器140a-140n。传感器140a-140n可通过总线142或通过无线连接142a来连接到模块100。可改变传感器140a-140n与模块100之间的连接的特定类型以满足特定实施方式的设计标准。
传感器140a-140n可被配置为捕获用于执行航位推测计算的信息。在图4所示的示例中,传感器140a-140n可为车辆传感器。来自传感器140a-140n的数据可用于确定航位推测数据。传感器140a-140n可以是被配置为确定车辆移动的各种类型的传感器(例如,磁力计、加速度计、车轮掣动传感器、车辆速度传感器、陀螺仪等)。例如,来自传感器140a-140n的数据可用于确定从基准点行驶的距离和/或方向。所实现的传感器140a-140n的类型可根据特定实施方式的设计标准而改变。
来自传感器140a-140n的数据可随时间推移而变得不太精确(例如,传感器信息漂移)。如果来自传感器140a-140n的数据不可靠,则航位推测数据的精度可变得不可靠。装置100可被配置为校准从传感器140a-140n接收到的数据。装置100可确定校准参数(例如,系数)以转换从传感器140a-140n接收到的数据,从而补偿传感器信息漂移。所施加的校准可根据特定实施方式的设计标准而改变。
当位置信息在可接受的容差内时(例如,当由信号GNSS_A-GNSS_N计算的位置信息的位置精度足以用作基于传感器的车辆移动位置计算的位置基准时),可执行校准。例如,当由信号GNSS_A-GNSS_N计算的位置信息的位置精度在可接受的容差内时,模块100可将航位推测数据与作为位置基准的位置信息进行比较,以确定向从传感器140a-140n接收到的数据施加的系数。
在一些实施方案中,模块100可被配置为在存在可接受的容差的时候基于所收集的有关校准系数的数据来监测趋势。可由模块100监测该趋势以执行对纯航位推测模式下操作时(例如,存在不可接受的容差的时候)的校准参数的预测性(例如,外推)调整。例如,模块100可确立与来自陀螺仪传感器(例如,传感器140i)的输入相关的一组系数。当由信号GNSS_A-GNSS_N计算的位置信息的位置精度在可接受的容差内时,模块100可不断地(或连续地、或周期性地)细化陀螺仪传感器140i的该组系数。陀螺仪传感器140i的该组系数的细化可确立在没有信号GNSS_A-GNSS_N的情况下(例如,在存在不可接受的容差的时候)预计可基于车辆和/或环境特性延续的趋势。模块100所执行的趋势监测和/或外推的实施方式可根据特定实施方式的设计标准而改变。
参见图5,示出了模块100的示意图。装置100一般包括区块(或电路)102、区块(或电路)104、区块(或电路)106和/或区块(或电路)108。传感器140a-140n被示出为经由总线142连接到模块100。电路102可实现处理器。电路104可实现天线。电路106可实现存储器。电路108可实现通信端口。可实现其他区块(或电路)(例如,时钟电路、I/O端口、电源连接器等)。例如,区块(或电路)114被示出为实现滤波器。
处理器102可被实现为微控制器和/或GNSS芯片组。在一些实施方案中,处理器102可为实现处理功能和GNSS芯片组的组合(例如,集成)芯片组。在一些实施方案中,处理器102可由两个单独电路(例如,微控制器和GNSS芯片组)构成。在一个示例中,非车载电路(例如,并非模块100一部分的部件)可执行GNSS芯片组的功能并且将信息发送到模块100(例如,经由总线142)。在另一个示例中,非车载电路(例如,并非模块100一部分的部件)可执行用于确定航位推测数据的功能并且将信息发送到模块100(例如,经由总线142)。处理器102的设计和/或处理器102的各种部件的功能可根据特定实施方式的设计标准而改变。
天线104可被实现为能够连接到蜂窝网络(例如,以向基站58提供潜在连接选项)和/或GNSS网络(例如,卫星56a-56n)两者的双频带天线。在另一个示例中,天线104可被实现为两个天线。例如,一个天线可特别设计为连接到基站58,而另一个天线可被实现为经优化以连接到GNSS网络卫星56a-56n。天线104可被实现为分立天线模块和/或双频带天线模块。在一些实施方案中,天线104可被实现为非车载电路(例如,并非模块100一部分的部件)。例如,天线104可经由电子总线142向/从模块100发送/接收数据。天线104的实施方式可根据特定实施方式的设计标准而改变。
存储器106可包括区块(或电路)110和区块(或电路)112。区块110可存储计算机可读指令(例如,处理器102可读取的指令)。区块112可存储车辆位置数据。例如,车辆位置数据112可存储各种数据集120a-120n。数据集的示例可为位置坐标120a、校准数据120b、时间戳120c、校正值120d、航位推测数据120e和/或其他数据120n。
位置坐标120a可存储由模块100利用GNSS卫星56a-56n所提供的信号GNSS_A-GNSS_N计算的位置信息数据。信号GNSS_A-GNSS_N可提供可用来计算位置信息位置精度的特定分辨率的数据。在一些实施方案中,位置坐标120a可能无法提供足够用于特定应用(例如,车道检测、自主驾驶等)的位置精度。校正值120d可用于提高位置坐标120a的精度。在一些实施方案中,可由滤波器114计算位置坐标120a。
校准数据120b可包括用于转换从传感器140a-140n接收到的数据的参数(例如,系数)。校准数据120b可提供许多组系数(例如,传感器140a-140n每一者有一组系数)。校准数据120b可以是可更新的。例如,校准数据120b可存储当前值作为传感器140a-140n的系数,并且在来自传感器140a-140n的数据漂移时(例如,基于在位置精度在可接受的容差内时位置坐标120a与航位推测数据120e的比较),模块100可更新校准数据120b以便保持航位推测数据120e的精度。校准数据120b的格式可基于特定实施方式的设计标准而变化。
时间戳120c可用于确定车辆位置数据112的时间。例如,时间戳120c可用于确定车辆位置数据112应被视为可靠的还是不可靠的。可在模块100更新车辆位置数据112时更新时间戳120c。例如,时间戳120c可按协调世界时间(UTC)和/或当地时间记录时间。时间戳120c的实施方式可根据特定实施方式的设计标准而改变。
校正值120d可用于增大(例如,提高)位置坐标120a的精确度。校正数据120d可实现对位置坐标120a的实时精度校正。校正数据120d可用于考虑(例如,补偿)可影响位置坐标120a的精度的本地条件60。例如,校正值120d可包括来自位置坐标120a和航位推测数据120e的信息的加权混合。向用于加权混合的来自位置坐标120a的数据分量和来自航位推测数据120e的数据分量施加的加权的量,可基于由信号GNSS_A-GNSS_N和/或来自基站58的数据计算的位置信息的所确定的位置精度(例如,可靠性)来确定。
航位推测数据120e可用于存储过往和/或当前信息以确定车辆52所行驶的位置。例如,航位推测数据120e可存储车辆52的此前确定的位置(例如,估计的速度、估计的行驶时间、估计的位置等)。此前确定的位置可用于帮助确定车辆52的当前位置。在一些实施方案中,可基于来自车辆52的传感器140a-140n的数据(例如,车载陀螺仪和/或车轮掣动消息)来确定航位推测数据120e。所存储的确定航位推测数据120e的实施方式和/或信息可根据特定实施方式的设计标准而改变。
各种其他类型的数据(例如,其他数据120n)可被存储为车辆位置数据112的一部分。例如,其他数据120n可存储校准数据120b的趋势信息。例如,其他数据120n可存储校准数据120b的过往数据值和/或校准数据120b的当前数据值。可对校准数据120b的过往和当前数据值进行比较以确定用于外推和/或预测校准数据120b的潜在未来值的趋势。例如,趋势信息可用于继续细化模块100在纯航位推测模式下操作(例如,位置信息未通过质量检查)时的校准数据120b。
通信端口108可允许模块100与外部设备和/或传感器140a-140n进行通信。例如,模块100a被示出为连接到外部电子总线142。在一些实施方案中,电子总线142可被实现为车辆CAN总线。电子总线142可被实现为电子有线网络和/或无线网络(例如,无线连接142a)。一般来讲,电子总线142可连接车辆52的一个或多个部件,从而实现以数字信号的形式共享信息(例如,串行总线、由接线和/或接口连接的电子总线、无线接口等)。
通信端口108可允许模块100与车辆52的各种基础设施和/或部件共享车辆位置数据112。通信端口108可允许模块100从车辆52的传感器140a-140n接收信息(例如,用于确定航位推测数据120e的车载陀螺仪数据和/或车轮掣动消息)。例如,可将来自模块100的信息传送到信息娱乐设备以便向驾驶员显示。在另一个示例中,对便携式计算设备(例如,智能电话、平板电脑、笔记本电脑、智能手表等)的无线连接(例如,Wi-Fi、蓝牙、蜂窝等)可允许来自模块100的信息向用户显示。
模块100可被配置为计算位置和/或广播数据(例如,经由通信端口108),诸如位置坐标120a、数据的时间(例如,最后一次更新数据的时间,诸如时间戳120c)、校正值120d和/或其他数据120n。通过通信端口108的通信的方法和/或所传输的数据的类型可根据特定实施方式的设计标准而改变。
滤波器114可被配置为执行线性二次估计。例如,滤波器114可实现卡尔曼滤波器。一般来讲,滤波器114可对输入数据进行递归操作以产生统计最优估计值。例如,滤波器114可用于计算位置坐标120a和/或估计位置坐标120a的精度。在一些实施方案中,滤波器114可被实现为单独模块。在一些实施方案中,滤波器114可被实现为存储器106的一部分(例如,所存储的指令110)。滤波器114的实施方式可根据特定实施方式的设计标准而改变。
处理器102可被配置为执行所存储的计算机可读指令(例如,存储在存储器106中的指令110)。处理器102可基于所存储的指令110执行一个或多个步骤。在一个示例中,处理器102可计算位置信息(例如,基于所接收到的信号GNSS_A-GNSS_N)。在另一个示例中,处理器102所执行/进行的步骤之一可确定位置信息和航位推测信息的动态混合和/或传感器140a-140n的校准。处理器102所执行的指令和/或所执行的指令的顺序可根据特定实施方式的设计标准而改变。处理器102被示出为将数据发送到天线104、存储器106和/或通信端口108,和/或从天线104、存储器106和/或通信端口108接收数据。
处理器102可被配置为确定用于校准传感器140a-140n所生成的信号的系数(例如,参数)。例如,处理器102可被配置为对基于来自传感器140a-140n的数据的航位推测数据与由信号GNSS_A-GNSS_N计算的位置坐标进行比较。基于该比较,处理器102可确定系数以将从传感器140a-140n接收到的原始数据转换(例如,偏移)成可用于以比使用未经这些系数转换的数据时更大的精度确定位置的数据。
模块100可被配置为芯片组、片上系统(SoC)和/或分立设备。在一些实施方案中,模块100可包括GNSS芯片组,并且被配置为计算位置、速度和时间(PVT)解决方案,而不是航位推测解决方案(例如,可将校准数据120b发送到另一个部件以确定航位推测解决方案)。例如,PVT可被视为导航的绝对最小输出。在一些实施方案中,模块100可包括GNSS芯片组,并且被配置为计算PVT解决方案和航位推测解决方案。在一些实施方案中,模块100可被配置为接收提供PVT解决方案的数据流且可不确定航位推测解决方案(例如,模块100从非车载部件接收PVT数据,确定校准数据120b,并且将校准数据120b发送到非车载部件以确定航位推测解决方案)。在一些实施方案中,模块100可被配置为接收提供PVT解决方案的数据流并且被配置为计算航位推测解决方案。
在一些实施方案中,模块100可使用外部处理器(例如,非车载处理器)来执行这些计算以确定校准数据120b(例如,存储器106向外部处理器提供指令110以计算校准数据120b)。在一些实施方案中,指令110可存储在外部存储器上。模块100的实施方式可根据特定实施方式的设计标准而改变。
一般来讲,模块100接收和/或确定PVT解决方案、混合PVT和航位推测解决方案、和/或PVT数据分量和航位推测数据分量(例如,计算来自信号GNSS_A-GNSS_N的一个或两个数据分量)。模块100可被配置为分离和/或提取航位推测数据120e的数据分量和PVT解决方案(例如,位置数据)的数据分量。可使用指令110对航位推测数据120e与位置坐标120a的数据分量进行比较。指令110可包括基于PVT精度来确定对航位推测数据120e的数据分量与位置坐标120a的数据分量进行加权和/或混合的解决方案的步骤。
参见图6,示出了方法(或过程)200的流程图。过程200表示初始校准。方法200实现对校准的更新。方法200一般包括步骤(或状态)202、步骤(或状态)204、步骤(或状态)206、决策步骤(或状态)208、步骤(或状态)210、步骤(或状态)212、步骤(或状态)214、决策步骤(或状态)216和步骤(或状态)218。
步骤202可为开始步骤。接下来,在步骤204中,模块100可使用天线104连接到GNSS卫星56a-56n(例如,接收信号GNSS_A-GNSS_N)。在步骤206中,处理器102可监测由信号GNSS_A-GNSS_N计算的数据的位置精度(例如,位置信息的位置精度)。接下来,在决策步骤208中,处理器102先确定由信号GNSS_A-GNSS_N计算的位置信息的位置精度是否通过质量检查,再将其用于航位推测传感器校准。例如,质量检查可基于信号GNSS_A-GNSS_N的信号强度、本地条件60和/或信号GNSS_A-GNSS_N的信噪比(例如,位置坐标120a的可靠性)。
如果质量检查失败,方法200移至步骤210。在步骤210中,处理器102不执行对航位推测的传感器140a-140n的校准(例如,不更新校准数据120b)。然后方法200返回到步骤206。如果决策步骤208确定由信号GNSS_A-GNSS_N计算的位置信息的位置精度确已通过质量检查并且可用于航位推测传感器校准,则方法200移至步骤212。在步骤212中,处理器102可校准航位推测的传感器140a-140n(例如,确定用于调整从传感器140a-140n接收到的数据的校准数据120b)。
在步骤214中,处理器102可监测来自车辆传感器140a-140n的信息。接下来,方法200可移至决策步骤216。在决策步骤216中,处理器102确定校准数据120b是否需要调整。如果不需要,则方法200移至结束步骤218。如果决策步骤216确定校准数据120b需要调整,则方法200返回到步骤206。可重复步骤206-216。一般而言,只要符合决策步骤208中的标准,就可不断地(或连续地、或周期性地)更新校准。
参见图7,示出了方法(或过程)300的流程图。过程300表示动态加权过程。方法300一般包括步骤(或状态)302、步骤(或状态)304、步骤(或状态)306、步骤(或状态)308、决策步骤(或状态)310、步骤(或状态)312、步骤(或状态)314、步骤(或状态)316、步骤(或状态)318和步骤(或状态)320。
步骤302一般包括开始步骤。在步骤304中,模块100可使用天线104连接到GNSS卫星56a-56n(例如,接收信号GNSS_A-GNSS_N)。接下来,在步骤306中,处理器102可校准来自一个或多个传感器140a-140n的数据以便为由信号GNSS_A-GNSS_N计算的位置精度补充航位推测信息。在步骤308中,处理器102可监测由信号GNSS_A-GNSS_N计算的数据的位置精度(例如,位置坐标120a的位置精度)。接下来,在决策步骤310中,处理器102可先确定由信号GNSS_A-GNSS_N计算的位置精度是否通过质量检查,再将其用于航位推测传感器校准。
如果由信号GNSS_A-GNSS_N计算的位置精度通过质量检查,则方法300移至步骤312。在步骤312中,模块100可依赖于由信号GNSS_A-GNSS_N计算的GNSS位置(例如,位置坐标120a)来确定车辆52的位置。然后方法300在步骤314处结束。如果决策步骤310确定由信号GNSS_A-GNSS_N计算的位置精度未通过质量检查,则方法300移至步骤316。在步骤316中,处理器102可基于由信号GNSS_A-GNSS_N计算的位置精度的水平对航位推测数据120e的倚重的量进行动态加权。接下来,方法300移至步骤318。在步骤318中,处理器102可基于动态加权将由信号GNSS_A-GNSS_N计算的位置坐标120a与航位推测数据120e混合。接下来,在步骤320中,模块100可依赖于混合GNSS解决方案和/或航位推测信息来确定位置。然后方法300在步骤314处结束。
参见图8,示出了方法(或过程)400的流程图。过程400表示替代动态加权过程。过程400可在不与GNSS卫星56a-56n直接通信的情况下实现。方法400一般包括步骤(或状态)402、步骤(或状态)404、决策步骤(或状态)406、步骤(或状态)408、步骤(或状态)410、决策步骤(或状态)412、步骤(或状态)414、步骤(或状态)416、步骤(或状态)418、步骤(或状态)420、步骤(或状态)422和步骤(或状态)424。
步骤402可为开始步骤。在步骤404中,模块100可接收位置信息。位置信息可接收自外部部件,诸如位于车辆52上的天线、车辆52的具有天线的另一个部件、总线142、或提供位置信息计算的另一个部件。接下来,在决策步骤406中,处理器102可确定步骤402中接收到的位置信息是否提供位置、速度、时间(PVT)数据和/或航位推测数据分量。
如果步骤402中接收到的信息不提供PVT数据分量和/或航位推测数据分量,则方法400移至步骤408。如果是这样,则方法400移至步骤410。在步骤408中,处理器102可从位置信息提取PVT分量和/或航位推测数据分量,然后方法400移至步骤410。在步骤410中,处理器102可监测位置信息的PVT分量。接下来,方法400可移至决策步骤412。在决策步骤412中,处理器102可确定PVT分量是否通过质量检查。
如果PVT分量通过质量检查,则方法400移至步骤414。在步骤414中,模块100可依赖于所接收到的位置信息来确定车辆52的位置。接下来,在步骤416中,处理器102可校准来自航位推测的传感器140a-140n的数据(例如,基于指令110所提供的步骤来执行计算以确定校准数据120b)。然后方法400在步骤418处结束。
如果在决策步骤412中PVT分量未通过质量检查,则方法400移至步骤420。在步骤420中,处理器102可用于基于PVT精度的水平对航位推测数据120e(例如,位置信息的航位推测分量)的倚重的量进行动态加权。接下来,在步骤422中,处理器102可基于动态加权来混合位置信息的航位推测数据分量(例如,将航位推测数据分量120e与PVT分量120a混合)。接下来,方法400移至步骤424。在步骤424中,模块100可依赖于混合的信息来确定位置。然后方法400在步骤418处结束。
参见图9,示出了方法(或过程)450。方法450可基于所监测的趋势对来自传感器140a-140n的输入的系数进行细化。方法450一般包括步骤(或状态)452、决策步骤(或状态)454、步骤(或状态)456、步骤(或状态)458、步骤(或状态)460、步骤(或状态)462、步骤(或状态)464和步骤(或状态)466。
步骤452可开始方法450。接下来,在决策步骤454中,处理器102可确定由信号GNSS_A-GNSS_N(例如,来自卫星56a-56n)计算的位置精度是否已足够。如果由信号GNSS_A-GNSS_N计算的位置精度已足够,则方法450可移至步骤456。在步骤456中,处理器102和/或存储器106可基于PVT(例如,位置坐标120a)和/或航位推测数据120e(例如,动态混合解决方案)来确定位置。接下来,在步骤458中,处理器102和/或存储器106可对从传感器140a-140n接收到的数据的系数(例如,校准数据120b)进行细化。接下来,在步骤460中,处理器102和/或存储器106可监测校准数据120b中的系数的趋势。接下来,方法450可返回到决策步骤454。
在决策步骤454中,如果由信号GNSS_A-GNSS_N计算的位置精度不足,则方法450可移至步骤462。在步骤462中,处理器102和/或存储器106可基于航位推测数据120e来确定位置。接下来,在步骤464中,处理器102和/或存储器106可继续基于所监测的趋势(例如,步骤460中确定)对来自传感器140a-140n的数据的系数进行细化。接下来,方法450可移至步骤466。步骤466可结束方法450。
模块100被示出为在车辆52(图1至图4中示出为汽车)中实现。然而,模块100可与其他对象和/或车辆一起使用。一般来讲,所实现的传感器140a-140n的类型可对应于实现模块100的对象的类型。在一些实施方案中,车辆52可为自行车,并且传感器140a-140n可包括磁力计、陀螺仪、脚踏传感器、车轮传感器等。在一些实施方案中,模块100可在智能电话上实现以便确定步行者和/或跑步者的位置,并且传感器140a-140n可包括磁力计、陀螺仪、计步器等。类似地,模块100可在轮船、飞机、无人机、健身监测仪等中实现。
对于相关领域的技术人员将显而易见的是,图4至图9的示意图中所示的功能和结构可使用根据本说明书的教导内容所编程的常规通用处理器、数字计算机、微处理器、微控制器、分布式计算机资源和/或类似计算机器中的一者或多者来设计、建模、仿真和/或模拟。对于相关领域的技术人员也将显而易见的是,技术熟练的程序员可基于本公开的教导内容,轻松地制作适当的软件、固件、编码、例程、指令、操作码、微代码和/或程序模块。软件一般在一个介质或若干介质(例如,非暂时性存储介质)中体现,并且可由一个或多个处理器顺序执行或并行执行。
本发明的实施方案也可在ASIC(专用集成电路)、FPGA(现场可编程门阵列)、PLD(可编程逻辑设备)、CPLD(复杂可编程逻辑设备)、门海、ASSP(专用标准产品)和集成电路中的一者或多者中实现。电路可基于一个或多个硬件描述语言来实现。本发明的实施方案可结合闪速存储器、非易失性存储器、随机存取存储器、只读存储器、磁盘、软盘、光盘(诸如DVD和DVD RAM)、磁光盘和/或分布式存储系统一起使用。
尽管本发明已参考其优选实施方案具体地示出和描述,但本领域的技术人员应当理解,在不脱离本发明范围的情况下,可做出对形式和细节的各种改变。

Claims (14)

1.一种含有处理器可执行指令的计算机可读介质,所述处理器可执行指令被配置为执行以下步骤:
(i)监测基于从GNSS卫星接收到的信号而计算的位置信息的位置精度;
(ii)如果所述位置精度通过质量检查,则使用所述位置信息连续执行对从一个或多个传感器接收到的数据的校准;以及
(iii)如果所述位置精度未通过所述质量检查,则停止对从所述传感器接收到的所述数据的所述校准,其中由从所述传感器接收到的所述数据计算航位推测信息,
其中使用(i)所述航位推测信息以及(ii)所述位置信息来确定车辆的位置,所述位置信息基于从所述GNSS卫星接收到的所述信号而计算,
其中所述指令还包括基于所述位置精度来执行所述航位推测信息以及所述位置信息的动态加权,所述位置信息基于从所述GNSS卫星接收到的所述信号而计算。
2.根据权利要求1所述的计算机可读介质,其中所述动态加权被配置为在露天条件下偏向于所述位置信息胜过所述航位推测信息,所述位置信息基于从所述GNSS卫星接收到的所述信号而计算。
3.根据权利要求2所述的计算机可读介质,其中所述动态加权被配置为当所述位置信息的所述位置精度被确定为较差时增加对所述航位推测信息的倚重,所述位置信息基于从所述GNSS卫星接收到的所述信号而计算。
4.根据权利要求1至3中任一项所述的计算机可读介质,其中所述指令还包括在实现初始校准之后执行对从所述传感器接收到的所述数据的所述校准的更新。
5.根据权利要求4所述的计算机可读介质,其中在所述位置精度未通过所述质量检查时停止所述校准的所述更新。
6.根据权利要求1至3中任一项所述的计算机可读介质,其中,所述传感器包括车轮掣动传感器、陀螺仪、加速度计和车辆速度传感器中的至少一者。
7.一种装置,包括:
天线,所述天线被配置为从GNSS卫星接收信号;
处理器,所述处理器被配置为执行指令;和
存储器,所述存储器被配置为存储所述指令,所述指令在被执行时,执行以下步骤:(i)监测基于从所述GNSS卫星接收到的所述信号而计算的位置信息的位置精度,(ii)如果所述位置精度通过质量检查,则使用所述位置信息连续执行对来自一个或多个传感器的数据的校准,以及(iii)如果所述位置精度未通过所述质量检查,则停止对从所述传感器接收到的所述数据的所述校准,其中由从所述传感器接收到的所述数据计算航位推测信息,
其中使用(i)所述航位推测信息以及(ii)所述位置信息来确定车辆的位置,所述位置信息基于从所述GNSS卫星接收到的所述信号而计算,
其中所述指令还包括基于所述位置精度来执行所述航位推测信息以及所述位置信息的动态加权,所述位置信息基于从所述GNSS卫星接收到的所述信号而计算。
8.根据权利要求7所述的装置,其中,所述传感器包括车轮掣动传感器、陀螺仪、加速度计和车辆速度传感器中的至少一者。
9.一种用于校准从传感器接收到的航位推测信息所用的数据的方法,包括以下步骤:
(A)基于从GNSS卫星接收到的信号来计算位置坐标;
(B)监测基于来自所述GNSS卫星的所述信号而计算的所述位置坐标的位置精度;
(C)如果所述位置精度通过质量检查,则使用所述位置坐标连续执行对从一个或多个传感器接收到的数据的校准;以及
(D)如果所述位置精度未通过所述质量检查,则停止对从所述传感器接收到的所述数据的所述校准,其中由从所述传感器接收到的所述数据计算所述航位推测信息,
其中使用(i)所述航位推测信息以及(ii)所述位置坐标来确定车辆的位置,所述位置坐标基于从所述GNSS卫星接收到的所述信号而计算,
其中所述方法还包括基于所述位置精度来执行所述航位推测信息以及所述位置坐标的动态加权,所述位置坐标基于从所述GNSS卫星接收到的所述信号而计算。
10.根据权利要求9所述的方法,其中所述动态加权被配置为在露天条件下偏向于所述位置坐标胜过所述航位推测信息,所述位置坐标由从所述GNSS卫星接收到的所述信号而计算。
11.根据权利要求9所述的方法,其中所述动态加权被配置为当所述位置坐标的所述位置精度被确定为较差时增加对所述航位推测信息的倚重,所述位置坐标基于从所述GNSS卫星接收到的所述信号而计算。
12.根据权利要求9至11中任一项所述的方法,其中当确定车辆的位置时,所述航位推测信息用于补充所述位置坐标,所述位置坐标基于从所述GNSS卫星接收到的所述信号而计算。
13.根据权利要求12所述的方法,其中在所述航位推测信息用于补充所述位置坐标之前校准从所述传感器接收到的数据,所述位置坐标基于从所述GNSS卫星接收到的所述信号而计算。
14.根据权利要求9至11中任一项所述的方法,其中,所述传感器包括车轮掣动传感器、陀螺仪、加速度计和车辆速度传感器中的至少一者。
CN201780019270.9A 2016-03-23 2017-03-22 利用动态校准和/或动态加权的汽车航位推测 Active CN108780157B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211418665.5A CN115755135A (zh) 2016-03-23 2017-03-22 校准从传感器接收到的航位推测信息所用的数据的方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/078,514 2016-03-23
US15/078,514 US9952330B2 (en) 2016-03-23 2016-03-23 Automotive dead reckoning with dynamic calibration and/or dynamic weighting
PCT/US2017/023563 WO2017165505A1 (en) 2016-03-23 2017-03-22 Automotive dead reckoning with dynamic calibration and/or dynamic weighting

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202211418665.5A Division CN115755135A (zh) 2016-03-23 2017-03-22 校准从传感器接收到的航位推测信息所用的数据的方法

Publications (2)

Publication Number Publication Date
CN108780157A CN108780157A (zh) 2018-11-09
CN108780157B true CN108780157B (zh) 2022-11-25

Family

ID=58547806

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202211418665.5A Pending CN115755135A (zh) 2016-03-23 2017-03-22 校准从传感器接收到的航位推测信息所用的数据的方法
CN201780019270.9A Active CN108780157B (zh) 2016-03-23 2017-03-22 利用动态校准和/或动态加权的汽车航位推测

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202211418665.5A Pending CN115755135A (zh) 2016-03-23 2017-03-22 校准从传感器接收到的航位推测信息所用的数据的方法

Country Status (4)

Country Link
US (1) US9952330B2 (zh)
EP (1) EP3433638A1 (zh)
CN (2) CN115755135A (zh)
WO (1) WO2017165505A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201700087876A1 (it) * 2017-07-31 2019-01-31 St Microelectronics Srl Sistema per la navigazione di veicoli terrestri e procedimento corrispondenti
DE102017222356A1 (de) * 2017-12-11 2019-06-13 Robert Bosch Gmbh Verfahren zum Betreiben eines GNSS-Sensors eines Fahrzeugs
CN109528165A (zh) * 2018-11-26 2019-03-29 广东小天才科技有限公司 一种基于智能设备的提醒系统、方法及装置
CN110488325B (zh) * 2019-08-02 2023-12-22 广州市中海达测绘仪器有限公司 基于gnss接收机的精度自动化检测方法及存储介质
TWI774262B (zh) * 2021-03-09 2022-08-11 神達數位股份有限公司 一種定位偏差修正方法及定位偏差修正系統
WO2024187273A1 (en) * 2023-03-10 2024-09-19 LoopX Innovation Inc. Systems and methods for estimating a state for positioning autonomous vehicles transitioning between different environments

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008148794A2 (en) * 2007-06-08 2008-12-11 Qualcomm Incorporated Gnss positioning using pressure sensors
CN102645665A (zh) * 2011-02-17 2012-08-22 上海航鼎电子科技发展有限公司 基于bd、gps和dr的定位信息处理方法及装置
CN103250030A (zh) * 2010-10-13 2013-08-14 约翰逊控制器汽车电子公司 用于定位车辆的设备及生成车辆位置信息的方法
CN104678415A (zh) * 2013-11-29 2015-06-03 现代摩比斯株式会社 车辆位置推测系统及其方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5646857A (en) 1995-03-31 1997-07-08 Trimble Navigation Limited Use of an altitude sensor to augment availability of GPS location fixes
US9097783B2 (en) * 2006-04-28 2015-08-04 Telecommunication Systems, Inc. System and method for positioning using hybrid spectral compression and cross correlation signal processing
WO2012045484A1 (en) 2010-10-04 2012-04-12 Tomtom International B.V. Gps-calibrated pedometer
US20170299724A1 (en) * 2016-04-14 2017-10-19 Qualcomm Incorporated Method for enhanced stand-alone global navigation satellite system (gnss) performance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008148794A2 (en) * 2007-06-08 2008-12-11 Qualcomm Incorporated Gnss positioning using pressure sensors
CN103250030A (zh) * 2010-10-13 2013-08-14 约翰逊控制器汽车电子公司 用于定位车辆的设备及生成车辆位置信息的方法
CN102645665A (zh) * 2011-02-17 2012-08-22 上海航鼎电子科技发展有限公司 基于bd、gps和dr的定位信息处理方法及装置
CN104678415A (zh) * 2013-11-29 2015-06-03 现代摩比斯株式会社 车辆位置推测系统及其方法

Also Published As

Publication number Publication date
US9952330B2 (en) 2018-04-24
WO2017165505A1 (en) 2017-09-28
EP3433638A1 (en) 2019-01-30
CN108780157A (zh) 2018-11-09
CN115755135A (zh) 2023-03-07
US20170276801A1 (en) 2017-09-28

Similar Documents

Publication Publication Date Title
CN108780157B (zh) 利用动态校准和/或动态加权的汽车航位推测
US11204428B2 (en) Communication for high accuracy cooperative positioning solutions
US8009087B2 (en) Positioning system and method thereof
US20180106906A1 (en) Positioning processing system, method, computer program, positioning processing device, and user terminal
US20160313450A1 (en) Automotive gnss real time kinematic dead reckoning receiver
CN105866812B (zh) 一种车辆组合定位算法
US20110257882A1 (en) Road map feedback server for tightly coupled gps and dead reckoning vehicle navigation
KR101814374B1 (ko) 새로운 데이터를 디지털 카드에 할당하기 위한 디바이스 및 방법
JP6684821B2 (ja) 自動車用アドホックリアルタイムキネマティックロービングネットワーク
US8880001B1 (en) Collaborative positioning, navigation and timing
CN113063425B (zh) 车辆定位方法、装置、电子设备及存储介质
JP2018513370A5 (zh)
CN113050142B (zh) 终端设备的定位方法、装置、电子设备及可读存储介质
KR20190010267A (ko) 차량용 항법장치 및 방법, 그리고 항법시스템
US20100090893A1 (en) User based positioning aiding network by mobile GPS station/receiver
JP2021009109A (ja) 測位方法、測位システム、制御装置、および移動局
US20140074398A1 (en) Positioning unit, positioning system and positioning method thereof
US10469982B2 (en) System and method for enhanced integrated navigation with wireless angle of arrival
Galdames et al. Implementation and performance evaluation of an inertial navigation system/global navigation satellite system real‐time kinematic Ntrip navigation system aided by a robot operating system‐based emulated odometer for high‐accuracy land vehicle navigation in urban environments
CN118759556A (zh) 一种定位方法、装置、设备以及存储介质
CN117151497A (zh) Gnss定位质量评估方法、装置、介质及程序产品
ÁrpádFehér1a et al. Development of a GNSS Based High Accuracy Measurement System to Support Vehicle Dynamics Testing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20210204

Address after: michigan

Applicant after: Vennell America

Address before: Utah, USA

Applicant before: AUTOLIV ASP, Inc.

TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20220712

Address after: Michigan, USA

Applicant after: Anzher Software Co.,Ltd.

Address before: Michigan, USA

Applicant before: Vennell America

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant