WO2024017423A1 - Péptido para el tratamiento de enfermedades relacionadas con afectaciones en la apolipoproteina ai o la transtirretina - Google Patents

Péptido para el tratamiento de enfermedades relacionadas con afectaciones en la apolipoproteina ai o la transtirretina Download PDF

Info

Publication number
WO2024017423A1
WO2024017423A1 PCT/CU2023/050002 CU2023050002W WO2024017423A1 WO 2024017423 A1 WO2024017423 A1 WO 2024017423A1 CU 2023050002 W CU2023050002 W CU 2023050002W WO 2024017423 A1 WO2024017423 A1 WO 2024017423A1
Authority
WO
WIPO (PCT)
Prior art keywords
peptide
disease
ttr
seq
treatment
Prior art date
Application number
PCT/CU2023/050002
Other languages
English (en)
French (fr)
Inventor
Maria del Carmen DOMÍNGUE HORTA
Yassel RAMOS GÓMEZ
Mónica HERRERA WONG
Gillian MARTÍNEZ DONATO
Glay Chinea Santiago
Gerardo Enrique GUILLÉ NIETO
Rafael Venegas Rodríguez
Raimundo UBIETA GÓMEZ
Sonia GONÁLEZ BLANCO
Rolando Paez Meireles
Original Assignee
Centro De Ingenieria Genética Y Biotecnología
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centro De Ingenieria Genética Y Biotecnología filed Critical Centro De Ingenieria Genética Y Biotecnología
Publication of WO2024017423A1 publication Critical patent/WO2024017423A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • the present invention is related to the branch of medicine, in particular with a modified peptide type APL (Altered Peptide Ligand, abbreviated APL), derived from HSP60 and its use to guarantee lipid homeostasis, prevent cellular oxidative stress, and avoid amyloidosis caused by inappropriate modifications of apolipoprotein A-1 (Apo-AI) and transthyretin (TTR).
  • APL altered Peptide Ligand
  • HSP60 modified peptide type APL
  • APL altered Peptide Ligand, abbreviated APL
  • APL altered Peptide Ligand
  • lipids are essential in the proper functioning of the human organism and have an essential role in obtaining and storing energy.
  • they are fundamental components of the lipid membranes of various hormones and bile salts. Imbalances in lipid concentration, whether due to excess or defect, are directly related to the development of cardiovascular diseases, such as coronary heart disease, cerebrovascular disease or dyslipidemia (Krahmer, N. et al. (2013) EMBO Mol. Med. 5, 973-983).
  • Lipids are hydrophobic biomolecules, and mostly insoluble in blood, so their transport is conducted by lipoproteins. Lipoproteins are classified depending on their size and density. Lipoproteins are hydrophobic spherical structures, which have proteins on their surface (apoproteins or apolipoproteins), capable of binding the enzymes responsible for lipid processing (Rosenson, R.S. et al. (2016). Nat. Rev. Cardiol. 13, 48 -60).
  • High-density lipoproteins transport excess cholesterol from extra-hepatic tissues to the liver, where it is metabolized.
  • HDL is related to reducing cardiovascular risk, and low-density lipoproteins (LDL) and very low-density lipoproteins (VLDL) increase it.
  • LDL low-density lipoproteins
  • VLDL very low-density lipoproteins
  • HDL are the highest density lipoproteins because they have a higher concentration of proteins than lipids. These lipoproteins are composed of cholesterol, triglycerides and numerous apolipoproteins: Apo-AI, Apo-AII, Apo-AIV, Apo-AV, Apo-C1, Apo-CII, Apo-CIII and Apo-E.
  • Apo-AI is the main protein component of HDL and is the primary apolipoprotein responsible for maintaining the structure of HDL (Jonas, A., KE Kezdy, and JH Wald. (1989). J. Biol. Chem. 264: 4818-4824).
  • Apo-AI activates the enzyme lecithin-cholesterol-acyl-transferase, which catalyzes the transformation of cholesterol to its ester form, thereby increasing the capacity of HDL to transport lipids to the liver (Gordon, T. et al. (1977). Am. J. Med. 62, 707-714).
  • the blood concentration of Apo-AI increases during certain physiological conditions such as pregnancy, liver disease, use of estrogens and decreases during sepsis and atherosclerosis.
  • High concentrations of Apo-AI and low concentrations of Apo-B are significantly correlated with a reduced risk of suffering from cardiovascular diseases.
  • HDL has anti-atherogenic and anti-inflammatory properties, since it transports cholesterol accumulated in atheroma plaques to the liver, thereby contributing to the reduction of these plaques (TM Forte, et al. (2002) J Lipid Res , 43: 477-485).
  • TTR is part of HDL, through binding to Apo-AI (Liz, MA, CM Gomes, MJ Saraiva, and MM Sousa. (2007) J. Lipid Res. 48 : 2385-2395).
  • TTR is a tetramehca protein present in plasma, it is synthesized mainly in the liver, and is responsible for the transport of thyroxine and the protein linked to retinol. This protein can be broken down into monomers and dimers, which can be coupled into fibers and deposited in tissues. Age and point mutations (more than one hundred have been described) can increase the predisposition to aggregation.
  • TTR amyloidosis Two forms of TTR amyloidosis have been described: the natural form (wt ATTR, abbreviated from wild type transthyretin cardiac amyloidosis, known as senile systemic amyloidosis) and the hereditary form (h-ATTR, abbreviated from hereditary transthyretin cardiac amyloidosis).
  • wt ATTR wild type transthyretin cardiac amyloidosis
  • h-ATTR hereditary transthyretin cardiac amyloidosis
  • amyloid cardiomyopathy refers to heart disease as a consequence of the extracellular deposition of abnormal insoluble fibrils.
  • the prevalence of this disease is estimated between 13% in older adults hospitalized for preserved ejection fraction, and 16% in severe aortic stenosis requiring intervention (Coelho T, Maurer MS, Suhr OB. (2013) Curr Med Res Opin; 29:63-76).
  • TTR post-translational modifications of TTR that affect its tetrameric conformation, and the presence of its oligomers, are strongly related to Parkinson's disease (Ando Y, Nakamura M and Araki S. (2005) Arch Neurol 62: 1057-1062) and with pathologies associated with oxidative stress (Sharma M, Khan S, Rahman S and Singh LR (2019) Front. Physiol. 10:5. doi: 10.3389/fphys.2019.00005).
  • TTR A fraction of plasma TTR has been described to circulate in HDL through binding to Apo-AI, and TTR has been shown to be capable of cleaving the carboxyl terminus of lipid-free Apo-AI. Cleavage of Apo-AI by TTR induces the formation of Apo-AI amyloid fibrils. Furthermore, it causes the modified HDL particles to have a reduced ability to promote adequate cholesterol turnover.
  • Apo-AI cleaved by TTR has a high preference for forming aggregated particles, which affects the turnover of HDL, and favors the development of atherosclerosis, by reducing cholesterol metabolism and increasing the amyloidogenic potential of the Apo-AI (Liz, M. A., C. M. Gomes, M. J. Saraiva, and M. M. Sousa. (2007) J. Lipid Res. 48: 2385-2395).
  • the present invention solves the problem mentioned above, by providing a peptide whose sequence is identified as SEQ ID NO: 1, for use in the manufacture of a medication for the treatment of a disease that affects the Apo-AI or the TTR.
  • the modified peptide identified as SEQ ID NO: 1 is capable of stabilizing the supramolecular structure of HDL, through binding to Apo-AI. In this way, it facilitates adequate lipid metabolism and the reduction of atheroma plaques, associated with atherosclerosis.
  • the only proteins that interact with this peptide in human plasma are Apo-AI and TTR. This interaction allows the stability of both Apo-AI and TTR.
  • a disease that causes damage to Apo-AI or TTR is defined as a disease in which there is an increase or decrease in the plasma concentration of Apo-AI or TTR. , or in which modifications occur in the interactions of these proteins in HDL particles, or those diseases where the structures of Apo-AI and TTR are affected, and therefore their biological functions.
  • the peptide identified as SEQ ID NO: 1 induces regulatory mechanisms of the immune response in different experimental systems.
  • This peptide increased the frequency of regulatory T cells (Treg) in ex vivo assays with peripheral blood mononuclear cells from patients with rheumatoid arthritis (RA), but not in healthy donors; These cells have suppressive activity (Barberá A, Lorenzo N, van Kooten P, et al. (2016) Cell Stress and Chaperones.; 21:735-744).
  • Treg regulatory T cells
  • RA rheumatoid arthritis
  • the peptide identified as SEQ ID NO: 1 has been used in the treatment of patients with hyperinflammation, such as patients with COVID-19; and it was shown to reduce inflammation in these patients (Hernandez-Cede ⁇ o M et al. (2021). Cell Stress and Chaperones 26: 515-525; Dom ⁇ nguez Horta MC, et al. (2022). Anales de la Academia de Ciencias de Cuba; 12(1): e1072. http://www.revistaccuba.cu/index.php/revacc/article/view/1072. This fact was first revealed in international patent application No. PCT/CU2021/050001, which vindicates the use of said peptide for the treatment of hyperinflammation.
  • the ability of the peptide of SEQ ID NO: 1 to strongly bind to Apo-AI and TTR proteins is demonstrated, for the first time, which contributes to guaranteeing stable lipid homeostasis and reducing amyloidosis processes mediated by said proteins. Furthermore, this invention demonstrates the benefit received by patients treated with the peptide identified as SEQ ID NO: 1, who had reached a state of severity due to diseases related to lipid metabolism.
  • the disease that presents with an affectation in Apo-AI or in the TTR is characterized by an affectation in lipid homeostasis or in the stability of the TTR.
  • said disease is selected from the group consisting of atherosclerosis, ischemic heart disease, type II diabetes, secondary dyslipidemia and metabolic syndrome.
  • said disease is TTR amyloidosis or Parkinson's disease.
  • the peptide identified as SEQ ID NO: 1 reduces oxidative stress and significantly improves the condition of patients who are clinically serious due to cardiovascular diseases, such as ischemic heart disease, and hypertension. Treatment with this peptide in patients with ischemic heart disease and type II diabetes was very safe, since it did not cause adverse effects.
  • the invention also provides a method of treating a disease that causes damage to Apo-AI or TTR in an individual who needs it.
  • Said treatment method is characterized in that a therapeutically effective amount of a pharmaceutical composition comprising the peptide identified as SEQ ID NO: 1 is administered.
  • the disease is selected from the group consisting of atherosclerosis, ischemic heart disease, diabetes type II, secondary dyslipidemia and metabolic syndrome.
  • the disease is TTR amyloidosis or Parkinson's disease.
  • said pharmaceutical composition in the treatment method is administered by systemic route.
  • the composition is administered by subcutaneous or intravenous route.
  • said pharmaceutical composition is administered simultaneously with standard therapy, in the course of the same treatment.
  • FIG. 1 SDS-PAGE electrophoresis showing proteins in human plasma that specifically bind to the peptide identified as SEQ ID NO: 1.
  • Lane 1 molecular weight standard.
  • Lane 2 matrix-binding proteins—no peptide (control).
  • Lane 3 proteins that specifically bind to the peptide identified as SEQ ID NO: 1 attached to the matrix.
  • FIG. 1 Mass spectrum (MS) of the band identified as Apo-AI in SDS-PAGE. The boxes indicate the peptides that were identified with the MASCOT program in the UniProtKB database as constituents of Apo-AI.
  • Figure 3. EM of the band identified as TTR in SDS-PAGE. The dots indicate the peptides that were identified with the MASCOT program in the UniProtKB database as constituents of the TTR.
  • FIG. 4 Western blot showing proteins that specifically bind to the peptide identified as SEQ ID NO: 1 in human plasma. Lane 1: molecular weight standard. Lane 2: plasma that was not incubated with the peptide. Lane 3: plasma that was incubated with the peptide.
  • Figure 5 structure overlay of the ten highest-scoring peptide-protein complex models predicted by the CABS-dock method.
  • B model of the structure of the peptide complex identified as SEQ ID NO: 1 linked to the TTR protein through the “hid” site.
  • C representation of the peptide bound to TTR protein, representing the surface of the protein according to the hydropathic character.
  • D figure similar to C, but without representing the electrostatic character of the protein surface.
  • E view of the interactions observed around the Leu18 residue of the peptide.
  • FIG. 6 Contact map between the residues of the peptide identified as SEQ ID NO: 1 (vertical axis) and the TTR protein (horizontal axis), according to the 3D structure prediction of the complex.
  • the boxes mean that the corresponding residues contain atoms located at a distance equal to or less than 4.5 ⁇ .
  • the type of residue is shown in a three-letter code, next to the chain identifier (chains B and D correspond to the TTR protein and chain E to the peptide identified as SEQ ID NO: 1) and the residue number of the sequence. amino acids.
  • Figure 7 Cholesterol levels in patients with ischemic heart disease and arterial hypertension treated with the peptide identified as SEQ ID NO: 1. Time 0: cholesterol levels before starting treatment with the peptide; day 7: cholesterol levels seven days after starting treatment with the peptide.
  • Figure 8 Cholesterol levels in type II diabetic patients, five of whom received treatment with the peptide identified as SEQ ID NO: 1, compared to five patients not treated with said peptide.
  • the dashed line marks the normal limit of blood cholesterol levels (5.20 mmol/L).
  • Time 0 cholesterol levels before starting treatment with the peptide
  • day 8 cholesterol levels eight days after starting treatment with the peptide.
  • Example 1 Identification of apolipoprotein A (Apo-AI) as a protein that binds the peptide identified as SEQ ID NO: 1 in human plasma.
  • Apo-AI apolipoprotein A
  • affinity chromatography was performed through a chromatographic resin to which the synthetic peptide identified as SEQ ID NO: 1 was attached.
  • blood was extracted from a healthy, 24-year-old female donor, without any pathological involvement and with a normal lipid profile. Blood was diluted 1:2 with 1X PBS and added to 3 mL of Ficoll-PaqueTM, centrifuged for 30 min at 1200 rpm. Plasma was collected, which was incubated with 100 L of the chromatography matrix. This matrix is a bead-shaped resin, called ChemMat ⁇ xTM (Quebec, Canada), to which the peptide identified as SEQ ID NO: 1 was previously coupled (this union is hereinafter called mat ⁇ z-peptide).
  • the matrix-peptide was treated with a 70% methanol solution and RPMI culture medium.
  • the incubation of the matrix-peptide with the plasma was carried out for 3 hours.
  • elution was carried out with a solution containing: 20% glycerol; TRIS-HCI 62.5 mM; bromophenol blue 2.5%; 2% SDS and 5% p-mercaptoethanol; and the elution fraction was collected. It was heated at 95°C for 5 min, and analyzed by SDS-PAGE electrophoresis (15% gel).
  • the procedure described above was carried out with the ChemMat ⁇ xTM matrix without coupling the peptide identified as SEQ ID NO: 1.
  • the gel was stained with a Coomassie blue solution, this stain is compatible for the identification of proteins by mass spectrometry.
  • Figure 1 shows the result of the SDS-PAGE electrophoresis analysis of the fractions collected after elution.
  • the gel was subjected to silver staining.
  • two plasma proteins were identified that bind to the peptide identified as SEQ ID NO: 1, which were named protein X1 and X2.
  • DTT For the identification of the DTT 1% in water. The sample was shaken for 15 minutes. Subsequently, this solution was removed and 1 mL of a solution containing 250 mM BCA was added; ACN 30%; ac ⁇ lamide 2.5% in water. The sample was shaken for 15 minutes. Immediately, This solution was removed, and 1 mL of a solution containing 250 mM BCA and 30% ACN in water was added. The sample was shaken for 15 minutes. Next, three washes were carried out with water for 10 min while stirring and the band was cut into 1 mm 3 cubes. 400 pL of pure ACN was added, homogenized using a vortex, and the supernatant was removed.
  • the sample was dried in a Speed Vac for 5 min, and the gel was hydrated with a 50 mM BCA solution containing trypsin, at a concentration of 12.5 ng/mL. Incubation with trypsin was carried out for 16 h at 37°C. Next, the gel was rehydrated with water for 30 min at 37°C.
  • the sample was desalted on a ZipTip C18TM microcolumn (Millipore, USA) and eluted in 3.5 pL of 60% ACN in water containing 1% formic acid.
  • the sample was applied to a borosilicate capillary coated with a conductive material (Thermo Scientific, USA) and analyzed by nanoESI-MS.
  • ESI-MS mass spectra were obtained on a QTOF-2 orthogonal hybrid configuration spectrometer (Micromass, UK) with Z-spray electrospray ionization source in positive mode (nanoESI+).
  • the analyzer was calibrated with a mixture of sodium and cesium iodide salts (Sigma, USA) as a reference in a wide mass range (50-2000 Th).
  • the ESI-MS spectra were obtained by applying a voltage of 1200 volts and 30 volts in the capillary and in the inlet cone of the mass spectrometer, respectively.
  • the mass spectra acquisition and processing program used was MassLynx version 4.1 (Micromass, United Kingdom).
  • the ESI-MS/MS spectra were obtained by applying a collision energy in the range of 20-40 eV, to induce fragmentations that contained sufficient information for the structural elucidation of the analyzed peptides.
  • the collision gas used was argon (Gases Industriales, Cuba).
  • Example 3 Immunological recognition of the peptide identified as SEQ ID NO: 1 bound to apolipoprotein-AI or transthyretin.
  • the proteins present in the gel were transferred to a nitrocellulose membrane, which was stained with Ponceau Red solution, and the bands corresponding to the molecular weight standards were marked.
  • the membrane was cut, according to the lanes where the plasma was applied.
  • the membrane fragments were treated with a 1% bovine serum albumin solution containing 0.05% Tween 20; overnight at 4°C.
  • one of the membrane fragments was incubated with a solution of the peptide identified as SEQ ID NO: 1, at a concentration of 200 pg/mL in 1X PBS plus Tween 20 (0.05%). This incubation was carried out for three hours at 37°C, the remaining membrane fragments were treated in the same way, but without adding peptide to the solution. Subsequently, the membrane fragments subjected to washing with the solution composed of 1X PBS plus Tween 20 (0.05%). Next, the membrane fragments were incubated with the polyclonal serum vs. peptide, as primary antibody. The polyclonal serum was diluted 1/2500 in the washing solution, incubation was carried out for two hours at 37°C.
  • the washes were repeated and the secondary antibody (Sigma, USA) was added.
  • the latter consists of a mixture of type G immunoglobulins that recognize the constant region of rabbit antibodies, conjugated to horseradish peroxidase. Incubation with the secondary antibody was carried out for one hour at 37°C. Next, the washes were carried out, and the development was carried out with 0.01% hydrogen peroxide and 3,3'-diaminobenzene (1 mg/mL).
  • Example 4 Modeling of the structure of the complex formed between the peptide identified as SEQ ID NO: 1 and the Transthyretin protein.
  • Monomeric TTR adopts a beta sandwich fold formed by two antiparallel beta sheets.
  • the native TTR protein is characterized by adopting a tetramehca quaternary structure, which is established through the association of two dimers of the protein.
  • the TTR dimer is initially configured by the interaction of strands at one end of the beta sheets of the monomeric protein, resulting in two extended antiparallel beta sheets.
  • the convex surface of one of the sheets of each dimer interacts face to face with the analogous extended sheet of the other dimer, obtaining the tetramer.
  • a cavity or channel is created that accommodates the natural ligand (T4), as well as other small drug-type molecules (Cothna et al. (2021).
  • the crystallographic structure - of 1.6 ⁇ resolution - of the TTR protein (3CFM file of the PDB Protein Data Bank) was used, corresponding to the TTR protein (without ligand) and whose sequence is the wild one.
  • the file contains a dimer of the TTR protein in the asymmetric unit, so the tetramer was obtained by applying the symmetry operations of BIOMOLECULE, described in the pdb file.
  • the two chains symmetrical to chains A and B - the original ones from the pdb file - were named C and D, respectively.
  • FIG. 5A shows the ten best models proposed by the CABS-dock algorithm superimposed. Arrows indicate the location of the peptide identified as SEQ ID NO: 1, bound to the protein in the models obtained.
  • Figure 5B shows a model of the peptide identified as SEQ ID NO: 1 bound to the “hid” site.
  • the most hydrophobic segment of the peptide identified as SEQ ID NO: 1 projects towards the interior of the mouth of the channel, through interactions with hydrophobic residues of the TTR protein, which contributes favorably to the interaction energy (and the affinity of the union), through the “hydrophobic effect”.
  • the deepest region of the “hid” site in contact with the peptide identified as SEQ ID NO: 1 is hydrophobic in nature.
  • the electrostatic complementarity between the peptide identified as SEQ ID NO: 1 and the protein is also reasonable, as seen in Figure 5D.
  • the peptide residue identified as SEQ ID NO: 1 that projects most into the cleft is Leu18.
  • Figure 5E shows that this leucine residue of the peptide has close atomic contacts with residues Leu17, Leu103 and Ala108 of the protein. Hydrophobic interactions characteristic of the binding of the peptide of SEQ ID NO: 1 to the protein are observed.
  • Figure 6 shows how the Ile11-Ala20 segment of the peptide, which contains the greatest amount of hydrophobic residues, is the segment that makes the greatest number of contacts with the TTR protein. The importance of the hydrophobic effect is reinforced with respect to its energy contribution, fundamental in peptide-protein interactions.
  • the binding of the peptide to the “hid” site contributes to the structural stabilization of the tetramer and in this way can lead to the inhibition and/or modulation of the negative effects of diseases associated with the destabilization of the quaternary structure.
  • native TTR protein native TTR protein.
  • the model is consistent with a central role of the Leu18 residue in the interaction, which is a result of the substitution of the Asp18 residue present in the native sequence of the T epitope of the HSP60 protein (Barberá A, Lorenzo N, van Kooten P, et al. (2016) Cell Stress and Chaperones.; 21:735-744).
  • the interactions of the Leu18 residue described here could constitute the structural bases of the specific biological activity of the peptide identified as SEQ ID NO: 1, not observed in the native peptide.
  • Example 5 Treatment with the pharmaceutical composition comprising the peptide identified as SEQ ID NO: 1 to patients with ischemic heart disease.
  • Patients with low HDL levels and hypertension very frequently develop ischemic heart disease, associated with the formation of atheromatous plaques that characterize the disease called atherosclerosis.
  • These heart diseases often lead patients to a serious state and treatment with the peptide identified as SEQ ID NO: 1 can contribute to their recovery.
  • It is exemplified by the results of six patients, who presented ischemic heart disease, associated with hypertension, which produced a serious state. They were treated in the Intermediate Care Unit (ICU) of the “Luis D ⁇ az Soto” hospital in Havana.
  • ICU Intermediate Care Unit
  • These patients were treated with a pharmaceutical composition comprising the peptide identified as SEQ ID NO: 1, such that a peptide dose of 1 mg was administered every 12 hours, intravenously, for seven days. In addition, they received the standard therapy necessary for these cases.
  • Figure 7 shows the cholesterol levels in these six patients with ischemic heart disease and arterial hypertension treated with the peptide.
  • blood cholesterol levels decreased after seven days of treatment.
  • SEQ ID NO: 1 can stabilize HDL and promote adequate cholesterol turnover, which can reduce atheroma plaques, improve atherosclerosis and avoid associated complications.
  • Treatment with said peptide was very safe, as verified by monitoring blood biochemistry parameters and differential blood count. No adverse effects were observed in the treated patients, according to clinical and imaging evaluation.
  • Example 6 Treatment with the pharmaceutical composition comprising the peptide identified as SEQ ID NO: 1 to patients with type II diabetes.
  • Figure 8 shows cholesterol levels in patients with type II diabetes who were treated with the peptide, compared to patients who received standard treatment for these cases, but without including the peptide.
  • cholesterol levels remain constant in patients treated with the peptide, compared to patients not treated with the peptide, in whom cholesterol levels exceed normal values at the end of the evaluation period of 8 days.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Diabetes (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Péptido que se identifica como SEQ ID NO: 1, para uso en la fabricación de un medicamento para el tratamiento de una enfermedad que cursa con una afectación en la apolipoproteína A-I (Apo-AI) o en la transtirretina (TTR). En particular, el péptido puede ser útil para el tratamiento de una enfermedad que se caracteriza por una afectación en la homeostasis lipídica o en la estabilidad de la TTR. Método de tratamiento de una enfermedad que cursa con una afectación en la Apo-AI o en la TTR, que se caracteriza porque se administra una cantidad terapéuticamente efectiva de una composición farmacéutica que comprende el péptido identificado como SEQ 0 ID NO: 1.

Description

PÉPTIDO PARA EL TRATAMIENTO DE ENFERMEDADES RELACIONADAS CON AFECTACIONES EN LA APOLIPOPROTEINA Al O LA TRANSTIRRETINA
Campo de la técnica
La presente invención se relaciona con la rama de la medicina, en particular con un péptido modificado tipo APL (del inglés Altered Peptide Ligand, abreviado APL), derivado de la HSP60 y su empleo para garantizar la homeostasis lipídica, prevenir el estrés oxidativo celular, y evitar la amiloidosis producida por modificaciones inadecuadas de la apolipoproteína A-l (Apo-AI) y la transtirretina (TTR). El péptido también es útil para el tratamiento de pacientes con afectaciones en el transporte y procesamiento inadecuado de lípidos.
Estado de la técnica anterior
Se ha descrito que los lípidos son fundamentales en el funcionamiento adecuado del organismo humano y tienen un papel esencial en la obtención y almacenamiento de energía. Además, son componentes fundamentales de las membranas lipídicas de vahas hormonas y de las sales biliares. Los desbalances en la concentración de los lípidos, ya sea por exceso o por defecto, están relacionados directamente con el desarrollo de enfermedades cardiovasculares, como la enfermedad coronaria, cerebrovascular o las dislipidemias (Krahmer, N. et al. (2013) EMBO Mol. Med. 5, 973-983).
Los lípidos son biomoléculas hidrofóbicas, y en su mayoría insolubles en sangre, por lo que su transporte es conducido por las lipoproteínas. Las lipoproteínas se clasifican en dependencia de su tamaño y su densidad. Las lipoproteínas son estructuras esféricas hidrofóbicas, que poseen proteínas en su superficie (apoproteínas o apolipoproteínas), capaces de unir las enzimas encargadas del procesamiento de los lípidos (Rosenson, R.S. et al. (2016). Nat. Rev. Cardiol. 13, 48-60).
Las lipoproteínas de alta densidad (HDL) transportan el exceso de colesterol de los tejidos extra-hepáticos hacia el hígado, en el cual es metabolizado. Las HDL están relacionadas con la disminución de riesgo cardiovascular, y las lipoproteínas de baja densidad (LDL) y las de muy baja densidad (VLDL), lo incrementan. Existe una correlación inversa entre la concentración de colesterol asociado a HDL y el riesgo de ateroesclerosis (Lee, M., P. T. et al. (2003). J. Lipid Res. 44: 539-546).
Las HDL son las lipoproteínas de mayor densidad porque tienen una concentración mayor de proteínas que de lípidos. Estas lipoproteínas están compuestas de colesterol, triglicéridos y numerosas apolipoproteínas: Apo-AI, Apo-AII, Apo-AIV, Apo- AV, Apo-C1 , Apo-CII, Apo-CIII y Apo-E. La Apo-AI es el componente proteico principal de las HDL y es la apolipoproteína primordial encargada de mantener la estructura de las HDL (Jonas, A., K. E. Kezdy, y J. H. Wald. (1989). J. Biol. Chem. 264: 4818-4824). La Apo-AI activa a la enzima lecitina-colesterol-acil-transferasa, que cataliza la transformación del colesterol a su forma de éster, por lo cual aumenta la capacidad de las HDL para transportar lípidos hacia el hígado (Gordon, T. et al. (1977). Am. J. Med. 62, 707-714). La concentración en sangre de la Apo-AI aumenta durante determinadas condiciones fisiológicas como el embarazo, las hepatopatías, el uso de estrógenos y disminuyen durante la sepsis y aterosclerosis. Las concentraciones altas de la Apo-AI y bajas de Apo-B (principal componente proteico de las lipoproteínas de baja densidad) se correlacionan significativamente con una reducción del riesgo de padecer enfermedades cardiovasculares. Las HDL tienen propiedades anti-aterogénicas y anti-inflamatorias, ya que transportan el colesterol acumulado en las placas de ateromas hacia el hígado, con lo cual contribuyen a la reducción de dichas placas (T.M. Forte, et al. (2002) J Lipid Res, 43: 477-485).
Los mecanismos de formación de las placas ateroscleróticas no se comprenden en su totalidad, pero las lipoproteínas LDL y HDL tienen un rol fundamental en dichos mecanismos. Hasta el momento no se ha encontrado un tratamiento efectivo para evitar la formación de ateromas y evitar los daños consiguientes al organismo humano. Por lo tanto, obtener tratamientos que garanticen una homeostasis lipídica y procesamiento adecuado de las lipoproteínas es crucial.
Por otra parte, se ha descrito que la TTR forma parte de las HDL, a través de la unión a la Apo-AI (Liz, M. A., C. M. Gomes, M. J. Saraiva, y M. M. Sousa. (2007) J. Lipid Res. 48: 2385-2395). La TTR es una proteína tetraméhca presente en el plasma, es sintetizada fundamentalmente en el hígado, y se encarga del transporte de tiroxina y de la proteína ligada al retinol. Esta proteína puede disgregarse en monómeros y dímeros, que pueden acoplase en fibras y depositarse en los tejidos. La edad y mutaciones puntuales (se han descritos más de cien) pueden aumentar la predisposición a la agregación. Se han descrito dos formas de amiloidosis por TTR: la forma natural (wt ATTR, abreviado del inglés wild type transthyretin cardiac amiloidosis, conocida como amiloidosis sistémica senil) y la forma hereditaria (h- ATTR, abreviado del inglés hereditary transthyretin cardiac amiloidosis). En la forma natural, la síntesis de la TTR es normal, mientras que en la hereditaria la presencia de una mutación puntual hace que la TTR tenga afectada su conformación, desde su síntesis en los hepatocitos (Kittleson MM, Maurer MS, Ambardekar AA, et al. (2020) Circulation; 142:e7-22).
Entre las enfermedades causadas por amiloidosis por TTR está la cardiomiopatía amiloidea, la cual se refiere a la afección cardíaca como consecuencia del depósito extracelular de fibrillas anormales insolubles. La prevalencia de esta enfermedad se estima entre el 13%, en los adultos mayores internados por fracción de eyección preservada, y el 16% de las estenosis aórticas severas que requiere intervención (Coelho T, Maurer MS, Suhr OB. (2013) Curr Med Res Opin; 29:63-76).
Además, las modificaciones postraduccionales de la TTR que afectan su conformación tetramérica, y la presencia de sus oligómeros, se relacionan fuertemente con la enfermedad de Parkinson (Ando Y, Nakamura M y Araki S. (2005) Arch Neurol 62: 1057-1062) y con las patologías asociadas al estrés oxidativo (Sharma M, Khan S, Rahman S y Singh LR (2019) Front. Physiol. 10:5. doi: 10.3389/fphys.2019.00005).
Se ha descrito que una fracción de TTR plasmática circula en las HDL a través de la unión a la Apo-AI, y se ha demostrado que la TTR es capaz de escindir el carboxilo terminal de la Apo-AI libre de lípidos. La escisión de la Apo-AI por TTR induce la formación de fibrillas de amiloide de Apo-AI. Además, provoca que las partículas de HDL modificadas tengan una capacidad reducida para promover el recambio adecuado de colesterol. Por otra parte, la Apo-AI escindida por TTR tiene una alta preferencia a formar partículas agregadas, por lo que afecta el recambio de las HDL, y favorece el desarrollo de la aterosclerosis, al reducir el metabolismo del colesterol y aumentar el potencial amiloidogénico de la Apo-AI (Liz, M. A., C. M. Gomes, M. J. Saraiva, y M. M. Sousa. (2007) J. Lipid Res. 48: 2385-2395).
La búsqueda de tratamientos que estabilicen las HDL es crucial para garantizar un adecuado intercambio lipídico, en especial del colesterol, y evitar la formación o reducir las placas de ateromas que promueven la aterosclerosis. Al mismo tiempo, tratamientos que estabilicen la conformación de la TTR, que eviten sus modificaciones y su agregación, serían efectivos al prevenir la amiloidosis mediada por TTR y la enfermedad de Parkinson.
Explicación de la invención
La presente invención resuelve el problema mencionado anteriormente, al proveer un péptido cuya secuencia se identifica como SEQ ID NO: 1 , para su uso en la fabricación de un medicamento para el tratamiento de una enfermedad que cursa con una afectación en la Apo-AI o en la TTR. El péptido modificado identificado como SEQ ID NO: 1 es capaz de estabilizar la estructura supramolecular de las HDL, a través de la unión a la Apo-AI. De esta forma, facilita un metabolismo adecuado de los lípidos y la reducción de las placas de ateromas, asociadas con la aterosclerosis. Como se muestra en la invención, sorprendentemente, las únicas proteínas que interactúan con este péptido en el plasma humano son la Apo-AI y la TTR. Esta interacción permite la estabilidad tanto de la Apo-AI como de la TTR.
En el contexto de la invención “una enfermedad que cursa con una afectación en la Apo-AI o en la TTR” se define como aquella enfermedad en la cual existe un aumento o disminución de la concentración plasmática de la Apo-AI o de la TTR, o en la que ocurren modificaciones en las interacciones de estas proteínas en las partículas de HDL, o aquellas enfermedades donde se afectan las estructuras de la Apo-AI y la TTR, y por ende sus funciones biológicas.
Previamente, se describió que el péptido identificado como SEQ ID NO: 1 induce mecanismos reguladores de la respuesta inmunitaria en diferentes sistemas experimentales. Dicho péptido incrementó la frecuencia de las células T reguladoras (Treg) en ensayos ex vivo con células mononucleares de sangre periférica de pacientes con artritis reumatoide (AR), pero no en donantes sanos; estas células tienen actividad supresora (Barberá A, Lorenzo N, van Kooten P, et al. (2016) Cell Stress and Chaperones.; 21 :735-744). Asimismo, dicho péptido indujo un aumento significativo de la población de células Treg en ratones BALB/c. Además, este péptido inhibió eficientemente la AR en dos modelos animales (Lorenzo N, Altruda F, Silengo L y Dominguez MC. (2017) Clin Exp Med; 17:209-216). El tratamiento con el péptido identificado como SEQ ID NO: 1 a pacientes con AR, demostró ser seguro y tuvo un buen efecto terapéutico (Dinorah Prada, Jorge Gómez, Norailys Lorenzo, Oreste Corrales, et al. (2018) Journal of Clinical Trials; 8:2167-0870; Cabrales-Rico, A., Ramos, Y., Besada, V., Del Carmen, D. M., Lorenzo, N. etal. (2017) J Pharm Biomed Anal 143: 130-140).
Estos resultados se revelaron en las solicitudes de patente internacional No. PCT/CU2005/000008 y PCT/CU2009/000009. Estos reivindican el péptido identificado como SEQ ID NO: 1 y su uso para el tratamiento de la AR y de la enfermedad de Crohn, la colitis ulcerosa y la diabetes mellitus tipo I, respectivamente. Posteriormente, la solicitud de patente internacional No. PCT/CU2018/050007 reivindicó una composición farmacéutica muy estable que contiene el péptido de SEQ ID NO: 1 , para el tratamiento de las enfermedades caracterizadas por un aumento de la citrulinación y del número de neutrófilos. En particular, dicha invención se relaciona con el tratamiento de la AR, la espondilitis anquilosante, la artritis idiopática juvenil, la fibrosis hepática y pulmonar y la enfermedad de Alzheimer.
Por otra parte, el péptido identificado como SEQ ID NO: 1 se ha utilizado en el tratamiento de pacientes con hiperinflamación, como es el caso de pacientes con COVID-19; y se demostró que reduce la inflamación en dichos pacientes (Hernandez- Cedeño M et al. (2021). Cell Stress and Chaperones 26: 515-525; Domínguez Horta MC, et al. (2022). Anales de la Academia de Ciencias de Cuba; 12(1): e1072. http://www.revistaccuba.cu/index.php/revacc/article/view/1072. Este hecho primero se reveló en la solicitud de patente internacional No. PCT/CU2021/050001 , la que revindica el uso de dicho péptido para el tratamiento de la hiperinflamación.
En la presente invención se demuestra, por primera vez, la capacidad del péptido de SEQ ID NO: 1 de unir fuertemente a las proteínas Apo-AI y TTR, lo cual contribuye a garantizar una homeostasis lipídica estable y a reducir los procesos de amiloidosis mediados por dichas proteínas. Además, en esta invención se demuestra el beneficio que recibieron los pacientes tratados con el péptido identificado como SEQ ID NO: 1 , que habían alcanzado un estado de gravedad debido a enfermedades relacionadas con el metabolismo de los lípidos.
En una materialización de la invención, la enfermedad que cursa con una afectación en la Apo-AI o en la TTR se caracteriza por una afectación en la homeostasis lipídica o en la estabilidad de la TTR. En una realización particular, dicha enfermedad se selecciona del grupo compuesto por ateroesclerosis, cardiopatía isquémica, diabetes tipo II, dislipidemia secundaria y síndrome metabólico. En otra realización particular, dicha enfermedad es la amiloidosis por TTR o la enfermedad de Parkinson.
El péptido identificado como SEQ ID NO: 1 reduce el estrés oxidativo y mejora significativamente el estado de pacientes que se encuentran clínicamente graves debido a enfermedades cardiovasculares, como las cardiopatías isquémicas, y la hipertensión. El tratamiento con dicho péptido a pacientes con cardiopatías isquémicas y diabetes tipo II fue muy seguro, ya que no causó efectos adversos.
Se conoce que el mismo péptido es útil para el tratamiento de los pacientes con diabetes tipo I. Sin embargo, dicho uso está basado en la regulación de la respuesta inmunológica descontrolada que persiste en los pacientes con diabetes tipo I. La diabetes tipo II no es considerada una enfermedad autoinmune. Sorprendentemente, el tratamiento con dicho péptido a pacientes con diabetes tipo II descompensada permitió una recuperación muy rápida de los mismos, en comparación con los pacientes que recibieron el tratamiento estándar solamente. En la presente invención se demuestra, inesperadamente, que se produce un efecto muy beneficioso en los pacientes con diabetes tipo II, donde el tratamiento con el péptido identificado como SEQ ID NO: 1 contribuye a la homeostasis lipídica y su efecto en el metabolismo intermediario.
La invención también provee un método de tratamiento de una enfermedad que cursa con una afectación en la Apo-AI o en la TTR en un individuo que lo necesita. Dicho método de tratamiento se caracteriza porque se administra una cantidad terapéuticamente efectiva de una composición farmacéutica que comprende el péptido identificado como SEQ ID NO: 1. En una materialización de la invención la enfermedad se selecciona del grupo compuesto por ateroesclerosis, cardiopatía isquémica, diabetes tipo II, dislipidemia secundaria y síndrome metabólico. En otra materialización, la enfermedad es la amiloidosis por TTR o la enfermedad de Parkinson.
En una realización de la invención, en el método de tratamiento dicha composición farmacéutica se administra por ruta sistémica. En una realización preferida, la composición se administra por ruta subcutánea o intravenosa. En una materialización de la invención, dicha composición farmacéutica se administra de manera simultánea con la terapia estándar, en el curso de un mismo tratamiento.
Breve descripción de las figuras:
Figura 1. Electroforesis SDS-PAGE que muestra las proteínas en el plasma humano que se unen de forma específica al péptido identificado como SEQ ID NO: 1 . Carril 1 : patrón de peso molecular. Carril 2: proteínas que se unen a la matriz-sin péptido (control). Carril 3: proteínas que se unen de forma específica al péptido identificado como SEQ ID NO: 1 unido a la matriz.
Figura 2. Espectro de masas (EM) de la banda identificada como Apo-AI en la SDS- PAGE. Los recuadros indican los péptidos que fueron identificados con el programa MASCOT en la base de datos UniProtKB como constituyentes de la Apo-AI. Figura 3. EM de la banda identificada como TTR en la SDS-PAGE. Los puntos indican los péptidos que fueron identificados con el programa MASCOT en la base de datos UniProtKB como constituyentes de la TTR.
Figura 4. Western Blot que muestra las proteínas que se unen de forma específica al péptido identificado como SEQ ID NO: 1 en el plasma humano. Carril 1 : patrón de peso molecular. Carril 2: plasma que no se incubó con el péptido. Carril 3: plasma que se incubó con el péptido.
Figura 5. A, superposición de la estructura de los diez modelos del complejo péptido- proteína de mayor puntuación predicho por el método CABS-dock. B, modelo de la estructura del complejo del péptido identificado como SEQ ID NO: 1 unido a la proteína TTR por el sitio “hid”. C, representación del péptido unido a proteína TTR, representando la superficie de la proteína de acuerdo al carácter hidropático. D, figura similar a la C, pero sin representar el carácter electrostático de la superficie de la proteína. E, vista de las interacciones observadas en el entorno del residuo Leu18 del péptido.
Figura 6. Mapa de contacto entre los residuos del péptido identificado como SEQ ID NO: 1 (eje vertical) y la proteína TTR (eje horizontal), según la predicción de estructura 3D del complejo. Los cuadros significan que los residuos correspondientes contienen átomos localizados a una distancia igual o inferior a 4,5 Á. El tipo de residuo se muestra en código de tres letras, junto al identificador de cadena (cadenas B y D corresponden a la proteína TTR y la cadena E al péptido identificado como SEQ ID NO: 1) y al número de residuo de la secuencia de aminoácidos.
Figura 7. Niveles de colesterol en pacientes con cardiopatía isquémica e hipertensión arterial tratados con el péptido identificado como SEQ ID NO: 1. Tiempo 0: niveles de colesterol antes de iniciar el tratamiento con el péptido; día 7: niveles de colesterol siete días después de iniciado el tratamiento con el péptido.
Figura 8. Niveles de colesterol en los pacientes diabéticos tipo II, cinco de los cuales recibieron tratamiento con el péptido identificado como SEQ ID NO: 1 , en comparación con cinco pacientes no tratados con dicho péptido. La línea discontinua marca el límite normal de los niveles de colesterol en sangre (5,20 mmol/L). Tiempo 0: niveles de colesterol antes de iniciar el tratamiento con el péptido, día 8: niveles de colesterol ocho días después de iniciado el tratamiento con el péptido.
Exposición detallada de modos de realización / Ejemplos de realización. Ejemplo 1. Identificación de apolipoproteína A (Apo-AI) como proteína que une el péptido identificado como SEQ ID NO: 1 en el plasma humano.
Con el objetivo de investigar la capacidad del péptido identificado como SEQ ID NO: 1 de unir proteínas plasmáticas, se realizó una cromatografía de afinidad, a través de una resina cromatográfica a la cual se le unió el péptido sintético identificado como SEQ ID NO: 1. Primeramente, se extrajo sangre de un donante sano, de sexo femenino, de 24 años, sin ninguna afectación patológica y con un perfil lipídico normal. La sangre se diluyó 1 :2 con PBS 1X y se añadió a 3 mL de Ficoll-Paque™, se centrifugó durante 30 min a 1200 rpm. Se recolectó el plasma, el cual fue incubado con 100 L de la matriz de cromatografía. Esta matriz es una resina en forma de perlas, denominada ChemMatñx™ (Quebec, Canadá), a la cual previamente se le acopló el péptido identificado como SEQ ID NO: 1 (a esta unión se le denomina en lo adelante matñz-péptido).
Antes de la incubación, la matñz-péptido fue tratada con una solución de metanol al 70% y medio de cultivo RPMI. La incubación de la matñz-péptido con el plasma se realizó durante 3 horas. Posteriormente, se realizó la elución con una solución que contenía: glicerol 20%; TRIS-HCI 62,5 mM; bromofenol azul 2,5%; SDS 2 % y p- mercaptoetanol al 5 %; y se recolectó la fracción de elución. La misma se calentó a 95°C por 5 min, y se analizó por electroforesis SDS-PAGE (gel al 15%). Como control del experimento, se realizó el procedimiento descrito anteriormente con la matriz ChemMatñx™ sin acoplarle el péptido identificado como SEQ ID NO: 1. El gel se tiñó con una solución de azul de Coomassie, esta tinción es compatible para la identificación de proteínas por espectrometría de masas.
Por su parte, la Figura 1 muestra el resultado del análisis por electroforesis SDS- PAGE, de las fracciones colectadas después de la elución. El gel se sometió a tinción de plata. Como se aprecia claramente, se identificaron dos proteínas del plasma que se unen al péptido identificado como SEQ ID NO: 1 , las cuales se denominaron como proteína X1 y X2.
Para la identificación de la proteína X1 observada en la SDS-PAGE, se recortó la banda correspondiente a esta, y se añadió 1 mL de una solución que contenía bicarbonato de amonio (BCA) 250 mM, acetonitrilo (ACN) 30%, ditiotreitol (DTT) 1% en agua. La muestra se agitó durante 15 minutos. Posteriormente, se eliminó esta solución y se añadió 1 mL de una solución que contenía BCA 250 mM; ACN 30%; acñlamida 2,5% en agua. La muestra se agitó durante 15 minutos. Inmediatamente, se eliminó esta solución, y se añadió 1 mL de una solución que contenía BCA 250 mM y ACN 30% en agua. La muestra se agitó durante 15 minutos. A continuación, se realizaron tres lavados con agua durante 10 min en agitación y la banda se recortó en cubos de 1 mm3. Se añadieron 400 pL de ACN puro, se homogenize utilizando un vortex, y se eliminó el sobrenadante. Luego, se secó la muestra en Speed Vac por 5 min, y el gel se hidrató con una solución de BCA 50 mM que contenía tripsina, a una concentración de 12,5 ng/mL. La incubación con la tripsina se realizó por 16 h a 37°C. Seguidamente, el gel se rehidrató con agua por 30 min a 37°C.
Consecutivamente, la muestra se desaló en una microcolumna ZipTip C18™ (Millipore, EEUU) y se eluyó en 3,5 pL de ACN al 60% en agua que contenía ácido fórmico 1%. La muestra se aplicó, en un capilar de borosilicato recubierto de un material conductor (Thermo Scientific, EEUU), y se analizó por nanoESI-MS. Los espectros de masas ESI-MS se obtuvieron en un espectrómetro de configuración híbrida ortogonal QTOF-2 (Micromass, Reino Unido) con fuente de ionización por electronebulización Z-spray en modo positivo (nanoESI+). El analizador se calibró con una mezcla de sales de yoduros de sodio y cesio (Sigma, EEUU) como referencia en un rango amplio de masas (50-2000 Th). Los espectros ESI-MS fueron obtenidos al aplicar un voltaje de 1200 volts y 30 volts en el capilar y en el cono de entrada del espectrómetro de masas, respectivamente. El programa de adquisición y procesamiento de los espectros de masas empleado fue el MassLynx versión 4.1 (Micromass, Reino Unido). Los espectros ESI-MS/MS fueron obtenidos al aplicar una energía de colisión en el rango de 20-40 eV, para inducir fragmentaciones que contuvieran información suficiente para la elucidación estructural de los péptidos analizados. El gas de colisión empleado fue el argón (Gases Industriales, Cuba).
El espectro ESI-MS de la digestión tríptica de la proteína correspondiente a la banda identificada como X1 mostró los iones multicargados (2+) correspondientes a cinco péptidos (m/z 620,43; 626,81 ; 700,85; 806,90 y 967,47; respectivamente), que fueron seleccionados para fragmentar y obtener su espectro ESI-MS/MS. Dichas especies corresponden a los fragmentos peptídicos 37DLATVYVDVLK48, 53DYVSQFEGSALGK66, 72LLDNWDSVTSTFSK86, 89EQLGPVTQEFWDNLEK104 y 123VQPYLDDFQK133, respectivamente, de la proteína Apo-AI, identificada mediante el programa MASCOT realizando la búsqueda en la base de datos UniProtKB (Figura 2). Ejemplo 2. Identificación de transtirretina como proteína que une el péptido identificado como SEQ ID NO: 1 en el plasma humano.
Para la identificación de la proteína X2 observada en la SDS-PAGE, se procedió como en el Ejemplo 1. El espectro ESI-MS de la proteína analizada correspondiente a la banda superior, mostró los iones multicargados (3+) correspondientes a dos péptidos (m/z 819,07 y 817,45; respectivamente) que fueron seleccionados para fragmentar mediante CID (abreviado del inglés Collision-Induced Dissociation) y se obtuvo su espectro ESI-MS/MS, el que se representa en la Figura 3. Dichas especies corresponden a los fragmentos peptídicos 36KTSESGELHGLTTEEEFVEGIYKV59 y 68KALGISPFHEHAEWFTANDSGPRR92, respectivamente, de la proteína TTR, identificada mediante el programa MASCOT. Esto se constató al realizar la búsqueda en la base de datos UniProtKB.
Ejemplo 3. Reconocimiento inmunológico del péptido identificado como SEQ ID NO: 1 unido a la apolipoproteína-AI o a la transtirretina.
Para confirmar que el péptido identificado como SEQ ID NO: 1 se une a las proteínas Apo-AI y TTR presentes en el plasma, se realizó un experimento de inmunoidentificación tipo Western blot, con anticuerpos policlonales contra dicho péptido. Se utilizó como anticuerpo primario el suero de un conejo previamente inmunizado con el péptido identificado como SEQ ID NO: 1 , conjugado a la proteína KLH (anticuerpo vs péptido). Durante la caracterización biológica del suero policlonal empleado, se comprobó que no reconoce a la Apo-AI ni a la TTR. Primeramente, se realizó una electroforesis SDS-PAGE (gel al 12,5%), donde se aplicó en dos carriles el plasma de un donante sano y en otro un patrón de peso molecular. Posteriormente, se realizó la transferencia de las proteínas presentes en el gel a una membrana de nitrocelulosa, la cual se tiñó con solución de Rojo Ponceau, y se marcaron las bandas correspondientes a los patrones de peso molecular. Se recortó la membrana, según los carriles donde se aplicó el plasma. Los fragmentos de membrana fueron tratados con una solución de albúmina de suero bovino al 1% que contenía Tween 20 al 0,05%; durante toda la noche a 4°C.
Seguidamente, uno de los fragmentos de membrana fue incubado con una solución del péptido identificado como SEQ ID NO: 1 , a una concentración de 200 pg/mL en PBS 1X más Tween 20 (0,05%). Esta incubación se efectuó durante tres horas a 37°C, los restantes fragmentos de membrana fueron tratados de igual forma, pero sin añadir péptido a la solución. Posteriormente, los fragmentos de membrana se sometieron a lavados con la solución compuesta por PBS 1X más Tween 20 (0,05%). A continuación, los fragmentos de membrana se incubaron con el suero policlonal vs péptido, como anticuerpo primario. El suero policlonal se diluyó 1/2500 en la solución de lavado, la incubación se realizó durante dos horas a 37°C. Transcurrido ese tiempo, se repitieron los lavados y se añadió el anticuerpo secundario (Sigma, EEUU). Este último consiste en una mezcla de inmunoglobulinas tipo G que reconocen la región constante de los anticuerpos de conejo, conjugadas a peroxidasa de rábano. La incubación con el anticuerpo secundario se efectuó durante una hora a 37°C. Seguidamente, se efectuaron los lavados, y el revelado se efectuó con peróxido de hidrógeno al 0,01 % y 3,3'-diaminobenc¡d¡na (1 mg/mL).
Los resultados se muestran en la Figura 4. Se observa como a la altura de las bandas correspondientes a la Apo-AI y la TTR hay reconocimiento inmunológico por el anticuerpo vs péptido. Este experimento confirma los resultados mostrados en los ejemplos 1 y 2, y por tanto se ratifica que el péptido identificado como SEQ ID NO: 1 interactúa con estas dos proteínas presentes en el plasma humano.
Ejemplo 4. Modelación de la estructura del complejo formado entre el péptido identificado como SEQ ID NO: 1 y la proteína Transtirretina.
La TTR monomérica adopta un plegamiento de tipo beta sándwich formado por dos hojas beta antiparalelas. La proteína TTR nativa se caracteriza por adoptar una estructura cuaternaria tetraméhca, la cual se establece por medio de la asociación de dos dímeros de la proteína. El dímero de TTR se configura inicialmente mediante la interacción de las hebras de uno de los extremos de las hojas beta de la proteína monomérica, formándose como resultado dos hojas beta antiparalelas extendidas. La superficie convexa de una de las hojas de cada dímero interactúa cara a cara con la hoja extendida análoga del otro dímero, obteniéndose el tetrámero. En el espacio ubicado entre dichas hojas se crea una cavidad o canal que acomoda el ligando natural (T4), así como otras moléculas pequeñas tipo drogas (Cothna et al. (2021). European Journal of Medicinal Chemistry. Vol 226, p 113847). La interacción inter- dímeros es relativamente poco estable, y la disociación del tetrámero está relacionada con un número de patologías asociadas a la proteína TTR, tales como la amiloidosis por TTR (Ando Y, Nakamura M y Araki S. (2005) Arch Neurol 62: 1057-1062). El sitio de unión descrito en el espacio localizado entre los dímeros es la diana de medicamentos estudiados y/o desarrollados contra vahas de dichas enfermedades. Para la modelación de la estructura del complejo formado entre el péptido identificado como SEQ ID NO: 1 y la proteína TTR, se empleó el método de acoplamiento flexible péptido-proteína CABS-dock (Kurcinski M etal. (2020). Protein Science, 29: 211-222). Se utilizó la estructura cristalográfica - de 1.6 Á de resolución - de la proteína TTR (fichero 3CFM del Banco de Datos de Proteínas PDB), correspondiente a la proteína TTR (sin ligando) y cuya secuencia es la salvaje. El fichero contiene un dímero de la proteína TTR en la unidad asimétrica, por lo que el tetrámero fue obtenido aplicando las operaciones de simetría de BIOMOLECULE, descrita en el fichero tipo pdb. Las dos cadenas simétricas a las cadenas A y B - las originales del fichero pdb - fueron denominadas C y D, respectivamente.
El protocolo de acoplamiento empleado es “ciego”, o sea considera que todos los parches de la superficie de la proteína constituyen sitios potenciales de unión. La Figura 5A muestra superpuestos los diez mejores modelos propuestos por el algoritmo de CABS-dock. Con flechas se señala la localización del péptido identificado como SEQ ID NO: 1 , unido a la proteína en los modelos obtenidos. Todos los modelos indican que el sitio de unión más probable está localizado en una de dos hendiduras del tetrámero: a) la hendidura formada entre los monómeros del dímero (hendidura inter-monómero: “him”) la cual está delineada por la hoja beta extendida de cara expuesta cóncava o b) la hendidura formada en el espacio entre dímeros (hendidura inter-dímeros: “hid”), delineada por las hojas beta antiparalelas convexas. Las hendiduras “hid” forman la boca del canal o sitio de unión del ligando natural T4 de la proteína TTR. Este resultado sugiere que estos parches de la superficie poseen propiedades estereoquímicas favorables respecto al resto de la superficie de la proteína, de tal manera que constituyen “atractores” potenciales de interacciones del péptido identificado como SEQ ID NO: 1. Los dos sitios “him” son idénticos entre sí (al igual que los dos sitios “hid”), ya que están relacionados por el operador de simetría C2. Los resultados indican que el 60% de los modelos localizan al péptido identificado como SEQ ID NO: 1 unido al sitio “hid” y el restante 40% en el sitio “him”.
La Figura 5B muestra un modelo del péptido identificado como SEQ ID NO: 1 unido al sitio “hid”. En dicho modelo, el segmento de carácter más hidrófobo del péptido identificado como SEQ ID NO: 1 (residuos Leu15-Ala20) se proyecta hacia el interior de la boca del canal, a través de interacciones con residuos de carácter hidrófobos de la proteína TTR, lo cual aporta favorablemente a la energía de interacción (y la afinidad de la unión), por medio del “efecto hidrofóbico”. Como se observa en la Figura 5C, la región más profunda del sitio “hid” en contacto con el péptido identificado como SEQ ID NO: 1 es de carácter hidrófobo. La complementariedad electrostática entre el péptido identificado como SEQ ID NO: 1 y la proteína también es razonable, como se observa en la Figura 5D. El residuo del péptido identificado como SEQ ID NO: 1 que se proyecta más hacia el interior de la hendidura es la Leu18. En la Figura 5E se aprecia que este residuo leucina del péptido tiene contactos atómicos cercanos con los residuos Leu17, Leu103 y Ala108 de la proteína. Se observan las interacciones hidrofóbicas características de la unión del péptido de SEQ ID NO: 1 a la proteína.
Por otra parte, en la Figura 6 se observa como el segmento Ile11-Ala20 del péptido, que contiene la mayor cantidad de residuos hidrófobos, es el segmento que realiza la mayor cantidad de contactos con la proteína TTR. Se refuerza la importancia del efecto hidrofóbico respecto a su aporte energético, fundamental en interacciones péptido-proteína.
Desde el punto de vista funcional, la unión del péptido al sitio “hid” contribuye a la estabilización estructural del tetrámero y de esta forma puede conducir a la inhibición y/o modulación de los efectos negativos de enfermedades asociadas a la desestabilización de la estructura cuaternaria nativa de la proteína TTR. Por otra parte, el modelo es consistente con un rol central del residuo Leu18 en la interacción, el cual es resultado de la sustitución del residuo Asp18 presente en la secuencia nativa del epítopo T de la proteína HSP60 (Barberá A, Lorenzo N, van Kooten P, et al. (2016) Cell Stress and Chaperones.; 21 :735-744). Las interacciones del residuo Leu18 descritas aquí podrían constituir las bases estructurales de la actividad biológica específica del péptido identificado como SEQ ID NO: 1 , no observadas en el péptido nativo.
Ejemplo 5. Tratamiento con la composición farmacéutica que comprende el péptido identificado como SEQ ID NO: 1 a pacientes con cardiopatía isquémica. Los pacientes con niveles bajos de HDL e hipertensos desarrollan con mucha frecuencia cardiopatías isquémicas, asociadas con la formación de placas de ateroma que caracterizan a la enfermedad llamada aterosclerosis. Estas cardiopatías a menudo conducen a los pacientes a un estado de gravedad y el tratamiento con el péptido identificado como SEQ ID NO: 1 puede contribuir a la recuperación de los mismos. Se ejemplifica con los resultados de seis pacientes, estos presentaron cardiopatía isquémica, asociado a hipertensión, que les produjo un estado de gravedad. Fueron atendidos en la Unidad de Cuidados Intermedios (UCI) del hospital “Luis Díaz Soto” de La Habana. Estos pacientes se trataron con una composición farmacéutica que comprende el péptido identificado como SEQ ID NO: 1 , de manera tal que se administró una dosis de péptido de 1 mg cada 12 horas, por vía intravenosa, durante siete días. Además, recibieron la terapia estándar necesaria para estos casos.
La Figura 7 muestra los niveles de colesterol en estos seis pacientes con cardiopatía isquémica e hipertensión arterial tratados con el péptido. Como se puede observar, los niveles de colesterol en sangre disminuyeron a los siete días de tratamiento. Dichos pacientes se recuperaron, y fueron dados de alta hospitalaria. Estos resultados indican que el tratamiento con el péptido identificado como SEQ ID NO: 1 puede estabilizar a las HDL y favorecer un recambio adecuado del colesterol, con lo cual se pueden disminuir las placas de ateroma, mejorar la ateroesclerosis y evitar las complicaciones asociadas. El tratamiento con dicho péptido fue muy seguro, se comprobó mediante el seguimiento de parámetros de la bioquímica sanguínea y hemograma diferencial. No se observaron efectos adversos en los pacientes tratados, de acuerdo a la evaluación clínica y de imágenes.
En contraste, cinco pacientes con características similares, que no recibieron tratamiento con el péptido en el mismo periodo de tiempo, tuvieron una estadía más prolongada en la UCI, y los niveles de colesterol en estos superaron los 5 mmol/L al final del tratamiento.
Ejemplo 6. Tratamiento con la composición farmacéutica que comprende el péptido identificado como SEQ ID NO: 1 a pacientes con diabetes tipo II.
Los pacientes obesos e hipertensos desarrollan con mucha frecuencia diabetes tipo II, asociado con desbalances en el metabolismo lipídico. Estas afectaciones pueden conducirlos a un estado de gravedad, y el tratamiento con el péptido identificado como SEQ ID NO: 1 puede contribuir a la recuperación de los mismos.
Se ejemplifica con diez pacientes que presentaron una descompensación diabética y alcanzaron un estado de gravedad, que hizo que fueran atendidos en la UCI del hospital “Luis Díaz Soto” de La Habana. Cinco de estos pacientes fueron tratados con una composición farmacéutica que comprende el péptido identificado como SEQ ID NO: 1 , de manera tal que se administró una dosis de péptido de 1 mg cada 12 horas, por vía intravenosa, durante ocho días. Además, recibieron la terapia estándar necesaria para estos casos.
La Figura 8 muestra los niveles de colesterol en los pacientes con diabetes tipo II que fueron tratados con el péptido, en comparación con los pacientes que recibieron el tratamiento estándar para estos casos, pero sin incluir el péptido. Como se puede observar los niveles de colesterol se mantienen constantes en los pacientes tratados con el péptido, en comparación con los pacientes no tratados con el péptido, en los cuales los niveles del colesterol superan los valores normales al final del periodo de evaluación, de 8 días. Estos resultados indican que el tratamiento con el péptido identificado como SEQ ID NO: 1 puede estabilizar a las HDL, y favorecer un recambio adecuado del colesterol, lo cual contribuye a la estabilidad del metabolismo glucémico. El tratamiento con dicho péptido fue seguro, se comprobó mediante el seguimiento de parámetros de la bioquímica sanguínea y hemograma diferencial. No se observaron efectos adversos en los pacientes tratados, de acuerdo a la evaluación clínica y de imágenes.

Claims

REIVINDICACIONES Péptido identificado como SEQ ID NO: 1 para uso en la fabricación de un medicamento para el tratamiento de una enfermedad que cursa con una afectación en la apolipoproteína A-l (Apo-AI) o en la transtirretina (TTR). El péptido para uso de acuerdo a la reivindicación 1 donde la enfermedad se caracteriza por una afectación en la homeostasis lipídica o en la estabilidad de la TTR. El péptido para uso de acuerdo a la reivindicación 2 donde la enfermedad se selecciona del grupo compuesto por ateroesclerosis, cardiopatía isquémica, diabetes tipo II, dislipidemia secundaria y síndrome metabólico. El péptido para uso de acuerdo a la reivindicación 2 donde la enfermedad es la amiloidosis por TTR o la enfermedad de Parkinson. Un método de tratamiento de una enfermedad que cursa con una afectación en la apolipoproteína A-l (Apo-AI) o en la transtirretina (TTR) en un individuo que lo necesita que se caracteriza porque se administra una cantidad terapéuticamente efectiva de una composición farmacéutica que comprende el péptido identificado como SEQ ID NO: 1. El método de tratamiento de acuerdo a la reivindicación 5 donde la enfermedad se selecciona del grupo compuesto por ateroesclerosis, cardiopatía isquémica, diabetes tipo II, dislipidemia secundaria y síndrome metabólico. El método de tratamiento de acuerdo a la reivindicación 5 donde la enfermedad es la amiloidosis por TTR o la enfermedad de Parkinson. El método de tratamiento de acuerdo a la reivindicación 5 donde dicha composición farmacéutica se administra por ruta sistémica, preferentemente por ruta subcutánea o intravenosa. El método de tratamiento de acuerdo a la reivindicación 5 donde dicha composición farmacéutica se administra de manera simultánea con la terapia estándar en el curso de un mismo tratamiento.
PCT/CU2023/050002 2022-07-22 2023-07-04 Péptido para el tratamiento de enfermedades relacionadas con afectaciones en la apolipoproteina ai o la transtirretina WO2024017423A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CU20220040 2022-07-22
CU2022-0040 2022-07-22

Publications (1)

Publication Number Publication Date
WO2024017423A1 true WO2024017423A1 (es) 2024-01-25

Family

ID=88016239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CU2023/050002 WO2024017423A1 (es) 2022-07-22 2023-07-04 Péptido para el tratamiento de enfermedades relacionadas con afectaciones en la apolipoproteina ai o la transtirretina

Country Status (1)

Country Link
WO (1) WO2024017423A1 (es)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000072023A2 (en) * 1999-05-21 2000-11-30 Semmelweis University Of Medicine Diagnosis and treatment of atherosclerosis and coronary heart disease
WO2010075824A1 (es) * 2008-12-29 2010-07-08 Centro De Ingeniería Genética Y Biotecnología Uso de peptido tipo apl para el tratamiento de enfermedades inflamatorias intestinales y diabetes tipo i
WO2019129315A1 (es) * 2017-12-29 2019-07-04 Centro De Ingenieria Genetica Y Biotecnologia Composición farmaceutica que comprende un peptido tipo apl

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000072023A2 (en) * 1999-05-21 2000-11-30 Semmelweis University Of Medicine Diagnosis and treatment of atherosclerosis and coronary heart disease
WO2010075824A1 (es) * 2008-12-29 2010-07-08 Centro De Ingeniería Genética Y Biotecnología Uso de peptido tipo apl para el tratamiento de enfermedades inflamatorias intestinales y diabetes tipo i
WO2019129315A1 (es) * 2017-12-29 2019-07-04 Centro De Ingenieria Genetica Y Biotecnologia Composición farmaceutica que comprende un peptido tipo apl

Non-Patent Citations (30)

* Cited by examiner, † Cited by third party
Title
ALEMI MOBINA ET AL: "Exploring the Physiological Role of Transthyretin in Glucose Metabolism in the Liver", INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, vol. 22, no. 11, 4 June 2021 (2021-06-04), pages 6073, XP093104738, DOI: 10.3390/ijms22116073 *
ANDO YNAKAMURA MY ARAKI S, ARCH NEUROL, vol. 62, 2005, pages 1057 - 1062
BARBERÁ ALORENZO NVAN KOOTEN P ET AL., CELL STRESS AND CHAPERONES, vol. 21, 2016, pages 735 - 744
BARBERÁ ALORENZO NVAN KOOTEN P ET AL., CELL STRESS AND CHAPERONES., vol. 21, 2016, pages 735 - 744
BEGUE FLORAN ET AL: "Altered high-density lipoprotein composition and functions during severe COVID-19", SCIENTIFIC REPORTS, vol. 11, no. 1, 27 January 2021 (2021-01-27), XP093104742, Retrieved from the Internet <URL:https://www.nature.com/articles/s41598-021-81638-1> DOI: 10.1038/s41598-021-81638-1 *
BHONSLE HEMANGI S. ET AL: "Proteomic study reveals downregulation of apolipoprotein A1 in plasma of poorly controlled diabetes: A pilot study", MOLECULAR MEDICINE REPORTS, vol. 7, no. 2, 4 December 2012 (2012-12-04), GR, pages 495 - 498, XP093104739, ISSN: 1791-2997, DOI: 10.3892/mmr.2012.1223 *
CABRALES-RICO, A.RAMOS, Y.BESADA, V.DEL CARMEN, D. M.LORENZO, N. ET AL., J PHARM BIOMED ANAL, vol. 143, 2017, pages 130 - 140
CHO KYUNG-HYUN ET AL: "Anti-Inflammatory Activity of CIGB-258 against Acute Toxicity of Carboxymethyllysine in Paralyzed Zebrafish via Enhancement of High-Density Lipoproteins Stability and Functionality", INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, vol. 23, no. 17, 4 September 2022 (2022-09-04), pages 10130, XP093104743, DOI: 10.3390/ijms231710130 *
CHO KYUNG-HYUN ET AL: "CIGB-258 Exerts Potent Anti-Inflammatory Activity against Carboxymethyllysine-Induced Acute Inflammation in Hyperlipidemic Zebrafish via the Protection of Apolipoprotein A-I", CENTER FOR GENETIC ENGINEERING AND BIOTECHNOLOGY, AVE 31, E/158 Y 190, PLAYA, LA HABANA 10600, CUBA, vol. 24, no. 8, 11 April 2023 (2023-04-11), pages 7044, XP093104745, DOI: 10.3390/ijms24087044 *
COELHO TMAURER MSSUHR OB, CURR MED RES OPIN, vol. 29, 2013, pages 63 - 76
COTRINA ET AL., EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, vol. 226, 2021, pages 113847
DINORAH PRADAJORGE GÓMEZNORAILYS LORENZOORESTE CORRALES ET AL., JOURNAL OF CLINICAL TRIALS, vol. 8, 2018, pages 2167 - 0870
DOMÍNGUEZ HORTA MC ET AL., ANALES DE LA ACADEMIA DE CIENCIAS DE CUBA, vol. 12, no. 1, 2022, pages e1072, Retrieved from the Internet <URL:http://www.revistaccuba.cu/index.php/revacc/articie/view/1072>
GONZÁLEZ TABARES RUBÉN ET AL: "Diabetes, hiperglucemia y evolución de pacientes con la COVID-19", REVISTA CUBANA DE MEDICINA MILITAR, vol. 50, no. 2, 1 January 2021 (2021-01-01), pages 1 - 16, XP093104747 *
GORDON, T. ET AL., AM. J. MED., vol. 62, 1977, pages 707 - 714
HERNANDEZ-CEDEÑO M ET AL., CELL STRESS AND CHAPERONES, vol. 26, 2021, pages 515 - 525
HERNANDEZ-CEDEÑO M ET AL: "CIGB-258, a peptide derived from human heat-shock protein 60, decreases hyperinflammation in COVID-19 patients", CELL STRESS AND CHAPERONES, ALLEN PRESS ONLINE PUBLISHING, EDINBURGH, GB, vol. 26, no. 3, 24 February 2021 (2021-02-24), pages 515 - 525, XP037432780, ISSN: 1355-8145, [retrieved on 20210224], DOI: 10.1007/S12192-021-01197-2 *
JONAS, A.K. E. KEZDYY J. H. WALD., J. BIOL. CHEM., vol. 264, 1989, pages 4818 - 4824
KITTLESON MMMAURER MSAMBARDEKAR AA ET AL., CIRCULATION, vol. 142, 2020, pages e7 - 22
KRAHMER, N. ET AL., EMBO MOL. MED., vol. 5, 2013, pages 973 - 983
KURCINSKI M ET AL., PROTEIN SCIENCE, vol. 29, 2020, pages 211 - 222
LEE, M., P. T. ET AL., J. LIPID RES., vol. 44, 2003, pages 539 - 546
LIZ, M. A.C. M. GOMESM. J. SARAIVAY M. M. SOUSA., J. LIPID RES., vol. 48, 2007, pages 2385 - 2395
LORENZO NALTRUDA FSILENGO LY DOMINGUEZ MC, CLIN EXP MED, vol. 17, 2017, pages 209 - 216
REFAI E ET AL: "Transthyretin constitutes a functional component in pancreatic beta-cell stimulus-secretion coupling", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, NATIONAL ACADEMY OF SCIENCES, vol. 102, no. 47, 22 November 2005 (2005-11-22), pages 17020 - 17025, XP002366591, ISSN: 0027-8424, DOI: 10.1073/PNAS.0503219102 *
ROSENSON, R.S. ET AL., NAT. REV. CARDIOL., vol. 13, 2016, pages 48 - 60
SHARMA MKHAN SRAHMAN SY SINGH LR, FRONT. PHYSIOL., vol. 10, 2019, pages 5
T.M. FORTE ET AL., J LIPID RES, vol. 43, 2002, pages 477 - 485
VENEGAS RODRÍGUEZ RAFAEL ET AL: "El tratamiento con Jusvinza disminuye la hiperinflamación y la hipercoagulación en pacientes críticos con la COVID-19", REVISTA CUBANA DE MEDICINA MILITAR, vol. 50, no. 4, 1 January 2021 (2021-01-01), pages 1 - 19, XP093104748, Retrieved from the Internet <URL:http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0138-65572021000400018> *
ZINELLU ANGELO ET AL: "Serum Prealbumin Concentrations, COVID-19 Severity, and Mortality: A Systematic Review and Meta-Analysis", FRONTIERS IN MEDICINE, vol. 8, 26 January 2021 (2021-01-26), XP093104741, DOI: 10.3389/fmed.2021.638529 *

Similar Documents

Publication Publication Date Title
US7989606B2 (en) Phosphatase inhibitor protein-1 as a regulator of cardiac function
US7666852B2 (en) Wound and cutaneous injury healing with a nucleic acid encoding a proteoglycan polypeptide
EP3527220A1 (en) Vaccine engineering
US10653755B2 (en) Compositions and methods for treatment of homocystinuria
PT2356996E (pt) Tratamento para a doença de alzheimer
JP6594896B2 (ja) 修飾スルファミダーゼ及びその製造
US20220125896A1 (en) Compositions and methods for treatment of homocystinuria
JP5893614B2 (ja) アルツハイマー病および家族性認知症の治療のための化合物および方法
KR20200107927A (ko) 인지질 조절장애를 수반하는 질환 및 장애에서의 시클로덱스트린의 용도
KR20150047510A (ko) 미토콘드리아 관련 질환의 치료에서 사용하기 위한 알파-1-마이크로글로불린
FR2795735A1 (fr) Derives citrullines de la fibrine et leur utilisation pour le diagnostic ou le traitement de la polyarthrite rhumatoide
US8343932B2 (en) Protease-sensitive site in apolipoprotein A1, therapeutic and diagnostic implications
JP2019520392A (ja) ヒト酵素媒介性シスチン枯渇
BR112020020369A2 (pt) Análogos de compstatina com aumento de solubilidade e propriedades farmacocinéticas melhoradas
WO2024017423A1 (es) Péptido para el tratamiento de enfermedades relacionadas con afectaciones en la apolipoproteina ai o la transtirretina
Hanbouch et al. Specific mutations in the cholesterol-binding site of APP alter its processing and favor the production of shorter, less toxic Aβ peptides
Bergström et al. Surface exposed epitopes and structural heterogeneity of in vivo formed transthyretin amyloid fibrils
US11007247B2 (en) Compositions and methods for delivery of bioencapsulated proteins across blood-brain and retinal barriers
Srivastava et al. Degradation of γD-and γS-crystallins in human lenses
US11053290B2 (en) Modified Tamm-Horsfall protein and related compositions and methods of use
Wang et al. Lens proteomics: analysis of rat crystallins when lenses are exposed to dexamethasone
Srivastava et al. Crosslinking of human lens 9 kDa gammaD-crystallin fragment in vitro and in vivo
CN112442114A (zh) 一种多肽及其应用
Hanbouch et al. Mutations in the juxtamembrane segment of the cholesterol-binding site of APP alter its processing and promotes production of shorter, less toxic Aβ peptides
JP6258282B2 (ja) アルツハイマー病および家族性認知症の治療のための化合物および方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23768130

Country of ref document: EP

Kind code of ref document: A1