WO2024017414A1 - 气力输送系统及优化配置方法 - Google Patents

气力输送系统及优化配置方法 Download PDF

Info

Publication number
WO2024017414A1
WO2024017414A1 PCT/CN2023/122042 CN2023122042W WO2024017414A1 WO 2024017414 A1 WO2024017414 A1 WO 2024017414A1 CN 2023122042 W CN2023122042 W CN 2023122042W WO 2024017414 A1 WO2024017414 A1 WO 2024017414A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipeline
conveying
elephant trunk
fan
diameter
Prior art date
Application number
PCT/CN2023/122042
Other languages
English (en)
French (fr)
Inventor
李杨
李晓配
桑健权
李海强
Original Assignee
江苏徐工工程机械研究院有限公司
江苏徐工国重实验室科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏徐工工程机械研究院有限公司, 江苏徐工国重实验室科技有限公司 filed Critical 江苏徐工工程机械研究院有限公司
Publication of WO2024017414A1 publication Critical patent/WO2024017414A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G53/00Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
    • B65G53/34Details
    • B65G53/52Adaptations of pipes or tubes
    • B65G53/523Wear protection

Definitions

  • the present disclosure belongs to the field of pneumatic conveying technology, and specifically relates to a pneumatic conveying system and an optimized configuration method, in particular, a bionic elephant trunk long-distance pneumatic conveying system and an optimized configuration method.
  • Pneumatic conveying is an important means of transporting powder and block materials. It uses the high-speed flowing gas inside the conveying pipeline as the conveying medium to transport bulk materials from one or more sources to one along the set pipeline route. or multiple destinations. Due to its simple composition, low cost and easy maintenance, pneumatic conveying equipment is widely used in agriculture, food, energy, chemical industry, environmental sanitation and other industries. Pneumatic conveying systems can be divided into two types according to their working principles: pressure-feeding and suction-feeding.
  • the pressure-feeding pneumatic conveying system uses compressed air higher than atmospheric pressure to push materials for transportation; the suction-feeding pneumatic conveying system combines the atmosphere with the materials. They are sucked into the pipeline together and transported with air flow below atmospheric pressure, also known as vacuum suction.
  • the purpose of this disclosure is to provide a pneumatic conveying system and an optimized configuration method, especially a bionic elephant trunk long-distance pneumatic conveying system and an optimized configuration method.
  • the conveying system adopts a pipeline with a gradually changing inner diameter (which can also be called a tapered pipe).
  • pipeline as a transportation pipeline, it can reduce the resistance of gas flowing through the pipeline, and can extend the transportation distance while the power and fan system remains unchanged, or reduce the impact on the performance of the power and fan system while the transportation distance remains unchanged. requirements to reduce system energy consumption.
  • the present disclosure adopts the following technical solutions.
  • a first aspect of the present disclosure provides a pneumatic conveying system, including a first power unit, a first fan, a feeder, a pressure-feeding imitation elephant trunk conveying pipeline, a gas separator and a storage tank,
  • the first power unit is used to provide power for the first fan
  • the first fan is used to convert the kinetic energy provided by the first power unit into gas in the pneumatic conveying system. flowing energy;
  • the outlet of the first fan is connected to a second connecting pipeline, and the second connecting pipeline is connected to the pressure-feeding artificial elephant trunk transportation pipeline; the pressure-feeding artificial elephant trunk transportation pipeline is connected to all The gas separator and the storage tank;
  • the feeder is located at the connection between the second connecting pipe and the pressure-feeding imitation elephant trunk conveying pipe;
  • the pressure-feeding imitation elephant trunk conveying pipeline is a pipeline with an inner diameter that gradually expands.
  • the small inner diameter end of the pressure-feeding imitation elephant trunk conveying pipeline is connected to the feeder.
  • the pressure-feeding imitation elephant trunk conveying pipeline has a small inner diameter.
  • One end of the elephant trunk conveying pipeline with the large inner diameter is connected to the gas material separator.
  • the first power unit is any one of the following:
  • the first power unit is connected to the first fan through a coupling, a belt or a chain.
  • the first fan is any one of the following:
  • Roots blowers centrifugal fans and axial flow fans.
  • the pressure-fed elephant trunk delivery pipeline is spliced from pipelines with different inner diameters from small to large;
  • the pipeline with the smallest inner diameter is the first section of the conveying pipeline, which is connected to the feeder;
  • the pipeline with the largest inner diameter is the final conveying pipeline and is connected to the gas material separator;
  • a tapered transition pipe is provided at the diameter change point between the pipes with different inner diameters.
  • the pneumatic conveying system further includes a first muffler
  • the first muffler and the first fan are connected through a first connecting pipeline.
  • a second aspect of the present disclosure provides a pneumatic conveying system, including a second power unit, a second fan, a dust collector, a negative pressure storage tank, a suction-type elephant trunk conveying pipeline and a suction nozzle,
  • the second power unit is used to provide power for the second fan
  • the second fan is used to convert the kinetic energy provided by the second power unit into the energy of gas flow in the pneumatic conveying system
  • the outlet of the second fan is connected to a dust collector and a negative pressure storage tank in sequence;
  • the negative pressure storage tank is connected to a suction-type elephant trunk conveying pipeline
  • the end of the suction-type elephant trunk delivery pipeline is provided with a suction nozzle
  • the suction-type imitation elephant trunk transportation pipeline is a pipeline with a gradually decreasing inner diameter.
  • the suction-type imitation elephant trunk transportation pipeline One end of the small inner diameter of the pipeline is connected to the suction nozzle, and one end of the large inner diameter of the suction-type elephant trunk conveying pipeline is connected to the negative pressure storage tank.
  • the second power unit is any one of the following:
  • the second power unit is connected to the second fan through a coupling, a belt or a chain.
  • the second fan is any one of the following:
  • Roots blowers centrifugal fans and axial flow fans.
  • the suction-type elephant trunk delivery pipeline is spliced from pipelines with different inner diameters from large to small;
  • the pipeline with the largest inner diameter is the first section of the transportation pipeline, which is connected to the negative pressure storage tank;
  • the pipeline with the smallest inner diameter is the final conveying pipeline and is connected to the suction nozzle;
  • a tapered transition pipe is provided at the diameter change point between the pipes with different inner diameters.
  • the pneumatic conveying system further includes a second muffler
  • the second muffler and the second fan are connected through a third connecting pipe.
  • a third aspect of the present disclosure provides a method for optimizing the configuration of a pneumatic conveying system, which is used to optimize the configuration of pipelines with different inner diameters in the aforementioned pneumatic conveying system.
  • the method includes:
  • Step 1 Determine the conveying distance of the pneumatic conveying system, the diameter of the first section of the conveying pipeline, the diameter of the last section of the conveying pipeline, the number of diameter changes and the diameter of at least one conveying pipeline;
  • Step 2 Determine whether transition pipes are used between pipes with different inner diameters. If so, go to step 3. If not, go to step 4;
  • Step 3 Calculate the length of the transition pipeline at each diameter change based on the diameter of each transportation pipeline in the at least one transportation pipeline, and enter step 4;
  • Step 4 Construct a parametric three-dimensional fluid domain model for the simulated elephant trunk transportation pipeline composed of pipelines with different inner diameters;
  • Step 5 Mesh the constructed parametric fluid domain three-dimensional model and set boundary conditions
  • Step 6 Using the length of pipelines with different inner diameters as variables and the uniformity index of the gas flow velocity distribution field in the simulated elephant trunk transportation pipeline as the goal, perform optimization calculations on the model and output the lengths of pipelines with different inner diameters. .
  • calculating the length of the transition pipeline at each diameter change based on the diameter of each transport pipeline in the at least one transport pipeline includes:
  • the length of the transition pipe at the change in diameter is taken to be 6 times or more of the diameter of the large inner diameter transportation pipeline connected to the transition pipe at the change in diameter.
  • performing optimization calculations on the model includes:
  • Bayesian optimization genetic algorithm, gradient-based optimization, grid search, population-based optimization, ParamILS and Keras Tuner.
  • a fourth aspect of the present disclosure provides a computer-readable storage medium, including computer program instructions, wherein when the computer program instructions are executed by a processor, the method described in any of the above embodiments is implemented.
  • a fifth aspect of the present disclosure provides a computer program product, including a computer program, wherein when the computer program is executed by a processor, the method described in any of the above embodiments is implemented.
  • the pneumatic conveying system proposed in this disclosure (such as the bionic elephant trunk long-distance pneumatic conveying system) adopts a pressure-feeding simulated elephant trunk conveying pipeline with a gradually expanding inner diameter or a suction-type simulated elephant trunk with a gradually decreasing inner diameter.
  • the Elephant Trunk conveying pipeline transports materials, which can extend the conveying distance while the power and fan systems remain unchanged, or reduce the performance requirements for the power and fan systems and reduce system energy consumption while the conveying distance remains unchanged.
  • Figure 1 is a schematic diagram of a pressure-feeding pneumatic conveying system provided by some embodiments of the present disclosure
  • Figure 2 is a schematic diagram of a pressure-feeding imitation elephant trunk delivery pipeline provided by some embodiments of the present disclosure
  • Figure 3 is a schematic diagram of a pressure-feed simulated elephant trunk transportation pipeline formed by splicing twice-reduced multi-standard inner diameter pipelines according to some embodiments of the present disclosure
  • Figure 4 is a schematic diagram of a suction pneumatic conveying system provided by other embodiments of the present disclosure.
  • Figure 5 is a schematic diagram of a suction-type elephant trunk delivery pipeline provided by other embodiments of the present disclosure.
  • Figure 6 is a schematic diagram of a suction-type artificial elephant trunk transportation pipeline formed by splicing twice-reduced multi-standard inner diameter pipelines provided by other embodiments of the present disclosure
  • Figure 7 is a flow chart of the optimized configuration of the bionic elephant trunk transportation pipeline provided by some further embodiments of the present disclosure.
  • a specific device when a specific device is described as being between a first device and a second device, there may or may not be an intervening device between the specific device and the first device or the second device.
  • the specific device When a specific device is described as being connected to another device, the specific device may be directly connected to the other device without an intervening device, or may not be directly connected to the other device but with an intervening device.
  • a pneumatic conveying system such as a pressure-feeding pneumatic conveying system, which may also be called a pressure-feeding bionic elephant trunk long-distance pneumatic conveying system.
  • a pneumatic conveying system such as a pressure-feeding pneumatic conveying system, which may also be called a pressure-feeding bionic elephant trunk long-distance pneumatic conveying system.
  • it includes a first power unit 1, The first fan 2, the first connecting pipe 3, the first muffler 4, the second connecting pipe 5, the feeder 6, the pressure-feeding elephant trunk conveying pipe 7, the gas material separator 8 and the storage tank 9 .
  • the first power unit 1 is used to provide power for the first fan 2 .
  • the first fan 2 is the power source for gas flow in the pneumatic conveying system.
  • the first fan 2 is used to convert the kinetic energy provided by the first power unit 1 into the energy of gas flow in the pneumatic conveying system.
  • the first fan 2 and the first muffler 4 are connected through the first connecting pipe 3; the first muffler 4 is used to reduce the noise generated by the first fan 2.
  • the outlet of the first fan 2 is connected to the second connecting pipe 5.
  • the second connecting pipe 5 is connected to the pressure-feeding artificial elephant trunk conveying pipe 7.
  • the feeder 6 is located between the second connecting pipe 5 and the pressure-feeding artificial trunk. The junction of the nasal delivery line 7.
  • the feeder 6 is used to provide conveyed materials for the pneumatic conveying system.
  • the materials enter the pressure-feeding elephant trunk conveying pipeline 7 through the feeder 6, are carried by the high-speed flowing gas, and are transported to the gas material along the set pipeline route.
  • Separator 8 is used to provide conveyed materials for the pneumatic conveying system.
  • the gas material separator 8 is connected to the storage tank 9.
  • the gas material separator 8 is used to separate the gas material mixture.
  • the gas is discharged into the atmosphere after treatment, and the materials enter the storage tank 9.
  • the storage tank 9 is used to store materials transported to the destination.
  • the first power unit 1 includes but is not limited to engines, motors, motors and other power equipment, which can convert chemical energy, kinetic energy, electrical energy, etc. into kinetic energy that drives the first fan 2 to rotate.
  • the first power unit 1 is connected to the first fan 2 through a coupling, a belt, a chain, etc.
  • the first fan 2 includes but is not limited to Roots blower, centrifugal fan, axial flow fan, etc.
  • the structure of the pressure-feeding simulated elephant trunk conveying pipeline 7 is shown in Figure 2. It is a pipeline (for example, a cone-like pipeline) 701 with a gradually expanding inner diameter. It can be arranged along a straight line or along The conveying path is arranged in a curved manner, with one end of its small inner diameter connected to the feeder 6 and one end of its large inner diameter connected to the gas material separator 8 .
  • the gradual expansion of the inner diameter of the pipeline can provide a larger flow space for the internal gas, alleviate or even offset the increase in gas flow rate caused by the gas volume expansion caused by the pressure reduction, and alleviate or even offset the gas flow rate caused by the gas volume compression caused by the pressure increase. reduce.
  • the pressure-feeding elephant trunk conveying pipeline 7 is spliced from pipelines with different standard inner diameters from small to large.
  • the small diameter pipe is connected to the feeder 6, and the large pipe diameter is connected to the gas material separator. 8 connected. It should be understood that the inner diameter of a pipe with a certain standard inner diameter specification remains basically unchanged.
  • the structure of the pressure-feeding elephant trunk conveying pipeline 7 is shown in Figure 3. It is spliced from pipelines with different standard inner diameters from small to large, and a tapered shape is set between the pipelines with different inner diameters. By adding a transition pipe, the pipe blockage caused by the sudden change in the diameter of the pipeline and the sudden change in gas flow rate inside the pipe can be slowed down.
  • Figure 3 takes the case of two diameter changes as an example for illustration, which cannot be used as a limitation of the present disclosure.
  • the pressure-feeding imitation elephant trunk conveying pipeline 7 is composed of a first section of conveying pipeline 702, a conveying pipeline 704 and a final section of conveying pipeline 706 spliced from small to large.
  • the first section of conveying pipeline 702 and the conveying pipeline A tapered first transition pipe 703 is provided at the changing diameter between 704 and 704, and a tapered second transition pipe 704 is provided at the changing diameter between the conveying pipe 704 and the final conveying pipe 706. It can be understood that the inner diameters of the first section of the transportation pipeline 702, the transportation pipeline 704, and the final section of the transportation pipeline 706 are basically unchanged.
  • the first section of the conveying pipeline 702 is connected to the feeder 6
  • the last section of the conveying pipeline 706 is connected to the gas material separator 8 .
  • a pneumatic conveying system such as a suction-type pneumatic conveying system, which may also be called a suction-type bionic elephant trunk long-distance pneumatic conveying system.
  • a pneumatic conveying system such as a suction-type pneumatic conveying system, which may also be called a suction-type bionic elephant trunk long-distance pneumatic conveying system.
  • FIG. 4 it includes a second power unit 10 , the second fan 11, the third connecting pipe 12, the second muffler 13, the fourth connecting pipe 14, the dust collector 15, the fifth connecting pipe 16, the negative pressure storage tank 17, the suction-type imitation elephant trunk Delivery line 18 and suction nozzle 19 .
  • the second power unit 10 is used to provide power for the second fan 11 .
  • the second fan 11 is the power source for gas flow in the pneumatic conveying system.
  • the second fan 11 is used to convert the kinetic energy provided by the second power unit 10 into energy for gas flow in the pneumatic conveying system.
  • the second fan 11 and the second muffler 13 are connected through a third connecting pipe 12 , and the second muffler 13 is used to reduce the noise generated by the second fan 11 .
  • the outlet of the second fan 11 is connected to the fourth connecting pipe 14.
  • the fourth connecting pipe 14 is connected to the dust collector 15.
  • the dust collector 15 is connected to the negative pressure storage tank 17 through the fifth connecting pipe 16.
  • the negative pressure storage tank 17 is connected to the suction-type elephant trunk conveying pipeline 18.
  • the end of the suction-type elephant trunk conveying pipeline 18 is provided with a suction nozzle 19.
  • the dust collector 15 is used to filter dust in the gas to prevent dust from entering the second fan 11 and causing structural damage to the second fan 11 .
  • the suction nozzle 19 is used to suck the conveyed material into the suction-type artificial elephant trunk conveying pipeline 18.
  • the negative pressure storage tank 17 is used to store materials transported to the destination.
  • the second power unit 10 includes but is not limited to engines, motors, motors and other power equipment, and can convert chemical energy, kinetic energy, electrical energy, etc. into kinetic energy that drives the second fan 11 to rotate.
  • the second power unit 10 is connected to the second fan 11 through a coupling, a belt, a chain, etc.
  • the second fan 11 includes but is not limited to Roots blower, centrifugal fan, axial flow fan, etc.
  • the structure of the suction-type elephant trunk delivery pipeline 18 is shown in Figure 5. It is a pipeline (such as a tapered-like pipeline) 181 with a gradually decreasing inner diameter. It can be arranged along a straight line according to needs, or It can be arranged in a curve along the conveying path, with the large inner diameter end connected to the negative pressure storage tank 17, and the small inner diameter end connected to the suction nozzle 19; through this structure, the reduction of the inner diameter of the pipeline will compress the flow space of the internal gas, easing the It even offsets the decrease in gas flow rate caused by the volume compression of gas when the pressure increases, and alleviates or even offsets the increase in gas flow rate caused by the volume expansion of the gas when the pressure decreases.
  • a pipeline such as a tapered-like pipeline
  • the inner diameter of the suction-type simulated elephant trunk conveying pipeline 18 gradually decreases, that is, the inner diameter of the suction-type simulated elephant trunk conveying pipeline 18 gradually decreases from the end connected to the suction nozzle 19 to the end connected to the negative pressure storage tank 17. expand.
  • the suction-type elephant trunk conveying pipeline 18 is spliced from large to small pipelines with different inner diameters.
  • One end of the large inner diameter is connected to the negative pressure storage tank 17, and the end of the small inner diameter is connected to the suction tank.
  • the suction nozzles 19 are connected.
  • the suction-type elephant trunk conveying pipeline 18 is spliced from large to small pipelines with different inner diameters, and a tapered transition pipe is provided between the pipelines with different inner diameters.
  • a transition pipe By adding a transition pipe, pipe blockage caused by a sudden change in the diameter of the pipeline and a sudden change in gas flow rate can be mitigated.
  • Figure 6 takes the case of two diameter changes as an example to illustrate, which cannot be used as a limitation of the present disclosure.
  • the suction-type elephant trunk conveying pipeline 18 is composed of a first section of conveying pipeline 182, a conveying pipeline 184 and a final section of conveying pipeline 186 with different inner diameter specifications, spliced from large to small.
  • the first section of the conveying pipeline A tapered first transition pipeline 183 is provided at the variable diameter between 182 and the conveying pipeline 184, and a tapered second transition pipeline 185 is provided at the variable diameter between the conveying pipeline 184 and the final conveying pipeline 186. ;
  • the first section of the conveying pipeline 182 is connected to the negative pressure storage tank 17, and the last section of the conveying pipeline 186 is connected to the suction nozzle 19. It can be understood that the inner diameters of the first section of the conveying pipeline 182, the conveying pipeline 184 and the final section of the conveying pipeline 186 are basically unchanged.
  • Some embodiments of the present disclosure provide an optimized configuration method for a pneumatic conveying system, which is used to configure the simulated elephant trunk conveying pipeline formed by splicing pipelines of different inner diameters in the pneumatic conveying system of any of the above embodiments.
  • Optimizing the configuration, as shown in Figure 7, the method includes the following steps.
  • step 1 determine the conveying distance L of the pneumatic conveying system, the diameter of the first section of the conveying pipeline D b , the diameter of the final section of the conveying pipeline D e , the number of diameter changes n (n ⁇ 1), and the diameters of the conveying pipeline D 1 and D 2 ,...D n-1 and other parameters.
  • the artificial elephant trunk conveying pipeline does not include the conveying pipeline between the first section of the conveying pipeline and the last section of the conveying pipeline. In this case, it is not necessary to determine the delivery pipe diameters D 1 to D n-1 .
  • the artificial elephant trunk conveying pipeline includes at least one conveying pipeline between the first section of the conveying pipeline and the last section of the conveying pipeline.
  • the delivery pipe diameters D 1 to D n-1 are determined.
  • step 2 determine whether the changing diameter of the artificial elephant trunk conveying pipeline adopts the form of a transition pipe. If so, proceed to step 3. If not, proceed to step 4.
  • step 3 calculate the lengths L t1 , L t2 ,...L tn of the transition pipes at each change in diameter. It usually needs to be 6 times or more of the diameter of the large diameter pipe, and then proceed to step 4.
  • the large inner diameter pipeline here is the larger inner diameter of the two pipelines connected at both ends of the transition pipeline.
  • step 4 a parametric three-dimensional fluid domain model is constructed.
  • the initial length of each segment in the model may be equal to (LL t1 -L t2 -...-L tn )/(n+1).
  • step 5 mesh and set model boundary conditions.
  • step 6 use simulation software to solve the problem, and extract the gas flow velocity distribution field in the pipeline after convergence.
  • step 7 set the length of each specification of pipeline as a variable, and the uniformity index of the gas flow velocity distribution field in the pipeline as the target value. Import the optimization algorithm for optimization calculation, and output the length of each specification of pipeline, which are the first section of transportation.
  • the length of the pipeline L Db the lengths of the transport pipelines between the first section of the transport pipeline and the last section of the transport pipeline L D1 , L D2 , ... L Dn -1 , and the length of the final section of the transport pipeline L De .
  • the optimization algorithm in step 7 can use but is not limited to: Bayesian optimization, genetic algorithm, gradient-based optimization, grid search, population-based optimization, ParamILS and Keras Tuner, etc.
  • An embodiment of the present disclosure also provides a method for optimizing the configuration of a pneumatic conveying system, which is used to optimize the configuration of pipelines with different inner diameters in the pneumatic conveying system described in any of the above embodiments.
  • the method includes the following steps.
  • Step 1 Determine the conveying distance of the pneumatic conveying system, the diameter of the first section of the conveying pipeline, the diameter of the final section of the conveying pipeline, the number of diameter changes, and the diameter of at least one conveying pipeline.
  • Step 2 Determine whether transition pipes are used between pipes with different inner diameters. If so, proceed to step 3. If If not, go to step 4.
  • Step 3 Calculate the length of the transition pipeline at each diameter change point based on the diameter of each transportation pipeline in at least one transportation pipeline, and proceed to step 4.
  • Step 4 Construct a parametric three-dimensional fluid domain model for the simulated elephant trunk transportation pipeline composed of pipelines with different inner diameters.
  • Step 5 Mesh the constructed three-dimensional parametric fluid domain model and set boundary conditions.
  • Step 6 Using the lengths of pipelines with different inner diameters as variables and the uniformity index of the gas flow velocity distribution field in the simulated elephant trunk transportation pipeline as the goal, perform optimization calculations on the model and output the lengths of pipelines with different inner diameters.
  • Embodiments of the present disclosure also provide a computer-readable storage medium, which includes computer program instructions.
  • the computer program instructions are executed by a processor, the method of any of the above embodiments is implemented.
  • An embodiment of the present disclosure also provides a computer program product, including a computer program, which implements the method of any of the above embodiments when executed by a processor.
  • embodiments of the present disclosure may be provided as methods, systems, or computer program products. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable non-transitory storage media (including, but not limited to, disk memory, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein. .

Abstract

一种气力输送系统及优化配置方法,该气力输送系统采用压送式仿象鼻输送管路(7)输送物料或者采用吸送式仿象鼻输送管路(18)输送物料,其中,压送式仿象鼻输送管路为一种内径逐渐扩大的管路,吸送式仿象鼻输送管路为一种内径逐渐缩小的管路,可实现在动力与风机系统不变的情况下延长输送距离,或者在输送距离不变的情况下降低对动力与风机系统性能的要求,降低系统内耗。

Description

气力输送系统及优化配置方法
相关申请的交叉引用
本申请是以CN申请号为202211496399.8,申请日为2022年11月25日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开属于气力输送技术领域,具体涉及一种气力输送系统及优化配置方法,尤其是一种仿生象鼻长距离气力输送系统及优化配置方法。
背景技术
气力输送是一种运输粉末、块状物料的重要手段,利用输送管路内部高速流动的气体作为输送介质,可将散装物料沿着设定的管路路线,从一个或多个来源输送到一个或多个目的地。由于气力输送设备组成简单,具有低成本、易维护等特点,广泛应用在农业、食品、能源、化工、环卫等行业。气力输送系统按照工作原理可分为压送式和吸送式两种类型:压送式气力输送系统用高于大气压力的压缩空气推动物料进行输送;吸送式气力输送系统是将大气与物料一起吸入管道内,用低于大气压力的气流进行输送,又称为真空吸送。
发明内容
本公开的目的在于提供一种气力输送系统及优化配置方法,尤其是一种仿生象鼻长距离气力输送系统及优化配置方法,该输送系统采用内径渐变的管路(也可以称为锥形管路)作为输送管路,可降低气体流过管路的阻力,可实现在动力与风机系统不变的情况下延长输送距离,或者在输送距离不变的情况下降低对动力与风机系统性能的要求,降低系统能耗。
为达到上述目的,本公开采用如下技术方案。
本公开第一方面提供一种气力输送系统,包括第一动力单元、第一风机、送料器、压送式仿象鼻输送管路、气料分离器和储料罐,
所述第一动力单元用于为第一风机提供动力;
所述第一风机用于将所述第一动力单元提供的动能转化为气力输送系统中气体 流动的能量;
所述第一风机的出口处连接第二连接管路,所述第二连接管路与所述压送式仿象鼻输送管路连接;所述压送式仿象鼻输送管路依次连接所述气料分离器和所述储料罐;
所述送料器位于所述第二连接管路与所述压送式仿象鼻输送管路的连接处;
所述压送式仿象鼻输送管路为一种内径逐渐扩大的管路,所述压送式仿象鼻输送管路小内径的一端与所述送料器相接,所述压送式仿象鼻输送管路大内径的一端与所述气料分离器相接。
在一些实施例中,所述第一动力单元为以下任意一种:
发动机、马达和电机。
在一些实施例中,所述第一动力单元通过联轴器、皮带或链条与所述第一风机连接。
在一些实施例中,所述第一风机为以下任意一种:
罗茨风机、离心风机和轴流风机。
在一些实施例中,所述压送式仿象鼻输送管路由不同内径的管路从小到大拼接而成;
其中,最小内径的管路为首段输送管路,与所述送料器相接;
最大内径的管路为末段输送管路,与所述气料分离器相接;
首段输送管路和末段输送管路之间为至少一个输送管路。
在一些实施例中,所述不同内径的管路之间的变径处设锥形的过渡管路。
在一些实施例中,所述气力输送系统还包括第一消音器;
所述第一消音器与第一风机通过第一连接管路连接。
本公开第二方面提供一种气力输送系统,包括第二动力单元、第二风机、除尘器、负压储料罐、吸送式仿象鼻输送管路和抽吸吸嘴,
所述第二动力单元用于为所述第二风机提供动力;
所述第二风机用于将所述第二动力单元提供的动能转化为气力输送系统中气体流动的能量;
所述第二风机的出口处依次连接除尘器和负压储料罐;
所述负压储料罐连接吸送式仿象鼻输送管路;
所述吸送式仿象鼻输送管路的端部设抽吸吸嘴;
所述吸送式仿象鼻输送管路为一种内径逐渐缩小的管路,所述吸送式仿象鼻输送 管路小内径的一端与所述抽吸吸嘴相接,所述吸送式仿象鼻输送管路大内径的一端与所述负压储料罐相接。
在一些实施例中,所述第二动力单元为以下任意一种:
发动机、马达和电机。
在一些实施例中,所述第二动力单元通过联轴器、皮带或链条与所述第二风机连接。
在一些实施例中,所述第二风机为以下任意一种:
罗茨风机、离心风机和轴流风机。
在一些实施例中,所述吸送式仿象鼻输送管路由不同内径的管路从大到小拼接而成;
其中,最大内径的管路为首段输送管路,与所述负压储料罐相接;
最小内径的管路为末段输送管路,与所述抽吸吸嘴相接;
首段输送管路和末段输送管路之间为至少一个输送管路。
在一些实施例中,所述不同内径的管路之间的变径处设锥形的过渡管路。
在一些实施例中,所述气力输送系统还包括第二消音器;
所述第二消音器与第二风机通过第三连接管路连接。
本公开第三方面提供一种气力输送系统的优化配置方法,用于对前述的气力输送系统中的不同内径的管路进行优化配置,所述方法包括:
步骤1:确定所述气力输送系统的输送距离、首段输送管路直径、末段输送管路直径、变径次数和至少一个输送管路直径;
步骤2:判断不同内径的管路之间是否采用过渡管路,若采用则进入步骤3,若不采用则进入步骤4;
步骤3:基于所述至少一个输送管路中各输送管路直径计算各变径处的过渡管路的长度,进入步骤4;
步骤4:对由不同内径的管路构成的仿象鼻输送管路构建参数化流体域三维模型;
步骤5:对所构建的参数化流体域三维模型划分网格并设置边界条件;
步骤6:以不同内径的管路的长度为变量,以仿象鼻输送管路中气体流速分布场均匀性指标为目标,对所述模型进行寻优计算,输出各不同内径的管路的长度。
在一些实施例中,所述基于所述至少一个输送管路中各输送管路直径计算各变径处的过渡管路的长度,包括:
取变径处的过渡管路连接的大内径输送管路直径的6倍及以上的长度,作为变径处的过渡管路的长度。
在一些实施例中,对所述模型进行寻优计算,包括:
采用以下任意方法对所述模型进行寻优计算,直至仿象鼻输送管路中气体流速分布场均匀性指标满足预设要求:
贝叶斯优化、遗传算法、基于梯度优化、网格搜索、基于种群优化、ParamILS和Keras Tuner。
本公开第四方面提供一种计算机可读存储介质,包括计算机程序指令,其中,所述计算机程序指令被处理器执行时实现上述任意一个实施例所述的方法。
本公开第五方面提供一种计算机程序产品,包括计算机程序,其中,所述计算机程序被处理器执行时实现上述任意一个实施例所述的方法。
本公开的有益效果为:
(1)本公开提出的气力输送系统(例如仿生象鼻长距离气力输送系统),采用为一种内径逐渐扩大的压送式仿象鼻输送管路或者一种内径逐渐缩小的吸送式仿象鼻输送管路输送物料,可实现在动力与风机系统不变的情况下延长输送距离,或者在输送距离不变的情况下降低对动力与风机系统性能的要求,降低系统能耗。
(2)本公开提出的仿生象鼻长距离气力输送管路内部气力流速分布更加均匀,可降低高速流动的空气和物料对管路的磨损,延长气力输送系统寿命。
附图说明
图1为本公开一些实施例提供的压送式气力输送系统示意图;
图2为本公开一些实施例提供的一种压送式仿象鼻输送管路示意图;
图3为本公开一些实施例提供的由两次变径多规格内径管路拼接形成的压送式仿象鼻输送管路示意图;
图4为本公开另一些实施例提供的吸送式气力输送系统示意图;
图5为本公开另一些实施例提供的一种吸送式仿象鼻输送管路示意图;
图6为本公开另一些实施例提供的由两次变径多规格内径管路拼接形成的吸送式仿象鼻输送管路示意图;
图7为本公开又一些实施例提供的仿生象鼻输送管路优化配置流程图。
具体实施方式
现在将参照附图来详细描述本公开的各种示例性实施例。对示例性实施例的描述仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。本公开可以以许多不同的形式实现,不限于这里所述的实施例。提供这些实施例是为了使本公开透彻且完整,并且向本领域技术人员充分表达本公开的范围。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、材料的组分、数字表达式和数值应被解释为仅仅是示例性的,而不是作为限制。
本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的部分。“包括”或者“包含”等类似的词语意指在该词前的要素涵盖在该词后列举的要素,并不排除也涵盖其他要素的可能。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在本公开中,当描述到特定器件位于第一器件和第二器件之间时,在该特定器件与第一器件或第二器件之间可以存在居间器件,也可以不存在居间器件。当描述到特定器件连接其它器件时,该特定器件可以与所述其它器件直接连接而不具有居间器件,也可以不与所述其它器件直接连接而具有居间器件。
本公开使用的所有术语(包括技术术语或者科学术语)与本公开所属领域的普通技术人员理解的含义相同,除非另外特别定义。还应当理解,在诸如通用字典中定义的术语应当被解释为具有与它们在相关技术的上下文中的含义相一致的含义,而不应用理想化或极度形式化的意义来解释,除非这里明确地这样定义。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
随着气力输送技术逐渐发展成熟,人们开始尝试将该技术应用在长距离输送的工况中。长距离气力输送能否成功的关键在于动力与风机系统是否能够提供足够的动力,使输送管路两端保有足够的压力差,管路内部的气体克服在管路内部流动的阻力之后,仍可以超过被输送物体悬浮速度的流速进行有序流动。因此,实现长距离气力输送通常采用以下两种技术方案:1.提升动力与风机系统性能,为气力输送系统提供更强劲的动力;2.优化输送管路,减少气体在管路中流动的阻力。目前多数学者的研究工作集中在第一种方案,但动力和风机相关的技术已经相对成熟,其性能继续提升的空间有限,且需付出较高的成本;也有学者开展了第二种技术方案的研究工作,但多集中 在管路材料以及管路内部纹路上,目前尚未见管路结构尺寸研究的相关报道。此外,由于气体具有可压缩性,当压力发生变化后,其体积会出现大幅变化,且输送管路的两端具备压力差,导致输送管路内部气体流速分布不均匀。通常情况下,输送管路的一端气体流速低,另外一端的气体流速高(压送式和吸送式管内气体速度分布情况相反),高流速将加剧管路磨损,降低气力输送系统寿命,这种现象在长距离气力输送中尤为显著。
本公开一些实施例提供一种气力输送系统(例如压送式气力输送系统,也可称为压送式仿生象鼻长距离气力输送系统),如图1所示,包括第一动力单元1、第一风机2、第一连接管路3、第一消音器4、第二连接管路5、送料器6、压送式仿象鼻输送管路7、气料分离器8和储料罐9。
具体的,第一动力单元1用于为第一风机2提供动力。
第一风机2是气力输送系统的气体流动的动力源,第一风机2用于将第一动力单元1提供的动能转化为气力输送系统中气体流动的能量。
第一风机2与第一消音器4通过第一连接管路3连接;第一消音器4用于降低第一风机2产生的噪声。
第一风机2的出口处连接第二连接管路5,第二连接管路5与压送式仿象鼻输送管路7连接,送料器6位于第二连接管路5与压送式仿象鼻输送管路7的连接处。
送料器6用于为气力输送系统提供被输送物料,物料经由送料器6进入压送式仿象鼻输送管路7,被高速流动的气体携带,沿着设定的管路路线输送到气料分离器8。
气料分离器8与储料罐9相连,气料分离器8用于将气料混合物进行分离,气体经处理排放到大气中,物料进入到储料罐9中。
储料罐9用于存储被输送到目的地的物料。
作为一些实施方式,第一动力单元1包括但不限于发动机、马达、电机等动力设备,可将化学能、动能、电能等转化为驱动第一风机2转动的动能。
作为一些实施方式,第一动力单元1通过联轴器、皮带、链条等形式与第一风机2连接。
作为一些实施方式,第一风机2包括但不限于罗茨风机、离心风机、轴流风机等。
作为一些实施方式,压送式仿象鼻输送管路7结构参见图2,为一种内径逐渐扩大的管路(例如类似锥形的管路)701,可根据需求沿直线布置,也可沿输送路径弯曲布置,其小内径一端与送料器6相接,大内径一端与气料分离器8相接。采用该结 构,管路内径逐渐扩大可为内部气体提供了更大的流动空间,缓解甚至抵消因压力降低气体体积膨胀而引起的气体流速增加,并缓解甚至抵消因压力升高气体体积压缩引起的气体流速降低。
作为另一些实施方式,压送式仿象鼻输送管路7为由不同标准内径规格的管路从小到大拼接而成,小管径与送料器6相接,大管径与气料分离器8相接。应理解,某一标准内径规格的管路自身的内径基本不变。
作为另一些实施方式,压送式仿象鼻输送管路7结构如图3所示,为由不同标准内径规格的管路从小到大拼接而成,在不同内径规格管路之间设置锥形的过渡管,通过添加过渡管,可减缓因管路突然变径内部气体流速突变引起的堵管。
图3以两次变径情况为例进行说明,不能作为本公开的限制。
参见图3,压送式仿象鼻输送管路7由首段输送管路702、输送管路704和末段输送管路706从小到大拼接而成,首段输送管路702和输送管路704之间的变径处设锥形的第一过渡管路703,输送管路704和末段输送管路706之间的变径处设锥形的第二过渡管路704。可以理解,首段输送管路702、输送管路704和末段输送管路706各自的内径基本不变。
首段输送管路702与送料器6相接,末段输送管路706与气料分离器8相接。
本公开另一些实施例提供一种气力输送系统(例如吸送式气力输送系统,也可称为吸送式仿生象鼻长距离气力输送系统),如图4所示,包括第二动力单元10、第二风机11、第三连接管路12、第二消音器13、第四连接管路14、除尘器15、第五连接管路16、负压储料罐17、吸送式仿象鼻输送管路18和抽吸吸嘴19。
具体的,第二动力单元10用于为第二风机11提供动力。
第二风机11是气力输送系统的气体流动的动力源,第二风机11用于将第二动力单元10提供的动能转化为气力输送系统中气体流动的能量。
第二风机11与第二消音器13通过第三连接管路12连接,第二消音器13用于降低第二风机11产生的噪声。
第二风机11的出口处连接第四连接管路14,第四连接管路14连接除尘器15,除尘器15通过第五连接管路16与负压储料罐17相连,负压储料罐17连接吸送式仿象鼻输送管路18,吸送式仿象鼻输送管路18的端部设抽吸吸嘴19。
除尘器15用于过滤气体中的粉尘,避免因粉尘进入第二风机11,而引起第二风机11结构损坏。
抽吸吸嘴19用于将被输送物料经吸入到吸送式仿象鼻输送管路18中。
负压储料罐17用于存储被输送到目的地的物料。
作为一些实施方式,第二动力单元10包括但不限于发动机、马达、电机等动力设备,可将化学能、动能、电能等转化为驱动第二风机11转动的动能。
作为一些实施方式,第二动力单元10通过联轴器、皮带、链条等形式与第二风机11连接。
作为一些实施方式,第二风机11包括但不限于罗茨风机、离心风机、轴流风机等。
作为一些实施方式,吸送式仿象鼻输送管路18结构如图5所示,为一种内径逐渐缩小的管路(例如类似锥形的管路)181,可根据需求沿直线布置,也可沿输送路径弯曲布置,大内径一端与负压储料罐17相连相接,小内径一端与抽吸吸嘴19相接;通过该结构,管路内径缩小将压缩内部气体的流动空间,缓解甚至抵消因压力升高气体体积压缩引起的气体流速降低,并缓解甚至抵消因压力降低气体体积膨胀而引起的气体流速增加。
可以理解,吸送式仿象鼻输送管路18内径逐渐缩小,也即吸送式仿象鼻输送管路18内径从连接抽吸吸嘴19的一端至连接负压储料罐17的一端逐渐扩大。
作为另一些实施方式,吸送式仿象鼻输送管路18由不同内径规格的管路从大到小拼接而成,大内径一端与负压储料罐17相接,小内径一端与抽吸吸嘴19相接。
作为另一些实施方式,吸送式仿象鼻输送管路18为由不同内径规格的管路从大到小拼接而成,且在不同内径规格管路之间设置锥形的过渡管。通过添加过渡管,可减缓因管路突然变径内部气体流速突变引起的堵管。
图6以两次变径情况为例进行说明,不能作为本公开的限制。
参见图6,吸送式仿象鼻输送管路18由不同内径规格的首段输送管路182、输送管路184和末段输送管路186从大到小拼接而成,首段输送管路182和输送管路184之间的变径处设置锥形的第一过渡管路183,输送管路184和末段输送管路186之间的变径处设置锥形的第二过渡管路185;首段输送管路182与负压储料罐17相接,末段输送管路186与抽吸吸嘴19相接。可以理解,首段输送管路182、输送管路184和末段输送管路186各自的内径基本不变。
本公开又一些实施例提供一种气力输送系统的优化配置方法,用于对上述任意一个实施例的气力输送系统中由不同内径规格的管路拼接而成的仿象鼻输送管路进行 优化配置,如图7所示,该方法包括以下步骤。
在步骤1,确定气力输送系统的输送距离L、首段输送管路直径Db、末段输送管路直径De、变径次数n(n≥1)、输送管路直径D1、D2、……Dn-1等参数。
可以理解,在变径次数n等于1的情况下,仿象鼻输送管路不包括首段输送管路与末段输送管路之间的输送管路。这种情况下,不需要确定输送管路直径D1至Dn-1
在n≥2的情况下,仿象鼻输送管路包括首段输送管路与末段输送管路之间的至少一个输送管路。这种情况下,确定输送管路直径D1至Dn-1
在步骤2,判断仿象鼻输送管路的变径处是否采用过渡管的形式,若采用则进入步骤3,若不采用则进入步骤4。
在步骤3,计算各变径处的过渡管路的长度Lt1、Lt2、……Ltn,通常需取大径管路直径的6倍及以上,然后进入步骤4。
可以理解,各变径处的过渡管路的两端分别连接不同内径的两个管路中的一个和另一个。这里的大内径管路即过渡管路两端连接的两个管路中内径较大的一个管路。
在步骤4,构建参数化流体域三维模型。
在一些实施例中,模型中各段初始长度可以等于(L-Lt1-Lt2-…-Ltn)/(n+1)。
在步骤5,划分网格、设置模型边界条件。
在步骤6,运用仿真软件进行求解,收敛后提取管路中气体流速分布场。
在步骤7,设置各规格管路的长度为变量,管路中气体流速分布场均匀性指标为目标值,导入寻优算法进行寻优计算,输出各规格管路的长度,分别是首段输送管路的长度LDb、首段输送管路与末段输送管路之间的输送管路的长度LD1、LD2、……LDn -1、以及末段输送管路的长度LDe
参见图7,在仿象鼻输送管路中气体流速分布场均匀性指标满足预设要求的情况下,可以输出各规格管路的长度,否则继续进行寻优计算。
需要说明的是,步骤7的寻优算法可采用但不限于:贝叶斯优化、遗传算法、基于梯度优化、网格搜索、基于种群优化、ParamILS和Keras Tuner等。
本公开实施例还提供了一种气力输送系统的优化配置方法,用于对上述任意一个实施例所述的气力输送系统中的不同内径的管路进行优化配置,该方法包括以下步骤。
步骤1,确定气力输送系统的输送距离、首段输送管路直径、末段输送管路直径、变径次数和至少一个输送管路直径。
步骤2,判断不同内径的管路之间是否采用过渡管路,若采用则进入步骤3,若 不采用则进入步骤4。
步骤3,基于至少一个输送管路中各输送管路直径计算各变径处的过渡管路的长度,进入步骤4。
步骤4,对由不同内径的管路构成的仿象鼻输送管路构建参数化流体域三维模型。
步骤5,对所构建的参数化流体域三维模型划分网格并设置边界条件。
步骤6,以不同内径的管路的长度为变量,以仿象鼻输送管路中气体流速分布场均匀性指标为目标,对模型进行寻优计算,输出各不同内径的管路的长度。
本公开实施例还提供了一种计算机可读存储介质,包括计算机程序指令,该计算机程序指令被处理器执行时实现上述任意一个实施例的方法。
本公开实施例还提供了一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现上述任意一个实施例的方法。
本领域内的技术人员应当明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用非瞬时性存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
虽然已经通过示例对本公开的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本公开的范围。本领域的技术人员应该理解,可在不脱离本公开的范围和精神的情况下,对以上实施例进行修改或者对部分技术特征进行等同替换。本公开的范围由所附权利要求来限定。
在不脱离本公开理念的前提下的改进都应视为本公开的保护范围。

Claims (19)

  1. 一种气力输送系统,包括第一动力单元、第一风机、送料器、压送式仿象鼻输送管路、气料分离器和储料罐,
    所述第一动力单元用于为第一风机提供动力;
    所述第一风机用于将所述第一动力单元提供的动能转化为气力输送系统中气体流动的能量;
    所述第一风机的出口处连接第二连接管路,所述第二连接管路与所述压送式仿象鼻输送管路连接;所述压送式仿象鼻输送管路依次连接所述气料分离器和所述储料罐;
    所述送料器位于所述第二连接管路与所述压送式仿象鼻输送管路的连接处;
    所述压送式仿象鼻输送管路为一种内径逐渐扩大的管路,所述压送式仿象鼻输送管路小内径的一端与所述送料器相接,所述压送式仿象鼻输送管路大内径的一端与所述气料分离器相接。
  2. 根据权利要求1所述的一种气力输送系统,其特征在于,所述第一动力单元为以下任意一种:
    发动机、马达和电机。
  3. 根据权利要求1或2所述的一种气力输送系统,其特征在于,所述第一动力单元通过联轴器、皮带或链条与所述第一风机连接。
  4. 根据权利要求1-3任意一项所述的一种气力输送系统,其特征在于,所述第一风机为以下任意一种:
    罗茨风机、离心风机和轴流风机。
  5. 根据权利要求1-4任意一项所述的一种气力输送系统,其特征在于,所述压送式仿象鼻输送管路由不同内径的管路从小到大拼接而成;
    其中,最小内径的管路为首段输送管路,与所述送料器相接;
    最大内径的管路为末段输送管路,与所述气料分离器相接;
    首段输送管路和末段输送管路之间为至少一个输送管路。
  6. 根据权利要求5所述的一种气力输送系统,其特征在于,所述不同内径的管路之间的变径处设锥形的过渡管路。
  7. 根据权利要求1-6任意一项所述的一种气力输送系统,其特征在于,还包括第一消音器;
    所述第一消音器与第一风机通过第一连接管路连接。
  8. 一种气力输送系统,包括第二动力单元、第二风机、除尘器、负压储料罐、吸送式仿象鼻输送管路和抽吸吸嘴,
    所述第二动力单元用于为所述第二风机提供动力;
    所述第二风机用于将所述第二动力单元提供的动能转化为气力输送系统中气体流动的能量;
    所述第二风机的出口处依次连接除尘器和负压储料罐;
    所述负压储料罐连接吸送式仿象鼻输送管路;所述吸送式仿象鼻输送管路的端部设抽吸吸嘴;
    所述吸送式仿象鼻输送管路为一种内径逐渐缩小的管路,所述吸送式仿象鼻输送管路小内径的一端与所述抽吸吸嘴相接,所述吸送式仿象鼻输送管路大内径的一端与所述负压储料罐相接。
  9. 根据权利要求8所述的一种气力输送系统,其特征在于,所述第二动力单元为以下任意一种:
    发动机、马达和电机。
  10. 根据权利要求8或9所述的一种气力输送系统,其特征在于,所述第二动力单元通过联轴器、皮带或链条与所述第二风机连接。
  11. 根据权利要求8-10任意一项所述的一种气力输送系统,其特征在于,所述第二风机为以下任意一种:
    罗茨风机、离心风机和轴流风机。
  12. 根据权利要求8-11任意一项所述的一种气力输送系统,其特征在于,所述吸送式仿象鼻输送管路由不同内径的管路从大到小拼接而成;
    其中,最大内径的管路为首段输送管路,与所述负压储料罐相接;
    最小内径的管路为末段输送管路,与所述抽吸吸嘴相接;
    首段输送管路和末段输送管路之间为至少一个输送管路。
  13. 根据权利要求12所述的一种气力输送系统,其特征在于,所述不同内径的管路之间的变径处设锥形的过渡管路。
  14. 根据权利要求8-13任意一项所述的一种气力输送系统,其特征在于,还包括第二消音器;
    所述第二消音器与第二风机通过第三连接管路连接。
  15. 一种气力输送系统的优化配置方法,其特征在于,用于对权利要求6或13所述的气力输送系统中的不同内径的管路进行优化配置,所述方法包括:
    步骤1:确定所述气力输送系统的输送距离、首段输送管路直径、末段输送管路直径、变径次数和至少一个输送管路直径;
    步骤2:判断不同内径的管路之间是否采用过渡管路,若采用则进入步骤3,若不采用则进入步骤4;
    步骤3:基于所述至少一个输送管路中各输送管路直径计算各变径处的过渡管路的长度,进入步骤4;
    步骤4:对由不同内径的管路构成的仿象鼻输送管路构建参数化流体域三维模型;
    步骤5:对所构建的参数化流体域三维模型划分网格并设置边界条件;
    步骤6:以不同内径的管路的长度为变量,以仿象鼻输送管路中气体流速分布场均匀性指标为目标,对所述模型进行寻优计算,输出各不同内径的管路的长度。
  16. 根据权利要求15所述的一种气力输送系统的优化配置方法,其特征在于,所述基于所述至少一个输送管路中各输送管路直径计算各变径处的过渡管路的长度,包括:
    取变径处的过渡管路连接的大内径输送管路直径的6倍及以上的长度,作为变径处的过渡管路的长度。
  17. 根据权利要求15或16所述的一种气力输送系统的优化配置方法,其特征在于,对所述模型进行寻优计算,包括:
    采用以下任意方法对所述模型进行寻优计算,直至仿象鼻输送管路中气体流速分布场均匀性指标满足预设要求:
    贝叶斯优化、遗传算法、基于梯度优化、网格搜索、基于种群优化、ParamILS和Keras Tuner。
  18. 一种计算机可读存储介质,包括计算机程序指令,其中,所述计算机程序指令被处理器执行时实现权利要求15-17任意一项所述的方法。
  19. 一种计算机程序产品,包括计算机程序,其中,所述计算机程序被处理器执行时实现权利要求15-17任意一项所述的方法。
PCT/CN2023/122042 2022-11-25 2023-09-27 气力输送系统及优化配置方法 WO2024017414A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211496399.8A CN116081314A (zh) 2022-11-25 2022-11-25 一种仿生象鼻长距离气力输送系统及优化配置方法
CN202211496399.8 2022-11-25

Publications (1)

Publication Number Publication Date
WO2024017414A1 true WO2024017414A1 (zh) 2024-01-25

Family

ID=86211027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/122042 WO2024017414A1 (zh) 2022-11-25 2023-09-27 气力输送系统及优化配置方法

Country Status (2)

Country Link
CN (1) CN116081314A (zh)
WO (1) WO2024017414A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116081314A (zh) * 2022-11-25 2023-05-09 江苏徐工工程机械研究院有限公司 一种仿生象鼻长距离气力输送系统及优化配置方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102536313A (zh) * 2012-02-15 2012-07-04 新汶矿业集团有限责任公司协庄煤矿 一种矸石充填气力输送系统
CN102837969A (zh) * 2011-06-20 2012-12-26 通用电气公司 流型转换管及气力输送系统
CN204714072U (zh) * 2015-04-10 2015-10-21 苏州闻达食品配料有限公司 一种气力输送装置
CN205708874U (zh) * 2016-04-20 2016-11-23 徐州徐工施维英机械有限公司 粉粒物料运输车出料管路及粉粒物料运输车
CN209280100U (zh) * 2018-12-20 2019-08-20 山东省科学院海洋仪器仪表研究所 一种负压气力输送实验装置
CN211619330U (zh) * 2019-12-26 2020-10-02 河北工程大学 一种基于文丘里效应的气力输送装置
CN211920164U (zh) * 2020-01-19 2020-11-13 湖南宏工智能科技有限公司 一种具有辅助增压功能的气力输送系统
CN116081314A (zh) * 2022-11-25 2023-05-09 江苏徐工工程机械研究院有限公司 一种仿生象鼻长距离气力输送系统及优化配置方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4020450B2 (ja) * 1996-10-01 2007-12-12 株式会社松井製作所 粉粒体の輸送方法とその装置
JP2003003515A (ja) * 2001-06-21 2003-01-08 Saeki Kensetsu Kogyo Co Ltd 空気圧送用ブースタおよびその配置方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102837969A (zh) * 2011-06-20 2012-12-26 通用电气公司 流型转换管及气力输送系统
CN102536313A (zh) * 2012-02-15 2012-07-04 新汶矿业集团有限责任公司协庄煤矿 一种矸石充填气力输送系统
CN204714072U (zh) * 2015-04-10 2015-10-21 苏州闻达食品配料有限公司 一种气力输送装置
CN205708874U (zh) * 2016-04-20 2016-11-23 徐州徐工施维英机械有限公司 粉粒物料运输车出料管路及粉粒物料运输车
CN209280100U (zh) * 2018-12-20 2019-08-20 山东省科学院海洋仪器仪表研究所 一种负压气力输送实验装置
CN211619330U (zh) * 2019-12-26 2020-10-02 河北工程大学 一种基于文丘里效应的气力输送装置
CN211920164U (zh) * 2020-01-19 2020-11-13 湖南宏工智能科技有限公司 一种具有辅助增压功能的气力输送系统
CN116081314A (zh) * 2022-11-25 2023-05-09 江苏徐工工程机械研究院有限公司 一种仿生象鼻长距离气力输送系统及优化配置方法

Also Published As

Publication number Publication date
CN116081314A (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
WO2024017414A1 (zh) 气力输送系统及优化配置方法
CN201786502U (zh) 一种宽频消声器
CN203428542U (zh) 气力输送管路的补气器
CN201447225U (zh) 气力输灰系统
CN206384574U (zh) 一种气力输送系统
CN204646679U (zh) 一种罗茨风机放空及消除噪声装置
CN208700065U (zh) 一种输送装置
CN206943629U (zh) 一种防吸扁管件及具有防吸扁管件的重力流管路
CN204553174U (zh) 一种高效稳定的空压机干燥塔并联运行系统
CN108087239B (zh) 一种用于大型往复压缩机的管道式主动气流脉动衰减装置
CN102935945A (zh) 一种单台高效连续输送泵
CN207275738U (zh) 一种节能的气力输灰管道系统
CN104787582A (zh) 一种远距离大出力连续输送泵
CN216189278U (zh) 一种灰斗输灰系统
CN111140295A (zh) 可提高压气机性能的增压器蜗壳
CN210029245U (zh) 一种气力输送管道配气系统
CN205148669U (zh) 一种聚酯切片生产设备
CN208652596U (zh) 一种锅炉输灰系统
CN211819534U (zh) 可提高压气机性能的增压器蜗壳
CN111365617B (zh) 一种多联高压罗茨鼓风机装置
CN212502865U (zh) 电厂用新型节能气力输灰装置
CN204083791U (zh) 大流量卸车撬
CN108374801B (zh) 一种用于养鱼业的混输泵叶轮结构
CN103423197A (zh) 螺旋压缩膨胀制冷机用径轴流进气增压叶轮
CN206108387U (zh) 用于钢铁行业混合粉尘的气力输送系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 112024000039859

Country of ref document: IT

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842476

Country of ref document: EP

Kind code of ref document: A1