WO2024016988A1 - 子信道的配置方法、通信节点及存储介质 - Google Patents

子信道的配置方法、通信节点及存储介质 Download PDF

Info

Publication number
WO2024016988A1
WO2024016988A1 PCT/CN2023/103748 CN2023103748W WO2024016988A1 WO 2024016988 A1 WO2024016988 A1 WO 2024016988A1 CN 2023103748 W CN2023103748 W CN 2023103748W WO 2024016988 A1 WO2024016988 A1 WO 2024016988A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
sub
resource pool
subband
rbs
Prior art date
Application number
PCT/CN2023/103748
Other languages
English (en)
French (fr)
Inventor
苗婷
卢有雄
陈杰
邢卫民
贺海港
毕峰
胡宇洲
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2024016988A1 publication Critical patent/WO2024016988A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • This application relates to the field of communication technology, for example, to a sub-channel configuration method, communication node and storage medium.
  • the bandwidth part (Bandwidth Part, BWP) is configured based on the carrier, and one or more SL resource pools (hereinafter referred to as resource pools) are configured in the BWP.
  • a resource pool can contain multiple resource block sets (Resource Block set, RB set).
  • RB set Resource Block set
  • guard bands are left between adjacent RB sets to prevent transmissions on different RB sets from interfering with each other.
  • adjacent RB sets are free (that is, not occupied by other devices), compared with only using the resources within the RB set, if the adjacent RB sets and the guard bands between them can be used, the transmission can reach Higher resource utilization.
  • the adjacent RB set may be occupied by other devices, especially by other devices of different systems.
  • This embodiment of the present application provides a sub-channel configuration method, including:
  • Sub-channels are configured according to the frequency domain units.
  • Each sub-channel includes a specific number of frequency domain units. The specific number is determined by configuration, pre-configuration or pre-definition.
  • An embodiment of the present application provides a communication node, including: a processor; the processor is configured to implement the method of any of the above embodiments when executing a computer program.
  • Embodiments of the present application also provide a computer-readable storage medium that stores a computer program.
  • the computer program is executed by a processor, the method of any of the above embodiments is implemented.
  • Figure 1 is an interleaving schematic diagram of an interleaving number of 5 provided by an embodiment
  • Figure 2 is a schematic diagram of a carrier, BWP and RB set provided by an embodiment
  • Figure 3 is a schematic flowchart of a sub-channel configuration method provided by an embodiment
  • Figure 4 is a schematic flowchart of another sub-channel configuration method provided by an embodiment
  • Figure 5 is a schematic diagram of configuring subbands based on a resource pool according to an embodiment
  • Figure 6 is a schematic diagram of a carrier or BWP configuration subband provided by an embodiment
  • Figure 7 is a schematic diagram of determining subbands according to rule 1 provided by an embodiment
  • Figure 8 is a schematic diagram of determining subbands according to rule 2 provided by an embodiment
  • Figure 9 is a schematic diagram of determining subbands according to rule 3 provided by an embodiment
  • Figure 10 is another schematic diagram of determining subbands according to rule 3 provided by an embodiment
  • Figure 11 is a schematic diagram of determining subbands according to Rule 3 and Rule 4 provided by an embodiment
  • Figure 12 is a schematic diagram of determining subbands according to rule 5 provided by an embodiment
  • Figure 13 is a schematic diagram of another method of determining subbands according to rule 5 provided by an embodiment
  • Figure 14 is a schematic diagram of determining subbands according to rule 6 provided by an embodiment
  • Figure 15 is a schematic diagram of another method of determining subbands according to rule 6 provided by an embodiment
  • Figure 16 is another schematic diagram of determining subbands according to rule 6 provided by an embodiment
  • Figure 17 is a schematic diagram of determining subbands according to rule 7 provided by an embodiment
  • Figure 18 is a schematic flowchart of another sub-channel configuration method provided by an embodiment
  • Figure 19 is a schematic structural diagram of a sub-channel configuration device provided by an embodiment
  • Figure 20 is a schematic structural diagram of a UE provided by an embodiment
  • Figure 21 is a schematic structural diagram of a base station or high-level entity provided by an embodiment.
  • SL communication includes vehicle wireless communication technology (Vehicle to Everything, V2X) communication, user equipment (UE) and UE direct communication (Device to Device, D2D), etc., and can work in authorized spectrum, intelligent transportation system (Intelligent Traffic) Systems, ITS) spectrum. exist In the future, SL communications can also operate in unlicensed spectrum.
  • V2X vehicle to Everything
  • UE user equipment
  • D2D Device to Device
  • the resource pool contains multiple continuous resource blocks (Resource Block, RB) in the frequency domain. These RBs are divided into one or more sub-channels. Each The sub-channels contain the same number of RBs.
  • SL resource allocation is based on the sub-channels in the resource pool. Each SL transmission occupies one or more consecutive sub-channels in the frequency domain.
  • one or more resource pools are configured in the BWP, and one resource pool can contain multiple RB sets.
  • guard bands are left between adjacent RB sets to prevent transmissions on different RB sets from interfering with each other.
  • adjacent RB sets are free (that is, not occupied by other devices)
  • the adjacent RB set may be occupied by other devices, especially by other devices of different systems.
  • guard bands are usually not used. Therefore, how to utilize the protective tape is an urgent problem that needs to be solved.
  • OCB occupied Channel Bandwidth
  • UE User Equipment
  • the subchannel configuration method provided by this application can be applied to SL communication systems based on multiple types of wireless communication technologies, such as long term evolution (LTE) technology, fourth generation mobile communication technology (4th-generation, 4G), The fifth generation mobile communication technology (5th-generation, 5G), LTE and 5G hybrid technology, 5G New Radio (NR) technology, and new communication technologies emerging in future communication development, such as the sixth generation mobile communication technology (6th-generation, 6G) and other SL communication systems.
  • LTE long term evolution
  • 4G fourth generation mobile communication technology
  • 5G fifth generation mobile communication technology
  • LTE and 5G hybrid technology LTE and 5G hybrid technology
  • 5G New Radio (NR) technology 5G New Radio
  • new communication technologies emerging in future communication development such as the sixth generation mobile communication technology (6th-generation, 6G) and other SL communication systems.
  • a sub-channel configuration method, communication node and storage medium are provided, which can configure SL resources on the unlicensed frequency band and improve resource utilization.
  • the New Radio in Unlicensed Spectrum (NR-U) system defines multiple interleavings of RBs, and each interleaving consists of equally spaced Common Resource Blocks (CRBs).
  • CRBs Common Resource Blocks
  • interleave m ⁇ 0,1,...,M-1 ⁇ consists of CRB ⁇ m,M+m,2M+m,3M+m,... ⁇ , where M is the number of interleaves.
  • M is the number of interleaves.
  • the number of interleavings M is 10 and 5 for subcarrier spacing of 15kHz and 30kHz respectively.
  • this application also includes interleavings corresponding to other subcarrier intervals (for example, 60kHz, 120kHz, 240kHz, etc.), and does not limit the number M of interleavings corresponding to different subcarriers.
  • Interlaced Resource Block (IRB) in BWP i and interlaced in m (That is, the number of CRB in interleave m within BWP i) with common resource block The relationship between them is as follows:
  • FIG. 1 shows an interleaving schematic diagram in which the interleaving number is 5 provided by an embodiment.
  • interleave 0 is composed of CRB ⁇ 0,5,10,... ⁇
  • interleave 1 is composed of CRB ⁇ 1,6,11,... ⁇
  • interleave 4 is composed of CRB ⁇ 4,9,14 ,... ⁇ composition.
  • the CRB index corresponding to the interleaved resource blocks ⁇ 0,1,...,20 ⁇ in interleave 0 is ⁇ 5,10,...,105 ⁇
  • the CRB index corresponding to the interleaving resource block ⁇ 0,1,...,20 ⁇ in interleaving 1 is ⁇ 6,11,...,106 ⁇ , and so on, the interleaving resource block ⁇ 0,1,
  • the CRB index corresponding to 2,...,21 ⁇ is ⁇ 4,9,14,...,109 ⁇ .
  • the UE can be configured with N-1 guard bands (Guard Band, GB).
  • N-1 guard bands Guard Band, GB
  • Each GB passes the starting CRB and the number of CRBs (that is, the size of the guard band).
  • N-1 GB divides the carrier into N RB sets.
  • BWP contains an integer set of resource blocks, and the starting resource block of BWP And the bandwidth of BWP in, is the starting RB of resource block set s0, It is the end RB of resource block set s1, 0 ⁇ s0 ⁇ s1 ⁇ N-1.
  • FIG. 2 shows a schematic diagram of a carrier, BWP and RB set provided by an embodiment.
  • the starting RB of BWP is aligned with the starting RB of RB set1
  • the ending RB of BWP is aligned with the ending RB of RB set2. That is to say, BWP consists of RB set 1, GB1 and RB set2.
  • the resources within the BWP allocated to the UE can be indicated by indicating the interleaving index and the RB set index.
  • the intersection of the interleaving and the RB set (including the guard band between the allocated adjacent RB sets) is the allocation Resources for UE.
  • the RB set index ranges from 0 to Ascending number, is the number of RB sets in BWP.
  • the BWP is configured based on the carrier, and the resource pool is configured within the BWP. This application does not exclude configuring the resource pool based on the carrier.
  • Figure 3 shows a schematic flowchart of a sub-channel configuration method provided by an embodiment. As shown in Figure 3, the method provided by this embodiment is suitable for communication nodes, and the method includes the following steps.
  • the configuration information includes the subbands of the resource pool and the interleaving of the resource pool, or includes the resource block set RB set of the resource pool, the interleaving of the resource pool, and the frequency domain unit size.
  • Each sub-channel includes a specific number of frequency domain units. The specific number is determined by configuration, pre-configuration or pre-definition.
  • the configuration information can be divided into two situations: one situation is that the configuration information includes the sub-band of the resource pool and the interleaving of the resource pool; the other situation is that the configuration information includes the RB set, resource pool of the resource pool interleaving and frequency domain unit size.
  • the frequency domain unit can be determined, but the methods of determining the frequency domain unit are different in the two cases. For ease of understanding, the following embodiments describe the above two situations in detail respectively.
  • parameters such as L, R, frequency position, frequency domain unit size, subband size, and number of subbands may be determined through configuration, preconfiguration, or predefined methods, for example , special instructions can be obtained through calculation or through predefined rules.
  • the configuration information includes subbands of the resource pool and interleaving of the resource pool.
  • Figure 4 shows a schematic flowchart of another sub-channel configuration method provided by an embodiment. As shown in Figure 4, the method includes the following steps.
  • the configuration information includes the subbands of the resource pool and the interleaving of the resource pool.
  • the resource pool includes at least one subband, and each subband includes at least one of the following: RB set, RB set and a guard band adjacent to the RB set, and a group of continuous RBs.
  • the subband is determined based on the resource pool; or the subband is determined based on the carrier, the subband of the BWP is determined based on the subband of the carrier, and the subband of the resource pool is determined based on the subband of the BWP; or the subband is determined based on the BWP Determine, the subband of the resource pool is determined based on the subband of the BWP; or, the subband is determined based on the carrier, and the subband of the resource pool is determined based on the subband of the carrier.
  • the resource pool contains all interlaces by default.
  • subbands are configured based on the resource pool, and the interlaces included in the resource pool are configured to determine the frequency domain resources included in the resource pool.
  • the resource pool is configured to include subbands 0 and 1
  • the resource pool is configured to include Interleave 2 and 3
  • the resources shown in the shaded part in Figure 5 are resources in the resource pool, that is, the frequency domain resources of the resource pool are all RBs included in interleave 2 and 3 in subbands 0 and 1.
  • configure subbands based on carriers or BWPs and then configure some or all of the subbands to the resource pool.
  • a carrier or BWP with a subcarrier interval of 30 kHz contains a total of 3 subbands. Assume interleaving. The total number is 5.
  • the resources shown in the shaded part in Figure 6 are the resources in the resource pool.
  • the rules for determining subbands include at least one of the following seven:
  • Rule 4 The last R RBs in the protection band and the RB set with the larger index adjacent to the protection band form a sub-band, and R is an integer greater than or equal to 0 and less than the number of RBs included in the protection band;
  • Rule 6 Determine the subband based on at least one of the subband size and the number of subbands
  • Each RB set is a sub-band.
  • which rule or rules are used to determine the subband may be determined in a configuration, preconfiguration or predefined manner.
  • resource block sets are numbered from low frequency to high frequency, that is, the resource block set with a small index is a resource block set with low frequency, and the resource block set with a large index is a resource block set with high frequency.
  • This application does not make a strict distinction.
  • the guard bands are also numbered from low frequency to high frequency.
  • Example 1 The guard band and the RB set with small index (or RB set with low frequency) adjacent to the guard band form a sub-band.
  • the guard band and the RB set with the smallest index adjacent to the guard band form a sub-band, and the last RB set (that is, the RB set with the largest index in the resource pool) serves as a sub-band.
  • Figure 7 shows a schematic diagram of determining subbands according to rule 1 provided by an embodiment.
  • the resource pool contains 3 guard bands and 4 RB sets.
  • the guard bands are the shaded parts in Figure 7.
  • the RB numbers in the resource pool are 0, 1,...,216.
  • the starting and ending RBs of subband 0 are 0 and 55 respectively, which is composed of the first RB set and the first guard band in the resource pool; the starting and ending RBs of subband 1 are 56 and 110 respectively, which is composed of the second RB set in the resource pool.
  • the starting and ending RBs of subband 2 are 111 and 166 respectively, which is composed of the third RB set and the third protective band in the resource pool; the starting and ending RBs of subband 3 are 167 and 166 respectively. 216, which is composed of the fourth RB set in the resource pool.
  • Example 2 The guard band and the RB set with large index (or RB set with high frequency) adjacent to the guard band form a sub-band.
  • the guard band and the RB set with the largest index adjacent to the guard band form a sub-band, and the first RB set (that is, the RB set with the smallest index in the resource pool) serves as a sub-band.
  • Figure 8 shows a schematic diagram of determining subbands according to rule 2 provided by an embodiment.
  • the resource pool contains 3 guard bands and 4 RB sets.
  • the guard bands are the shaded parts in Figure 8.
  • the RB numbers in the resource pool are 0, 1,...,216.
  • the starting and ending RBs of subband 0 are 0 and 49 respectively, which are composed of the first RB set in the resource pool; the starting and ending RBs of subband 1 are 50 and 105 respectively, which are composed of the first protection band and the second set of RBs in the resource pool.
  • Composed of RB set; the starting and ending RBs of subband 2 are 106 and 160 respectively. That is, it consists of the second protection band and the third RB set in the resource pool; the starting and ending RBs of subband 3 are 161 and 216 respectively, that is, it consists of the third protection band and the fourth RB set in the resource pool.
  • Example 3 The first L RBs in the guard band and the RB set with small index adjacent to the guard band form a sub-band.
  • L is an integer greater than or equal to 0 and less than the number of RBs included in the guard band.
  • the first L RBs in a protection band and the RB set with a small index adjacent to the protection band form a sub-band.
  • the last RB set serves as a sub-band.
  • L is greater than or equal to 0 and less than the protection band.
  • Each protection band in the resource pool can correspond to an L value, or all protection bands in the resource pool can correspond to an L value.
  • Figure 9 shows a schematic diagram of determining subbands according to rule 3 provided by an embodiment.
  • the resource pool contains 2 protection bands and 3 RB sets.
  • the value of L is 5.
  • the first 5 RBs of the first protection band and the first RB set form a sub-band;
  • the second The first 5 BRs of the protection band and the second RB set form a sub-band;
  • the third RB set serves as a sub-band.
  • the value of L is determined through configuration, preconfiguration or predefined manner; or, the value of L is calculated based on the size of the frequency domain unit.
  • each frequency domain unit is all RBs included in an interlace within a subband.
  • the frequency domain unit size is RBs
  • the value of L needs to meet the condition: the number of RBs included in the interleave corresponding to the resource pool in the subband consisting of the adjacent RB set with small index and the first L RBs of the guard band is The minimum (or maximum) value of . That is, L makes the number of RBs contained in the intersection of each subband of the resource pool and each interlace of the resource pool equal to the configured, preconfigured or predefined frequency domain unit size.
  • the guard band GB0 contains 6 RB.
  • the resource set RB set0 with small index adjacent to GB0 contains 8 RBs.
  • the number of RBs corresponding to 0, 1 and 2 interleaved in RB set0 is 1, 1 and 2 respectively.
  • Example 4 The last R RBs in the guard band and the RB set with the larger index adjacent to the guard band form a sub-band.
  • R is an integer greater than or equal to 0 and less than the number of RBs included in the guard band.
  • the last R RBs in a protection band and the RB set with a large index adjacent to the protection band form a sub-band.
  • the first RB set serves as a sub-band, and R is greater than or equal to 0 and less than the protection band.
  • Each protection band in the resource pool can correspond to an R value, or all protection bands in the resource pool can correspond to an R value.
  • the value of R is determined through configuration, preconfiguration or predefined manner; or, the value of R is calculated based on the size of the frequency domain unit.
  • the calculation method is similar to the method of calculating the value of L based on the size of the frequency domain unit in Example 3 above. For the sake of simplicity, it will not be described again here.
  • Example 5 The first L RBs in the guard band and the RB set with small index adjacent to the guard band form a sub-band.
  • the last R RBs in the guard band and the RB set with large index adjacent to the guard band form a sub-band.
  • the RB set forms a sub-band with the last R RBs of the guard band with a small index and the first L RBs of the guard band with a large index.
  • L is greater than or equal to 0, and An integer smaller than the number of RBs included in the guard band.
  • R is an integer greater than or equal to 0 and smaller than the number of RBs included in the guard band.
  • the first L RBs in a protection band and the RB set with small index adjacent to the protection band form a sub-band
  • the last R RBs in the protection band are composed of the RB set with large index adjacent to the protection band.
  • the sum of L and R is an integer less than or equal to the number of RBs included in the guard band.
  • Each protection band in the resource pool can correspond to an L value, or all protection bands in the resource pool correspond to an L value; each protection band in the resource pool can correspond to an R value, or all protection bands in the resource pool correspond to an R value.
  • Figure 11 shows a schematic diagram of determining subbands according to Rule 3 and Rule 4 provided by an embodiment.
  • the resource pool contains 2 protection bands and 3 RB sets.
  • the first 3 RBs of the first protection band and the first RB set form a sub-band (i.e. sub-band 0); the first protection band
  • Example 6 K-1 frequency positions determine K sub-bands, K is a positive integer.
  • RB, the end RB of subband K-1 is the last RB of the resource pool.
  • Figure 12 shows a schematic diagram of determining subbands according to rule 5 provided by an embodiment.
  • the number of RBs in the resource pool i.e. RB index
  • the two frequency positions are RB 55 and RB 110 respectively
  • the starting and ending RBs of subband 0 are 0 (i.e. resource The first RB of the pool) and 54 (that is, the previous RB of the RB corresponding to frequency position 0)
  • the starting and ending RBs of subband 1 are 55 (that is, the RB corresponding to frequency position 0) and 109 (that is, the RB corresponding to frequency position 1) respectively.
  • the previous RB of the RB), the starting and ending RBs of subband 2 are 110 (that is, the RB corresponding to frequency position 1) and 159 (that is, the last RB of the resource pool).
  • the above method uses the RB corresponding to the frequency position as the starting RB of the subband with a high index, or the RB corresponding to the frequency position as the ending RB of the subband with a low index, that is:
  • the starting RB of band k (0 ⁇ k ⁇ K-1) is the RB after the RB corresponding to frequency position k-1
  • the ending RB of sub-band k (0 ⁇ k ⁇ K-1) is the RB corresponding to frequency position k.
  • RB, the starting RB of subband 0 is the first RB of the resource pool
  • the ending RB of subband K-1 is the last RB of the resource pool.
  • Figure 13 shows another schematic diagram of determining subbands according to rule 5 provided by an embodiment.
  • the number of RBs in the resource pool i.e. RB index
  • the two frequency positions are RB 55 and RB 110 respectively
  • the starting and ending RBs of subband 0 are 0 (i.e. resource The first RB of the pool) and 55 (that is, the RB corresponding to frequency position 0)
  • the starting and ending RBs of subband 1 are 56 (that is, the RB after the RB corresponding to frequency position 0) and 110 (that is, the RB corresponding to frequency position 1) respectively.
  • the starting and ending RBs of subband 2 are 111 (that is, the last RB of the RB corresponding to frequency position 1) and 159 (that is, the last RB of the resource pool).
  • the K-1 frequency locations are determined through configuration, preconfiguration or predefined manner.
  • Example 7 Determine the subband according to at least one of the subband size and the number of subbands.
  • Method 1 According to the subband size and the number of subbands K, starting from the first RB of the resource pool Each RB is a subband, and the resource pool includes K subbands; or, if the resource pool size is configured or preconfigured (i.e. the number of RBs contained in the resource pool), according to the subband size and the number of subbands K, starting from the first RB of the resource pool Each RB is a sub-band, and the resource pool includes K sub-bands, where, less than or equal to
  • Figure 14 shows a schematic diagram of determining subbands according to rule 6 provided by an embodiment.
  • K 3
  • the resource pool contains 3 subbands, and each subband size is 50 RBs. Since the number of RBs contained in the resource pool is not an integer multiple of the subband size, the remaining 2 RBs do not belong to any subband.
  • Method 2 Determine the number of subbands according to the size of the resource pool and the size of the subbands, and then determine the subbands of the resource pool.
  • Th is the threshold value
  • each resource pool or each BWP or each carrier corresponds to a threshold value.
  • the number of subbands can also be determined in a configured, preconfigured, or predefined manner. Or the number of subbands?
  • Each RB is a sub-band, and the size of the last sub-band is RB. That is, when the number of RBs contained in the resource pool is not an integer multiple of the subband size, the remaining RB as a sub-band.
  • Method 3 Determine the subband size according to the size of the resource pool and the number of subbands, and then determine the subbands of the resource pool.
  • each RB is a sub-band.
  • each RB is a sub-band
  • the last part of the resource pool RB is the Kth sub-band.
  • the front of the resource pool RB is the first sub-band, and for the second to K-th sub-band, in the resource pool from RB starts every Each RB is a sub-band.
  • Example 8 Each RB set is a subband.
  • Figure 17 shows a schematic diagram of determining subbands according to rule 7 provided by an embodiment.
  • the resource pool package Contains 3 guard bands and 4 RB sets.
  • RB set0, RB set1, RB set2 and RB set3 correspond to subband 0, subband 1, subband 2 and subband 3 respectively, that is, each RB set corresponds to a subband.
  • the resource pool contains only one set of resource blocks, then that set of resource blocks corresponds to one subband.
  • the examples of the above rules give the method of determining the subband based on the resource pool.
  • the subband can also be determined based on the carrier or BWP. Just replace “resource pool" with "carrier or BWP".
  • the subband is determined based on the carrier or BWP, you need to further configure which subbands the resource pool contains, or which subbands belong to the resource pool.
  • at least one BWP is configured in a carrier
  • at least one resource pool is configured in a BWP. Therefore, usually the subbands included in the resource pool are a subset of the subbands included in the BWP, and the subbands included in the BWP are the subbands included in the carrier.
  • a subset, but other situations are not excluded, for example, directly configuring which subbands in the carrier belong to the resource pool, that is, directly configuring the subbands included in the resource pool based on the subbands included in the carrier.
  • configuring or preconfiguring certain information may be: the network or base station configures the information to the UE; or, other high-level entities (such as the UE's own high-level, other network entities, etc.) provide information for the UE.
  • the method provided in this application can be enabled or disabled through configuration or preconfiguration, or enabled by enabling SL channels or signals using interleaving, where enabling means that the method in this application can be used, and disabling means The method in this application cannot be used (that is, the resource pool configuration method in NR R16SL or NR R17SL is used).
  • enabling means that the method in this application can be used, and disabling means
  • the method in this application cannot be used (that is, the resource pool configuration method in NR R16SL or NR R17SL is used).
  • one or more RB sets can be configured or pre-configured to belong to a resource pool
  • one or more interleaves can be configured, pre-configured or pre-defined to belong to a resource pool, or a default resource pool Contains all interlaces, and further configures the sub-channels contained in the resource pool so that SL transmission resources are allocated based on sub-channels in the resource pool.
  • Each frequency domain unit is all RBs included in an interlace in a subband.
  • Each frequency domain unit is all RBs included in an interlace in a subband, that is, the frequency domain unit is the intersection of resource blocks in a subband and resource blocks in an interlace.
  • the frequency domain units are numbered according to the rule of interleaving first and then subbands; or the frequency domain units are numbered according to the rule of subbands first and then interleaving.
  • numbering the frequency domain units according to the rule of interleaving first and then subbands includes: first numbering the frequency domain units in the first subband in ascending order of interleaving index, and then numbering the frequency domain units in the second subband in ascending order of interleaving index.
  • the unit number is in ascending order of the subband index, and so on, until the frequency domain units in all subbands are numbered.
  • the frequency domain units in the first subband are numbered 0, 1,...,M-1 in ascending order of the interleaving index
  • the frequency domain units in the second subband are numbered in ascending order of the interleaving index.
  • the frequency domain units are numbered in ascending order of the interleaving index as M, M+1,...,2M-1, and so on.
  • the frequency domain units in the K-th subband are numbered in ascending order of the interleaving index as (K-1)M, ( K-1)M+1,...,KM-1.
  • numbering the frequency domain units according to the rule of interleaving first and then subbands includes: first numbering the frequency domain units in the first subband in ascending order of interleaving index, and then numbering the frequency domain units in the second subband in descending order of interleaving index.
  • the domain unit number is in ascending order of the subband index and so on.
  • the frequency domain unit in the subband is numbered in the ascending order of the interleaving index.
  • the frequency domain unit in the subband is numbered in the descending order of the interleaving index. Number the frequency domain units within the subband until the frequency domain units within all subbands are numbered.
  • the frequency domain units in the first subband are numbered 0, 1,...,M-1 in ascending order of the interleaving index
  • the frequency domain units in the second subband are numbered in ascending order of the interleaving index.
  • the frequency domain units are numbered in descending order of the interleaving index as M, M+1,...,2M-1, and so on.
  • the frequency domain units in the 2k-1 subband are numbered in ascending order of the interleaving index as (2k-2) M,(2k-2)M+1,...,(2k-1)M-1.
  • the frequency domain units in the 2kth sub-band are numbered in descending order of interleaving index as (2k-1)M, (2k-1)M+1,...,2kM-1.
  • the ascending order and descending order in this example can also be exchanged, that is, the frequency domain units in the first subband are numbered in descending order of the interleaving index, and then the frequency domain units in the second subband are numbered in ascending order of the interleaving index. Number, in ascending order of subband index and so on. For subbands with an even number, the frequency domain units in the subband are numbered in descending order of the interleaving index.
  • the subbands are numbered in ascending order of the interleaving index.
  • the frequency domain units within the subband are numbered until the frequency domain units within all subbands are numbered. Using this method to number the frequency domain units can prevent the interleaving indexes corresponding to consecutive frequency domain units from jumping.
  • numbering the frequency domain units according to the rule of subband first and then interleaving includes: first numbering the frequency domain units in the first interleave in ascending order of subband index, and then numbering the frequency domain units in the second interlace in ascending order of subband index.
  • the domain unit number is in ascending order of the interleaving index, and so on, until all frequency domain units in the interlace are numbered.
  • the resource pool contains K subbands and M interlaces
  • the frequency domain units in the first interlace are numbered 0, 1,...,K-1 in ascending order of subband index
  • the frequency domain units in the second interlace are numbered 0, 1,...,K-1 in ascending order of subband index.
  • the frequency domain units in the ascending order of the subband index are K, K+1,...,2K-1, and so on.
  • the frequency domain units in the Mth interlace are numbered in the ascending order of the subband index as (M-1 )K,(M-1)K+1,...,MK-1.
  • numbering frequency domain units according to the rule of subband first and interleaving includes: first numbering the frequency domain units in the first interleave in ascending order of subband index, and then numbering the second interleave in descending order of subband index.
  • the frequency domain unit numbers within the interleave are numbered in ascending order of the interleaving index and so on.
  • the frequency domain units within the interleave are numbered in the ascending order of the subband index.
  • the frequency domain units within the interleave are numbered in the descending order of the subband index.
  • the frequency domain units within this interlace are numbered until all frequency domain units within the interlace are numbered.
  • the frequency domain units in the first interlace are numbered 0, 1,...,K-1 in ascending order of subband index
  • the frequency domain units in the second interlace are numbered 0, 1,...,K-1 in ascending order of subband index.
  • the frequency domain units in descending order of subband index are K, K+1,...,2K-1, and so on.
  • the frequency domain units in the 2m-1 interlace are numbered in ascending order of subband index as (2m -2)K,(2m-2)K+1,...,(2m-1)K-1.
  • the frequency domain units are numbered in descending order of subband index as (2m-1)K, (2m-1)K+1,...,2mK-1.
  • the ascending order and descending order in this example can also be exchanged, that is, the frequency domain units in the first interleave are numbered in descending order of the subband index, and then the frequency domain units in the second interlace are numbered in ascending order of the subband index.
  • the unit number is in ascending order of the interleaving index and so on.
  • the frequency domain units in the interleaving are numbered in descending order of the subband index.
  • the frequency domain units in the interleaving are numbered in ascending order of the subband index. Frequency domain units are numbered until all frequency domain units within the interlace are numbered. Using this method to number frequency domain units can prevent the subband index corresponding to consecutive frequency domain units from jumping.
  • Each sub-channel includes a specific number of frequency domain units. The specific number is determined by configuration, pre-configuration or pre-definition.
  • every X frequency domain units are a sub-channel, and X is determined through configuration, preconfiguration or predefinition.
  • PSSCH Physical Sidelink Shared Channel
  • the PSSCH can only use the RBs in the allocated sub-channels that do not belong to the protection band, or the PSSCH cannot use the RBs in the allocated sub-channels that belong to the protection band.
  • PSSCH uses the RBs in the RB set spanned by the union of all sub-channels in the PSSCH frequency domain resources and the union of all sub-channels. RBs in the protective band between RB sets across.
  • each PSSCH transmission is associated with a Physical Sidelink Control Channel (PSCCH) transmission;
  • PSCCH Physical Sidelink Control Channel
  • the frequency domain resources of PSCCH start from the first RB of the first sub-channel of the associated PSSCH that does not belong to the guard band. RBs, and the frequency domain resources of PSCCH are located in one sub-channel; or,
  • the frequency domain resources of PSCCH start from the first RB of the first sub-channel of the associated PSSCH that does not belong to the guard band. RBs that are not part of the protective zone; or,
  • the frequency domain resource of the PSCCH is the first sub-channel of the associated PSSCH. Started by RB that does not belong to the protective zone RBs that do not belong to the guard band, and the frequency domain resources of the PSCCH are located in a sub-channel; if the first sub-channel of the PSSCH associated with the PSCCH spans multiple RB sets (that is, the sub-channel contains RBs in multiple RB sets) , then the frequency domain resources of PSCCH start from the first RB that does not belong to the guard band of the first sub-channel of the associated PSSCH.
  • Each RB includes only the RBs in the RB set spanned by the subchannel and the RBs in the guard band between the RB set spanned by the subchannel.
  • the UE for each resource pool, the UE is configured or pre-configured with the number of RBs occupied by the PSCCH.
  • the configuration information includes the RB set of the resource pool, the interleaving of the resource pool, and the frequency domain unit size.
  • Figure 18 shows a schematic flowchart of another sub-channel configuration method provided by an embodiment. As shown in Figure 18, the method includes the following steps.
  • the configuration information includes the RB set of the resource pool, the interleaving of the resource pool, and the frequency domain unit size.
  • Each frequency domain unit is a frequency domain unit included in an interlace starting from the starting RB of an RB set in the resource pool. Domain unit size RB.
  • Each RB is a frequency domain unit.
  • the frequency domain units are numbered according to the rule of first interleaving and then RB set; or, the frequency domain units are numbered according to the rule of first RB set and then interleaving.
  • numbering frequency domain units according to interleaving first and then RB set includes: first numbering the frequency domain units corresponding to the first RB set in ascending order of interleaving index, and then numbering the frequency domain units corresponding to the second RB set in ascending order of interleaving index. Numbering, in ascending order of RB set index, and so on, until the frequency domain units corresponding to all RB sets in the resource pool are numbered.
  • numbering frequency domain units according to interleaving first and then RB set includes: first numbering the frequency domain units corresponding to the first RB set in ascending order of interleaving index, and then numbering the frequency domain units corresponding to the second RB set in descending order of interleaving index.
  • the unit number is in ascending order of the RB set index and so on.
  • the frequency domain unit number corresponding to the RB set is in ascending order of the interleaving index.
  • the RB is in descending order of the interleaving index.
  • the number of frequency domain units corresponding to the set is completed until the frequency domain units corresponding to all RB sets in the resource pool are numbered.
  • numbering the frequency domain units according to RB set first and then interleaving includes: first numbering the frequency domain units in the first interleave in ascending order of RB set index, and then numbering the frequency domain units in the second interlace in ascending order of RB set index. Numbering, in ascending order of interlace index, and so on, until the frequency domain units in all interlaces in the resource pool are numbered.
  • numbering the frequency domain units according to RB set first and then interleaving includes: first numbering the frequency domain units in the first interleave in ascending order of RB set index, and then numbering the frequency domain units in the second interlace in descending order of RB set index.
  • the unit number is in ascending order of the interleaving index and so on.
  • the frequency domain units in the interleaving are numbered in ascending order of the RB set index.
  • the frequency domain units in the interleaving are numbered in descending order of the RB set index. Frequency domain units are numbered until all frequency domain units within the interlace are numbered.
  • the ascending order and descending order in this example can also be exchanged, that is, the frequency domain units in the first interleave are numbered in descending order according to the RB set index, and then the frequency domain units in the second interlace are numbered in ascending order according to the RB set index.
  • the unit number is in ascending order of the interleaving index and so on.
  • the frequency domain units in the interleaving are numbered in descending order of the RB set index.
  • the frequency domain units in the interleaving are numbered in ascending order of the RB set index.
  • Frequency domain units are numbered until all frequency domain units within the interlace are numbered. Using this method to number frequency domain units can prevent the RB set index corresponding to consecutive frequency domain units from jumping.
  • the UE expects a frequency domain unit to be included in an RB set; or,
  • the UE expects that a frequency domain unit is included in an RB set or is included in an RB set and the adjacent guard band; or,
  • the UE does not expect a frequency domain unit to span multiple RB sets; or,
  • the UE When the resource pool only contains one RB set, the UE expects all frequency domain units of the resource pool to be included in one RB set. When the resource pool contains multiple RB sets, the UE does not expect one frequency domain unit to span multiple RB sets; or,
  • the UE When the resource pool contains only one RB set, the UE expects all frequency domain units of the resource pool to be included in one RB set. When the resource pool contains multiple RB sets, the UE expects one frequency domain unit for the last RB set in the resource pool. Included in an RB set, or the frequency domain unit only retains the RBs in the RB set (that is, the frequency domain unit is allowed to be smaller than RB), for other RB sets in the resource pool, the UE does not expect one frequency domain unit to span multiple RB sets.
  • Each sub-channel includes a specific number of frequency domain units. The specific number is determined by configuration, pre-configuration or pre-definition.
  • every X frequency domain units are a sub-channel, and X is determined through configuration, preconfiguration or predefined method.
  • the frequency domain resources of PSSCH include at least one subchannel.
  • the PSSCH can only use the RBs in the allocated sub-channels that do not belong to the protection band, or the PSSCH cannot use the RBs in the allocated sub-channels that belong to the protection band.
  • PSSCH uses the RBs in the RB set spanned by the union of all sub-channels in the PSSCH frequency domain resources and the union of all sub-channels. RBs in the protective band between RB sets across.
  • each PSSCH transmission is associated with one physical side link control channel PSCCH transmission
  • the frequency domain resources of PSCCH start from the first RB of the first sub-channel of the associated PSSCH that does not belong to the guard band. RBs, and the frequency domain resources of PSCCH are located in one sub-channel; or,
  • the frequency domain resources of PSCCH start from the first RB of the first sub-channel of the associated PSSCH that does not belong to the guard band. RBs that are not part of the protective zone; or,
  • the frequency domain resource of the PSCCH is the first sub-channel of the associated PSSCH. Started by RB that does not belong to the protective zone RBs that do not belong to the guard band, and the frequency domain resources of the PSCCH are located in a sub-channel; if the first sub-channel of the PSSCH associated with the PSCCH spans multiple RB sets (that is, the sub-channel contains RBs in multiple RB sets) , then the frequency domain resources of PSCCH start from the first RB that does not belong to the guard band of the first sub-channel of the associated PSSCH.
  • RB, and the frequency domain resources of PSCCH are located in a sub-channel, and the frequency domain resources used for PSCCH transmission are
  • Each RB only includes the RBs in the RB set spanned by the sub-channel and the space between the RB sets spanned by the sub-channel. RB in the protective zone.
  • the UE for each resource pool, the UE is configured or pre-configured with the number of RBs occupied by the PSCCH.
  • Figure 19 shows a schematic structural diagram of a sub-channel configuration device provided by an embodiment.
  • the device can be configured in a communication node.
  • the device includes: a determination module 200 and a configuration module 210.
  • the determination module 200 is configured to determine configuration information.
  • the configuration information includes the subbands of the resource pool and the interleaving of the resource pool, or includes the resource block set RB set of the resource pool, the interleaving of the resource pool, and the frequency domain unit size; according to the configuration information, determine frequency domain unit;
  • the configuration module 210 is configured to configure sub-channels according to frequency domain units.
  • Each sub-channel includes a specific number of frequency domain units, and the specific number is determined by configuration, pre-configuration or pre-definition.
  • the subchannel configuration device provided in this embodiment is to implement the subchannel configuration method of the above embodiment.
  • the implementation principles and technical effects of the subchannel configuration device provided in this embodiment are similar to those in the above embodiment, and will not be described again here.
  • the configuration information includes subbands of the resource pool and interleaving of the resource pool
  • the resource pool includes at least one subband, and each subband includes at least one of the following: RB set, RB set and a guard band adjacent to the RB set, and a set of continuous resource blocks RB.
  • the subbands are determined according to at least one of the following rules:
  • the guard band and the RB set with small index adjacent to the guard band form a sub-band
  • the guard band and the RB set with large index adjacent to the guard band form a sub-band
  • the first L RBs in the guard band and the RB set with small index adjacent to the guard band form a sub-band, where L is an integer greater than or equal to 0 and less than the number of RBs included in the guard band;
  • the last R RBs in the guard band and the RB set with the larger index adjacent to the guard band form a sub-band, where R is an integer greater than or equal to 0 and less than the number of RBs included in the guard band;
  • K-1 frequency positions determine K sub-bands, and K is a positive integer
  • Each RB set is a subband.
  • the subbands are determined based on the resource pool; or,
  • the subband is determined based on the carrier.
  • the subband based on the carrier determines the subband of the bandwidth part BWP. Based on the BWP
  • the subband of determines the subband of the resource pool; or,
  • the subband is determined based on BWP, and the subband of the resource pool is determined based on the subband of BWP; or,
  • the subband is determined based on the carrier, and the subband of the resource pool is determined based on the subband of the carrier.
  • the value of L is determined through configuration, preconfiguration or predefined method; or, the value of L is calculated based on the size of the frequency domain unit;
  • the value of R is determined through configuration, preconfiguration or predefined method; or, the value of R is calculated based on the size of the frequency domain unit;
  • the size of the frequency domain unit is determined through configuration, preconfiguration or predefinition.
  • the configuration information includes the subbands of the resource pool and the interleaving of the resource pool; the determination module 200 is configured to determine the frequency domain unit according to the subband of the resource pool and the interleaving of the resource pool, and each frequency domain unit is An interlace within a subband includes all RBs.
  • the frequency domain units are numbered according to the rules of interleaving first and then subbands; or,
  • Frequency domain units are numbered according to the rule of subband first and then interleaving.
  • the configuration information includes the RB set of the resource pool, the interleaving of the resource pool, and the frequency domain unit size; the determination module 200 is configured to determine based on the RB set of the resource pool, the interleaving of the resource pool, and the frequency domain unit size.
  • Frequency domain unit, each frequency domain unit is a frequency domain unit size RB included in an interlace starting from the starting RB of an RB set in the resource pool.
  • the frequency domain units are numbered according to the rule of interleaving first and then RB set; or,
  • Frequency domain units are numbered according to the rule of RB set first and then interleaving.
  • the configuration module 210 is further configured to allocate frequency domain resources to the physical side link shared channel PSSCH based on subchannels, and the frequency domain resources of the PSSCH include at least one subchannel.
  • PSSCH can only use RBs in the allocated sub-channels that do not belong to the guard band, or PSSCH cannot use RBs in the allocated sub-channels that belong to the guard band.
  • PSSCH uses the RBs in the RB set spanned by the union of all sub-channels in the PSSCH frequency domain resources and the RBs spanned by the union of all sub-channels.
  • each PSSCH transmission is associated with one physical side link control channel PSCCH transmission
  • the frequency domain resources of PSCCH start from the first RB of the first sub-channel of the associated PSSCH that does not belong to the guard band. RBs, and the frequency domain resources of PSCCH are located in one sub-channel; or
  • the frequency domain resources of PSCCH start from the first RB of the first sub-channel of the associated PSSCH that does not belong to the guard band. RBs that are not part of the protective zone; or,
  • the first sub-channel of PSSCH associated with PSCCH does not span the RB set.
  • the frequency domain resources of PSCCH start from the first RB of the first sub-channel of associated PSSCH that does not belong to the guard band. RBs that do not belong to the guard band, and the frequency domain resource of PSCCH is located in a sub-channel; the first sub-channel of the PSSCH associated with PSCCH spans multiple RB sets, and the frequency domain resource of PSCCH is the first sub-channel of the associated PSSCH.
  • Each RB includes only the RBs in the RB set spanned by the subchannel and the RBs in the guard band between the RB set spanned by the subchannel.
  • An embodiment of the present application also provides a communication node, including: a processor, and the processor is configured to implement the method provided by any embodiment of the present application when executing a computer program.
  • the communication node can be a terminal device provided in any embodiment of the present application, and this application does not impose specific limitations on this.
  • the following embodiments respectively provide a schematic structural diagram in which the communication nodes are a UE and a base station (or a high-level entity).
  • FIG 20 shows a schematic structural diagram of a UE provided by an embodiment.
  • the UE can be implemented in various forms.
  • the UE in this application can include but is not limited to mobile phones, smart phones, notebook computers, digital broadcast receivers, etc. , personal digital assistant (Personal Digital Assistant, PDA), tablet computer (Portable Android Device, PAD), portable multimedia player (Portable Media Player, PMP), navigation device, vehicle-mounted terminal equipment, vehicle-mounted display terminal, vehicle-mounted electronic rearview mirror Mobile terminal equipment such as digital television (television, TV), desktop computers, etc., as well as fixed terminal equipment.
  • PDA Personal Digital Assistant
  • PAD Portable Android Device
  • PMP portable multimedia player
  • navigation device vehicle-mounted terminal equipment
  • vehicle-mounted display terminal vehicle-mounted electronic rearview mirror
  • Mobile terminal equipment such as digital television (television, TV), desktop computers, etc., as well as fixed terminal equipment.
  • the UE 50 may include a wireless communication unit 51, an audio/video (A/V) input unit 52, a user input unit 53, a sensing unit 54, an output unit 55, a memory 56, and an interface unit. 57. Processor 58 and power supply unit 59 and so on.
  • Figure 20 illustrates a UE that includes a variety of components, but it should be understood that implementation of all illustrated components is not required. More or fewer components may alternatively be implemented.
  • the wireless communication unit 51 allows radio communication between the UE 50 and the UE or the base station or the network.
  • A/V input unit 52 is arranged to receive audio or video signals.
  • the user input unit 53 may generate key input data according to commands input by the user to control various operations of the UE 50 .
  • the sensing unit 54 detects the current state of the UE 50, the position of the UE 50, the presence or absence of the user's touch input to the UE 50, the orientation of the UE 50, the acceleration or deceleration movement and direction of the UE 50, etc., and generates a signal for controlling the UE 50. 50 A command or signal for an operation.
  • the interface unit 57 serves as an interface through which at least one external device can connect to the UE 50 .
  • the output unit 55 is configured to provide an output signal in a visual, audio and/or tactile manner.
  • the memory 56 may store software programs for processing and control operations executed by the processor 58 and the like, or may temporarily store data that has been output or is to be output.
  • Memory 56 may include at least one type of storage medium.
  • UE 50 may cooperate with a network storage device that performs the storage functions of memory 56 over a network connection.
  • Processor 58 generally controls the overall operation of UE 50.
  • the power supply unit 59 receives external power or internal power under the control of the processor 58 and provides appropriate power required to operate various elements and components.
  • the processor 58 executes at least one functional application and data processing by running the program stored in the memory 56, for example, implementing the method provided by the embodiment of the present application.
  • Figure 21 shows a schematic structural diagram of a base station (or high-level entity) provided by an embodiment.
  • the base station includes a processor 60, a memory 61 and a communication interface 62; the number of processors 60 in the base station can be One or more, one processor 60 is taken as an example in Figure 21; the processor 60, memory 61, and communication interface 62 in the base station can be connected through a bus or other means.
  • the connection through a bus is taken as an example.
  • a bus represents one or more of several types of bus structures, including a memory bus or memory controller, a peripheral bus, a graphics acceleration port, a processor, or a local bus using any of a variety of bus structures.
  • the memory 61 can be configured to store software programs, computer-executable programs and modules, such as program instructions/modules corresponding to the methods in the embodiments of the present application.
  • the processor 60 executes software programs, instructions and modules stored in the memory 61 to execute at least one functional application and data processing of the base station, that is, to implement the above method.
  • the memory 61 may include a program storage area and a data storage area, where the program storage area may store an operating system and an application program required for at least one function; the storage data area may store data created according to the use of the terminal, etc.
  • the memory 61 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • memory 61 may include memory located remotely relative to processor 60, and these remote memories may be connected to the base station through a network. Examples of the above-mentioned networks include but are not limited to the Internet, intranets, networks, mobile communication networks and combinations thereof.
  • the communication interface 62 may be configured to receive and send data.
  • Embodiments of the present application also provide a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, the method provided by any embodiment of the present application is implemented.
  • the computer storage medium in the embodiment of the present application may be any combination of one or more computer-readable media.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium may be, for example, but not limited to: an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, device or device, or any combination thereof.
  • Computer-readable storage media include (non-exhaustive list): electrical connection with one or more wires, portable computer disk, hard drive, random access memory (RAM), read-only memory (Read-Only Memory) , ROM), electrically erasable programmable Read-Only Memory (EPROM), flash memory, optical fiber, portable compact disk read-only memory (Compact Disc Read-Only Memory, CD-ROM), optical storage devices , a magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program for use by or in connection with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave, the data signal carrying computer-readable program code. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium that can send, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device .
  • Program code embodied on a computer-readable medium can be transmitted using any appropriate medium, including but not limited to wireless, wire, optical cable, radio frequency (Radio Frequency, RF), etc., or any suitable combination of the above.
  • any appropriate medium including but not limited to wireless, wire, optical cable, radio frequency (Radio Frequency, RF), etc., or any suitable combination of the above.
  • Computer program code for performing operations of the present disclosure may be written in one or more programming languages, or a combination of programming languages, including object-oriented programming languages such as Java, Smalltalk, C++, Ruby, Go), and also includes conventional procedural programming languages (such as the "C" language or similar programming languages).
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network, including a Local Area Network (LAN) or a Wide Area Network (WAN), or it can be connected to an external computer (e.g. Use an Internet service provider to connect via the Internet).
  • LAN Local Area Network
  • WAN Wide Area Network
  • user terminal covers any suitable type of wireless user equipment, such as a mobile phone, a portable data processing device, a portable web browser or a vehicle-mounted mobile station.
  • the various embodiments of the present application may be implemented in hardware or special purpose circuits, software, logic, or other Achievable in any combination.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor, or other computing device, although the application is not limited thereto.
  • Embodiments of the present application may be implemented by a data processor of the mobile device executing computer program instructions, for example in a processor entity, or by hardware, or by a combination of software and hardware.
  • Computer program instructions may be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages source code or object code.
  • ISA Instruction Set Architecture
  • Any block diagram of a logic flow in the figures of this application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • Computer programs can be stored on memory.
  • the memory may be of any type suitable to the local technical environment and may be implemented using any suitable data storage technology, such as, but not limited to, read only memory (ROM), random access memory (RAM), optical storage devices and systems (digital versatile disc (Digital Versatile Disc, DVD) or Compact Disc (Compact Disc, CD)), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be any type suitable for the local technical environment, such as but not limited to a general-purpose computer, a special-purpose computer, a microprocessor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC) ), programmable logic devices (Field-Programmable Gate Array, FPGA) and processors based on multi-core processor architecture.
  • a general-purpose computer such as but not limited to a general-purpose computer, a special-purpose computer, a microprocessor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC) ), programmable logic devices (Field-Programmable Gate Array, FPGA) and processors based on multi-core processor architecture.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种子信道的配置方法、通信节点及存储介质。该方法包括:确定配置信息,配置信息包括资源池的子带和资源池的交织,或者包括资源池的资源块集合RB set、资源池的交织和频域单元大小;根据配置信息,确定频域单元;根据频域单元,配置子信道,每个子信道包括特定数量的频域单元,特定数量通过配置、预配置或者预定义的方式确定。

Description

子信道的配置方法、通信节点及存储介质 技术领域
本申请涉及通信技术领域,例如涉及一种子信道的配置方法、通信节点及存储介质。
背景技术
对于非授权频段上的边链路(sidelink,SL)通信,一般地,基于载波配置带宽部分(Bandwidth Part,BWP),在BWP内配置一个或者多个SL资源池(以下简称为资源池),一个资源池可以包含多个资源块集合(Resource Block set,RB set)。通常,相邻的RB set之间留有保护带以避免不同RB set上的传输相互干扰。当相邻的RB set都空闲(即没有被其他设备占用)时,与仅仅使用RB set内的资源相比,如果相邻的RB set以及它们之间的保护带都可以使用,则传输可以达到更高的资源利用率。然而,当UE使用一个RB set时,相邻的RB set可能被其他设备占用,尤其是可能被其它异系统的设备占用,为了避免相邻RB set之间产生干扰,所以通常要保留保护带的资源不被使用。因此如何将保护带利用起来是亟需解决的问题。
发明内容
本申请实施例提供一种子信道的配置方法,包括:
确定配置信息,配置信息包括资源池的子带和资源池的交织,或者包括资源池的资源块集合RB set、资源池的交织和频域单元大小;
根据配置信息,确定频域单元;
根据频域单元,配置子信道,每个子信道包括特定数量的频域单元,特定数量通过配置、预配置或者预定义的方式确定。
本申请实施例提供一种通信节点,包括:处理器;处理器设置为在执行计算机程序时实现上述任一实施例的方法。
本申请实施例还提供一种计算机可读存储介质,存储有计算机程序,计算机程序被处理器执行时实现上述任一实施例的方法。
关于本申请的以上实施例和其他方面以及其实现方式,在附图说明、具体实施方式和权利要求中提供更多说明。
附图说明
图1是一实施例提供的一种交织数目为5的交织示意图;
图2是一实施例提供的一种载波、BWP与RB set的示意图;
图3是一实施例提供的一种子信道的配置方法的流程示意图;
图4是一实施例提供的另一种子信道的配置方法的流程示意图;
图5是一实施例提供的一种基于资源池配置子带的示意图;
图6是一实施例提供的一种载波或者BWP配置子带的示意图;
图7是一实施例提供的一种根据规则1确定子带的示意图;
图8是一实施例提供的一种根据规则2确定子带的示意图;
图9是一实施例提供的一种根据规则3确定子带的示意图;
图10是一实施例提供的另一种根据规则3确定子带的示意图;
图11是一实施例提供的一种根据规则3和规则4确定子带的示意图;
图12是一实施例提供的一种根据规则5确定子带的示意图;
图13是一实施例提供的另一种根据规则5确定子带的示意图;
图14是一实施例提供的一种根据规则6确定子带的示意图;
图15是一实施例提供的另一种根据规则6确定子带的示意图;
图16是一实施例提供的又一种根据规则6确定子带的示意图;
图17是一实施例提供的一种根据规则7确定子带的示意图;
图18是一实施例提供的又一种子信道的配置方法的流程示意图;
图19是一实施例提供的一种子信道的配置装置的结构示意图;
图20是一实施例提供的一种UE的结构示意图;
图21是一实施例提供的一种基站或者高层实体的结构示意图。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。下文中将结合附图对本申请的实施例进行详细说明。
SL通信包括车用无线通信技术(Vehicle to Everything,V2X)通信、用户设备(User Equipment,UE)与UE直接通信(Device to Device,D2D)等,可以工作在授权频谱、智能交通系统(Intelligent Traffic Systems,ITS)频谱。在 将来,SL通信也可以工作在非授权频谱。
对于授权频段上的SL通信,BWP内配置一个或者多个资源池,资源池在频域上包含多个连续的资源块(Resource Block,RB),这些RB被划分为一个或多个子信道,每个子信道包含相同数量个RB,SL的资源分配是基于资源池上子信道进行的,每个SL传输占用频域上连续的一个或多个子信道。
对于非授权频段上的SL通信,BWP内配置一个或者多个资源池,一个资源池可以包含多个RB set。通常,相邻的RB set之间留有保护带以避免不同RB set上的传输相互干扰。当相邻的RB set都空闲(即没有被其他设备占用)时,与仅仅使用RB set内的资源相比,如果相邻的RB set以及它们之间的保护带都可以使用,则可以达到更高的资源利用率。然而,当UE使用一个RB set时,相邻的RB set可能被其他设备占用,尤其是可能被其它异系统的设备占用,为了避免相邻RB set之间产生干扰,所以通常不使用保护带。因此如何将保护带利用起来是目前亟需解决的问题。
另外,在有占用信道带宽(Occupied Channel Bandwidth,OCB)要求的地区,为满足OCB要求,通常用户设备(User Equipment,UE)占用的RB在频域上是离散分布的,这些特征使得授权频段上频域连续的子信道难以应用到非授权频段。因此,如何支持频域离散的子信道也是有待进一步解决的问题。
本申请提供的子信道的配置方法可以应用于基于多类无线通信技术的SL通信系统,例如基于长期演进(long term evolution,LTE)技术、第四代移动通信技术(4th-generation,4G)、第五代移动通信技术(5th-generation,5G)、LTE与5G混合技术、5G新无线电(New Radio,NR)技术、以及未来通信发展中出现的新的通信技术,如第六代移动通信技术(6th-generation,6G)等的SL通信系统。
在本申请实施例中,提供一种子信道的配置方法、通信节点及存储介质,能够在非授权频段上配置SL资源,提高资源利用率。
首先,对本申请下述实施例涉及的概念进行解释:
在本申请实施例中,非授权频谱的新无线电(New Radio in Unlicensed Spectrum,NR-U)系统定义了RB的多个交织,每个交织由等间隔的公共资源块(Common Resource Block,CRB)构成。例如,交织m∈{0,1,…,M-1}由CRB{m,M+m,2M+m,3M+m,…}组成,M为交织的数目。通常,对于15kHz和30kHz的子载波间隔,交织的数目M分别为10和5。当然,本申请也包含其他的子载波间隔(例如,60kHz,120kHz,240kHz等)对应的交织,也不限制不同子载波对应的交织的数目M。BWP i内交织m中交织资源块(Interlaced Resource Block,IRB)(即BWP i内交织m中CRB的编号) 与公共资源块之间的关系如下:
其中,是BWP i相对于公共资源块0的起始公共资源块,μ为子载波间隔索引。示例性的,图1示出了一实施例提供的一种交织数目为5的交织示意图。如图1所示,交织0由CRB{0,5,10,…}组成,交织1由CRB{1,6,11,…}组成,以此类推,交织4由CRB{4,9,14,…}组成。在起始CRB为CRB 4且大小为106个CRB的BWP内,交织0中交织资源块{0,1,...,20}对应的CRB索引为{5,10,...,105},交织1中交织资源块{0,1,...,20}对应的CRB索引为{6,11,...,106},以此类推,交织4中交织资源块{0,1,2,...,21}对应的CRB索引为{4,9,14,...,109}。
在本申请实施例中,对于特定子载波间隔的一个载波,UE可以被配置N-1个保护带(Guard Band,GB),每个GB通过起始CRB和CRB数目(即保护带的大小)来定义,N-1个GB将载波划分成N个RB set。对于一个载波,BWP包含整数个资源块集合,BWP的起始资源块且BWP的带宽其中,为资源块集合s0的起始RB,为资源块集合s1的结束RB,0≤s0≤s1≤N-1。即BWP的起始RB与资源块集合s0的起始RB对齐,BWP的结束RB与资源块集合s1的结束RB对齐。示例性的,图2示出了一实施例提供的一种载波、BWP与RB set的示意图。如图2所示,BWP的起始RB与RB set1的起始RB对齐,BWP的结束RB与RB set2的结束RB对齐,也就是说BWP由RB set 1、GB1和RB set2组成。在本申请实施例中,可以通过指示交织索引和RB set索引来指示分配给UE的BWP内的资源,交织与RB set(包括分配的相邻的RB set之间的保护带)的交集就是分配给UE的资源。资源分配中,RB set索引在BWP内从0到升序编号,为BWP内的RB set数目。一般地,基于载波配置BWP,在BWP内配置资源池,本申请也不排除基于载波配置资源池。
下面,对子信道的配置方法,通信节点及其技术效果进行描述。
图3示出了一实施例提供的一种子信道的配置方法的流程示意图,如图3所示,本实施例提供的方法适用于通信节点,该方法包括如下步骤。
S110、确定配置信息,配置信息包括资源池的子带和资源池的交织,或者包括资源池的资源块集合RB set、资源池的交织和频域单元大小。
S120、根据配置信息,确定频域单元。
S130、根据频域单元,配置子信道,每个子信道包括特定数量的频域单元,特定数量通过配置、预配置或者预定义的方式确定。
根据上述步骤S110可知,配置信息具体可以分为两种情况:一种情况是配置信息包括资源池的子带和资源池的交织;另一种情况是配置信息包括资源池的RB set、资源池的交织和频域单元大小。相应地,在步骤S120中,无论配置信息属于哪一种情况,都可以确定出频域单元,但是两种情况确定频域单元的方法不同。为了便于理解,下述实施例分别对上述两种情况进行详细描述。
另外,如无特别说明,本申请下述实施例中L、R、频率位置、频域单元大小、子带大小、子带数目等参数可以是通过配置、预配置或者预定义方式确定的,例如,特别说明可以是通过计算得到,或者通过预定义规则得到。
在一种可能的实现方式中,配置信息包括资源池的子带和资源池的交织。图4示出了一实施例提供的另一种子信道的配置方法的流程示意图,如图4所示,该方法包括如下步骤。
S210、确定配置信息,配置信息包括资源池的子带和资源池的交织。
在一实施例中,资源池包括至少一个子带,每个子带包括如下至少之一:RB set、RB set和与RB set相邻的保护带、一组连续的RB。
在一实施例中,子带基于资源池确定;或者,子带基于载波确定,基于载波的子带确定BWP的子带,基于BWP的子带确定资源池的子带;或者,子带基于BWP确定,基于BWP的子带确定资源池的子带;或者,子带基于载波确定,基于载波的子带确定资源池的子带。
配置、预配置或者预定义的资源池包含的交织(即哪些交织被分配给资源池),资源池包含的交织与资源池包含的子带取交集就得到配置或者分配给资源池的频域资源。一般地,可以默认资源池包含所有交织。示例性的,基于资源池配置子带,并配置资源池包含的交织,从而确定资源池包含的频域资源,如图5所示,配置资源池包含子带0和1,以及配置资源池包含交织2和3,则图5中阴影部分所示的资源为资源池中的资源,即资源池的频域资源为子带0和1内交织2和3包含的所有RB。又示例性的,基于载波或者BWP配置子带,然后将部分或全部子带配置给资源池,如图6所示,一个子载波间隔为30kHz的载波或者BWP,共包含3个子带,假设交织总数为5,可以配置资源池包含子带0和1,并配置资源池包含交织2和3,则图6中阴影部分所示的资源为资源池中的资源。
在一实施例中,确定子带的规则包括下述7种中的至少之一:
规则1:保护带和与保护带相邻的索引小的RB set组成一个子带;
规则2:保护带和与保护带相邻的索引大的RB set组成一个子带;
规则3:保护带中前L个RB和与保护带相邻的索引小的RB set组成一个子带,L为大于或者等于0、且小于保护带包括的RB数量的整数;
规则4:保护带中后R个RB和与保护带相邻的索引大的RB set组成一个子带,R为大于或者等于0、且小于保护带包括的RB数量的整数;
规则5:K-1个频率位置确定K个子带,K为正整数;
规则6:根据子带大小和子带数目中的至少之一确定子带;
规则7:每个RB set为一个子带。
在一实施例中,可以通过配置、预配置或者预定义的方式确定采用哪个或者哪些规则来确定子带。
通常,资源块集合是从低频到高频进行编号的,即索引小的资源块集合就是频率低的资源块集合,索引大的资源块集合就是频率高的资源块集合,本申请不做严格区分。另外,保护带也是从低频到高频进行编号的。
示例一:保护带和与保护带相邻的索引小的RB set(或频率低的RB set)组成一个子带。
保护带和与保护带相邻的索引小的RB set组成一个子带,最后一个RB set(即资源池内索引最大的RB set)作为一个子带。
图7示出了一实施例提供的一种根据规则1确定子带的示意图。如图7所示,资源池包含3个保护带和4个RB set,保护带为图7中阴影标注的部分,RB在资源池内的编号为0,1,…,216。子带0的起止RB分别为0和55,即由资源池内的第一个RB set和第一个保护带组成;子带1的起止RB分别为56和110,即由资源池内的第二个RB set和第二个保护带组成;子带2的起止RB分别为111和166,即由资源池内的第三个RB set和第三个保护带组成;子带3的起止RB分别为167和216,即由资源池内的第四个RB set组成。
示例二:保护带和与保护带相邻的索引大的RB set(或频率高的RB set)组成一个子带。
保护带和与保护带相邻的索引大的RB set组成一个子带,第一个RB set(即资源池内索引最小的RB set)作为一个子带。
图8示出了一实施例提供的一种根据规则2确定子带的示意图。如图8所示,资源池包含3个保护带和4个RB set,保护带为图8中阴影标注的部分,RB在资源池内的编号为0,1,…,216。子带0的起止RB分别为0和49,即由资源池内的第一个RB set组成;子带1的起止RB分别为50和105,即由资源池内的第一个保护带和第二个RB set组成;子带2的起止RB分别为106和160, 即由资源池内的第二个保护带和第三个RB set组成;子带3的起止RB分别为161和216,即由资源池内的第三个保护带和第四个RB set组成。
示例三:保护带中前L个RB和与保护带相邻的索引小的RB set组成一个子带,L为大于或者等于0、且小于保护带包括的RB数量的整数。
对于一个资源池,一个保护带中前L个RB和与保护带相邻的索引小的RB set组成一个子带,最后一个RB set作为一个子带,L为大于或者等于0、且小于保护带包括的RB数量的整数。资源池内的每个保护带可以分别对应一个L值,或者,资源池内的所有保护带对应一个L值。
图9示出了一实施例提供的一种根据规则3确定子带的示意图。如图9所示,资源池包含2个保护带和3个RB set,L的取值为5,第一个保护带的前5个RB和第一个RB set组成一个子带;第二个保护带的前5个BR和第二个RB set组成一个子带;第三个RB set作为一个子带。
在一实施例中,对于规则3,L的取值通过配置、预配置或者预定义的方式确定;或者,L的取值根据频域单元大小计算得到。
对于L的取值根据频域单元大小计算得到的情况,每个频域单元为在一个子带内一个交织包括的所有RB。例如,频域单元大小为个RB,则L的取值需要满足条件:使得相邻的索引小的RB set与保护带的前L个RB组成的子带中资源池对应的交织包含的RB数均为的最小(或者最大)的值。即,L使得资源池的每个子带和资源池的每个交织的交集包含的RB数等于配置、预配置或者预定义的频域单元大小。如图10所示,假设资源池包含的交织为交织0、交织1和交织2(可以配置、预配置或者预定义资源池包含哪些交织,或者默认资源池包含所有交织),保护带GB0包含6个RB,与GB0相邻的索引小的资源集合RB set0包含8个RB,在RB set0内交织0、1和2对应的RB数分别为1、1和2,假设频域单元大小为2个RB,即则使得RB set0和GB0的前L个RB组成的子带满足该子带内交织0、1和2包含的RB数(即对应的频域单元大小)均为2的最小的L是2,即L=2。
示例四:保护带中后R个RB和与保护带相邻的索引大的RB set组成一个子带,R为大于或者等于0、且小于保护带包括的RB数量的整数。
对于一个资源池,一个保护带中后R个RB和与保护带相邻的索引大的RB set组成一个子带,第一个RB set作为一个子带,R为大于或者等于0、且小于保护带包括的RB数量的整数。资源池内的每个保护带可以分别对应一个R值,或者,资源池内的所有保护带对应一个R值。
在一实施例中,对于规则4,R的取值通过配置、预配置或者预定义的方式确定;或者,R的取值根据频域单元大小计算得到。
对于R的取值根据频域单元大小计算得到的情况,其计算方法与上述示例三中根据频域单元大小计算L的取值的方法类似,为了简洁,此处不再赘述。
示例五:保护带中前L个RB和与保护带相邻的索引小的RB set组成一个子带,保护带中后R个RB和与保护带相邻的索引大的RB set组成一个子带,对于两侧都有保护带的RB set,该RB set与索引小的保护带的后R个RB、索引大的保护带的前L个RB组成一个子带,L为大于或者等于0、且小于保护带包括的RB数量的整数,R为大于或者等于0、且小于保护带包括的RB数量的整数。
对于一个资源池,一个保护带中前L个RB和与保护带相邻的索引小的RB set组成一个子带,保护带中后R个RB和与保护带相邻的索引大的RB set组成一个子带,对于一个保护带,L与R之和是小于或者等于保护带包括的RB数量的整数。资源池内的每个保护带可以分别对应一个L值,或者,资源池内的所有保护带对应一个L值;资源池内的每个保护带可以分别对应一个R值,或者,资源池内的所有保护带对应一个R值。
图11示出了一实施例提供的一种根据规则3和规则4确定子带的示意图。如图11所示,资源池包含2个保护带和3个RB set,第一个保护带的前3个RB和第一个RB set组成一个子带(即子带0);第一个保护带的后2个RB、第二个RB set以及第二个保护带的前2个RB组成一个子带(即子带1);第二个保护带的后4个RB和第三个RB set组成一个子带(即子带2)。
示例六:K-1个频率位置确定K个子带,K为正整数。
K-1个频率位置将资源池划分成K的子带,记为子带k,k=0,1,…,K-1,子带k(0<k≤K-1)的起始RB为频率位置k-1对应的RB,子带k(0≤k<K-1)的结束RB为频率位置k对应的RB的前一个RB,子带0的起始RB为资源池的第一个RB,子带K-1的结束RB为资源池的最后一个RB。
图12示出了一实施例提供的一种根据规则5确定子带的示意图。如图12所示,RB在资源池内的编号(即RB索引)为0,1,…,159,两个频率位置分别为RB 55和RB 110,子带0的起止RB分别为0(即资源池的第一个RB)和54(即频率位置0对应的RB的前一个RB),子带1的起止RB分别为55(即频率位置0对应的RB)和109(即频率位置1对应的RB的前一个RB),子带2的起止RB分别为110(即频率位置1对应的RB)和159(即资源池的最后一个RB)。
上述方法将频率位置对应的RB作为索引高的子带的起始RB,也可以将频率位置对应的RB作为索引低的子带的结束RB,即:
K-1个频率位置将资源池划分成K的子带,记为子带k,k=0,1,…,K-1,子 带k(0<k≤K-1)的起始RB为频率位置k-1对应的RB的后一个RB,子带k(0≤k<K-1)的结束RB为频率位置k对应的RB,子带0的起始RB为资源池的第一个RB,子带K-1的结束RB为资源池的最后一个RB。
图13示出了一实施例提供的另一种根据规则5确定子带的示意图。如图13所示,RB在资源池内的编号(即RB索引)为0,1,…,159,两个频率位置分别为RB 55和RB 110,子带0的起止RB分别为0(即资源池的第一个RB)和55(即频率位置0对应的RB),子带1的起止RB分别为56(即频率位置0对应的RB的后一个RB)和110(即频率位置1对应的RB),子带2的起止RB分别为111(即频率位置1对应的RB的后一个RB)和159(即资源池的最后一个RB)。
在一实施例中,K-1个频率位置通过配置、预配置或者预定义的方式确定。
示例七:根据子带大小和子带数目中的至少之一确定子带。
方式1、根据子带大小和子带数目K,从资源池的第一个RB开始每个RB为一个子带,资源池内包括K个子带;或者,如果配置或者预配置了资源池大小(即资源池包含的RB数目),根据子带大小和子带数目K,从资源池的第一个RB开始每个RB为一个子带,资源池内包括K个子带,其中,小于或者等于
图14示出了一实施例提供的一种根据规则6确定子带的示意图。K=3,资源池包含3个子带,每个子带大小为50个RB,由于资源池包含的RB数不是子带大小的整数倍,剩余的2个RB不属于任何一个子带。
方式2、根据资源池的大小和子带大小确定子带数目,进而确定资源池的子带。
具体的,确定子带大小和资源池的大小根据资源池的大小和子带大小确定子带数目或者
可选地,如果则子带数目如果则子带数目其中,Th为门限值,每个资源池或者每个BWP或者每个载波对应一个门限值。表示对x向下取整,表示对x向上取整。也可以配置或者预配置或者预定义的方式确定子带数目是还是子带数目是
当子带数目时,除最后一个子带外在资源池中从第一个RB开始每个RB为一个子带,最后一个子带的大小为 个RB,其中,mod为求余运算。图15示出了一实施例提供的另一种根据规则6确定子带的示意图,如图15所示, 资源池包含3个子带,前2个子带大小为50个RB,最后一个子带大小为50+152mod50=52个RB。即资源池包含的RB数不是子带大小的整数倍时,剩余的个RB属于最后一个子带。
当子带数目时,除最后一个子带外在资源池中从第一个RB开始每个RB为一个子带,最后一个子带的大小为个RB。即资源池包含的RB数不是子带大小的整数倍时,剩余的个RB作为一个子带。
方式3、根据资源池的大小和子带数目确定子带大小,进而确定资源池的子带。
具体的,确定子带的数目K和资源池的大小根据资源池的大小和子带数目K确定子带大小,前个子带的大小为个RB,后个子带的大小为个RB,这些子带在资源池中从第一个RB开始依次摆放。图16示出了一实施例提供的又一种根据规则6确定子带的示意图,如图16所示,K=3,前152 mod 3=2个子带的大小为个RB,最后3-152 mod 3=1个子带的大小为个RB。
或者,确定子带的数目K和资源池的大小根据资源池的大小和子带数目K确定子带大小,前个子带的大小为个RB,后个子带的大小为个RB,这些子带在资源池中从第一个RB开始依次摆放。
或者,确定子带的数目K和资源池的大小根据资源池的大小和子带数目K确定子带大小,在资源池中从第一个RB开始每个RB为一个子带。
或者,确定子带的数目K和资源池的大小根据资源池的大小和子带数目K确定子带大小,对于前K-1个子带,在资源池中从第一个RB开始每个RB为一个子带,资源池的最后个RB为第K个子带。
或者,确定子带的数目K和资源池的大小根据资源池的大小和子带数目K确定子带大小,资源池的前个RB为第一个子带,对于第二至第K个子带,在资源池中从第个RB开始每个RB为一个子带。
示例八:每个RB set为一个子带。
图17示出了一实施例提供的一种根据规则7确定子带的示意图,资源池包 含3个保护带和4个RB set,RB set0、RB set1、RB set2和RB set3分别对应子带0、子带1、子带2和子带3,即每个RB set对应一个子带。
在上述所有示例中,如果资源池仅包含一个资源块集合,则该资源块集合对应一个子带。
需要说明的是,上述规则的示例给出了基于资源池确定子带的方法,类似地,也可以基于载波或者BWP确定子带,只需将“资源池”替换为“载波或者BWP”即可,如果基于载波或者BWP确定子带,则需要进一步配置资源池包含哪些子带,或者哪些子带属于资源池。一般地,一个载波中配置至少一个BWP,一个BWP中配置至少一个资源池,所以,通常资源池包含的子带是BWP包含的子带的子集,BWP包含的子带是载波包含的子带的子集,但也不排除其他情况,例如,直接配置载波中哪些子带属于资源池,即直接基于载波包含的子带配置资源池包含的子带。
在本申请中,配置或者预配置某个信息可以为:由网络或基站将信息配置给UE;或者,由其他高层实体(如UE自身的高层、其他网络实体等)为UE提供信息。
本申请提供的方法可以通过配置或者预配置方式使能或者去使能,或者通过使能SL信道或信号使用交织进行使能,其中,使能表示能采用本申请中的方法,去使能表示不能采用本申请中的方法(即采用NR R16SL或者NR R17SL中资源池的配置方法)。通过是否使能本申请中的方法,可以支持在有OCB要求的地区和无OCB要求的地区灵活实现SL通信。
通常,可以配置或者预配置一个或多个RB set(也可能包含资源块集合之间的保护带)属于资源池,配置、预配置或者预定义一个或多个交织属于资源池,或者默认资源池包含所有交织,进一步配置资源池包含的子信道,以便在资源池中基于子信道分配SL传输资源。也可以配置或者预配置资源池的起始RB和资源池包含的连续RB数(UE期望资源池的起始RB与RB set sx的起始RB对齐,资源池的结束RB与RB set sy的结束RB对齐,其中,0≤sx≤sy≤N-1,N为载波或者BWP包含RB set的总数),配置、预配置或者预定义一个资源池包含的交织,或者默认资源池包含所有交织,然后进一步配置资源池包含的子信道。
S220、根据资源池的子带和资源池的交织,确定频域单元,每个频域单元为在一个子带内一个交织包括的所有RB。
每个频域单元为在一个子带内一个交织包括的所有RB,即频域单元为一个子带中的资源块和一个交织中的资源块的交集。
在一实施例中,频域单元按照先交织后子带的规则进行编号;或者,频域单元按照先子带后交织的规则进行编号。
例如,按照先交织后子带的规则对频域单元编号,包括:先按照交织索引升序对第一个子带内的频域单元编号,然后按照交织索引升序对第二个子带内的频域单元编号,按照子带索引升序以此类推,直至对所有子带内的频域单元完成编号。具体地,假设资源池包含K个子带和M个交织,第一个子带内按照交织索引升序对频域单元依次编号为0,1,...,M-1,第二个子带内按照交织索引升序对频域单元编号为M,M+1,...,2M-1,以此类推,第K个子带内按照交织索引升序对频域单元编号为(K-1)M,(K-1)M+1,...,KM-1。
又比如,按照先交织后子带的规则对频域单元编号,包括:先按照交织索引升序对第一个子带内的频域单元编号,然后按照交织索引降序对第二个子带内的频域单元编号,按照子带索引升序以此类推,对于索引为偶数的子带,按照交织索引升序对该子带内的频域单元编号,对于索引为奇数的子带,按照交织索引降序对该子带内的频域单元编号,直至对所有子带内的频域单元完成编号。具体地,假设资源池包含K个子带和M个交织,第一个子带内按照交织索引升序对频域单元依次编号为0,1,...,M-1,第二个子带内按照交织索引降序对频域单元编号为M,M+1,...,2M-1,以此类推,第2k-1个子带内按照交织索引升序对频域单元依次编号为(2k-2)M,(2k-2)M+1,...,(2k-1)M-1。第2k个子带内按照交织索引降序对频域单元依次编号为(2k-1)M,(2k-1)M+1,...,2kM-1。类似地,也可以将本例子中的升序和降序交换一下,即先按照交织索引降序对第一个子带内的频域单元编号,然后按照交织索引升序对第二个子带内的频域单元编号,按照子带索引升序以此类推,对于索引为偶数的子带,按照交织索引降序对该子带内的频域单元编号,对于索引为奇数的子带,按照交织索引升序对该子带内的频域单元编号,直至对所有子带内的频域单元完成编号。采用该方式对频域单元编号可以使得连续的频域单元对应的交织索引不会跳变。
例如,按照先子带后交织的规则对频域单元编号,包括:先按照子带索引升序对第一个交织内的频域单元编号,然后按照子带索引升序对第二个交织内的频域单元编号,按照交织索引升序以此类推,直至对所有交织内的频域单元完成编号。具体地,假设资源池包含K个子带和M个交织,则第一个交织内按照子带索引升序对频域单元依次编号为0,1,...,K-1,第二个交织内按照子带索引升序对频域单元依次为K,K+1,...,2K-1,以此类推,第M个交织内按照子带索引升序对频域单元依次编号为(M-1)K,(M-1)K+1,...,MK-1。
又比如,按照先子带后交织的规则对频域单元编号,包括:先按照子带索引升序对第一个交织内的频域单元编号,然后按照子带索引降序对第二个交织 内的频域单元编号,按照交织索引升序以此类推,对于索引为偶数的交织,按照子带索引升序对该交织内的频域单元编号,对于索引为奇数的交织,按照子带索引降序对该交织内的频域单元编号,直至对所有交织内的频域单元完成编号。具体地,假设资源池包含K个子带和M个交织,则第一个交织内按照子带索引升序对频域单元依次编号为0,1,...,K-1,第二个交织内按照子带索引降序对频域单元依次为K,K+1,...,2K-1,以此类推,第2m-1个交织内按照子带索引升序对频域单元依次编号为(2m-2)K,(2m-2)K+1,...,(2m-1)K-1。第2m个交织内按照子带索引降序对频域单元依次编号为(2m-1)K,(2m-1)K+1,...,2mK-1。类似地,也可以将本例子中的升序和降序交换一下,即先按照子带索引降序对第一个交织内的频域单元编号,然后按照子带索引升序对第二个交织内的频域单元编号,按照交织索引升序以此类推,对于索引为偶数的交织,按照子带索引降序对该交织内的频域单元编号,对于索引为奇数的交织,按照子带索引升序对该交织内的频域单元编号,直至对所有交织内的频域单元完成编号。采用该方式对频域单元编号可以使得连续的频域单元对应的子带索引不会跳变。
S230、根据频域单元,配置子信道,每个子信道包括特定数量的频域单元,特定数量通过配置、预配置或者预定义的方式确定。
例如,对于资源池内进行编号后的频域单元,从第一个频域单元开始,每X个频域单元为一个子信道,X通过配置、预配置或者预定义的方式确定。
S240、基于子信道为物理边链路共享信道(Physical Sidelink Shared Channel,PSSCH)分配频域资源,PSSCH的频域资源包括至少一个子信道。
在一实施例中,若PSSCH的频域资源中没有子信道跨RB set,则PSSCH只能使用被分配的子信道中不属于保护带的RB,或者PSSCH不能使用被分配的子信道中属于保护带的RB;
若PSSCH的频域资源中所有子信道的并集跨多个RB set,则PSSCH使用PSSCH的频域资源中所有子信道的并集所跨的RB set中的RB和所有子信道的并集所跨的RB set之间的保护带中的RB。
在一实施例中,每个PSSCH传输与一个物理边链路控制信道(Physical Sidelink Control Channel,PSCCH)传输关联;
PSCCH的频域资源为从关联的PSSCH的第一个子信道的第一个不属于保护带的RB开始的个RB、且PSCCH的频域资源位于一个子信道内;或者,
PSCCH的频域资源为从关联的PSSCH的第一个子信道的第一个不属于保护带的RB开始的个不属于保护带的RB;或者,
若PSCCH关联的PSSCH的第一个子信道没有跨RB set(即子信道只包含了一个RB set中的RB),则PSCCH的频域资源为从关联的PSSCH的第一个子信道的第一个不属于保护带的RB开始的个不属于保护带的RB、且PSCCH的频域资源位于一个子信道内;若PSCCH关联的PSSCH的第一个子信道跨多个RB set(即子信道包含了多个RB set中的RB),则PSCCH的频域资源为从关联的PSSCH的第一个子信道的第一个不属于保护带的RB开始的个RB、且PSCCH的频域资源位于一个子信道内,用于PSCCH传输的个RB仅包含子信道所跨的RB set中的RB和子信道所跨的RB set之间的保护带中的RB。
在一实施例中,对于每个资源池,UE被配置或者预配置PSCCH占用的RB数目
在另一种可能的实现方式中,配置信息包括资源池的RB set、资源池的交织和频域单元大小。图18示出了一实施例提供的又一种子信道的配置方法的流程示意图,如图18所示,该方法包括如下步骤。
S310、确定配置信息,配置信息包括资源池的RB set、资源池的交织和频域单元大小。
S320、根据资源池的RB set、资源池的交织和频域单元大小,确定频域单元,每个频域单元为从资源池的一个RB set的起始RB开始的包含在一个交织内的频域单元大小个RB。
假设频域单元大小为则从资源池的一个RB set的起始RB开始的包含在一个交织内的个RB为一个频域单元。
在一实施例中,频域单元按照先交织后RB set的规则进行编号;或者,频域单元按照先RB set后交织的规则进行编号。
例如,按照先交织后RB set对频域单元编号,包括:先按照交织索引升序对第一个RB set对应的频域单元编号,然后按照交织索引升序对第二个RB set对应的频域单元编号,按照RB set索引升序以此类推,直至对资源池内的所有RB set对应的频域单元完成编号。
又比如,按照先交织后RB set对频域单元编号,包括:先按照交织索引升序对第一个RB set对应的频域单元编号,然后按照交织索引降序对第二个RB set对应的频域单元编号,按照RB set索引升序以此类推,对于索引为偶数的RB set,按照交织索引升序对该RB set对应的频域单元编号,对于索引为奇数的RB set,按照交织索引降序对该RB set对应的频域单元编号,直至对资源池内的所有RB set对应的频域单元完成编号。类似地,也可以将本例子中的升序和降序交换一 下,即先按照交织索引降序对第一个RB set对应的频域单元编号,然后按照交织索引升序对第二个RB set对应的频域单元编号,按照RB set索引升序以此类推,对于索引为偶数的RB set,按照交织索引降序对该RB set对应的频域单元编号,对于索引为奇数的RB set,按照交织索引升序对该RB set对应的频域单元编号,直至对资源池内的所有RB set对应的频域单元完成编号。采用该方式对频域单元编号可以使得连续的频域单元对应的交织索引不会跳变。
例如,按照先RB set后交织对频域单元编号,包括:先按照RB set索引升序对第一个交织内的频域单元编号,然后按照RB set索引升序对第二个交织内的频域单元编号,按照交织索引升序以此类推,直至对资源池内的所有交织内的频域单元完成编号。
又比如,按照先RB set后交织对频域单元编号,包括:先按照RB set索引升序对第一个交织内的频域单元编号,然后按照RB set索引降序对第二个交织内的频域单元编号,按照交织索引升序以此类推,对于索引为偶数的交织,按照RB set索引升序对该交织内的频域单元编号,对于索引为奇数的交织,按照RB set索引降序对该交织内的频域单元编号,直至对所有交织内的频域单元完成编号。类似地,也可以将本例子中的升序和降序交换一下,即先按照RB set索引降序对第一个交织内的频域单元编号,然后按照RB set索引升序对第二个交织内的频域单元编号,按照交织索引升序以此类推,对于索引为偶数的交织,按照RB set索引降序对该交织内的频域单元编号,对于索引为奇数的交织,按照RB set索引升序对该交织内的频域单元编号,直至对所有交织内的频域单元完成编号。采用该方式对频域单元编号可以使得连续的频域单元对应的RB set索引不会跳变。
上述举例与步骤S220中“频域单元按照先交织后子带的规则进行编号;或者,频域单元按照先子带后交织的规则进行编号”的具体实例类似,只需将“子带”改为“RB set”,将“子带内的频域单元”改为“RB set对应的频域单元”即可,修改的目的是和本实施例中的方法描述更匹配,具体实例没有本质上的区别,为了简洁,此处不再赘述。
在一实施例中,UE期望一个频域单元包含在一个RB set内;或者,
UE期望一个频域单元包含在一个RB set内或者包含在一个RB set以及相邻的保护带内;或者,
UE不期望一个频域单元跨多个RB set;或者,
当资源池仅包含一个RB set时UE期望资源池的所有频域单元包含在一个RB set内,当资源池包含多个RB set时,UE不期望一个频域单元跨多个RB set; 或者,
当资源池仅包含一个RB set时UE期望资源池的所有频域单元包含在一个RB set内,当资源池包含多个RB set时,对于资源池内的最后一个RB set,UE期望一个频域单元包含在一个RB set内,或者频域单元仅仅保留RB set内的RB(即允许频域单元小于个RB),对于资源池的其他RB set,UE不期望一个频域单元跨多个RB set。
S330、根据频域单元,配置子信道,每个子信道包括特定数量的频域单元,特定数量通过配置、预配置或者预定义的方式确定。
例如,对于资源池内编号后的频域单元,从第一个频域单元开始,每X个频域单元为一个子信道,X的通过配置、预配置或者预定义的方式确定。
S340、基于子信道为物理边链路共享信道PSSCH分配频域资源,PSSCH的频域资源包括至少一个子信道。
在一实施例中,若PSSCH的频域资源中没有子信道跨RB set,则PSSCH只能使用被分配的子信道中不属于保护带的RB,或者PSSCH不能使用被分配的子信道中属于保护带的RB;
若PSSCH的频域资源中所有子信道的并集跨多个RB set,则PSSCH使用PSSCH的频域资源中所有子信道的并集所跨的RB set中的RB和所有子信道的并集所跨的RB set之间的保护带中的RB。
在一实施例中,每个PSSCH传输与一个物理边链路控制信道PSCCH传输关联;
PSCCH的频域资源为从关联的PSSCH的第一个子信道的第一个不属于保护带的RB开始的个RB、且PSCCH的频域资源位于一个子信道内;或者,
PSCCH的频域资源为从关联的PSSCH的第一个子信道的第一个不属于保护带的RB开始的个不属于保护带的RB;或者,
若PSCCH关联的PSSCH的第一个子信道没有跨RB set(即子信道只包含了一个RB set中的RB),则PSCCH的频域资源为从关联的PSSCH的第一个子信道的第一个不属于保护带的RB开始的个不属于保护带的RB、且PSCCH的频域资源位于一个子信道内;若PSCCH关联的PSSCH的第一个子信道跨多个RB set(即子信道包含了多个RB set中的RB),则PSCCH的频域资源为从关联的PSSCH的第一个子信道的第一个不属于保护带的RB开始的个RB、且PSCCH的频域资源位于一个子信道内,用于PSCCH传输的个RB仅包含子信道所跨的RB set中的RB和子信道所跨的RB set之间 的保护带中的RB。
在一实施例中,对于每个资源池,UE被配置或者预配置PSCCH占用的RB数目
图19示出了一实施例提供的一种子信道的配置装置的结构示意图,该装置可以配置于通信节点中,如图19所示,该装置包括:确定模块200和配置模块210。
确定模块200,设置为确定配置信息,配置信息包括资源池的子带和资源池的交织,或者包括资源池的资源块集合RB set、资源池的交织和频域单元大小;根据配置信息,确定频域单元;
配置模块210,设置为根据频域单元,配置子信道,每个子信道包括特定数量的频域单元,特定数量通过配置、预配置或者预定义的方式确定。
本实施例提供的子信道的配置装置为实现上述实施例的子信道的配置方法,本实施例提供的子信道的配置装置实现原理和技术效果与上述实施例类似,此处不再赘述。
在一实施例中,配置信息包括资源池的子带和资源池的交织;
资源池包括至少一个子带,每个子带包括如下至少之一:RB set、RB set和与RB set相邻的保护带、一组连续的资源块RB。
在一实施例中,子带根据如下规则中的至少之一确定:
保护带和与保护带相邻的索引小的RB set组成一个子带;
保护带和与保护带相邻的索引大的RB set组成一个子带;
保护带中前L个RB和与保护带相邻的索引小的RB set组成一个子带,L为大于或者等于0、且小于保护带包括的RB数量的整数;
保护带中后R个RB和与保护带相邻的索引大的RB set组成一个子带,R为大于或者等于0、且小于保护带包括的RB数量的整数;
K-1个频率位置确定K个子带,K为正整数;
根据子带大小和子带数目中的至少之一确定子带;
每个RB set为一个子带。
在一实施例中,子带基于资源池确定;或者,
子带基于载波确定,基于载波的子带确定带宽部分BWP的子带,基于BWP 的子带确定资源池的子带;或者,
子带基于BWP确定,基于BWP的子带确定资源池的子带;或者,
子带基于载波确定,基于载波的子带确定资源池的子带。
在一实施例中,L的取值通过配置、预配置或者预定义的方式确定;或者,L的取值根据频域单元大小计算得到;
R的取值通过配置、预配置或者预定义的方式确定;或者,R的取值根据频域单元大小计算得到;
其中,频域单元大小通过配置、预配置或者预定义的方式确定。
在一实施例中,配置信息包括资源池的子带和资源池的交织;确定模块200,是设置为根据资源池的子带和资源池的交织,确定频域单元,每个频域单元为在一个子带内的一个交织包括的所有RB。
在一实施例中,频域单元按照先交织后子带的规则进行编号;或者,
频域单元按照先子带后交织的规则进行编号。
在一实施例中,配置信息包括资源池的RB set、资源池的交织和频域单元大小;确定模块200,是设置为根据资源池的RB set、资源池的交织和频域单元大小,确定频域单元,每个频域单元为从资源池的一个RB set的起始RB开始的包含在一个交织内的频域单元大小个RB。
在一实施例中,频域单元按照先交织后RB set的规则进行编号;或者,
频域单元按照先RB set后交织的规则进行编号。
在一实施例中,配置模块210,还设置为基于子信道为物理边链路共享信道PSSCH分配频域资源,PSSCH的频域资源包括至少一个子信道。
在一实施例中,PSSCH的频域资源中没有子信道跨RB set,PSSCH只能使用被分配的子信道中不属于保护带的RB,或者PSSCH不能使用被分配的子信道中属于保护带的RB;
PSSCH的频域资源中所有子信道的并集跨多个RB set,PSSCH使用PSSCH的频域资源中所有子信道的并集所跨的RB set中的RB和所有子信道的并集所跨的RB set之间的保护带中的RB。
在一实施例中,每个PSSCH传输与一个物理边链路控制信道PSCCH传输关联;
PSCCH的频域资源为从关联的PSSCH的第一个子信道的第一个不属于保护带的RB开始的个RB、且PSCCH的频域资源位于一个子信道内;或 者,
PSCCH的频域资源为从关联的PSSCH的第一个子信道的第一个不属于保护带的RB开始的个不属于保护带的RB;或者,
PSCCH关联的PSSCH的第一个子信道没有跨RB set,PSCCH的频域资源为从关联的PSSCH的第一个子信道的第一个不属于保护带的RB开始的个不属于保护带的RB、且PSCCH的频域资源位于一个子信道内;PSCCH关联的PSSCH的第一个子信道跨多个RB set,PSCCH的频域资源为从关联的PSSCH的第一个子信道的第一个不属于保护带的RB开始的个RB、且PSCCH的频域资源位于一个子信道内,用于PSCCH传输的个RB仅包含子信道所跨的RB set中的RB和子信道所跨的RB set之间的保护带中的RB。
本申请实施例还提供了一种通信节点,包括:处理器,处理器设置为在执行计算机程序时实现如本申请任意实施例所提供的方法。具体的,通信节点可以为本申请任意实施例所提供的终端设备,本申请对此不作具体限制。
示例性的,下述实施例分别提供一种通信节点为UE和基站(或者高层实体)的结构示意图。
图20示出了一实施例提供的一种UE的结构示意图,UE可以以多种形式来实施,本申请中的UE可以包括但不限于诸如移动电话、智能电话、笔记本电脑、数字广播接收器、个人数字助理(Personal Digital Assistant,PDA)、平板电脑(Portable Android Device,PAD)、便携式多媒体播放器(Portable Media Player,PMP)、导航装置、车载终端设备、车载显示终端、车载电子后视镜等等的移动终端设备以及诸如数字电视(television,TV)、台式计算机等等的固定终端设备。
如图20所示,UE 50可以包括无线通信单元51、音频/视频(Audio/Video,A/V)输入单元52、用户输入单元53、感测单元54、输出单元55、存储器56、接口单元57、处理器58和电源单元59等等。图20示出了包括多种组件的UE,但是应理解的是,并不要求实施所有示出的组件。可以替代地实施更多或更少的组件。
本实施例中,无线通信单元51允许UE 50与UE或者基站或网络之间的无线电通信。A/V输入单元52设置为接收音频或视频信号。用户输入单元53可以根据用户输入的命令生成键输入数据以控制UE 50的多种操作。感测单元54检测UE 50的当前状态、UE 50的位置、用户对于UE 50的触摸输入的有无、UE 50的取向、UE 50的加速或减速移动和方向等等,并且生成用于控制UE 50 的操作的命令或信号。接口单元57用作至少一个外部装置与UE 50连接可以通过的接口。输出单元55被构造为以视觉、音频和/或触觉方式提供输出信号。存储器56可以存储由处理器58执行的处理和控制操作的软件程序等等,或者可以暂时地存储己经输出或将要输出的数据。存储器56可以包括至少一种类型的存储介质。而且,UE 50可以与通过网络连接执行存储器56的存储功能的网络存储装置协作。处理器58通常控制UE 50的总体操作。电源单元59在处理器58的控制下接收外部电力或内部电力并且提供操作多种元件和组件所需的适当的电力。
处理器58通过运行存储在存储器56中的程序,从而执行至少一种功能应用以及数据处理,例如实现本申请实施例所提供的方法。
图21示出了一实施例提供的一种基站(或者高层实体)的结构示意图,如图21所示,该基站包括处理器60、存储器61和通信接口62;基站中处理器60的数量可以是一个或多个,图21中以一个处理器60为例;基站中的处理器60、存储器61、通信接口62可以通过总线或其他方式连接,图21中以通过总线连接为例。总线表示几类总线结构中的一种或多种,包括存储器总线或者存储器控制器,外围总线,图形加速端口,处理器或者使用多种总线结构中的任意总线结构的局域总线。
存储器61作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例中的方法对应的程序指令/模块。处理器60通过运行存储在存储器61中的软件程序、指令以及模块,从而执行基站的至少一种功能应用以及数据处理,即实现上述的方法。
存储器61可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器61可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器61可包括相对于处理器60远程设置的存储器,这些远程存储器可以通过网络连接至基站。上述网络的实例包括但不限于互联网、企业内部网、网络、移动通信网及其组合。
通信接口62可设置为数据的接收与发送。
本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现如本申请任意实施例所提供的方法。
本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是但不限于:电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质包括(非穷举的列表):具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、可擦式可编程只读存储器(electrically erasable programmable Read-Only Memory,EPROM)、闪存、光纤、便携式紧凑磁盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本申请中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,数据信号中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、电线、光缆、射频(Radio Frequency,RF)等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或多种程序设计语言组合来编写用于执行本公开操作的计算机程序代码,程序设计语言包括面向对象的程序设计语言(诸如Java、Smalltalk、C++、Ruby、Go),还包括常规的过程式程序设计语言(诸如“C”语言或类似的程序设计语言)。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络(包括网络(Local Area Network,LAN)或广域网(Wide Area Network,WAN))连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
本领域内的技术人员应明白,术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其 任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(ROM)、随机访问存储器(RAM)、光存储器装置和系统(数码多功能光碟(Digital Versatile Disc,DVD)或光盘(Compact Disc,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。

Claims (14)

  1. 一种子信道的配置方法,包括:
    确定配置信息,所述配置信息包括资源池的子带和所述资源池的交织,或者包括资源池的资源块集合RB set、所述资源池的交织和频域单元大小;
    根据所述配置信息,确定频域单元;
    根据所述频域单元,配置子信道,每个所述子信道包括特定数量的所述频域单元,所述特定数量通过配置、预配置或者预定义的方式确定。
  2. 根据权利要求1所述的方法,其特中,所述配置信息包括资源池的子带和所述资源池的交织;
    所述资源池包括至少一个子带,每个所述子带包括如下至少之一:RB set、RB set和与所述RB set相邻的保护带、一组连续的资源块RB。
  3. 根据权利要求2所述的方法,其中,所述子带根据如下规则中的至少之一确定:
    保护带和与所述保护带相邻的索引小的RB set组成一个所述子带;
    保护带和与所述保护带相邻的索引大的RB set组成一个所述子带;
    保护带中前L个RB和与所述保护带相邻的索引小的RB set组成一个所述子带,L为大于或者等于0、且小于所述保护带包括的RB数量的整数;
    保护带中后R个RB和与所述保护带相邻的索引大的RB set组成一个所述子带,R为大于或者等于0、且小于所述保护带包括的RB数量的整数;
    K-1个频率位置确定K个子带,K为正整数;
    根据子带大小和子带数目中的至少之一确定所述子带;
    每个RB set为一个所述子带。
  4. 根据权利要求2所述的方法,其中,
    所述子带基于所述资源池确定;或者,
    所述子带基于所述载波确定,基于所述载波的子带确定带宽部分BWP的子带,基于BWP的子带确定所述资源池的子带;或者,
    所述子带基于BWP确定,基于BWP的子带确定资源池的子带;或者,
    所述子带基于所述载波确定,基于所述载波的子带确定所述资源池的子带。
  5. 根据权利要求3所述的方法,其中,L的取值通过配置、预配置或者预定义的方式确定;或者,L的取值根据所述频域单元大小计算得到;
    R的取值通过配置、预配置或者预定义的方式确定;或者,R的取值根据所 述频域单元大小计算得到;
    其中,所述频域单元大小通过配置、预配置或者预定义的方式确定。
  6. 根据权利要求1所述的方法,其中,所述配置信息包括所述资源池的子带和所述资源池的交织;所述根据所述配置信息,确定频域单元,包括:
    根据所述资源池的子带和所述资源池的交织,确定所述频域单元,每个所述频域单元为在一个子带内一个交织包括的所有RB。
  7. 根据权利要求6所述的方法,其中,
    所述频域单元按照先交织后子带的规则进行编号;或者,
    所述频域单元按照先子带后交织的规则进行编号。
  8. 根据权利要求1所述的方法,其中,所述配置信息包括所述资源池的RB set、所述资源池的交织和频域单元大小;所述根据所述配置信息,确定频域单元,包括:
    根据所述资源池的RB set、所述资源池的交织和所述频域单元大小,确定所述频域单元,每个所述频域单元为从所述资源池的一个RB set的起始RB开始的包含在一个交织内的所述频域单元大小个RB。
  9. 根据权利要求8所述的方法,其中,
    所述频域单元按照先交织后RB set的规则进行编号;或者,
    所述频域单元按照先RB set后交织的规则进行编号。
  10. 根据权利要求1所述的方法,还包括:
    基于所述子信道为物理边链路共享信道PSSCH分配频域资源,所述PSSCH的频域资源包括至少一个所述子信道。
  11. 根据权利要求10所述的方法,其中,
    所述PSSCH的频域资源中没有子信道跨RB set,所述PSSCH只能使用被分配的子信道中不属于保护带的RB,或者所述PSSCH不能使用被分配的子信道中属于保护带的RB;
    所述PSSCH的频域资源中所有子信道的并集跨多个RB set,所述PSSCH使用所述PSSCH的频域资源中所有子信道的并集所跨的所述多个RB set中的RB和所有子信道的并集所跨的所述多个RB set之间的保护带中的RB。
  12. 根据权利要求10所述的方法,其中,每个PSSCH传输与一个物理边链路控制信道PSCCH传输关联;
    PSCCH的频域资源为从所述PSCCH关联的PSSCH的第一个子信道的第一个不属于保护带的RB开始的个RB、且所述PSCCH的频域资源位于一个子信道内;或者,
    PSCCH的频域资源为从所述PSCCH关联的PSSCH的第一个子信道的第一个不属于保护带的RB开始的个不属于保护带的RB;或者,
    PSCCH关联的PSSCH的第一个子信道没有跨RB set,所述PSCCH的频域资源为从所述PSCCH关联的所述PSSCH的第一个子信道的第一个不属于保护带的RB开始的个不属于保护带的RB、且所述PSCCH的频域资源位于一个子信道内;PSCCH关联的PSSCH的第一个子信道跨多个RB set,所述PSCCH的频域资源为从所述PSCCH关联的PSSCH的第一个子信道的第一个不属于保护带的RB开始的个RB、且所述PSCCH的频域资源位于一个子信道内,用于PSCCH传输的所述个RB仅包含子信道所跨的RB set中的RB和所述子信道所跨的RB set之间的保护带中的RB。
  13. 一种通信节点,包括:处理器;所述处理器设置为在执行计算机程序时实现如权利要求1-12中任一所述的子信道的配置方法。
  14. 一种计算机可读存储介质,存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1-12中任一所述的子信道的配置方法。
PCT/CN2023/103748 2022-07-18 2023-06-29 子信道的配置方法、通信节点及存储介质 WO2024016988A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210844722.XA CN115866759A (zh) 2022-07-18 2022-07-18 一种子信道的配置方法、通信节点及存储介质
CN202210844722.X 2022-07-18

Publications (1)

Publication Number Publication Date
WO2024016988A1 true WO2024016988A1 (zh) 2024-01-25

Family

ID=85660294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103748 WO2024016988A1 (zh) 2022-07-18 2023-06-29 子信道的配置方法、通信节点及存储介质

Country Status (2)

Country Link
CN (1) CN115866759A (zh)
WO (1) WO2024016988A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115866759A (zh) * 2022-07-18 2023-03-28 中兴通讯股份有限公司 一种子信道的配置方法、通信节点及存储介质
WO2024093129A1 (en) * 2023-04-04 2024-05-10 Lenovo (Beijing) Limited Configuration for sidelink transmissions

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020025042A1 (zh) * 2018-08-03 2020-02-06 Oppo广东移动通信有限公司 资源配置的方法和终端设备
CN110958098A (zh) * 2018-09-27 2020-04-03 华为技术有限公司 配置旁链路资源的方法和装置
CN112153618A (zh) * 2020-09-23 2020-12-29 中兴通讯股份有限公司 一种确定信道资源配置的方法、通信节点及存储介质
CN113891463A (zh) * 2020-07-02 2022-01-04 维沃移动通信有限公司 Pusch信号的映射方法、终端及网络侧设备
CN115866759A (zh) * 2022-07-18 2023-03-28 中兴通讯股份有限公司 一种子信道的配置方法、通信节点及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020025042A1 (zh) * 2018-08-03 2020-02-06 Oppo广东移动通信有限公司 资源配置的方法和终端设备
CN110958098A (zh) * 2018-09-27 2020-04-03 华为技术有限公司 配置旁链路资源的方法和装置
CN113891463A (zh) * 2020-07-02 2022-01-04 维沃移动通信有限公司 Pusch信号的映射方法、终端及网络侧设备
CN112153618A (zh) * 2020-09-23 2020-12-29 中兴通讯股份有限公司 一种确定信道资源配置的方法、通信节点及存储介质
CN115866759A (zh) * 2022-07-18 2023-03-28 中兴通讯股份有限公司 一种子信道的配置方法、通信节点及存储介质

Also Published As

Publication number Publication date
CN115866759A (zh) 2023-03-28

Similar Documents

Publication Publication Date Title
WO2024016988A1 (zh) 子信道的配置方法、通信节点及存储介质
CN110535604B (zh) 一种速率匹配方法和装置
CN112514497B (zh) 一种通信方法及通信设备
WO2021155517A1 (zh) 资源指示方法、装置和终端
JP2023502825A (ja) 物理サイドリンクブロードキャストチャネルを送信もしくは受信するための装置および方法
WO2024067450A1 (zh) 子信道的确定方法、通信节点及存储介质
EP4213571A1 (en) Data transmission method and apparatus, and storage medium and mobile terminal
WO2024017055A1 (zh) 传输块大小的确定方法、终端设备及存储介质
WO2024088415A1 (zh) 资源指示方法、第一节点、第二节点及存储介质
WO2023202397A1 (zh) 信息传输方法、终端及存储介质
CN115915449A (zh) 信息传输方法、第一通信节点、第二通信节点及存储介质
CN112055326B (zh) 一种车联网的数据发送方法及装置
CN111526600B (zh) 网络接入的方法、装置、存储介质及终端和网络设备
WO2021088049A1 (zh) 确定和配置控制资源集的方法、装置及通信系统
WO2023116378A1 (zh) 通信资源确定方法、通信方法、通信节点及介质
EP4114109A1 (en) Resource configuration method, communication method, and apparatuses
WO2024099261A1 (zh) 数据映射方法、通信节点及存储介质
CN115696609B (zh) 资源分配方法及相关设备
WO2024032193A1 (zh) 一种非授权频谱的资源确定方法及装置
WO2021110109A1 (en) Apparatus and method of wireless communication
WO2022214059A1 (zh) 监听pdcch的方法、装置及终端
CN117939676A (zh) 一种信息发送、接收方法、用户设备及存储介质
CN117939641A (zh) 一种数据发送方法,资源配置方法,通信节点及存储介质
CN116939864A (zh) 一种侧行链路的资源确定方法及装置
CN116056237A (zh) 资源分配方法、确定方法、装置、存储介质及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842053

Country of ref document: EP

Kind code of ref document: A1