WO2024016442A1 - 一种石墨烯改性沥青及其制备方法 - Google Patents

一种石墨烯改性沥青及其制备方法 Download PDF

Info

Publication number
WO2024016442A1
WO2024016442A1 PCT/CN2022/117407 CN2022117407W WO2024016442A1 WO 2024016442 A1 WO2024016442 A1 WO 2024016442A1 CN 2022117407 W CN2022117407 W CN 2022117407W WO 2024016442 A1 WO2024016442 A1 WO 2024016442A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
asphalt
modifier
modified asphalt
preparation
Prior art date
Application number
PCT/CN2022/117407
Other languages
English (en)
French (fr)
Inventor
虞将苗
邹元昊
Original Assignee
华运通达(浙江)交通科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华运通达(浙江)交通科技有限公司 filed Critical 华运通达(浙江)交通科技有限公司
Publication of WO2024016442A1 publication Critical patent/WO2024016442A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L95/00Compositions of bituminous materials, e.g. asphalt, tar, pitch
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/30Adapting or protecting infrastructure or their operation in transportation, e.g. on roads, waterways or railways

Definitions

  • the present invention relates to the technical field of asphalt preparation, and in particular to a graphene-modified asphalt and a preparation method thereof.
  • asphalt pavement has become the mainstream type of high-grade pavement in my country. This is mainly due to the short construction period of asphalt pavement, comfortable driving, ability to reduce nighttime glare, and easy maintenance and repair.
  • the void ratio of drainage asphalt pavement is relatively large, generally around 20%, which can quickly drain rainwater from the road surface, effectively improving the safety and comfort of vehicles in rainy and snowy weather.
  • the surface structure of drainage asphalt pavement is deep and it also has the functions of noise reduction and anti-skid, drainage asphalt pavement is currently a key research direction in the road industry.
  • Drainage asphalt pavement has a smaller proportion of fine aggregates, a larger void ratio, and higher requirements for asphalt viscosity.
  • high-viscosity modified asphalt is generally used as a cementing material for drainage asphalt pavement.
  • the drainage asphalt pavement obtained by using the above-mentioned high-viscosity modified asphalt as the cementing material has insufficient durability and short service life during service.
  • the main reason is that the large void ratio of the drainage asphalt pavement makes the cementing material asphalt easily exposed to air and aged. It becomes hard, causing fatigue damage and reducing the service life of the road surface; secondly, the dust carried by vehicle tires and impurities in the air can easily block the pores of the road, leading to the loss of road function and service.
  • the present invention provides a graphene-modified asphalt and a preparation method thereof.
  • the graphene-modified asphalt provided by the present invention has strong aging resistance, fatigue resistance and hydrophobicity.
  • the present invention provides a graphene-modified asphalt, including the following parts by weight of preparation raw materials: 100 to 140 parts of asphalt; 1 to 20 parts of modifier; the modifier is modified graphene , the raw materials for preparing the modifier include graphene, styrene-butadiene-styrene block copolymer, polyurethane, rubber, compatibilizer, coupling agent, sulfur and accelerator.
  • the modifier includes the following parts by weight of preparation raw materials:
  • the particle size of the modifier is 0.075 ⁇ 2.36mm.
  • the preparation method of the modifier includes the following steps:
  • the temperature of the first mixing is 60-90°C, and the time is 5-25 minutes;
  • the temperature of the second mixing is 50-80°C, and the time is 3-10 minutes.
  • the asphalt is SBS modified asphalt.
  • the invention also provides a method for preparing the above-mentioned graphene modified asphalt, which includes the following steps:
  • the asphalt is heated, and the resulting molten asphalt is mixed with the preheated and dispersed modifier to obtain a premix;
  • the premix is subjected to shearing and heat preservation development in sequence to obtain the graphene modified asphalt.
  • the preheating and dispersion temperature is 95-125°C, and the holding time is 1-2 hours.
  • the mixing temperature is 160-200°C.
  • the shearing speed is 5000-10000r/min
  • the temperature is 170-200°C
  • the shearing time is 40-80min.
  • the temperature of the heat preservation and development is 165-190°C, and the time of the heat preservation and development is 24-48 hours.
  • the invention provides a graphene-modified asphalt, which includes the following parts by weight of preparation raw materials: 100 to 140 parts of asphalt; 1 to 20 parts of a modifier; the modifier is modified graphene, and the modifier is
  • the preparation raw materials include graphene, styrene-butadiene-styrene block copolymer, polyurethane, rubber, compatibilizer, coupling agent, sulfur and accelerator.
  • the modifier in the present invention is modified graphene.
  • the coupling agent and compatibilizer are mixed into the graphene, which is beneficial to the uniform miscibility of the graphene in the asphalt macromolecules, prevents agglomeration, and gives full play to the high strength of graphene.
  • the present invention can effectively blend styrene-butadiene-styrene block copolymer, polyurethane, rubber and graphene. It solves the problem of the low-temperature performance of asphalt declining due to the mixing of simple graphene into asphalt, and improves the fatigue resistance of asphalt to a certain extent.
  • the coupling agent and compatibilizer in modified graphene can cross-link with asphalt.
  • graphene After graphene is mixed into the asphalt molecular structure, it prolongs the path for free oxygen to enter the interior of the asphalt and the evaporation of light components to the outside, thus delaying the It prevents the aging and deterioration of asphalt under hot oxygen; secondly, the modified graphene and the macromolecular chains of asphalt are cross-linked with each other, which improves the overall anti-cracking ability of asphalt and improves the fatigue performance of asphalt.
  • graphene is a super-hydrophobic material. When modified graphene is miscible with asphalt, graphene can evenly exist in the graphene-modified asphalt, improving the hydrophobic properties of the asphalt. Strong hydrophobicity can reduce the interface between voids and impurities. The adhesion ability enables quick and efficient cleaning, restores the drainage characteristics of drainage asphalt concrete, and also improves the drainage efficiency of the road surface.
  • the invention also provides a method for preparing the graphene-modified asphalt, which includes the following steps: preheating and dispersing the modifier to obtain the preheated and dispersed modifier; heating the asphalt to obtain molten asphalt and preheated and dispersed Modifiers are mixed to obtain a premix; the premix is sheared and developed with heat preservation in sequence to obtain the graphene modified asphalt.
  • the preparation method of the invention has simple steps, strong operability, and is easy to realize industrial production.
  • Figure 1 shows the penetration diagram of graphene modified asphalt and SBS asphalt before and after aging
  • Figure 2 shows the ductility diagrams of graphene modified asphalt and SBS asphalt before and after aging
  • Figure 3 is the stress strain diagram of graphene modified asphalt and SBS asphalt
  • Figure 4 is the strain-fatigue life diagram of graphene modified asphalt and SBS asphalt
  • Figure 5 is the contact angle diagram of SBS asphalt
  • Figure 6 is a contact angle diagram of graphene-modified pitch in Example 4.
  • the invention provides a graphene-modified asphalt, which includes the following preparation raw materials in parts by weight:
  • the modifier is modified graphene, and the raw materials for preparing the modifier include graphene, styrene-butadiene-styrene block copolymer, polyurethane, rubber, compatibilizer, coupling agent, sulfur and accelerators.
  • the raw materials for preparing the graphene-modified asphalt include 100 to 140 parts by weight of asphalt, preferably 105 to 130 parts by weight, and more preferably 108 to 112 parts by weight.
  • the asphalt is preferably SBS modified asphalt.
  • the asphalt is preferably PG76-22 SBS modified asphalt.
  • the 25°C penetration (0.1mm) of the asphalt is preferably 40-60, more preferably 50-55; the softening point is preferably ⁇ 60°C, more preferably 75-80°C; the 5°C ductility Preferably, it is ⁇ 20cm, and more preferably, it is 25-32cm.
  • the raw materials for preparing the graphene-modified asphalt include 1 to 20 parts by weight of the modifier, preferably 2 to 18 parts by weight, and more preferably 2 to 12 parts by weight.
  • the modifier is modified graphene.
  • the particle size of the modifier is preferably 0.075 ⁇ 2.36mm, more preferably 0.075 ⁇ 1.18mm, and most preferably 0.15 ⁇ 0.6mm.
  • the raw materials for preparing the modifier include graphene, styrene-butadiene-styrene block copolymer, polyurethane, rubber, compatibilizer, coupling agent, sulfur and accelerator.
  • the raw material for preparing the modifier preferably includes 1 to 5 parts by weight of graphene, and more preferably 2 to 4 parts by weight.
  • the raw materials for preparing the modifier preferably include 5 to 20 parts by weight of styrene-butadiene-styrene block copolymer (SBS), and more preferably 10 to 15 parts by weight.
  • the weight average molecular weight of the styrene-butadiene-styrene block copolymer is preferably >200,000, more preferably 210,000 to 500,000, and most preferably 250,000 to 450,000.
  • the raw materials for preparing the modifier preferably include 5 to 20 parts by weight of polyurethane, and more preferably 10 to 15 parts by weight.
  • the weight average molecular weight of the polyurethane is preferably >10,000, more preferably 10,000-6 million, and most preferably 100,000-300,000.
  • the raw materials for preparing the modifier preferably include 5 to 20 parts by weight of rubber, and more preferably 10 to 15 parts by weight.
  • the particle size of the rubber is preferably 20 to 100 mesh, more preferably 20 to 60 mesh, and most preferably 30 to 50 mesh.
  • the function of the styrene-butadiene-styrene block copolymer, polyurethane and rubber is to make the modifier have excellent viscosity and elasticity, which offsets the problem of insufficient low-temperature performance of asphalt caused by graphene.
  • the raw materials for preparing the modifier preferably include 0.5 to 3 parts by weight of compatibilizer, and more preferably 1 to 2 parts by weight.
  • the compatibilizer preferably includes one or more of aromatic hydrocarbons, linear alkanes and cycloalkanes.
  • the number of carbon atoms in the aromatic hydrocarbons, linear alkanes and cycloalkanes is The number is preferably C7 to C14, more preferably C8 to C12; the aromatic hydrocarbon is preferably aromatic hydrocarbon oil.
  • the compatibilizer when the compatibilizer is a mixture of several components, the present invention does not have any special provisions on the dosage ratio of each component in the mixture.
  • the raw materials for preparing the modifier preferably include 0.1 to 0.5 parts by weight of coupling agent, and more preferably 0.2 to 0.3 parts by weight.
  • the coupling agent is preferably a silane coupling agent, and the silane coupling agent is preferably KH550 or KH560.
  • the compatibilizer and coupling agent are beneficial to fully dispersing graphene in asphalt and preventing agglomeration.
  • the raw materials for preparing the modifier preferably include 0.1 to 0.25 parts by weight of sulfur, and more preferably 0.15 to 0.2 parts by weight.
  • the raw materials for preparing the modifier preferably include 0.35 to 0.65 parts by weight of accelerator, and more preferably 0.4 to 0.6 parts by weight.
  • the accelerator is preferably an accelerator for polyurethane adhesives, and more preferably is N-cyclohexyl-2-benzothiazole sulfenamide.
  • the function of the sulfur is to vulcanize the rubber and improve the elasticity of the rubber.
  • the function of the accelerator is to accelerate the cross-linking reaction between sulfur and rubber molecules, thereby shortening the vulcanization time and lowering the vulcanization temperature.
  • the preparation method of the modifier preferably includes the following steps:
  • the first mixing rubber, sulfur and accelerator are mixed, and the second mixing and second rubber discharging are performed sequentially to obtain the modifier.
  • the graphene, styrene-butadiene-styrene block copolymer, polyurethane, rubber, compatibilizer and coupling agent are mixed, and the first mixing and first degumming are performed sequentially to obtain the first Mix rubber.
  • the temperature of the first kneading is preferably 60-90°C, more preferably 70-80°C; the time is preferably 5-25 min, more preferably 10-15 min.
  • the first kneading is preferably performed under stirring conditions, and the stirring speed is preferably 50 to 90 rpm, and more preferably 60 to 80 rpm.
  • the first mixing is preferably performed in a closed rubber mixer.
  • the temperature of the first glue discharge is preferably 95-165°C, and more preferably 100-150°C.
  • the present invention preferably further includes allowing the colloid obtained from the first glue discharge to stand for 24 hours.
  • the present invention mixes the first rubber compound, sulfur and accelerator, and sequentially performs the second mixing and the second rubber discharge to obtain the modifier.
  • the temperature of the second kneading is preferably 50-80°C, more preferably 60-70°C; the time is preferably 3-10 min, more preferably 5-8 min.
  • the temperature of the second glue discharge is preferably 95-155°C, and more preferably 100-140°C.
  • the second mixing is preferably performed in a closed rubber mixer.
  • the invention also provides a method for preparing the above-mentioned graphene modified asphalt, which includes the following steps:
  • the asphalt is heated, and the resulting molten asphalt is mixed with the preheated and dispersed modifier to obtain a premix;
  • the premix is subjected to shearing and heat preservation development in sequence to obtain the graphene modified asphalt.
  • the modifier is preheated and dispersed to obtain the preheated and dispersed modifier.
  • the temperature of the preheating and dispersion is preferably 95-125°C, more preferably 100-110°C; the time of the preheating and dispersion is preferably 1-2h, more preferably 1-1.5h.
  • the preheating and dispersion can remove the moisture in the modifier, so that the modifier can be dried and dispersed.
  • the present invention heats the asphalt, and the resulting molten asphalt is mixed with the preheated and dispersed modifier to obtain a premix.
  • the temperature at which the asphalt is heated is preferably 160-200°C, more preferably 160-175°C; the time is preferably 2-4h, more preferably 2.5-3h.
  • the mixing method is preferably stirring, and the stirring is preferably glass rod stirring or low-speed stirrer stirring; the rotating speed of the stirring is preferably 300 to 400 rpm, and more preferably 350 rpm.
  • the stirring time is not specifically limited, as long as the materials can be mixed evenly.
  • the mixing preferably involves adding the preheated and dispersed modifier to the molten asphalt in multiple batches, and stirring continuously to achieve uniform mixing.
  • the present invention sequentially performs shearing and thermal insulation development on the premix to obtain the graphene modified asphalt.
  • the shearing speed is preferably 5000-10000r/min, more preferably 6000-8000r/min; the shearing time is preferably 40-80min, more preferably 50-60min, and most preferably 55-60min.
  • the shearing is preferably performed in a shear pump. The present invention does not impose any special limitations on the specific implementation of the shearing, and operations well known to those skilled in the art can be adopted.
  • the present invention shears the premix and uses strong shear force and collision to fully disperse the modifier in the asphalt, while also refining the particles of each component to form a stable miscible system.
  • the temperature of the heat preservation and development is preferably 165 to 190°C, and more preferably 180°C; the time of the heat preservation and development is preferably 24 to 48 hours, and more preferably 36 to 48 hours.
  • the insulation development is preferably carried out in a development tank.
  • the thermal insulation development uses high temperature to fully dissolve the modifier and asphalt to form a stable spatial cross-linked structure, thereby ensuring the storage stability and fatigue resistance of the graphene-modified asphalt.
  • the 4 parts by weight of graphene, 15 parts by weight of styrene-butadiene-styrene block copolymer (weight average molecular weight is 300,000), 12 parts by weight of polyurethane, 14 parts by weight of rubber, 1.5 parts by weight of aromatic oil and 0.2 parts by weight of coupling agent KH550 is mixed in a closed rubber mixer.
  • the TCU temperature is controlled to 80°C for the first mixing for 20 minutes. Stirring is performed during the mixing process. The stirring speed is 80rpm, and then the temperature is 150°C.
  • the first rubber row is carried out below to obtain the first mixed rubber;
  • the viscosity of high-viscosity asphalt is an indicator of the ability of asphalt to resist shear deformation.
  • An increase in asphalt viscosity can effectively improve the adhesion between asphalt and aggregates.
  • An increase in viscosity will greatly improve the asphalt mixture's ability to resist water damage and load damage. , which is of great significance to the selection of asphalt materials for drainage pavements. It can be seen from Table 1 that after adding the modifier, the penetration, softening point, ductility, 60°C viscosity and critical temperature of asphalt have been significantly improved.
  • the 60°C dynamic viscosity of Example 4 is higher than that of the original SBS asphalt.
  • the PG classification has also been upgraded from PG76 to PG94, indicating that the graphene-modified asphalt provided by the present invention is of various High-viscosity asphalt with excellent performance can be used as drainage pavement asphalt material.
  • Figure 1 shows the penetration chart of graphene modified asphalt and SBS asphalt before and after aging.
  • Figure 2 shows the ductility chart of graphene modified asphalt and SBS asphalt before and after aging. It can be seen from Table 2 and Figures 1-2 that after adding modifiers, the weight change of asphalt decreases, and the residual penetration ratio and residual ductility ratio increase, indicating that adding modifiers improves the anti-aging properties of asphalt, because graphene It has a flaky structure, and after being mixed into the asphalt molecular structure, it prolongs the path for free oxygen to enter the inside of the asphalt and the light components to evaporate to the outside world, thus delaying the aging and deterioration of asphalt. In particular, all indicators after aging in Example 4 far exceed the specification requirements, indicating that the graphene-modified asphalt provided by the present invention has excellent aging resistance.
  • Figure 3 is the stress-strain diagram of graphene-modified asphalt and SBS asphalt
  • Figure 4 is the strain-fatigue life diagram of graphene-modified asphalt and SBS asphalt. It can be seen from Table 3 and Figures 3-4 that after adding the modifier, the yield strain and fatigue life of the asphalt are greatly increased, indicating that the modifier greatly improves the fatigue performance of graphene-modified asphalt. Among them, the yield strain of 8% graphene reaches 29.6886%, the fatigue life at the 2.5% strain level is 4136058 times, and the fatigue life at the 5% strain level is 244793 times, indicating that the graphene modified asphalt provided by the invention has excellent fatigue resistance. performance.
  • Figure 5 is a contact angle diagram of SBS asphalt
  • Figure 6 is a contact angle diagram of graphene modified asphalt in Example 4.

Abstract

本发明涉及沥青制备技术领域,尤其涉及一种石墨烯改性沥青及其制备方法。本发明提供的石墨烯改性沥青,包括以下重量份数的制备原料:沥青100~140份;改性剂1~20份;所述改性剂为改性石墨烯,所述改性剂的制备原料包括石墨烯、苯乙烯-丁二烯-苯乙烯嵌段共聚物、聚氨酯、橡胶、相容剂、偶联剂、硫磺和促进剂。本发明提供的石墨烯改性沥青兼具较强的耐老化性能、抗疲劳性能和疏水性能。

Description

一种石墨烯改性沥青及其制备方法
本申请要求于2022年07月18日提交中国专利局、申请号为202210838852.2、发明名称为“一种石墨烯改性沥青及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及沥青制备技术领域,尤其涉及一种石墨烯改性沥青及其制备方法。
背景技术
目前,沥青路面已经成为我国高等级路面的主流类型,这主要得益于沥青路面施工期短、行车舒适、能够减少夜间眩光及养护维修简便等优点。其中,排水沥青路面的空隙率较大,一般在20%左右,可以将路表的雨水快速地排出路面,有效地提高了雨雪天气车辆行驶的安全性与舒适性。而且,由于排水沥青路面表面构造较深,同时也具备降噪和抗滑的功能,因此,排水沥青路面是目前道路行业中研究的重点方向。
排水沥青路面中细集料的比例较少,具有较大的空隙率,对沥青粘度的要求更高。目前,排水沥青路面一般采用高粘改性沥青作为胶结材料。但是,以上述高粘改性沥青作为胶结材料得到的排水沥青路面在服役过程中耐久性不足,使用寿命较短,主要原因一是排水沥青路面的大空隙率使得胶结材料沥青容易接触空气而老化变硬,从而发生疲劳破坏,降低路面的使用寿命;二是车辆轮胎携带的尘土和空气中的杂质容易堵塞路面孔隙,导致道路功能服役性丧失。
发明内容
有鉴于此,本发明提供一种石墨烯改性沥青及其制备方法,本发明提供的石墨烯改性沥青兼具较强的耐老化性能、抗疲劳性能和疏水性能。
为了实现以上目的,本发明提供了一种石墨烯改性沥青,包括以下重量份数的制备原料:沥青100~140份;改性剂1~20份;所述改性剂为改性石墨烯,所述改性剂的制备原料包括石墨烯、苯乙烯-丁二烯-苯乙烯嵌 段共聚物、聚氨酯、橡胶、相容剂、偶联剂、硫磺和促进剂。
优选地,所述改性剂包括以下重量份数的制备原料:
Figure PCTCN2022117407-appb-000001
优选地,所述改性剂的粒径为0.075~2.36mm。
优选地,所述改性剂的制备方法,包括以下步骤:
将所述石墨烯、苯乙烯-丁二烯-苯乙烯嵌段共聚物、聚氨酯、橡胶、相容剂和偶联剂混合,依次进行第一混炼和第一排胶,得到第一混炼胶;
将所述第一混炼胶、硫磺和促进剂混合,依次进行第二混炼和第二排胶,得到所述改性剂;
所述第一混炼的温度为60~90℃,时间为5~25min;
所述第二混炼的温度为50~80℃,时间为3~10min。
优选地,所述沥青为SBS改性沥青。
本发明还提供了上述所述石墨烯改性沥青的制备方法,包括以下步骤:
将改性剂预热分散,得到预热分散后的改性剂;
将沥青加热,所得熔融沥青和预热分散后的改性剂进行混合,得到预混料;
将所述预混料依次进行剪切和保温发育,得到所述石墨烯改性沥青。
所述预热分散的温度为95~125℃,保温时间为1~2h。
优选地,所述混合的温度为160~200℃。
优选地,所述剪切的速度为5000~10000r/min,温度为170~200℃,时间为40~80min。
优选地,所述保温发育的温度为165~190℃,保温发育的时间为 24~48h。
本发明提供一种石墨烯改性沥青,包括以下重量份的制备原料:沥青100~140份;改性剂1~20份;所述改性剂为改性石墨烯,所述改性剂的制备原料包括石墨烯、苯乙烯-丁二烯-苯乙烯嵌段共聚物、聚氨酯、橡胶、相容剂、偶联剂、硫磺和促进剂。本发明中的改性剂为改性石墨烯,在石墨烯中掺入偶联剂和相容剂,有利于石墨烯在沥青大分子中均匀混溶,防止结团,充分发挥石墨烯高强度和高韧性的特点,大大提高沥青的物理性能(针入度、软化点、延度、60℃粘度等)。另外,单纯的石墨烯是无机材料,掺入沥青后容易导致沥青的低温性能下降,本发明将苯乙烯-丁二烯-苯乙烯嵌段共聚物、聚氨酯、橡胶和石墨烯共混后可以有效的解决单纯石墨烯掺入沥青,导致沥青的低温性能下降的问题,在一定程度上提高了沥青的抗疲劳性能。改性石墨烯中的偶联剂和相容剂可与沥青发生交联,石墨烯混溶入沥青分子结构中后延长了游离氧进入沥青内部以及轻质组分蒸发到外界的路径,从而延缓了沥青在热氧下老化变质;其次,改性石墨烯与沥青的大分子链相互交联,提高了沥青整体的抗开裂能力,提高了沥青的疲劳性能。另外,石墨烯是一种超疏水材料,当改性石墨烯与沥青混溶后,石墨烯能够均匀存在于石墨烯改性沥青中,提高沥青的疏水性能,强疏水性可降低空隙界面对杂质的粘附能力,实现快速高效清洁,恢复排水沥青混凝土的排水特性,同时也能提高路面的排水效率。
本发明还提供了所述石墨烯改性沥青的制备方法,包括以下步骤:将改性剂预热分散,得到预热分散后的改性剂;将沥青加热,所得熔融沥青和预热分散后的改性剂进行混合,得到预混料;将所述预混料依次进行剪切和保温发育,得到所述石墨烯改性沥青。本发明的制备方法步骤简单,可操作性强,易实现工业化生产。
附图说明
图1为石墨烯改性沥青、SBS沥青老化前后针入度图;
图2为石墨烯改性沥青、SBS沥青老化前后延度图;
图3为石墨烯改性沥青、SBS沥青的应力应变图;
图4为石墨烯改性沥青、SBS沥青的应变-疲劳寿命图;
图5为SBS沥青的接触角图;
图6为实施例4石墨烯改性沥青的接触角图。
具体实施方式
本发明提供了一种石墨烯改性沥青,包括以下重量份的制备原料:
沥青100~140份;
改性剂1~20份;
所述改性剂为改性石墨烯,所述改性剂的制备原料包括石墨烯、苯乙烯-丁二烯-苯乙烯嵌段共聚物、聚氨酯、橡胶、相容剂、偶联剂、硫磺和促进剂。
在本发明中,所述石墨烯改性沥青的制备原料包括沥青100~140重量份,优选为105~130重量份,更优选为108~112重量份。在本发明中,所述沥青优选为SBS改性沥青。在本发明实施例中,所述沥青具体优选为PG76-22 SBS改性沥青。在本发明中,所述沥青的25℃针入度(0.1mm)优选为40~60,更优选为50~55;软化点优选≥60℃,更优选为75~80℃;5℃延度优选≥20cm,更优选为25~32cm。
在本发明中,所述石墨烯改性沥青的制备原料包括改性剂1~20重量份,优选为2~18重量份,更优选为2~12重量份。在本发明中,所述改性剂为改性石墨烯。在本发明中,所述改性剂的粒径优选为0.075~2.36mm,更优选为0.075~1.18mm,最优选为0.15~0.6mm。在本发明中,所述改性剂的制备原料包括石墨烯、苯乙烯-丁二烯-苯乙烯嵌段共聚物、聚氨酯、橡胶、相容剂、偶联剂、硫磺和促进剂。
在本发明中,所述改性剂的制备原料优选包括1~5重量份石墨烯,更优选为2~4重量份。
在本发明中,所述改性剂的制备原料优选包括5~20重量份苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS),更优选为10~15重量份。在本发明中,所述苯乙烯-丁二烯-苯乙烯嵌段共聚物的重均分子量优选为>20万,更优选为21~50万,最优选为25~45万。在本发明中,所述改性剂的制备原料优选包括5~20重量份聚氨酯,更优选为10~15重量份。在本发明中,所述聚氨酯的重均分子量优选>1万,更优选为1万~600万,最优选为10万~30万。在本发明中,所述改性剂的制备原料优选包括5~20重量份橡胶,更优选为10~15重量份。在本发明中,所述橡胶的粒径优选 为20~100目,更优选为20~60目,最优选为30~50目。在本发明中,所述苯乙烯-丁二烯-苯乙烯嵌段共聚物、聚氨酯和橡胶的作用是使得改性剂具有优异的粘度和弹性,抵消石墨烯导致沥青低温性能不足的问题。
在本发明中,所述改性剂的制备原料优选包括0.5~3重量份相容剂,更优选为1~2重量份。在本发明中,所述相容剂优选包括芳香烃、直链烷烃和环烷烃中的一种或多种,在本发明中,所述芳香烃、直链烷烃和环烷烃中的碳原子个数优选为C7~C14,更优选为C8~C12;所述芳香烃优选为芳烃油。在本发明中,当所述相容剂为几种组分的混合物时,本发明对所述混合物中各组分的用量配比没有任何特殊规定。在本发明中,所述改性剂的制备原料优选包括0.1~0.5重量份偶联剂,更优选为0.2~0.3重量份。在本发明中,所述偶联剂优选为硅烷偶联剂,所述硅烷偶联剂优选为KH550或KH560。在本发明中,所述相容剂和偶联剂有利于石墨烯在沥青中充分分散,防止结团。
在本发明中,所述改性剂的制备原料优选包括0.1~0.25重量份硫磺,更优选为0.15~0.2重量份。在本发明中,所述改性剂的制备原料优选包括0.35~0.65重量份促进剂,更优选为0.4~0.6重量份。在本发明中,所述促进剂优选聚氨酯胶黏剂用促进剂,更优选为N-环已基-2-苯并噻唑次磺酰胺。在本发明中,所述硫磺的作用是对橡胶进行硫化,提高橡胶的弹性。促进剂的的作用是加快硫磺与橡胶分子的交联反应,达到缩短硫化时间和降低硫化温度的效果。
在本发明中,所述改性剂的制备方法,优选包括以下步骤:
将所述石墨烯、苯乙烯-丁二烯-苯乙烯嵌段共聚物、聚氨酯、橡胶、相容剂和偶联剂混合,依次进行第一混炼和第一排胶,得到第一混炼胶;
将所述第一混炼胶、硫磺和促进剂混合,依次进行第二混炼和第二排胶,得到所述改性剂。
本发明将所述石墨烯、苯乙烯-丁二烯-苯乙烯嵌段共聚物、聚氨酯、橡胶、相容剂和偶联剂混合,依次进行第一混炼和第一排胶,得到第一混炼胶。
在本发明中,所述第一混炼的温度优选为60~90℃,更优选为70~80℃;时间优选为5~25min,更优选为10~15min。在本发明中,所述 第一混炼优选在搅拌条件下进行,所述搅拌的转速优选为50~90rpm,更优选为60~80rpm。在本发明中,所述第一混炼优选在密闭式炼胶机中进行。
在本发明中,所述第一排胶的温度优选为95~165℃,更优选为100~150℃。
所述第一排胶后,在本发明优选还包括将所述第一排胶所得胶体进行静置24h。
得到第一混炼胶后,本发明将所述第一混炼胶、硫磺和促进剂混合,依次进行第二混炼和第二排胶,得到所述改性剂。
在本发明中,所述第二混炼的温度优选为50~80℃,更优选为60~70℃;时间优选为3~10min,更优选为5~8min。在本发明中,所述第二排胶的温度优选为95~155℃,更优选为100~140℃。在本发明中,所述第二混炼优选在密闭式炼胶机中进行。
本发明还提供了上述所述石墨烯改性沥青的制备方法,包括以下步骤:
将改性剂预热分散,得到预热分散后的改性剂;
将沥青加热,所得熔融沥青和预热分散后的改性剂进行混合,得到预混料;
将预混料依次进行剪切和保温发育,得到所述石墨烯改性沥青。
本发明将改性剂预热分散,得到预热分散后的改性剂。
在本发明中,所述预热分散的温度优选为95~125℃,更优选为100~110℃;所述预热分散的时间优选为1~2h,更优选为1~1.5h。在本发明中,所述预热分散可以去除改性剂中的水分,使改性剂干燥分散。
得到预热分散后的改性剂后,本发明将沥青加热,所得熔融沥青和所述预热分散后的改性剂进行混合,得到预混料。
在本发明中,所述沥青加热的温度优选为160~200℃,更优选为160~175℃;时间优选为2~4h,更优选为2.5~3h。在本发明中,所述混合的方式优选为搅拌,所述搅拌优选为玻璃棒搅拌或低速搅拌器搅拌;所述搅拌的转速优选为300~400rpm,更优选为350rpm。在本发明中,对所述搅拌的时间不做具体限定,能够将物料混合均匀即可。
在本发明中,所述混合优选为将预热分散后的改性剂分多次添加至熔融沥青中,并不断搅拌,混合均匀。
得到预混料后,本发明将所述预混料依次进行剪切和保温发育,得到所述石墨烯改性沥青。
在本发明中,所述剪切的速度优选为5000~10000r/min,更优选为6000~8000r/min;时间优选为40~80min,更优选为50~60min,最优选为55~60min。在本发明中,所述剪切优选在剪切泵中进行。本发明对所述剪切的具体实施方式不做任何特殊限定,采用本领域技术人员熟知的操作即可。
本发明对预混料进行剪切,利用强大的剪切力和碰撞作用,使改性剂在沥青中充分分散,同时还能细化各组分的颗粒,进而形成稳定的混溶体系。
在本发明中,所述保温发育的温度优选为165~190℃,进一步优选为180℃;所述保温发育的时间优选为24~48h,更优选为36~48h。在本发明中,所述保温发育优选在发育罐中进行。
本发明中,所述保温发育,利用高温作用使改性剂与沥青充分相溶后,形成稳定的空间交联结构,从而确保石墨烯改性沥青的储存稳定性和抗疲劳性能。
下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
改性剂的制备:
将所述4重量份石墨烯、15重量份苯乙烯-丁二烯-苯乙烯嵌段共聚物(重均分子量为30万)、12重量份聚氨酯、14重量份橡胶、1.5重量份芳烃油和0.2重量份偶联剂KH550在密闭式炼胶机中混合,控制TCU温度为80℃进行第一混炼20min,混炼过程中进行搅拌,搅拌的转速为80rpm,然后在温度为150℃的条件下进行第一排胶,得到第一混炼胶;
将所述46.7重量份第一混炼胶、0.2重量份硫磺和0.4重量份N-环 已基-2-苯并噻唑次磺酰胺混合,控制TCU温度为70℃进行第一混炼5min,混炼过程中进行搅拌,搅拌的转速为60pm,然后在温度为110℃的条件下进行第二排胶,得到所述改性剂;
石墨烯改性沥青的制备:
将2.2重量份粒径为0.15mm的改性剂,在105℃预热分散1.5h,得到预热分散后的改性剂。
将110重量份份PG76-22 SBS改性沥青,在165℃预热3h,使其完全熔融,然后分3次添加预热分散后的改性剂至熔融沥青中,用玻璃棒搅拌均匀,得到预混料。
将预混物加热至175℃,然后,放在剪切泵中剪切60min,控制剪切速度为6000r/min,然后将剪切后的预混料置于成品发育罐中,在170℃下保温发育36h,得到石墨烯改性沥青。
实施例2
改性剂的制备同实施例1。
石墨烯改性沥青的制备:
将4.4重量份粒径为0.15mm的改性剂,在105℃预热分散1.5h,得到预热分散后的改性剂。
将110重量份PG76-22 SBS改性沥青,在165℃预热3h,使其完全熔化,然后分3次添加预热分散后的改性剂至熔融沥青中,低速搅拌器以300r/min的转速均匀搅拌,得到预混料。
将预混物加热至175℃,然后放在剪切泵中剪切60min,控制剪切速度为6500r/min,然后将剪切后的预混料置于成品发育罐中,在175℃下保温发育36h,得到石墨烯改性沥青。
实施例3
改性剂的制备同实施例1。
石墨烯改性沥青的制备:
将6.6重量份粒径为0.15mm的改性剂,在105℃预热分散1.5h,得到预热分散后的改性剂。
将110重量份PG76-22 SBS改性沥青,在165℃预热3h,使其完全熔化,然后分3次添加预热分散后的改性剂至熔融沥青中,用低速搅拌器 以400r/min搅拌均匀,得到预混料。
将预混物加热至180℃,然后放在剪切泵中剪切60min,控制剪切速度为7000r/min,然后将剪切后的预混料置于成品发育罐中,在180℃下保温发育36h,得到所述石墨烯改性沥青。
实施例4
改性剂的制备同实施例1。
石墨烯改性沥青的制备:
将8.8重量份粒径为0.15mm的改性剂,在105℃预热分散1.5h,得到预热分散后的改性剂。
将110重量份PG76-22 SBS改性沥青,在165℃预热3h,使其完全熔化,然后,分3次添加预热分散后的改性剂至熔融沥青中,用玻璃棒搅拌均匀,得到预混料。
将预混物加热至185℃,然后放在剪切泵中剪切60min,控制剪切速度为8000r/min,然后将剪切后的预混料置于成品发育罐中,在180℃下保温发育36h,得到所述石墨烯改性沥青。
对实施例1~4得到的石墨烯改性沥青进行基本性能、耐老化性能、疲劳性能和疏水性能测试,结果如表1~4和图1~6所示。
表1 实施例1~4石墨烯改性沥青和PG76-22 SBS改性沥青性能测试结果
Figure PCTCN2022117407-appb-000002
高粘沥青粘度是反馈沥青抗剪切变形能力的指标,沥青粘度的增加可以有效提高沥青与集料之间的黏附性,粘度的增大将使得沥青混合料抵抗水损坏及载荷破坏的能力大大提高,这对排水路面沥青的材料的选用有重要的意义。由表1可知,加入改性剂后,沥青的针入度、软化点、延度、 60℃粘度以及临界温度都有了明显的提升,尤其实施例4的60℃动力粘度较原样SBS沥青提高了190倍,达到了2867480Pa.s,远超我国规范对高粘沥青粘度不小于20000Pa.s的要求,PG分级也从PG76提升到PG94,说明了本发明提供的石墨烯改性沥青是各项性能优异的高粘沥青,可作为排水路面沥青材料。
表2 实施例1~4石墨烯改性沥青和PG76-22 SBS改性沥青耐老化性能测试结果
Figure PCTCN2022117407-appb-000003
图1为石墨烯改性沥青、SBS沥青老化前后针入度图,图2为石墨烯改性沥青、SBS沥青老化前后延度图。由表2和图1~2可知,加入改性剂后,沥青的重量变化减少,残留针入度比和残留延度比提高,说明加入改性剂提高了沥青的抗老化性能,因为石墨烯呈片状结构,混溶入沥青分子结构中后延长了游离氧进入沥青内部以及轻质组分蒸发到外界的路径,从而延缓了沥青的老化变质。尤其,实施例4老化后的各项指标均远超规范要求,说明本发明提供的石墨烯改性沥青具有优异的耐老化性能。
表3 实施例1~4石墨烯改性沥青和PG76-22 SBS改性沥青疲劳性能测试结果
Figure PCTCN2022117407-appb-000004
图3为石墨烯改性沥青、SBS沥青的应力应变图,图4为石墨烯改性沥青、SBS沥青的应变-疲劳寿命图。由表3和图3~4中可知,加入改性剂后,沥青的屈服应变和疲劳寿命都大幅度提高,说明改性剂极大地提高了石墨烯改性沥青的疲劳性能。其中8%石墨烯的的屈服应变达29.6886%,2.5%应变水平下疲劳寿命为4136058次,5%应变水平下疲劳 寿命为244793次,说明本发明提供的石墨烯改性沥青具有优异的抗疲劳性能。
表4 实施例1~4石墨烯改性沥青和PG76-22 SBS改性沥青疏水性能测试结果
Figure PCTCN2022117407-appb-000005
图5是为SBS沥青的接触角图,图6为实施例4石墨烯改性沥青的接触角图。
由表4和图5~6中可知,加入改性剂后,接触角逐渐变大,说明改性剂可以提高沥青的疏水性,实施例4的接触角达到122.5°,说明本发明提供的石墨烯改性沥青具有较强的疏水性能。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (14)

  1. 一种石墨烯改性沥青,其特征在于,包括以下重量份的制备原料:
    沥青100~140份;
    改性剂1~20份;
    所述改性剂为改性石墨烯,所述改性剂的制备原料包括石墨烯、苯乙烯-丁二烯-苯乙烯嵌段共聚物、聚氨酯、橡胶、相容剂、偶联剂、硫磺和促进剂。
  2. 根据权利要求1所述的石墨烯改性沥青,其特征在于,所述改性剂包括以下重量份数的制备原料:
    Figure PCTCN2022117407-appb-100001
  3. 根据权利要求1或2所述的石墨烯改性沥青,其特征在于,所述改性剂的粒径为0.075~2.36mm。
  4. 根据权利要求1或2所述的石墨烯改性沥青,其特征在于,所述苯乙烯-丁二烯-苯乙烯嵌段共聚物的重均分子量>20万。
  5. 根据权利要求1或2所述的石墨烯改性沥青,其特征在于,所述聚氨酯的重均分子量>1万。
  6. 根据权利要求1或2所述的石墨烯改性沥青,其特征在于,所述橡胶的粒径为20~100目。
  7. 根据权利要求1或2所述的石墨烯改性沥青,其特征在于,所述相容剂包括芳香烃、直链烷烃和环烷烃中的一种或多种。
  8. 根据权利要求1或2所述的石墨烯改性沥青,其特征在于,所述改性剂的制备方法,包括以下步骤:
    将所述石墨烯、苯乙烯-丁二烯-苯乙烯嵌段共聚物、聚氨酯、橡胶、 相容剂和偶联剂混合,依次进行第一混炼和第一排胶,得到第一混炼胶;
    将所述第一混炼胶、硫磺和促进剂混合,依次进行第二混炼和第二排胶,得到所述改性剂;
    所述第一混炼的温度为60~90℃,时间为5~25min;
    所述第二混炼的温度为50~80℃,时间为3~10min。
  9. 根据权利要求1所述的石墨烯改性沥青,其特征在于,所述沥青为SBS改性沥青。
  10. 权利要求1~9任一项所述的石墨烯改性沥青的制备方法,其特征在于,包括以下步骤:
    将改性剂预热分散,得到预热分散后的改性剂;
    将沥青加热,所得熔融沥青和预热分散后的改性剂进行混合,得到预混料;
    将所述预混料依次进行剪切和保温发育,得到所述石墨烯改性沥青。
  11. 根据权利要求10所述的制备方法,其特征在于,所述预热分散的温度为95~125℃,保温时间为1~2h。
  12. 根据权利要求10所述的制备方法,其特征在于,所述混合的温度为160~200℃。
  13. 根据权利要求10所述的制备方法,其特征在于,所述剪切的速度为5000~10000r/min,温度为170~200℃,时间为40~80min。
  14. 根据权利要求10所述的制备方法,其特征在于,所述保温发育的温度为165~190℃,保温发育的时间为24~48h。
PCT/CN2022/117407 2022-07-18 2022-09-07 一种石墨烯改性沥青及其制备方法 WO2024016442A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210838852.2A CN115093713B (zh) 2022-07-18 2022-07-18 一种石墨烯改性沥青及其制备方法
CN202210838852.2 2022-07-18

Publications (1)

Publication Number Publication Date
WO2024016442A1 true WO2024016442A1 (zh) 2024-01-25

Family

ID=83299558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117407 WO2024016442A1 (zh) 2022-07-18 2022-09-07 一种石墨烯改性沥青及其制备方法

Country Status (2)

Country Link
CN (1) CN115093713B (zh)
WO (1) WO2024016442A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115558165B (zh) * 2022-10-18 2023-08-22 厦门凯纳石墨烯技术股份有限公司 用于石墨烯的浸润剂、石墨烯粒子及其制备方法和应用

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100753854B1 (ko) * 2007-04-30 2007-08-30 (주)일우피피씨 커플링된 아스팔트 개질재 및 그 개질재를 첨가한 개질 아스팔트콘크리트
CN104448868A (zh) * 2015-01-06 2015-03-25 山西省交通科学研究院 一种基于氧化石墨烯的sbs改性沥青及其制备方法
CN106810884A (zh) * 2015-12-02 2017-06-09 深圳海川新材料科技有限公司 一种基于石墨烯抗车辙剂的改性沥青及其制备方法
CN108034270A (zh) * 2017-12-28 2018-05-15 华南理工大学 一种改性沥青及其制备方法
CN108424663A (zh) * 2018-03-22 2018-08-21 燕园众欣纳米科技(北京)有限公司 一种含有石墨烯的sbs改性沥青及其制备方法
CN108973261A (zh) * 2018-07-24 2018-12-11 芜湖市棠华建材科技有限公司 一种废旧橡胶复合改性沥青防水材料及其制备方法
CN109401348A (zh) * 2018-11-21 2019-03-01 魏林涛 一种抗老化改性沥青
CN109575618A (zh) * 2018-12-10 2019-04-05 青岛明象新材料技术有限公司 一种石墨烯复合岩沥青抗车辙改性剂及其制备方法
KR102005939B1 (ko) * 2019-02-18 2019-08-01 주식회사 로드씰 고탄성 개질아스팔트 콘크리트 혼합물 및 이의 제조방법
WO2020171382A1 (ko) * 2019-02-18 2020-08-27 주식회사 로드씰 고기능성 아스팔트 개질재를 포함하는 개질아스팔트 침투식 마카담 포장용 조성물 및 이를 이용한 마카담 포장 방법
CN112480695A (zh) * 2020-11-06 2021-03-12 安徽工业大学 一种石墨烯改性沥青的制备方法及其产品
CN113337136A (zh) * 2021-06-15 2021-09-03 长沙理工大学 改性沥青及其制备方法
CN113549334A (zh) * 2021-08-18 2021-10-26 鄂尔多斯市路泰新材料科技发展有限公司 一种高弹性高耐候改性沥青及其制备方法
CN114213853A (zh) * 2021-12-14 2022-03-22 甘肃路桥建设集团养护科技有限责任公司 用于大温差气候条件下氧化石墨烯橡胶复合改性沥青及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108690360B (zh) * 2018-06-20 2021-01-05 广西大学 石墨烯复合橡胶沥青改性剂及其制备方法和应用

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100753854B1 (ko) * 2007-04-30 2007-08-30 (주)일우피피씨 커플링된 아스팔트 개질재 및 그 개질재를 첨가한 개질 아스팔트콘크리트
CN104448868A (zh) * 2015-01-06 2015-03-25 山西省交通科学研究院 一种基于氧化石墨烯的sbs改性沥青及其制备方法
CN106810884A (zh) * 2015-12-02 2017-06-09 深圳海川新材料科技有限公司 一种基于石墨烯抗车辙剂的改性沥青及其制备方法
CN108034270A (zh) * 2017-12-28 2018-05-15 华南理工大学 一种改性沥青及其制备方法
CN108424663A (zh) * 2018-03-22 2018-08-21 燕园众欣纳米科技(北京)有限公司 一种含有石墨烯的sbs改性沥青及其制备方法
CN108973261A (zh) * 2018-07-24 2018-12-11 芜湖市棠华建材科技有限公司 一种废旧橡胶复合改性沥青防水材料及其制备方法
CN109401348A (zh) * 2018-11-21 2019-03-01 魏林涛 一种抗老化改性沥青
CN109575618A (zh) * 2018-12-10 2019-04-05 青岛明象新材料技术有限公司 一种石墨烯复合岩沥青抗车辙改性剂及其制备方法
KR102005939B1 (ko) * 2019-02-18 2019-08-01 주식회사 로드씰 고탄성 개질아스팔트 콘크리트 혼합물 및 이의 제조방법
WO2020171382A1 (ko) * 2019-02-18 2020-08-27 주식회사 로드씰 고기능성 아스팔트 개질재를 포함하는 개질아스팔트 침투식 마카담 포장용 조성물 및 이를 이용한 마카담 포장 방법
CN112480695A (zh) * 2020-11-06 2021-03-12 安徽工业大学 一种石墨烯改性沥青的制备方法及其产品
CN113337136A (zh) * 2021-06-15 2021-09-03 长沙理工大学 改性沥青及其制备方法
CN113549334A (zh) * 2021-08-18 2021-10-26 鄂尔多斯市路泰新材料科技发展有限公司 一种高弹性高耐候改性沥青及其制备方法
CN114213853A (zh) * 2021-12-14 2022-03-22 甘肃路桥建设集团养护科技有限责任公司 用于大温差气候条件下氧化石墨烯橡胶复合改性沥青及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LI SHUAI, XU WENYUAN, ZHANG FENGFA, WU HE, GE QIXIN: "Effect of Graphene Oxide on Aging Properties of Polyurethane-SBS Modified Asphalt and Asphalt Mixture", POLYMERS, MOLECULAR DIVERSITY PRESERVATION INTERNATIONAL (M DP I) AG., CH, vol. 14, no. 17, 1 September 2022 (2022-09-01), CH , pages 3496, XP093131204, ISSN: 2073-4360, DOI: 10.3390/polym14173496 *
LI SHUAI, XU WENYUAN, ZHANG FENGFA, WU HE, ZHAO PENGCHAO: "Effect of Graphene Oxide on the Low-Temperature Crack Resistance of Polyurethane–SBS-Modified Asphalt and Asphalt Mixtures", POLYMERS, MOLECULAR DIVERSITY PRESERVATION INTERNATIONAL (M DP I) AG., CH, vol. 14, no. 3, 23 January 2022 (2022-01-23), CH , pages 453, XP093131210, ISSN: 2073-4360, DOI: 10.3390/polym14030453 *
ZHANG ZHAO; ZHANG FENG; QUAN HONGBIN: "Effect of Graphene on Properties of SBS Composite Modified Asphalt", SHANXI ARCHITECTURE, vol. 46, no. 11, 30 June 2020 (2020-06-30), pages 110 - 111, 159, XP009552114, ISSN: 1009-6825, DOI: 10.13719/j.cnki.cn14-1279/tu.2020.11.050 *

Also Published As

Publication number Publication date
CN115093713A (zh) 2022-09-23
CN115093713B (zh) 2023-02-21

Similar Documents

Publication Publication Date Title
CN101792608B (zh) 一种橡胶沥青及其制备方法
CN106800787B (zh) 一种高温耐储存高粘高弹改性沥青及其制备方法
CN101628989B (zh) 一种sbs改性沥青稳定剂及其制备方法
WO2008049312A1 (fr) Modificateur d'asphalte pour améliorer la résistance des chaussées à la formation d'ornières
CN113429802A (zh) 一种高掺量胶粉-sbs复合改性沥青及其制备方法
Duan et al. Research progress and performance evaluation of crumb-rubber-modified asphalts and their mixtures
CN104830076B (zh) 一种废橡胶裂解转化改性沥青的制备方法
WO2024016442A1 (zh) 一种石墨烯改性沥青及其制备方法
CN104693819A (zh) 一种储存稳定、耐老化的复合sbs粒子沥青改性剂及其制备方法
CN100445333C (zh) 一种改性沥青及其制备方法
WO2012103691A1 (zh) 一种复合改性剂改性道路沥青及其制备方法
WO2019214097A1 (zh) 一种兼具高性能的低温环保化高胶沥青及其生产工艺
CN114716839B (zh) 重载路面用改性沥青、改性沥青混合料及其制备方法
CN115322462A (zh) 一种用于汽车雨刮片的氯丁混炼胶及其制备方法和应用
WO2013060110A1 (zh) 一种温拌抗车辙的沥青混合料及其制备方法
CN106700572A (zh) 一种长寿命poe-sbs复合改性沥青及其制备方法
CN113061288B (zh) 一种脱硫胶粉及其制备方法、橡胶沥青复合材料及其制备方法
CN101012338B (zh) Sbr改性道路沥青
CN109267452B (zh) 基于路面回收料冷再生的混合料及其制备方法和用途
CN102816265A (zh) 一种制备天然橡胶/炭黑混炼胶的湿炼法
CN110079105B (zh) 一种海泡石负载溶解性胶粉改性沥青及其制备方法
CN1442452A (zh) 冷补沥青混合料及其制造方法
CN113817333B (zh) 一种高粘度改性沥青及其制备方法与ogfc沥青混合料
WO2023115672A1 (zh) 沥青改性剂、制备方法及应用
CN102807689B (zh) 含液相分散白炭黑胶乳混合物的矿山胎胎面胶胶料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951708

Country of ref document: EP

Kind code of ref document: A1