WO2024016422A1 - 一种绿色持续发光的LiYF 4微晶闪烁材料及其制备方法和应用 - Google Patents

一种绿色持续发光的LiYF 4微晶闪烁材料及其制备方法和应用 Download PDF

Info

Publication number
WO2024016422A1
WO2024016422A1 PCT/CN2022/114601 CN2022114601W WO2024016422A1 WO 2024016422 A1 WO2024016422 A1 WO 2024016422A1 CN 2022114601 W CN2022114601 W CN 2022114601W WO 2024016422 A1 WO2024016422 A1 WO 2024016422A1
Authority
WO
WIPO (PCT)
Prior art keywords
liyf
microcrystalline
source
scintillation material
scintillation
Prior art date
Application number
PCT/CN2022/114601
Other languages
English (en)
French (fr)
Inventor
黄鑫
陈曦
王帅华
郑熠
徐刘伟
吴少凡
Original Assignee
闽都创新实验室
中国科学院福建物质结构研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 闽都创新实验室, 中国科学院福建物质结构研究所 filed Critical 闽都创新实验室
Publication of WO2024016422A1 publication Critical patent/WO2024016422A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7772Halogenides
    • C09K11/7773Halogenides with alkali or alkaline earth metal
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal

Definitions

  • the present application relates to a green continuous luminescent LiYF 4 microcrystalline scintillation material and its preparation method and application, and belongs to the technical field of crystal materials.
  • Radiation detection scintillator can convert ionizing radiation such as X-rays or gamma rays into ultraviolet or visible light, and is widely used in medical diagnosis, safety inspection, industrial inspection, nuclear physics, astrophysics, X-ray tomography and other fields.
  • inorganic scintillation materials fluoride has become an ideal scintillation material due to its high stability, high transmittance, and low phonon energy (300-500cm -1 ).
  • Microcrystals are generally prepared by hydrothermal methods, which have the characteristics of simple synthesis and low cost. Compared with traditional bulk single crystals, they have huge application potential. In recent years, many scientific researchers have conducted research and attempts in this area.
  • Long afterglow refers to the phenomenon that materials can continue to emit light for a long time after the radiation source stops excitation. This phenomenon was discovered as early as the Song Dynasty more than a thousand years ago. However, until the end of the last century, there were still few studies and reports on long afterglow. Currently, the most widely used and famous long afterglow material is Cu-doped ZnS. For long-persistence materials, luminescent centers and traps are the two main active centers. The luminescent center is usually doped ions, such as transition metals and rare earth elements; the traps are usually defects, impurities or co-doped ions.
  • a green-emitting LiYF 4 microcrystalline scintillation material is provided.
  • the LiYF 4 microcrystalline scintillation material has obvious defects after unequal doping, and the crystal integrity is destroyed; there are luminous centers and defective centers, resulting in long afterglow.
  • the LiYF 4 microcrystalline scintillation material has good thermal stability.
  • the melting points of LiYF 4 :Tb, Cu microcrystals and LiYF 4 :Tb, Ag microcrystals are 830°C and 829°C respectively.
  • the scintillation performance of this LiYF 4 microcrystalline scintillation material is as follows: under continuous X-ray irradiation with a dose rate of 42.29mGy/s, the luminous intensity of the material shows an upward trend and ultimately remains unchanged. After stopping X-ray irradiation, a long afterglow phenomenon appeared in the crystal. The sample was then thermally excited, and the luminous intensity of the material suddenly increased, and then slowly decreased.
  • LiYF 4 microcrystalline scintillation material A green-emitting LiYF 4 microcrystalline scintillation material.
  • the chemical formula of the LiYF 4 microcrystalline scintillation material is LiYF 4 : A, M;
  • the LiYF 4 microcrystalline scintillation material contains luminescence centers and defect centers;
  • the valence state of the M ion is not equal to the valence state of the Y 3+ ion;
  • a and M are doping ions.
  • the A ion is a luminescent center.
  • the M ions are defect centers.
  • the doping ratio of the A ions is C 1 , 0% ⁇ C 1 ⁇ 25%;
  • the doping ratio of the M ions is C 2 , 0% ⁇ C 2 ⁇ 5%.
  • the doping ratio is calculated based on the mole percentage of A ions or M ions in the LiYF 4 microcrystalline scintillation material.
  • the doping ratio of the A ions is independently selected from any value among 1%, 5%, 10%, 15%, 20%, 25% or any range value between the two.
  • the doping ratio of the M ions is independently selected from any value among 1%, 2%, 3%, 4%, 5% or any range value between the two.
  • the doping ion A is selected from Sc 3+ , Y 3+ , La 3+ , Ce 3+ , Pr 3+ , Nd 3+ , Pm 3+ , Sm 3+ , Eu 3+ , Gd 3+ , At least one of Tb 3+ , Ho 3+ , Er 3+ , Tm 3+ , Yb 3+ , Lu 3+ , Al 3+ , Ga 3+ , and In 3+ .
  • the doping ion M is selected from at least one of Cu 2+ and Ag + .
  • a method for preparing a green luminescent LiYF 4 microcrystalline scintillation material is provided.
  • This method is a hydrothermal method, which can grow under normal temperature and sealed conditions, and can effectively reduce the cost of crystal growth.
  • the preparation method of the above-mentioned LiYF 4 microcrystalline scintillation material includes the following steps:
  • the molar ratio of the F source, the Y source, the Li source, the A source, and the M source is 2-6:0.6-1:1:0.05-0.3:0.01-0.1.
  • the solvent is water; the solvent is 20 ml to 40 ml.
  • the F source, the Y source, the Li source, the A source, and the M source are measured in moles of their F element, Y element, Li element, A element, and M element respectively. .
  • the F source is selected from at least one of NH 4 F and LiF.
  • the Y source is selected from at least one of Y(NO 3 ) 3 ⁇ 6H 2 O, Y(NO 3 ) 3 , YCl 3 ⁇ 6H 2 O, and YCl 3 .
  • the Li source is selected from at least one of LiF, LiOH, and LiCO3 .
  • the A source is selected from at least one of Tb(NO 3 ) 3 ⁇ 6H 2 O, Tb(NO 3 ) 3 , TbCl 3 ⁇ 6H 2 O, and TbCl 3 .
  • the M source is selected from at least one of Cu(NO 3 ) 3 ⁇ 6H 2 O, Cu(NO 3 ) 3 , CuCl 2 ⁇ 2H 2 O, and CuCl 2 .
  • reaction conditions are as follows:
  • Temperature is 210°C ⁇ 230°C;
  • the time is 2640min ⁇ 3120min.
  • the temperature is independently selected from any value among 210°C, 215°C, 220°C, 225°C, 230°C or any range value between the two.
  • the time is independently selected from any value among 2640min, 2760min, 2880min, 3000min, 3120min or any range value between the two.
  • the heating rate is 1.500°C/min ⁇ 2.500°C/min.
  • the heating rate is independently selected from any value among 1.500°C/min, 1.700°C/min, 1.900°C/min, 2.100°C/min, 2.300°C/min, 2.500°C/min or any value in between. range value.
  • an application of a green luminescent LiYF 4 microcrystalline scintillation material is provided.
  • a microcrystalline scintillation film for imaging has a high spatial resolution.
  • the resolutions of LiYF 4 :Tb, Cu microcrystals and LiYF 4 :Tb, Ag microcrystals are both 20lp/mm.
  • a microcrystalline scintillation film for imaging including the following components:
  • the content of LiYF 4 microcrystalline scintillation material is C 3 , 0% ⁇ C 3 ⁇ 50%;
  • the rest are epoxy resin A glue and epoxy resin B glue;
  • the LiYF 4 microcrystalline scintillation material is selected from the above-mentioned LiYF 4 microcrystalline scintillation material and/or the LiYF 4 microcrystalline scintillation material obtained by the above-mentioned preparation method.
  • the weight percentage of epoxy resin A glue and epoxy resin B glue is 200% to 400%.
  • a method for preparing a microcrystalline scintillation film for imaging is provided.
  • a method for preparing a microcrystalline scintillation film for imaging including the following steps:
  • the microcrystalline scintillation film for imaging is selected from the microcrystalline scintillation film for imaging described above.
  • step (A1) before sonication, the LiYF 4 microcrystalline scintillation material is first sieved.
  • step (A3) drying is performed after scraping.
  • the preparation of LiYF 4 :M crystal is as follows:
  • LiYF 4 Tb
  • Cu microcrystalline powder is synthesized using the hydrothermal method.
  • the specific steps are as follows: In the first step, use a weighing balance to weigh 15 mmol of LiF, 30 mmol of NH 4 F, and 8.2 mmol of Y(NO 3 ) 3 ⁇ 6H 2 O, 1.5 mmol of Tb(NO 3 ) 3 ⁇ 6H 2 O, 0.3 mmol of Cu(NO 3 ) 3 ⁇ 6H 2 O and 0.052 g of EDTA were added to a 50 ml beaker. In the second step, add 26 ml of distilled water and a magnetic stirrer to the beaker, and transfer the beaker to the magnetic stirrer.
  • Step 3 Turn on the magnetic stirrer and continue vigorous stirring for 2 hours until a suspension forms in the beaker.
  • the fifth step is to put the hydrothermal reaction kettle into a blast drying oven and set the reaction program as follows: heating up from room temperature to 220°C in 100 minutes, holding at 220°C for 2880 minutes, and cooling down from 220°C to room temperature in 2880 minutes. .
  • the sample is washed three times with absolute ethanol and distilled water, and then placed in a drying box and dried at 60°C for 12 hours.
  • the finally obtained white powder is LiYF 4 :Tb,Cu microcrystals (MCs) sample.
  • the luminescence of the scintillation crystal is the characteristic green emission of Tb 3+ .
  • LiYF 4 Tb
  • Ag microcrystalline powder is synthesized using the hydrothermal method.
  • the specific steps are as follows: In the first step, use a weighing balance to weigh 15 mmol of LiF, 30 mmol of NH 4 F, and 8.2 mmol of Y (NO 3 ) 3 ⁇ 6H 2 O, 1.5 mmol of Tb(NO 3 ) 3 ⁇ 6H 2 O, 0.3 mmol of Ag(NO 3 ) 3 ⁇ 6H 2 O and 0.052 g of EDTA were added to a 50 ml beaker. In the second step, add 26 ml of distilled water and a magnetic stirrer to the beaker, and transfer the beaker to the magnetic stirrer.
  • Step 3 Turn on the magnetic stirrer and continue vigorous stirring for 2 hours until a suspension forms in the beaker.
  • the fifth step is to put the hydrothermal reaction kettle into a blast drying oven and set the reaction program as follows: heating up from room temperature to 220°C in 100 minutes, holding at 220°C for 2880 minutes, and cooling down from 220°C to room temperature in 2880 minutes. .
  • the sample is washed three times with absolute ethanol and distilled water, and then placed in a drying box and dried at 60°C for 12 hours.
  • the finally obtained white powder is LiYF 4 : Tb, Ag microcrystals (MCs) sample.
  • the luminescence of the scintillation crystal is the characteristic green emission of Tb 3+ .
  • the 40wt%, 150 ⁇ m thick microcrystalline scintillation film for imaging is prepared by the scraper coating method.
  • the preparation steps are as follows: in the first step, sieve the long afterglow LiYbF 4 powder sample with a 250 mesh (61 ⁇ m) sieve to avoid agglomeration; In the second step, use a weighing balance to weigh 1.2g of long afterglow LiYbF 4 powder, and then add it to a 25ml beaker; in the third step, add 0.6g of epoxy resin B glue to the beaker, and then put the beaker under ultrasonic Ultrasonicate in the machine until the powder is completely dissolved in glue B; in the fourth step, add 1.2g of epoxy resin glue A into the beaker, and then stir smoothly until glue A is completely mixed with glue B mixed with long afterglow LiYbF 4 MCs; In the fifth step is to put the beaker into a vacuum machine and vacuum it to remove the bubbles until all the bubbles burst; the sixth step is to
  • the green-emitting LiYF 4 microcrystalline scintillation material provided by this application has obvious defects after unequal doping, and the crystal integrity is destroyed; luminescence centers and defects appear. center, resulting in a long afterglow.
  • the LiYF 4 microcrystalline scintillation material has good thermal stability.
  • the melting points of LiYF 4 :Tb, Cu microcrystals and LiYF 4 :Tb, Ag microcrystals are 830°C and 829°C respectively.
  • the scintillation performance of this LiYF 4 microcrystalline scintillation material is as follows: under continuous X-ray irradiation with a dose rate of 42.29mGy/s, the luminous intensity of the material shows an upward trend and ultimately remains unchanged. After stopping X-ray irradiation, a long afterglow phenomenon appeared in the crystal. The sample was then thermally excited, and the luminous intensity of the material suddenly increased, and then slowly decreased.
  • the preparation method of the green luminescent LiYF 4 microcrystalline scintillation material provided in this application is a hydrothermal method, which can be grown under normal temperature and sealed conditions, and can effectively reduce the cost of crystal growth.
  • the microcrystalline scintillation film for imaging provided by this application has a high spatial resolution. Among them, the resolution of LiYF 4 :Tb, Cu microcrystals and LiYF 4 :Tb, Ag microcrystals The rate is 20lp/mm.
  • Figure 1 is the XRD pattern of LiYF 4 :Tb microcrystals.
  • Figure 2 is the XRD pattern of LiYF 4 :Tb, LiYF 4 :Tb, Cu and LiYF 4 :Tb, Ag microcrystals.
  • Figure 3 is an SEM image of LiYF 4 :Tb microcrystals.
  • Figure 4 is an SEM image of LiYF 4 :Tb, Cu microcrystals.
  • Figure 5 is an SEM image of LiYF 4 :Tb, Ag microcrystals.
  • Figure 6 is the X-ray excitation luminescence spectrum of LiYF 4 :Tb, LiYF 4 :Tb, Cu and LiYF 4 :Tb, Ag microcrystals.
  • Figure 7 is the scintillation long afterglow characterization of LiYF 4 :Tb, Cu and LiYF 4 :Tb, Ag microcrystals.
  • Figure 8 is the thermogravimetric analysis of LiYF 4 :Tb, Cu and LiYF 4 :Tb, Ag microcrystals.
  • Figure 9 is a physical image of LiYF 4 : Tb, Cu and LiYF 4 : Tb, Ag microcrystals.
  • EDTA was ethylenediaminetetraacetic acid, purchased from Aladdin Reagent (Shanghai) Co., Ltd.
  • phase analysis test was carried out using the powder X-ray diffractometer (PXRD) Miniflex600 produced by Rigaku Corporation of Japan, in which a Cu target was used for the test.
  • the voltage is 40kV
  • the current is 40mA
  • the scanning range is 10° ⁇ 90°.
  • X-ray excitation luminescence spectrum analysis was performed using the MagProTUB0014 ray source and related accessories from Beijing Zhuoli Hanguang Company.
  • the MagProTUB0014 ray source and related accessories of Beijing Zhuoli Hanguang Company were used to conduct scintillation long afterglow characterization analysis.
  • Thermogravimetric analysis was performed using a synchronous thermal analyzer (STA449F3) from NETZSCH, Germany.
  • Step 1 LiYF 4 : Tb, Cu microcrystalline powder is synthesized using the hydrothermal method.
  • the specific steps are as follows: In the first step, use a weighing balance to weigh 15 mmol of LiF, 30 mmol of NH 4 F, and 8.2 mmol of Y(NO 3 ). 3 ⁇ 6H 2 O, 1.5 mmol of Tb(NO 3 ) 3 ⁇ 6H 2 O, 0.3 mmol of Cu(NO 3 ) 3 ⁇ 6H 2 O and 0.052 g of EDTA were added to a 50 ml beaker. In the second step, add 26 ml of distilled water and a magnetic stirrer to the beaker, and transfer the beaker to the magnetic stirrer.
  • Step 3 Turn on the magnetic stirrer and continue vigorous stirring for 2 hours until a suspension forms in the beaker.
  • the fifth step is to put the hydrothermal reaction kettle into a blast drying oven and set the reaction program as follows: heating up from room temperature to 220°C in 100 minutes, holding at 220°C for 2880 minutes, and cooling down from 220°C to room temperature in 2880 minutes. .
  • Step 2 LiYF 4 : Tb, Ag microcrystalline powder is synthesized using the hydrothermal method.
  • the specific steps are as follows: In the first step, use a weighing balance to weigh 15 mmol of LiF, 30 mmol of NH 4 F, and 8.2 mmol of Y (NO 3 ). 3 ⁇ 6H 2 O, 1.5 mmol of Tb(NO 3 ) 3 ⁇ 6H 2 O, 0.3 mmol of Ag(NO 3 ) 3 ⁇ 6H 2 O and 0.052 g of EDTA were added to a 50 ml beaker. In the second step, add 26 ml of distilled water and a magnetic stirrer to the beaker, and transfer the beaker to the magnetic stirrer.
  • Step 3 Turn on the magnetic stirrer and continue vigorous stirring for 2 hours until a suspension forms in the beaker.
  • the fifth step is to put the hydrothermal reaction kettle into a blast drying oven and set the reaction program as follows: heating up from room temperature to 220°C in 100 minutes, holding at 220°C for 2880 minutes, and cooling down from 220°C to room temperature in 2880 minutes. .
  • the 40wt%, 150 ⁇ m thick microcrystalline scintillation film for imaging is prepared by the scraper coating method.
  • the preparation steps are as follows: in the first step, sieve the long afterglow LiYbF 4 powder sample with a 250 mesh (61 ⁇ m) sieve to avoid agglomeration; In the second step, use a weighing balance to weigh 1.2g of long afterglow LiYbF 4 powder, and then add it to a 25ml beaker; in the third step, add 0.6g of epoxy resin B glue to the beaker, and then put the beaker under ultrasonic Ultrasonicate in the machine until the powder is completely dissolved in glue B; in the fourth step, add 1.2g of epoxy resin glue A into the beaker, and then stir smoothly until glue A is completely mixed with glue B mixed with long afterglow LiYbF 4 MCs; In the fifth step is to put the beaker into a vacuum machine and vacuum it to remove the bubbles until all the bubbles burst; the sixth step is to
  • step 1 Cu(NO 3 ) 3 ⁇ 6H 2 O in step 1 is removed, and the other steps are the same as step 1 in embodiment 1 to obtain LiYF 4 :Tb scintillating crystallites.
  • the LiYF 4 :Tb scintillating crystallites only have luminescent centers and no Long persistence performance.
  • the LiYF 4 :Tb microcrystalline crystal has a standard octahedral shape, and the surface is complete without obvious defects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Luminescent Compositions (AREA)

Abstract

绿色持续发光的LiYF 4微晶闪烁材料及其制备方法和应用,属于晶体材料技术领域。一种绿色发光的LiYF 4微晶闪烁材料,所述LiYF 4微晶闪烁材料的化学式为LiYF 4:A,M;所述LiYF 4微晶闪烁材料含有发光中心和缺陷中心;所述M离子的价态不等于Y 3+离子的价态;其中,A、M均为掺杂离子。该LiYF 4微晶闪烁材料在不等价掺杂后出现了较为明显的缺陷,晶体完整性被破坏;出现了发光中心和缺陷中心,从而产生长余辉。该LiYF 4微晶闪烁材料拥有较好的热稳定性,其中,LiYF 4:Tb,Cu微晶和LiYF 4:Tb,Ag微晶的熔点分别为830℃和829℃。

Description

一种绿色持续发光的LiYF 4微晶闪烁材料及其制备方法和应用 技术领域
本申请涉及一种绿色持续发光的LiYF 4微晶闪烁材料及其制备方法和应用,属于晶体材料技术领域。
背景技术
辐射探测闪烁体可将X射线或伽马射线等电离辐射转化为紫外线或可见光,广泛应用于医学诊断、安全检查、工业检查、核物理、天体物理学、X射线断层扫描等领域。
无机闪烁材料中,氟化物由于稳定性高、透光率高、声子能量低(300-500cm -1)等特点成为了一种较为理想的闪烁材料。微晶一般采用水热法制备,具有合成简单、成本低廉的特点,相较于传统的块状单晶有着巨大的应用潜力,近些年也有许多科研工作人员进行该方面的研究和尝试。
长余辉指在辐射源停止激励后,材料依旧能够持续产生较长时间的发光的现象,该现象早在一千多年前的宋代就已经有人发现了。但是直到上个世纪末,关于长余辉的的研究和报道依旧不多,目前应用最广泛、最著名的长余辉材料是掺Cu的ZnS。对长余辉材料而言,发光中心和陷阱是两种主要的活性中心。发光中心通常为掺杂离子,如过渡金属和稀土元素;陷阱通常为缺陷、杂质或共掺杂离子。当外界激发源激发材料发光时,一部分处于激发态的载流子通过热离化作用进入导带,然后移动到陷阱能级附近并被陷阱能级捕获,但是陷阱能级并不会发光,而是将能量存储起来,这个过程也被称为“充电”。当激发源停止激发时,对长余辉材料施以光、热或其他物理刺激,陷阱能级捕获的载流子重新进入导带中,并回归激发态能级,然后向基态跃迁并向外辐射光子。长余辉材料一般应用在显示和安全指示、光存储、传感器和生物医学等领域,有着巨大的研究价值。
发明内容
根据本申请的一个方面,提供了一种绿色发光的LiYF 4微晶闪烁材料,该LiYF 4微晶闪烁材料在不等价掺杂后出现了较为明显的缺陷,晶体完整性被破坏;出现了发光中心和缺陷中心,从而产生长余辉。该LiYF 4微晶闪烁材料拥有较好的热稳定性,其中,LiYF 4:Tb,Cu微晶和LiYF 4:Tb,Ag微晶的熔点分别为830℃和829℃。该LiYF 4微晶闪烁材料,其闪烁性能表现为,在42.29mGy/s剂量率的X射线持续照射下,材料的发光强度呈现上升趋势并最终保持不变。在停止X射线照射后,晶体出现长余辉现象,后对样品进行热激发,材料发光强度呈现突变上升,然后缓慢下降。
一种绿色发光的LiYF 4微晶闪烁材料,所述LiYF 4微晶闪烁材料的化学式为LiYF 4:A,M;
所述LiYF 4微晶闪烁材料含有发光中心和缺陷中心;
所述M离子的价态不等于Y 3+离子的价态;
其中,A、M均为掺杂离子。
可选地,所述A离子为发光中心。
可选地,所述M离子为缺陷中心。
可选地,所述A离子的掺杂比为C 1,0%<C 1≤25%;
可选地,所述M离子的掺杂比为C 2,0%<C 2≤5%。
所述掺杂比是以A离子或M离子占LiYF 4微晶闪烁材料的摩尔百分比来计算的。
可选地,所述A离子的掺杂比独立地选自1%、5%、10%、15%、20%、25%中的任意值或任意两者之间的范围值。
可选地,所述M离子的掺杂比独立地选自1%、2%、3%、4%、5%中的任意值或任意两者之间的范围值。
可选地,掺杂离子A选自Sc 3+、Y 3+、La 3+、Ce 3+、Pr 3+、Nd 3+、Pm 3+、Sm 3+、Eu 3+、Gd 3+、Tb 3+、Ho 3+、Er 3+、Tm 3+、Yb 3+、Lu 3+、Al 3+、Ga 3+、In 3+中的至少一种。
可选地,掺杂离子M选自Cu 2+、Ag +中的至少一种。
根据本申请的第二个方面,提供了一种绿色发光的LiYF 4微晶闪 烁材料的制备方法。该方法为水热法,在常温、密闭的条件下就能够生长,可以有效降低晶体生长的成本。
上述所述的LiYF 4微晶闪烁材料的制备方法,包括以下步骤:
将含有F源、Y源、Li源、A源、M源、溶剂的混合物,置于密闭容器内,反应得到LiYF 4微晶闪烁材料。
可选地,所述F源、所述Y源、所述Li源、所述A源、所述M源的摩尔比为2~6:0.6~1:1:0.05~0.3:0.01~0.1。
可选地,所述溶剂为水;所述溶剂为20ml~40ml。
可选地,所述F源、所述Y源、所述Li源、所述A源、所述M源分别以其F元素、Y元素、Li元素、A元素、M元素的摩尔来计量的。
可选地,所述F源选自NH 4F、LiF中的至少一种。
可选地,所述Y源选自Y(NO 3) 3·6H 2O、Y(NO 3) 3、YCl 3·6H 2O、YCl 3中的至少一种。
可选地,所述Li源选自LiF、LiOH、LiCO 3中的至少一种。
可选地,所述A源选自Tb(NO 3) 3·6H 2O、Tb(NO 3) 3、TbCl 3·6H 2O、TbCl 3中的至少一种。
可选地,所述M源选自Cu(NO 3) 3·6H 2O、Cu(NO 3) 3、CuCl 2·2H 2O、CuCl 2中的至少一种。
可选地,反应的条件如下:
温度为210℃~230℃;
时间为2640min~3120min。
可选地,温度独立地选自210℃、215℃、220℃、225℃、230℃中的任意值或任意两者之间的范围值。
可选地,时间独立地选自2640min、2760min、2880min、3000min、3120min中的任意值或任意两者之间的范围值。
可选地,升温速率为1.500℃/min~2.500℃/min。
可选地,升温速率独立地选自1.500℃/min、1.700℃/min、1.900℃/min、2.100℃/min、2.300℃/min、2.500℃/min中的任意值或任意两者之间的范围值。
根据本申请的第三个方面,提供了一种绿色发光的LiYF 4微晶闪烁材料的应用。
上述所述的LiYF 4微晶闪烁材料和/或上述所述的制备方法得到的LiYF 4微晶闪烁材料在成像用微晶闪烁薄膜、高能射线探测中的应用。
根据本申请的第四个方面,提供了一种成像用微晶闪烁薄膜。该成像用微晶闪烁薄膜有着较高的空间分辨率,其中,LiYF 4:Tb,Cu微晶和LiYF 4:Tb,Ag微晶的分辨率均为20lp/mm。
一种成像用微晶闪烁薄膜,包括以下组分:
LiYF 4微晶闪烁材料的含量为C 3,0%<C 3≤50%;
其余为环氧树脂A胶和环氧树脂B胶;
所述LiYF 4微晶闪烁材料选自上述所述的LiYF 4微晶闪烁材料和/或上述所述的制备方法得到的LiYF 4微晶闪烁材料。
上述百分数为重量百分数。
可选地,环氧树脂A胶和环氧树脂B胶的重量百分比为200%~400%。
根据本申请的第五个方面,提供了一种成像用微晶闪烁薄膜的制备方法。
一种成像用微晶闪烁薄膜的制备方法,包括以下步骤:
(A1)将含有LiYF 4微晶闪烁材料、环氧树脂B胶的混合物,超声得到分散液Ⅰ;
(A2)将含有上述所述分散液Ⅰ、环氧树脂A胶的混合物,混合得到分散液Ⅱ;
(A3)将上述所述分散液Ⅱ置于塑料薄膜上,刮涂得到所述成像用微晶闪烁薄膜;
所述成像用微晶闪烁薄膜选自上述所述的成像用微晶闪烁薄膜。
可选地,在步骤(A1)中,超声之前,先将LiYF 4微晶闪烁材料 过筛。
可选地,在步骤(A3)中,刮涂后进行干燥。
根据本申请的一种实施方式,LiYF 4:M晶体的制备,具体如下:
1)、LiYF 4:Tb,Cu微晶粉末合成采用水热法,具体步骤如下:第一步,用称量天平称取15mmol的LiF、30mmol的NH 4F、8.2mmol的Y(NO 3) 3·6H 2O、1.5mmol的Tb(NO 3) 3·6H 2O、0.3mmol的Cu(NO 3) 3·6H 2O和0.052g的EDTA,并加入50ml的烧杯中。第二步,向烧杯中加入26ml的蒸馏水和磁力搅拌子,并将烧杯转移至磁力搅拌器上。第三步,开启磁力搅拌器并持续强力搅拌2h,直至烧杯内形成悬浊液。第四步,将溶液转移至耐高温的水热反应釜内胆中,并用4ml的蒸馏水冲洗烧杯内壁,避免药品比例改变。第五步,将水热反应釜放入鼓风式干燥箱中,设置反应程序为:100分钟从室温升温至220℃,在220℃下保温2880分钟,在2880分钟内从220℃降温至室温。最后,待反应完成后,将样品用无水乙醇和蒸馏水反复清洗三次,然后放入干燥箱中在60℃下干燥12h,最后获得的白色粉末即为LiYF 4:Tb,Cu微晶(MCs)样品。闪烁晶体的发光为Tb 3+的绿光特征发射。
2)、LiYF 4:Tb,Ag微晶粉末合成采用水热法,具体步骤如下:第一步,用称量天平称取15mmol的LiF、30mmol的NH 4F、8.2mmol的Y(NO 3) 3·6H 2O、1.5mmol的Tb(NO 3) 3·6H 2O、0.3mmol的Ag(NO 3) 3·6H 2O和0.052g的EDTA,并加入50ml的烧杯中。第二步,向烧杯中加入26ml的蒸馏水和磁力搅拌子,并将烧杯转移至磁力搅拌器上。第三步,开启磁力搅拌器并持续强力搅拌2h,直至烧杯内形成悬浊液。第四步,将溶液转移至耐高温的水热反应釜内胆中,并用4ml的蒸馏水冲洗烧杯内壁,避免药品比例改变。第五步,将水热反应釜放入鼓风式干燥箱中,设置反应程序为:100分钟从室温升温至220℃,在220℃下保温2880分钟,在2880分钟内从220℃降温至室温。最后,待反应完成后,将样品用无水乙醇和蒸馏水反复清洗三次,然后放入干燥箱中在60℃下干燥12h,最后获得的白色粉 末即为LiYF 4:Tb,Ag微晶(MCs)样品。闪烁晶体的发光为Tb 3+的绿光特征发射。
闪烁成像器件的制备,具体如下:
40wt%、150μm厚的成像用微晶闪烁薄膜的制备采用刮涂法,其制备步骤如下:第一步,用250目(61μm)的筛网将长余辉LiYbF 4粉末样品过筛,避免团聚;第二步,用称量天平称取1.2g的长余辉LiYbF 4粉末,然后将其加入25ml的烧杯中;第三步,向烧杯中加入0.6g的环氧树脂B胶,然后将烧杯在超声机中超声,直至粉末在B中胶完全溶解;第四步,向烧杯中加入1.2g的环氧树脂A胶,然后平稳搅拌直至A胶与混合了长余辉LiYbF 4MCs的B胶完全混合;第五步,将烧杯放入抽真空机中抽真空,以去除其中的气泡,直至气泡全部破裂;第六步,将混合好的胶水倒在PET塑料薄膜上,然后使用刮涂器制备一张厚度为150μm的闪烁薄膜;第七步,将制备好的闪烁薄膜放入干燥箱中,在60℃下干燥12h。
本申请能产生的有益效果包括:
1)本申请所提供的绿色发光的LiYF 4微晶闪烁材料,该LiYF 4微晶闪烁材料在不等价掺杂后出现了较为明显的缺陷,晶体完整性被破坏;出现了发光中心和缺陷中心,从而产生长余辉。该LiYF 4微晶闪烁材料拥有较好的热稳定性,其中,LiYF 4:Tb,Cu微晶和LiYF 4:Tb,Ag微晶的熔点分别为830℃和829℃。该LiYF 4微晶闪烁材料,其闪烁性能表现为,在42.29mGy/s剂量率的X射线持续照射下,材料的发光强度呈现上升趋势并最终保持不变。在停止X射线照射后,晶体出现长余辉现象,后对样品进行热激发,材料发光强度呈现突变上升,然后缓慢下降。
2)本申请所提供的绿色发光的LiYF 4微晶闪烁材料的制备方法,该方法为水热法,在常温、密闭的条件下就能够生长,可以有效降低晶体生长的成本。
3)本申请所提供的成像用微晶闪烁薄膜,该成像用微晶闪烁薄膜有着较高的空间分辨率,其中,LiYF 4:Tb,Cu微晶和LiYF 4:Tb, Ag微晶的分辨率均为20lp/mm。
附图说明
图1是LiYF 4:Tb微晶的XRD图。
图2是LiYF 4:Tb、LiYF 4:Tb,Cu和LiYF 4:Tb,Ag微晶的XRD图。
图3是LiYF 4:Tb微晶的SEM图。
图4是LiYF 4:Tb,Cu微晶的SEM图。
图5是LiYF 4:Tb,Ag微晶的SEM图。
图6是LiYF 4:Tb、LiYF 4:Tb,Cu和LiYF 4:Tb,Ag微晶的X射线激发发光光谱。
图7是LiYF 4:Tb,Cu和LiYF 4:Tb,Ag微晶的闪烁长余辉表征。
图8是LiYF 4:Tb,Cu和LiYF 4:Tb,Ag微晶的热重分析。
图9是LiYF 4:Tb,Cu和LiYF 4:Tb,Ag微晶的实物成像图。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
如无特别说明,本申请的实施例中的原料均通过商业途径购买,其中,EDTA为乙二胺四乙酸,购自阿拉丁试剂(上海)有限公司。
本申请的实施例中分析方法如下:
利用日本理学公司生产的粉末X射线衍射仪(PXRD)Miniflex600进行物相分析测试,其中测试用Cu靶
Figure PCTCN2022114601-appb-000001
电压为40kV,电流为40mA,扫描范围为10°~90°。
利用扫描电子显微镜(SEM)SU8010进行形貌分析。
利用北京卓立汉光公司的MagProTUB0014型射线源以及相关配件进行X射线激发发光光谱分析。
利用北京卓立汉光公司的MagProTUB0014型射线源以及相关配件进行闪烁长余辉表征分析。
利用德国耐驰的同步热分析仪(STA449F3)进行热重分析。
实施例1
LiYF 4:Tb,Cu晶体的生长,具体步骤如下:
步骤1、LiYF 4:Tb,Cu微晶粉末合成采用水热法,具体步骤如下:第一步,用称量天平称取15mmol的LiF、30mmol的NH 4F、8.2mmol的Y(NO 3) 3·6H 2O、1.5mmol的Tb(NO 3) 3·6H 2O、0.3mmol的Cu(NO 3) 3·6H 2O和0.052g的EDTA,并加入50ml的烧杯中。第二步,向烧杯中加入26ml的蒸馏水和磁力搅拌子,并将烧杯转移至磁力搅拌器上。第三步,开启磁力搅拌器并持续强力搅拌2h,直至烧杯内形成悬浊液。第四步,将溶液转移至耐高温的水热反应釜内胆中,并用4ml的蒸馏水冲洗烧杯内壁,避免药品比例改变。第五步,将水热反应釜放入鼓风式干燥箱中,设置反应程序为:100分钟从室温升温至220℃,在220℃下保温2880分钟,在2880分钟内从220℃降温至室温。最后,待反应完成后,将样品用无水乙醇和蒸馏水反复清洗三次,然后放入干燥箱中在60℃下干燥12h,最后获得的白色粉末即为LiYF 4:Tb,Cu微晶(MCs)样品。
步骤2、LiYF 4:Tb,Ag微晶粉末合成采用水热法,具体步骤如下:第一步,用称量天平称取15mmol的LiF、30mmol的NH 4F、8.2mmol的Y(NO 3) 3·6H 2O、1.5mmol的Tb(NO 3) 3·6H 2O、0.3mmol的Ag(NO 3) 3·6H 2O和0.052g的EDTA,并加入50ml的烧杯中。第二步,向烧杯中加入26ml的蒸馏水和磁力搅拌子,并将烧杯转移至磁力搅拌器上。第三步,开启磁力搅拌器并持续强力搅拌2h,直至烧杯内形成悬浊液。第四步,将溶液转移至耐高温的水热反应釜内胆中,并用4ml的蒸馏水冲洗烧杯内壁,避免药品比例改变。第五步,将水热反应釜放入鼓风式干燥箱中,设置反应程序为:100分钟从室温升温至220℃,在220℃下保温2880分钟,在2880分钟内从220℃降温至室温。最后,待反应完成后,将样品用无水乙醇和蒸馏水反复清洗三次,然后放入干燥箱中在60℃下干燥12h,最后获得的白色粉末即为LiYF 4:Tb,Ag微晶(MCs)样品。
实施例2
LiYF 4:M微晶闪烁薄膜的制备,具体步骤如下:
40wt%、150μm厚的成像用微晶闪烁薄膜的制备采用刮涂法,其制备步骤如下:第一步,用250目(61μm)的筛网将长余辉LiYbF 4粉末样品过筛,避免团聚;第二步,用称量天平称取1.2g的长余辉LiYbF 4粉末,然后将其加入25ml的烧杯中;第三步,向烧杯中加入0.6g的环氧树脂B胶,然后将烧杯在超声机中超声,直至粉末在B中胶完全溶解;第四步,向烧杯中加入1.2g的环氧树脂A胶,然后平稳搅拌直至A胶与混合了长余辉LiYbF 4MCs的B胶完全混合;第五步,将烧杯放入抽真空机中抽真空,以去除其中的气泡,直至气泡全部破裂;第六步,将混合好的胶水倒在PET塑料薄膜上,然后使用刮涂器制备一张厚度为150μm的闪烁薄膜;第七步,将制备好的闪烁薄膜放入干燥箱中,在60℃下干燥12h。
对比例1
LiYF 4:Tb晶体的生长
将步骤1中的Cu(NO 3) 3·6H 2O去掉,其他同实施例1中的步骤1,得到LiYF 4:Tb闪烁微晶,该LiYF 4:Tb闪烁微晶仅有发光中心,没有长余辉性能。
分析例
由图1可知,不同掺杂比例的LiYF 4:Tb微晶物相结构没有发生改变,均为纯相。
由图2可知,LiYF 4:Tb、LiYF 4:Tb,Cu和LiYF 4:Tb,Ag微晶的物相结构没有发生改变,均为纯相。
由图3可知,LiYF 4:Tb微晶晶体呈现标准的八面体形状,且表面完整,没有明显缺陷。
由图4可知,LiYF 4:Tb,Cu微晶晶体表明存在大量缺陷,破坏了晶体完整性。
由图5可知,LiYF 4:Tb,Ag微晶晶体表明存在大量缺陷,破坏 了晶体完整性。
由图6可知,进行不等价掺杂后,微晶的发光强度发生了明显变化,LiYF 4:Tb,Cu微晶发光增强,LiYF 4:Tb,Ag微晶发光减弱。
由图7可知,在X射线照射下,随着时间在积累,样品的发光逐渐增强,最终趋于稳定,这是缺陷能级捕获载流子的过程。在关闭X射线后,样品发光强度首先呈现断崖式下降,随后缓慢下降。之后我们对样品进行加热,其发光强度快速增强,这是缺陷能级在外界刺激下快速释放捕获的载流子的过程。
由图8可知,LiYF 4:Tb,Cu和LiYF 4:Tb,Ag微晶的熔点分别为830℃和829℃,且两者均有着较好的结构稳定性。
由图9可知,LiYF 4:Tb,Cu和LiYF 4:Tb,Ag微晶闪烁薄膜有着较闪烁延迟成像性能。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (21)

  1. 一种绿色发光的LiYF 4微晶闪烁材料,其特征在于,所述LiYF 4微晶闪烁材料的化学式为LiYF 4:A,M;
    所述LiYF 4微晶闪烁材料含有发光中心和缺陷中心;
    所述M离子的价态不等于Y 3+离子的价态;
    其中,A、M均为掺杂离子。
  2. 根据权利要求1所述的LiYF 4微晶闪烁材料,其特征在于,所述A离子为发光中心。
  3. 根据权利要求1所述的LiYF 4微晶闪烁材料,其特征在于,所述M离子为缺陷中心。
  4. 根据权利要求1所述的LiYF 4微晶闪烁材料,其特征在于,所述A离子的掺杂比为C 1,0%<C 1≤25%;
    所述M离子的掺杂比为C 2,0%<C 2≤5%;
    所述掺杂比是以A离子或M离子占LiYF 4微晶闪烁材料的摩尔百分比来计算的。
  5. 根据权利要求1所述的LiYF 4微晶闪烁材料,其特征在于,掺杂离子A选自Sc 3+、Y 3+、La 3+、Ce 3+、Pr 3+、Nd 3+、Pm 3+、Sm 3+、Eu 3+、Gd 3+、Tb 3+、Ho 3+、Er 3+、Tm 3+、Yb 3+、Lu 3+、Al 3+、Ga 3+、In 3+中的至少一种。
  6. 根据权利要求1所述的LiYF 4微晶闪烁材料,其特征在于,掺杂离子M选自Cu 2+、Ag +中的至少一种。
  7. 权利要求1~6所述的LiYF 4微晶闪烁材料的制备方法,其特征在于,包括以下步骤:
    将含有F源、Y源、Li源、A源、M源、溶剂的混合物,置于密闭容器内,反应得到LiYF 4微晶闪烁材料。
  8. 根据权利要求7所述的制备方法,其特征在于,所述F源、所述Y源、所述Li源、所述A源、所述M源的摩尔比为2~6:0.6~1:1:0.05~0.3:0.01~0.1;
    所述F源、所述Y源、所述Li源、所述A源、所述M源分别以其F元素、Y元素、Li元素、A元素、M元素的摩尔来计量的。
  9. 根据权利要求7所述的制备方法,其特征在于,所述溶剂为水;所述溶剂为20ml~40ml。
  10. 根据权利要求7所述的制备方法,其特征在于,所述F源选自NH 4F、LiF中的至少一种。
  11. 根据权利要求7所述的制备方法,其特征在于,所述Y源选自Y(NO 3) 3·6H 2O、Y(NO 3) 3、YCl 3·6H 2O、YCl 3中的至少一种。
  12. 根据权利要求7所述的制备方法,其特征在于,所述Li源选自LiF、LiOH、LiCO 3中的至少一种。
  13. 根据权利要求7所述的制备方法,其特征在于,所述A源选自Tb(NO 3) 3·6H 2O、Tb(NO 3) 3、TbCl 3·6H 2O、TbCl 3中的至少一种。
  14. 根据权利要求7所述的制备方法,其特征在于,所述M源选自Cu(NO 3) 3·6H 2O、Cu(NO 3) 3、CuCl 2·2H 2O、CuCl 2中的至少一种。
  15. 根据权利要求7所述的制备方法,其特征在于,反应的条件如下:
    温度为210℃~230℃;
    时间为2640min~3120min。
  16. 根据权利要求7所述的制备方法,其特征在于,升温速率为1.500℃/min~2.500℃/min。
  17. 权利要求1~6任一项所述的LiYF 4微晶闪烁材料和/或权利要求7~16任一项所述的制备方法得到的LiYF 4微晶闪烁材料在成像用微晶闪烁薄膜、高能射线探测中的应用。
  18. 一种成像用微晶闪烁薄膜,其特征在于,包括以下组分:
    LiYF 4微晶闪烁材料的含量为C 3,0%<C 3≤50%;
    其余为环氧树脂A胶和环氧树脂B胶。
    所述LiYF 4微晶闪烁材料选自权利要求1~6任一项所述的LiYF 4微晶闪烁材料和/或权利要求7~16任一项所述的制备方法得到的LiYF 4微晶闪烁材料。
  19. 一种成像用微晶闪烁薄膜的制备方法,其特征在于,包括以下步骤:
    (A1)将含有LiYF 4微晶闪烁材料、环氧树脂B胶的混合物,超声得到分散液Ⅰ;
    (A2)将含有上述所述分散液Ⅰ、环氧树脂A胶的混合物,混合得到分散液Ⅱ;
    (A3)将上述所述分散液Ⅱ置于塑料薄膜上,刮涂得到所述成像用微晶闪烁薄膜;
    所述成像用微晶闪烁薄膜选自权利要求18所述的成像用微晶闪烁薄膜。
  20. 根据权利要求19所述的制备方法,其特征在于,在步骤(A1)中,超声之前,先将LiYF 4微晶闪烁材料过筛。
  21. 根据权利要求19所述的制备方法,其特征在于,在步骤(A3)中,刮涂后进行干燥。
PCT/CN2022/114601 2022-07-21 2022-08-24 一种绿色持续发光的LiYF 4微晶闪烁材料及其制备方法和应用 WO2024016422A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210873467.1A CN115261021B (zh) 2022-07-21 2022-07-21 一种绿色持续发光的LiYF4微晶闪烁材料及其制备方法和应用
CN202210873467.1 2022-07-21

Publications (1)

Publication Number Publication Date
WO2024016422A1 true WO2024016422A1 (zh) 2024-01-25

Family

ID=83768670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114601 WO2024016422A1 (zh) 2022-07-21 2022-08-24 一种绿色持续发光的LiYF 4微晶闪烁材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN115261021B (zh)
WO (1) WO2024016422A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07162063A (ja) * 1993-12-08 1995-06-23 Central Glass Co Ltd アップコンバージョンレーザ材料
CN108893116A (zh) * 2018-07-26 2018-11-27 中国科学院福建物质结构研究所 一种掺杂氟化钇锂闪烁微晶及其制备方法和应用
CN114350361A (zh) * 2022-01-19 2022-04-15 福州大学 一种高荧光强度的上转换稀土掺杂纳米材料及其制备方法
CN114752385A (zh) * 2022-04-26 2022-07-15 西安邮电大学 一种Gd3+掺杂微米晶体材料及其制备方法和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080131347A1 (en) * 2006-12-04 2008-06-05 General Electric Company Scintillation compositions and method of manufacture thereof
US9561969B2 (en) * 2014-04-18 2017-02-07 University Of Tennessee Research Foundation Intrinsic complex halide elpasolite scintillators and methods of making and using same
KR101616363B1 (ko) * 2014-10-20 2016-04-28 한국과학기술연구원 다색발광이 가능한 나노형광체와 그 합성 방법 및 나노형광체를 포함하는 투명 폴리머 복합체
CA3066532A1 (en) * 2017-06-06 2018-12-13 University Of Maryland Baltimore County Systems and methods using multi-wavelength single-pulse raman spectroscopy
CN114164001A (zh) * 2021-12-13 2022-03-11 中国计量大学 一种高性能宽谱带闪烁体材料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07162063A (ja) * 1993-12-08 1995-06-23 Central Glass Co Ltd アップコンバージョンレーザ材料
CN108893116A (zh) * 2018-07-26 2018-11-27 中国科学院福建物质结构研究所 一种掺杂氟化钇锂闪烁微晶及其制备方法和应用
CN114350361A (zh) * 2022-01-19 2022-04-15 福州大学 一种高荧光强度的上转换稀土掺杂纳米材料及其制备方法
CN114752385A (zh) * 2022-04-26 2022-07-15 西安邮电大学 一种Gd3+掺杂微米晶体材料及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHAHZAD MUHAMMAD KHURAM, ZHANG YUNDONG, RAZA ADIL, IKRAM MUHAMMAD, QI KAIYUE, KHAN MUHAMMAD USMAN, ASLAM MUHAMMAD JEHANZAIB, ALHAZ: "Polymer Microfibers Incorporated with Silver Nanoparticles: a New Platform for Optical Sensing", NANOSCALE RESEARCH LETTERS, SPRINGER, US, vol. 14, no. 1, 1 December 2019 (2019-12-01), US , pages 270, XP093130197, ISSN: 1931-7573, DOI: 10.1186/s11671-019-3108-6 *
YUAN MAOHUI, HAN KAI, WANG LINXUAN, YANG XU, YANG ZINING, WANG HONGYAN, XU XIAOJUN: "Highly thermally stable upconversion in copper(II)-doped LiYF4:Yb,Er microcrystals toward ultrahigh temperature (micro)thermometers", JOURNAL OF ALLOYS AND COMPOUNDS, ELSEVIER SEQUOIA, LAUSANNE., CH, vol. 919, 1 October 2022 (2022-10-01), CH , pages 165844, XP093130209, ISSN: 0925-8388, DOI: 10.1016/j.jallcom.2022.165844 *

Also Published As

Publication number Publication date
CN115261021B (zh) 2023-08-01
CN115261021A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
US3795814A (en) X-ray image converters utilizing lanthanum and gadolinium oxyhalide luminous materials activated with thulium
Blasse Luminescence of rare earth ions at the end of the century
WO2021259074A1 (zh) 低维钙钛矿结构金属卤化物及其制备方法和应用
CN114276802B (zh) 抑制碘离子氧化析出的铊掺杂铯铜碘闪烁体薄膜的制备方法
CN112456537B (zh) 一种β相Cs3Cu2Cl5快速闪烁体的制备方法及X射线探测应用
Chen et al. Highly resolved and refreshable X-ray imaging from Tb 3+ doped aluminosilicate oxyfluoride glass scintillators
Zorenko et al. Growth and luminescent properties of scintillators based on the single crystalline films of Lu3− xGdxAl5O12: Ce garnet
US8778225B2 (en) Iodide single crystal, production process thereof, and scintillator comprising iodide single crystal
Zhou et al. Compositional engineering of doped zero-dimensional zinc halide blue emitters for efficient X-ray scintillation
WO2015045870A1 (ja) 希土類オキシ硫化物の製造方法、セラミックスシンチレータ及びその製造方法並びにシンチレータアレイ及び放射線検出器
US20060022170A1 (en) Compositions comprising high light-output yellow phosphors and their methods of preparation
Zorenko et al. Growth and luminescent properties of single crystalline films of Ce3+ doped Pr1− xLuxAlO3 and Gd1− xLuxAlO3 perovskites
CN113235158A (zh) 一种大尺寸金属卤化物闪烁晶体及其制备方法
CN114164001A (zh) 一种高性能宽谱带闪烁体材料
Zorenko et al. Single crystalline film scintillators based on the orthosilicate, perovskite and garnet compounds
Yang et al. Enhanced radioluminescence of NaLuF 4: Eu 3+ nanoscintillators by terbium sensitization for X-ray imaging
Li et al. Boosting self-trapped exciton emission from Cs3Cu2I5 nanocrystals by doping-enhanced exciton-phonon coupling
WO2024016422A1 (zh) 一种绿色持续发光的LiYF 4微晶闪烁材料及其制备方法和应用
CN115678546B (zh) 一种铊掺杂Cs3Cu2I5闪烁体微晶粉末及其制备方法和应用
CN115198361B (zh) 一种水溶液生长高质量、大尺寸Cs3Cu2I5快闪烁响应单晶的方法与应用
CN114369457A (zh) 一种绿色长余辉发光材料的制备方法
CN113512757A (zh) 一种大体块高质量闪烁晶体及其制备方法与应用
CN110699074B (zh) 一种二价铕掺杂溴氟化钡发光材料及其制备方法和应用
Meng et al. A new promising X-ray storage phosphor BaBrCl: Eu2+
WO2023236366A1 (zh) 一种掺杂氟化镥锂微晶及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951689

Country of ref document: EP

Kind code of ref document: A1