WO2024016235A1 - 推进器及水域可移动设备 - Google Patents

推进器及水域可移动设备 Download PDF

Info

Publication number
WO2024016235A1
WO2024016235A1 PCT/CN2022/106873 CN2022106873W WO2024016235A1 WO 2024016235 A1 WO2024016235 A1 WO 2024016235A1 CN 2022106873 W CN2022106873 W CN 2022106873W WO 2024016235 A1 WO2024016235 A1 WO 2024016235A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
propeller
electronic control
support member
connecting shaft
Prior art date
Application number
PCT/CN2022/106873
Other languages
English (en)
French (fr)
Inventor
李军
陶师正
万小康
屈晓峰
王海洋
Original Assignee
广东逸动科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东逸动科技有限公司 filed Critical 广东逸动科技有限公司
Priority to CN202280007872.3A priority Critical patent/CN116802973A/zh
Priority to PCT/CN2022/106873 priority patent/WO2024016235A1/zh
Publication of WO2024016235A1 publication Critical patent/WO2024016235A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/17Use of propulsion power plant or units on vessels the vessels being motor-driven by electric motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil

Definitions

  • This application relates to the technical field of ship power propellers, specifically to propellers and movable equipment in water areas.
  • the propeller is the power device of the movable equipment in the water area and is used to push the movable equipment in the water area to move in the water area.
  • the engines of some thrusters are set in the nose part, and the engine is located on the water.
  • the heat generated by the engine needs to be dissipated through an additional heat dissipation system, which results in the nose part of the thruster having a complex structure, large volume, and high cost.
  • This application provides propellers and water area movable equipment that reduce size and cost.
  • the present application provides a propeller for connecting to the hull of a movable equipment in a water area to push the movable equipment in a water area to move.
  • the propeller includes a frame, a connecting shaft, a bottom shell, a first motor and a propeller.
  • the frame is used to be connected to the hull.
  • the connecting shaft extends along the first direction; one end of the connecting shaft is connected to the frame and can be tilted relative to the hull through the frame.
  • the bottom shell is connected to an end of the connecting shaft away from the frame; the bottom shell defines an internal space.
  • the first motor is installed in the internal space of the bottom case and is thermally coupled with the bottom case.
  • the propeller propeller is connected to the first motor for generating propulsion force.
  • the propeller when the connecting shaft is not tilted, the propeller can interact with the water driven by the first motor to generate a driving force to move the movable equipment in the water area.
  • the first motor is arranged on the bottom case and is thermally coupled with the bottom case, the heat generated during the operation of the first motor can be transferred to the water through the bottom case, and the heat dissipation effect is good, which can reduce the need for additionally designed heat dissipation systems (such as additionally designed air cooling system, pump component water cooling system, etc.).
  • the aforementioned additionally designed heat dissipation system can be completely omitted.
  • the thruster in the embodiment of the present application has better heat dissipation effect, can eliminate the need for an additionally designed heat dissipation system, has a simple structure and low cost.
  • This application also provides a movable equipment in water areas, including a hull and the aforementioned propeller, and the propeller is installed on the hull.
  • Figure 1 is a schematic diagram of the usage state of the movable equipment in water areas according to an embodiment of the present application
  • Figure 2 is a schematic structural diagram of the first motor in the embodiment of the present application.
  • Figure 3 is a schematic structural diagram of another implementation of the first motor in the embodiment of the present application.
  • Figure 4 is a schematic structural diagram of another implementation of the first motor in the embodiment of the present application.
  • Figure 5 is a schematic structural diagram of another implementation of the first motor in the embodiment of the present application.
  • Figure 6 is a schematic diagram of the lower structure of the propeller in the embodiment of the present application.
  • Figure 7 is a schematic diagram of another embodiment of the lower structure of the propeller in the embodiment of the present application.
  • Figure 8 is a schematic diagram of another embodiment of the lower structure of the propeller in the embodiment of the present application.
  • Figure 9 is a schematic diagram of another embodiment of the lower structure of the propeller in the embodiment of the present application.
  • Figure 10 is a schematic diagram of another embodiment of the lower structure of the propeller in the embodiment of the present application.
  • Figure 11 is a schematic diagram of another embodiment of the lower structure of the propeller in the embodiment of the present application.
  • Figure 12 is a schematic diagram of another embodiment of the lower structure of the propeller in the embodiment of the present application.
  • Figure 13 is a schematic diagram of another heat dissipation form of the thruster in the embodiment of the present application.
  • Figure 14 is a schematic diagram of another implementation of the water area movable equipment in the embodiment of the present application.
  • Figure 15 is a schematic diagram of another implementation of the water area movable equipment in the embodiment of the present application.
  • Figure 16 is a schematic diagram of another embodiment of the movable equipment in water areas in the embodiment of the present application.
  • Figure 17 is a schematic diagram of the electronic control component of the movable equipment in the water area of Figure 15 or Figure 16 controlling the first motor;
  • Figure 18 is a schematic diagram of another embodiment in which the electronic control component of the movable equipment in the water area of Figure 15 or Figure 16 controls the first motor;
  • Figure 19 is a schematic diagram of the first motor and the second motor controlled by the electronic control component of the movable equipment in the water area of Figure 15 or Figure 16;
  • Figure 20 is a schematic diagram of another embodiment of the movable equipment in water areas in the embodiment of the present application.
  • Figure 21 is a schematic diagram of another implementation of the water area movable equipment in the embodiment of the present application.
  • Figure 22 is a schematic diagram of another embodiment of the movable equipment in water areas in the embodiment of the present application.
  • Figure 23 is a schematic diagram of another implementation of the water area movable equipment in the embodiment of the present application.
  • Figure 24 is a schematic diagram of another embodiment of the water area movable equipment in the embodiment of the present application.
  • Figure 25 is a schematic diagram of another embodiment of the water area movable equipment in the embodiment of the present application.
  • Figure 26 is a schematic diagram of another implementation of the water area movable equipment in the embodiment of the present application.
  • Figure 27 is a schematic diagram of the connection relationship between the frame, the first support member, the second support member and the connecting shaft in the embodiment of the present application;
  • Figure 28 is a schematic diagram of another embodiment of the movable equipment in water areas in the embodiment of the present application.
  • the first motor 40 The first motor 40
  • the first electronic control component 210 The first electronic control component 210
  • the third electronic control component 230 The third electronic control component 230
  • the fourth electronic control component 240 The fourth electronic control component 240
  • the first power board 225 The first power board 225
  • this embodiment provides a water movable device 300.
  • the water movable device 300 can be various types of water vehicles such as commercial ships, passenger ships, yachts, fishing boats, sailing boats, and civilian ships.
  • the water movable equipment 300 includes a hull 310 and a propeller 100 .
  • the hull 310 can provide a certain buoyancy, so that the movable equipment 300 in the water area can float on the water surface L1 and carry people or objects.
  • the hull 310 has a hull space Q1 for accommodating people, objects or other structures. The specific structure of the hull 310 can be set as needed.
  • the propeller 100 is installed on the hull 310 and is used to provide propulsion force to push the water movable device 300 to move in the water.
  • the propeller 100 is mainly driven by electricity.
  • the water area mobile device 300 further includes a battery assembly 311 for powering the propeller 100 .
  • the battery assembly 311 may include a plurality of batteries for storing electricity and providing power to the thruster 100 .
  • the battery assembly 311 adopts a rechargeable battery.
  • the battery assembly 311 may be installed on the hull 310 , for example, in the hull space Q1 , or may be installed at a suitable location on the propeller 100 .
  • the propeller 100 in this embodiment includes a frame 10 , a connecting shaft 20 , a bottom shell 30 , a first motor 40 and a propeller 50 .
  • the frame 10 is connected to the hull 310.
  • the connecting shaft 20 extends along the first direction Z (in the state of Figure 1, the first direction Z is the direction of gravity).
  • One end of the connecting shaft 20 is connected to the frame 10 and can pass through the frame.
  • the bottom shell 30 is connected to the end of the connecting shaft 20 away from the frame 10, the bottom shell 30 defines the internal space Q2, and the first motor 40 is installed in the internal space Q2, and is thermally coupled with the bottom shell 30, and the propeller propeller 50 is drivingly connected to the first motor 40 for generating propulsion force.
  • the aforementioned battery component 311 is electrically connected to the first motor 40 and is used to supply power to the first motor 40 .
  • the propeller 50 can interact with the water driven by the first motor 40 to generate a driving force to move the movable device 300 in the water area.
  • the first motor 40 is disposed on the bottom case 30 and is thermally coupled with the bottom case 30, the heat generated during the operation of the first motor 40 can be transferred to the water through the bottom case 30, and the heat dissipation effect is good, which can reduce the heat dissipation of additional designs.
  • Dependence on systems (such as additionally designed air cooling systems, pump element water cooling systems, etc.).
  • the aforementioned additionally designed heat dissipation system can be completely omitted.
  • the thruster 100 in the embodiment of the present application has the beneficial effects of better heat dissipation and short heat dissipation path. , or a heat dissipation system that can simplify/eliminate additional design.
  • the heat dissipation structure takes up little space, is simple in structure, and has low cost.
  • the relative position of the first motor 40 and the propeller 50 in this embodiment is smaller, the transmission path is shorter, and the propulsion efficiency is higher.
  • the first motor 40 is located in the internal space Q2 of the bottom shell 30 and is far away from the user on the hull 310.
  • the noise generated by the first motor 40 has less impact on the user due to the absorption and blocking of structures such as the bottom shell 30.
  • the bottom case 30 may be a shell-like structure made of thermally conductive materials such as aluminum alloy, and the internal space Q2 enclosed by the bottom case 30 is used to place the first motor 40 and other structures.
  • a thermal conductive structure 46 such as thermally conductive silica gel, may be disposed between the first motor 40 and the bottom case 30.
  • the propeller 50 can be a propeller, which can be driven to rotate to push the movable device 300 in the water area to move.
  • the propeller 100 further includes a pressure water plate 70 .
  • the pressure water plate 70 is generally a plate-shaped structure perpendicular to the direction of gravity.
  • the pressure water plate 70 is connected to the bottom shell 30.
  • the pressure water plate 70 and the bottom shell 30 can be an integrally cast structure, or they can be two separately formed components, connected together through threaded connection, welding, etc.
  • the pressure plate 70 is connected to an upper position of the bottom shell 30 (closer to the frame 10 ), extends away from the hull 310 , and is located above the propeller 50 .
  • the propelling paddle 50 is located on the side of the pressure water plate 70 away from the frame 10, and the water waves caused by its operation can be controlled under the pressure water plate 70, thereby reducing the wave resistance of the movable equipment 300 in the water area.
  • the pressure water plate 70 and the bottom case 30 are thermally connected, that is, the pressure water plate 70 and the bottom case 30 transfer heat to each other.
  • the pressure water plate 70 and the bottom shell 30 may be integrally made of the same thermal conductive material (such as aluminum alloy), or the thermal conductive connection may be achieved through a thermal conductor (such as a metal with good thermal conductivity). In this way, in addition to being directly conducted to the water, the heat transferred to the bottom shell 30 can also be quickly transferred to the pressure water plate 70 and then transferred to the water, which is equivalent to increasing the heat dissipation area.
  • the pressure water plate 70 is located above the propeller paddle 50, under the push of the propeller paddle 50, the water flow flows through the pressure water plate 70 at a faster speed, which can quickly and efficiently take away the heat on the pressure water plate 70. , so that the heat of the first motor 40 can be quickly conducted to the water body through the bottom case 30 and the water pressure plate 70 .
  • a water jet plate 71 is provided on the lower surface of the water pressure plate 70 , and the water jet plate 71 is arranged vertically to improve the turning performance of the movable equipment 300 in the water area.
  • the bottom shell 30 and the connecting shaft 20 may be fixedly connected, so that the connecting shaft 20 rotates relative to the frame 10 so that the connecting shaft 20 drives the bottom shell 30 to rotate, and ultimately the propelling direction of the propeller 100 is turned.
  • the bottom shell 30 and the connecting shaft 20 may also be rotationally connected.
  • the connecting shaft 20 is fixed relative to the frame 10 and the bottom shell 30 rotates relative to the frame 10 to ultimately realize the steering of the propeller 100's propulsion direction.
  • the first motor 40 can be a double-stator single-rotor motor, including two stators 41 and one rotor 42.
  • the two stators 41 are side by side and are electromagnetically matched with one rotor 42 respectively. Together they drive the rotor 42 to rotate.
  • the output shaft 43 of the first motor 40 is connected to the rotor 42 for outputting torque.
  • Using two stators 41 to drive one rotor 42 can increase the driving force or maintain a smaller cross-sectional area while ensuring a certain driving force. Compared with two short and thin motors connected in parallel, it can achieve the advantages of smaller length and smaller occupied volume.
  • the first motor 40 is a single-stator single-rotor motor, including a stator 41 and a rotor 42 .
  • the stator 41 corresponds to the rotor 42 and is used to drive the rotor 42 to rotate.
  • the output shaft 43 of the first motor 40 is connected to the rotor 42 for outputting torque.
  • the first motor 40 is shorter and thicker.
  • the first motor 40 is a single-stator dual-rotor motor, including one stator 41 and two rotors 42.
  • the stator 41 and the two rotors 42 correspond to each other and are used to drive the two rotors 42 to rotate.
  • the output shaft 43 of the first motor 40 is connected to the rotor 42 for outputting torque.
  • Using two stators 41 to drive one rotor 42 can increase the driving force or maintain a smaller cross-sectional area while ensuring a certain driving force.
  • the first motor 40 is a dual-stator dual-rotor motor, including two stators 41 and two rotors 42.
  • the two stators 41 correspond to the two rotors 42 and are used to drive the rotors 42 respectively. Turn.
  • the output shaft 43 of the first motor 40 is connected to the rotor 42 for outputting torque.
  • the first motor 40 uses a combination of two stators 41 and two rotors 42 to increase the driving force or maintain a smaller cross-sectional area while ensuring a certain driving force.
  • the section of the first motor 40 perpendicular to the direction of the output shaft 43 is defined as a cross section.
  • the power output shaft of the first motor 40 is coaxial with the power shaft of the propeller 50
  • the cross section of the first motor 40 is smaller than that of the first motor 40 in the embodiment of FIG. 3 .
  • cross-section by increasing the number of stators 41 or increasing the number of rotors 42 in the direction parallel to the power output shaft 43, or increasing the number of both stators 41 and rotors 42, in order to achieve a reduced cross-section of the first motor 40, The power can still be maintained without being reduced, and the power can even be increased.
  • the water resistance of the first motor 40 to the propeller 50 is reduced, but the power will not be reduced, and can even be increased, and since the practice of increasing the length of a single stator and a single rotor is avoided, the first requirement is satisfied.
  • the motor 40 is easy to produce and has high manufacturing yield requirements.
  • the embodiments of the present application are not limited to the layout of the first motor 40 in the embodiment of FIGS. 2, 4, and 5 according to the coaxial structure of the power output shaft and the propeller propeller 50, that is, FIG. 2, FIG. 4.
  • the power output shaft of the first motor 40 in the embodiment of Figure 5 can also be the power shaft of the vertical propeller 50, or the power shaft of the propeller 50 can be parallel but staggered to the power axis of the propeller 50, which also belongs to the implementation of this application. Way.
  • the first motor 40 of FIG. 3 when comparing the first motor 40 in the embodiment of FIG. 3 with the first motor 40 in the embodiments of FIGS. 2, 4, and 5, while keeping the power of the two the same, the first motor 40 of FIG. 3
  • the cross section of the first motor 40 of the embodiment is larger than that of the first motor 40 of the embodiment of FIGS. 2 , 4 , and 5 .
  • the output shaft 43 of the first motor 40 can be coaxially arranged with the power shaft of the propeller 50 . Then, the water resistance of the first motor 40 to the propeller 50 is compared with that of FIGS. 2 and 4 .
  • the embodiment of Figure 5 will be enlarged.
  • the first motor 40 In this structural form, although the propulsion efficiency of the propeller 50 is reduced by the first motor 40, the first motor 40 still meets the requirements for thermal coupling with the bottom shell 30, and the first motor 40 can still be realized through the bottom shell 30. Good cooling and heat dissipation, so the embodiments in this structural form also belong to the embodiments of the present application.
  • the first motor 40 is not limited to the above arrangement in which the output shaft 43 is coaxial with the power shaft of the propeller 50 .
  • the output shaft 43 of the first motor 40 can also be coaxial with the propeller 50 .
  • the power axis is vertical, or parallel but staggered to the power axis of the propeller 50, so as to reduce the water resistance of the first motor 40 to the propeller 50 and improve propulsion efficiency.
  • the position of the first motor 40 is not limited to the methods listed above. Any position that can satisfy the thermal coupling between the first motor 40 and the bottom shell 30 can be used.
  • the first motor 40 can be connected to the external water through the bottom shell 30 .
  • the structural forms of heat exchange and heat dissipation all belong to the embodiments of this application.
  • the embodiments of the present application are not limited to the above-mentioned embodiments.
  • the structural form in which the stator 41 of the first motor 40 is arranged on the outer periphery of the rotor 42 and the structural form in which the rotor 42 of the first motor 40 is arranged on the outer periphery of the stator 41 also belongs to this application. Implementation of the application.
  • the first motor 40 is located on the side of the water pressure plate 70 away from the frame 10 .
  • the first motor 40 is basically located at the part of the bottom case 30 that is immersed in the water, and can directly conduct the generated heat to the water through the part of the bottom case 30 that contacts the water body, and the heat dissipation efficiency is high.
  • the first motor 40 may be disposed horizontally (that is, disposed along the second direction X in the figure) and coaxially connected with the propeller 50 .
  • the front end surface P1 of the first motor 40 is closely connected to the surface of the bottom shell 30 close to the propeller 50 .
  • the contact between the front end surface P1 of the first motor 40 and the bottom case 30 facilitates the conduction of heat from the first motor 40 to the bottom case 30 .
  • a thermally conductive structure 46 such as thermally conductive silica gel can be filled between the front end surface P1 of the first motor 40 and the bottom case 30 to improve the thermal conductivity of both.
  • the propeller paddle 50 is rotatably engaged with the bottom housing 30 , and the output shaft 43 of the first motor 40 is connected to the propeller paddle 50 for driving the propeller paddle 50 to rotate.
  • the first motor 40 corresponds to the propeller 50 in the horizontal direction, which will cause certain obstruction to the propeller 50.
  • the first motor in the form of a double stator and double rotors, a double stator and a single rotor, or a single stator and a double rotor is used, 40, it is possible to make the first motor 40 have a smaller cross-sectional area while ensuring the required driving force, thereby reducing the obstruction of the propeller 50 by the first motor 40, and satisfying the requirements that the first motor 40 is easy to manufacture and has good production quality. High rate requirements.
  • the first motor 40 and the propeller 50 can also be staggered to reduce the obstruction of the propeller 50 by the first motor 40 , that is, by reducing the obstruction of the propelling water flow by the first motor 40 to the propeller 50 area, thereby reducing the water resistance of the first motor 40 to the propeller 50.
  • the mechanism 80 (such as the bevel gear pair 801) realizes the transmission of the 90-degree rotation angle.
  • the bevel gear pair 801 mentioned here includes a first bevel gear 81 and a second bevel gear 82 .
  • the first bevel gear 81 is connected to the output shaft 43 of the first motor 40
  • the second bevel gear 82 is connected to the propeller 50 .
  • the first bevel gear 81 and the second bevel gear 82 may be in constant ratio transmission, or may be reduction transmission or speed-increasing transmission.
  • the first motor 40 is arranged vertically, and the stator 41 and the rotor 42 of the first motor 40 are received in the internal space Q2.
  • a thermal conductive structure 46 is provided between the stator 41 and the rotor 42 and the inner wall of the bottom case 30 to achieve thermal coupling with the bottom case 30 .
  • the thermal conductive structure 46 is thermally conductive oil soaked in the first motor 40 , that is, both the stator 41 and the rotor 42 are in contact with the thermal conductive structure 46 .
  • the thermally conductive structure 46 is injected into the internal space Q2 defined by the bottom case 30, thereby achieving thermal coupling between the first motor 40 and the bottom case 30.
  • the thermal conductive structure 46 can transfer the heat of the first motor 40 to the bottom case 30 to dissipate and cool the first motor 40; on the other hand, the thermal conductive structure 46 has an insulating and lubricating effect, thereby ensuring that the stator 41 and the rotor 42 are insulated. environment, and the lubrication of the stator 41, the rotor 42 and the output shaft 43 reduces the internal rotation resistance of the first motor 40.
  • the first motor 40 also includes an oil throwing structure fixed on the output shaft 43. The oil throwing structure is housed in the internal space Q2 and is used to throw the heat transfer oil around the first motor 40 and eventually contact the first motor evenly.
  • the thermal conductive structure 46 may also be thermally conductive silica gel disposed between the stator 41 and the bottom case 30 , or thermally conductive cotton disposed between the stator 41 and the bottom case 30 , or disposed on the stator 41 Thermal conductive metal between the bottom case 30 and the bottom case 30 .
  • the transmission mechanism 80 between the output shaft 43 of the first motor 40 and the propeller 50 may also include a speed change assembly 802 .
  • the transmission assembly 802 is composed of a transmission gear set, and the transmission assembly 802 includes a first gear 83 , a second gear 84 , a third gear 85 and a fourth gear 86 .
  • the output shaft 43 of the first motor 40 is connected to the first gear 83.
  • the first gear 83 meshes with the second gear 84.
  • the second gear 84 and the third gear 85 are fixedly connected to each other to rotate at the same speed.
  • the third gear 85 meshes with the fourth gear.
  • the gear 86, the propeller 50 and the fourth gear 86 are fixed to each other and rotate at the same speed.
  • the speed change component is a reduction mechanism, and the first motor 40 reduces the output speed and increases the output torque of the propeller 50 .
  • the transmission assembly 802 can be integrally integrated with the first motor 40 . That is, the first motor 40 is a reduction motor with a reduction mechanism.
  • the transmission mechanism 80 (such as the transmission assembly 802 and the bevel gear pair 801) in this embodiment can be integrated into the bottom case 30 to dissipate heat together with the first motor 40, reducing the requirement for additional heat dissipation structures.
  • the first motor 40, transmission mechanism 80 and other structures are integrated with the underwater part (including the bottom shell 30), which can also reduce the use of shell materials and reduce resource waste.
  • the integrated arrangement of the first motor 40 and the transmission assembly 802 can also reduce the underwater water resistance.
  • the integration of the propeller 50 and the transmission assembly 802 can also reduce the number of bearings required.
  • the speed change assembly 802 is arranged in the underwater part of the propeller 100. The noise is isolated by the water, and the sound becomes smaller, which has less impact on the user.
  • the first motor 40 , the transmission assembly 802 and the propeller 50 are coaxially arranged.
  • the part of the transmission assembly 802 located in the axial direction of the output shaft 43 is defined as the motor shielding part.
  • the transmission assembly 802 may partially constitute the motor shielding part, or the entirety thereof may constitute the motor shielding part.
  • the cross-sectional area of the motor shielding part of the transmission assembly 802 in the direction of the vertical output shaft 43 is smaller than the cross-sectional area of the first motor 40 in the direction of the vertical output shaft 43, so that the transmission assembly 802 will not increase the water blocking surface of the propeller 50, This makes the transmission assembly 802 and the first motor 40 as a whole less blocking the propeller 50, ensuring that the propeller 100 reduces underwater resistance, and the thrust of the propeller 50 and the gear axial force of the transmission assembly 802 are offset, which can also improve Bearing service life.
  • bevel gear pair 801 and the transmission assembly 802 in the transmission mechanism 80 can be disposed as needed (as shown in Figure 6), only one of them can be provided (as shown in Figure 7 or Figure 8), or both can be connected in series. between the first motor 40 and the propeller 50 (as shown in Figure 9).
  • the transmission mechanism 80 may also be in other forms, such as belt transmission, chain transmission, etc., which will not be described again here.
  • the first motor 40 is located under the pressure water plate 70 (away from the frame 10 ). In other embodiments, the first motor 40 may be partially or entirely located above the pressure water plate 70 ( Close to the side of the rack 10).
  • the internal space Q2 of the bottom shell 30 includes a first space Q3 and a second space Q4 that are connected along the first direction Z.
  • the first space Q3 is located on the side of the pressure water plate 70 away from the frame 10
  • the second space Q3 is located on the side of the pressure water plate 70 away from the frame 10
  • the space Q4 is located on the side of the pressure water plate 70 close to the frame 10 .
  • the first motor 40 is entirely accommodated in the second space Q4.
  • the bottom shell 30 is located below the water pressure plate 70 and does not need to accommodate the first motor 40 , which can reduce the water resistance of the propeller 50 .
  • the output shaft 43 of the first motor 40 is perpendicular to the power axis of the propeller 50 , and the first motor 40 is not disposed within the propulsion water flow range of the propeller 50 .
  • the first motor 40 and the propeller 50 The staggering will not block the propelling water flow of the propeller 50, ensuring that the first motor 40 can be cooled and dissipated through the bottom shell 30, while also reducing the water resistance of the propeller 50 and improving the propulsion efficiency.
  • the first motor 40 may also be disposed in the second space Q4 in such a manner that the output shaft 43 is parallel to the power axis of the propeller 50 .
  • the first motor 40 can also be only partially accommodated in the second space Q4, that is, one part is located in the first space Q3 and the other part is located in the second space Q4.
  • the output shaft 43 of the first motor 40 can be connected with the power shaft of the propeller 50. It can be vertical or parallel to the power axis of the propeller 50 .
  • FIG. 10 shows an embodiment in which the first motor 40 is arranged vertically and is drivingly connected to the propeller 50 through a pair of bevel gears 801 .
  • the aforementioned transmission mechanism 80 are also applicable to the embodiment where the first motor 40 is entirely or partially located on the pressure water plate 70 , and will not be described again here.
  • propeller 100 also includes a second electric motor 68 .
  • the second motor 68 may be the same or a different type of motor than the first motor 40 .
  • the second motor 68 is connected to the propeller 50 in series with the first motor 40 .
  • a second motor 68 is further provided between the bevel gear pair 801 and the propeller 50, so that the first motor 40 and the second motor 68
  • power is provided to the propeller 50 in a series manner.
  • This form increases the total propulsion force, and the motor has less impact on the total blocking area of the propeller 50 , especially when the first motor 40 and/or the second motor 68 adopt an elongated motor form (such as the aforementioned dual-rotor dual-stator motor). )hour.
  • the second motor 68 and the first motor 40 may also be connected to the propeller 50 in parallel. That is, the output shaft 43 of the first motor 40 and the output shaft 43 of the second motor 68 are connected to the propeller paddle 50 in parallel to jointly push the propeller paddle 50 to rotate.
  • a second motor 68 connected in series or in parallel can also be added in the transmission path of the first motor 40 and the propeller 50 to increase the propulsion force or improve the reliability of the power.
  • a second motor 68 connected in series or in parallel can also be added in the transmission path of the first motor 40 and the propeller 50 to increase the propulsion force or improve the reliability of the power.
  • the second motor 68 in this embodiment may be disposed outside the internal space Q2 of the bottom case 30 .
  • the second motor 68 can also be disposed in the internal space Q2 of the bottom case 30 similarly to the first motor 40 and be thermally coupled with the bottom case 30 to achieve heat dissipation.
  • the heat dissipation of the first motor 40 and/or the second motor 68 can be achieved in other ways in addition to relying on the heat conduction structure 46 between the motor and the bottom case 30 as mentioned above.
  • the internal space Q2 is equipped with a cooling liquid 67 (such as water or cooling oil), and the first motor 40 is at least partially immersed in the cooling liquid 67 .
  • the heat of the first motor 40 can be quickly transferred to the cooling liquid 67 and further transferred outward through the bottom case 30 .
  • the propeller 100 may also include a cooling system 90.
  • the cooling system 90 includes a pump 91 and a delivery pipe 92.
  • the pump 91 is provided with a liquid inlet K3 and a liquid outlet K4.
  • the liquid inlet K3 is used to pump in the cooling liquid 67
  • the liquid outlet K4 is connected to the delivery pipe 92 for spraying the extracted cooling liquid 67 to the first motor 40 .
  • the movable equipment 300 in the water area in this application may also include an electronic control component 200.
  • the electronic control component 200 is electrically connected to the first motor 40 and used to control the operation of the first motor 40.
  • the electronic control component 200 is a motor control device, and can, for example, control the rotation speed, output power, output torque, etc. of the first motor 40 .
  • the specific control circuit and control method can adopt existing solutions and will not be described in detail here.
  • the electronic control assembly 200 can also be used to control the operation of the second motor 68 .
  • the electronic control assembly 200 can be installed on the hull 310 or on the propeller 100 as a part of the propeller 100.
  • the electronic control component 200 is implemented in the form of a first electronic control component 210 .
  • the first electronic control component 210 is fixedly connected to the frame 10 , and one end of the connecting shaft 20 is connected to the first electronic control component 210 to rotate with the first electronic control component 210 relative to the frame 10 to achieve lifting.
  • the rack 10 is provided with a first support member 63 , and the first electrical control component 210 is fixedly connected to the first support member 63 so that the rack 10 supports the first electrical control component 210 .
  • the first electrical control assembly 210 includes an electrical control bracket 211 and a control circuit board 212 .
  • the electronic control bracket 211 is fixedly connected to the first support member 63 .
  • the control circuit board 212 is fixed on the electric control bracket 211 and is electrically connected to the first motor 40 to control the operation of the first motor 40 .
  • the first electric control assembly 210 also includes an electric control housing 213, and the electric control housing 213 is fixedly connected to the electric control bracket 211.
  • the electric control bracket 211 and the control circuit board 212 are located in the electric control housing 213 .
  • the rack 10 includes a first structural part 11 and a second structural part 12.
  • the first structural part 11 extends generally along the first direction Z
  • the second structural part 12 is connected to the first structural part 11 away from the bottom case 30
  • One end extends toward the side away from the electronic control bracket 211 .
  • the first support member 63 is fixed at the intersection of the first structural part 11 and the second structural part 12 .
  • the connecting shaft 20 is rotatably connected to the electronic control bracket 211, and the rotation axis Z1 is the central axis of the connecting shaft 20, which is used to drive the propeller propeller 50 to turn.
  • One end of the connecting shaft 20 is rotatably connected to the electronic control bracket 211, and the other end is fixedly connected to the bottom case 30.
  • a steering motor 214 is provided on the electronic control bracket 211, and a steering transmission mechanism 215 connecting the steering motor 214 and the connecting shaft 20 is provided.
  • the steering transmission mechanism 215 transmits the rotational torque of the steering motor 214 to the connecting shaft 20 so that the connecting shaft 20 can rotate relative to the electronic control bracket 211 .
  • the steering transmission mechanism 215 can be a screw ball transmission structure, a worm gear transmission structure, a planetary gear transmission structure, a gear set transmission structure, and other structural forms.
  • the steering transmission mechanism 215 is not limited to the above listed forms, and can be any type.
  • the transmission structures that convert the rotational torque of the steering motor 214 into the rotational torque of the connecting shaft 20 belong to the embodiments of the steering transmission mechanism 215 of the present application.
  • the propeller 100 also includes a clamp 61 and a tilting driver 62.
  • the clamp 61 is used to be fixed to the hull 310, for example, connected to the tail of the hull 310.
  • the frame 10 is rotatably connected to the clamp 61 to drive the electric motor.
  • the control bracket 211 is tilted relative to the clamp 61 .
  • the rotation axis of the rotation connection clamp 61 of the frame 10 is perpendicular to the axis of the connection shaft 20 .
  • the tilting driver 62 is transmission connected between the clamp 61 and the frame 10, and is used to push the frame 10 and thereby drive the propeller 50 to tilt.
  • the clamp 61 may be fixedly connected to the hull 310 by welding or threaded connection, or may be integrally arranged with the hull 310 .
  • the frame 10 can be rotationally connected to the clamp 61 through a rotating shaft, a rotating pin, or a hinge.
  • the lifting driver 62 may be an electric push rod, a hydraulic cylinder, a pneumatic cylinder, an electro-hydraulic power cylinder or other equipment capable of outputting power.
  • the lifting driver 62 is an electric push rod, one end of it is installed on the clamp 61, and the other end is a telescopic end.
  • the telescopic end is connected to the frame 10, and by telescopic, the electric push rod can push the frame 10, the first
  • the electric control assembly 210 rotates relative to the clamp 61 so that the connecting shaft 20 connected to the first electric control assembly 210 and the propeller 50 connected to the connecting shaft 20 rotate and tilt.
  • the propeller 100 further includes a connection housing 31 .
  • the connecting housing 31 surrounds the outer periphery of the connecting shaft 20 and is connected between the bottom housing 30 and the electric control housing 213 .
  • the connecting shell 31 is fixedly connected to the bottom shell 30 and can rotate with the bottom shell 30 relative to the electronic control shell 213 .
  • the connecting shell 31 can be made of aluminum, which is lightweight and has good corrosion resistance. Therefore, the connecting shell 31 is fixed to the bottom shell 30 to reduce the load on the connecting shaft 20 . It can be understood that, in order to further reduce the load weight on the connecting shaft 20, the bottom case 30 can also be made of aluminum.
  • FIGS. 6 to 12 can be used in the structure of the propeller 100 shown in FIG. 14 , and will not be described again here.
  • the pushback force of the propeller 50 due to the water flow is transmitted to the first electronic control component 210 through the first motor 40 and the connecting shaft 20 , and the first electronic control component 210 then transmits the pushback force to the frame 10 , the first electronic control component 210 is responsible for transmitting the reverse thrust force of the propeller 50 to the frame 10, thereby eliminating the need for the thrust force of the connecting shaft 20, reducing the structural performance requirements of the connecting shaft 20, and reducing manufacturing costs. cost, and the connecting shell 31 can be arranged around the connecting shaft 20 to protect the connecting shaft 20.
  • the connecting shell 31 has anti-corrosion properties, reduces weight and has better protection performance. And the use of aluminum structure instead of steel parts reduces the impact of electrochemical corrosion.
  • a shock-absorbing suspension is provided on the first support member 63 , and the shock-absorbing force on the first support member 63 is used.
  • the suspension absorbs the vibration force and prevents the electronic control bracket 211 from transmitting the vibration force of the first motor 40 to the frame 10 , thereby preventing the vibration force of the first motor 40 from being transmitted to the hull 310 .
  • the second electronic control assembly 220 includes a first electronic control subsection 221 and a second electronic control subsection 222.
  • the first electronic control subsection 221 and the second electronic control subsection 222 are spaced apart from each other and can The first motor 40 is controlled to operate.
  • the second electronic control component 220 is arranged separately, so that the size of a single electronic control subsection (such as the first electronic control subsection 221 or the second electronic control subsection 222) is smaller, which facilitates the utilization of smaller space. , optimizing the structural layout to further reduce the overall volume of the thruster 100, thereby reducing components and improving user experience.
  • the second electronic control component 220 provided separately can easily obtain a larger specific surface area, thereby facilitating heat dissipation.
  • the frame 10 is provided with a first support member 63 and a second support member 64, and the first support member 63 and the second support member 64 are spaced apart along the first direction Z.
  • One end of the connecting shaft 20 is rotatably connected to the first supporting member 63 and the second supporting member 64, and the connecting shaft 20 is spaced apart from the frame 10, and defines the interval between the first supporting member 63 and the second supporting member 64.
  • the first electronic control part 221 is accommodated in the space Q5.
  • the separation space Q5 can be fully utilized.
  • the separate arrangement also avoids the problem that the partition space Q5 cannot accommodate the second electronic control component 220 with a larger overall size.
  • the first electronic control part 221 is fixed on the surface of the frame 10 close to the connecting shaft 20 .
  • the first electronic control part 221 can also be fixedly connected to the connecting shaft 20 as needed.
  • the second electronic control part 222 is located on the side of the connecting shaft 20 away from the frame 10 and is fixed between the first support member 63 and the second support member 64 .
  • a mounting plate 69 is connected between the first support member 63 and the second support member 64 .
  • the mounting plate 69 is located on the side of the connecting shaft 20 away from the frame 10 .
  • the second electric control part 222 is fixed to the mounting plate 69 .
  • the second electronic control part 222 can also be fixedly connected to the connecting shaft 20 as needed.
  • the connecting shaft 20 is provided with a shaft hole K1 extending along the first direction Z; the connecting shaft 20 is provided with an opening K2, and the opening K2 communicates with the shaft hole K1; the connecting shaft 20 is connected to the bottom shell 30, and the shaft hole K1 is connected to the internal space Q2 of the bottom case 30, and the first electronic control part 221 and the second electronic control part 222 outside the connecting shaft 20 are routed to the first electrical connection through the opening K2, the shaft hole K1, and the internal space Q2.
  • Motor 40 The wiring diagram specifically used to electrically connect each electronic control section and the first motor 40 is not shown in the diagram.
  • the hull 310 is provided with a clamp 61 and a tilting driver 62.
  • the frame 10 is rotatably connected to the clamp 61.
  • the tilting driver 62 is drivingly connected to the frame 10 for driving the frame 10. and the propeller propeller 50 connected to the frame 10 is raised.
  • the clamp 61 may be fixedly connected to the hull 310 by welding or threaded connection, or may be integrally arranged with the hull 310 .
  • the frame 10 can be rotatably connected to the clamp 61 through the rotating shaft member 66 .
  • the lifting driver 62 may be an electric push rod, a hydraulic cylinder, an air cylinder or other equipment capable of outputting power.
  • the lifting driver 62 is an electric push rod
  • one end is installed on the clamp 61, and the other end is a telescopic end.
  • the telescopic end is connected to the frame 10, and by telescopically, the electric push rod can drive the frame 10 relative to the clamp 61.
  • Rotation causes other structures connected to the frame 10 (including the connecting shaft 20, the bottom shell 30, the propeller 50, etc.) to rotate and warp.
  • the connecting shaft 20 has a hollow structure and defines an axis hole K1 extending along the first direction Z.
  • the first electronic control part 221 and the second electronic control part 222 are elongated. And distributed in the axis hole K1 along the first direction Z.
  • the connecting shaft 20 is connected to the bottom housing 30
  • the shaft hole K1 is connected to the internal space Q2 of the bottom housing 30 .
  • the first electric control part 221 and/or the second electric control part 222 are routed to the first motor 40 through the shaft hole K1 and the internal space Q2.
  • the first electronic control part 221 and the second electronic control part 222 are arranged in the shaft hole K1. There is no need to open the opening K2 on the connecting shaft 20, so that the connection between the electric control part and the first motor 40 can be realized. electrical connection between.
  • the first electronic control part 221 is provided with a power board 223
  • the second electronic control part 222 is provided with a control board 224 .
  • the control board 224 is electrically connected to the power board 223, and the power board 223 is electrically connected to the first motor 40; the control board 224 controls the operation of the first motor 40 through the power board 223.
  • the split form of the second electronic control component 220 is a split between the power board 223 and the control board 224. By splitting the two, a first electrical control component 220 whose size is smaller than that of the integrated second electronic control component 220 can be obtained. control sub-section 221 and the second electronic control sub-section 222.
  • the first motor 40 is provided with dual rotors and/or dual stators (as described above, the first motor 40 adopts a dual-stator dual-rotor motor, a dual-stator single-rotor motor, or a single-stator dual-stator motor.
  • Rotor motor the first electric control part 221 is provided with a first power board 225
  • the second electric control part 222 is provided with a second power board 226,
  • the first power board 225 is electrically connected to one of the rotors 42 or
  • the stator 41 and the second power board 226 are electrically connected to the other rotor 42 or the stator 41 of the first motor 40 .
  • the split form of the second electronic control component 220 is a split form of the power board 223, which can also obtain smaller first electronic control subdivisions 221 and second electronic control subdivisions 222, which facilitates the use of smaller space.
  • the first electronic control section 221 is also provided with a control board 224, which is electrically connected to the first power board 225 and the second power board 226 to control the first power board 225 and the second power board 226.
  • a motor 40 operates with dual rotors and/or dual stators (for example, the first motor 40 described above adopts a dual-stator dual-rotor motor, a dual-stator single-rotor motor, or a single-stator dual-rotor motor).
  • the second electronic control section 222 may also be provided with a control board 224 , and the control board 224 is electrically connected to the first power board 225 and the second power board 226 .
  • the first electric control part 221 is electrically connected to the first motor 40 to drive the first motor 40 to run; the second electric control part 222 The second motor 68 is electrically connected to drive the second motor 68 to run.
  • the first electronic control subsection 221 and the second electronic control subsection 222 are used to control the first motor 40 and the second motor 68 respectively.
  • FIGS. 6 to 12 can be used in the structure of the propeller 100 shown in FIG. 15 or 16 , and will not be described again here.
  • the first electronic control part 221 and the second electronic control part 222 are relatively fixed to the frame 10 and do not rotate with the connecting shaft 20.
  • the propeller 50 and the connecting shaft 20 may not be rotated by the connecting shaft 20. It can rotate 360° within limits, improving the maneuverability of movable equipment in water areas.
  • the length and quantity of the wires can be reduced.
  • first electronic control part 221 and the second electronic control part 222 are not limited to the above-mentioned structural forms. Any structure in which a complete second electronic control component 220 is divided into multiple electronic control parts is applicable. Belongs to the implementation of this application.
  • the second electronic control assembly 220 can also be split into three, four or more electronic control subsections, and the multiple electronic control subsections can be arranged in any space that can be placed on the thruster 100. In order to make full use of the structural space of the propeller 100, the volume of the propeller 100 is reduced.
  • the electronic control component 200 is implemented in the form of a third electronic control component 230, and the third electronic control component 230 is disposed in the pressurized water Plate 70.
  • the propeller 100 includes a pressure water plate 70, which is connected to the bottom shell 30; the propulsion paddle 50 is located on the side of the pressure water plate 70 away from the frame 10, and the third electronic control component 230 is provided On the pressure water plate 70.
  • the third electronic control component 230 and the pressure water plate 70 are thermally coupled, for example, the heating component or heat dissipation component (if any) of the third electronic control component 230 is thermally conductively attached to the pressure water plate 70 .
  • the third electronic control component 230 By disposing the third electronic control component 230 on the pressurized water plate 70 and thermally coupling it, the heat generated by the third electronic control component 230 during operation can be conducted to the water body through the pressurized water plate 70 , reducing the amount of heat generated by the third electronic control component 230 Requirements for laying out additional cooling systems.
  • the third electronic control component 230 includes a shell 231 and a control circuit board 232.
  • the shell 231 is connected to the pressure water plate 70.
  • the shell 231 and the pressure water plate 70 together form an installation space Q6.
  • the control circuit board 232 It is accommodated in the installation space Q6 and fixed with the shell part 231 or the pressure water plate 70 .
  • the shell part 231 may separately enclose the installation space Q6.
  • an installation space Q6 may also be provided inside the pressure water plate 70 , and the third electronic control component 230 is accommodated in the installation space Q6 .
  • the third electronic control assembly 230 is located on the side of the pressure plate 70 away from the propeller 50 so as to keep the third electronic control assembly 230 on the water surface L1 and reduce its waterproof requirement.
  • the third electronic control component 230 can also be disposed on the side of the pressure water plate 70 close to the propeller 50. At this time, the third electronic control component 230 may be immersed in water, which can obtain better heat dissipation performance.
  • the board surface of the control circuit board 232 is parallel to the board surface of the pressure water plate 70 to adapt to the horizontally arranged pressure water plate 70 and increase the contact area between the control circuit board 232 and the pressure water plate 70 .
  • first support member 63 and the second support member 64 are connected to the frame 10 , and the first support member 63 and the second support member 64 are opposite to each other along the first direction Z.
  • one end of the connecting shaft 20 is rotationally connected to the first support member 63 and the second support member 64, and its rotation axis Z1 is along the first direction Z.
  • the hull 310 is provided with a clamp 61 and a tilting driver 62 , the frame 10 is rotatably connected to the clamp 61 , and the tilting driver 62 is drivingly connected to the frame 10 .
  • the driving frame 10 and the propeller 50 connected to the frame 10 are tilted.
  • FIGS. 6 to 12 can be used in the structure of the propeller 100 shown in FIG. 20 , and will not be described again here.
  • the third electronic control component 230 is provided on the pressure water plate 70, which can directly dissipate heat underwater, eliminating the need for additional heat dissipation structure design, making the overall volume of the thruster 100 smaller and with higher heat dissipation efficiency. Moreover, since the third electronic control component 230 is disposed on the water pressure plate 70 , the distance between the third electronic control component 230 and the first motor 40 is shorter, which facilitates wiring between the two and ensures that the third electronic control component 230 and the first motor 40 are easily connected. The reliability of the connection between them is improved, and the wiring length, wiring weight and cost are reduced. The third electronic control component 230 is disposed at the pressure water plate 70 , which simplifies the arrangement of the top space of the propeller 100 and makes the propeller 100 more adaptable.
  • the integration of the third electronic control component 230 and the structure of the pressure water plate 70 can also enhance the strength of the pressure water plate 70 .
  • the third electronic control component 230 and the first motor 40 are far away from the hull, and the noise generated can be reflected by the rack 10 to the rear of the movable equipment 300 in the water area, which has less impact on the user.
  • the electronic control component 200 is implemented in the form of a fourth electronic control component 240.
  • the fourth electronic control component 240 and the first The motors 40 are arranged in the internal space Q2 of the bottom case 30 .
  • the fourth electronic control component 240 is disposed in the internal space Q2.
  • the distance between the fourth electrical control component 240 and the first motor 40 is small, the electrical connection wires between the fourth electrical control component 240 and the first motor 40 are convenient to set, and it is conducive to the centralized arrangement of the heat dissipation structure.
  • the cooling system 90 can be used to cool the first motor 40 and the fourth electronic control component 240 at the same time.
  • the fourth electronic control assembly 240 and the first motor 40 are arranged sequentially along the first direction Z.
  • the fourth electronic control component 240 is generally elongated with its length direction along the horizontal direction (second direction X), and the axis of the first motor 40 is also along the second direction X.
  • the fourth electronic control component 240 is overlapped and connected to the first On motor 40.
  • the second direction X is perpendicular to the first direction Z.
  • the fourth electronic control assembly 240 and the first motor 40 are sequentially arranged along the first direction Z.
  • the fourth electronic control component 240 is generally in an elongated shape with its length direction along the first direction Z, and the axis of the first motor 40 is also along the first direction Z.
  • the bottom shell 30 extends above the pressure water plate 70 and has a first space Q3 located below the pressure water plate 70 and a second space Q4 located above the pressure water plate 70.
  • the first motor 40 is arranged in the first space Q3, and the fourth space Q4 is located above the pressure water plate 70.
  • the electronic control component 240 is arranged in the second space Q4. In this embodiment, the first motor 40 and the fourth electronic control component 240 are arranged adjacent to each other, which facilitates wire connection between the two and facilitates heat dissipation.
  • the fourth electronic control component 240 and the first motor 40 may also be arranged sequentially along the second direction X.
  • the fourth electronic control component 240 is generally elongated with its length direction along the first direction Z, and the axis of the first motor 40 is also along the first direction Z.
  • the bottom shell 30 extends above the pressure water plate 70 , and the first motor 40 and the fourth electronic control component 240 are arranged side by side in the first space Q3 on the side of the pressure water plate 70 close to the frame 10 .
  • first support member 63 and the second support member 64 are connected to the frame 10 , and the first support member 63 and the second support member 64 are opposite to each other along the first direction Z.
  • one end of the connecting shaft 20 is rotationally connected to the first support member 63 and the second support member 64, and its rotation axis Z1 is along the first direction Z.
  • the hull 310 is provided with a clamp 61 and a tilting driver 62 , the frame 10 is rotatably connected to the clamp 61 , and the tilting driver 62 is drivingly connected to the frame 10 .
  • the driving frame 10 and the propeller 50 connected to the frame 10 are tilted.
  • the fourth electronic control component 240 and the first motor 40 are disposed in the internal space of the bottom shell 30, which can directly dissipate heat underwater, eliminating the need for additional heat dissipation structure design, making the overall volume of the thruster 100 smaller. Heat dissipation is more efficient. Moreover, since the fourth electronic control component 240 is disposed in the internal space, the distance between the fourth electronic control component 240 and the first motor 40 is shorter, which facilitates wiring between the two and easily ensures the connection between the fourth electronic control component 240 and the first motor 40 The reliability of the wiring and the reduction of wiring length, wiring weight and cost, and the fourth electronic control component 240 and the first motor 40 are both located underwater, only 4 cables are needed to extend from the underwater to the machine on the water.
  • the fourth electronic control component 240 is arranged in the internal space, which simplifies the arrangement of the top space of the thruster 100 and makes the thruster 100 more adaptable.
  • the fourth electronic control component 240 and the first motor 40 are far away from the hull, and the noise generated can be reflected by the rack 10 to the rear of the movable equipment 300 in the water area, which has less impact on the user.
  • FIG. 24 and 25 The embodiment shown in Figures 24 and 25 is roughly the same as the embodiment of Figure 23, except that the electronic control component 200 is implemented in the form of a fifth electronic control component 250, and the fifth electronic control component 250 is installed on the connecting shaft. 20, and will move together with the connecting shaft 20.
  • a first support member 63 and a second support member 64 are connected to the frame 10.
  • the first support member 63 and the second support member 64 are spaced apart along the first direction Z.
  • One end of the connecting shaft 20 rotates.
  • the fifth electronic control assembly 250 is fixed relative to the connecting shaft 20 and can rotate relative to the frame 10 along with the connecting shaft 20 .
  • one end of the connecting shaft 20 is located on one side of the frame 10 along the second direction X, and the second direction 63 and the second support member 64.
  • the fifth electronic control component 250 is located between the first support member 63 and the second support member 64 and is partially accommodated in the separation space Q5.
  • the fifth electric control assembly 250 is provided with an electric control housing 251, a control board 252 and a power board 253.
  • the electric control housing 251 is fixed on the connecting shaft 20, and the control board 252 and the power board 253 are fixed on the electric control housing.
  • the control board 252 is electrically connected to the power board 253, and the power board 253 is electrically connected to the first motor 40; the control board 252 controls the operation of the first motor 40 through the power board 253.
  • the connecting shaft 20 has a hollow structure and defines a shaft hole K1 extending along the first direction Z; the connecting shaft 20 is provided with an opening K2, and the opening K2 communicates with the shaft hole K1; the connecting shaft 20 is connected to the bottom shell 30 , and the shaft hole K1 is connected to the internal space Q2 of the bottom case 30 .
  • the fifth electric control component 250 can be electrically connected to the first motor 40 through the opening K2, the shaft hole K1, and the internal space Q2.
  • the connecting shaft 20 has a hollow structure and defines a shaft hole K1 extending along the first direction Z
  • the fifth electronic control component 250 is configured to extend along the first direction Z. It is long in shape and installed in the shaft hole K1.
  • the fifth electronic control component 250 includes a first electronic control part 221 and a second electronic control part 222 , and both the first electronic control part 221 and the second electronic control part 221 They are elongated and arranged in the shaft hole K1 at intervals along the first direction Z.
  • the method of splitting the fifth electronic control component 250 can be found in the previous relevant contents, and will not be described in detail here.
  • the fifth electronic control component 250 rotates together with the connecting shaft 20 and can achieve 360° rotation.
  • the wires connecting the fifth electronic control component 250 to the first motor 40 do not twist.
  • the fifth electronic control assembly 250 is arranged in an elongated shape or is split into two, which can reduce the width of the propeller.
  • FIG. 26 is roughly the same as the embodiment of FIG. 24 , except that the electronic control component 200 is implemented in the form of a sixth electronic control component 260 , and the sixth electronic control component 260 is relatively fixed to the frame 10 .
  • the sixth electronic control assembly 260 is fixedly connected to the frame 10. Specifically, the frame 10 is connected to a first support member 63 and a second support member 64. The first support member 63 and the second support member 64 are connected to the frame 10. The elements 64 are spaced apart along the first direction Z. One end of the connecting shaft 20 is rotationally connected to the first support member 63 and the second support member 64, and its rotation axis Z1 is along the first direction Z.
  • the sixth electrical control component 260 is fixedly connected between the first support member 63 and the second support member 64 .
  • the sixth electronic control assembly 260 is fixedly connected to the frame 10 through the first support member 63 and the second support member 64 to be relatively fixed to the frame 10 , so that when the propeller propeller 50 turns, no need to
  • the sixth electronic control component 260 is driven to rotate together, which reduces the rotation load, and the electrical connection wire between the battery component 311 and the sixth electronic control component 260 is convenient to set up, and the wire does not restrict the connection shaft 20 relative to the first support member. 63 and the rotation of the second support member 64, so that the connecting shaft 20 and the propeller 50 can maintain a larger steering angle.
  • the wiring between the electronic control component and the battery component will not swing when the propeller 50 turns, which reduces the problem of the hull space being reduced due to the swing of the wiring, and the user has less space for activities in the hull. big.
  • the sixth electronic control component 260 can also be directly installed on the frame 10 or installed on the hull 310 .
  • FIGS. 6 to 12 can be used in the structure of the propeller 100 shown in FIG. 26 , and will not be described again here.
  • the sixth electronic control assembly 260 is relatively fixed to the frame 10 , and the connecting shaft 20 , propeller 50 and other structures can rotate independently without driving the sixth electric control assembly 260 to rotate together, thereby reducing the rotation load.
  • the specific structures of the first support member 63 and the second support member 64 in each embodiment shown in FIGS. 15-26 can be set as needed.
  • the connecting shaft 20 is rotationally connected to the first support member 63 and the second support member 64, so that the connecting shaft 20 can drive the bottom shell 30 to rotate relative to the frame 10, thereby realizing the propeller 100 to advance and turn.
  • the second support member 64 has a second bearing 642 .
  • the connecting shaft 20 rotates with the first bearing 632 and the second bearing 642 . Since the connecting shaft 20 only has a rotational torque matching relationship with the first bearing 632 and the second bearing 642, the torque swing of the connecting shaft 20 in the non-axial direction is reduced.
  • a first shock absorber suspension 651 is provided between the first bearing 632 and the first support member 63 to absorb the pulling vibration force, that is, the first shock absorber suspension 651
  • a pre-tightening force is exerted on the connecting shaft 20 to pull in the direction of the hull 310 .
  • a second shock-absorbing suspension 652 is provided between the second bearing 642 and the second support member 64 to absorb the vibration force. That is, the second shock-absorbing suspension 652 exerts a pre-tightening force on the connecting shaft 20 in a direction away from the hull 310 .
  • a first damping sleeve 631 is provided on the first support member 63 , and the axis of the first damping sleeve 631 is perpendicular to the connecting axis 20 and perpendicular to the second direction X.
  • the first bearing 632 is provided with a first damping shaft 633 that penetrates the first damping sleeve 631.
  • the first damping shaft 633 elastically cooperates with the first damping sleeve 631 to realize the first bearing 632 and the first damping sleeve 631.
  • a first shock absorbing suspension 651 is provided between the supporting members 63 .
  • the second support member 64 is provided with a second shock absorbing sleeve 641.
  • the axis of the second shock absorbing sleeve 641 is parallel to the axis of the shaft 20.
  • the second bearing 642 is provided with a second shock absorbing sleeve 641 passing through it.
  • the damping shaft 643 is used to realize that the second damping suspension 652 is arranged between the second bearing 642 and the second support member 64 .
  • the first shock-absorbing suspension 651 and the second shock-absorbing suspension 652 absorb the first
  • the vibration force of the bearing 632 and the second bearing 642 prevents the first motor 40 from transmitting the vibration force to the frame 10, and uses the first support member 63 to exert a pulling force in the first direction Z on the connecting shaft 20, while the second support The member 64 applies a resisting force in the second direction X to the connecting shaft 20 to prevent the connecting shaft 20 from swinging in a non-axial direction.
  • the connecting shaft 20 can adopt a steel structure with higher strength, so that the connecting shaft 20 has structural reliability.
  • connection manner of the connecting shaft 20 and the bottom case 30 and the connecting manner of the connecting shaft 20 and the first support member 63 and the second support member 64 are not limited to the above-mentioned embodiments.
  • the connecting shaft 20 can be rotationally connected to the bottom case 30 (such as through a bearing 32 ), and the connecting shaft 20 is fixed to the first support member 63 and the second support member 64 .
  • the propeller 100 may also include a main engine bracket 33 fixed to the bottom shell 30 .
  • the host bracket 33 and the bottom case 30 can be integrated or fixed with screws.
  • the electronic control assembly 200 is fixed on the main engine bracket 33.
  • the propeller 100 also includes a steering drive mechanism 34.
  • the steering drive mechanism 34 is fixed on the main engine bracket 33 and applies rotational torque to the connecting shaft 20 to realize the bottom shell 30 and the main engine bracket 33. Rotate relative to the connecting shaft 20 to realize the propulsion and steering of the propeller 100.
  • the water movable equipment 300 and its propeller 100 in the embodiment of the present application can easily realize the lifting of the propeller 50, and the first motor 40 and the electronic control assembly 200 can easily dissipate heat through the bottom shell 30, and the heat dissipation effect is great. better.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

本申请提供推进器及水域可移动设备。其中,推进器用于连接至水域可移动设备的船身以推动水域可移动设备移动,推进器包括机架、连接轴、底壳、第一电机和推进桨。机架用于连接于船身。连接轴沿第一方向延伸;连接轴的一端连接于机架,并能够通过机架相对船身起翘。底壳连接于连接轴远离机架的一端;底壳限定内部空间。第一电机安装于底壳的内部空间,并与底壳热耦合。推进桨传动连接于第一电机,用于产生推动力。本申请的有益效果是第一电机能够通过底壳实现散热,散热效果好,能够简化甚至省略额外的散热系统。

Description

推进器及水域可移动设备 技术领域
本申请涉及船动力推进器技术领域,具体而言,涉及推进器及水域可移动设备。
背景技术
推进器为水域可移动设备的动力装置,用于推动水域可移动设备在水域移动。
一些推进器的发动机设置在机头部分,发动机位于水面上,发动机产生的热量需要通过额外设置的散热系统实现散热,这导致推进器的机头部分结构复杂、体积较大、成本较高。
发明内容
本申请提供减小体积、减少成本的推进器及水域可移动设备。
本申请提供一种推进器,用于连接至一水域可移动设备的船身以推动水域可移动设备移动,所述推进器包括机架、连接轴、底壳、第一电机和推进桨。机架用于连接于所述船身。所述连接轴沿第一方向延伸;所述连接轴的一端连接于所述机架,并能够通过所述机架相对所述船身起翘。所述底壳连接于所述连接轴远离所述机架的一端;所述底壳限定内部空间。第一电机安装于所述底壳的内部空间,并与所述底壳热耦合。推进桨传动连接于所述第一电机,用于产生推动力。
本申请中的推进器运行过程中,在连接轴未起翘时,推进桨可以在第一电机的带动下与水相互作用产生推动水域可移动设备移动的推动力。并且,由于第一电机设置在底壳且与底壳热耦合,第一电机运行过程产生的热量能够通过底壳传递至水中,散热效果好,能够减小对额外设计的散热系统(如额外设计的风冷系统、泵元件抽水冷却系统等)的依赖。在通过底壳的传导散热能够满足散热需要的情形,还可完全省略前述额外设计的散热系统。
本申请实施例中的推进器散热效果较好,能够取消额外设计的散热系统,结构简单、成本较低。
本申请还提供一种水域可移动设备,包括船身和前述的推进器,所述推进器安装于所述船身。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请一实施例的水域可移动设备的使用状态示意图;
图2为本申请实施例中的第一电机的结构示意图;
图3为本申请实施例中的第一电机的另一实施方式的结构示意图;
图4为本申请实施例中的第一电机的另一实施方式的结构示意图;
图5为本申请实施例中的第一电机的另一实施方式的结构示意图;
图6为本申请实施例中的推进器的下部结构的示意图;
图7为本申请实施例中的推进器的下部结构的另一实施方式的示意图;
图8为本申请实施例中的推进器的下部结构的另一实施方式的示意图;
图9为本申请实施例中的推进器的下部结构的另一实施方式的示意图;
图10为本申请实施例中的推进器的下部结构的另一实施方式的示意图;
图11为本申请实施例中的推进器的下部结构的另一实施方式的示意图;
图12为本申请实施例中的推进器的下部结构的另一实施方式的示意图;
图13为本申请实施例中的推进器的另一散热形式的示意图;
图14为本申请实施例中的水域可移动设备的另一实施方式的示意图;
图15为本申请实施例中的水域可移动设备的另一实施方式的示意图;
图16为本申请实施例中的水域可移动设备的另一实施方式的示意图;
图17为图15或图16的水域可移动设备的电控组件控制第一电机的示意图;
图18为图15或图16的水域可移动设备的电控组件控制第一电机的另一实施方式的示意图;
图19为图15或图16的水域可移动设备的电控组件控制第一电机和第二电机的示意图;
图20为本申请实施例中的水域可移动设备的另一实施方式的示意图;
图21为本申请实施例中的水域可移动设备的另一实施方式的示意图;
图22为本申请实施例中的水域可移动设备的另一实施方式的示意图;
图23为本申请实施例中的水域可移动设备的另一实施方式的示意图;
图24为本申请实施例中的水域可移动设备的另一实施方式的示意图;
图25为本申请实施例中的水域可移动设备的另一实施方式的示意图;
图26为本申请实施例中的水域可移动设备的另一实施方式的示意图;
图27为本申请实施例中的机架、第一支撑件、第二支撑件和连接轴的连接关系示意图;
图28为本申请实施例中的水域可移动设备的另一实施方式的示意图。
主要元件符号说明:
水域可移动设备          300
船身                    310
电池组件                311
推进器                  100
机架                    10
第一结构部              11
第二结构部              12
连接轴                  20
底壳                    30
连接外壳                31
轴承                    32
主机支架                33
转向驱动机构            34
第一电机                40
定子                    41
转子                    42
输出轴                  43
导热结构                46
推进桨                  50
夹具                    61
起翘驱动器              62
第一支撑件              63
第一减震套筒            631
第一轴承                632
第一减震轴              633
第二支撑件              64
第二减震套筒            641
第二轴承                642
第二减震轴              643
减震悬置                65
第一减震悬置            651
第二减震悬置            652
转轴件                  66
冷却液                  67
第二电机                68
安装板                  69
压水板                  70
水刀板                  71
传动机构                80
锥齿轮对                801
变速组件                802
第一锥齿轮              81
第二锥齿轮              82
第一齿轮                83
第二齿轮                84
第三齿轮                85
第四齿轮                86
冷却系统                90
泵机                    91
输送管道                92
轴孔                    K1
开孔                    K2
进液口                  K3
出液口                  K4
水面                    L1
前端面                  P1
船身空间                Q1
内部空间                Q2
第一空间                Q3
第二空间                Q4
间隔空间                Q5
安装空间                Q6
第二方向                X
第一方向                Z
转动轴线                Z1
电控组件                200
第一电控组件            210
第二电控组件            220
第三电控组件            230
第四电控组件            240
第五电控组件            250
第六电控组件            260
电控支架                211
控制电路板              212
电控外壳                213
转向电机                214
转向传动机构            215
第一电控分部            221
第二电控分部            222
功率板                  223
控制板                  224
第一功率板              225
第二功率板              226
壳部                    231
控制电路板              232
电控壳体                251
控制板                  252
功率板                  253
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。当一个元件被认为是“设置于”另一个元件,它可以是直接设置在另一个元件上或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。本文所使用的术语“或/及”包括一个或多个相关的所列项目的任意的和所有的组合。
本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施方式及实施方式中的特征可以相互组合。
实施例
参见图1,本实施例提供了一种水域可移动设备300,水域可移动设备300可以是商用船、客船、游艇、渔船、帆船、民船等各类水域交通工具。水域可移动设备300包括船身310和推进器100。
船身310能够提供一定的浮力,使水域可移动设备300能够浮于水面L1,并能够承载人或物。船身310具有船身空间Q1,用于能够容纳人和物或其他结构。船身310的具体结构可以根据需要设置。
推进器100安装于船身310,用于提供推进力,以推动水域可移动设备300在水中移动。
在一些实施方式中,推进器100主要通过电力驱动,此时,水域可移动设备300还包括用于向推进器100供电的电池组件311。电池组件311可以包括若干蓄电池,用于储电和供电给推进器100。可选地,电池组件311采用能够充电的蓄电池。电池组件311可以安装在船身310上,例如设置在船身空间Q1,也可以安装在推进器100的合适位置。
配合参见图1,本实施例中的推进器100包括机架10、连接轴20、底壳30、第一电机40和推进桨50。机架10连接于船身310,连接轴20沿第一方向Z延伸(图1的状态下,第一方向Z为重力方向),连接轴20的一端连接于机架10,并能够通过机架10相对船身310起翘(具体起翘方式和结构后文介绍),底壳30连接于连接轴20远离机架10的一端,底壳30限定内部空间Q2,第一电机40安装于内部空间Q2,并与底壳30热耦合,推进桨50传动连接于第一电机40,用于产生推动力。
其中,前述电池组件311电连接于第一电机40,用于向第一电机40供电。
本申请实施例中的推进器100使用时,在连接轴20未起翘时,推进桨50可以在第一电机40的带动下与水相互作用产生推动水域可移动设备300移动的推动力。并且,由于第一电机40设置在底壳30且与底壳30热耦合,第一电机40运行过程产生的热量能够通过底壳30传递至水中,散热效果好,能够减小对额外设计的散热系统(如额外设计的风冷系统、泵元件抽水冷却系统等)的依赖。在通过底壳30的传导散热能够满足散热需要的情形,还可完全省略前述额外设计的散热系统。
因此,相较于现有技术将第一电机40设置在水上而需要额外配置水冷系统等散热系统的方案,本申请实施例中的推进器100的有益效果为,散热效果较好,散热路径短,或能够简化/取消额外设计的散热系统,散热结构占用空间小、结构简单、成本较低。
此外,相对现有技术,该实施例中第一电机40与推进桨50的相对位置较小,传动路径较短,推进效率较高。并且,第一电机40位于底壳30的内部空间Q2,离船身310上的用户较远,加之底壳30等结构的吸收阻挡,第一电机40产生的噪声对用户影响较小。
本实施例中,底壳30可以为采用铝合金等导热材料制成的壳状结构,其围成的内部空间Q2用于放置第一电机40等结构。第一电机40与底壳30之间可以设有导热结构46,如导热硅胶等。如此,水域可移动设备300在行驶时,底壳30至少部分浸于水中,与水良好接触导热,第一电机40运行时产生的热量能够通过导热结构46传递至底壳30,再通过底壳30传递至水中,实现第一电机40的散热。
本实施例中,推进桨50可以采用螺旋桨,能够受驱转动以推动水域可移动设备300移动。
再次参见图1,在一些实施方式中,推进器100还包括压水板70。压水板70大致为一与重力方向垂直的板状结构。压水板70连接于底壳30,压水板70和底壳30可以为一体铸造成型的结构,也可以为两个单独成型的构件,通过螺纹连接、焊接等方式连接在一起。
本实施方式中,压水板70连接在底壳30较靠上(靠近机架10一侧)的位置,向远离船身310一侧延伸,并位于推进桨50上方。如此,推进桨50位于压水板70远离机架10一侧,其运转时引起的水浪能够被控制在压水板70之下,从而减小水域可移动设备300行驶的兴波阻。
在一些实施例中,压水板70和底壳30之间导热连接,即压水板70与底壳30互传热量。例如,使压水板70和底壳30之间通过相同的导热材料(如铝合金)一体制成,或者通过导热体(如导热性能较好的金属)实现导热连接。如此,传导至底壳30的热量除了直接传导至 水中外,还可以快速传导至压水板70,然后传导至水中,相当于提高了散热面积。并且,对于压水板70位于推进桨50上方的实施方式,在推进桨50的推动下,水流以较快的速度从压水板70流过,能够快速高效带走压水板70上的热量,使得第一电机40的热量能够较快地通过底壳30、压水板70传导至水体中。
在一些实施方式中,压水板70的下表面设有一水刀板71,水刀板71沿竖向设置,以提高水域可移动设备300的转弯性能。
可以理解的是,底壳30与连接轴20可以是固定连接,以通过连接轴20相对机架10转动,实现连接轴20带动底壳30转动,最终实现推进器100的推进方向转向。底壳30与连接轴20也可以是转动连接,连接轴20相对机架10固定,底壳30相对机架10转动,最终实现推进器100的推进方向转向。
参见图2,在一种实施方式中,第一电机40可以为双定子单转子电机,包括两个定子41和一个转子42,两个定子41并排,并且分别与一个转子42电磁配合,用于共同驱动转子42转动。第一电机40的输出轴43连接于转子42,用于输出转矩。采用两个定子41驱动一个转子42,能够提高驱动力,或在保证一定驱动力的前提下保持较小的截面积。且相较于两个细短电机并联,可以实现长度更小、占用体积更小的优点。
参见图3,在一种实施方式中,第一电机40为单定子单转子电机,包括一个定子41和一个转子42,定子41和转子42对应,用于驱动转子42转动。第一电机40的输出轴43连接于转子42,用于输出转矩。相对于图2示出的方案,为获得足够的驱动力,该第一电机40更短粗。
参见图4,在一种实施方式中,第一电机40为单定子双转子电机,包括一个定子41和两个转子42,定子41和两个转子42分别对应,用于驱动两个转子42转动。第一电机40的输出轴43连接于转子42,用于输出转矩。采用两个定子41驱动一个转子42,能够提高驱动力,或在保证一定驱动力的前提下保持较小的截面积。
参见图5,在一种实施方式中,第一电机40为双定子双转子电机,包括两个定子41和两个转子42,两个定子41和两个转子42对应,用于分别驱动转子42转动。第一电机40的输出轴43连接于转子42,用于输出转矩。第一电机40采用两个定子41和两个转子42配合的方式,能够提高驱动力,或在保证一定驱动力的前提下保持较小的截面积。
可以理解的是,将第一电机40垂直输出轴43方向的截面定义为横截面。在图2、图4、图5的实施例中,第一电机40的动力输出轴与推进桨50的动力轴同轴,第一电机40的横截面小于图3实施例的第一电机40横截面,通过在平行动力输出轴43的方向上增加定子41的数量或增加转子42的数量,或者定子41和转子42的数量都增加,以实现第一电机40在减小横截面的情况下,仍然保持功率可以不会减小,甚至功率还可以加大。在此结构下,第一电机40对推进桨50的迎水阻力减小,而功率不会减小,甚至可以增大,并且由于避免了单定子、单转子长度增加的做法,满足了第一电机40容易生产,制造良率高的要求。当然,本申请的实施方式中,并不局限于图2、图4、图5实施例中的第一电机40按照动力输出轴与推进桨50同轴的结构进行布局设置,即图2、图4、图5实施例中的第一电机40的动力输出轴也可以是垂直推进桨50的动力轴,或者平行推进桨50的动力轴但与推进桨50的动力轴错开也属于本申请的实施方式。
还可以理解的是,在图3的实施例的第一电机40与图2、图4、图5的实施例中第一电机40相比较,在保持两者的功率相同情况下,图3的实施例的第一电机40横截面比图2、 图4、图5的实施例的第一电机40横截面大。在图3的实施例中,第一电机40的输出轴43可以与推进桨50的动力轴同轴设置,则第一电机40对推进桨50的迎水阻力相较于图2、图4、图5的实施例会有所增大。在此种结构形式下,第一电机40虽然对推进桨50的推进效率有所降低,但是第一电机40仍然满足与底壳30热耦合的要求,第一电机40仍然可以经底壳30实现良好冷却散热,故此种结构形式下实施例也属于本申请的实施方式。当然,在图3实施例中第一电机40也并不局限于上述设置输出轴43与推进桨50的动力轴同轴的布局方式,第一电机40的输出轴43也可以与推进桨50的动力轴垂直的方式,或者与推进桨50的动力轴平行但错开的方式,以减小第一电机40对推进桨50的迎水阻力,提高推进效率。本申请的实施方式中,第一电机40的位置并不局限于以上所列举的方式,任何能够满足第一电机40与底壳30热耦合,第一电机40可通过底壳30与外部水域进行热交换散热的结构形式均属于本申请的实施方式。
本申请的实施方式中,并不局限于上述实施例中,第一电机40设置定子41在转子42外周的结构形式,第一电机40的转子42设置在定子41外周的结构形式,也属于本申请的实施方式。
参见图6(配合参见图1),在一些实施方式,第一电机40位于压水板70远离机架10一侧。此时,第一电机40基本位于底壳30浸没于水中的部分之处,可以直接将产生的热量通过底壳30接触水体的部分传导至水中,散热效率较高。
该实施方式中,第一电机40可以水平设置(即沿图中的第二方向X设置),并与推进桨50同轴连接。第一电机40的前端面P1贴合连接于底壳30靠近推进桨50一侧表面。通过第一电机40的前端面P1和底壳30的贴合,利于第一电机40的热量向底壳30传导。当然,如前描述的,第一电机40的前端面P1和底壳30之间可以填充导热硅胶等导热结构46,以提高两者的热传导能力。该实施方式下,可选地,推进桨50可转动地配合于底壳30,第一电机40的输出轴43连接推进桨50,用于带动推进桨50转动。该实施方式中,第一电机40沿水平方向对应推进桨50,将对推进桨50造成一定的阻挡,若采用前述双定子双转子形式、双定子单转子或单定子双转子形式的第一电机40,则能够在保证所需驱动力的前提下使第一电机40具有较小的截面积,从而减小第一电机40对推进桨50的阻挡,且满足第一电机40容易制造,生产良率高的要求。
在另一些实施例中,也可以使第一电机40和推进桨50错开来实现减小第一电机40对推进桨50的阻挡,即通过减小第一电机40对推进桨50的推进水流阻挡面积,实现减小第一电机40对推进桨50的迎水阻力。
例如图7示出的,将第一电机40旋转90度,使其输出轴43沿竖向并沿第一方向Z上移一定距离,以和推进桨50沿第一方向Z错开,然后通过传动机构80(如锥齿轮对801)实现90度转角的传动。该处所说的锥齿轮对801包括第一锥齿轮81和第二锥齿轮82,第一锥齿轮81连接在第一电机40的输出轴43上,第二锥齿轮82连接推进桨50。如此,第一电机40的输出轴43的动力可以传递至推进桨50,带动推进桨50转动。第一锥齿轮81和第二锥齿轮82之间可以等比传动,也可为减速传动或增速传动。
在该实施方式中,第一电机40沿竖向设置,第一电机40的定子41和转子42收容于内部空间Q2。定子41和转子42与底壳30的内壁之间设置导热结构46来实现与底壳30之间的热耦合。具体的,导热结构46为浸泡第一电机40的导热油,即定子41和转子42均与导热结构46接触。在底壳30限定的内部空间Q2内注入导热结构46,从而实现第一电机40与 底壳30热耦合。一方面,导热结构46可以将第一电机40的热量传递至底壳30,实现对第一电机40散热冷却;另一方面,导热结构46具有绝缘润滑作用,从而保证定子41、转子42处于绝缘环境,且对定子41、转子42和输出轴43的润滑,减小第一电机40内部转动阻力。可选地,第一电机40还包括固定于输出轴43的甩油结构,甩油结构收容于内部空间Q2,用于将导热油甩开至第一电机40周围,并最终均匀接触第一电机40的表面后流动至与底壳30的内壁接触,以实现对第一电机40均匀散热。当然,在其他实施方式中,导热结构46也可以是设置在定子41与底壳30之间的导热硅胶,或者是设置在定子41与底壳30之间的导热棉,或者是设置在定子41与底壳30之间的导热金属。
参见图8,第一电机40的输出轴43和推进桨50之间的传动机构80还可以包括变速组件802。例如,变速组件802由变速齿轮组构成,变速组件802包括第一齿轮83、第二齿轮84、第三齿轮85和第四齿轮86。第一电机40的输出轴43连接第一齿轮83、第一齿轮83啮合配合第二齿轮84、第二齿轮84和第三齿轮85相互固定连接以同转速旋转、第三齿轮85啮合配合第四齿轮86,推进桨50和第四齿轮86相互固定,以同转速转动。在一些实施方式中,变速组件为减速机构,第一电机40对推进桨50输出速度减小、输出力矩增大。
本实施方式中,变速组件802可以一体集成于第一电机40。即,该第一电机40为一带有减速机构的减速电机。
本实施例中的传动机构80(如变速组件802、锥齿轮对801)可以集成在底壳30内与第一电机40一起散热,减小了额外散热结构要求。第一电机40、传动机构80等结构与水下部分(包括底壳30)集成,还可以减少壳体用料,减少资源浪费。第一电机40和变速组件802的集成设置,还可以减小水下迎水阻力。推进桨50和变速组件802的集成,还可以减少轴承所需数量。变速组件802设置在推进器100的水下部分,噪声经过水的隔离,声音变小,对用户影响较小。
一些实施方式中,第一电机40、变速组件802和推进桨50三者同轴设置。将变速组件802位于输出轴43轴向上的部分定义为电机遮挡部分,变速组件802可以是部分构成电机遮挡部分,也可以是整体全部构成电机遮挡部分。变速组件802的电机遮挡部分在垂直输出轴43方向上的截面面积小于第一电机40在垂直输出轴43方向上的截面面积,从而变速组件802不会增大推进桨50的迎水阻挡面,使得变速组件802和第一电机40整体对推进桨50的遮挡较小,保证了推进器100减小水下阻力,且推进桨50的推力和变速组件802的齿轮轴向力抵消,还可以提高轴承使用寿命。
需要说明的是,前述传动机构80中的锥齿轮对801和变速组件802可以根据需要均不设置(如图6)、仅设置其中一个(如图7或图8)或两个串联地连接在第一电机40和推进桨50之间(如图9)。
在其他实施方式中,传动机构80还可以是其他形式,如带传动、链传动等,在此不赘述。
前述的实施方式中,第一电机40位于压水板70之下(远离机架10一侧),在另一些实施方式中,第一电机40还可以部分或全部位于压水板70之上(靠近机架10一侧)。
如图10示出的,底壳30的内部空间Q2包括沿第一方向Z连通的第一空间Q3和第二空间Q4,第一空间Q3位于压水板70远离机架10一侧,第二空间Q4位于压水板70靠近机架10一侧。第一电机40全部容置于第二空间Q4。此时,底壳30位于压水板70部分下方无需容置第一电机40,能够减小推进桨50的迎水阻力。在图10实施例中,第一电机40的输出轴43与推进桨50的动力轴垂直,且第一电机40并不设置在推进桨50的推进水流范围内, 第一电机40与推进桨50错开,进而不会阻挡推进桨50推进水流,保证了第一电机40可经底壳30冷却散热,同时还减小了推进桨50的迎水阻力,提高了推进效率。当然,在其他实施方式中,第一电机40也可以是输出轴43与推进桨50的动力轴平行的方式设置在第二空间Q4内。
当然,第一电机40还可以仅部分容置于第二空间Q4,即一部分位于第一空间Q3、另一部分位于第二空间Q4,第一电机40的输出轴43可以与推进桨50的动力轴垂直,也可以与推进桨50的动力轴平行。
图10示出的为第一电机40竖向设置,并通过锥齿轮对801传动连接推进桨50的实施方式。当然,前述传动机构80的其他设置形式同样适用于此处第一电机40全部或部分位于压水板70上的实施方式,在此不赘述。
在一些实施例中,推进器100还包括第二电机68。第二电机68可以和第一电机40采用相同或不同形式的电机。第二电机68与第一电机40串联地连接推进桨50。
如图11示出的,其在图10示出的实施方式的基础上,进一步在锥齿轮对801和推进桨50之间设置一第二电机68,从而使得第一电机40和第二电机68实质上以串联的方式实现对推进桨50提供动力。该形式提高了总推进力,且电机对推进桨50的总阻挡面积影响较小,尤其在第一电机40和/或第二电机68采用细长形的电机形式(如前述双转子双定子电机)时。
在另一些实施方式中,第二电机68与第一电机40还可以采用并联的方式连接推进桨50。即,第一电机40的输出轴43和第二电机68的输出轴43并联地连接至推进桨50,以共同推动推进桨50转动。
当然,图6-图9示出的实施方式也可以在第一电机40和推进桨50的传动路径上增加串联或并联的第二电机68来增大推进力或提高动力的可靠性,在此不赘述。
再次参见图11,本实施例中的第二电机68可以设置在底壳30的内部空间Q2之外。在其他实施例中,第二电机68也可以和第一电机40类似地设置在底壳30的内部空间Q2之内并和底壳30热耦合,以实现散热。
本实施例中的第一电机40和/或第二电机68的散热除了采用前述依靠电机和底壳30之间的导热结构46导热外,还可以通过其他形式实现。
例如,图12示出的,内部空间Q2内装设有冷却液67(如水或冷却油),第一电机40至少部分浸没于冷却液67中。如此,第一电机40的热可以快速地传递至冷却液67,再进一步通过底壳30向外传递。同时,推进器100还可包括冷却系统90,冷却系统90包括泵机91和输送管道92,泵机91设有进液口K3和出液口K4,进液口K3用于抽入冷却液67,出液口K4连接输送管道92,用于将抽取的冷却液67喷淋于第一电机40。
对于图10或图11示出的第一电机40至少部分位于压水板70上方的实施方式,参见图13,还可通过使船身310在行进时,船身310尾部的水浪被扬起后从上至下淋洒在处于压水板70上方的第一电机40处底壳30的外表面上的方式,来实现对第一电机40的冷却。用于冷却第一电机40的水浪的流动路径可参见图13中的虚线箭头指示。参见图1,本申请中的水域可移动设备300还可包括电控组件200,电控组件200电连接于第一电机40,用于控制第一电机40运行。电控组件200为电机控制设备,例如可以控制第一电机40的转速、输出功率、输出转矩等。具体控制电路和控制方式可采用现有方案,在此不赘述。
对于设置第二电机68的情形,电控组件200还可以兼用于控制第二电机68的运行。
本实施例中,电控组件200可以安装于船身310,也可以安装于推进器100,作为推进器 100的一部分。
下面提出电控组件200设置于推进器100的一些实施方式。
如图14示出的一种实施方式中的推进器100,其电控组件200采用第一电控组件210的形式实现。第一电控组件210固定连接于机架10,连接轴20一端连接于第一电控组件210,以随第一电控组件210一起相对机架10转动实现起翘。例如,机架10设有第一支撑件63,第一电控组件210固定连接第一支撑件63,以实现机架10支撑第一电控组件210。
第一电控组件210的具体结构可以根据需要设置。例如,在一些实施方式中,第一电控组件210包括电控支架211和控制电路板212。电控支架211固定连接第一支撑件63。控制电路板212固定于电控支架211,并电连接第一电机40,以控制第一电机40运行。可选地,第一电控组件210还包括电控外壳213,电控外壳213固定连接电控支架211。电控支架211和控制电路板212设于电控外壳213内。
本实施方式中,机架10包括第一结构部11和第二结构部12,第一结构部11大致沿第一方向Z延伸,第二结构部12连接于第一结构部11远离底壳30一端,并向远离电控支架211一侧延伸。第一支撑件63固定于第一结构部11和第二结构部12的交角处。
本实施方式中,连接轴20可转动地连接于电控支架211,且转动轴线Z1为连接轴20的中轴线,用于带动推进桨50转向。连接轴20的一端与电控支架211转动连接,另一端与底壳30固定连接。当驱动连接轴20相对电控支架211转动时,连接轴20带动底壳30相对机架10转动,实现推进器100转向。
作为一种可能的实施方式,在电控支架211上设置转向电机214,并设置连接转向电机214和连接轴20的转向传动机构215。转向传动机构215将转向电机214的转动力矩传递至连接轴20,使得连接轴20可相对电控支架211转动。可以理解的是,转向传动机构215可以是丝杆滚珠传动结构、蜗轮蜗杆传动机构、行星齿轮传动结构、齿轮组传动结构等结构形式,转向传动机构215也不局限于上述列举的形式,任何能够将转向电机214的转动扭矩转换为连接轴20的转动扭矩的传动结构都属于本申请转向传动机构215的实施方式。
本实施方式中,推进器100还包括夹具61和起翘驱动器62,夹具61用于固定于船身310,例如连接在船身310的尾部,机架10转动连接于夹具61,以实现带动电控支架211相对夹具61起翘。机架10转动连接夹具61的转动轴线垂直连接轴20的轴线。起翘驱动器62传动连接夹具61及机架10之间,用于推动机架10进而带动推进桨50起翘。
其中,夹具61可以通过焊接或螺纹连接的方式固定连接在船身310,或与船身310一体设置。
机架10可以通过转动轴、转动销、或者铰链转动连接在夹具61。
起翘驱动器62可以是电动推杆、液压缸、气缸、电液动力缸或其他能够输出动力的设备。例如,在起翘驱动器62为电动推杆时,其一端安装在夹具61上,另一端为伸缩端,伸缩端连接于机架10,且通过伸缩,电动推杆能够推动机架10、第一电控组件210相对夹具61旋转,使得连接于第一电控组件210的连接轴20和连接于连接轴20的推进桨50旋转起翘。
本实施方式中,可选地,推进器100还包括连接外壳31。连接外壳31围于连接轴20外周,并连接在底壳30和电控外壳213之间。连接外壳31固定连接底壳30,并可随底壳30相对电控外壳213转动。连接外壳31可以采用铝制成,具有较轻的质量,且耐腐蚀性能好,所以将连接外壳31固定于底壳30,以减轻对连接轴20的负载重量。可以理解的是,为了进一步降低对连接轴20的负载重量,底壳30也可以采用铝材质的壳体。
需要说明的是,在不冲突的前提下,前述图6-图12示出的各种实施方式均可用于图14示出的推进器100结构中,在此不赘述。
该实施方式中,推进桨50受水流的反推作用力经第一电机40、连接轴20传递至第一电控组件210,第一电控组件210再将反推作用力传递至机架10,第一电控组件210承担了将推进桨50的反推作用力传递至机架10的作用,从而可以免去连接轴20对推力的承担,减小连接轴20的结构性能要求,降低制造成本,并且可以利用连接外壳31设置在连接轴20周围对连接轴20进行防护,连接外壳31具有防腐蚀性,减小重量且具有较好的防护性能。且采用铝结构代替钢件,减少了电化学腐蚀影响。
更为具体地,为了减小第一电控组件210传递第一电机40的振动力至机架10,在第一支撑件63上设置减震悬置,利用第一支撑件63上的减震悬置吸收振动力,防止电控支架211将第一电机40的振动力传递至机架10,从而避免第一电机40的振动力传递至船身310。
图15-图19示出的另一种实施方式中,与图14的实施方式大致相同,不同的是推进器100的电控组件200采用第二电控组件220的形式实现,第二电控组件220采用分体设置形式。
例如,参见图15,第二电控组件220包括第一电控分部221和第二电控分部222,第一电控分部221和第二电控分部222相互间隔设置,并能够控制第一电机40运行。该实施方式中,第二电控组件220分体设置,使得单个电控分部(如第一电控分部221或第二电控分部222)尺寸较小,利于对较小空间的利用,优化结构布局,使推进器100整体体积进一步减小,从而减小组件,提高用户体验。且分体设置的第二电控组件220易于获得较大的比表面积,从而利于散热。
该实施方式中,机架10设有第一支撑件63和第二支撑件64,第一支撑件63和第二支撑件64沿第一方向Z相间隔。连接轴20的一端可转动连接于第一支撑件63和第二支撑件64,且连接轴20和机架10相间隔,并限定位于第一支撑件63和第二支撑件64之间的间隔空间Q5,第一电控分部221容置于间隔空间Q5。通过第二电控组件220分体后部分容置在间隔空间Q5,能够充分利用间隔空间Q5。分体设置也避免间隔空间Q5无法容纳整体尺寸较大的第二电控组件220的问题。
该实施方式中,第一电控分部221固定于机架10靠近连接轴20一侧的表面。当然,也可根据需要,使第一电控分部221固定连接于连接轴20。
第二电控分部222位于连接轴20远离机架10一侧,并固定于第一支撑件63和第二支撑件64之间。可选地,第一支撑件63和第二支撑件64之间连接有安装板69,安装板69位于连接轴20远离机架10一侧,第二电控分部222固定于安装板69。当然,也可根据需要,使第二电控分部222固定连接于连接轴20。
可选地,连接轴20设有沿第一方向Z延伸的轴孔K1;连接轴20上设有开孔K2,开孔K2连通轴孔K1;连接轴20连接于底壳30,且轴孔K1连通于底壳30的内部空间Q2,连接轴20外的第一电控分部221和第二电控分部222经开孔K2、轴孔K1、内部空间Q2走线至电连接第一电机40。具体用于电连接各电控分部和第一电机40的导线图中未示出。
继续参见图15,本实施方式中,船身310设置有夹具61和起翘驱动器62,机架10可转动地连接于夹具61,起翘驱动器62传动连接机架10,用于驱动机架10和连接至机架10的推进桨50起翘。
其中,夹具61可以通过焊接或螺纹连接的方式固定连接在船身310,或与船身310一体设置。
机架10可以通过转轴件66可转动地连接在夹具61上。
起翘驱动器62可以是电动推杆、液压缸、气缸或其他能够输出动力的设备。例如,在起翘驱动器62为电动推杆时,其一端安装在夹具61上,另一端为伸缩端,伸缩端连接于机架10,且通过伸缩,电动推杆能够带动机架10相对夹具61旋转,使得连接于机架10的其他结构(包括连接轴20、底壳30、推进桨50等)旋转起翘。参见图16,在另一实施方式中,连接轴20为空心结构,限定沿第一方向Z延伸的轴孔K1,第一电控分部221和第二电控分部222呈长条形,并沿第一方向Z分布于轴孔K1。可选地,连接轴20连接于底壳30,且轴孔K1连通于底壳30的内部空间Q2。第一电控分部221和/或第二电控分部222通过轴孔K1、内部空间Q2走线至电连接第一电机40。该实施方式,第一电控分部221和第二电控分部222设置在轴孔K1内,无需在连接轴20上开设开孔K2,即可实现电控分部和第一电机40之间的电连接。
配合参见图17,在一实施方式中,第一电控分部221设有功率板223、第二电控分部222设有控制板224。控制板224电连接功率板223,功率板223电连接第一电机40;控制板224通过功率板223控制第一电机40运行。该第二电控组件220的分体形式为功率板223和控制板224之间的分体,通过两者分体,可以得到各自尺寸均小于一体设置的第二电控组件220的第一电控分部221和第二电控分部222。
配合参见图18,在另一些实施方式中,第一电机40设有双转子和/或双定子(如前文描述的第一电机40采用双定子双转子电机、双定子单转子电机或单定子双转子电机),第一电控分部221设有第一功率板225,第二电控分部222设有第二功率板226,第一功率板225电连接第一电机40其中一转子42或定子41,第二功率板226电连接第一电机40的另一转子42或定子41。该第二电控组件220的分体形式为功率板223的分体,同样能够得到尺寸较小的第一电控分部221和第二电控分部222,利于对较小空间的利用。可选地,第一电控分部221还设有控制板224,控制板224电连接第一功率板225和第二功率板226,以经第一功率板225和第二功率板226控制第一电机40的双转子和/或双定子(如前文描述的第一电机40采用双定子双转子电机、双定子单转子电机或单定子双转子电机)运行。当然,在其他实施方式中,也可以是第二电控分部222还设有控制板224,控制板224电连接第一功率板225和第二功率板226。
对于设置有第二电机68的实施方式(如图11),配合参见图19,第一电控分部221电连接第一电机40,以驱动第一电机40运行;第二电控分部222电连接第二电机68,以驱动第二电机68运行。此时,第一电控分部221和第二电控分部222分别用于控制第一电机40和第二电机68。
需要说明的是,在不冲突的前提下,前述图6-图12示出的各种实施方式均可用于图15或图16示出的推进器100结构中,在此不赘述。
本实施方式的一些情形中,第一电控分部221和第二电控分部222与机架10相对固定,且不随连接轴20转动,此时,推进桨50和连接轴20可以不受其限制地进行360°的转动,提高了水域可移动设备的机动性。在连接轴20开口走线,能够减小走线长度和走线数量。
可以理解的是,第一电控分部221和第二电控分部222并不局限于上述列举结构形式,任何将一个完整第二电控组件220拆分多个电控分部的结构均属于本申请的实施方式。例如,还可以将第二电控组件220拆分为三个、四个或更多个的电控分部,并将多个电控分部设置于推进器100上任何可以放置的空间内,以充分利用推进器100的结构空间,减小推进器100 体积。
图20示出的实施方式中,与图15、图16的实施方式大致相同,不同的是,电控组件200采用第三电控组件230的形式实现,第三电控组件230设置于压水板70。
参见图20,该实施方式中,推进器100包括压水板70,压水板70连接于底壳30;推进桨50位于压水板70远离机架10一侧,第三电控组件230设置于压水板70。可选地,第三电控组件230和压水板70热耦合,如使第三电控组件230的发热件或散热件(如有)导热地贴合压水板70。通过使第三电控组件230设置于压水板70并热耦合,第三电控组件230运行时产生的热量可通过压水板70导热至水体中,减小了为第三电控组件230布置额外的散热系统的要求。
本实施方式中,第三电控组件230包括壳部231和控制电路板232,壳部231和压水板70连接,壳部231与压水板70共同围成安装空间Q6,控制电路板232收容于安装空间Q6,并与壳部231或和压水板70固定。当然,可以理解的是,在另一实施方式中,也可以壳部231单独围成安装空间Q6。在另一种实施方式中,还可以是压水板70的内部设置安装空间Q6,第三电控组件230收容于安装空间Q6内。
如图20中示出的,第三电控组件230位于压水板70远离推进桨50一侧,以使第三电控组件230保持在水面L1上,降低其防水要求。在另外的实施方式下,第三电控组件230还可以设置在压水板70靠近推进桨50一侧,此时,第三电控组件230可能浸入水中,能够获得更佳的散热性能。
本实施方式中,控制电路板232的板面平行于压水板70的板面,以适应水平设置的压水板70并增大控制电路板232和压水板70的接触面积。
与图15示出的实施方式相同,本实施方式中,机架10上连接有第一支撑件63和第二支撑件64,第一支撑件63和第二支撑件64沿第一方向Z相间隔,连接轴20的一端转动连接于第一支撑件63和第二支撑件64,其转动轴线Z1沿第一方向Z。
与图15示出的实施方式相同,本实施方式中,船身310设置有夹具61和起翘驱动器62,机架10可转动地连接于夹具61,起翘驱动器62传动连接机架10,用于驱动机架10和连接至机架10的推进桨50起翘。
需要说明的是,在不冲突的前提下,前述图6-图12示出的各种实施方式均可用于图20示出的推进器100结构中,在此不赘述。
该实施方中,第三电控组件230设置于压水板70,能够直接水下散热,省去了额外的散热结构设计,使得推进器100整体体积更小,散热效率更高。并且,由于第三电控组件230设置于压水板70,第三电控组件230与第一电机40的距离更短,便于两者接线,容易保证第三电控组件230和第一电机40之间连线的可靠性,并减小走线长度、走线重量和成本。第三电控组件230设置压水板70处,简化了推进器100顶部空间的设置,使推进器100适配性更高。
此外,第三电控组件230和压水板70的结构的集成还可加强压水板70的强度。第三电控组件230、第一电机40离船身较远,且产生的噪声能够被机架10向水域可移动设备300后方反射,对用户影响较小。
图21-图23示出的实施方式中,与图20所示实施例大致相同,不同的是,电控组件200采用第四电控组件240的形式实现,第四电控组件240和第一电机40均设置于底壳30的内部空间Q2。
参见图21,本实施方式中,第四电控组件240设置于内部空间Q2。该设置方式,第四电控组件240和第一电机40的间距较小,第四电控组件240和第一电机40之间的电连接导线设置方便,且利于采用散热结构的集中设置。例如在前述图12示出的冷却系统90时,该冷却系统90可以同时用作第一电机40和第四电控组件240的冷却。
如图21示出的,第四电控组件240和第一电机40沿第一方向Z依次布置。例如,第四电控组件240大致呈长度方向沿水平方向(第二方向X)的长形,第一电机40的轴线也沿第二方向X,第四电控组件240叠合连接于第一电机40上。其中第二方向X垂直于第一方向Z。
如图22示出的,第四电控组件240和第一电机40沿第一方向Z依次布置。第四电控组件240大致呈长度方向沿第一方向Z的长形,第一电机40的轴线也沿第一方向Z。底壳30延伸至压水板70上方,并具有位于压水板70下方的第一空间Q3和位于压水板70上方的第二空间Q4,第一电机40布置在第一空间Q3,第四电控组件240布置在第二空间Q4。该实施方式中,第一电机40和第四电控组件240邻近设置,利于两者之间的导线连接,且利于散热设置。
如图23示出的,第四电控组件240和第一电机40还可以沿第二方向X依次布置。例如,第四电控组件240大致呈长度方向沿第一方向Z的长形,第一电机40的轴线也沿第一方向Z。底壳30延伸至压水板70上方,第一电机40和第四电控组件240并排设置于第一空间Q3位于压水板70靠近机架10一侧。
与图15示出的实施方式相同,本实施方式中,机架10上连接有第一支撑件63和第二支撑件64,第一支撑件63和第二支撑件64沿第一方向Z相间隔,连接轴20的一端转动连接于第一支撑件63和第二支撑件64,其转动轴线Z1沿第一方向Z。
与图15示出的实施方式相同,本实施方式中,船身310设置有夹具61和起翘驱动器62,机架10可转动地连接于夹具61,起翘驱动器62传动连接机架10,用于驱动机架10和连接至机架10的推进桨50起翘。
需要说明的是,在不冲突的前提下,前述图6-图12示出的各种实施方式均可用于图21、图22或图23示出的推进器100结构中,在此不赘述。
该实施方中,第四电控组件240和第一电机40同设置于底壳30的内部空间,能够直接水下散热,省去了额外的散热结构设计,使得推进器100整体体积更小,散热效率更高。并且,由于第四电控组件240设置于内部空间,第四电控组件240与第一电机40的距离更短,便于两者接线,容易保证第四电控组件240和第一电机40之间连线的可靠性,并减小走线长度、走线重量和成本,且第四电控组件240和第一电机40同位于水下,仅需4根线缆从水下延伸至水上的机架10部分,相较于第四电控组件240位于水上的方案需要的6根线缆,减少了2根,节约成本。第四电控组件240设置于内部空间,简化了推进器100顶部空间的设置,使推进器100适配性更高。
第四电控组件240、第一电机40离船身较远,且产生的噪声能够被机架10向水域可移动设备300后方反射,对用户影响较小。
图24和图25示出的实施方式中,与图23的实施方式大致相同,不同的是,电控组件200采用第五电控组件250的形式实现,第五电控组件250安装于连接轴20,并会随连接轴20一起运动。
如图24示出的,机架10上连接有第一支撑件63和第二支撑件64,第一支撑件63和第二支撑件64沿第一方向Z相间隔,连接轴20的一端转动连接于第一支撑件63和第二支撑件 64,第五电控组件250相对连接轴20固定,并能够随连接轴20一起相对机架10转动。
可选地,连接轴20的一端位于机架10沿第二方向X的一侧,第二方向X垂直于第一方向Z;连接轴20和机架10相间隔,并限定位于第一支撑件63和第二支撑件64之间的间隔空间Q5。第五电控组件250位于第一支撑件63和第二支撑件64之间,且部分容置于间隔空间Q5。通过对间隔空间Q5的利用,提高结构紧凑型,降低结构的整体尺寸。
可选地,第五电控组件250设有电控壳体251、控制板252和功率板253,电控壳体251固定于连接轴20上,控制板252和功率板253固定于电控壳体251内。控制板252电连接功率板253,功率板253电连接第一电机40;控制板252通过功率板253控制第一电机40运行。
可选地,连接轴20为空心结构,并限定沿第一方向Z延伸的轴孔K1;连接轴20上设有开孔K2,开孔K2连通轴孔K1;连接轴20连接于底壳30,且轴孔K1连通于底壳30的内部空间Q2。第五电控组件250能够通过开孔K2、轴孔K1、内部空间Q2走线至电连接第一电机40。
如图25示出的,在另一种实施方式中,连接轴20为空心结构,并限定沿第一方向Z延伸的轴孔K1,第五电控组件250设置为沿第一方向Z延伸的长条形,并设置于轴孔K1。可选地,与图16示出的实施方式类似,第五电控组件250包括第一电控分部221和第二电控分部222,第一电控分部221和第二电控均为长条形,且沿第一方向Z间隔地设置于轴孔K1内。第五电控组件250分体的方式可参见前文相关内容,在此不赘述。
需要说明的是,在不冲突的前提下,前述图6-图12示出的各种实施方式均可用于图24或22示出的推进器100结构中,在此不赘述。
该实施方式中,第五电控组件250随连接轴20一同转动,可以实现360°转动,第五电控组件250连接第一电机40的导线无扭动的情况。第五电控组件250做成细长布置,或拆成两个,能够减小推进器宽度。
图26示出的实施方式中,与图24的实施方式大致相同,不同的是,电控组件200采用第六电控组件260的形式实现,第六电控组件260与机架10相对固定。
如图26示出的,第六电控组件260与机架10固定连接,具体地,机架10上连接有第一支撑件63和第二支撑件64,第一支撑件63和第二支撑件64沿第一方向Z相间隔。连接轴20的一端转动连接于第一支撑件63和第二支撑件64,其转动轴线Z1沿第一方向Z。第六电控组件260固定连接于第一支撑件63和第二支撑件64之间。即,本实施方式中,第六电控组件260通过第一支撑件63和第二支撑件64固定连接在机架10上,以和机架10相对固定,使得在推进桨50转向时,无需带动第六电控组件260一并转动,降低了转动荷载,且电池组件311和第六电控组件260之间的电连接导线设置方便,且该导线不会限制连接轴20相对第一支撑件63和第二支撑件64的转动,从而使得连接轴20和推进桨50可保持较大的转向角度。并且,电控组件和电池组件之间的走线在推进桨50转向时不会出现摆动的情况,减小了船身空间因走线摆动而减小的问题,用户在船身内的活动空间较大。
在另一些实施方式中,第六电控组件260还可以直接安装在机架10上,或安装在船身310上。
需要说明的是,在不冲突的前提下,前述图6-图12示出的各种实施方式均可用于图26示出的推进器100结构中,在此不赘述。
该实施方式中,第六电控组件260与机架10相对规定,连接轴20、推进桨50等结构独立转向,无需带动第六电控组件260一起转动,降低转动负载。
图15-图26示出的各实施方式中的第一支撑件63和第二支撑件64的具体结构可以根据需要设置。
可以理解的是,连接轴20与第一支撑件63和第二支撑件64转动连接,以实现连接轴20可带动底壳30相对机架10转动,从而实现推进器100推进转向。为了增加连接轴20与第一支撑件63和第二支撑件64的连接可靠性,例如图27示出的,推进器100还包括固定于第一支撑件63的第一轴承632和固定于第二支撑件64的第二轴承642。连接轴20与第一轴承632和第二轴承642转动配合。由于连接轴20与第一轴承632和第二轴承642仅存在转动扭矩配合关系,从而减低了连接轴20在非轴向的扭矩摆动。为了进一步避免连接轴20相对机架10存在非轴向摆动,第一轴承632与第一支撑件63之间设置吸收拉扯振动力的第一减震悬置651,即第一减震悬置651对连接轴20施加朝船身310方向拉扯的预紧力。第二轴承642与第二支撑件64之间设置吸收抵顶振动力的第二减震悬置652。即第二减震悬置652对连接轴20施加朝远离船身310方向抵顶的预紧力。具体的,第一支撑件63上设置有第一减震套筒631,第一减震套筒631的轴线垂直连接轴20且垂直第二方向X。第一轴承632设有穿设于第一减震套筒631的第一减震轴633,第一减震轴633与第一减震套筒631弹性配合,以实现第一轴承632与第一支撑件63之间设置第一减震悬置651。第二支撑件64上设置有第二减震套筒641,第二减震套筒641的轴线平行连接轴20的轴线,第二轴承642设有穿设第二减震套筒641的第二减震轴643,以实现第二轴承642与第二支撑件64之间设置第二减震悬置652。作为设置第一支撑件63和机架10之间、第二支撑件64和机架10之间的减震悬置65,第一减震悬置651和第二减震悬置652吸收第一轴承632和第二轴承642的振动力,从而避免第一电机40将振动力传导至机架10,并且利用第一支撑件63对连接轴20施加第一方向Z的拉扯力,而第二支撑件64对连接轴20施加第二方向X的抵顶力,防止连接轴20在非轴向摆动。连接轴20可以采用具有较高强度钢体结构,以便于连接轴20具备结构可靠性。
可以理解的是,本申请实施方式中,连接轴20与底壳30的连接方式,以及连接轴20与第一支撑件63和第二支撑件64的连接方式并不局限于上述实施例。
例如,在另一可能的实施方式中,参见图28,连接轴20可以与底壳30转动连接(如通过轴承32转动连接),连接轴20与第一支撑件63和第二支撑件64固定。推进器100还可以包括与底壳30固定的主机支架33。主机支架33与底壳30可以一体或者经螺钉固定。电控组件200固定于主机支架33上,推进器100还包括转向驱动机构34,转向驱动机构34固定于主机支架33,并通过对连接轴20施加转动扭矩,以实现底壳30及主机支架33相对连接轴20转动,实现推进器100推进转向。
综合以上描述,本申请实施例中的水域可移动设备300和其推进器100,能够方便地实现推进桨50起翘,且第一电机40和电控组件200易于通过底壳30散热,散热效果较好。
以上实施方式仅用以说明本申请的技术方案而非限制,尽管参照以上较佳实施方式对本申请进行了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换都不应脱离本申请技术方案的精神和范围。

Claims (67)

  1. 一种推进器,用于连接至一水域可移动设备的船身以推动水域可移动设备移动,其特征在于,包括:
    机架,用于连接于所述船身;
    连接轴,所述连接轴沿第一方向延伸;所述连接轴的一端连接于所述机架,并能够通过所述机架相对所述船身起翘;
    底壳,所述底壳连接于所述连接轴远离所述机架的一端;所述底壳限定内部空间;
    第一电机,安装于所述底壳的内部空间,并与所述底壳热耦合;
    推进桨,传动连接于所述第一电机,用于产生推动力。
  2. 根据权利要求1所述的推进器,其特征在于:
    所述推进器还包括电控组件;
    所述电控组件电连接于所述第一电机,用于控制所述第一电机运行。
  3. 根据权利要求2所述的推进器,其特征在于:
    所述电控组件固定连接于所述机架,所述连接轴一端连接于所述电控组件,以随所述电控组件一起相对机架转动实现起翘。
  4. 根据权利要求3所述的推进器,其特征在于:
    所述机架设有第一支撑件,所述电控组件固定连接所述第一支撑件。
  5. 根据权利要求4所述的推进器,其特征在于:
    所述电控组件包括电控支架和控制电路板;
    所述电控支架固定连接所述第一支撑件;所述控制电路板固定于所述电控支架,并电连接所述第一电机,以控制所述第一电机运行。
  6. 根据权利要求5所述的推进器,其特征在于:
    所述连接轴可转动地安装于所述电控支架,且转动轴线为所述连接轴的中轴线,用于带动推进桨转向。
  7. 根据权利要求5所述的推进器,其特征在于:
    所述电控组件还包括电控外壳,所述电控外壳固定连接所述电控支架,所述电控支架和所述控制电路板设于所述电控外壳内。
  8. 根据权利要求4所述的推进器,其特征在于:
    所述机架包括第一结构部和第二结构部,所述第一结构部大致沿第一方向延伸,所述第二结构部连接于所述第一结构部远离所述底壳一端,并向远离所述电控组件一侧延伸;
    所述第一支撑件固定于所述第一结构部和第二结构部的交角处。
  9. 根据权利要求3所述的推进器,其特征在于:
    所述推进器还包括夹具和起翘驱动器;
    所述夹具用于固定于所述船身,所述机架可转动地连接于所述夹具,所述起翘驱动器固定于所述夹具并传动连接所述机架,用于通过所述机架、所述电控组件、所述连接轴带动所述推进桨起翘。
  10. 根据权利要求2所述的推进器,其特征在于:
    所述电控组件包括第一电控分部和第二电控分部,所述第一电控分部和所述第二电控分 部相互间隔设置,并能够控制所述第一电机运行。
  11. 根据权利要求10所述的推进器,其特征在于:
    所述机架设有第一支撑件和第二支撑件,所述第一支撑件和所述第二支撑件沿第一方向相间隔;
    所述连接轴的一端可转动连接于所述第一支撑件和所述第二支撑件,且所述连接轴和所述机架相间隔,并限定位于所述第一支撑件和第二支撑件之间的间隔空间;
    所述第一电控分部容置于所述间隔空间。
  12. 根据权利要求11所述的推进器,其特征在于:
    所述第一电控分部固定于所述机架靠近所述连接轴一侧的表面。
  13. 根据权利要求11所述的推进器,其特征在于:
    所述第一电控分部固定连接于所述连接轴。
  14. 根据权利要求11所述的推进器,其特征在于:
    所述第二电控分部位于所述连接轴远离所述机架一侧,并固定于所述第一支撑件和所述第二支撑件之间。
  15. 根据权利要求14所述的推进器,其特征在于:
    所述第一支撑件和所述第二支撑件之间连接有安装板,所述安装板位于所述连接轴远离所述机架一侧,所述第二电控分部固定于所述安装板。
  16. 根据权利要求11所述的推进器,其特征在于:
    所述第二电控分部固定连接于所述连接轴。
  17. 根据权利要求11所述的推进器,其特征在于:
    所述连接轴为空心结构,限定沿第一方向延伸的轴孔,所述第一电控分部和所述第二电控分部呈长条形,并沿第一方向分布于所述轴孔。
  18. 根据权利要求17所述的推进器,其特征在于:
    所述连接轴连接于所述底壳,且所述轴孔连通于所述底壳的内部空间;
    所述第一电控分部和/或所述第二电控分部通过所述轴孔、所述内部空间走线至电连接所述第一电机。
  19. 根据权利要求10所述的推进器,其特征在于:
    所述连接轴设有沿第一方向延伸的轴孔;所述连接轴上设有开孔,所述开孔连通所述轴孔;所述连接轴连接于所述底壳,且所述轴孔连通于所述底壳的内部空间,所述连接轴外的所述第一电控分部和/或所述第二电控分部经所述开孔、所述轴孔、所述内部空间走线至电连接所述第一电机。
  20. 根据权利要求10所述的推进器,其特征在于:
    所述电控组件包括功率板和控制板,所述控制板电连接所述功率板,所述功率板电连接所述第一电机;所述控制板通过所述功率板控制所述第一电机运行;
    所述第一电控分部包括功率板、所述第二电控分部包括控制板。
  21. 根据权利要求10所述的推进器,其特征在于:
    所述第一电机设有双转子或/和双定子;
    所述第一电控分部设有第一功率板,所述第二电控分部设有第二功率板,所述第一功率板电连接所述第一电机其中一转子或/和定子,所述第二功率板电连接所述第一电机的另一转子或/和定子。
  22. 根据权利要求10所述的推进器,其特征在于:
    所述推进器还包括第二电机,所述第二电机与所述第一电机串联地连接所述推进桨,或者,所述第二电机与所述第一电机并联地连接所述推进桨;
    所述第一电控分部电连接所述第一电机,以驱动所述第一电机运行;
    所述第二电控分部电连接所述第二电机,以驱动所述第二电机运行。
  23. 根据权利要求2所述的推进器,其特征在于:
    所述推进器还包括压水板;
    所述压水板连接于所述底壳;所述推进桨位于所述压水板远离所述机架一侧;
    所述电控组件设置于所述压水板。
  24. 根据权利要求23所述的推进器,其特征在于:
    所述电控组件和所述压水板热耦合。
  25. 根据权利要求23所述的推进器,其特征在于:
    所述电控组件包括壳部和控制电路板,所述壳部和所述压水板连接并围成安装空间,所述控制电路板收容于所述安装空间,并与所述壳部或和所述压水板固定。
  26. 根据权利要求24所述的推进器,其特征在于:
    所述电控组件位于所述压水板远离所述推进桨一侧,或者,所述电控组件位于所述压水板靠近所述推进桨一侧。
  27. 根据权利要求26所述的推进器,其特征在于:
    所述控制电路板的板面平行于所述压水板的板面。
  28. 根据权利要求23所述的推进器,其特征在于:
    所述机架上连接有第一支撑件和第二支撑件,所述第一支撑件和所述第二支撑件沿第一方向相间隔;
    所述连接轴的一端转动连接于所述第一支撑件和所述第二支撑件,其转动轴线沿第一方向。
  29. 根据权利要求2所述的推进器,其特征在于:
    所述电控组件设置于所述内部空间。
  30. 根据权利要求29所述的推进器,其特征在于:
    所述电控组件和所述第一电机沿第一方向依次布置。
  31. 根据权利要求29所述的推进器,其特征在于:
    所述电控组件和所述第一电机沿第二方向依次布置,其中,所述第二方向垂直于所述第一方向。
  32. 根据权利要求29所述的推进器,其特征在于:
    所述推进器还包括压水板,所述压水板连接于所述底壳;所述推进桨位于所述压水板远离所述机架一侧。
  33. 根据权利要求32所述的推进器,其特征在于:
    所述第一电机和所述电控组件沿第二方向并排地设置于所述压水板靠近所述机架一侧。
  34. 根据权利要求32所述的推进器,其特征在于:
    所述电控组件和所述第一电机沿第一方向依次设置,且所述电控组件位于所述压水板靠近所述机架一侧,所述第一电机位于所述压水板远离所述机架的一侧。
  35. 根据权利要求2所述的推进器,其特征在于:
    所述机架上连接有第一支撑件和第二支撑件,所述第一支撑件和所述第二支撑件沿第一方向相间隔;
    所述连接轴的一端转动连接于所述第一支撑件和所述第二支撑件;
    所述电控组件相对所述连接轴固定,并能够随所述连接轴一起相对所述机架转动。
  36. 根据权利要求35所述的推进器,其特征在于:
    所述连接轴的一端位于所述机架沿第二方向的一侧,所述第二方向垂直于所述第一方向;
    所述连接轴和所述机架相间隔,并限定位于所述第一支撑件和第二支撑件之间的间隔空间;
    所述电控组件位于所述第一支撑件和所述第二支撑件之间,且部分容置于所述间隔空间。
  37. 根据权利要求36所述的推进器,其特征在于:
    所述连接轴为空心结构,限定沿第一方向延伸的轴孔;所述连接轴上设有开孔,所述开孔连通所述轴孔;所述连接轴连接于所述底壳,且所述轴孔连通于所述底壳的内部空间;
    所述电控组件能够通过所述开孔、所述轴孔、所述内部空间走线至电连接所述第一电机。
  38. 根据权利要求35所述的推进器,其特征在于:
    所述连接轴为空心结构,限定沿第一方向延伸的轴孔,所述电控组件设置为沿第一方向延伸的长条形,并设置于所述轴孔。
  39. 根据权利要求38所述的推进器,其特征在于:
    所述电控组件包括第一电控分部和第二电控分部,所述第一电控分部和所述第二电控均为长条形,且沿第一方向间隔地设置于所述轴孔内。
  40. 根据权利要求2所述的推进器,其特征在于:
    所述电控组件与所述机架固定连接。
  41. 根据权利要求40所述的推进器,其特征在于:
    所述机架上连接有第一支撑件和第二支撑件,所述第一支撑件和所述第二支撑件沿第一方向相间隔;
    所述连接轴的一端转动连接于所述第一支撑件和所述第二支撑件,其转动轴线沿第一方向;
    所述电控组件固定连接于所述第一支撑件和所述第二支撑件之间。
  42. 根据权利要求11-18、28、35-39、41任一项所述的推进器,其特征在于:
    所述推进器还包括固定于所述第一支撑件的第一轴承,所述连接轴与所述第一轴承转动配合;
    所述第一支撑件上设置有第一减震套筒,所述第一减震套筒的轴线垂直所述连接轴且垂直船身的前后方向;
    所述第一轴承设有穿设于所述第一减震套筒的第一减震轴,所述第一减震轴与所述第一减震套筒弹性配合,形成所述第一轴承与所述第一支撑件之间的第一减震悬置,用于吸收沿连接轴轴线方向的拉扯振动力。
  43. 根据权利要求11-18、28、35-39、41任一项所述的推进器,其特征在于:
    所述推进器还包括固定于所述第二支撑件的第二轴承,所述连接轴与所述第二轴承转动配合;
    所述第二支撑件上设置有第二减震套筒,所述第二减震套筒的轴线平行于所述连接轴的轴线;
    所述第二轴承设有穿设于所述第二减震套筒的第二减震轴,所述第二减震轴与所述第二减震套筒弹性配合,形成所述第二轴承与所述第二支撑件之间的第二减震悬置,用于吸收沿船身前后方向的抵顶振动力。
  44. 根据权利要求11-18、28、35-39、41任一项所述的推进器,其特征在于:
    所述第一支撑件和所述机架之间、所述第二支撑件和所述机架之间分别设有减震悬置。
  45. 根据权利要求11-41任一项所述的推进器,其特征在于:
    所述船身设置有夹具和起翘驱动器;
    所述机架可转动地连接于所述夹具,所述起翘驱动器传动连接所述机架,用于驱动所述机架和连接至所述机架的推进桨起翘。
  46. 根据权利要求1所述的推进器,其特征在于:
    所述推进器还包括压水板;
    所述压水板连接于所述底壳;
    所述推进桨位于所述压水板远离所述机架一侧。
  47. 根据权利要求46所述的推进器,其特征在于:
    所述第一电机位于所述压水板远离所述机架一侧。
  48. 根据权利要求1所述的推进器,其特征在于:
    所述第一电机与所述推进桨同轴设置,且所述第一电机的前端面贴合连接于所述底壳靠近所述推进桨一侧表面。
  49. 根据权利要求46所述的推进器,其特征在于:
    所述内部空间包括沿第一方向连通的第一空间和第二空间,所述第一空间位于所述压水板远离所述机架一侧,所述第二空间位于所述压水板靠近所述机架一侧;
    所述第一电机全部或部分容置于所述第二空间。
  50. 根据权利要求49所述的推进器,其特征在于:
    所述第一电机的周面和后端面至少部分与限定所述第二空间的表面部分接触。
  51. 根据权利要求1所述的推进器,其特征在于:
    所述第一电机和所述推进桨在第一方向上错开设置。
  52. 根据权利要求1所述的推进器,其特征在于:
    所述第一电机与所述底壳之间设有导热结构。
  53. 根据权利要求52所述的推进器,其特征在于:
    所述内部空间内装设有冷却液,所述第一电机至少部分浸没于所述冷却液中。
  54. 根据权利要求53所述的推进器,其特征在于:
    所述推进器还包括冷却系统;
    所述冷却系统包括泵机和输送管道,所述泵机设有进液口和出液口,所述进液口用于抽入冷却液,所述出液口连接所述输送管道,用于将抽取的冷却液喷淋于所述第一电机。
  55. 根据权利要求1所述的推进器,其特征在于:
    所述第一电机为双定子单转子电机,包括两个定子和一个转子,两个所述定子并排,并且分别与一个所述转子电磁配合,用于共同驱动转子转动。
  56. 根据权利要求1所述的推进器,其特征在于:
    所述第一电机为单定子单转子电机,包括一个定子和一个转子,所述定子和所述转子对应,用于驱动转子转动。
  57. 根据权利要求1所述的推进器,其特征在于:
    所述第一电机为单定子双转子电机,包括一个定子和两个转子,所述定子和两个所述转子分别对应,用于驱动两个所述转子转动。
  58. 根据权利要求1所述的推进器,其特征在于:
    所述第一电机为双定子双转子电机,包括两个定子和两个转子,两个所述定子和两个所述转子对应,用于分别驱动转子转动。
  59. 根据权利要求1所述的推进器,其特征在于:
    所述推进桨可转动地配合于所述底壳;
    所述第一电机具有输出轴,所述输出轴连接所述推进桨,用于带动所述推进桨转动。
  60. 根据权利要求59所述的推进器,其特征在于:
    所述第一电机的输出轴与所述推进桨的转动轴线同轴,所述输出轴固定连接所述推进桨。
  61. 根据权利要求59所述的推进器,其特征在于:
    所述第一电机的输出轴通过传动机构传动连接所述推进桨。
  62. 根据权利要求61所述的推进器,其特征在于:
    所述传动机构设有变速组件;
    所述变速组件一体集成于所述第一电机。
  63. 根据权利要求61所述的推进器,其特征在于:
    所述传动机构包括锥齿轮组,所述锥齿轮组包括啮合配合的第一锥齿轮和第二锥齿轮,所述第一锥齿轮的转动轴线沿第一方向,所述第二锥齿轮的转动轴线沿第二方向;
    所述第一电机的输出轴沿第一方向延伸,并连接所述第一锥齿轮;
    所述推进桨的转动轴线沿第二方向,所述推进桨连接所述第二锥齿轮。
  64. 根据权利要求1所述的推进器,其特征在于:
    所述推进器还包括第二电机;
    所述第二电机与所述第一电机串联地连接所述推进桨,或者,所述第二电机与所述第一电机并联地连接所述推进桨。
  65. 根据权利要求64所述的推进器,其特征在于:
    所述第二电机位于所述内部空间之内并和所述底壳热耦合,或者,所述第二电机位于所述内部空间之外。
  66. 一种水域可移动设备,其特征在于,包括:
    船身;以及
    权利要求1-65任一项所述的推进器,所述推进器安装于所述船身。
  67. 根据权利要求66所述的水域可移动设备,其特征在于:
    所述水域可移动设备还包括电池组件;
    所述电池组件电连接于所述第一电机,用于向所述第一电机供电。
PCT/CN2022/106873 2022-07-20 2022-07-20 推进器及水域可移动设备 WO2024016235A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280007872.3A CN116802973A (zh) 2022-07-20 2022-07-20 推进器及水域可移动设备
PCT/CN2022/106873 WO2024016235A1 (zh) 2022-07-20 2022-07-20 推进器及水域可移动设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/106873 WO2024016235A1 (zh) 2022-07-20 2022-07-20 推进器及水域可移动设备

Publications (1)

Publication Number Publication Date
WO2024016235A1 true WO2024016235A1 (zh) 2024-01-25

Family

ID=88046959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106873 WO2024016235A1 (zh) 2022-07-20 2022-07-20 推进器及水域可移动设备

Country Status (2)

Country Link
CN (1) CN116802973A (zh)
WO (1) WO2024016235A1 (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6902446B1 (en) * 2003-04-07 2005-06-07 Brunswick Corporation DC motor with integral controller
CN1756052A (zh) * 2004-09-27 2006-04-05 通用电气公司 带有双边定子的电机
US20080293312A1 (en) * 2007-05-21 2008-11-27 Sean Scott Marine propulsion device
US20190054990A1 (en) * 2017-08-17 2019-02-21 Globe Motors, Inc. Trolling motor
CN109789915A (zh) * 2016-08-01 2019-05-21 纯船舶公司 具有驱动机构的船舶电力推进系统及相关系统和方法
US20200223521A1 (en) * 2019-01-15 2020-07-16 Navico Holding As Trolling motor assembly with deployment assistance
CN215554066U (zh) * 2021-06-19 2022-01-18 洛阳双龙塑料制品有限公司 一种舷外机用电液起翘器
CN114148497A (zh) * 2021-12-23 2022-03-08 广东逸动科技有限公司 水下推进器及水上运载装置
CN114537632A (zh) * 2021-12-29 2022-05-27 广东逸动科技有限公司 调档装置以及船用推进器
CN217135320U (zh) * 2022-03-25 2022-08-05 广东逸动科技有限公司 转动环、电机、船用推进器及船舶
CN217824622U (zh) * 2022-03-25 2022-11-15 广东逸动科技有限公司 转动环、电机、船用推进器及船舶
CN217824620U (zh) * 2022-03-25 2022-11-15 广东逸动科技有限公司 电机、船用推进器及船舶
CN217824621U (zh) * 2022-03-25 2022-11-15 广东逸动科技有限公司 转动环、电机、船用推进器及船舶
CN217824628U (zh) * 2022-03-25 2022-11-15 广东逸动科技有限公司 电机、船用推进器及船舶

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203558198U (zh) * 2013-08-14 2014-04-23 南京高精船用设备有限公司 甲板式z型船用全回转推进器
US10507897B2 (en) * 2016-06-07 2019-12-17 Yamaha Hatsudoki Kabushiki Kaisha Vessel propulsion apparatus
CN106628081A (zh) * 2016-11-29 2017-05-10 海南大学 一种用于航海船舶的螺旋桨推进系统
CN211893616U (zh) * 2020-04-22 2020-11-10 重庆京穗船舶制造有限公司 电动舷外机装配结构
CN216611563U (zh) * 2021-10-11 2022-05-27 常州高尔登科技有限公司 一种电动船用推进器
CN114302617B (zh) * 2021-12-24 2023-12-26 广东逸动科技有限公司 散热壳、机箱、船用电动推进器及散热控制方法
CN218229375U (zh) * 2022-07-20 2023-01-06 广东逸动科技有限公司 推进器及水域可移动设备

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6902446B1 (en) * 2003-04-07 2005-06-07 Brunswick Corporation DC motor with integral controller
CN1756052A (zh) * 2004-09-27 2006-04-05 通用电气公司 带有双边定子的电机
US20080293312A1 (en) * 2007-05-21 2008-11-27 Sean Scott Marine propulsion device
CN109789915A (zh) * 2016-08-01 2019-05-21 纯船舶公司 具有驱动机构的船舶电力推进系统及相关系统和方法
US20190054990A1 (en) * 2017-08-17 2019-02-21 Globe Motors, Inc. Trolling motor
US20200223521A1 (en) * 2019-01-15 2020-07-16 Navico Holding As Trolling motor assembly with deployment assistance
CN215554066U (zh) * 2021-06-19 2022-01-18 洛阳双龙塑料制品有限公司 一种舷外机用电液起翘器
CN114148497A (zh) * 2021-12-23 2022-03-08 广东逸动科技有限公司 水下推进器及水上运载装置
CN114537632A (zh) * 2021-12-29 2022-05-27 广东逸动科技有限公司 调档装置以及船用推进器
CN217135320U (zh) * 2022-03-25 2022-08-05 广东逸动科技有限公司 转动环、电机、船用推进器及船舶
CN217824622U (zh) * 2022-03-25 2022-11-15 广东逸动科技有限公司 转动环、电机、船用推进器及船舶
CN217824620U (zh) * 2022-03-25 2022-11-15 广东逸动科技有限公司 电机、船用推进器及船舶
CN217824621U (zh) * 2022-03-25 2022-11-15 广东逸动科技有限公司 转动环、电机、船用推进器及船舶
CN217824628U (zh) * 2022-03-25 2022-11-15 广东逸动科技有限公司 电机、船用推进器及船舶

Also Published As

Publication number Publication date
CN116802973A (zh) 2023-09-22

Similar Documents

Publication Publication Date Title
EP0590867B9 (en) Ship propulsion arrangement
EP2139757B1 (en) Vessel with retractable motor/generator assembly
US7485018B2 (en) Marine drive system
US20100248562A1 (en) Hybrid outboard motor
US8298023B2 (en) Hybrid outboard motor
US20220234708A1 (en) Marine drive unit and marine vessel
CN218229375U (zh) 推进器及水域可移动设备
CN110386239A (zh) 一种水下机器人的舵板系统
WO2024016235A1 (zh) 推进器及水域可移动设备
CN210912843U (zh) 一种电动喷水推进器
CN218229369U (zh) 推进器及水域可移动设备
CN218229374U (zh) 推进器及水域可移动设备
CN218229373U (zh) 推进器及水域可移动设备
CN218229372U (zh) 推进器及水域可移动设备
CN218229370U (zh) 推进器及水域可移动设备
CN218229371U (zh) 推进器及水域可移动设备
JP2000142576A (ja) 船舶推進装置
US20220242544A1 (en) Watercraft with Electric Propulsion System
CN214648954U (zh) 一种舵桨推进器
CN113443111A (zh) 一种电动船外挂机驱动结构
CN207631461U (zh) 一种运用于游艇的电动机推进和操控系统
WO2024036641A1 (zh) 推进器及水域可移动设备
CN110539868A (zh) 一种电动喷水推进器
CN218506114U (zh) 动力装置及水域可移动设备
WO2024055214A1 (zh) 船外机及水域可移动设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951512

Country of ref document: EP

Kind code of ref document: A1