WO2024055214A1 - 船外机及水域可移动设备 - Google Patents

船外机及水域可移动设备 Download PDF

Info

Publication number
WO2024055214A1
WO2024055214A1 PCT/CN2022/118827 CN2022118827W WO2024055214A1 WO 2024055214 A1 WO2024055214 A1 WO 2024055214A1 CN 2022118827 W CN2022118827 W CN 2022118827W WO 2024055214 A1 WO2024055214 A1 WO 2024055214A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
cooling
transmission mechanism
outboard motor
heat dissipation
Prior art date
Application number
PCT/CN2022/118827
Other languages
English (en)
French (fr)
Inventor
李军
陶师正
万小康
屈晓峰
王海洋
Original Assignee
广东逸动科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东逸动科技有限公司 filed Critical 广东逸动科技有限公司
Priority to PCT/CN2022/118827 priority Critical patent/WO2024055214A1/zh
Priority to CN202280006455.7A priority patent/CN116897129A/zh
Publication of WO2024055214A1 publication Critical patent/WO2024055214A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/17Use of propulsion power plant or units on vessels the vessels being motor-driven by electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/38Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H23/00Transmitting power from propulsion power plant to propulsive elements
    • B63H23/32Other parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/125Arrangements on vessels of propulsion elements directly acting on water of propellers movably mounted with respect to hull, e.g. adjustable in direction, e.g. podded azimuthing thrusters

Definitions

  • This application relates to the field of ship technology, specifically to outboard motors and movable equipment in water areas.
  • the outboard motor is the propulsion device of the ship and is used to push the ship to move in the water. It is known that the drive system of an outboard motor is large in size, has low power density, and has low energy transfer efficiency. At the same time, the cooling system of the drive system has a complex structure, which makes the drive system have high mass, vibration and noise, which is not conducive to the users of the product. experience.
  • This application provides an outboard motor and movable equipment in water areas.
  • This application provides an outboard motor, including a frame, a power motor, a driver, a transmission mechanism, a propeller and a heat dissipation mechanism.
  • the frame defines a receiving cavity.
  • the power motor, the driver and the transmission mechanism are all located in the accommodation cavity, the driver is electrically connected to the power motor, and one end of the transmission mechanism is directly connected to the output end of the power motor.
  • the other end of the transmission mechanism extends out of the frame, and one end of the transmission mechanism extends out of the frame is connected to the propeller to transmit the rotational torque of the power motor to the propeller
  • the heat sink is configured on the frame and used to cool the power motor, the driver and the transmission mechanism.
  • the power motor, driver and transmission mechanism are all located in the accommodation cavity.
  • the driver is electrically connected to the power motor.
  • One end of the transmission mechanism is directly connected to the output end of the power motor, so that the power motor, driver and transmission mechanism are integrated together.
  • the power motor, The driver and the transmission mechanism do not need to be connected through an external structure, which not only saves the AC three-phase line between the power motor and the driver as well as peripheral accessories such as mounting brackets, reduces the production cost of the outboard motor, but also reduces the need for AC three-phase The energy transmission path of the line, thereby reducing the energy loss on the transmission path and improving the energy utilization efficiency.
  • the power motor, driver and transmission mechanism are all located in the accommodation cavity, so that the heat dissipation mechanism can cool the power motor, driver and transmission mechanism at the same time, thereby eliminating the need to use a complex external cooling mechanism and using a simple heat dissipation mechanism. It can realize the cooling of the power motor, driver and transmission mechanism in the frame, improve the cooling efficiency of the outboard motor, reduce the quality of the heat dissipation mechanism, thereby further reducing the weight and noise vibration of the outboard motor, and improve the outboard motor's quality. machine user experience.
  • This application also provides a movable device in water areas, including: a hull; and the outboard motor described above, and the outboard motor is installed on the hull.
  • Figure 1 is a schematic diagram of the usage state of the movable equipment in water areas according to an embodiment of the present application
  • Figure 2 is a schematic structural diagram of an outboard motor in an embodiment of the present application.
  • Figure 3 is a schematic diagram of another implementation of the outboard motor according to the embodiment of the present application.
  • Figure 4 is a schematic diagram of another implementation of the outboard motor according to the embodiment of the present application.
  • Figure 5 is a schematic diagram of another implementation of the outboard motor according to the embodiment of the present application.
  • Figure 6 is a schematic diagram of another implementation of the outboard motor according to the embodiment of the present application.
  • Figure 7 is a schematic diagram of another implementation of the outboard motor according to the embodiment of the present application.
  • Figure 8 is a schematic diagram of another implementation of the outboard motor according to the embodiment of the present application.
  • FIG. 9 is a schematic diagram of another implementation of the outboard motor according to the embodiment of the present application.
  • the first electronic control cavity 111 The first electronic control cavity 111
  • the first oil cooling chamber 112 The first oil cooling chamber 112
  • the second oil cooling chamber 1212 The second oil cooling chamber 1212
  • the third electronic control chamber 1311 The third electronic control chamber 1311
  • the third oil cooling chamber 1312 The third oil cooling chamber 1312
  • Second cooling pipe 143 Second cooling pipe 143
  • this embodiment provides a water movable device 300.
  • the water movable device 300 can be various types of water vehicles such as commercial ships, passenger ships, yachts, fishing boats, sailing boats, and civilian ships.
  • the movable equipment 300 in the water area includes a hull 200 and an outboard motor 100 .
  • the hull 200 can provide a certain buoyancy, so that the movable equipment 300 in the water area can float on the water and carry people or objects.
  • the hull 200 has an inner space 201, and the inner space 201 is used to accommodate people, objects or other structures.
  • the specific structure of the hull 200 can be set as needed.
  • the outboard motor 100 is installed on the hull 200 and is used to provide propulsion force to push the movable equipment 300 in the water area to move in the water.
  • the outboard motor 100 in this embodiment includes a frame 10 , a power motor 21 , a driver 22 , a transmission mechanism 30 , a propeller 23 and a heat dissipation mechanism 40 .
  • the frame 10 defines a receiving cavity 11 .
  • the power motor 21, the driver 22 and the transmission mechanism 30 are all located in the accommodation cavity 11.
  • the driver 22 is electrically connected to the power motor 21.
  • One end of the transmission mechanism 30 is directly connected to the output end of the power motor 21, and the other end of the transmission mechanism 30 extends.
  • Out of the frame 10 one end of the transmission mechanism 30 extends out of the frame 10 and is connected to the propeller 23 to transmit the rotational torque of the power motor 21 to the propeller 23 .
  • the heat dissipation mechanism 40 is provided on the frame 10 and is used to cool the power motor 21, the driver 22 and the transmission mechanism 30.
  • the power motor 21, the driver 22 and the transmission mechanism 30 are all located in the accommodation cavity 11.
  • the driver 22 is electrically connected to the power motor 21.
  • One end of the transmission mechanism 30 is directly connected to the output end of the power motor 21, so that the power motor 21 and the driver 22 Integrated with the transmission mechanism 30, the power motor 21, the driver 22 and the transmission mechanism 30 do not need to be connected through external structures, which saves the AC three-phase line between the power motor 21 and the driver 22 as well as peripheral accessories such as mounting brackets. , reducing the production cost of the outboard motor 100, and also reducing the energy transmission path of the AC three-phase line, thereby reducing the energy loss on the transmission path and improving the energy utilization efficiency.
  • the power motor 21, the driver 22 and the transmission mechanism 30 are all located in the accommodation cavity 11, so that the heat dissipation mechanism 40 can cool the power motor 21, the driver 22 and the transmission mechanism 30 at the same time, thereby eliminating the need to use a complicated external
  • the cooling mechanism uses a simple heat dissipation mechanism 40 to cool the power motor 21, driver 22 and transmission mechanism 30 in the frame 10, which improves the cooling efficiency of the outboard motor 100 and reduces the quality of the heat dissipation mechanism 40, thereby further The weight, noise and vibration of the outboard motor 100 are reduced, and the user experience of the outboard motor 100 is improved.
  • the accommodation cavity 11 may be composed of a cavity, that is, the power motor 21, the driver 22 and the transmission mechanism 30 are jointly accommodated in a cavity.
  • the accommodating cavity 11 may also be composed of multiple adjacent cavities, that is, the power motor 21 , the driver 22 and the transmission mechanism 30 may be distributed and accommodated in multiple cavities of the accommodating cavity 11 .
  • the frame 10 may be the casing of the outboard motor 100 , and plays a rigid bearing role for the entire outboard motor 100 .
  • the entire outboard motor 100 is installed on the hull 200 .
  • the layout of the power motor 21, the driver 22 and the transmission mechanism 30 on the frame 10 can be in various forms and is not limited to the structural form of the embodiment shown in Figure 2. Any power motor 21, driver 22 and transmission mechanism 30 can be used. Structures that are adjacent to each other and centrally arranged in the accommodating cavity 11 of the rack 10 belong to the embodiments of the present application.
  • the heat dissipation mechanism 40 includes a built-in heat dissipation component 41.
  • the built-in heat dissipation component 41 is provided on the rack 10.
  • the built-in heat dissipation component 41 is used to dissipate heat to the rack 10.
  • the rack 10 can absorb the power of the motor. 21. Heat of driver 22 and transmission mechanism 30.
  • the built-in heat dissipation component 41 can dissipate heat to the rack 10, and the rack 10 can absorb the heat of the power motor 21, the driver 22 and the transmission mechanism 30, so that the temperature of the rack 10 can be quickly exchanged to the external environment through the built-in heat dissipation component 41.
  • This allows the frame 10 to absorb the heat of the power motor 21, the driver 22 and the transmission mechanism 30 more quickly, thereby improving the cooling efficiency of the power motor 21, the driver 22 and the transmission mechanism 30.
  • the built-in heat dissipation component 41 can be disposed in the frame 10 , and can also simplify the bracket structure on the outside of the frame 10 , thereby further reducing the weight and manufacturing cost of the outboard motor 100 .
  • the rack 10 is provided with a first partition 51 , and the first partition 51 separates the accommodation cavity 11 into a first electronic control cavity 111 and a first oil cooling cavity 112 .
  • the motor 21 and the transmission mechanism 30 are accommodated in the first oil cooling cavity 112
  • the driver 22 is accommodated in the first electric control cavity 111 .
  • the first oil cooling chamber 112 When the power motor 21 and the transmission mechanism 30 are running in the first oil cooling chamber 112, the first oil cooling chamber 112 is often filled with cooling medium.
  • the first partition 51 can prevent the operating medium in the first oil cooling chamber 112 from entering the second oil cooling chamber 112. In an electrical control cavity 111, it is prevented from damaging the driver 22, thereby increasing the service life of the driver 22.
  • the first partition 51 can also ensure the sealing performance of the first oil cooling chamber 112 and the first electric control chamber 111. When one of the first oil cooling chamber 112 and the first electric control chamber 111 accidentally gets water, it can ensure that The other one will not be affected, so that the service life of the power motor 21 and the driver 22 can be increased, and maintenance of either one can be facilitated.
  • the first oil cooling chamber 112 and the first electronic control chamber 111 can also ensure that the power motor 21 and the driver 22 are respectively firmly installed in the wave pressing part 14 .
  • the outboard motor 100 further includes a first cable 25 that connects the power motor 21 and the driver 22 .
  • the first partition 51 is provided with a first threading hole 511 and is connected to the first cable 25 .
  • the inner peripheral side wall of a threading hole 511 is closely matched with the first wire harness sealing member 72 .
  • the first cable 25 passes through the first threading hole 511 and is closely matched with the first wire harness sealing member 72 .
  • the first cable 25 can facilitate the driver 22 to control the power motor 21 accurately and efficiently, thereby adjusting the output power of the power motor 21; the cooperation of the first threading hole 511 and the first wire harness seal 72 can facilitate the first cable 25 in the power motor 21 It is connected to the driver 22 and can still ensure the isolation between the first electronic control chamber 111 and the first oil cooling chamber 112 .
  • the first wire harness seal 72 in this embodiment may be a sealing structure such as an oil seal or a sealing ring.
  • the first cooling oil 61 is built into the first oil cooling cavity 112 .
  • the first cooling oil 61 is used for heat exchange with the power motor 21 and at least part of the transmission mechanism 30 .
  • the cooling oil 61 is also used to exchange heat with the frame 10 to cool the power motor 21 and at least part of the transmission mechanism 30 .
  • the first cooling oil 61 is also used to reduce the rotation resistance of the power motor 21 and the transmission resistance of the transmission mechanism 30 .
  • the first cooling oil 61 will not enter the first electric control chamber 111 and damage the driver 22 .
  • the first cooling oil 61 can perform heat exchange with the power motor 21 and at least part of the transmission mechanism 30 , and then the power motor 21 and at least part of the transmission mechanism 30 The transferred heat is transferred to the frame 10, and the heat exchange between the frame 10 and the external environment can have a cooling effect on the first cooling oil 61, thereby improving the heat transfer of the power motor 21 and at least part of the transmission mechanism 30 to the frame.
  • the transmission efficiency is 10, thereby further improving the cooling efficiency of the power motor 21 and at least part of the transmission mechanism 30.
  • the first cooling oil 61 can further reduce the rotational resistance of the power motor 21 and the transmission mechanism 30 , and can facilitate the replacement and upgrade of the power motor 21 to a higher power motor to improve the propulsion performance of the outboard motor 100 .
  • a part of the first oil cooling chamber 112 is located underwater.
  • the part of the first oil cooling chamber 112 located underwater is used to receive the first cooling oil 61 and has a built-in heat dissipation component 41 It includes a circulation component 411 , which is used to extract part of the first cooling oil 61 and transport it to the power motor 21 and at least part of the transmission mechanism 30 .
  • the circulation component 411 can transport the low-temperature first cooling oil 61 to the power motor 21 and at least part of the transmission mechanism 30 and exchange heat with them.
  • the first cooling oil 61 that is heated after the heat exchange is completed can be cooled under the action of its own gravity or under the influence of its own gravity. Under the action of the circulation component 411, it returns to the first oil cooling chamber 112 located underwater, and then is cooled into the low-temperature first cooling oil 61 through heat exchange between the frame 10 and the water flow in the water area.
  • the circulation component 411 includes a circulation pump 4111, a return pipe 4112 and a first cooling pipe 4113.
  • One end of the return pipe 4112 is submerged in the first cooling oil 61, and the other end of the return pipe 4112 It is connected with the circulation pump 4111.
  • One end of the first cooling pipe 4113 faces the power motor 21 and at least part of the transmission mechanism 30.
  • the other end of the first cooling pipe 4113 is connected with the circulation pump 4111.
  • the circulation pump 4111 is used to pump the first cooling pipe through the return pipe 4112.
  • the oil 61 is cooled and transported to the power motor 21 and at least part of the transmission mechanism 30 through the first cooling pipe 4113 .
  • the circulation pump 4111 can improve the flow efficiency of the first cooling oil 61 , thereby further improving the heat dissipation efficiency of the power motor 21 and at least part of the transmission mechanism 30 .
  • the first cooling oil 61 can move along the transmission path of the power motor 21 and part of the transmission mechanism 30, and evenly contacts the output shaft 213 of the power motor 21 and part of the transmission mechanism 30, while providing better lubrication and heat absorption. role.
  • filters 4114 are respectively provided in the first cooling pipe 4113 and the return pipe 4112 to filter the first cooling oil 61 and prevent it from wearing the power motor 21 and transmission mechanism 30.
  • the built-in heat dissipation component 41 also includes a spray component 412 connected to the circulation component 411 , and the spray component 412 is used to receive the extracted first cooling from the circulation component 411 oil 61, and spray the extracted first cooling oil 61 to the power motor 21 and at least part of the transmission mechanism 30.
  • the spray member 412 can spray the low-temperature first cooling oil 61 to the power motor 21 and at least part of the transmission mechanism 30, thereby increasing the contact area between the power motor 21 and at least part of the transmission mechanism 30 and the first cooling oil 61, thereby further Improve its heat dissipation efficiency.
  • the built-in heat dissipation component 41 includes a water-cooling tube 413 built between the outer surface and the inner surface of the frame 10 .
  • the water-cooling tube 413 is used to pass cooling water to the power motor. 21.
  • the driver 22 and the transmission mechanism 30 can exchange heat with the frame 10, and the frame 10 can exchange heat with the cooling water.
  • the heat of the power motor 21 and the transmission mechanism 30 can be heat exchanged with the cooling water in the water cooling pipe 413 through the frame 10 , thereby improving the cooling efficiency of the power motor 21 , the driver 22 and the transmission mechanism 30 .
  • the installation bracket of the water-cooling pipe 413 can be omitted, thereby reducing the overall gravity of the built-in heat dissipation assembly 41 and the weight of the outboard motor 100 .
  • the built-in heat dissipation component 41 also includes a water tank 414.
  • the water tank 414 has a water outlet 4141 and a water return port 4142.
  • One end of the water cooling pipe 413 is connected to the water outlet 4141, and the other end of the water cooling pipe 413 is connected to the water outlet 4141.
  • the water return port 4142 is connected, so that the cooling water after heat exchange with the rack 10 can flow back into the water tank 414, and the cooling water in the water tank 414 can flow into the rack 10 for heat exchange with the rack 10; or, the water cooling pipe 413
  • One end of the water cooling pipe 413 is used to pass into the cooling water in the water area, and the other end of the water cooling pipe 413 is used to guide the cooling water after heat exchange with the rack 10 to the water area.
  • a better heat exchange effect can be achieved through the water tank 414 or directly through the cooling water in the water area.
  • the power motor 21 includes a stator 211, a rotor 212 and an output shaft 213.
  • the rotor 212 cooperates with the stator 211.
  • One end of the output shaft 213 is connected to the rotor 212, and the other end is connected to the transmission mechanism 30.
  • the first cooling oil 61 is also used to cool the rotor 212 and/or the stator 211 .
  • the first cooling oil 61 can reduce the operating temperatures of the rotor 212 and the stator 211 . Even if the stator 211 and the rotor 212 have high operating power, their heat generation will be reduced under the action of the first cooling oil 61 , thus making the power motor 21 A motor with greater power can be used to improve the propulsion efficiency of the outboard motor 100 .
  • the heat dissipation mechanism 40 further includes an external heat dissipation component 42 , and the external heat dissipation component 42 is used to exchange heat from the rack 10 to the external environment.
  • the external heat dissipation assembly 42 can improve the heat exchange efficiency between the frame 10 and the external environment, thereby further improving the heat dissipation efficiency of the outboard motor 100 .
  • the heat dissipation mechanism 40 may be provided with only the built-in heat dissipation component 41, only the external heat dissipation component 42, or both the built-in heat dissipation component 41 and the external heat dissipation component 42.
  • the heat dissipation mechanism 40 includes an external heat dissipation component 42 , which is disposed on the outer surface of the rack 10 .
  • the external heat dissipation component 42 is used to absorb the energy of the rack 10 heat and exchange heat with the outside world.
  • the external heat dissipation component 42 can improve the heat exchange efficiency between the frame 10 and the outside world, so that the heat of the power motor 21, the driver 22 and the transmission mechanism 30 can be transferred to the frame 10 faster.
  • the external heat dissipation assembly 42 can facilitate the maintenance of the outboard motor 100, reduce the volume and weight of the frame 10, and improve the convenience of disassembly and assembly of the outboard motor 100.
  • the frame 10 has an above-water part 12 , the above-water part 12 is used for contact with the air, an external heat dissipation component 42 is provided on the outer surface of the above-water part 12 , the power motor 21 , the driver 22 and At least part of the transmission mechanism 30 is disposed in the position of the accommodation cavity 11 corresponding to the above water part 12.
  • the power motor 21, the driver 22 and at least part of the transmission mechanism 30 can exchange heat with the frame 10, and the frame 10 can transfer heat to an external heat sink.
  • Component 42, the external heat dissipation component 42 is also used for air flow heat exchange, thereby cooling the power motor 21, the driver 22 and at least part of the transmission mechanism 30.
  • the external heat dissipation component 42 includes a plurality of heat dissipation fins 421 , the plurality of heat dissipation fins 421 are arranged side by side on the water portion 12 , and the first flow guide grooves between adjacent heat dissipation fins 421
  • the extension direction of 422 is parallel to the propulsion direction of the propeller 23 .
  • the extending direction of the first guide groove 422 between the plurality of radiating fins 421 is parallel to the propelling direction of the propeller 23, which can reduce the air resistance encountered by the radiating fins 421, thus ensuring the heat dissipation performance of the radiating fins 421 while ensuring the stability of the propeller. Propulsion performance, and can increase the flow speed of the airflow from the first guide groove 422, thereby increasing the heat dissipation speed of the heat sink 421.
  • the heat sink 421 also has a lighter weight, which can also reduce the weight impact on the thruster and reduce costs.
  • the frame 10 has an underwater part 13 , the underwater part 13 is used to contact the water flow of the water area, and the power motor 21 and at least part of the transmission mechanism 30 are located in the underwater part 13 , the power motor 21 and at least part of the transmission mechanism 30 can be heat exchanged with the underwater part 13 .
  • the underwater part 13 can exchange heat with the water flow in the water area, and the power motor 21 and at least part of the transmission mechanism 30 can exchange heat with the underwater part 13 through air or cooling medium, so that the power motor 21 and at least part of the transmission mechanism 30 can exchange heat with the water flow.
  • the heat is dissipated and cooled, so that the heat dissipation mechanism 40 with limited heat dissipation capacity can be used to meet the heat dissipation needs of heat-generating structures such as the power motor 21 and the cost of the heat dissipation mechanism 40 is reduced.
  • the external heat dissipation component 42 is disposed on the outer surface of the underwater part 13 and used for heat exchange with the water flow.
  • the external heat dissipation component 42 can also exchange heat with the underwater part 13 .
  • the power motor 21, the driver 22 and at least part of the transmission mechanism 30 perform heat exchange with the underwater part 13 through media such as air or cooling oil in the underwater part 13.
  • the external heat dissipation component 42 conducts heat exchange with the underwater part 13 and the water flow. Therefore, the external heat dissipation assembly 42 can improve the heat exchange efficiency between the underwater part 13 and the water flow, thereby improving the heat exchange efficiency of the power motor 21, the driver 22 and at least part of the transmission mechanism 30 that exchange heat with the underwater part 13.
  • the external heat dissipation component 42 includes a plurality of heat dissipation fins 421 , the plurality of heat dissipation fins 421 are arranged side by side on the underwater part 13 , and the first flow guide between adjacent heat dissipation fins 421 The extending direction of the groove 422 is parallel to the propulsion direction of the propeller 23 .
  • the extending direction of the first guide groove 422 between the plurality of radiating fins 421 is parallel to the propulsion direction of the propeller 23, which can reduce the water flow resistance of the radiating fins 421, thereby ensuring the heat dissipation performance of the radiating fins 421 and ensuring the efficiency of the propeller. Propulsion performance, and can increase the flow speed of water from the first guide groove 422, thereby increasing the heat dissipation speed of the heat sink 421.
  • the heat sink 421 also has a lighter weight, which can also reduce the weight impact on the thruster and reduce costs.
  • the external heat dissipation component 42 includes a plurality of heat dissipation ribs 423 , which surround the peripheral side of the frame 10 and are connected with the power motor 21 , the driver 22 and at least part of the transmission mechanism 30 correspond.
  • the power motor 21, the driver 22 and at least part of the transmission mechanism 30 can conduct heat exchange through media such as air or cooling oil provided in the frame 10, and the frame 10 then conducts heat exchange with a plurality of heat dissipation ribs 423 of the external heat dissipation assembly 42.
  • the heat dissipation ribs 423 can in turn transfer the heat to the air or water flow in the external environment, so that multiple surroundings of the frame 10
  • the heat dissipation ribs 423 on the peripheral side can also achieve a heat dissipation effect, ensuring the heat dissipation performance of the heat sink 421 while ensuring the propulsion performance of the thruster, and has a lighter weight, thereby also reducing the impact on the weight of the thruster and reducing the cost.
  • a plurality of heat dissipation ribs 423 are spaced apart in the vertical direction and define the second guide groove 424 , so that the extension direction of the second guide groove 424 is aligned with the direction of the propeller 23 .
  • the propulsion direction is parallel, which can prevent the heat dissipation ribs 423 from interfering with the advancement of the propeller 23, increase the flow speed of the water flow from the second guide groove 424, and thereby increase the heat dissipation speed of the heat dissipation ribs 423.
  • a groove 15 is formed on the side of the rack 10 , and a part of the heat dissipation rib 423 is located in the groove 15 .
  • the groove 15 can not only increase the heat dissipation area, but also improve the thermal conductivity of the heat dissipation ribs 423 .
  • the frame 10 is provided with a wave pressing part 14 , the wave pressing part 14 has a receiving cavity 141 , the receiving cavity 141 is connected with the receiving cavity 11 , and the wave pressing part 14 is used to communicate with the water area.
  • the driver 22 is fixed in the receiving cavity 141 and is electrically connected to the power motor 21 to control the operation of the power motor 21 .
  • the driver 22 exchanges heat with the water flow through the wave pressing part 14 .
  • the frame 10 When the propeller is running, the frame 10 extends into the water, and the wave pressure part 14 is located at the water surface P of the water area.
  • the water flow in the water area can generate heat exchange with the wave pressure part 14, and then conduct heat exchange with the driver 22 located in the wave pressure part 14. heat exchange, thereby effectively reducing the heat generated by the driver 22 during the control of the motor operation, and improving the heat dissipation effect of the drive structure of the thruster.
  • the wave pressure part 14 can suppress the water waves stirred up by the propeller 23 and reduce the wave energy of the water waves, that is, reduce the energy consumption, so that the propeller propulsion efficiency is higher.
  • the propeller of this embodiment realizes heat exchange through the wave pressure part 14 located on the water surface.
  • the water flow rate at the wave pressure part 14 is relatively large, and the water flow quickly dissipates heat to the wave pressure part 14, so that the heat exchange efficiency of the driver 22 is relatively high. It is high and does not require additional cooling systems such as water pumps or oil pumps. On the premise of ensuring the heat dissipation effect of the driver 22, the production cost is reduced, the volume and weight of the thruster are reduced, and the user experience of the thruster is improved.
  • the wave-pressing part 14 in this embodiment has less modifications to open the first accommodation cavity 11, which can ensure that the wave-pressing part 14 suppresses the water waves stirred up by the propeller 23, reducing the Waste of energy can further improve the heat dissipation effect of the driver 22, thereby improving the propulsion efficiency of the thruster. Therefore, the thruster of this embodiment has simple installation and high heat dissipation efficiency, and will not affect the performance of the thruster itself, thus taking into account both propulsion performance and heat dissipation performance.
  • a cooling flow channel 142 is provided on the side of the wave pressing part 14 close to the water area.
  • the cooling flow channel 142 is isolated from the receiving cavity 141 .
  • the cooling flow channel 142 is used to pass the water flow into the water area, so that The wave pressing part 14 performs heat exchange with the water flow.
  • the outboard motor 100 is usually located in the water area when working, the water flow in the water area can be effectively utilized through the cooling flow channel 142 to facilitate heat exchange between the wave pressing part 14 and the water flow, thereby converting the heat generated by the power motor 21 and the driver 22 more efficiently. It is transferred to the water area to improve the heat dissipation effect of the power motor 21 and the driver 22.
  • the wave pressing part 14 is provided with a second cooling pipe 143 located in the receiving cavity 141 .
  • the second cooling pipe 143 is in contact with the driver 22 .
  • the second cooling pipe 143 is used to contact the driver 22 Thermal coupling, and the second cooling pipe 143 is connected with the cooling flow channel 142 to transmit the water flow delivered by the cooling flow channel 142.
  • the water flow transported in the cooling channel 142 can exchange heat with the second cooling pipe 143, and the driver 22 can exchange heat with the second cooling pipe 143, thereby realizing heat exchange between the driver 22 and the water flow, and improving the heat exchange of the driver 22.
  • Thermal efficiency is beneficial to increasing the rated power of the driver 22, thereby improving the propulsion efficiency of the outboard motor 100.
  • multiple cooling flow channels 142 are provided, and the multiple cooling flow channels 142 are distributed side by side.
  • the plurality of cooling flow channels 142 can have a uniform cooling effect on the side of the wave pressure portion 14, and can then conduct uniform heat exchange with various parts of the power motor 21 and the driver 22, so as to prevent the power motor 21 and the driver 22 from appearing.
  • the problem of local excessive temperature makes the temperature consistency of the power motor 21 and the driver 22 better.
  • the driver 22 is located on the inner surface of the receiving cavity 141 away from the propeller 23 , or the driver 22 is located on the inner surface of the receiving cavity 141 close to the propeller 23 .
  • the installation position of the driver 22 in the receiving cavity 141 can be adjusted.
  • the wave pressing part 14 is close to the side wall of the propeller 23 and is immersed in the water. It can also pass through the water. The water flow exchanges heat with the wave pressing part 14 and further exchanges heat with the driver 22 .
  • the frame 10 includes an above-water part 12 , and the above-water part 12 defines an above-water accommodation cavity 121 , in which the power motor 21 , the driver 22 and part of the transmission mechanism 30 are all received. .
  • the above water part 12 can also be additionally provided with an external heat dissipation component 42 that has a higher heat exchange efficiency than the water flow in the water area, so as to improve the heat dissipation efficiency of the power motor 21, the driver 22 and at least part of the transmission mechanism 30, and improve the power motor 21 and the driver 22. rated efficiency to improve the propulsion performance and cooling performance of the outboard motor 100.
  • the transmission mechanism 30 includes an upper transmission assembly 31 , which is received in the water accommodation chamber 121 .
  • the upper transmission assembly 31 is used to convert the rotational speed of the power motor 21 to the propeller 23 .
  • the upper transmission assembly 31 includes two intermeshing upper transmission teeth 311 .
  • One upper transmission tooth 311 is connected to the output shaft 213 of the power motor 21
  • the other upper transmission gear 311 is connected to the output shaft 213 of the power motor 21 .
  • the teeth 311 are connected to the propeller 23 through the central drive shaft 32 .
  • the transmission shaft can also facilitate the transmission of the power of the motor located in the upper accommodation cavity 11 to the underwater vehicle. Propeller 23.
  • the power motor 21 includes a power output end 215 for outputting torque and a fixed end 214 spaced apart from the power output end 215 , and the driver 22 is provided at the power output end 215 .
  • the fixed end 214 is on the side away from the power output end 215 .
  • the size of the above-water part 12 in the second direction can be reduced, and the second direction is the direction perpendicular to the axial direction of the output shaft 213 of the power motor 21, so that the outboard motor 100 can be installed on the second direction of the outboard motor 100.
  • the installation environment with dimensional requirements in both directions increases the applicable scope of the outboard motor 100.
  • the power motor 21 includes a power output end 215 for outputting torque and a fixed end 214 spaced apart from the power output end 215 .
  • the fixed end 214 and the power output end 215 form a
  • the driver 22 is provided on the outer peripheral side of the power motor 21 .
  • the size of the above-water part 12 in the axial direction of the output shaft 213 of the power motor 21 can be reduced, so that the outboard motor 100 can be installed in places that have size requirements in the axial direction of the output shaft 213.
  • the installation environment improves the application range of the outboard motor 100.
  • the frame 10 includes an above-water portion 12
  • the above-water portion 12 includes a first mounting portion 122 and a second mounting portion 123
  • the second mounting portion 123 and the first mounting portion 122 Fixed side by side, the first mounting part 122 defines a first mounting cavity 1221, the second mounting part 123 defines a second mounting cavity 1231, the driver 22 is accommodated in the first mounting cavity 1221, the power motor 21 and a part of the transmission mechanism 30 are accommodated in the second mounting cavity 1221.
  • Installation cavity 1231 is provided.
  • Locating the power motor 21 , part of the transmission mechanism 30 and the driver 22 in the first installation cavity 1221 and the second installation cavity 1231 respectively can further improve the protection of the power motor 21 , part of the transmission mechanism 30 and the driver 22 and avoid collision damage to the power motor 21 .
  • the motor 21, the transmission mechanism 30 and the driver 22 improve their service life.
  • the outboard motor 100 further includes a heat dissipation structure 124 .
  • the heat dissipation structure 124 is fixed between the first mounting part 122 and the second mounting part 123 and is connected with the first mounting part. 122 and the second mounting part 123 are thermally coupled.
  • the heat dissipation structure 124 can thermally couple the first mounting part 122 and the second mounting part 123 , the power motor 21 can exchange heat with the wall of the first mounting part 122 through air or cooling oil, and the first mounting part 122 can pass through the heat dissipation structure 124 To exchange heat with the external environment, the driver 22 can exchange heat with the wall of the second installation part 123 through air or cooling pipes, and the second installation part 123 can exchange heat with the external environment through the heat dissipation structure 124, thus achieving a heat dissipation structure 124.
  • the first mounting part 122 and the second mounting part 123 are dissipated.
  • the frame 10 includes an underwater part 13 , the underwater part 13 defines an underwater accommodation cavity 131 , the underwater part 13 is used to be disposed in water, and the propeller 23 is disposed in the underwater part. 13. At least a part of the transmission mechanism 30 is located in the underwater accommodation chamber 131 .
  • the propeller 23 can be driven with power, so that the propeller 23 operates and provides propulsion power to the outboard motor 100 .
  • the underwater accommodation cavity 131 contains a second cooling oil 62 , and the second cooling oil 62 is used to cool at least a part of the transmission mechanism 30 .
  • the second cooling oil 62 can exchange heat with the water flow of the water area through the frame 10, so that the second cooling oil 62 can cool down relatively quickly, thereby forming a low-temperature second cooling oil 62 and exchanging heat with the transmission mechanism 30.
  • the heat exchange efficiency between at least a part of the transmission mechanism 30 and the water flow in the water area is improved.
  • the frame 10 also includes an above-water part 12 .
  • the above-water part 12 defines an above-water accommodation cavity 121 .
  • the power motor 21 and the driver 22 are located in the above-water accommodation cavity 121 .
  • the transmission mechanism 30 includes a lower speed change assembly. 33 and the middle transmission shaft 32, the lower transmission assembly 33 is located in the underwater accommodation chamber 131, one end of the middle transmission shaft 32 is connected with the output end of the power motor 21, one end of the lower transmission assembly 33 is connected with the output end of the middle transmission shaft 32 The other end of the lower transmission assembly 33 is connected to the propeller 23 .
  • the central transmission shaft 32 can easily transmit the power of the motor to the underwater accommodation cavity 131, and then transmit the power to the propeller 23 through other structures of the first transmission mechanism 30, so as to facilitate different transmission requirements of the propeller 23.
  • the different transmission structures connecting the central drive shaft 32 to different propellers 23 are adjusted to increase the applicable range of the propeller.
  • the transmission structure is often prone to heat during the process of converting the torque rotation rate
  • the heat exchange efficiency between the underwater part 13 and the water flow is higher. This makes the heat exchange efficiency between the underwater part 13 and the second cooling oil 62 in the underwater accommodation cavity 131 higher, thereby improving the heat exchange efficiency between the lower transmission assembly 33 and the second cooling oil 62 , thereby improving the first water
  • the speed change efficiency of the speed change assembly is lowered to further improve the propulsion performance of the propeller 23.
  • the lower transmission assembly 33 includes two intermeshing lower transmission teeth 331 , one of the lower transmission teeth 331 is connected to the output shaft 213 of the power motor 21 , and the other is connected to the output shaft 213 of the power motor 21 .
  • the speed change gear 331 is connected with the middle transmission shaft 32 .
  • the outboard motor 100 further includes a second partition 52.
  • the second partition 52 separates the water accommodation chamber 121 into a second electronic control chamber 1211 and a second oil cooling chamber 1212.
  • the second oil cooling cavity 1212 is connected with the underwater accommodation cavity 131 .
  • the power motor 21 and part of the transmission mechanism 30 are located in the second oil cooling cavity 1212 .
  • the third cooling oil 63 is built into the second oil cooling cavity 1212 and the underwater accommodation cavity 131 . , the third cooling oil 63 is used to cool the power motor 21 and the transmission mechanism 30 .
  • the second partition 52 can prevent the third cooling oil 63 in the first oil cooling chamber 112 from entering the second electronic control chamber 1211 and preventing it from damaging the driver 22, thereby increasing the service life of the driver 22.
  • the second partition 52 can also ensure the sealing performance of the second oil cooling chamber 1212 and the second electric control chamber 1211. When one of the second oil cooling chamber 1212 and the second electric control chamber 1211 accidentally gets water, it can ensure that The other one will not be affected, which can increase the service life of the motor and driver 22 and facilitate maintenance of either one.
  • the second oil cooling chamber 1212 and the second electronic control chamber 1211 can also ensure that the power motor 21 and the driver 22 are firmly installed in the above water part 12 to avoid collision between the two.
  • the second oil cooling chamber 1212 is connected to the underwater accommodation chamber 131, it is convenient for the water flow passing through the water area to exchange heat with the rack 10, and then through the rack 10 to exchange heat with the third cooling oil 63 of the underwater accommodation chamber 131. , the cooling efficiency of the third cooling oil 63 is improved, and the heat exchange efficiency of the third cooling oil 63 to the power motor 21 and the transmission mechanism 30 is improved.
  • the outboard motor 100 further includes a second cable 26 .
  • the second cable 26 connects the power motor 21 and the driver 22 .
  • the second partition 52 is provided with a second threading hole 521 and is connected to the second cable 26 .
  • the inner peripheral side walls of the two threading holes 521 are closely matched with the second wire harness sealing member 73 , and the second cable 26 passes through the second threading hole 521 and tightly matched with the second wire harness sealing member 73 .
  • the second cable 26 can facilitate the driver 22 to control the power motor 21 accurately and efficiently, thereby adjusting the output power of the power motor 21; the cooperation of the second threading hole 521 and the second wire harness seal 73 can facilitate the second cable 26 in the power motor 21 It is connected to the driver 22 and can still ensure the isolation between the second electronic control chamber 1211 and the second oil cooling chamber 1212.
  • the second wire harness seal 73 in this embodiment may be a sealing structure such as an oil seal or a sealing ring.
  • the underwater portion 13 includes an extension shell 132 and an underwater flow guide 133 .
  • the extension shell 132 is connected to the above water part 12 , and the central transmission shaft 32 is provided in the extension shell 132 .
  • the underwater guide part 133 is connected to the extension shell 132.
  • the underwater guide part 133 is provided with an underwater cavity 1331, and the lower transmission assembly 33 is received in the underwater cavity 1331.
  • the extension shell 132 defines a receiving space 1321.
  • the receiving space 1321 is connected with the underwater cavity 1331 and the above water receiving cavity 121.
  • the central transmission shaft 32 is disposed in the receiving space 1321.
  • the water in the underwater guide part 133 is The lower cavity 1331 can provide an accommodation space for the lower transmission assembly 33 , and the underwater guide portion 133 can guide the underwater part 13 , thereby reducing the resistance encountered by the propeller 23 when propelling the movement of the frame 10 .
  • the accommodation space of the extension shell 132 can be connected with the above water accommodation cavity 121, so that the power motor 21, the central transmission shaft 32 and the lower transmission assembly 33 can be synchronized through the cooling medium built in the above water accommodation cavity 121. cooling, and can improve the heat exchange efficiency of the power motor 21, the central transmission shaft 32 and the lower transmission assembly 33 by exchanging heat with the frame 10 through the water flow in the water area.
  • the accommodation space of the extension shell 132 can be isolated from the above-water accommodation cavity 121, which can ensure that water will not enter the above-water accommodation cavity 121 from the underwater cavity 1331 when water accidentally enters the underwater cavity 1331, thus improving the efficiency of the propeller. Use reliability.
  • the accommodation space of the extension shell 132 and the underwater cavity 1331 jointly define the underwater accommodation cavity 131 .
  • the outboard motor 100 also includes a tail shaft 24.
  • One end of the tail shaft 24 is connected to the transmission mechanism 30.
  • the underwater part 13 has a tail shaft hole 134, and the inner circumference of the tail shaft hole 134 is The side wall is sealed with a tail shaft seal 71 , the tail shaft 24 passes through the tail shaft hole 134 and is sealed with the tail shaft seal 71 , and the tail shaft 24 is connected to the propeller 23 .
  • the power motor 21 transmits power to the transmission mechanism 30, so that the transmission mechanism 30 rotates as a whole, and then transmits the power to the tail shaft 24, thereby transmitting the rotation torque to the tail shaft 24, thereby realizing the rotation of the propeller 23, the propeller 23 is in the water area
  • water can be pushed, causing the water to propel the propeller.
  • the tail shaft hole 134 can facilitate the connection between the transmission mechanism 30 and the tail shaft 24 to realize the rotation and propulsion of the propeller 23.
  • the tail shaft seal 71 can prevent the water in the water area from entering the underwater accommodation cavity 131 through the tail shaft hole 134, thereby improving the water quality.
  • the sealing performance of the lower part 13 can not only prevent the second cooling oil 62 from leaking, but also prevent water from corroding the transmission mechanism 30 and improve the service life of the transmission mechanism 30 .
  • the tail shaft seal 71 in this embodiment may be a sealing structure such as an oil seal or a sealing ring.
  • the power motor 21 , the driver 22 and the transmission mechanism 30 are all located in the underwater accommodation chamber 131 .
  • the transmission stroke of the transmission mechanism 30 can be reduced and the torque transmission efficiency of the transmission mechanism 30 can be improved.
  • the temperature of the water flow in the water area is usually lower than the air temperature.
  • the heat exchange between the water flow and the underwater part 13 can also ensure a better heat dissipation effect for the power motor 21, driver 22 and transmission mechanism 30 integrated in the underwater accommodation cavity 131.
  • the underwater part 13 is provided with a third partition 53.
  • the third partition 53 separates the accommodation chamber 11 into a third electronic control chamber 1311 and a third oil cooling chamber 1312.
  • the power motor 21 and the transmission mechanism 30 are accommodated in the third oil cooling chamber 1312, and the driver 22 is accommodated in the third electronic control chamber 1311.
  • the third oil cooling chamber 1312 is often filled with operating medium.
  • the third partition plate 53 can prevent the operating medium in the third oil cooling chamber 1312 from entering the third electric control chamber 1311 to prevent it from damaging the driver 22, thereby increasing the service life of the driver 22.
  • the third partition plate 53 can also ensure the sealing performance of the third oil cooling chamber 1312 and the third electric control chamber 1311.
  • the third oil cooling chamber 1312 and the third electric control chamber 1311 can also ensure that the power motor 21 and the driver 22 are respectively firmly installed in the underwater part 13 to avoid collision between the two.
  • the outboard motor 100 further includes a third cable 27 .
  • the third cable 27 connects the power motor 21 and the driver 22 .
  • the third partition 53 is provided with a third threading hole 531 and is connected to the third cable 27 .
  • the third wire harness sealing member 74 is closely matched with the inner peripheral side wall of the three wire threading holes 531 .
  • the third cable 27 passes through the third wire threading hole 531 and is closely matched with the third wire harness sealing member 74 .
  • the third cable 27 can facilitate the driver 22 to control the power motor 21 accurately and efficiently, thereby adjusting the output power of the power motor 21; the cooperation of the third threading hole 531 and the third wire harness seal 74 can facilitate the third cable 27 in the power motor 21 It is connected to the driver 22 and can still ensure the isolation between the third electronic control chamber 1311 and the third oil cooling chamber 1312.
  • the third wire harness seal 74 in this embodiment may be a sealing structure such as an oil seal or a sealing ring.
  • the outboard motor 100 further includes a steering mechanism 80 , the steering mechanism 80 is connected to the frame 10 , and the steering mechanism 80 is used to drive the frame 10 to turn.
  • the steering mechanism 80 can drive the frame 10 to turn. After the frame 10 is turned, it can drive the propeller 23 to turn, thereby controlling the propulsion direction of the outboard motor 100.
  • the heat dissipation mechanism 40 is also used to cool the steering mechanism 80 .
  • the frame 10 has a certain weight.
  • the steering mechanism 80 drives the frame 10 to drive the hull 200 to rotate, it needs to perform work and generate heat.
  • the heat dissipation mechanism 40 can also cool the steering mechanism 80, thereby improving the heat dissipation mechanism 40 of the outboard motor 100. of integration.
  • the steering mechanism 80 includes a power part 81 and a linkage part 82 .
  • One end of the linkage part 82 is connected to the output end of the power part 81, and the other end is connected to the frame 10.
  • the linkage part 82 extends along the rotation direction of the output end of the power part 81.
  • the power part 81 is used to drive the linkage part 82 to rotate to drive the frame. 10 rotates, the rotation axis of the linkage 82 is parallel to the rotation direction.
  • the linkage member 82 and the frame 10 may be fixedly connected, so that the linkage member 82 drives the frame 10 to rotate when the linkage member 82 rotates, and ultimately realizes steering of the propulsion direction of the outboard motor 100 .
  • the frame 10 can be divided into a connecting part and an installation part.
  • the connection part is used to connect to the hull 200 , and the installation part defines the accommodation cavity 11 , so that the installation part can be rotationally connected with the connection part.
  • One end of the linkage 82 It is fixedly connected to the connecting part, and the other end is fixedly connected to the installation part.
  • the linkage 82 drives the installation part to rotate, and finally realizes the steering of the propulsion direction of the outboard motor 100 .
  • the heat dissipation mechanism 40 may include an external steering cooling component and/or a built-in steering cooling component.
  • the external steering cooling component is provided outside the steering mechanism 80 and may be, for example, a fan, a heat dissipation fin, or the like.
  • the steering mechanism 80 includes a housing. At least part of the power part 81 and the linkage part 82 can be located in the housing. The housing defines a steering cooling chamber, and steering cooling oil can be passed into the steering cooling chamber.
  • a steering cooling water pipe is provided between the outer surface and the inner surface of the casing to pass cooling water into the steering cooling water pipe, so that the power part 81 and the linkage 82 can communicate with the casing through the steering cooling oil or cooling water. Heat is exchanged to achieve a cooling effect on the steering mechanism 80 .
  • the linkage member 82 includes a linkage shaft 821 and a transmission part 822 .
  • the transmission part 822 is connected to the power part 81 .
  • One end of the linkage shaft 821 is connected to the transmission part 822 .
  • the linkage shaft 821 The other end is connected to the frame 10 and is used to drive the frame 10 to turn.
  • the speed change part 822 can increase or decrease the steering speed of the outboard motor 100 and adjust the direction of the torque output by the power component 81 according to actual needs, so that the rotation axis of the linkage component 82 can be parallel to the rotation direction of the outboard motor 100.
  • the linkage shaft 821 The output power of the power component 81 can be easily transmitted to the transmission part 822 .
  • the power component 81 includes a steering motor 811.
  • the steering motor 811 outputs torque to the transmission part 822.
  • the transmission part 822 is used to change the torque of the steering motor 811 and then output it to the linkage.
  • the torque output by the steering motor 811 is stable and reliable, and can reduce the steering energy cost of the outboard motor 100 .
  • the transmission part 822 includes two intermeshing transmission gears 8221 .
  • the transmission part 822 may also include a planetary gear structure and a synchronous belt structure. and other variable speed structures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • General Details Of Gearings (AREA)

Abstract

一种船外机(100)及水域可移动设备(300)。其中,船外机(100)包括机架(10)、动力电机(21)、驱动器(22)、传动机构(30)及散热机构(40)。机架(10)限定容置腔(11)。动力电机(21)、驱动器(22)和传动机构(30)均设于容置腔(11)内,驱动器(22)与动力电机(21)电连接,传动机构(30)的一端与动力电机(21)的输出端直连,传动机构(30)的另一端伸出机架(10),传动机构(30)伸出机架(10)的一端用于连接螺旋桨(23),以将动力电机(21)的转动扭矩传递至螺旋桨(23)。散热机构(40)设于机架(10),并用于冷却动力电机(21)、驱动器(22)和传动机构(30)。

Description

船外机及水域可移动设备 技术领域
本申请涉及船舶技术领域,具体而言,涉及船外机及水域可移动设备。
背景技术
船外机为船舶的推进装置,用于推动船舶在水域移动。已知船外机的驱动系统体积较大、功率密度较小、能量传递效率较低,同时驱动系统的冷却系统结构复杂,使驱动系统的质量、振动和噪音均较大,不利于产品的用户体验。
发明内容
本申请提供一种船外机及水域可移动设备。
本申请提供一种船外机,包括机架、动力电机、驱动器、传动机构、螺旋桨及散热机构。所述机架限定容置腔。所述动力电机、所述驱动器和所述传动机构均设于所述容置腔内,所述驱动器与所述动力电机电连接,所述传动机构的一端与所述动力电机的输出端直连,所述传动机构的另一端伸出所述机架,所述传动机构伸出所述机架的一端连接螺旋桨,以将所述动力电机的转动扭矩传递至所述螺旋桨,所述散热机构设于所述机架,并用于冷却所述动力电机、所述驱动器和所述传动机构。
动力电机、驱动器和传动机构均设于容置腔内,驱动器与动力电机电连接,传动机构的一端与动力电机的输出端直连,使得动力电机、驱动器和传动机构集成于一起,动力电机、驱动器和传动机构三者之间无须通过外部结构相连,既节省了动力电机和驱动器之间的交流三相线以及安装支架等外围附件,降低了船外机的生产成本,还减少了交流三相线的能量传递路径,从而减少了能量在传递路径上的损耗,提高了能量利用效率。
同时,动力电机、驱动器和传动机构均设于容置腔内,使得散热机构可以同时对动力电机、驱动器和传动机构三者进行冷却,从而无须使用复杂的外挂式冷却机构,使用简单的散热机构即可实现对机架内动力电机、驱动器和传动机构的冷却,提高了船外机的冷却效率,降低了散热机构的质量,从而进一步降低了船外机的重量和噪音振动,提高了船外机的用户体验。
本申请还提供一种水域可移动设备,包括:船体;前文所述的船外机,船外机安装于所述船体。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请一实施例的水域可移动设备的使用状态示意图;
图2为本申请实施例中的船外机的结构示意图;
图3为本申请实施例的船外机的另一实施方式的示意图;
图4为本申请实施例的船外机的另一实施方式的示意图;
图5为本申请实施例的船外机的另一实施方式的示意图;
图6为本申请实施例的船外机的另一实施方式的示意图;
图7为本申请实施例的船外机的另一实施方式的示意图;
图8为本申请实施例的船外机的另一实施方式的示意图;
图9为本申请实施例的船外机的另一实施方式的示意图。
主要元件符号说明:
船外机            100
机架              10
容置腔            11
第一电控腔        111
第一油冷腔        112
水上部分          12
水上容纳腔        121
第二电控腔        1211
第二油冷腔        1212
第一安装部        122
第一安装腔        1221
第二安装部        123
第二安装腔        1231
散热结构          124
水下部分          13
水下容纳腔        131
第三电控腔        1311
第三油冷腔        1312
延伸壳            132
收容空间          1321
水下导流部        133
水下腔体          1331
尾轴孔            134
压浪部            14
收容腔            141
冷却流道          142
第二冷却管        143
凹槽              15
动力电机          21
定子              211
转子              212
输出轴            213
固定端            214
动力输出端       215
驱动器           22
螺旋桨           23
尾轴             24
第一电缆         25
第二电缆         26
第三电缆         27
传动机构         30
上置变速组件     31
上置变速齿       311
中置传动轴       32
下置变速组件     33
下置变速齿       331
散热机构         40
内置散热组件     41
循环组件         411
循环泵           4111
回流管           4112
第一冷却管       4113
过滤器           4114
喷淋件           412
水冷管           413
水箱             414
出水口           4141
回水口           4142
外置散热组件     42
散热片           421
第一导流槽       422
散热筋           423
第二导流槽       424
第一隔板         51
第一穿线孔       511
第二隔板         52
第二穿线孔       521
第三隔板         53
第三穿线孔       531
第一冷却油液     61
第二冷却油液     62
第三冷却油液     63
尾轴密封件       71
第一线束密封件   72
第二线束密封件   73
第三线束密封件   74
转向机构         80
动力件           81
转向电机         811
联动件           82
联动轴           821
变速部           822
变速齿轮         8221
船体             200
船内空间         201
水域可移动设备   300
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。当一个元件被认为是“设置于”另一个元件,它可以是直接设置在另一个元件上或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。本文所使用的术语“或/及”包括一个或多个相关的所列项目的任意的和所有的组合。
本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施方式及实施方式中的特征可以相互组合。
实施例
参见图1,本实施例提供一种水域可移动设备300,水域可移动设备300可以是商用船、客船、游艇、渔船、帆船、民船等各类水域交通工具。水域可移动设备300,包括船体200和船外机100。
船体200能够提供一定的浮力,使水域可移动设备300能够浮于水面,并能够承载人或物。船体200具有船内空间201,船内空间201用于能够容纳人和物或其他结构。船体200的具体结构可以根据需要设置。船外机100安装于船体200,用于提供推进力,以推动水域可移动设备300在水中移动。
参见图2,本实施例中的船外机100包括机架10、动力电机21、驱动器22、 传动机构30、螺旋桨23及散热机构40。机架10限定容置腔11。动力电机21、驱动器22和传动机构30均设于容置腔11内,驱动器22与动力电机21电连接,传动机构30的一端与动力电机21的输出端直连,传动机构30的另一端伸出机架10,传动机构30伸出机架10的一端连接螺旋桨23,以将动力电机21的转动扭矩传递至螺旋桨23。散热机构40设于机架10,并用于冷却动力电机21、驱动器22和传动机构30。
动力电机21、驱动器22和传动机构30均设于容置腔11内,驱动器22与动力电机21电连接,传动机构30的一端与动力电机21的输出端直连,使得动力电机21、驱动器22和传动机构30集成于一起,动力电机21、驱动器22和传动机构30三者之间无须通过外部结构相连,既节省了动力电机21和驱动器22之间的交流三相线以及安装支架等外围附件,降低了船外机100的生产成本,还减少了交流三相线的能量传递路径,从而减少了能量在传递路径上的损耗,提高了能量利用效率。
同时,动力电机21、驱动器22和传动机构30均设于容置腔11内,使得散热机构40可以同时对动力电机21、驱动器22和传动机构30三者进行冷却,从而无须使用复杂的外挂式冷却机构,使用简单的散热机构40即可实现对机架10内动力电机21、驱动器22和传动机构30的冷却,提高了船外机100的冷却效率,降低了散热机构40的质量,从而进一步降低了船外机100的重量和噪音振动,提高了船外机100的用户体验。
可以理解的是,容置腔11可以是由一个腔体构成,即动力电机21、驱动器22和传动机构30共同收容于一个腔体内。容置腔11也可以是由多个相邻近的腔体构成,即动力电机21、驱动器22和传动机构30可以分散收容于容置腔11的多个腔体内。通过动力电机21、驱动器22和传动机构30收容于容置腔11内,使得动力电机21、驱动器22和传动机构30相互邻近,从而便于对动力电机21、驱动器22和传动机构30组装和散热冷却。
本实施方式中,机架10可以是船外机100的机壳,起到对整个船外机100刚性承载作用。通过将机架10直接或间接地连接于船体200,实现整个船外机100安装于船体200。动力电机21、驱动器22和传动机构30在机架10上的布局形式可以是多种形式的,并不局限于图2所示实施例的结构形式,任何动力电机21、驱动器22和传动机构30相互邻近并集中布局于机架10的容置腔11内的结构均属于本申请的实施方式。
在一些实施例中,如图3所示,散热机构40包括内置散热组件41,内置散热组件41设于机架10,内置散热组件41用于对机架10散热,机架10可吸收动力电机21、驱动器22和传动机构30的热量。
内置散热组件41可以对机架10散热,机架10又能吸收动力电机21、驱动器22和传动机构30的热量,从而机架10的温度可以较快地通过内置散热组件41交换至外界环境,使得机架10能够更为快速地吸收动力电机21、驱动器22和传动机构30的热量,从而提高了动力电机21、驱动器22和传动机构30的冷却效率。在一些实施例中,内置散热组件41可设于机架10内,还能够精简机架10外侧的支架结构,从而进一步降低船外机100的重量及制造成本。
在一些实施例中,如图2所示,机架10设有第一隔板51,第一隔板51将容置腔11分隔为第一电控腔111和第一油冷腔112,动力电机21和传动机构30收容于第一油冷腔112,驱动器22收容于第一电控腔111。
动力电机21和传动机构30在第一油冷腔112内运行时,第一油冷腔112内往往会填充冷却介质,第一隔板51可以防止第一油冷腔112内的运行介质进入第一电控腔111内,防止其损坏驱动器22,从而提高了驱动器22的使用寿命。第一隔板51还可保证第一油冷腔112和第一电控腔111的密封性能,当第一油冷腔112和第一电控腔111中的一个出现意外进水时,能够保证另外一个不会受到影响,从而能够提高动力电机21和驱动器22的使用寿命,也能够便于针对任意一个进行维修。此外,第一油冷腔112和第一电控腔111也还能保证动力电机21和驱动器22分别稳固地安装于压浪部14内。
在一些实施例中,如图2所示,船外机100还包括第一电缆25,第一电缆25连接动力电机21和驱动器22,第一隔板51设有第一穿线孔511和与第一穿线孔511内周侧壁紧密配合的第一线束密封件72,第一电缆25穿过第一穿线孔511并与第一线束密封件72紧密配合。第一电缆25能够便于驱动器22准确高效地控制动力电机21,进而调整动力电机21的输出功率;第一穿线孔511和第一线束密封件72的配合,能够便于第一电缆25在动力电机21和驱动器22之间连接,并能仍然保证第一电控腔111和第一油冷腔112之间的隔绝。当然,在本申请的其他实施例中,也可无须额外设置第一电缆25,驱动器22和动力电机21之间可通过无线网络实现控制,无须进行具体限定。
具体地,本实施例的第一线束密封件72可设为油封或密封圈等密封结构。
在一些实施例中,如图2所示,第一油冷腔112内置有第一冷却油液61,第一冷却油液61用于与动力电机21和至少部分传动机构30热交换,第一冷却油液61还用于与机架10热交换,以冷却动力电机21和至少部分传动机构30,第一冷却油液61还用于降低动力电机21的转动阻力和传动机构30的传动阻力。
由于第一油冷腔112和第一电控腔111通过第一隔板51隔绝,因而第一冷却油液61不会进入至第一电控腔111内并破坏驱动器22。在第一油冷腔112内额外设置第一冷却油液61后,第一冷却油液61能够与动力电机21及至少部分传动机构30进行热交换,再将动力电机21及至少部分传动机构30传递的热量传递至机架10,机架10与外界环境进行热交换即可对第一冷却油液61起到降温效果,从而提高了动力电机21及至少部分传动机构30的热量传递至机架10的传递效率,进而进一步提高动力电机21及至少部分传动机构30的冷却效率。此外,第一冷却油液61还能够进一步降低动力电机21以及传动机构30的转动阻力,能够便于将动力电机21更换升级为更高功率的电机,以提高船外机100的推进性能。
在一些实施例中,如图4所示,第一油冷腔112的一部分位于水下,位于水下的第一油冷腔112的部分用于收容第一冷却油液61,内置散热组件41包括循环组件411,循环组件411用于抽取部分第一冷却油液61输送至动力电机21和至少部分传动机构30处。
将第一油冷腔112的一部分置于水下后,第一冷却油液61能够通过机架10 与水域的水流进行换热,相对第一冷却油液61通过机架10与空气换热具有更高的换热效率。循环组件411能够将低温的第一冷却油液61输送至动力电机21和至少部分传动机构30处并与其换热,换热结束升温后的第一冷却油液61可在自身重力作用下或者在循环组件411的作用下回位至位于水下的第一油冷腔112,再通过机架10与水域的水流换热冷却为低温的第一冷却油液61。
在一些实施例中,如图4所示,循环组件411包括循环泵4111、回流管4112和第一冷却管4113,回流管4112的一端被第一冷却油液61浸没,回流管4112的另一端与循环泵4111连通,第一冷却管4113的一端朝向动力电机21和至少部分传动机构30,第一冷却管4113的另一端与循环泵4111连通,循环泵4111用于通过回流管4112抽取第一冷却油液61,并通过第一冷却管4113输送至动力电机21和至少部分传动机构30。
通过循环泵4111可以提高第一冷却油液61的流动效率,从而进一步提高动力电机21和至少部分传动机构30的散热效率。另外,第一冷却油液61能够沿动力电机21及部分传动机构30的传动路径移动,并与动力电机21的输出轴213和部分传动机构30均匀接触,同时起到较好的润滑与吸收热量的作用。
另外,在本实施例中,如图4所示,第一冷却管4113和回流管4112内分别设有过滤器4114,以对第一冷却油液61起到过滤作用,防止其磨损动力电机21和传动机构30。
在一些实施例中,如图4所示,内置散热组件41还包括喷淋件412,喷淋件412与循环组件411连接,喷淋件412用于从循环组件411接收被抽取的第一冷却油液61,并向动力电机21和至少部分传动机构30喷淋被抽取的第一冷却油液61。
喷淋件412可以将低温的第一冷却油液61喷淋至动力电机21和至少部分传动机构30,提高动力电机21和至少部分传动机构30与第一冷却油液61的接触面积,从而进一步提高其散热效率。
在一些实施例中,如图5所示,内置散热组件41包括水冷管413,水冷管413内置于机架10的外表面和内表面之间,水冷管413用于通入冷却水,动力电机21、驱动器22和传动机构30能够与机架10热交换,机架10能够与冷却水热交换。
动力电机21和传动机构30的热量可以通过机架10与水冷管413内的冷却水进行热交换,从而可以提高动力电机21、驱动器22和传动机构30的冷却效率。另外,因水冷管413内置于机架10内,可以减去水冷管413的安装支架等,降低了内置散热组件41的整体重力和船外机100的重量。
在一些实施例中,如图5所示,内置散热组件41还包括水箱414,水箱414具有出水口4141和回水口4142,水冷管413的一端与出水口4141连通,水冷管413的另一端与回水口4142连通,以使和机架10热交换后的冷却水能够回流至水箱414内,并使水箱414内的冷却水流通至机架10内与机架10热交换;或者,水冷管413的一端用于通入水域内的冷却水,水冷管413的另一端用于将与机架10热交换之后的冷却水导流至水域内。通过水箱414或直接通过水域内的冷却水均可达到较好的换热效果。
在一些实施例中,如图2所示,动力电机21包括定子211、转子212和输出轴213,转子212与定子211配合,输出轴213的一端与转子212连接,另一端与传动机构30连接,第一冷却油液61还用于冷却转子212和/或定子211。
第一冷却油液61能够降低转子212与定子211的工作温度,即使定子211和转子212的工作功率较高,其发热也会在第一冷却油液61的作用下降低,从而使得动力电机21能够采用具有较大功率的电机,提高船外机100的推进效率。
在一些实施例中,如图2和图3所示,散热机构40还包括外置散热组件42,外置散热组件42用于将机架10的热量交换至外界环境。
可以理解的是,通过外置散热组件42可以提高机架10与外界环境的热交换效率,从而进一步提高船外机100的散热效率。当然,在本申请的实施例中,散热机构40可以仅设置内置散热组件41,也可以仅设置外置散热组件42,或者同时设置内置散热组件41和外置散热组件42。
在一些实施例中,如图2和图3所示,散热机构40包括外置散热组件42,外置散热组件42设于机架10的外表面,外置散热组件42用于吸收机架10的热量,并与外界热交换。
外置散热组件42可以提高机架10与外界的热交换效率,使动力电机21、驱动器22和传动机构30的热量可以更快地传递至机架10。外置散热组件42能够便于船外机100的维修,降低机架10的体积和重量,提高船外机100的拆装便捷性。
在一些实施例中,如图2所示,机架10具有水上部分12,水上部分12用于与空气接触,外置散热组件42设于水上部分12的外表面,动力电机21、驱动器22和至少部分传动机构30均设于容置腔11对应水上部分12的位置,动力电机21、驱动器22和至少部分传动机构30能够与机架10热交换,机架10能够将热量传递至外置散热组件42,外置散热组件42还用于空气气流热交换,进而冷却动力电机21、驱动器22和至少部分传动机构30。
在一些实施例中,如图2所示,外置散热组件42包括多个散热片421,多个散热片421并排设于水上部分12,相邻的散热片421之间的第一导流槽422的延伸方向与螺旋桨23的推进方向平行。
多个散热片421之间第一导流槽422的延伸方向与螺旋桨23的推进方向平行,可以降低散热片421受到的空气阻力,从而在保证散热片421的散热性能的同时确保了推进器的推进性能,并能够提高气流从第一导流槽422的流动速度,进而提高散热片421的散热速度。同时,散热片421也有着较轻的重量,从而也能降低对推进器的重量影响,并降低成本。
在一些实施例中,如图6所示,机架10具有水下部分13,水下部分13用于与水域的水流接触,动力电机21和至少部分传动机构30均设于水下部分13内,动力电机21和至少部分传动机构30可与水下部分13热交换。
水下部分13能够与水域的水流换热,动力电机21和至少部分传动机构30能够通过空气或冷却介质与水下部分13换热,从而使动力电机21和至少部分传动机构30通过与水流换热实现散热降温,从而可以使用散热能力有限的散热机构40满足动力电机21等发热结构的散热需求,降低了散热机构40的成本。
在一些实施例中,如图6所示,外置散热组件42设于水下部分13的外表面并用于与水流热交换,外置散热组件42还可与水下部分13热交换。
动力电机21、驱动器22和至少部分传动机构30通过水下部分13内的空气或冷却油等介质与水下部分13进行热交换,外置散热组件42与水下部分13和水流之间进行热交换,从而外置散热组件42可以提高水下部分13与水流之间的热交换效率,进而提高与水下部分13热交换的动力电机21、驱动器22和至少部分传动机构30的热交换效率。
在一些实施例中,如图7所示,外置散热组件42包括多个散热片421,多个散热片421并排设于水下部分13,相邻的散热片421之间的第一导流槽422的延伸方向与螺旋桨23的推进方向平行。
多个散热片421之间第一导流槽422的延伸方向与螺旋桨23的推进方向平行,可以降低散热片421受到的水流阻力,从而在保证散热片421的散热性能的同时确保了推进器的推进性能,并能够提高水流从第一导流槽422的流动速度,进而提高散热片421的散热速度。同时,散热片421也有着较轻的重量,从而也能降低对推进器的重量影响,并降低成本。
在一些实施例中,如图7所示,外置散热组件42包括多个散热筋423,多个散热筋423环绕机架10周侧,并与动力电机21、驱动器22和至少部分传动机构30对应。
动力电机21、驱动器22和至少部分传动机构30能够通过设于机架10内的空气或冷却油等介质进行热交换,机架10再与外置散热组件42的多个散热筋423进行热交换,从而实现了将动力电机21、驱动器22和至少部分传动机构30的热量传递至散热筋423,散热筋423则又能将热量传递至外界环境的空气或水流中,使得多个环绕机架10周侧的散热筋423也可实现散热效果,在保证散热片421的散热性能的同时确保了推进器的推进性能,并有着较轻的重量,从而也能降低对推进器的重量影响,并降低成本。
另外,本实施例中,如图7所示,多个散热筋423沿竖直方向间隔分布并限定第二导流槽424,从而也可以使得第二导流槽424的延伸方向与螺旋桨23的推进方向平行,可以防止散热筋423对螺旋桨23的推进造成干涉,提高水流从第二导流槽424的流动速度,进而提高散热筋423的散热速度。
在一些实施例中,如图7所示,机架10的侧面开设有凹槽15,散热筋423的一部分位于凹槽15内。凹槽15既可以提高散热面积,也可以提高散热筋423的导热性能。
在一些实施例中,如图5所示,机架10设有压浪部14,压浪部14具有收容腔141,收容腔141与容置腔11连通,压浪部14用于与水域的水流接触,驱动器22固定于收容腔141,并电连接动力电机21,以控制动力电机21运行,驱动器22经压浪部14与水流进行热交换。
当推进器运行时,机架10伸入水中,压浪部14位于水域的水面P处,水域的水流能够对压浪部14产生热交换,并进而和位于压浪部14内的驱动器22进行热交换,从而有效降低驱动器22在控制电机运行过程中产生的热量,提高了推进器的驱动结构的散热效果。可以理解的是,压浪部14可以压住螺旋桨23 搅起的水浪,减小水浪波动能,即减小能量耗费,使得推进器推进效率更高。本实施例的推进器是通过位于水域的水面处的压浪部14实现热交换,压浪部14处的水流速率较大,水流快速对压浪部14散热,使得驱动器22的换热效率较高,无须额外设置水泵或油泵等冷却系统,在保证驱动器22散热效果的前提下,减小了生产成本,降低了推进器的体积及重量,从而提高推进器的用户体验。此外,相对现有的实心压浪结构,本实施例中的压浪部14开设第一容置腔11的改动较小,既可以保证压浪部14压住螺旋桨23搅起的水浪,降低能量浪费,还能进一步提高驱动器22的散热效果,从而提高推进器的推进效率。因此,本实施例的推进器具有安装简单、散热效率高,不会对推进器的本身性能造成影响,从而兼顾了推进性能及散热性能。
在一些实施例中,如图5所示,压浪部14靠近水域一侧开设冷却流道142,冷却流道142和收容腔141隔绝,冷却流道142用于通入水域的水流,以使压浪部14与水流进行热交换。
由于船外机100工作时通常位于水域,通过冷却流道142可以有效利用水域内的水流,以便于压浪部14与水流进行热交换,从而将动力电机21和驱动器22产生的热量更加高效地传递至水域中,提高动力电机21和驱动器22的散热效果。
在一些实施例中,如图5所示,压浪部14设有位于收容腔141内的第二冷却管143,第二冷却管143与驱动器22接触,第二冷却管143用于与驱动器22热耦合,并且第二冷却管143与冷却流道142接通,以传输冷却流道142输送的水流。
可以理解的是,冷却流道142内输送的水流可以与第二冷却管143换热,驱动器22可以与第二冷却管143换热,从而实现驱动器22与水流的换热,提高驱动器22的换热效率,有利于提高驱动器22的额定功率,进而提高船外机100的推进效率。
在一些实施例中,冷却流道142设有多个,多个冷却流道142并排分布。
多个冷却流道142可以对压浪部14的侧部起到均匀的冷却效果,进而能够与动力电机21和驱动器22的各个部位进行均匀的换热作用,以避免动力电机21和驱动器22出现局部温度过高的问题,使得动力电机21和驱动器22的温度一致性较好。
在一些实施例中,如图2和图5所示,驱动器22位于收容腔141远离螺旋桨23的内表面,或者,驱动器22位于收容腔141靠近螺旋桨23的内表面。
根据压浪部14处的散热机构40的设置,可以调整驱动器22在收容腔141内的安装位置。
如图5所示,驱动器22位于收容腔141远离螺旋桨23的内表面时,船身在行进时,船身尾部的水浪被扬起后从上至下淋洒在压浪部14背离螺旋桨23的侧壁,从而通过水浪与压浪部14换热实现对驱动器22的换热。
如图2所示,驱动器22位于收容腔141接近螺旋桨23的内表面时,由于压浪部14通常位于水面处,压浪部14接近螺旋桨23的侧壁浸泡于水域内,也可以通过水域的水流与压浪部14换热,进而与驱动器22换热。
在一些实施例中,如图2和图3所示,机架10包括水上部分12,水上部分12限定水上容纳腔121,动力电机21、驱动器22和部分传动机构30均收容于水上容纳腔121。
将动力电池、驱动器22和部分传动机构30置于水上容纳腔121,能够提高其维修拆装便捷性。同时,水上部分12也可以额外设置较水域的水流换热效率更高的外置散热组件42,以提高动力电机21、驱动器22和至少部分传动机构30的散热效率,提高动力电机21和驱动器22的额定效率,以提高船外机100的推进性能和散热性能。
在一些实施例中,如图3所示,传动机构30包括上置变速组件31,上置变速组件31收容于水上容纳腔121,上置变速组件31用于转换动力电机21的转速至螺旋桨23。
在一些实施例中,如图3所示,上置变速组件31包括两个互相啮合的上置变速齿311,一个上置变速齿311与动力电机21的输出轴213连接,另一个上置变速齿311通过中置传动轴32与螺旋桨23连接。
通过第一齿轮和第二齿轮的啮合,即可对输出轴213传递至传动轴的转速起到变速效果,同时传动轴也便于将位于上容置腔11的电机的动力传递至位于水下的螺旋桨23。
在一些实施例中,如图8所示,所述动力电机21包括用于输出转矩的动力输出端215和与所述动力输出端215间隔设置的固定端214,所述驱动器22设于所述固定端214背离所述动力输出端215的一侧。
通过上述结构设置,可以减小水上部分12在第二方向上的尺寸,第二方向为垂直于动力电机21的输出轴213的轴向的方向,使得船外机100能够安装于对其在第二方向上有尺寸要求的安装环境,提高船外机100的适用范围。
在一些实施例中,如图9所示,动力电机21包括用于输出转矩的动力输出端215和与动力输出端215间隔设置的固定端214,固定端214和动力输出端215之间形成动力电机21的外周侧,驱动器22设于外周侧。
通过上述结构设置,可以减小水上部分12在动力电机21的输出轴213的轴向方向上的尺寸,使得船外机100能够安装于对其在输出轴213的轴向方向上有尺寸要求的安装环境,提高船外机100的适用范围。
在一些实施例中,如图8和图9所示,机架10包括水上部分12,水上部分12包括第一安装部122和第二安装部123,第二安装部123与第一安装部122并排固定,第一安装部122限定第一安装腔1221,第二安装部123限定第二安装腔1231,驱动器22收容于第一安装腔1221,动力电机21和一部分的传动机构30收容于第二安装腔1231。
将动力电机21、一部分传动机构30与驱动器22分别设于第一安装腔1221和第二安装腔1231,可以进一步提高对动力电机21、一部分传动机构30以及驱动器22的保护作用,避免磕碰损坏动力电机21、传动机构30及驱动器22,提高其使用寿命。
在一些实施例中,如图8和图9所示,船外机100还包括散热结构124,散热结构124固定于第一安装部122和第二安装部123之间,并与第一安装部122 和第二安装部123热耦合。
散热结构124可以对第一安装部122和第二安装部123热耦合,动力电机21能够通过空气或冷却油与第一安装部122的壁体换热,第一安装部122能够通过散热结构124与外界环境换热,驱动器22能够通过空气或冷却管与第二安装部123的壁体换热,第二安装部123能够通过散热结构124与外界环境换热,从而实现了通过一个散热结构124对第一安装部122和第二安装部123进行散热。
在一些实施例中,如图3所示,机架10包括水下部分13,水下部分13限定水下容纳腔131,水下部分13用于设于水域内,螺旋桨23设于水下部分13,传动机构30的至少一部分位于水下容纳腔131。
通过置于水下容纳腔131的传动机构30,即可实现对螺旋桨23的动力驱动,以使螺旋桨23运行并对船外机100提供推进动力。
在一些实施例中,如图3所示,水下容纳腔131内置第二冷却油液62,第二冷却油液62用于冷却传动机构30的至少一部分。
第二冷却油液62能够通过机架10与水域的水流进行换热,使得第二冷却油液62可以较为迅速地降温,进而形成低温的第二冷却油液62并与传动机构30换热,提高了传动机构30的至少一部分与水域的水流的换热效率。
在一些实施例中,如图3所示,机架10还包括水上部分12,水上部分12限定水上容纳腔121,动力电机21和驱动器22位于水上容纳腔121,传动机构30包括下置变速组件33和中置传动轴32,下置变速组件33位于水下容纳腔131,中置传动轴32的一端与动力电机21的输出端连接,下置变速组件33的一端与中置传动轴32的另一端连接,下置变速组件33另一端与螺旋桨23连接。
中置传动轴32可以便于将电机的动力传递至水下容纳腔131内,进而再通过第一传动机构30的其他结构将动力传递至螺旋桨23,以便于根据不同的螺旋桨23的传动需求,而调整中置传动轴32与不同的螺旋桨23连接的不同的传动结构,从而提高了推进器的适用范围。
由于变速结构在转换扭矩转动速率的过程中往往也容易发热,因而本实施例中将下置变速组件33设于水下容纳腔131内后,水下部分13与水流的换热效率较高,使得水下部分13与水下容纳腔131内的第二冷却油液62的换热效率较高,进而提高下置变速组件33与第二冷却油液62的换热效率,进而提高第一水下变速组件的变速效率,以进一步提高螺旋桨23的推进性能。
具体地,本实施例中,如图3所示,下置变速组件33包括两个互相啮合的下置变速齿331,一个下置变速齿331与动力电机21的输出轴213连接,另一个下置变速齿331与中置传动轴32连接。
在一些实施例中,如图3所示,船外机100还包括第二隔板52,第二隔板52将水上容纳腔121分隔为第二电控腔1211和第二油冷腔1212,第二油冷腔1212和水下容纳腔131连通,动力电机21和部分传动机构30设于第二油冷腔1212,第二油冷腔1212和水下容纳腔131内置第三冷却油液63,第三冷却油液63用于冷却动力电机21和传动机构30。
第二隔板52可以防止第一油冷腔112内的第三冷却油液63进入第二电控腔 1211内,防止其损坏驱动器22,从而提高了驱动器22的使用寿命。第二隔板52还可保证第二油冷腔1212和第二电控腔1211的密封性能,当第二油冷腔1212和第二电控腔1211中的一个出现意外进水时,能够保证另外一个不会受到影响,从而能够提高电机和驱动器22的使用寿命,也能够便于针对任意一个进行维修。此外,第二油冷腔1212和第二电控腔1211也还能保证动力电机21和驱动器22分别稳固地安装于水上部分12内,避免两者碰撞。
另外,由于第二油冷腔1212与水下容纳腔131连通,从而便于通过水域的水流与机架10换热,再通过机架10与水下容纳腔131的第三冷却油液63换热,提高了第三冷却油液63的冷却效率,进而提高了第三冷却油液63对动力电机21和传动机构30的换热效率。
在一些实施例中,如图3所示,船外机100还包括第二电缆26,第二电缆26连接动力电机21和驱动器22,第二隔板52设有第二穿线孔521和与第二穿线孔521内周侧壁紧密配合的第二线束密封件73,第二电缆26穿过第二穿线孔521并与第二线束密封件73紧密配合。第二电缆26能够便于驱动器22准确高效地控制动力电机21,进而调整动力电机21的输出功率;第二穿线孔521和第二线束密封件73的配合,能够便于第二电缆26在动力电机21和驱动器22之间连接,并能仍然保证第二电控腔1211和第二油冷腔1212之间的隔绝。当然,在本申请的其他实施例中,也可无须额外设置第二电缆26,驱动器22和动力电机21之间可通过无线网络实现控制,无须进行具体限定。
具体地,本实施例的第二线束密封件73可设为油封或密封圈等密封结构。
在一些实施例中,如图3所示,水下部分13包括延伸壳132和水下导流部133。延伸壳132与水上部分12连接,中置传动轴32设于延伸壳132内。水下导流部133与延伸壳132连接,水下导流部133设有水下腔体1331,下置变速组件33收容于水下腔体1331。
延伸壳132限定收容空间1321,收容空间1321与水下腔体1331和水上容纳腔121连通,中置传动轴32中置传动轴32穿设于收容空间1321内,水下导流部133的水下腔体1331能够为下置变速组件33提供容置空间,水下导流部133能够对水下部分13起到导流作用,从而降低螺旋桨23在推进机架10运动时受到的阻力。
另外,本实施例中,延伸壳132的容置空间可以与水上容纳腔121连通,从而动力电机21、中置传动轴32和下置变速组件33可以通过内置于水上容纳腔121的冷却介质同步冷却,并可以通过水域的水流与机架10换热提高动力电机21、中置传动轴32和下置变速组件33的换热效率。延伸壳132的容置空间可以与水上容纳腔121隔绝,能够在水下腔体1331意外进水时,确保水不会从水下腔体1331进入水上容纳腔121内,从而提高了推进器的使用可靠性。
此外,在本实施例中,延伸壳132的容置空间与水下腔体1331共同限定水下容纳腔131。
在一些实施例中,如图3所示,船外机100还包括尾轴24,尾轴24的一端和传动机构30连接,水下部分13开设尾轴孔134,尾轴孔134的内周侧壁密封配合有尾轴密封件71,尾轴24穿过尾轴孔134并与尾轴密封件71密封配合, 尾轴24与螺旋桨23连接。
当动力电机21传递动力至传动机构30,以使传动机构30整体转动,进而将动力传递至尾轴24,从而将转动扭矩传递至尾轴24,进而实现螺旋桨23的转动,螺旋桨23在水域内转动时即可推动水,从而使得水对推进器起到推进作用。尾轴孔134能够便于传动机构30与尾轴24连接,从而实现螺旋桨23的转动推进,同时,尾轴密封件71可以防止水域的水通过尾轴孔134进入水下容纳腔131,从而提高水下部分13的密封性能,既可以防止第二冷却油液62泄漏,也可以避免水腐蚀传动机构30,提高传动机构30的使用寿命。
具体地,本实施例的尾轴密封件71可设为油封或密封圈等密封结构。
在一些实施例中,如图6所示,动力电机21、驱动器22和传动机构30均位于水下容纳腔131。
通过将动力电机21、驱动器22和传动机构30均置于水下容纳腔131,可以减小传动机构30的传动行程,提高传动机构30的转矩传递效率。同时水域的水流温度通常低于空气温度,通过水流与水下部分13换热,也可以保证对集成于水下容纳腔131的动力电机21、驱动器22和传动机构30提供较好的散热效果。
在一些实施例中,如图6所示,水下部分13设有第三隔板53,第三隔板53将容置腔11分隔为第三电控腔1311和第三油冷腔1312,动力电机21和传动机构30收容于第三油冷腔1312,驱动器22收容于第三电控腔1311。
动力电机21和传动机构30在第三油冷腔1312内运行时,第三油冷腔1312内往往会填充运行介质,第三隔板53可以防止第三油冷腔1312内的运行介质进入第三电控腔1311内,防止其损坏驱动器22,从而提高了驱动器22的使用寿命。第三隔板53还可保证第三油冷腔1312和第三电控腔1311的密封性能,当第三油冷腔1312和第三电控腔1311中的一个出现意外进水时,能够保证另外一个不会受到影响,从而能够提高电机和驱动器22的使用寿命,也能够便于针对任意一个进行维修。此外,第三油冷腔1312和第三电控腔1311也还能保证动力电机21和驱动器22分别稳固地安装于水下部分13内,避免两者碰撞。
在一些实施例中,如图6所示,船外机100还包括第三电缆27,第三电缆27连接动力电机21和驱动器22,第三隔板53设有第三穿线孔531和与第三穿线孔531内周侧壁紧密配合的第三线束密封件74,第三电缆27穿过第三穿线孔531并与第三线束密封件74紧密配合。
第三电缆27能够便于驱动器22准确高效地控制动力电机21,进而调整动力电机21的输出功率;第三穿线孔531和第三线束密封件74的配合,能够便于第三电缆27在动力电机21和驱动器22之间连接,并能仍然保证第三电控腔1311和第三油冷腔1312之间的隔绝。当然,在本申请的其他实施例中,也可无须额外设置第三电缆27,驱动器22和动力电机21之间可通过无线网络实现控制,无须进行具体限定。
具体地,本实施例的第三线束密封件74可设为油封或密封圈等密封结构。
在一些实施例中,如图8和图9所示,船外机100还包括转向机构80,转向机构80与机架10连接,转向机构80用于驱动机架10转向。转向机构80能够 带动机架10转向,机架10转向后能够带动螺旋桨23转向,从而实现对船外机100的推进方向的控制。
在一些实施例中,散热机构40还用于冷却转向机构80。
机架10具有一定的重量,转向机构80驱动机架10带动船体200转动时需要做功并产生热量,本实施例中散热机构40还能冷却转向机构80,从而提高了船外机100散热机构40的集成化。
在一些实施例中,如图8和图9所示,转向机构80包括动力件81和联动件82。联动件82的一端与动力件81的输出端连接,另一端与机架10连接,联动件82沿动力件81的输出端的转动方向延伸,动力件81用于驱动联动件82转动以带动机架10转动,联动件82的转动轴线平行于转动方向。
可以理解的是,联动件82与机架10可以是固定连接,以通过联动件82转动时带动机架10转动,最终实现船外机100的推进方向转向。另外,本实施例中,机架10可分为连接部分和安装部分,连接部分用于连接船体200,安装部分限定容置腔11,如此安装部分可与连接部分转动连接,联动件82的一端与连接部分固定连接,另一端与安装部分固定连接,通过联动件82带动安装部分转动,最终实现船外机100的推进方向转向。
具体地,散热机构40可以包括外置转向冷却组件和/或内置转向冷却组件,外置转向冷却组件设于转向机构80的外侧,例如可设为风扇、散热翅片等。散热机构40包括内置转向冷却组件时,转向机构80包括壳体,动力件81及联动件82的至少部分可设于壳体内,壳体限定转向冷却腔,转向冷却腔内可通入转向冷却油液,或者在壳体的外表面和内表面之间设置转向冷却水管,以在转向冷却水管内通入冷却水,从而动力件81及联动件82能够通过转向冷却油液或冷却水与壳体换热,以实现对转向机构80的冷却效果。
在一些实施例中,如图8和图9所示,联动件82包括联动轴821和变速部822,变速部822与动力件81连接,联动轴821的一端与变速部822连接,联动轴821的另一端与机架10连接,用于带动机架10转向。
变速部822可以根据实际需求提高或降低船外机100的转向速度以及调整动力件81输出的转矩方向,以使联动件82的转动轴线能够平行于船外机100的转动方向,联动轴821能够便于将动力件81的输出动力传递至变速部822。
在一些实施例中,如图8和图9所示,动力件81包括转向电机811,转向电机811输出扭矩至变速部822,变速部822用于将转向电机811的扭矩变化转速后输出至联动轴821。转向电机811输出的扭矩稳定可靠,并能降低船外机100的转向能量成本。
在一些实施例中,如图8和图9所示,变速部822包括两个互相啮合的变速齿轮8221,在本发明的其他实施例中,变速部822还可以包括行星齿轮结构、同步带结构等多种变速结构。
以上实施方式仅用以说明本申请的技术方案而非限制,尽管参照以上较佳实施方式对本申请进行了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换都不应脱离本申请技术方案的精神和范围。

Claims (42)

  1. 一种船外机,其特征在于,包括:
    机架,所述机架限定容置腔;
    动力电机、驱动器、传动机构和螺旋桨,所述动力电机、所述驱动器和所述传动机构均设于所述容置腔内,所述驱动器与所述动力电机电连接,所述传动机构的一端与所述动力电机的输出端直连,所述传动机构的另一端伸出所述机架,所述传动机构伸出所述机架的一端连接所述螺旋桨,以将所述动力电机的转动扭矩传递至所述螺旋桨;
    散热机构,所述散热机构设于所述机架,并用于冷却所述动力电机、所述驱动器和所述传动机构。
  2. 根据权利要求1所述的船外机,其特征在于,所述散热机构包括内置散热组件,所述内置散热组件设于所述机架,所述内置散热组件用于对所述机架散热,所述机架可吸收所述动力电机、所述驱动器和所述传动机构的热量。
  3. 根据权利要求2所述的船外机,其特征在于,所述机架设有第一隔板,所述第一隔板将所述容置腔分隔为第一电控腔和第一油冷腔,所述动力电机和所述传动机构收容于所述第一油冷腔,所述驱动器收容于所述第一电控腔。
  4. 根据权利要求3所述的船外机,其特征在于,所述第一油冷腔内置有第一冷却油液,所述第一冷却油液用于与所述动力电机和至少部分所述传动机构热交换,所述第一冷却油液还用于与所述机架热交换,以冷却所述动力电机和至少部分所述传动机构,所述第一冷却油液还用于降低所述动力电机的转动阻力和所述传动机构的传动阻力。
  5. 根据权利要求3所述的船外机,其特征在于,所述第一油冷腔的一部分位于水下,位于水下的所述第一油冷腔的部分用于收容第一冷却油液,所述内置散热组件包括循环组件,所述循环组件用于抽取部分第一冷却油液输送至所述动力电机和至少部分所述传动机构处。
  6. 根据权利要求5所述的船外机,其特征在于,所述循环组件包括循环泵、回流管和第一冷却管,所述回流管的一端被所述第一冷却油液浸没,所述回流管的另一端与所述循环泵连通,所述第一冷却管的一端朝向所述动力电机和至少部分所述传动机构,所述第一冷却管的另一端与所述循环泵连通,所述循环泵用于通过所述回流管抽取所述第一冷却油液,并通过所述第一冷却管输送至所述动力电机和至少部分所述传动机构。
  7. 根据权利要求5所述的船外机,其特征在于,所述内置散热组件还包括喷淋件,所述喷淋件与所述循环组件连接,所述喷淋件用于从所述循环组件接收被抽取的所述第一冷却油液,并向所述动力电机和至少部分所述传动机构喷淋被抽取的所述第一冷却油液。
  8. 根据权利要求2所述的船外机,其特征在于,所述内置散热组件包括水冷管,所述水冷管内置于所述机架的外表面和内表面之间,所述水冷管用于通入冷却水,所述动力电机、所述驱动器和所述传动机构能够与所述机架热交换,所述机架能够与所述冷却水热交换。
  9. 根据权利要求8所述的船外机,其特征在于,所述内置散热组件还包括水箱,所述水箱具有出水口和回水口,所述水冷管的一端与所述出水口连通,所述水冷管的另一端与所述回水口连通,以使和所述机架热交换后的所述冷却水能够回流至所述水箱内,并使所述水箱内的冷却水流通至所述机架内与所述机架热交换;
    或者,所述水冷管的一端用于通入水域内的冷却水,所述水冷管的另一端用于将与所述机架热交换之后的所述冷却水导流至所述水域内。
  10. 根据权利要求4所述的船外机,其特征在于,所述动力电机包括定子、转子和输出轴,所述转子与所述定子配合,所述输出轴的一端与所述转子连接,另一端与所述传动机构连接,所述第一冷却油液还用于冷却所述转子和/或所述定子。
  11. 根据权利要求2所述的船外机,其特征在于,所述散热机构还包括外置散热组件,所述内置散热组件设于所述容置腔,所述外置散热组件设于所述机架的外表面,所述内置散热组件用于将所述动力电机、所述驱动器和所述传动机构的热量交换至所述机架,所述外置散热组件用于将所述机架的热量交换至外界环境。
  12. 根据权利要求1所述的船外机,其特征在于,所述散热机构包括外置散热组件,所述外置散热组件设于所述机架的外表面,所述外置散热组件用于吸收所述机架的热量,并与外界热交换。
  13. 根据权利要求12所述的船外机,其特征在于,所述机架具有水上部分,所述水上部分用于与空气接触,所述外置散热组件设于所述水上部分的外表面,所述动力电机、所述驱动器和至少部分所述传动机构均设于所述容置腔对应所述水上部分的位置,所述动力电机、所述驱动器和至少部分所述传动机构能够与所述机架热交换,所述机架能够将热量传递至所述外置散热组件,所述外置散热组件还用于空气气流热交换,进而冷却所述动力电机、所述驱动器和至少部分所述传动机构。
  14. 根据权利要求13所述的船外机,其特征在于,所述外置散热组件包括多个散热片,多个所述散热片并排设于所述水上部分,相邻的所述散热片之间的第一导流槽的延伸方向与所述螺旋桨的推进方向平行。
  15. 根据权利要求12所述的船外机,其特征在于,所述机架具有水下部分,所述水下部分用于与水域的水流接触,所述动力电机和至少部分所述传动机构均设于所述水下部分内,所述动力电机和至少部分所述传动机构可与所述水下部分热交换。
  16. 根据权利要求15所述的船外机,其特征在于,所述外置散热组件设于所述水下部分的外表面并用于与所述水流热交换,所述外置散热组件还可与所述水下部分热交换。
  17. 根据权利要求15所述的船外机,其特征在于,所述外置散热组件包括多个散热片,多个所述散热片并排设于所述水下部分,相邻的所述散热片之间的第一导流槽的延伸方向与所述螺旋桨的推进方向平行。
  18. 根据权利要求12所述的船外机,其特征在于,所述外置散热组件包括多 个散热筋,多个所述散热筋环绕所述机架排布,并靠近所述动力电机、所述驱动器和至少部分所述传动机构。
  19. 根据权利要求1所述的船外机,其特征在于,所述机架设有压浪部,所述压浪部具收容腔,所述收容腔与所述容置腔连通,所述压浪部用于与水域的水流接触,所述驱动器固定于所述收容腔,并电连接所述动力电机,以控制所述动力电机运行,所述驱动器经所述压浪部与所述水流进行热交换。
  20. 根据权利要求19所述的船外机,其特征在于,所述压浪部靠近所述水域一侧开设冷却流道,所述冷却流道和所述收容腔隔绝,所述冷却流道用于通入所述水域的水流,以使所述压浪部与所述水流进行热交换。
  21. 根据权利要求20所述的船外机,其特征在于,所述压浪部设有位于所述收容腔内的第二冷却管,所述第二冷却管与所述驱动器接触,所述第二冷却管用于与所述驱动器热耦合,并且所述第二冷却管与所述冷却流道接通,以传输所述冷却流道输送的水流。
  22. 根据权利要求20所述的船外机,其特征在于,所述冷却流道设有多个,多个所述冷却流道并排分布。
  23. 根据权利要求19所述的船外机,其特征在于,所述驱动器位于所述收容腔远离所述螺旋桨的内表面,或者,所述驱动器位于所述收容腔靠近所述螺旋桨的内表面。
  24. 根据权利要求1所述的船外机,其特征在于,所述机架包括水上部分,所述水上部分限定水上容纳腔,所述动力电机、所述驱动器和部分所述传动机构均收容于所述水上容纳腔。
  25. 根据权利要求24所述的船外机,其特征在于,所述传动机构包括上置变速组件,所述上置变速组件收容于所述水上容纳腔,所述上置变速组件用于转换所述动力电机的转速至所述螺旋桨。
  26. 根据权利要求24所述的船外机,其特征在于,所述动力电机包括用于输出转矩的动力输出端和与所述动力输出端间隔设置的固定端,所述驱动器设于所述固定端背离所述动力输出端的一侧。
  27. 根据权利要求24所述的船外机,其特征在于,所述动力电机包括用于输出转矩的动力输出端和与所述动力输出端间隔设置的固定端,所述固定端和所述动力输出端之间形成所述动力电机的外周侧,所述驱动器设于所述外周侧。
  28. 根据权利要求1所述的船外机,其特征在于,所述机架包括水上部分,所述水上部分包括第一安装部和第二安装部,所述第二安装部与所述第一安装部并排固定,所述第一安装部限定第一安装腔,所述第二安装部限定第二安装腔,所述驱动器收容于所述第一安装腔,所述动力电机和一部分的所述传动机构收容于所述第二安装腔。
  29. 根据权利要求28所述的船外机,其特征在于,所述船外机还包括散热结构,所述散热结构固定于所述第一安装部和所述第二安装部之间,并与所述第一安装部和所述第二安装部热耦合。
  30. 根据权利要求1所述的船外机,其特征在于,所述机架包括水下部分,所述水下部分限定水下容纳腔,所述水下部分用于设于水域内,所述螺旋桨设于 所述水下部分,所述传动机构的至少一部分位于所述水下容纳腔。
  31. 根据权利要求30所述的船外机,其特征在于,所述水下容纳腔内置第二冷却油液,所述第二冷却油液用于冷却所述传动机构的至少一部分。
  32. 根据权利要求30所述的船外机,其特征在于,所述机架还包括水上部分,所述水上部分限定水上容纳腔,所述动力电机和所述驱动器位于所述水上容纳腔,所述传动机构包括下置变速组件和中置传动轴,所述下置变速组件位于所述水下容纳腔,所述中置传动轴的一端与所述动力电机的输出端连接,所述下置变速组件的一端与所述中置传动轴的另一端连接,所述下置变速组件另一端与所述螺旋桨连接。
  33. 根据权利要求32所述的船外机,其特征在于,所述船外机还包括第二隔板,所述第二隔板将所述水上容纳腔分隔为第二电控腔和第二油冷腔,所述第二油冷腔和所述水下容纳腔连通,所述动力电机和部分所述传动机构设于所述第二油冷腔,所述第二油冷腔和所述水下容纳腔内置第三冷却油液,所述第三冷却油液用于冷却所述动力电机和所述传动机构。
  34. 根据权利要求33所述的船外机,其特征在于,所述水下部分包括:
    延伸壳,所述延伸壳与所述水上部分连接,所述中置传动轴设于所述延伸壳内;
    水下导流部,所述水下导流部与所述延伸壳连接,所述水下导流部设有水下腔体,所述下置变速组件收容于所述水下腔体。
  35. 根据权利要求30所述的船外机,其特征在于,所述船外机还包括尾轴,所述尾轴的一端和所述传动机构连接,所述水下部分开设尾轴孔,所述尾轴孔的内周侧壁密封配合有尾轴密封件,所述尾轴穿过所述尾轴孔并与所述尾轴密封件密封配合,所述尾轴与所述螺旋桨连接。
  36. 根据权利要求30所述的船外机,其特征在于,所述动力电机、所述驱动器和所述传动机构均位于所述水下容纳腔。
  37. 根据权利要求1所述的船外机,其特征在于,所述船外机还包括转向机构,所述转向机构与所述机架连接,所述转向机构用于驱动所述机架转向。
  38. 根据权利要求37所述的船外机,其特征在于,所述散热机构还用于冷却所述转向机构。
  39. 根据权利要求37所述的船外机,其特征在于,所述转向机构包括:
    动力件;
    联动件,所述联动件的一端与所述动力件的输出端连接,另一端与所述机架连接,所述联动件沿所述动力件的输出端的转动方向延伸,所述动力件用于驱动所述联动件转动以带动所述机架转动,所述联动件的转动轴线平行于所述转动方向。
  40. 根据权利要求39所述的船外机,其特征在于,所述联动件包括联动轴和变速部,所述变速部与所述动力件连接,所述联动轴的一端与所述变速部连接,所述联动轴的另一端与所述机架连接,用于带动所述机架转向。
  41. 根据权利要求40所述的船外机,其特征在于,所述动力件包括转向电机,所述转向电机输出扭矩至所述变速部,所述变速部用于将所述转向电机的扭矩 变化转速后输出至所述联动轴。
  42. 一种水域可移动设备,其特征在于,包括:
    船体;
    如权利要求1-41中任一项所述的船外机,所述船外机安装于所述船体。
PCT/CN2022/118827 2022-09-14 2022-09-14 船外机及水域可移动设备 WO2024055214A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/118827 WO2024055214A1 (zh) 2022-09-14 2022-09-14 船外机及水域可移动设备
CN202280006455.7A CN116897129A (zh) 2022-09-14 2022-09-14 船外机及水域可移动设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/118827 WO2024055214A1 (zh) 2022-09-14 2022-09-14 船外机及水域可移动设备

Publications (1)

Publication Number Publication Date
WO2024055214A1 true WO2024055214A1 (zh) 2024-03-21

Family

ID=88311163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118827 WO2024055214A1 (zh) 2022-09-14 2022-09-14 船外机及水域可移动设备

Country Status (2)

Country Link
CN (1) CN116897129A (zh)
WO (1) WO2024055214A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170052718A (ko) * 2015-11-03 2017-05-15 현대중공업 주식회사 변동압력 저감장치를 구비한 선박
CN112357032A (zh) * 2020-10-30 2021-02-12 株洲中车时代电气股份有限公司 一种集成化的水下推进器
CN114476010A (zh) * 2020-11-13 2022-05-13 广东逸动科技有限公司 一种船用推进设备冷却系统及船用推进设备
CN114802674A (zh) * 2022-04-20 2022-07-29 广东逸动科技有限公司 推进装置
CN115027654A (zh) * 2022-07-15 2022-09-09 宁波海伯集团有限公司 一种船用推进器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170052718A (ko) * 2015-11-03 2017-05-15 현대중공업 주식회사 변동압력 저감장치를 구비한 선박
CN112357032A (zh) * 2020-10-30 2021-02-12 株洲中车时代电气股份有限公司 一种集成化的水下推进器
CN114476010A (zh) * 2020-11-13 2022-05-13 广东逸动科技有限公司 一种船用推进设备冷却系统及船用推进设备
CN114802674A (zh) * 2022-04-20 2022-07-29 广东逸动科技有限公司 推进装置
CN115027654A (zh) * 2022-07-15 2022-09-09 宁波海伯集团有限公司 一种船用推进器

Also Published As

Publication number Publication date
CN116897129A (zh) 2023-10-17

Similar Documents

Publication Publication Date Title
KR101596108B1 (ko) 선박
CN219215356U (zh) 动力装置、推进器及水域可移动设备
WO2024055214A1 (zh) 船外机及水域可移动设备
WO2024036641A1 (zh) 推进器及水域可移动设备
CN113555996A (zh) 一种高效高功率电子水泵
CN218229373U (zh) 推进器及水域可移动设备
CN212305025U (zh) 一种电驱动总成的液冷系统
CN218229372U (zh) 推进器及水域可移动设备
CN208233327U (zh) 电动全回转推进器
CN210912843U (zh) 一种电动喷水推进器
CN218506118U (zh) 动力装置、推进器及水域可移动设备
CN218506114U (zh) 动力装置及水域可移动设备
CN218506115U (zh) 推进器及水域可移动设备
CN116829454A (zh) 动力装置、推进器及水域可移动设备
CN218489884U (zh) 推进装置及水域可移动设备
CN110539868A (zh) 一种电动喷水推进器
CN115559964A (zh) 一种液压站内液压油冷却装置以及冷却方法
CN212861799U (zh) 一种电动冲浪板
CN218506112U (zh) 推进器及水域可移动设备
WO2024051157A1 (zh) 动力装置、推进器及水域可移动设备
CN218229369U (zh) 推进器及水域可移动设备
CN221138587U (zh) 动力装置、水域推进器及水域可移动设备
CN218229374U (zh) 推进器及水域可移动设备
CN218751343U (zh) 动力装置、散热循环系统及水域可移动设备
CN218506113U (zh) 推进器及水域可移动设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958407

Country of ref document: EP

Kind code of ref document: A1