WO2024016182A1 - 表面改性和颜色改变方法以及物品 - Google Patents

表面改性和颜色改变方法以及物品 Download PDF

Info

Publication number
WO2024016182A1
WO2024016182A1 PCT/CN2022/106571 CN2022106571W WO2024016182A1 WO 2024016182 A1 WO2024016182 A1 WO 2024016182A1 CN 2022106571 W CN2022106571 W CN 2022106571W WO 2024016182 A1 WO2024016182 A1 WO 2024016182A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
colored precursor
colored
layer
precursor
Prior art date
Application number
PCT/CN2022/106571
Other languages
English (en)
French (fr)
Inventor
庄龙三
Original Assignee
得利钟表制品厂有限公司
东莞得利钟表有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 得利钟表制品厂有限公司, 东莞得利钟表有限公司 filed Critical 得利钟表制品厂有限公司
Priority to PCT/CN2022/106571 priority Critical patent/WO2024016182A1/zh
Priority to CN202211514051.7A priority patent/CN115821261B/zh
Publication of WO2024016182A1 publication Critical patent/WO2024016182A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • C23C16/14Deposition of only one other metal element
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B19/00Indicating the time by visual means
    • G04B19/06Dials

Definitions

  • the present invention relates to a new method for surface modification, in particular, but not exclusively, to a method for modifying substrates with colored precursors.
  • the invention also relates to a method of changing the color of an item.
  • articles, in particular, but not exclusively, articles comprising coloring precursors are also relevant to the present invention.
  • Decorative items such as dressing supplies, watches, spectacle frames, and ornaments have existed in human history for a long time. These items are often used to enhance the beauty or status of the wearer or a specific object to draw the attention of others. Therefore, decorations are generally brightly colored and made of metal materials, especially aluminum, copper, brass, stainless steel, etc. as base materials. Usually, after the base material is electroplated and anti-corrosion treated, the base material is then color modified to obtain the desired color.
  • a layer of precious metals such as gold, platinum, palladium and rhodium can be produced by electroplating or physical vapor deposition (such as ion plating) to produce colors of gold, platinum and rose gold, as well as blue , brown and black.
  • electroplating or physical vapor deposition such as ion plating
  • the base material is aluminum
  • various colors can be obtained, these colors are actually the result of dyeing after anodizing of the aluminum, which generally lacks the metallic effect, making the decoration look dull.
  • the low density of aluminum gives the ornament a lack of weight, further reducing the appeal/impression of aluminum ornaments.
  • the present invention provides a surface modification method, characterized in that the method includes the following steps:
  • the colored precursor layer has a predetermined thickness.
  • the predetermined thickness is at least about 1 ⁇ m.
  • the coloring precursor in at least a predetermined portion of the coloring precursor layer in step c) is converted into a light deflecting agent by anodizing.
  • the anodizing includes oxidizing the coloring precursor to its oxide.
  • the anodizing is performed for at least 1 minute.
  • the anodizing is performed at a voltage of about 10V to about 150V.
  • the anodizing is performed at a temperature of about 20°C to about 90°C.
  • the vapor deposition includes radio frequency magnetron sputtering or plasma enhanced chemical vapor deposition.
  • the coloring precursor is selected from the group consisting of niobium, tantalum, and combinations thereof.
  • the modified layer includes the light deflecting agent covering the unconverted colored precursor.
  • the light deflecting agent and the colored precursor have a thickness ratio of from about 90:10 to about 60:40.
  • the preferred colors include any one of green, purple, orange, rainbow colors or color gradients.
  • the method further includes the step of forming the first substrate by electroplating the metal material on another metal material.
  • the method further includes the step of forming the first substrate by plating the metal material on a non-metal material.
  • the plating is performed by electroless plating.
  • the metallic material is selected from the group consisting of stainless steel, brass, copper, titanium, aluminum, palladium, cobalt, alloys containing titanium and aluminum, alloys containing palladium and cobalt, and combinations thereof.
  • the non-metallic material is selected from the group consisting of wood materials, plastics, carbonaceous materials and combinations thereof.
  • the wood material is wood composite material.
  • the plastic is selected from the group consisting of acrylonitrile butadiene styrene (ABS), polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polylactic acid (PLA), and combinations thereof Group.
  • ABS acrylonitrile butadiene styrene
  • PE polyethylene
  • PP polypropylene
  • PVC polyvinyl chloride
  • PLA polylactic acid
  • the carbonaceous material is selected from the group consisting of graphite, carbon fiber, carbon cloth, carbon sheet, and combinations thereof.
  • the present invention provides a method for changing the color of an item, characterized in that the method includes the following steps:
  • the colored precursor layer has a predetermined thickness of at least about 1 ⁇ m.
  • the coloring precursor in at least a predetermined portion of the coloring precursor layer in step c) is converted into a light deflecting agent by anodizing.
  • the anodizing includes oxidizing the coloring precursor to its oxide.
  • the anodizing is performed for at least 1 minute.
  • the anodizing is performed at a voltage of about 10V to about 150V.
  • the anodizing is performed at a temperature of about 20°C to about 90°C.
  • the vapor deposition includes radio frequency magnetron sputtering or plasma enhanced chemical vapor deposition.
  • the coloring precursor is selected from the group consisting of niobium, tantalum, and combinations thereof.
  • the modified layer includes the light deflecting agent covering the unconverted colored precursor.
  • the light deflecting agent and the colored precursor have a thickness ratio of from about 90:10 to about 60:40.
  • the preferred colors include any one of green, purple, orange, rainbow colors or color gradients.
  • the method further includes the step of forming the first substrate by electroplating the metal material on another metal material.
  • the method further includes the step of forming a first substrate by plating the metal material on a non-metal material.
  • the plating is performed by electroless plating.
  • the metallic material is selected from the group consisting of stainless steel, brass, copper, titanium, aluminum, palladium, cobalt, alloys containing titanium and aluminum, alloys containing palladium and cobalt, and combinations thereof.
  • the invention provides an article, characterized in that the article includes:
  • the second substrate adopting the non-planar profile of the first substrate to form a seamlessly bonded substrate with the first substrate;
  • the second substrate includes a colored precursor layer covering the first substrate
  • the colored precursor of the colored precursor layer is selected from the group consisting of niobium, tantalum and combinations thereof.
  • the colored precursor layer has a substantially uniform thickness.
  • the colored precursor layer has a predetermined thickness of at least about 1 ⁇ m.
  • the second substrate further includes an oxide layer of the colored precursor covering the colored precursor layer.
  • the layer of colored precursor and the oxide layer of colored precursor have a thickness ratio of from about 90:10 to about 60:40.
  • the item has a green, purple, orange, iridescent or color gradient color.
  • the items include watches, jewelry, and spectacle frames.
  • the second substrate is deposited on the first substrate by physical vapor deposition or chemical vapor deposition.
  • FIG. 1 shows a schematic diagram showing thin film interference of a first substrate prepared according to an embodiment of the present invention.
  • d is the thickness of the light deflection agent of the modified layer;
  • ⁇ 1 is the incident light angle of the light deflection agent;
  • ⁇ 2 is the refraction angle of light at the boundary between the light deflection agent and the coloring precursor in the modified layer.
  • example or “exemplary” as used herein are intended to serve as an example, instance, or illustration. Any aspect or design described in this disclosure as “exemplary” is not necessarily to be construed as superior or superior to other aspects or designs. Instead, using the words “example” or “exemplary” is intended to present the concept in a concrete way.
  • the term “or” is intended to mean an inclusive “or” rather than an exclusive “or.” That is, unless stated otherwise, or clear from the context, "X adopts A or B” is intended to mean any of the natural inclusive permutations. That is, if X adopts A; X adopts B; or X adopts both A and B, then "X adopts A or B" is true in either case.
  • Transition metals such as niobium and tantalum belong to Group V of the periodic table. Typically gray in color, these metals have properties similar to aluminum and titanium and can form oxide layers that appear in different colors after anodization. These metals also have high melting points of at least about 2000°C, making them well suited for high temperature alloy applications. However, due to their high melting points, processing of niobium and tantalum is considered extremely difficult, especially when reshaping into different shapes or forming uniform coatings to suit specific decorative purposes. Therefore, these metals are rarely used in the manufacture of decorative products or as additives in decorative products.
  • the inventors through their own research, tests and experiments have designed a method that can be used to modify surfaces containing metallic materials (such as the surface of decorative items/objects) , making it possible for the item/object to appear in the desired/preferred color.
  • the method can utilize niobium and/or tantalum as coloring precursors to modify surfaces containing metallic materials and change their color.
  • the method can change the color of the metallic material to any of green, violet (or purple), orange, iridescence, or a color gradient.
  • the metal materials modified by the method described in this application have physical properties that can pass one or more of the following tests: UV test NIHS 96-50, artificial sweat ISO 3160- 2-2003, adhesion test ISO 4524/5 (SECTION 3), and wear resistance test ISO23160:2001.
  • a surface modification method is provided. This method is particularly suitable for modifying surfaces containing metallic materials to change their color from one color to another (desired/preferred) color.
  • the method includes the following steps:
  • b) Form a colored precursor layer on the first substrate by vapor deposition (for example, physical vapor deposition or chemical vapor deposition), so that the colored precursor layer adopts the non-planar contour of the first substrate, thereby Forming a combined substrate with the first substrate; and
  • vapor deposition for example, physical vapor deposition or chemical vapor deposition
  • the method begins with step a), which step includes providing a first substrate comprising a metallic material.
  • the first substrate may be a substrate substantially made of a metallic material or a metallic material.
  • the first substrate may have at least 90 wt%, about 90 wt% to about 100 wt%, about 95 wt% to about 100 wt%, about 97 wt% to about 99 wt%, about 98 wt% to about 100 wt% % by weight, about 99% by weight, or about 100% by weight of the metallic material.
  • the first substrate may have a weight content of about 99% by weight or about 100% by weight of the metallic material, that is, the first substrate may be substantially or entirely made of the metallic material.
  • the first substrate may be made of one or more metallic materials.
  • the first substrate may be made of a single metal material.
  • the first substrate may be a layered structure having a single layer of metal material.
  • the first substrate may be made of two or more metal materials.
  • the first substrate may be a layered structure having two or more layers of metal material, wherein each layer has the same or different metal material from each other, for example, by electroplating one metal material on another metal material. Come up to form the first base material.
  • the metallic material may be selected from the group consisting of stainless steel, brass, copper, titanium, aluminum, palladium, cobalt, alloys containing titanium and aluminum, alloys containing palladium and cobalt, and combinations thereof.
  • the metallic material may be selected from stainless steel, brass, copper and alloys containing palladium and cobalt.
  • the first substrate may be formed by first electroplating copper on stainless steel to form an electroplating bottom layer of about 2 ⁇ m to about 15 ⁇ m thick, and then electroplating palladium and cobalt on the copper to form about 0.25 ⁇ m thick (Palladium Cobalt) alloy layer.
  • the electroplating process may have at least the following typical steps:
  • Flash plating solutions may include alkaline solutions containing ingredients such as cuprous cyanide, sodium cyanide, and sodium carbonate.
  • the electrolyte solution may be configured as a solution containing a salt of the target metal for electroplating.
  • the electrolyte when the target metal of electroplating is copper, the electrolyte may be a solution including copper sulfate.
  • the target metal for electroplating is a palladium-cobalt alloy, the electrolyte may be a solution with a specific palladium-cobalt concentration ratio (such as a concentration ratio of palladium ions to cobalt ions of about 80 g/L: about 20 g/L).
  • a specific palladium-cobalt concentration ratio such as a concentration ratio of palladium ions to cobalt ions of about 80 g/L: about 20 g/L.
  • the first substrate may be provided by the step of plating a metallic material on a non-metallic material to form the first substrate. That is, the first substrate may have at least 5% by weight, at least 10% by weight, at least 15% by weight, at least 20% by weight, at least 25% by weight, at least 30% by weight, at least 35% by weight, at least 40% by weight, At least 45% by weight, at least 50% by weight, at least 55% by weight, at least 60% by weight, from about 60% by weight to about 70% by weight, from about 65% by weight to about 70% by weight, from about 65% by weight to about 68% by weight, or A weight content of about 65% to about 69% by weight of the metallic material is located on the non-metallic material.
  • plating is performed by electroless plating.
  • electroless plating electroless plating
  • electroless plating electroless plating
  • electroless plating electroless plating
  • autocatalytic plating are understood in the art to mean that they generally mean plating or producing a metallic coating on a material by the autocatalytic chemical reduction of metal cations in a liquid bath. method, and this method is contrary to the electroplating process in which reduction is achieved by externally generated current.
  • Non-metallic materials may be selected from the group consisting of wood materials, plastics, carbonaceous materials, and combinations thereof.
  • the non-metallic material may be a wood material, in particular a wood composite material, or preferably a wood plastic composite material.
  • wood-plastic composite generally refers to wood fibers and/or wood flour and materials selected from the group consisting of polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polylactic acid (PLA), and combinations thereof Set of composite materials made of thermoplastics.
  • the non-metallic material may be a plastic
  • the plastic may be selected from acrylonitrile butadiene styrene (ABS), polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polylactic acid (PLA) and its combinations.
  • the non-metallic material may be a carbon material selected from the group consisting of graphite, carbon fiber, carbon cloth, carbon sheet, and combinations thereof.
  • the first substrate is made of one non-metal material and two or more metal materials, and the plating of the metal materials can be formed by different processes, for example, using an electroless plating method to The metal material is plated on the non-metal material, and then another metal material is electroplated on the previous metal material (ie, the metal material that has been plated on the non-metal material).
  • copper is plated on ABS plastic through an electroless copper plating process to form an electroplating bottom layer about 2 ⁇ m to about 15 ⁇ m thick, and then palladium and cobalt are plated on the electroless copper plating through an electroplating process to form about 0.25 ⁇ m thick palladium-cobalt alloy layer.
  • the electroless plating process can be performed according to any standard procedure in the art.
  • the method may also include the following steps before electroless plating:
  • Step i) is a cleaning step, which may specifically include the following steps:
  • step i) at least once.
  • the alkaline solution may include sodium hydroxide, trisodium phosphate dodecahydrate, and combinations thereof. Each of them may have a concentration of about 0.25M to about 0.4M.
  • Step ii) may in particular comprise the following steps:
  • step i) immersing the non-metallic material obtained after step i) into an etching solution of elevated temperature, for example about 60°C, for a predetermined time, for example about 20 minutes;
  • the etching solution may be an acidic solution including, for example, hydrochloric acid, chromium trioxide, sulfuric acid, nitric acid, and combinations thereof. Each of them may have a concentration of about 1.5M to about 4.0M. Optionally, the concentration of the acidic solution is carefully controlled to only microetch the non-metallic material.
  • the neutralizing solution can be the same as the alkaline solution in step i).
  • Step iii) may in particular comprise the following steps:
  • a catalytic solution which may contain acid and catalyst.
  • the acid may be selected from hydrochloric acid or sulfuric acid at a concentration of, for example, about 0.8M to about 1.2M.
  • the catalyst may be selected from palladium chloride, tin chloride, and combinations thereof, wherein the catalyst may have a concentration of, for example, about 1 ⁇ M to about 2 ⁇ M.
  • Step iv) may in particular comprise the following steps:
  • an accelerating solution which may contain a catalyst capable of oxidizing tin on the non-metallic material, for example one or more of the following: sodium chlorite, dichlorite Sodium chloroisocyanurate, hydrogen peroxide, sodium hypochlorite, sodium chlorate, potassium permanganate, sodium perborate.
  • the accelerating solution may have a concentration of, for example, about 0.1M to about 0.2M.
  • the electroless plating step can be performed by immersing the accelerated non-metallic material (ie, the non-metallic material obtained after step iv)) into the reaction solution.
  • the reaction solution may be an alkaline solution containing sodium hydroxide, potassium hydroxide, or the like.
  • the reaction solution may also contain a metal salt of the target metal, a reducing agent, and a stabilizer.
  • the reaction solution may include copper sulfate, formaldehyde, ethylenediaminetetraacetic acid (EDTA), and sodium hydroxide.
  • the electroless plating layer can be thickened by an electroplating process.
  • a layer of electroplated copper with a predetermined thickness can be further plated on the electroless copper plating using the above electroplated copper process.
  • the first substrate is preferably a substrate with a non-planar profile.
  • the non-planar profile of the first substrate may be of any form or shape depending on specific needs.
  • the first substrate may be made into and/or have contours of vehicle components such as vehicle frames, doors, bumpers, etc.; decorative items such as decorative balls, necklaces, earrings, watches, jewelry, eyeglass frames, etc., and/ or having its outline; keys, door handles, etc. and/or having its outline.
  • the first substrate is an ornament, such as watches, jewelry and eyeglass frames.
  • the first substrate may be appropriately processed, ground, polished, cleaned with a degreasing agent, and other processes.
  • step b) includes forming a coloring precursor layer on the first substrate by physical vapor deposition or chemical vapor deposition, such that the coloring precursor
  • the layer adopts the non-planar profile of the first substrate to form a combined substrate with the first substrate.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • the terms "physical vapor deposition (PVD)” and “chemical vapor deposition (CVD)” generally describe vacuum deposition methods that can be used to create thin films and coatings on specific materials/substrates.
  • the physical vapor deposition process typically involves the material changing from a condensed phase to a vapor and then back to a thin film condensed phase.
  • the chemical vapor deposition process typically involves a chemical reaction and/or chemical decomposition on a specific material/substrate surface to produce a deposited film or coating.
  • vapor deposition may involve magnetron sputtering (eg, radio frequency magnetron sputtering) or radio frequency ion plating.
  • a magnetron sputtering apparatus has a vacuum chamber and one or more targets disposed within the vacuum chamber, a cathode and an anode connected to a power source (DC or AC), and a substrate may be placed in The position in the vacuum chamber close to the anode is used to sputter and deposit the target material on the substrate through operations such as single target sputtering, multi-target sequential sputtering or joint sputtering.
  • the material/substrate to be coated can be placed in a magnetron sputtering apparatus and heated from approximately 25°C to approximately 350°C.
  • the sputtering process uses a target that includes or consists of a colored precursor (such as a pure metallic niobium target), and argon as the process gas is injected at a pressure of 5 x 10 -1 Pa and maintained at A vacuum chamber with a vacuum degree of 5
  • the bias voltage is used to perform sputtering within about 2 hours to about 4 hours (preferably 2 hours) to ensure that the desired film or coating is obtained.
  • Chemical vapor deposition can involve plasma enhanced chemical vapor deposition (PECVD), which has the advantages of fast deposition rate, good film formation quality, and the film formation is not easy to crack.
  • PECVD plasma enhanced chemical vapor deposition
  • a plasma-enhanced chemical vapor deposition apparatus has a vacuum chamber, electrodes and gas pipes disposed in the vacuum chamber, and a substrate may be placed in the vacuum chamber to deposit plasma generated from the gas in the vacuum chamber. on the substrate.
  • the plasma enhanced chemical vapor deposition apparatus in order to deposit the desired coloring precursor on the substrate, further has a precursor container containing the coloring precursor or a compound containing the coloring precursor, which is connected to the mass flow controller , to control the amount of the coloring precursor or the compound containing the coloring precursor added to the carrier gas.
  • a precursor container containing the coloring precursor or a compound containing the coloring precursor which is connected to the mass flow controller , to control the amount of the coloring precursor or the compound containing the coloring precursor added to the carrier gas.
  • niobium pentachloride is added to argon as the carrier gas, and hydrogen is used as the reaction gas.
  • the material/substrate to be coated is maintained at approximately 700°C
  • the vacuum within the vacuum chamber is maintained at 5 x 10 -6 mbar
  • the deposition process is performed for approximately 60 minutes to ensure the desired film is obtained or coating.
  • the colored precursor layer deposited on the first substrate may have a thickness of at least about 1 ⁇ m, about 1 ⁇ m to about 5 ⁇ m, about 1 ⁇ m to about 4 ⁇ m, about 1.5 ⁇ m to about 4 ⁇ m, about 1.5 ⁇ m to about 3.5 ⁇ m, or especially 3 ⁇ m. Predetermined thickness.
  • the coloring precursor may be selected from the group consisting of niobium, tantalum, and combinations thereof.
  • the inventors have found it particularly advantageous to form such colored precursors by means of physical vapor deposition or chemical vapor deposition. It can be understood that through physical vapor deposition or chemical vapor deposition, the coloring precursor will be deposited/attached on the first substrate in the form of particles rather than in the form of a whole block or a whole piece of material. Accordingly, a colored precursor layer formed in this form/process will readily adopt any profile, and in particular, even if the first substrate has a non-planar profile, the colored precursor will still be able to form a substantially uniform or uniform layer on the first substrate. And create a seamless bond with the substrate.
  • this effect can hardly be achieved simply by adhering the coloring precursor to the substrate, especially when the typical melt-reshaping methods in the prior art cannot be used to process such coloring precursors, e.g. , when the coloring precursor contains a high melting point material, such as niobium, tantalum, and combinations thereof. It is also advantageous if a minimum thickness of, for example, about 1 ⁇ m is sufficient to allow the method to proceed to subsequent steps of the method, by means of physical vapor deposition or chemical vapor deposition. Examples illustrating the advantages of this approach will be disclosed later in this disclosure.
  • step c) the colored precursor in at least a predetermined portion of the colored precursor layer is converted into a light deflecting agent to form a modified layer exhibiting a preferred color.
  • the term "light deflecting agent” refers to a compound or layer of such compounds that allows thin film interference to occur.
  • thin film interference generally refers to the phenomenon that incident light waves reflected by the upper and lower boundaries of the film interfere with each other to form new waves, preferably due to constructive interference (that is, when the optical path difference is equal to an integer multiple of the light wavelength).
  • the first substrate 100 may be the first substrate 100 made of two or more metal materials as described above, such as the first substrate 100 having an electroplated bottom layer and an alloy layer (not shown) as described above.
  • a layer of colored precursor 102 may be deposited on the first substrate 100 through physical vapor deposition or chemical vapor deposition to form a seamlessly combined substrate 104 with the first substrate.
  • the first substrate 100 also includes a light deflection agent (layer) 106 converted from the colored precursor 102, which covers the colored precursor and forms a modified layer 108.
  • the incident light wave 110 is directly reflected by the upper boundary of the light deflection agent 106 to form a reflected light wave 112; and the incident light wave 114 is first refracted by the light deflection agent 106 and then reflected by the coloring precursor 102 (i.e., during the light deflection reflected at the lower boundary of the agent), forming a new light wave 116.
  • the coloring precursor 102 i.e., during the light deflection reflected at the lower boundary of the agent
  • the coloring precursor in the predetermined portion of the coloring precursor layer in step c) may be converted into the light deflecting agent by anodization, in particular an anodization involving the oxidation of the coloring precursor to its oxide.
  • the anodizing process can be performed with any standard electroplating setup, such as an electrochemical cell/station/tank.
  • the combined substrate ie, the first substrate on which the colored precursor is deposited
  • a cathode such as a cathode made of platinum
  • a voltage can be applied to the device after the cathode and combined substrate are immersed in an acidic or alkaline electrolyte.
  • the anodization of the colored precursor can be performed by immersing a portion of the combined substrate at a time into the anodizing electrolyte and performing the anodization in a part-by-part manner.
  • it can be done in a disposable manner by immersing the entire combined substrate in an anodizing electrolyte.
  • Anodization may be performed at a predetermined voltage, temperature, and/or electrolyte for a predetermined time to form a modified layer that may exhibit a specific or preferred color.
  • anodization can be performed at about 10V to about 150V, about 10V to about 151V, about 15V to about 150V, about 15V to about 151V, about 18V to about 150V, about 19V to about 151V, or about 19V to about 151V.
  • a voltage of about 150V preferably at a voltage of 20V to 150V.
  • anodizing at a voltage of 20V can produce a coloring effect, and the higher the voltage and the longer the time, the thicker the thickness of the modified layer, but the thickness will stop increasing after a certain thickness.
  • anodizing may be performed at about 20°C to about 90°C, about 20°C to about 89°C, about 25°C to about 90°C, about 30°C to about 90°C, about 35°C to about 89°C, The temperature is about 40°C to about 91°C, about 40°C to about 90°C, about 45°C to about 89°C, or about 49°C to about 89°C, preferably at a temperature of 50°C to 90°C.
  • anodizing may be performed for at least 1 minute, from about 1 minute to about 180 minutes, from about 1 minute to about 120 minutes, from about 1 minute to about 90 minutes, from about 1 minute to about 75 minutes, from about 1 minute to about 100 minutes.
  • the modifying layer may include a light deflecting agent covering the unconverted colored precursor. That is, after anodization, a part of the coloring precursor is converted into a light deflecting agent and covers the unconverted coloring precursor.
  • the light deflecting agent in the modified layer may have a thickness of about 0.1 ⁇ m to about 0.5 ⁇ m, 0.15 ⁇ m to about 0.5 ⁇ m, 0.15 ⁇ m to about 0.45 ⁇ m, 0.1 ⁇ m to about 0.4 ⁇ m, 0.15 ⁇ m to about 0.35 ⁇ m. ⁇ m, 0.15 ⁇ m to about 0.4 ⁇ m, 0.15 ⁇ m to about 0.28 ⁇ m, preferably about 0.1 ⁇ m to about 0.3 ⁇ m thickness.
  • the light deflecting agent and the coloring precursor in the modified layer may have a ratio of about 90:10 to about 60:40, about 9:1 to about 6:4, about 9:1 to about 3:2, Or a predetermined thickness ratio of about 0.9:0.1 to about 0.3:0.2.
  • the overall atomic ratio of the coloring precursor to oxygen in the light deflection agent may be about 20:80 to about 80:20, about 30:70 to about 70:30, preferably 40:60.
  • the overall atomic ratio of niobium to oxygen (Nb:O) of niobium oxide (ie, the light deflecting agent) may be 40:60.
  • the light deflecting agent may have a niobium oxide of about 70% NbO, about 20% NbO2 , and about 10% Nb2O5 .
  • the proportions of these oxides are also different when using different voltages. Also, the closer to the surface, the higher the proportion of oxygen, so different colors can be formed.
  • preferred colors include any of green, purple, orange, iridescence or color gradients.
  • a method of changing the color of an article, in particular of an article containing metallic material includes the following steps:
  • b) Deposit a colored precursor layer on the first substrate by vapor deposition (for example, physical vapor deposition or chemical vapor deposition), so that the colored precursor layer adopts the non-planar profile of the first substrate , thereby forming a combined substrate with the first substrate; and
  • vapor deposition for example, physical vapor deposition or chemical vapor deposition
  • the method begins with step a), which step includes providing an article comprising a first substrate of metallic material.
  • the article may include a first substrate made essentially of or made of a metallic material.
  • the first substrate may have at least 90 wt%, about 90 wt% to about 100 wt%, about 95 wt% to about 100 wt%, about 97 wt% to about 99 wt%, about 98 wt% to about 100 wt% % by weight, about 99% by weight, or about 100% by weight of the metallic material.
  • the first substrate may have a weight content of about 99% by weight or about 100% by weight of metallic material, ie, the first substrate may be substantially or entirely made of metallic material.
  • the first substrate can be made of one or more than one metal material. For example, one metal material can be electroplated on another metal material to form the first substrate.
  • the metallic material may be selected from the group consisting of stainless steel, brass, copper, titanium, aluminum, palladium, cobalt, alloys containing titanium and aluminum, alloys containing palladium and cobalt, and combinations thereof.
  • the metallic material may be selected from stainless steel, brass and copper and alloys containing palladium and cobalt.
  • the first substrate may be provided by the step of plating one or more metallic materials on a non-metallic material to form the first substrate, and the plating of two or more metallic materials may Formed by different processes, as mentioned above. That is, the first substrate may have at least 5% by weight, at least 10% by weight, at least 15% by weight, at least 20% by weight, at least 25% by weight, at least 30% by weight, at least 35% by weight, at least 40% by weight, At least 45% by weight, at least 50% by weight, at least 55% by weight, at least 60% by weight, from about 60% by weight to about 70% by weight, from about 65% by weight to about 70% by weight, from about 65% by weight to about 68% by weight, or A weight content of about 65% to about 69% by weight of the metallic material is located on the non-metallic material.
  • plating of non-metallic materials is performed by electroless plating as defined herein.
  • Non-metallic materials may be selected from the group consisting of wood materials, plastics, carbonaceous materials, and combinations thereof.
  • the non-metallic material may be a wood material, in particular a wood composite material, or preferably a wood plastic composite material.
  • wood-plastic composite generally refers to a material composed of wood fiber and/or wood flour and a material selected from the group consisting of polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polylactic acid (PLA), and combinations thereof Set of composite materials made of thermoplastics.
  • the non-metallic material may be a plastic
  • the plastic may be selected from acrylonitrile butadiene styrene (ABS), polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polylactic acid (PLA) and its combinations.
  • the non-metallic material may be a carbon material selected from the group consisting of graphite, carbon fiber, carbon cloth, carbon sheet, and combinations thereof.
  • the first substrate is preferably a substrate with a non-planar profile.
  • the non-planar profile of the first substrate may be of any form or shape depending on the type of article.
  • the first substrate may be the decorative ball, necklace, earring, watch, jewelry, spectacle frame and/or have the outline thereof .
  • the article may be any of a watch, jewelry, or an eyeglass frame, and the first substrate may be any of these articles and/or have their contours.
  • the item can be appropriately processed, sanded, polished, cleaned with degreaser, etc.
  • step b) includes forming a coloring precursor layer on the first substrate by physical vapor deposition or chemical vapor deposition, so that the coloring precursor layer adopts the first coloring precursor layer.
  • physical vapor deposition may involve magnetron sputtering (eg, radio frequency magnetron sputtering) or radio frequency ion plating
  • chemical vapor deposition may involve plasma enhanced chemical vapor deposition, as described above.
  • the colored precursor layer deposited on the first substrate may have a thickness of at least about 1 ⁇ m, about 1 ⁇ m to about 5 ⁇ m, about 1 ⁇ m to about 4 ⁇ m, about 1.5 ⁇ m to about 4 ⁇ m, about 1.5 ⁇ m to about 3.5 ⁇ m, or especially 3 ⁇ m. Predetermined thickness.
  • the coloring precursor may be selected from the group consisting of niobium, tantalum, and combinations thereof. As mentioned above, it is advantageous to deposit such coloring precursors (with a high melting point) by means of physical vapor deposition or chemical vapor deposition. In a preferred embodiment, the coloring precursor is niobium.
  • step c) the colored precursor in at least a predetermined portion of the colored precursor layer is converted into a light deflecting agent to form a modified layer exhibiting a preferred color.
  • the coloring precursor in the predetermined portion of the coloring precursor layer in step c) may be converted into the light deflecting agent by anodization, in particular an anodization involving the oxidation of the coloring precursor to its oxide.
  • Anodization can be performed at a predetermined voltage, temperature, and/or acidic or alkaline electrolyte for a predetermined time, and in any standard electroplating apparatus as described above, to form a modified layer that can exhibit a specific or preferred color.
  • anodization can be performed at about 10V to about 150, about 10V to about 151V, about 15V to about 150V, about 15V to about 151V, about 18V to about 150V, about 19V to about 151V, or about 19V to about 15V.
  • a voltage of about 150V preferably at a voltage of 20V to 150V.
  • anodizing at a voltage of 20V can produce a coloring effect, and the higher the voltage and the longer the time, the thicker the thickness of the modified layer, but the thickness will stop increasing after a certain thickness.
  • anodizing may be performed at about 20°C to about 90°C, about 20°C to about 89°C, about 25°C to about 90°C, about 30°C to about 90°C, about 35°C to about 89°C, The temperature is about 40°C to about 91°C, about 40°C to about 90°C, about 45°C to about 89°C, or about 49°C to about 89°C, preferably at a temperature of 50°C to 90°C.
  • anodizing may be performed for at least 1 minute, from about 1 minute to about 180 minutes, from about 1 minute to about 120 minutes, from about 1 minute to about 90 minutes, from about 1 minute to about 75 minutes, from about 1 minute to about 100 minutes.
  • the modifying layer may include a light deflecting agent covering the unconverted colored precursor. That is, after anodization, a part of the coloring precursor is converted into a light deflecting agent and covers the unconverted coloring precursor.
  • the light deflecting agent in the modified layer may have a thickness of about 0.1 ⁇ m to about 0.5 ⁇ m, 0.15 ⁇ m to about 0.5 ⁇ m, 0.15 ⁇ m to about 0.45 ⁇ m, 0.1 ⁇ m to about 0.4 ⁇ m, 0.15 ⁇ m to about 0.35 ⁇ m. ⁇ m, 0.15 ⁇ m to about 0.4 ⁇ m, 0.15 ⁇ m to about 0.28 ⁇ m, preferably about 0.1 ⁇ m to about 0.3 ⁇ m thickness.
  • the light deflecting agent and the coloring precursor in the modified layer may have a ratio of about 90:10 to about 60:40, about 9:1 to about 6:4, about 9:1 to about 3:2, Or a predetermined thickness ratio of about 0.9:0.1 to about 0.3:0.2.
  • the coloring precursor includes a single element
  • the overall atomic ratio of the coloring precursor to oxygen in the light deflection agent may be about 20:80 to about 80:20, about 30:70 to about 70:30, preferably 40:60.
  • the overall atomic ratio of niobium to oxygen (Nb:O) of niobium oxide (ie, the light deflecting agent) may be 40:60.
  • the light deflecting agent may have a niobium oxide of about 70% NbO, about 20% NbO2 , and about 10% Nb2O5 .
  • the proportions of these oxides are also different when using different voltages. Also, the closer to the surface, the higher the proportion of oxygen, so different colors can be formed.
  • thickness ratio and oxygen ratio may be critical in determining the preferred color to be rendered.
  • preferred colors include any of green, purple, orange, iridescence or color gradients.
  • Another aspect of the invention relates to an article comprising:
  • the second substrate adopting the non-planar profile of the first substrate to form a seamlessly bonded substrate with the first substrate;
  • the second substrate includes a colored precursor layer covering the first substrate
  • the colored precursor of the colored precursor layer is selected from the group consisting of niobium, tantalum and combinations thereof.
  • the first substrate may include a metal material selected from the group consisting of stainless steel, brass, copper, titanium, aluminum, palladium, cobalt, alloys including titanium and aluminum, alloys including palladium and cobalt, and combinations thereof.
  • the metallic material may be selected from stainless steel, brass, copper and alloys containing palladium and cobalt.
  • the first substrate may be made essentially of or made of a metallic material as defined herein.
  • the first substrate can be made of one or more than one metal material. For example, one metal material can be electroplated on another metal material to form the first substrate.
  • the first substrate may be a substrate having one or more metallic materials plated on a non-metallic material, such as selected from the group consisting of wood materials, plastics, carbon materials, and combinations thereof as defined herein
  • a non-metallic material such as selected from the group consisting of wood materials, plastics, carbon materials, and combinations thereof as defined herein
  • the group of non-metallic materials, and the plating of two or more metal materials can be formed by different processes.
  • the plating may in particular be plating by means of electroless plating as defined herein.
  • non-planar profile generally means a shape, form or outline of an item that does not lie or cannot be restricted to a single plane, or in other words, has a three-dimensional quality.
  • the first substrate may have a profile/shape/form corresponding to the article.
  • the first substrate may have an outline corresponding to an object, which may be a vehicle component such as a frame, a door, a bumper, etc.; decorative balls, necklaces, earrings, watches, jewelry, glasses frames, etc.; keys, doors, etc. Handle etc.
  • the items may include watches, jewelry, and spectacle frames.
  • the first substrate may be deposited with a second substrate that adopts the non-planar contours of the first substrate to form a seamlessly bonded substrate.
  • the second substrate may include a colored precursor layer covering the first substrate.
  • the coloring precursor in the coloring precursor layer may be selected from the group consisting of niobium, tantalum and combinations thereof. In a preferred example, the coloring precursor is niobium.
  • the colored precursor layer may have a substantially uniform thickness, particularly at least about 1 ⁇ m, about 1 ⁇ m to about 5 ⁇ m, about 1 ⁇ m to about 4 ⁇ m, about 1.5 ⁇ m to about 4 ⁇ m, about 1.5 ⁇ m to about 3.5 ⁇ m. , or in particular a predetermined thickness of 3 ⁇ m.
  • This substantially uniform thickness is attributable to the manner in which it is deposited/formed/prepared by physical vapor deposition or chemical vapor deposition as defined herein, such as by radio frequency magnetron sputtering or plasma enhanced chemical vapor deposition. Method of preparing colored precursor layer.
  • the coloring precursor will be deposited on the first substrate in the form of particles, which particles will readily adopt any contour, especially non-planar contours of the first substrate, in A substantially uniform or uniform layer is formed on the substrate, thereby forming a seamlessly bonded substrate.
  • the second substrate may further include an oxide layer of the colored precursor covering the colored precursor layer.
  • the oxide layer of the colored precursor may have a thickness of about 0.1 ⁇ m to about 0.5 ⁇ m, 0.15 ⁇ m to about 0.5 ⁇ m, 0.15 ⁇ m to about 0.45 ⁇ m, 0.1 ⁇ m to about 0.4 ⁇ m, 0.15 ⁇ m to about 0.35 ⁇ m. , 0.15 ⁇ m to about 0.4 ⁇ m, 0.15 ⁇ m to about 0.28 ⁇ m, preferably about 0.1 ⁇ m to about 0.3 ⁇ m.
  • the colored precursor layer and the oxide layer of the colored precursor may have a ratio of about 90:10 to about 60:40, about 9:1 to about 6:4, about 9:1 to about 3:2, Or a thickness ratio of about 0.9:0.1 to about 0.3:0.2.
  • the overall atomic ratio of the coloring precursor to oxygen in the oxide layer may be about 20:80 to about 80:20, about 30:70 to about 70:30, preferably 40:60.
  • the coloring precursor is niobium
  • the overall atomic ratio of niobium to oxygen (Nb:O) in the niobium oxide layer may be 40:60.
  • the oxide layer may have about 70% NbO, about 20% NbO2 , and about 10 % Nb2O5 . The proportions of these oxides are also different when using different voltages. Also, the closer to the surface, the higher the proportion of oxygen, so different colors can be formed.
  • the thickness ratio and oxygen ratio as described above may be critical in determining the color of the item.
  • the items may have green, purple, orange, iridescent, or color gradient colors.
  • the brass base material is shaped to the case workpiece using, for example, constant pressure processing, and then the case workpiece is appropriately ground and polished. After grinding and polishing, clean the workpiece with degreaser to remove surface grease.
  • the workpiece is immersed in the flash plating (strike plating) solution as mentioned above to flash alkali copper, washed with water, and then subjected to pretreatment processes including degreasing, etching, etc. to activate the surface of the flash plating workpiece, and washed with water.
  • pretreatment processes including degreasing, etching, etc. to activate the surface of the flash plating workpiece, and washed with water.
  • the thickness of the above-mentioned coating is measured by SEM electron microscope, while the composition and proportion of the coating are measured by XPS X-ray photoelectron spectroscopy.
  • the color of the processed workpiece is measured by a colorimeter and expressed as L*a*b* value.
  • L*a*b* is the value that defines the CIELAB color space, that is, L* represents the perceived brightness
  • a* and b* represent the four unique colors of human vision: red, green, and blue. and yellow.
  • ABS workpiece that has been electroplated with palladium-cobalt alloy into a vacuum plating machine, perform plasma enhanced chemical vapor deposition (PECVD) under the conditions described in the table below, and chemically vapor deposit a layer of niobium on the palladium-cobalt alloy surface of the ABS workpiece.
  • PECVD plasma enhanced chemical vapor deposition
  • the thickness of the above-mentioned coating is measured by SEM electron microscope, while the composition and proportion of the coating are measured by XPS X-ray photoelectron spectroscopy.
  • the color of the processed workpiece is measured by a colorimeter and expressed as L*a*b* value.
  • L*a*b* is the value that defines the CIELAB color space, that is, L* represents the perceived brightness
  • a* and b* represent the four unique colors of human vision: red, green, and blue. and yellow.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种用于表面改性的方法,包括以下步骤:a)提供包含金属材料的第一基材;b)通过气相沉积的方式在第一基材上形成着色前体层,使得着色前体层采纳第一基材的非平面轮廓,从而与第一基材形成组合基材;c)将着色前体层的至少一个预定部分中的着色前体转化为光偏转剂,以形成呈现优选颜色的改性层。一种改变物品颜色的方法。还有一种包含无缝结合基材的物品。

Description

表面改性和颜色改变方法以及物品 技术领域
本发明涉及一种用于表面改性的新方法,特别是,但不排他地涉及一种用着色前体改性基材的方法。本发明还涉及一种改变物品颜色的方法。还与本发明相关的是物品,特别是,但不排他地涉及包含着色前体的物品。
背景技术
装扮用品、手表、眼镜架、摆件等装饰物品在人类历史上早已存在。这些物品通常用于增强佩戴者或特定物体的美感或地位,以引起他人的注意。因此,装饰品一般都是色彩鲜艳的,并以金属材料制成,特别是以铝、铜、黄铜、不锈钢等为基材。通常,在对基材进行电镀防腐处理后,基材会再进行颜色改性处理,以获得所需的颜色。
当基材为铜、黄铜、不锈钢等时,可通过电镀或物理气相沉积(如离子镀)一层贵金属如金、铂、钯和铑,产生金色、铂金和玫瑰金的颜色,以及蓝色、棕色和黑色。但是,通过上述改性方法不太可能获得绿色、蓝紫色(violet)/紫色(purple)、橙色、彩虹色或颜色梯度等颜色。
当基材为铝材时,虽然可以获得各种颜色,但这些颜色实际上是铝材阳极氧化后染色的结果,一般缺乏金属效果,使装饰品显得暗淡无光。此外,铝的低密度使装饰品缺乏重量感,进一步降低了铝装饰品的吸引力/印象。
因此,仍然非常需要一种新方法,它不仅可以对物品的表面(特别是装饰物品的表面)进行改性,以获得基本上覆盖可见光谱的广泛颜色,而且还可以保持物品的固有特性,诸如金属效果、重量感等。
发明内容
在第一方面,本发明提供了一种表面改性方法,其特征在于,所述方法包括以下步骤:
a)提供包含金属材料的第一基材;
b)通过气相沉积的方式在第一基材上形成着色前体层,使得所述着色前体层采纳所述第一基材的非平面轮廓,从而与所述第一基材形成组合基材;和
c)将所述着色前体层的至少一个预定部分中的着色前体转化为光偏转剂,以形成呈现优选颜色的改性层。
可选地,所述着色前体层具有预定厚度。
可选地,所述预定厚度为至少约1μm。
可选地,步骤c)中的着色前体层的至少一个预定部分中的着色前体通过阳极氧化转化为光偏转剂。
可选地,所述阳极氧化包括将所述着色前体氧化成其氧化物。
可选地,所述阳极氧化进行至少1分钟。
可选地,所述阳极氧化在约10V至约150V的电压下进行。
可选地,所述阳极氧化在约20℃至约90℃的温度下进行。
可选地,所述气相沉积包括射频磁控溅射或等离子体增强化学气相沉积。
可选地,所述着色前体选自由铌、钽及其组合组成的组。
可选地,所述改性层包括覆盖未转化的所述着色前体的所述光偏转剂。
可选地,所述光偏转剂和所述着色前体具有从大约90:10到大约60:40的厚度比。
可选地,所述优选颜色包括绿色、紫色、橙色、彩虹色或颜色梯度中的任一种。
可选地,所述方法还包括通过将所述金属材料电镀在另一金属材料上来形成所述第一基材的步骤。
可选地,所述方法还包括通过将所述金属材料镀覆在非金属材料上来形成所述第一基材的步骤。
可选地,所述镀覆是通过无电极镀进行的。
可选地,所述金属材料选自由不锈钢、黄铜、铜、钛、铝、钯、钴、包含钛和铝的合金、包含钯和钴的合金、以及它们的组合组成的组。
可选地,所述非金属材料选自由木质材料、塑料、碳质材料及其组合组成的组。
可选地,所述木质材料是木质复合材料。
可选地,所述塑料选自由丙烯腈丁二烯苯乙烯(ABS)、聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、聚乳酸(PLA)以及它们的组合组成的组。
可选地,所述碳质材料选自由石墨、碳纤维、碳布、碳片及其组合组成的组。
在第二方面,本发明提供了改变物品颜色的方法,其特征在于,所述方法包括以下步骤:
a)提供包括第一基材的物品,所述第一基材包括金属材料;
b)通过气相沉积的方式在所述第一基材上沉积着色前体层,使得所述着色前体层采纳所述第一基材的非平面轮廓,从而与所述第一基材形成组合基材;和
c)将所述着色前体层的至少一个预定部分中的着色前体转化为光偏转剂,以形成呈现优选颜色的改性层。
可选地,所述着色前体层具有至少约1μm的预定厚度。
可选地,步骤c)中的着色前体层的至少一个预定部分中的着色前体通过阳极氧化转化为光偏转剂。
可选地,所述阳极氧化包括将所述着色前体氧化成其氧化物。
可选地,所述阳极氧化进行至少1分钟。
可选地,所述阳极氧化在约10V至约150V的电压下进行。
可选地,所述阳极氧化在约20℃至约90℃的温度下进行。
可选地,所述气相沉积包括射频磁控溅射或等离子体增强化学气相沉积。
可选地,所述着色前体选自由铌、钽及其组合组成的组。
可选地,所述改性层包括覆盖未转化的所述着色前体的所述光偏转剂。
可选地,所述光偏转剂和所述着色前体具有从大约90:10到大约60:40的厚度比。
可选地,所述优选颜色包括绿色、紫色、橙色、彩虹色或颜色梯度中的任一种。
可选地,所述方法还包括通过将所述金属材料电镀在另一金属材料上来形成所述第一基材的步骤。
可选地,所述方法还包括通过将所述金属材料镀覆在非金属材料上来形成第一基材的步骤。
可选地,所述镀覆是通过无电极镀进行的。
可选地,所述金属材料选自由不锈钢、黄铜、铜、钛、铝、钯、钴、包含钛和铝的合金、包含钯和钴的合金、以及它们的组合组成的组。
在第三方面,本发明提供了物品,其特征在于,所述物品包括:
具有非平面轮廓的第一基材;和
沉积在所述第一基材上的第二基材,所述第二基材采纳第一基材的非平面轮廓,从而与所述第一基材形成无缝结合的基材;
其中,所述第二基材包括覆盖所述第一基材的着色前体层;和
其中,所述着色前体层的着色前体选自铌、钽及其组合组成的组。
可选地,所述着色前体层具有基本上均匀的厚度。
可选地,所述着色前体层具有至少约1μm的预定厚度。
可选地,所述第二基材还包括覆盖所述着色前体层的所述着色前体的氧化物层。
可选地,所述着色前体的层和所述着色前体的氧化物层具有从大约90:10到大约60:40的厚度比。
可选地,所述物品具有绿色、紫色、橙色、彩虹色或颜色梯度的颜色。
可选地,所述物品包括手表、珠宝和眼镜架。
可选地,所述第二基材通过物理气相沉积或化学气相沉积的方式沉积在所述第一基材上。
附图说明
现在将参照附图以示例的方式描述本发明的实施方式,其中:
图1示出了显示根据本发明实施例制备的第一基材的薄膜干涉的示意图。d为改性层的光偏转剂厚度;θ 1为光偏转剂的入射光角;θ 2是光在改性层中的光偏转剂和着色前体之间的边界上的折射角。
具体实施方式
除非另有特别规定,否则本文中的所有测试均在标准条件(包括室温(约25℃)的测试温度、海平面压力(1atm)、pH 7)下进行,所有测量均使用公制单位。此外,应当理解,除非另有特别说明,否则本文中的所有百分比、比率等均以重量计,并且本文所述的材料化合物、化学品等通常是可从世界各地的各种供应商处获得的商品和/或工业标准物品。
另外,应当理解,本文所使用的措词和术语是出于描述的目的,而不应被认为是限制性的。诸如“基本上”、“约”或“大约”的程度术语被本领域技术人员理解为指代给定值之外的合理范围,例如,与所描述的实施方式的制造、组装和使用相关联的一般公差。
本发明中使用的词语“示例”或“示例性”旨在用作示例、实例或说明。本公开中描述为“示例性”的任何方面或设计不一定被解释为优于或优于其他方面或设计。相反,使用“示例(example)”或“示例(exemplary)”这些词旨在以具体的方式呈现概念。如在本申请中使用的,术语“或”旨在表示包含性的“或”而不是排他性的“或”。也就是说,除非另有说明,或从上下文中清楚,“X采用A或B”旨在表示任何自然包含性排列。也就是说,如果X采用A;X采用B;或X同时采用A和B,则“X采用A或B”在上述任何一种情况下均成立。
过渡金属如铌和钽属于元素周期表的V族元素。这些金属通常呈灰色,它们具有类似于铝和钛的特性,在阳极氧化后可以形成呈现不同颜色的氧化层。这些金属还具有至少 约2000℃的高熔点,这使得它们非常适用于高温合金的应用。然而,由于熔点高,铌和钽的加工被认为是极其困难的,特别是在重新成型为不同的形状或形成均匀的涂层以适应特定的装饰目的时。因此,这些金属很少用于制造装饰产品或用作装饰产品的添加剂。
在不受理论限制的情况下,发明人通过他们自己的研究、试验和实验设计了一种方法,该方法可用于包含金属材料的表面(例如装饰物品/对象的表面),对其进行改性,使该物品/对象可能呈现出所需/优选的颜色。特别地,该方法可以利用铌和/或钽作为着色前体来改性包含金属材料的表面并改变其颜色。在本文所述的具体实施例中,该方法可以将金属材料的颜色改变为绿色、蓝紫色(violet)(或紫色(purple))、橙色、彩虹色或颜色梯度中的任一种。此外,发明人还发现经本申请所述的方法改性的金属材料均具有可合格通过(pass)以下一种或多种测试的物理特性:紫外光测试NIHS 96-50、人工汗ISO 3160-2-2003、附着力测试ISO 4524/5(SECTION 3)、以及耐磨测试ISO23160:2001。
根据本发明,提供了一种表面改性方法。该方法特别适用于改性包含金属材料的表面,以将其颜色从一种颜色改变为另一种(所需/优选)颜色。该方法包括以下步骤:
a)提供包含金属材料的第一基材;
b)通过气相沉积(例如,物理气相沉积或化学气相沉积)的方式在第一基材上形成着色前体层,使得所述着色前体层采纳所述第一基材的非平面轮廓,从而与所述第一基材形成组合基材;和
c)将所述着色前体层的至少一个预定部分中的着色前体转化为光偏转剂,以形成呈现优选颜色的改性层。
该方法开始于步骤a),该步骤包括提供包含金属材料的第一基材。第一基材可以是基本上由金属材料制成或是由金属材料制成的基材。例如,第一基材可具有至少90重量%、约90重量%至约100重量%、约95重量%至约100重量%、约97重量%至约99重量%、约98重量%至约100重量%、约99重量%或约100重量%重量含量的金属材料。在一个实施例中,第一基材可以具有重量含量为约99重量%或约100重量%的金属材料,即,第一基材基本上完全由金属材料制成或是完全由金属材料制成。第一基材可由一种或多种金属材料制成。
在一个实施例中,第一基材可以由单一的金属材料制成。例如,第一基材可以是具有单层的金属材料的层状结构。
在另一实施例中,第一基材可以由两种或更多种的金属材料制成。例如,第一基材可以是具有两层或更多层的金属材料的层状结构,其中每个层具有彼此相同或不同的金属材料,例如,通过将一种金属材料电镀在另一金属材料上来形成第一基材。
金属材料可以选自由不锈钢、黄铜、铜、钛、铝、钯、钴、包含钛和铝的合金、包含钯和钴的合金、以及它们的组合组成的组。特别地,金属材料可以选自不锈钢、黄铜、铜和包含钯和钴的合金。
在一个示例中,第一基材可以通过首先将铜电镀在不锈钢上以形成约2μm至约15μm厚的电镀底层,然后将钯和钴电镀在铜上以形成约0.25μm厚的(钯钴)合金层。
如本领域技术人员已知的,电镀工艺可以至少具有以下典型步骤:
-将在金属材料浸入闪镀(strike plating)溶液中以进行闪镀工艺;和
-活化上述金属材料并将其浸入电解液中进行电镀。
闪镀溶液可包括含有氰化亚铜、氰化钠和碳酸钠等成分的碱性溶液。
电解液可以根据电镀的目标金属而配置为具有该金属的盐的溶液。例如当电镀的目标金属是铜,电解液可以是包括硫酸铜的溶液。又例如当电镀的目标金属是钯钴合金,电解液可以是具有特定钯钴浓度比例(诸如钯离子与钴离子的浓度比为约80g/L:约20g/L)的溶液。本领域技术人员可理解的是上述溶液可自行按需要调配或从市场上获得。
可选地,在上述步骤中的每一个之间进行水洗和纯水洗。
在替代实施例中,可以通过在非金属材料上镀覆金属材料来形成第一基材的步骤来提供第一基材。也就是说,第一基材可具有至少5重量%、至少10重量%、至少15重量%、至少20重量%、至少25重量%、至少30重量%、至少35重量%、至少40重量%、至少45重量%、至少50重量%、至少55重量%、至少60重量%、约60重量%至约70重量%、约65重量%至约70重量%、约65重量%至约68重量%或约65重量%至约69重量%的重量含量的金属材料位于非金属材料上。特别地,镀覆是通过无电极镀进行的。术语“无电极镀”、“化学镀”和“自催化镀”在本领域应被理解为它们通常表示通过在液体浴中金属阳离子的自催化化学还原在材料上镀覆或产生金属涂层的方法,并且这种方法与通过外部产生的电流来实现还原的电镀工艺相反。
非金属材料可选自由木质材料、塑料、碳质材料及其组合组成的组。
在一个实施例中,非金属材料可以是木质材料,特别是木质复合材料,或者优选地是木塑复合材料。术语“木塑复合材料”通常是指由木纤维和/或木粉以及选自由聚乙烯(PE)、 聚丙烯(PP)、聚氯乙烯(PVC)、聚乳酸(PLA)及其组合组成的组的热塑性塑料制成的复合材料。
在一个实施例中,非金属材料可以是塑料,该塑料可以选自由丙烯腈丁二烯苯乙烯(ABS)、聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、聚乳酸(PLA)及其组合组成的组。
在一个实施例中,非金属材料可以是选自由石墨、碳纤维、碳布、碳片及其组合组成的组的碳材料。
在一个实施例中,第一基材由一种非金属材料以及两种或更多种的金属材料制成,并且金属材料的镀覆可以不同工艺形成,例如,以无电极镀方式将一种金属材料镀覆在非金属材料上,然后以电镀方式将另一金属材料镀覆在先前的金属材料上(即,已镀覆在非金属材料上的金属材料上)。在一个示例中,铜通过无电极镀铜工艺镀覆在ABS塑料上以形成约2μm至约15μm厚的电镀底层,然后钯和钴通过电镀工艺镀覆在该无电极镀镀铜上以形成约0.25μm厚的钯钴合金层。
无电极镀工艺可以根据本领域中的任何标准程序进行。例如,在典型的无电极镀工艺中,该方法在化学镀之前还可以包括以下步骤:
i)去除非金属材料上的油脂;
ii)在蚀刻溶液中蚀刻非金属材料;
iii)在催化溶液中活化非金属材料;和
iv)在速化溶液中速化非金属材料。
步骤i)为清洗步骤,特别地可包括以下步骤:
-任选地在有机浴例如丙酮浴或表面活性剂浴中对非金属材料进行超声脱脂约10分钟;
-将非金属材料浸入升高的温度如约60℃的碱性溶液中,例如约10分钟;
-用水和/或纯水冲洗非金属材料;和
-任选地重复步骤i)至少一次。
碱性溶液可包含氢氧化钠、十二水合磷酸三钠及其组合。它们中的每一个可以具有约0.25M至约0.4M的浓度。
步骤ii)特别地可包括以下步骤:
-将在步骤i)之后获得的非金属材料浸入升高的温度,例如约60℃的蚀刻溶液中,例如约20分钟的预定时间;和
-将经蚀刻的非金属材料浸入中和溶液中,以去除表面残留的任何不期望的蚀刻剂/氧化物。
蚀刻溶液可以是酸性溶液,包括例如盐酸、三氧化铬、硫酸、硝酸及其组合。它们中的每一个可以具有约1.5M至约4.0M的浓度。可选地,酸性溶液的浓度被仔细控制以仅微蚀刻该非金属材料。中和溶液可以与步骤i)中的碱性溶液相同。
步骤iii)特别地可包括以下步骤:
-将在步骤ii)之后获得的非金属材料浸入催化溶液中,该催化溶液可以包含酸和催化剂。酸可选自浓度为例如约0.8M至约1.2M的盐酸或硫酸。催化剂可选自氯化钯、氯化锡及其组合,其中,催化剂可具有例如约1μM至约2μM的浓度。
步骤iv)特别地可包括以下步骤:
-将在步骤iii)之后获得的非金属材料浸入速化溶液中,该速化溶液可以包含可氧化非金属材料上的锡的催化剂,例如以下的一种或多种:亚氯酸钠、二氯异氰脲酸钠、过氧化氢、次氯酸钠、氯酸钠、高锰酸钾、过硼酸钠。速化溶液可以具有如约0.1M至约0.2M的浓度。
无电极镀步骤可以通过将速化后的非金属材料(即步骤iv)之后获得的非金属材料)浸入反应溶液中来进行。反应溶液可以是包含氢氧化钠、氢氧化钾等的碱性溶液。反应溶液还可包含目标金属的金属盐、还原剂、稳定剂。例如,当无电极镀的目标金属是铜时,反应溶液可以包括硫酸铜、甲醛、乙二胺四乙酸(EDTA)和氢氧化钠。
可选地,可以根据需要,在进行上述钯钴合金电镀工艺前,以电镀工艺对无电极镀层进行加厚。例如可以在进行上述钯钴合金电镀工艺前于无电极镀铜上以上述的电镀铜工艺进一步镀覆一层预定厚度的电镀铜。
可选地,在上述步骤中的每一个之间进行水洗和纯水洗。
第一基材优选地是具有非平面轮廓的基材。根据具体需要,第一基材的非平面轮廓可以是任何形式或形状。例如,第一基材可以被制作成诸如车架、车门、保险杠等的车辆部件和/或具有其轮廓;装饰物,例如装饰球、项链、耳环、手表、珠宝、眼镜架等,和/或具有其轮廓;钥匙、门把手等和/或具有其轮廓。作为具体实施例,第一基材是装饰品,例如手表、珠宝和眼镜架。可选地,可对该第一基材进行适当的加工、打磨、抛光、以除油剂清洗等工艺。
在如上所述提供/制备第一基材之后,该方法转向步骤b),其包括通过物理气相沉积或化学气相沉积的方式在第一基材上形成着色前体层,使得所述着色前体层采纳所述第一基材的非平面轮廓,从而与所述第一基材形成组合基材。术语“物理气相沉积(PVD)”和“化学气相沉积(CVD)”通常描述真空沉积方法,该方法可用于在特定材料/基板上产生薄膜和涂层。物理气相沉积过程通常涉及材料从凝聚相变为蒸气,然后返回薄膜凝聚相。化学气相沉积过程通常涉及在特定材料/基板表面发生化学反应或/及化学分解来产生沉积的薄 膜或涂层。
特别地,物理气相沉积可以涉及磁控溅射(例如,射频磁控溅射)或射频离子镀。如本领域技术人员已知的,磁控溅射设备具有真空腔室和设置在真空腔室内的一个或多个靶材、连接到电源(直流或交流)的阴极和阳极,并且基板可放置在真空腔室内接近阳极的位置,以通过单靶溅射、多靶依次溅射或共同溅射等操作将靶材材料溅射并沉积在基板上。在进行溅射之前或期间,可以将要被涂覆的材料/基板放置在磁控溅射设备中并使其从大约25℃加热到大约350℃。
在一个实施例中,溅射过程使用了包括着色前体或由其组成的靶材(例如纯金属铌靶材),作为工艺气体的氩气以5 x 10 -1Pa的压力注入被保持在5 x 10 -6mbar的真空度的真空腔室,并且磁控溅射设备使用了大约90W至大约200W(优选地为150W)的射频功率和大约120V至大约200V(优选地为150V)的直流偏压在大约2小时至大约4小时(优选地为2小时)内进行溅射,以确保得到期望的薄膜或涂层。
化学气相沉积可以涉及等离子体增强化学气相沉积法(PECVD),其好处在于沉积速率快、成膜质量好,并且成膜不易龟裂。如本领域技术人员已知的,等离子体增强化学气相沉积设备具有真空腔室、设置在真空腔室内的电极和气体管道,并且基板可放置在真空腔室内,以将从气体产生的等离子沉积在基板上。
在一个实施例中,为了将期望的着色前体沉积在基板上,等离子体增强化学气相沉积设备还具有容纳着色前体或包含着色前体的化合物的前体容器,其与质流控制器连接,以控制着色前体或包含着色前体的化合物加入载体气体的添加量。在一个示例中,为了在基板上沉积铌,五氯化铌被加入作为载体气体的氩气,并且氢气用作反应气体。在沉积过程中,要被涂覆的材料/基板被保持在大约700℃,真空腔室内的真空度被保持在5 x 10 -6mbar,并且沉积过程进行大约60分钟,以确保得到期望的薄膜或涂层。
沉积在第一基材上的着色前体层可以具有至少约1μm、约1μm至约5μm、约1μm至约4μm、约1.5μm至约4μm、约1.5μm至约3.5μm、或者特别是3μm的预定的厚度。
在一个实施例中,着色前体可选自由铌、钽及其组合组成的组。发明人发现通过物理气相沉积或化学气相沉积的方式形成这种着色前体是特别有利的。可以理解的是,通过物理气相沉积或化学气相沉积,着色前体将是以颗粒形式而不是以一整块或一整片材料的形式沉积/依附在第一基材上。因此,以这种形式/工艺形成的着色前体层将容易地采纳任何轮廓,特别是即使第一基材具有非平面轮廓,着色前体仍能在该基材上形成基本均匀或均匀的层并与之产生无缝结合的基材。可以理解的是,仅通过将着色前体粘附在基材上是几乎无法 达到这种效果的,尤其当现有技术中典型的熔融-重塑方法不能用于处理这种着色前体,例如,当着色前体包含高熔点的材料时,例如铌、钽及其组合。也是有利的是,通过物理气相沉积或化学气相沉积的方式,例如约1μm的最小厚度足以允许本方法继续进行本方法的后续步骤。说明本方法的优点的示例将在本公开的后面部分中公开。
在步骤c)中,将所述着色前体层的至少一个预定部分中的着色前体转化为光偏转剂,以形成呈现优选颜色的改性层。如本文所用,术语“光偏转剂”表示允许发生薄膜干涉的化合物或此类化合物的层。术语“薄膜干涉”一般是指由薄膜上下边界反射的入射光波相互干涉形成新波,优选是由于相长干涉而形成新波的现象(即当光程差等于光波长的整数倍时)。
例如,参考图1,提供了根据本发明实施例制备的第一基材的示意图。第一基材100可以是如上所述的两种或更多种的金属材料制成的第一基材100,诸如如上所述具有电镀底层和合金层(未显示)的第一基材100。第一基材100可以通过物理气相沉积或化学气相沉积的方式沉积一层着色前体102,与第一基材形成无缝结合的基材104。第一基材100还包括由着色前体102转化而成的光偏转剂(层)106,其覆盖着色前体并形成改性层108。如图所示,入射光波110被所述光偏转剂106的上边界直接反射,形成反射光波112;而入射光波114首先被光偏转剂106折射,然后被着色前体102反射(即在光偏转剂的下边界处反射),形成新的光波116。当光波112与116同相,将发生相长干涉。
步骤c)中的着色前体层的预定部分中的着色前体可以通过阳极氧化转化为光偏转剂,尤其涉及将着色前体氧化成其氧化物的阳极氧化。阳极氧化过程可以通过任何标准电镀装置进行,例如电化学电池/站/槽。例如,在典型的工艺中,组合基材(即沉积有着色前体的第一基材)可以充当阳极,并且可以与阴极(诸如由铂制成的阴极)电连接以进行阳极氧化工艺。
在进行阳极氧化工艺时,可以在将阴极和组合基材浸入酸性或碱性电解液之后将电压施加到装置。取决于优选的颜色,例如是单一颜色还是混合颜色(例如颜色梯度),着色前体的阳极氧化可以通过每次将一部分组合基板浸入阳极氧化电解液并以逐部分方式进行阳极氧化。或者可以通过将整个组合基板浸入阳极氧化电解液中以一次性方式进行。
阳极氧化可在预定电压、温度和/或电解液下进行预定时间,以形成可呈现特定或优选颜色的改性层。
在一个实施例中,阳极氧化可以在约10V至约150V、约10V至约151V、约15V至约150V、约15V至约151V、约18V至约150V、约19V至约151V、或约19V至约150V的电压,优选地在20V至150V的电压下进行。在一个示例中,以20V的电压进行阳极氧化可产生着色效果,并且电压越高、时间越长,改性层厚度越厚,但到一定厚度后厚度会停止增加。
在一个实施例中,阳极氧化可在约20℃至约90℃、约20℃至约89℃、约25℃至约90℃、约30℃至约90℃、约35℃至约89℃、约40℃至约91℃、约40℃至约90℃、约45℃至约89℃、或约49℃至大约89℃的温度,优选地在50℃至90℃的温度下进行。
在一个实施例中,阳极氧化可以进行至少1分钟、约1分钟至约180分钟、约1分钟至约120分钟、约1分钟至约90分钟、约1分钟至约75分钟、约1分钟至约70分钟、约1.5分钟至约70分钟、约1.5分钟至约65分钟、优选地约1分钟至约60分钟。
改性层可以包括覆盖未转化的着色前体的光偏转剂。即,经阳极氧化后,一部分的着色前体转化为光偏转剂并覆盖在未转化的着色前体其上。
在一个实施例中,改性层中的光偏转剂可以具有约0.1μm至约0.5μm、0.15μm至约0.5μm、0.15μm至约0.45μm、0.1μm至约0.4μm、0.15μm至约0.35μm、0.15μm至约0.4μm、0.15μm至约0.28μm、优选地约0.1μm至约0.3μm的厚度。
在一个实施例中,改性层中的光偏转剂和着色前体可具有约90:10至约60:40、约9:1至约6:4、约9:1至约3:2、或约0.9:0.1至约0.3:0.2的预定厚度比。
在着色前体包含单个元素的实施例中,光偏转剂中的着色前体与氧的整体原子比可以是约20:80至约80:20、约30:70至约70:30,优选地40:60。例如在一个着色前体为铌的示例中,氧化铌(即,光偏转剂)的铌比氧整体原子比例(Nb:O)可以是40:60。此外,光偏转剂中可以具有对于同一着色前体的不同的氧化物(具有不同的氧化数)。例如,在一个着色前体为铌的示例中,光偏转剂可以具有约70%NbO,约20%NbO 2和约10%Nb 2O 5的氧化铌。在使用不同的电压下,该等氧化物的比例也有所不同。而且,越接近表面,氧的比例就越高,因此可以形成不同的颜色。
发明人发现,如上所述的厚度比和氧比例对于确定要呈现的优选颜色可能是至关重要的。作为具体实施例,优选的颜色包括绿色、紫色、橙色、彩虹色或颜色梯度中的任一种。
还根据本发明,提供了一种改变物品颜色的方法,特别是改变包含金属材料的物品的颜色的方法。该方法包括以下步骤:
a)提供包括第一基材的物品,所述第一基材包括金属材料;
b)通过气相沉积(例如,物理气相沉积或化学气相沉积)的方式在所述第一基材上沉积着色前体层,使得所述着色前体层采纳所述第一基材的非平面轮廓,从而与所述第一基材形成组合基材;和
c)将所述着色前体层的至少一个预定部分中的着色前体转化为光偏转剂,以形成呈现优选颜色的改性层。
该方法从步骤a)开始,该步骤包括提供包含金属材料的第一基材的物品。在一个实施例中,该物品可以包括基本上由金属材料制成或是由金属材料制成的第一基材。例如,第一基材可具有至少90重量%、约90重量%至约100重量%、约95重量%至约100重量%、约97重量%至约99重量%、约98重量%至约100重量%、约99重量%或约100重量%重量含量的金属材料。在一个实施例中,第一基材可以具有重量含量为约99重量%或约100重量%的金属材料,即,第一基材基本上由金属材料制成或完全由金属材料制成。第一基材可由一种或多于一种的金属材料制成,例如,一种金属材料可电镀在另一金属材料上来形成第一基材。
金属材料可以选自由不锈钢、黄铜、铜、钛、铝、钯、钴、包含钛和铝的合金、包含钯和钴的合金、以及它们的组合组成的组。特别地,金属材料可以选自不锈钢、黄铜和铜和包含钯和钴的合金。
在替代实施例中,可以通过在非金属材料上镀覆一种或更多种金属材料来形成第一基材的步骤来提供第一基材,并且两种或以上的金属材料的镀覆可以不同工艺形成,如上所述。也就是说,第一基材可具有至少5重量%、至少10重量%、至少15重量%、至少20重量%、至少25重量%、至少30重量%、至少35重量%、至少40重量%、至少45重量%、至少50重量%、至少55重量%、至少60重量%、约60重量%至约70重量%、约65重量%至约70重量%、约65重量%至约68重量%或约65重量%至约69重量%的重量含量的金属材料位于非金属材料上。特别地,非金属材料的镀覆是通过如本文定义的无电极镀进行。
非金属材料可选自由木质材料、塑料、碳质材料及其组合组成的组。
在一个实施例中,非金属材料可以是木质材料,特别是木质复合材料,或者优选地是木塑复合材料。术语“木塑复合材料”通常是指由木纤维和/或木粉以及选自由聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、聚乳酸(PLA)及其组合组成的组的热塑性塑料制成的复合材料。
在一个实施例中,非金属材料可以是塑料,该塑料可以选自由丙烯腈丁二烯苯乙烯(ABS)、聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、聚乳酸(PLA)及其组合组成的组。
在一个实施例中,非金属材料可以是选自由石墨、碳纤维、碳布、碳片及其组合组成的组的碳材料。
第一基材优选地是具有非平面轮廓的基材。根据物品类型,第一基材的非平面轮廓可以是任何形式或形状。例如当物品是装饰物时,例如装饰球、项链、耳环、手表、珠宝、眼镜架等,第一基材可以是该装饰球、项链、耳环、手表、珠宝、眼镜架和/或具有其轮廓。在一个实施例中,物品可以是手表、珠宝或眼镜架中的任一种,并且第一基材可以是这些物品中的任一种和/或具有它们的轮廓。可选地,可对该物品进行适当的加工、打磨、抛光、以除油剂清洗等工艺。
在如上所述提供物品之后,该方法转向步骤b),其包括通过物理气相沉积或化学气相沉积的方式在第一基材上形成着色前体层,使得所述着色前体层采纳所述第一基材的非平面轮廓,从而与所述第一基材形成组合基材。特别地,物理气相沉积可以涉及磁控溅射(例如,射频磁控溅射)或射频离子镀,并且化学气相沉积可以涉及等离子体增强化学气相沉积法,如上所述。
沉积在第一基材上的着色前体层可以具有至少约1μm、约1μm至约5μm、约1μm至约4μm、约1.5μm至约4μm、约1.5μm至约3.5μm、或者特别是3μm的预定的厚度。
在一个实施例中,着色前体可选自由铌、钽及其组合组成的组。如上所述,通过物理气相沉积或化学气相沉积的方式沉积这种(具有高熔点的)着色前体是有利的。在一个优选的具体实施方式中,着色前体是铌。
在步骤c)中,将所述着色前体层的至少一个预定部分中的着色前体转化为光偏转剂,以形成呈现优选颜色的改性层。步骤c)中的着色前体层的预定部分中的着色前体可以通过阳极氧化转化为光偏转剂,尤其涉及将着色前体氧化成其氧化物的阳极氧化。
阳极氧化可在预定电压、温度和/或酸性或碱性电解液下进行预定时间,并在任何如上所述的标准电镀装置进行,以形成可呈现特定或优选颜色的改性层。
在一个实施例中,阳极氧化可以在约10V至约150、约10V至约151V、约15V至约150V、约15V至约151V、约18V至约150V、约19V至约151V、或约19V至约150V的电压,优选地在20V至150V的电压下进行。在一个示例中,以20V的电压进行阳极氧化可产生着色效果,并且电压越高、时间越长,改性层厚度越厚,但到一定厚度后厚度会停止增加。
在一个实施例中,阳极氧化可在约20℃至约90℃、约20℃至约89℃、约25℃至约90℃、约30℃至约90℃、约35℃至约89℃、约40℃至约91℃、约40℃至约90℃、约45℃至约89℃、或约49℃至大约89℃的温度,优选地在50℃至90℃的温度下进行。
在一个实施例中,阳极氧化可以进行至少1分钟、约1分钟至约180分钟、约1分钟至约120分钟、约1分钟至约90分钟、约1分钟至约75分钟、约1分钟至约70分钟、约1.5分钟至约70分钟、约1.5分钟至约65分钟、优选地约1分钟至约60分钟。
改性层可以包括覆盖未转化的着色前体的光偏转剂。即,经阳极氧化后,一部分的着色前体转化为光偏转剂并覆盖在未转化的着色前体其上。
在一个实施例中,改性层中的光偏转剂可以具有约0.1μm至约0.5μm、0.15μm至约0.5μm、0.15μm至约0.45μm、0.1μm至约0.4μm、0.15μm至约0.35μm、0.15μm至约0.4μm、0.15μm至约0.28μm、优选地约0.1μm至约0.3μm的厚度。
在一个实施例中,改性层中的光偏转剂和着色前体可具有约90:10至约60:40、约9:1至约6:4、约9:1至约3:2、或约0.9:0.1至约0.3:0.2的预定厚度比。在着色前体包含单个元素的实施例中,光偏转剂中的着色前体与氧的整体原子比可以是约20:80至约80:20、约30:70至约70:30,优选地40:60。例如在一个着色前体为铌的示例中,氧化铌(即,光偏转剂)的铌比氧整体原子比例(Nb:O)可以是40:60。此外,光偏转剂中可以具有对于同一着色前体的不同的氧化物(具有不同的氧化数)。例如,在一个着色前体为铌的示例中,光偏转剂可以具有约70%NbO,约20%NbO 2和约10%Nb 2O 5的氧化铌。在使用不同的电压下,该等氧化物的比例也有所不同。而且,越接近表面,氧的比例就越高,因此可以形成不同的颜色。
如上所述,厚度比和氧比例对于确定要呈现的优选颜色可能是至关重要的。作为具体实施例,优选的颜色包括绿色、紫色、橙色、彩虹色或颜色梯度中的任一种。
本发明的另一方面涉及一种物品,包括:
具有非平面轮廓的第一基材;和
沉积在所述第一基材上的第二基材,所述第二基材采纳第一基材的非平面轮廓,从而与所述第一基材形成无缝结合的基材;
其中,所述第二基材包括覆盖所述第一基材的着色前体层;和
其中,所述着色前体层的着色前体选自铌、钽及其组合组成的组。
第一基材可以包括选自由不锈钢、黄铜、铜、钛、铝、钯、钴、包含钛和铝的合金、包含钯和钴的合金、以及它们的组合组成的组的金属材料。特别地,金属材料可以选自不锈钢、黄铜、铜和包含钯和钴的合金。在一个实施例中,第一基材可以是基本上由本文定义的金属材料制成或由本文定义的金属材料制成。第一基材可由一种或多于一种的金属材料制成,例如,一种金属材料可电镀在另一金属材料上来形成第一基材。在替代实施例中,第一 基材可以是有一种或更多种金属材料镀覆在非金属材料上的基材,例如选由自本文定义的木质材料、塑料、碳素材料及其组合组成的组的非金属材料,并且两种或以上的金属材料的镀覆可以不同工艺形成。所述镀覆可以特别是通过如本文所定义的无电极镀的方式的镀覆。
表述“非平面轮廓”通常表示不位于或不能被限制在单个平面内的物品的形状、形式或轮廓,或者换句话说,具有三维质量。在一个实施例中,第一基材可以具有对应于物品的轮廓/形状/形式。例如,第一基材可以具有对应于物品的轮廓,该物品可以是诸如车架、车门、保险杠等车辆部件;装饰球、项链、耳环、手表、首饰、眼镜架等装饰品;钥匙、门把手等。作为具体实施例,该物品可以包括手表、珠宝和眼镜架。
第一基材可以沉积有第二基材,第二基材采纳第一基材的非平面轮廓以形成无缝结合的基板。第二基材可以包括覆盖第一基材的着色前体层。特别地,着色前体层中的着色前体可以选自铌、钽及其组合组成的组。在一个优选的示例中,着色前体是铌。
在一个实施例中,着色前体层可具有基本上均匀的厚度,特别是至少约1μm、约1μm至约5μm、约1μm至约4μm、约1.5μm至约4μm、约1.5μm至约3.5μm、或特别是3μm的预定厚度。这种基本上均匀的厚度可归因于其沉积/形成/制备的方式是通过如本文定义的物理气相沉积或化学气相沉积方式,例如通过射频磁控溅射或等离子体增强化学气相沉积法来制备着色前体层的方法。
如上所述,通过物理气相沉积或化学气相沉积的方式,着色前体将以颗粒形式沉积在第一基材上,该颗粒将容易采纳任何轮廓,特别是第一基材的非平面轮廓,在基材上形成基本上均匀的或均匀的层,从而形成无缝结合的基材。
第二基材可以进一步包括覆盖着色前体层的着色前体的氧化物层。在一个实施例中,着色前体的氧化物层可以具有约0.1μm至约0.5μm、0.15μm至约0.5μm、0.15μm至约0.45μm、0.1μm至约0.4μm、0.15μm至约0.35μm、0.15μm至约0.4μm、0.15μm至约0.28μm、优选地约0.1μm至约0.3μm的厚度。
在一个实施例中,着色前体层和着色前体的氧化物层可具有约90:10至约60:40、约9:1至约6:4、约9:1至约3:2、或约0.9:0.1至约0.3:0.2的厚度比。
在着色前体包含单个元素的实施例中,氧化物层中的着色前体与氧的整体原子比可以是约20:80至约80:20、约30:70至约70:30,优选地40:60。例如在一个着色前体为铌的示例中,氧化铌层的铌比氧整体原子比例(Nb:O)可以是40:60。此外,氧化物层中可以具有对于同一着色前体的不同的氧化物(具有不同的氧化数)。例如,在一个着色前体为铌的示例中,氧化物层可以具有约70%NbO,约20%NbO 2和约10%Nb 2O 5。在使用不同的 电压下,该等氧化物的比例也有所不同。而且,越接近表面,氧的比例就越高,因此可以形成不同的颜色。
如上所述的厚度比和氧比例对于确定物品的颜色可能是关键的。作为具体实施例,物品可具有绿色、紫色、橙色、彩虹色或颜色梯度的颜色。
实施例1-黄铜工件
1.提供黄铜工件
首先,将黄铜基材以例如衡压加工方式将其塑形至表壳工件,然后对表壳工件作适当的打磨和抛光。经打磨抛光后,以除油剂清洗工件,去除表面油脂。
2.电铜工艺
首先将工件浸入如上所述的闪镀(strike plating)溶液中进行闪镀硷铜,水洗,然后对其进行包括脱脂、浸蚀等预处理工艺以活化闪镀工件的表面,水洗。将已预处理的工件浸入电解液中以如下表所述的条件进行酸铜电铜,水洗,烘干。
表1酸铜电铜条件
Figure PCTCN2022106571-appb-000001
3.电镀钯钴合金工艺
将已电铜的工件浸入电解液中以如下表所述的条件进行钯钴合金电镀,水洗,烘干。
表2钯钴合金电镀条件
Figure PCTCN2022106571-appb-000002
4.物理气相沉积铌
将经过电镀铜和电镀钯钴合金的黄铜工件放入真空电镀机,以如下表所述的条件进行射频磁控溅射,于黄铜工件的钯钴合金面上物理气相沉积一层铌。
表3物理气相沉积铌条件
射频功率 150W
直流偏压 150V
工作温度 350℃
真空度 5x10 -6mbar
溅镀时间 2小时
目标厚度 3μm
4.阳极氧化工艺
将物理气相沉积后的工件浸入具有碳酸氢钠(90g/L)、硅酸钠(5g/L)、乙二胺四乙酸(5g/L)的硷性电解液,然后以50V至80V的电压及50℃至80℃进行2分钟阳极氧化处理,从而将铌层氧化以获取所需要的颜色。各操作条件所获得的结果如下:
表4黄铜工件经各项阳极氧化条件处理后的效果
Figure PCTCN2022106571-appb-000003
上述镀层厚度由SEM电子显微镜量度,而镀层的成分、比例则由XPS X射线光电子能谱量度。经处理后的工件的颜色则由色差仪量度,并以L*a*b*值表达。本领域技术人员可以理解的是L*a*b*是定义CIELAB色彩空间的值,即L*代表感知的亮度、a*和b*代表人类视觉的四种独特颜色:红色、绿色、蓝色和黄色。
实施例2-ABS素材
1.提供ABS工件
首先,将ABS素材切割成合适大小,然后按需要进行塑形、打磨修边等工序,以取得所需的ABS工件。
2.无电极镀铜工艺
对ABS工件进行预处理工艺,所述预处理工艺包括如上所述的清洗(脱脂)、(微)蚀刻、中和、催化及速化等步骤,当中包括在各步骤之间进行水洗或纯水洗。然后将已预处理的ABS工件浸入反应溶液中以如下表所述的条件进行无电极镀,水洗,烘干。
表5无电极镀铜条件
Figure PCTCN2022106571-appb-000004
3.电镀钯钴合金工艺
将无电极镀铜后的ABS工件浸入如表3所示的电解液中并以表中的条件进行钯钴合金电镀,水洗,烘干。
4.化学气相沉积铌
将经过电镀钯钴合金的ABS工件放入真空电镀机,以如下表所述的条件进行等离子体增强化学气相沉积(PECVD),于ABS工件的钯钴合金面上化学气相沉积一层铌。
表6化学气相沉积铌条件
前体 五氯化铌NbCl 5
载体气体 氩气
反应气体 氢气
工作温度 100℃
溅镀时间 2小时
目标厚度 3μm
5.阳极氧化工艺
将化学气相沉积后的工件浸入具有碳酸氢钠(90g/L)、硅酸钠(5g/L)、乙二胺四乙酸(5g/L)的硷性电解液,然后以60V至80V的电压及25℃进行2分钟阳极氧化处理,从而将铌层氧化以获取所需要的颜色。各操作条件所获得的结果如下:
表7ABS工件经各项阳极氧化条件处理后的效果
Figure PCTCN2022106571-appb-000005
上述镀层厚度由SEM电子显微镜量度,而镀层的成分、比例则由XPS X射线光电子能谱量度。经处理后的工件的颜色则由色差仪量度,并以L*a*b*值表达。本领域技术人员可以理解的是L*a*b*是定义CIELAB色彩空间的值,即L*代表感知的亮度、a*和b*代表人类视觉的四种独特颜色:红色、绿色、蓝色和黄色。
本领域技术人员将理解,在不背离广泛描述的本发明的精神或范围的情况下,可以对具体实施方式中所示的本发明进行各种变化和/或修改。因此,本发明所描述的实施方式在所有方面都应该被认为是说明性的,而不是限制性的。
还应该理解,为了清楚起见,在单独的实施例的上下文中描述的本发明的某些特征也可以在单个实施例中组合地提供。相反,为了简洁起见,在单个实施例的上下文中描述的本发明的各种特征也可以单独提供,或以任何合适的子组合提供。
本文具体引用的所有参考文献均通过引用整体并入本文。然而,这种参考文献的引用或并入不一定是承认其作为现有技术对/反对本发明的适当性、可引用性和/或可用性。

Claims (45)

  1. 一种表面改性方法,其特征在于,所述方法包括以下步骤:
    a)提供包含金属材料的第一基材;
    b)通过气相沉积的方式在第一基材上形成着色前体层,使得所述着色前体层采纳所述第一基材的非平面轮廓,从而与所述第一基材形成组合基材;和
    c)将所述着色前体层的至少一个预定部分中的着色前体转化为光偏转剂,以形成呈现优选颜色的改性层。
  2. 如权利要求1所述的方法,其中,所述着色前体层具有预定厚度。
  3. 如权利要求2所述的方法,其中,所述预定厚度为至少约1μm。
  4. 如权利要求1所述的方法,其中,步骤c)中的所述着色前体层的至少一个预定部分中的所述着色前体通过阳极氧化转化为所述光偏转剂。
  5. 如权利要求4所述的方法,其中,所述阳极氧化包括将所述着色前体氧化成其氧化物。
  6. 如权利要求4或5所述的方法,其中,所述阳极氧化进行至少1分钟。
  7. 如权利要求4至6中任一项所述的方法,其中,所述阳极氧化在约10V至约150V的电压下进行。
  8. 如权利要求4至7中任一项所述的方法,其中,所述阳极氧化在约20℃至约90℃的温度下进行。
  9. 如权利要求1至8中任一项所述的方法,其中,所述气相沉积包括射频磁控溅射或等离子体增强化学气相沉积。
  10. 如权利要求1至9中任一项所述的方法,其中,所述着色前体选自由铌、钽及其组合组成的组。
  11. 如权利要求1至10中任一项所述的方法,其中,所述改性层包括覆盖未转化的所述着色前体的所述光偏转剂。
  12. 如权利要求11所述的方法,其中,所述光偏转剂和所述着色前体具有从大约90:10到大约60:40的厚度比。
  13. 如权利要求1至12中任一项所述的方法,其中,所述优选颜色包括绿色、紫色、橙色、彩虹色或颜色梯度中的任一种。
  14. 如权利要求1至13中任一项所述的方法,还包括通过将所述金属材料电镀在另一金属材料上来形成所述第一基材的步骤。
  15. 如权利要求1至13中任一项所述的方法,还包括通过将所述金属材料镀覆在非金属材料上来形成所述第一基材的步骤。
  16. 如权利要求14所述的方法,其中,所述镀覆是通过无电极镀进行的。
  17. 如权利要求15或16所述的方法,其中,所述非金属材料选自由木质材料、塑料、碳质材料及其组合组成的组。
  18. 如权利要求17所述的方法,其中,所述木质材料是木质复合材料。
  19. 如权利要求17所述的方法,其中,所述塑料选自由丙烯腈丁二烯苯乙烯(ABS)、聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、聚乳酸(PLA)以及它们的组合组成的组。
  20. 如权利要求17所述的方法,其中,所述碳质材料选自由石墨、碳纤维、碳布、碳片及其组合组成的组。
  21. 如权利要求1至20中任一项所述的方法,其中,所述金属材料选自由不锈钢、黄铜、铜、钛、铝、钯、钴、包含钛和铝的合金、包含钯和钴的合金、以及它们的组合组成的组。
  22. 一种改变物品颜色的方法,其特征在于,所述方法包括以下步骤:
    a)提供包括第一基材的物品,所述第一基材包括金属材料;
    b)通过气相沉积的方式在所述第一基材上沉积着色前体层,使得所述着色前体层采纳所述第一基材的非平面轮廓,从而与所述第一基材形成组合基材;和
    c)将所述着色前体层的至少一个预定部分中的着色前体转化为光偏转剂,以形成呈现优选颜色的改性层。
  23. 如权利要求22所述的方法,其中,所述着色前体层具有至少约1μm的预定厚度。
  24. 如权利要求22所述的方法,其中,步骤c)中的所述着色前体层的至少一个预定部分中的所述着色前体通过阳极氧化转化为所述光偏转剂。
  25. 如权利要求24所述的方法,其中,所述阳极氧化包括将所述着色前体氧化成其氧化物。
  26. 如权利要求24或25所述的方法,其中,所述阳极氧化进行至少1分钟。
  27. 如权利要求24至26中任一项所述的方法,其中,所述阳极氧化在约10V至约150V的电压下进行。
  28. 如权利要求24至27中任一项所述的方法,其中,所述阳极氧化在约20℃至约90℃的温度下进行。
  29. 如权利要求22至28中任一项所述的方法,其中,所述气相沉积包括射频磁控溅射或等离子体增强化学气相沉积。
  30. 如权利要求22至29中任一项所述的方法,其中,所述着色前体选自由铌、钽及其组合组成的组。
  31. 如权利要求22至30中任一项所述的方法,其中,所述改性层包括覆盖未转化的所述着色前体的所述光偏转剂。
  32. 如权利要求31所述的方法,其中,所述光偏转剂和所述着色前体具有从大约90:10到大约60:40的厚度比。
  33. 如权利要求22至32中任一项所述的方法,其中,所述优选颜色包括绿色、紫色、橙色、彩虹色或颜色梯度中的任一种。
  34. 如权利要求22至33中任一项所述的方法,还包括通过将所述金属材料电镀在另一金属材料上来形成所述第一基材的步骤。
  35. 如权利要求22至33中任一项所述的方法,还包括通过将所述金属材料镀覆在非金属材料上来形成所述第一基材的步骤。
  36. 如权利要求35所述的方法,其中,所述镀覆是通过无电极镀进行的。
  37. 如权利要求22至36中任一项所述的方法,其中,所述金属材料选自由不锈钢、黄铜、铜、钛、铝、钯、钴、包含钛和铝的合金、包含钯和钴的合金、以及它们的组合组成的组。
  38. 一种物品,其特征在于,所述物品包括:
    具有非平面轮廓的第一基材;和
    沉积在所述第一基材上的第二基材,所述第二基材采纳所述第一基材的所述非平面轮廓,从而与所述第一基材形成无缝结合的基材;
    其中,所述第二基材包括覆盖所述第一基材的着色前体层;和
    其中,所述着色前体层的着色前体选自铌、钽及其组合组成的组。
  39. 如权利要求38所述的物品,其中,所述着色前体层具有基本上均匀的厚度。
  40. 如权利要求38或39所述的物品,其中,所述着色前体层具有至少约1μm的预定厚度。
  41. 如权利要求38至40中任一项所述的物品,其中,所述第二基材还包括覆盖所述着色前体层的所述着色前体的氧化物层。
  42. 如权利要求41所述的物品,其中,所述着色前体层和所述着色前体的氧化物层具有从大约90:10到大约60:40的厚度比。
  43. 如权利要求38至42中任一项所述的物品,具有绿色、紫色、橙色、彩虹色或颜色梯度的颜色。
  44. 如权利要求38所述的物品,包括手表、珠宝和眼镜架。
  45. 如权利要求38所述的物品,其中,所述第二基材通过物理气相沉积或化学气相沉积的方式沉积在所述第一基材上。
PCT/CN2022/106571 2022-07-19 2022-07-19 表面改性和颜色改变方法以及物品 WO2024016182A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/106571 WO2024016182A1 (zh) 2022-07-19 2022-07-19 表面改性和颜色改变方法以及物品
CN202211514051.7A CN115821261B (zh) 2022-07-19 2022-11-30 表面改性和颜色改变方法以及物品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/106571 WO2024016182A1 (zh) 2022-07-19 2022-07-19 表面改性和颜色改变方法以及物品

Publications (1)

Publication Number Publication Date
WO2024016182A1 true WO2024016182A1 (zh) 2024-01-25

Family

ID=85532842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106571 WO2024016182A1 (zh) 2022-07-19 2022-07-19 表面改性和颜色改变方法以及物品

Country Status (2)

Country Link
CN (1) CN115821261B (zh)
WO (1) WO2024016182A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59143092A (ja) * 1983-02-07 1984-08-16 Seiko Instr & Electronics Ltd 腕時計用文字板
CN102747402A (zh) * 2012-03-08 2012-10-24 北京服装学院 一种钛或钛合金放电氧化上色的方法
CN105586625A (zh) * 2014-10-22 2016-05-18 可成科技股份有限公司 钛基多元素薄膜双色阳极形成方法及其制品
CN107109652A (zh) * 2014-12-31 2017-08-29 埃西勒国际通用光学公司 用于对光学物品进行反射镜涂覆的方法
CN113025969A (zh) * 2019-12-09 2021-06-25 斯沃奇集团研究和开发有限公司 制造装饰表面的方法
US20210363646A1 (en) * 2018-07-24 2021-11-25 Hewlett-Packard Development Company, L.P. Device housing with metallic luster

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100266454B1 (ko) * 1998-07-16 2000-09-15 이지환 티타늄증착을 이용한 비철금속의 착색방법
TW593786B (en) * 2002-07-08 2004-06-21 Procoat Technology Co Ltd Aluminum product with film with variable colors corresponding to variable view angles, and method for forming a film with variable colors corresponding to variable view angles on an aluminum substrate
WO2006013115A1 (en) * 2004-08-06 2006-02-09 Politecnico Di Milano Method for the protection/selective colouring of an end­product
CN102071448A (zh) * 2009-11-20 2011-05-25 莱尔德电子材料(深圳)有限公司 物理气相沉积(pvd)及冷阳极氧化金属着色
KR102517388B1 (ko) * 2017-09-15 2023-04-03 오를리콘 서피스 솔루션스 아크티엔게젤샤프트, 페피콘 착색 표면을 구비한 코팅을 제조하는 방법
CN208440686U (zh) * 2018-07-06 2019-01-29 深圳市联合蓝海科技开发有限公司 表面带有镀层的贵金属制品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59143092A (ja) * 1983-02-07 1984-08-16 Seiko Instr & Electronics Ltd 腕時計用文字板
CN102747402A (zh) * 2012-03-08 2012-10-24 北京服装学院 一种钛或钛合金放电氧化上色的方法
CN105586625A (zh) * 2014-10-22 2016-05-18 可成科技股份有限公司 钛基多元素薄膜双色阳极形成方法及其制品
CN107109652A (zh) * 2014-12-31 2017-08-29 埃西勒国际通用光学公司 用于对光学物品进行反射镜涂覆的方法
US20210363646A1 (en) * 2018-07-24 2021-11-25 Hewlett-Packard Development Company, L.P. Device housing with metallic luster
CN113025969A (zh) * 2019-12-09 2021-06-25 斯沃奇集团研究和开发有限公司 制造装饰表面的方法

Also Published As

Publication number Publication date
CN115821261B (zh) 2024-01-23
CN115821261A (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
EP1915473B1 (en) Pretreatment of magnesium substrates for electroplating
US20130153427A1 (en) Metal Surface and Process for Treating a Metal Surface
JP5436569B2 (ja) 装飾物品のための貴金属含有層連続物
US10745820B2 (en) Method of mirror coating an optical article and article thereby obtained
WO2012119306A1 (en) Method for Producing White Anodized Aluminum Oxide
FR2762854A1 (fr) Article revetu d'un revetement multicouche couleur du laiton poli, assurant la protection contre l'abrasion et la corrosion
JP2014095097A (ja) 3価クロムめっき成形品の製造方法および3価クロムめっき成形品
CN108546917A (zh) 一种铝合金的表面处理方法
WO2024016182A1 (zh) 表面改性和颜色改变方法以及物品
CN102061472A (zh) 一种镜面铝表面氧化镀膜方法
JP4693045B2 (ja) 金属ガラス部品の表面処理方法と該方法で表面処理された金属ガラス部品
JP2014172399A (ja) 暗色のコーティングされた粒子
KR20100103968A (ko) 알루미늄 및 알루미늄 합금 소재의 표면개질 방법
CN108707945A (zh) 一种表面印彩的铝片二次氧化制造工艺
KR100524396B1 (ko) 발색 티타늄 및 알루미늄의 합금과 그 제조방법
KR20210151612A (ko) 금속 내외장재의 표면처리 방법 및 표면 처리된 금속 내외장재
KR20100085702A (ko) 강화 처리된 알루미늄 소재 대상 전자 인쇄 방법
CN103436843B (zh) Pvd复合膜层及其制备方法
CN110512250A (zh) 阳极氧化膜及其制作方法
RU2349687C2 (ru) Способ подготовки изделий из алюминия и его сплавов перед нанесением гальванических покрытий
TWI537427B (zh) 鈦基多元素薄膜雙色陽極形成方法及其製品
KR20190034910A (ko) 마그네슘계 금속의 표면 처리 방법
JP5918487B2 (ja) 装飾用金属材料
KR100496674B1 (ko) 알루미늄 또는 알루미늄합금의 표면처리용액 및 이에 의해표면처리된 알루미늄 및 알루미늄합금
CN102206800A (zh) 一种离子束溅射法制备金黄色装饰薄膜的方法及薄膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951460

Country of ref document: EP

Kind code of ref document: A1