WO2024016134A1 - 一种无线通信方法及装置、设备、存储介质 - Google Patents

一种无线通信方法及装置、设备、存储介质 Download PDF

Info

Publication number
WO2024016134A1
WO2024016134A1 PCT/CN2022/106336 CN2022106336W WO2024016134A1 WO 2024016134 A1 WO2024016134 A1 WO 2024016134A1 CN 2022106336 W CN2022106336 W CN 2022106336W WO 2024016134 A1 WO2024016134 A1 WO 2024016134A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
operating mode
mode
indication information
sent
Prior art date
Application number
PCT/CN2022/106336
Other languages
English (en)
French (fr)
Inventor
郭雅莉
郭伯仁
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/106336 priority Critical patent/WO2024016134A1/zh
Publication of WO2024016134A1 publication Critical patent/WO2024016134A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of mobile communication technology, and specifically relate to a wireless communication method, device, equipment, and storage medium.
  • the user equipment After the user equipment (User Equipment, UE) accesses the 5th generation (5G) network through the Uu port, it establishes a quality of service (QoS) flow under the control of the session management function (Session Management Function, SMF).
  • QoS quality of service
  • SMF Session Management Function
  • the SMF provides the QoS parameters of each QoS flow to the base station.
  • the QoS parameters are used to control the wireless resources used by the QoS flow. However, there are cases where the QoS parameters do not match the equipment operating parameters such as the UE's power and storage resources. exist.
  • Embodiments of the present application provide a wireless communication method, device, equipment, and storage medium.
  • Embodiments of the present application provide a wireless communication method, including:
  • the core network device receives the first indication information sent by the terminal device.
  • the first indication information is used to indicate the target operating mode selected by the terminal device.
  • the target operating mode is used to determine the quality of service QoS parameters of the terminal device.
  • Embodiments of the present application provide a wireless communication method, including:
  • the terminal equipment core network equipment receives the first indication information sent, and the first indication information is used to indicate the target operating mode selected by the terminal equipment, and the target operating mode is used to determine the quality of service QoS parameters of the terminal equipment.
  • An embodiment of the present application provides a wireless communication device, including:
  • the first communication unit is configured to receive first indication information sent by the terminal device, the first indication information is used to indicate the target operating mode selected by the terminal device, and the target operating mode is used to determine the service of the terminal device. Quality QoS parameters.
  • An embodiment of the present application provides a wireless communication device, including:
  • the second communication unit is configured to send first indication information to the core network device.
  • the first indication information is used to indicate the target operating mode selected by the terminal device.
  • the target operating mode is used to determine the operation mode of the terminal device. Quality of Service QoS parameters.
  • the communication device provided by the embodiment of the present application may be the core network device in the above solution or the terminal device in the above solution.
  • the communication device includes a processor and a memory.
  • the memory is used to store computer programs, and the processor is used to call and run the computer programs stored in the memory to perform the above-mentioned wireless communication method.
  • the chip provided by the embodiment of the present application is used to implement the above wireless communication method.
  • the chip includes: a processor, configured to call and run a computer program from a memory, so that the device installed with the chip executes the above-mentioned wireless communication method.
  • the computer-readable storage medium provided by the embodiment of the present application is used to store a computer program, and the computer program causes the computer to execute the above-mentioned wireless communication method.
  • the computer program product provided by the embodiment of the present application includes computer program instructions, which cause the computer to execute the above-mentioned wireless communication method.
  • the computer program provided by the embodiment of the present application when run on a computer, causes the computer to perform the above wireless communication method.
  • the core network device determines the QoS parameters of the terminal device based on the operating mode selected by the network device, so that the QoS parameters of the terminal device adapt to the operating mode selected by the terminal device and meet the operating needs of the terminal device.
  • Figure 1 is a schematic diagram of an application scenario according to the embodiment of the present application.
  • Figure 2 is an optional structural schematic diagram of a wireless communication system according to an embodiment of the present application.
  • Figure 3 is an optional structural schematic diagram of a wireless communication system according to an embodiment of the present application.
  • Figure 4 is an optional flow diagram of a wireless communication method according to an embodiment of the present application.
  • Figure 5 is an optional flow diagram of a wireless communication method according to an embodiment of the present application.
  • Figure 6 is an optional flow diagram of a wireless communication method according to an embodiment of the present application.
  • Figure 7 is an optional flow diagram of a wireless communication method according to an embodiment of the present application.
  • Figure 8 is an optional flow diagram of a wireless communication method according to an embodiment of the present application.
  • Figure 9 is an optional flow diagram of a wireless communication method according to an embodiment of the present application.
  • Figure 10 is an optional flow diagram of a wireless communication method according to an embodiment of the present application.
  • Figure 11 is an optional flow diagram of a wireless communication method according to an embodiment of the present application.
  • Figure 12 is an optional flow diagram of a wireless communication method according to an embodiment of the present application.
  • Figure 13 is an optional flow diagram of a wireless communication method according to an embodiment of the present application.
  • Figure 14 is an optional flow diagram of a wireless communication method according to an embodiment of the present application.
  • Figure 15 is an optional flow diagram of a wireless communication method according to an embodiment of the present application.
  • Figure 16 is an optional flow diagram of a wireless communication method according to an embodiment of the present application.
  • Figure 17 is an optional flow diagram of a wireless communication method according to an embodiment of the present application.
  • Figure 18 is an optional flow diagram of a wireless communication method according to an embodiment of the present application.
  • Figure 19 is an optional flow diagram of a wireless communication method according to an embodiment of the present application.
  • Figure 20 is an optional flow diagram of a wireless communication method according to an embodiment of the present application.
  • Figure 21 is an optional flow diagram of a wireless communication method according to an embodiment of the present application.
  • Figure 22 is an optional flow diagram of a wireless communication method according to an embodiment of the present application.
  • Figure 23 is an optional structural schematic diagram of a wireless communication device according to an embodiment of the present application.
  • Figure 24 is an optional structural schematic diagram of a wireless communication device according to an embodiment of the present application.
  • Figure 25 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 26 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • Figure 27 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • Figure 1 is a schematic diagram of an application scenario according to the embodiment of the present application.
  • the communication system 100 may include a terminal device 110 and a network device 120 .
  • the network device 120 may communicate with the terminal device 110 through the air interface. Multi-service transmission is supported between the terminal device 110 and the network device 120.
  • LTE Long Term Evolution
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • IoT Internet of Things
  • NB-IoT Narrow Band Internet of Things
  • eMTC enhanced Machine-Type Communications
  • 5G communication system also known as New Radio (NR) communication system
  • NR New Radio
  • the network device 120 may be an access network device that communicates with the terminal device 110 .
  • the access network device may provide communication coverage for a specific geographical area and may communicate with terminal devices 110 (eg, UEs) located within the coverage area.
  • terminal devices 110 eg, UEs
  • the network device 120 may be an evolutionary base station (Evolutional Node B, eNB or eNodeB) in a Long Term Evolution (LTE) system, or a next generation radio access network (Next Generation Radio Access Network, NG RAN) equipment, It may be a base station (gNB) in an NR system, or a wireless controller in a Cloud Radio Access Network (CRAN), or the network device 120 may be a relay station, access point, vehicle-mounted device, or wearable device. Equipment, hubs, switches, bridges, routers, or network equipment in the future evolved Public Land Mobile Network (Public Land Mobile Network, PLMN), etc.
  • Evolutional Node B, eNB or eNodeB in a Long Term Evolution (LTE) system
  • NG RAN Next Generation Radio Access Network
  • gNB base station
  • CRAN Cloud Radio Access Network
  • the terminal device 110 may be any terminal device, including but not limited to terminal devices that are wired or wirelessly connected to the network device 120 or other terminal devices.
  • the terminal device 110 may refer to an access terminal, a UE, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or a user device .
  • Access terminals can be cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, IoT devices, satellite handheld terminals, Wireless Local Loop (WLL) stations, Personal Digital Assistants (Personal Digital Assistant) , PDA), handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks or terminal devices in future evolution networks, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistants
  • handheld devices with wireless communication functions computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks or terminal
  • the terminal device 110 can be used for device to device (Device to Device, D2D) communication.
  • D2D Device to Device
  • the wireless communication system 100 may also include a core network device 130 that communicates with the base station.
  • the core network device 130 may be a 5G core network (5G Core, 5GC) device, such as an access and mobility management function (Access and Mobility Management Function). , AMF), another example, Authentication Server Function (AUSF), another example, User Plane Function (UPF), another example, SMF.
  • the core network device 130 may also be an Evolved Packet Core (EPC) device of the LTE network, for example, a session management function + core network data gateway (Session Management Function + Core Packet Gateway, SMF + PGW- C) Equipment.
  • EPC Evolved Packet Core
  • SMF+PGW-C can simultaneously realize the functions that SMF and PGW-C can realize.
  • the above-mentioned core network equipment may also be called by other names, or a new network entity may be formed by dividing the functions of the core network, which is not limited by the embodiments of this application.
  • Various functional units in the communication system 100 can also establish connections through next generation network (NG) interfaces to achieve communication.
  • NG next generation network
  • Figure 1 exemplarily shows a base station, a core network device and two terminal devices.
  • the wireless communication system 100 may include multiple base station devices and other numbers of terminals may be included within the coverage of each base station.
  • Equipment the embodiments of this application do not limit this.
  • FIG. 1 only illustrates the system to which the present application is applicable in the form of an example.
  • the method shown in the embodiment of the present application can also be applied to other systems.
  • system and “network” are often used interchangeably herein.
  • the term “and/or” in this article is just an association relationship that describes related objects, indicating that three relationships can exist. For example, A and/or B can mean: A exists alone, A and B exist simultaneously, and they exist alone. B these three situations.
  • the character "/" in this article generally indicates that the related objects are an "or” relationship.
  • the "instruction” mentioned in the embodiments of this application may be a direct instruction, an indirect instruction, or an association relationship.
  • A indicates B, which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • the "correspondence" mentioned in the embodiments of this application can mean that there is a direct correspondence or indirect correspondence between the two, it can also mean that there is an associated relationship between the two, or it can mean indicating and being instructed. , the relationship between configuring and being configured.
  • predefined can refer to what is defined in the protocol.
  • protocol may refer to a standard protocol in the communication field, which may include, for example, LTE protocol, NR protocol, and related protocols applied in future communication systems. This application does not limit this. .
  • the 5G system includes: AMF, SMF, Policy Control Function (PCF), UPF and application layer function (Application Function, AF).
  • AMF Access Management Function
  • SMF Policy Control Function
  • PCF Policy Control Function
  • UPF User Plane Function
  • AF Application Function
  • the 5G system also includes access network equipment ((Radio)Access Network(R)AN), UE and data network (DN).
  • UE can be connected to AMF
  • (R)AN can also be connected to AMF
  • (R)AN can also be connected to UPF
  • UPF can be connected to SMF and DN respectively
  • AMF can be connected to SMF and PCF respectively
  • SMF is connected to PCF.
  • PCF is connected to AF. Both AMF and SMF can obtain policy data from PCF.
  • AMF and SMF deliver policy data to (R)AN, UE, UPF, etc.
  • Figure 2 shows the network system architecture based on the agreed interface between network elements, that is, the reference point.
  • the UE establishes an air interface connection with the access network device through the Uu interface for transmitting user plane data and control plane signaling; the terminal device can use the NG Interface 1 (referred to as N1) establishes a control plane signaling connection with the AMF; the access network device can establish a control plane signaling connection with the AMF through NG interface 2 (referred to as N2); (R)AN establishes a control plane signaling connection with the AMF through NG interface 3 (referred to as N3) UPF establishes a user plane data connection; UPF can establish a control plane signaling connection with SMF through NG interface 4 (referred to as N4); N5 is the interface between PCF and AF; UPF can interact with the data network through NG interface 6 (referred to as N6) User plane data; SMF can establish a control plane signaling connection with PCF through NG interface 7 (referred to as N7); NG interface 9 (referred to as
  • Figure 3 is a system architecture diagram based on service interfaces.
  • PCF provides service interface Npcf
  • AF provides service interface Naf
  • AMF provides service interface Namf
  • SMF provides service interface Nsmf.
  • the UE makes an access layer connection with (R)AN through the Uu port, exchanging access layer messages and wireless data transmission; the UE makes a non-access layer (NAS) connection with the AMF through the N1 port, interacting NAS news.
  • AMF is the mobility management function in the core network
  • SMF is the session management function in the core network.
  • the AMF is also responsible for forwarding session management related messages between the UE and the SMF.
  • PCF is the policy management function in the core network and is responsible for formulating policies related to UE mobility management, session management, and charging.
  • UPF is the user plane function in the core network. It transmits data with the external data network through the N6 interface and with the AN through the N3 interface.
  • the SMF provides the QoS flow configuration information of each QoS flow to the base station.
  • the QoS flow configuration information includes: 5G QoS Identifier (5QI), Allocation/Retention Priority (ARP), and can also include information such as code rate requirements.
  • 5QI is an index value that can correspond to QoS characteristics such as delay requirements and bit error rate requirements.
  • the value of 5QI is 66, which represents the following QoS characteristics: delay is 100ms and bit error rate is 10 -2 .
  • ARP assigns or maintains resource priorities for the base station for QoS flows. For each QoS flow, the base station schedules wireless resources according to the QoS flow configuration information received from the SMF to guarantee the QoS requirements of the QoS flow.
  • QoS parameters such as 5QI and ARP are determined by PCF and sent to SMF.
  • Some applications running on the UE will consume a lot of power on the UE when the bit error rate is stringent.
  • the bit rate (throughput) is high or the delay is low, At this time, the power consumption of the UE will also be relatively large.
  • the core network does not understand the power consumption needs of the UE, so the QoS parameters that may be set do not meet the power consumption needs of the UE. For example, when the UE has sufficient power (for example, when it is always connected to the power supply), setting high latency, low bit rate, and high bit error rate will reduce the user's service experience even though the power consumption is low, and the UE does not currently care. Power consumption; or when the UE power is tight, setting low latency, high bit rate, and low bit error rate will cause the UE to consume power more quickly.
  • the wireless communication method provided by the embodiment of this application, as shown in Figure 4, is applied to core network equipment, including:
  • the core network device receives the first indication information sent by the terminal device.
  • the first indication information is used to indicate the target operating mode selected by the terminal device.
  • the target operating mode is used to determine the service quality QoS of the terminal device. parameter.
  • the wireless communication method provided by the embodiment of the present application, as shown in Figure 5, is applied to terminal equipment and includes:
  • the terminal device sends first indication information to the core network device.
  • the first indication information is used to indicate the target operating mode selected by the terminal device.
  • the target operating mode is used to determine the quality of service QoS parameters of the terminal device. .
  • the wireless communication method provided by the embodiment of the present application, as shown in Figure 6, is applied to a wireless communication system including terminal equipment and core network equipment, including:
  • the terminal device sends first indication information to the core network device, where the first indication information is used to indicate the target operating mode selected by the terminal device.
  • the core network device receives the first indication information sent by the terminal device, and the target operating mode is used to determine the quality of service QoS parameters of the terminal device.
  • the target operating mode is the operating mode selected by the terminal device and represents the current operating mode of the terminal device.
  • the operating mode is used to indicate the operating status of the terminal device's power, storage, or memory and other device operating parameters.
  • the terminal device After the terminal device selects the target operating mode, it sends the first indication information indicating the target operating mode to the core network device.
  • the core network receives the first indication information and determines, based on the first indication information, that the QoS parameters corresponding to the target operating mode are the QoS parameters of the terminal device. Among them, different target operating modes correspond to different QoS parameters.
  • the core network device includes one of the following: policy control function PCF, session management function SMF, and mobility management function AMF.
  • the terminal device sends the first indication information to the core network device during the PDU session establishment/modification process.
  • the terminal device reports its selected operating mode to the core network device, and the core network device configures QoS parameters for the terminal device based on the operating mode selected by the terminal device, so that the QoS parameters configured by the core network device are consistent with The actual operating mode of the terminal device is adapted to meet the operating needs of the terminal device.
  • the target operating mode includes at least one of the following: sufficient power mode; power saving mode; sufficient storage mode; storage saving mode; adaptive mode.
  • the target operating mode includes one of the following: sufficient power mode, power saving mode, and adaptive mode.
  • the target operating mode includes one of the following: storage sufficient mode, storage conservation mode, and adaptive mode.
  • the target operating mode includes one of the following:
  • Power sufficient mode or power saving mode storage sufficient mode or storage saving mode, adaptive mode.
  • the power-sufficient mode and the power-saving mode are different operating modes for power.
  • the power-specific operating modes supported by the terminal device include but are not limited to the power-sufficient mode and the power-saving mode.
  • the storage sufficient mode and the storage saving mode are different operating modes for storage.
  • the operating modes for storage supported by the terminal device include but are not limited to the storage sufficient mode and the electric storage saving mode.
  • the target operating mode includes at least one operating mode selected from at least one first operating mode, which is an operating mode that is allowed to be selected by the terminal device.
  • the target operating mode is at least one operating mode selected by the terminal device from at least one first operating mode.
  • At least one first operating mode is preset.
  • At least one first operating mode is configured for the core network device to the terminal device.
  • the at least one first operating mode includes at least one of the following: power sufficient mode; power saving mode; storage sufficient mode; storage saving mode; adaptive mode.
  • the power of the terminal equipment is greater than the first power threshold.
  • the QoS parameters corresponding to the sufficient power mode can be low latency, high bit rate, and low bit error rate.
  • the terminal equipment provides high service quality but high power consumption.
  • the power of the terminal device is less than or equal to the first power threshold.
  • the QoS parameters corresponding to the power saving mode can be high delay, low bit rate, and high bit error rate.
  • the terminal device provides low service quality but low power consumption.
  • the storage of the terminal device is greater than the first storage threshold.
  • the QoS parameters corresponding to the storage sufficient mode can be low latency, high bit rate, and low bit error rate.
  • the terminal device provides high service quality but high storage consumption.
  • the storage of the terminal device is less than or equal to the first storage threshold.
  • the QoS parameters corresponding to the storage saving mode can be high latency, low bit rate, and high bit error rate.
  • the terminal device provides high service quality but low storage consumption.
  • Adaptive mode allows the terminal device to switch between various operating modes based on implementation.
  • the adaptive mode includes at least one of the following:
  • the power adaptive mode allows the terminal device to switch between a sufficient power mode and a power saving mode.
  • the storage adaptive mode allows the terminal device to switch between the storage sufficient mode and the storage saving mode based on the implementation.
  • the target operating mode may include one or more operating modes.
  • the different included operating modes represent the operating states of different equipment operating parameters.
  • the QoS parameters of the terminal device include a set of QoS parameters.
  • the QoS parameters of the terminal device include multiple sets of QoS parameters.
  • the QoS parameters of the terminal device are the QoS parameters corresponding to the target operating mode; when the target operating mode includes multiple operating modes In the case of mode, the QoS parameters of the terminal device are determined based on the QoS parameters corresponding to each of the multiple operating modes.
  • the target operating mode is the sufficient power mode
  • the QoS parameters corresponding to the target operating mode are the QoS parameters corresponding to the sufficient power mode.
  • the target operating modes are a sufficient power mode and a storage saving mode
  • the QoS parameters corresponding to the target operating mode are determined based on the QoS parameters corresponding to the sufficient power mode and the QoS parameters corresponding to the storage saving mode.
  • the QoS parameters of the terminal device include at least two sets of QoS parameters selectable by the terminal device.
  • multiple sets of QoS parameters selectable by the terminal device include QoS parameters corresponding to each of the multiple operating modes corresponding to the adaptive mode.
  • the QoS parameters of the terminal device include: QoS parameters corresponding to the sufficient power mode and QoS parameters corresponding to the power saving mode.
  • the QoS parameters of the terminal device include: QoS parameters corresponding to the storage sufficient mode and QoS parameters corresponding to the storage saving mode.
  • the sending path of the first indication information includes one of the following:
  • Path 1 The terminal device sends it to the application function AF through the application layer, and the AF sends it to the PCF;
  • Path two sent by the terminal device to the PCF via AMF and/or SMF.
  • the terminal device sends the first indication information to the AF through the application layer, and the AF sends the first indication information to the PCF.
  • the PCF receives the first indication information sent by the terminal device sent by the AF.
  • the terminal device sends the first indication information to the AMF and /SMF, and the AMF and /SMF sends the first indication information to the PCF.
  • the sending path of the first indication information is: sent by the terminal device to the AMF, and sent by the AMF to the PCF.
  • the sending path of the first indication information is: sent by the terminal device to the SMF, and sent by the SMF to the PCF.
  • the sending path of the first indication information is: sent by the terminal device to the AMF, sent by the AMF to the SMF, and sent by the SMF to the PCF.
  • PCF receives the first indication information sent by the terminal device from AMF or SMF; for AMF, AMF receives the first indication information from the terminal device and sends the first indication information to SMF or PCF; for SMF , the SMF receives the first indication information from the terminal device or the AMF, and sends the first indication information to the AMF or PCF.
  • the terminal device sends the first indication information to the AMF and/or SMF through a session establishment/modification request message, and the SMF sends the first indication information to the PCF through a session policy connection establishment/modification request message.
  • the steps implemented by the core network device also include:
  • the core network device sends the QoS parameters of the terminal device to the access network device and/or the terminal device.
  • the access network device receives the QoS parameters of the terminal device and controls the wireless resources of the QoS flow of the terminal device based on the QoS parameters of the terminal device.
  • the QoS parameters sent by the core network device to the terminal device of the access network device are the same as or different from the QoS parameters of the terminal device sent by the core network device to the terminal device.
  • the QoS parameters sent by the core network device to the terminal device of the access network device are different from the QoS parameters of the terminal device sent by the core network device to the access network device, the QoS parameters of the terminal device sent to the access network device include 5QI and ARP, The QoS parameters of the terminal device sent to the terminal device include 5QI but do not include ARP.
  • the steps implemented by the terminal device also include:
  • the terminal device receives the QoS parameters of the terminal device sent by the core network device.
  • the steps implemented by the access network device also include:
  • the access network device receives the QoS parameters of the terminal device sent by the core network device.
  • the access network device can use the default QoS parameters among the multiple sets of QoS parameters to control wireless resources.
  • the default QoS parameters may be indicated by the SMF or determined based on the implementation of the access network device.
  • the sending path of the QoS parameters of the terminal device includes: sending by the PCF to the access network device and/or the terminal device via the AMF and/or SMF.
  • PCF sends the QoS parameters of the terminal device to SMF and/or AMF;
  • S1202, SMF and/or AMF send the QoS parameters of the terminal device to the access network device;
  • S1203, SMF and/or AMF send the QoS parameters of the terminal device to the terminal device.
  • steps S1202 and S1203 can be implemented, or both steps S1202 and S1203 can be implemented.
  • PCF sends the QoS parameters of the terminal equipment to SMF and/or AMF; for SMF, SMF receives the QoS parameters of the terminal equipment from PCF and sends the QoS parameters of the terminal equipment to AMF, access network equipment and terminal equipment. At least one; for the AMF, the AMF receives the QoS parameters of the terminal device from the PCF or SMF, and sends the QoS parameters of the terminal device to at least one of the access network device and the terminal device.
  • the steps implemented by the core network device also include:
  • the core network device receives the second instruction information sent by the access network device.
  • the second instruction information is used to instruct the terminal device to select and use from at least two sets of QoS parameters selectable by the terminal device. QoS parameters.
  • the steps implemented by the terminal device also include:
  • the terminal device sends second indication information to the access network device, where the second indication information is used to instruct the terminal device to select a QoS parameter to use from at least two sets of QoS parameters selectable by the terminal device.
  • the terminal device determines that the target selection mode is the adaptive mode, it determines second indication information, and the second indication information instructs the terminal device to select QoS parameters corresponding to the adaptive operating mode in the adaptive mode.
  • the operating mode selected by the terminal device is the adaptive mode.
  • the terminal device adaptively runs in the sufficient power mode, and then sends the QoS parameters corresponding to the sufficient power mode to the access network device; after receiving the sufficient power, When it is low, it adaptively runs in the power saving mode and sends the QoS parameters corresponding to the power saving mode to the access network equipment.
  • the steps implemented by access network equipment include:
  • the access network device receives second indication information sent by the terminal device.
  • the second indication information is used to instruct the terminal device to select the QoS parameter to be used from at least two sets of QoS parameters selectable by the terminal device. QoS parameters.
  • the access network device sends second instruction information to the core network device.
  • the access network device does not receive multiple sets of QoS parameters selectable by the terminal device or does not receive multiple sets of QoS parameters selectable by the terminal device but does not use the default QoS parameters to control wireless resources, the second instruction is directly used.
  • the QoS parameters indicated by the information control the radio resources.
  • the access network device uses default QoS parameters among multiple sets of QoS parameters to control wireless resources, the access network device uses the QoS parameters indicated by the second indication information to overwrite the default QoS parameters.
  • the sending path of the second indication information is: sent by the terminal device to the access network device, and sent by the access network device to the PCF via the AMF and/or SMF.
  • the terminal device sends the second instruction information to the access network device
  • the access network device sends the second instruction information to the PCF.
  • the path for the access network to send the second indication information to the PCF is: the access network device sends the second indication information to the PCF via the AMF and/or SMF.
  • PCF receives the second indication information sent by AMF or SMF; for SMF, receives the second indication information sent by access network equipment or AMF, and sends the second indication information to PCF; for AMF, receives the second indication information sent by access network equipment Send the second indication information, and send the second indication information to the SMF or PCF.
  • the steps implemented by the core network device also include:
  • the core network device receives the third indication information sent by the terminal device, where the third indication information is used to indicate that the terminal device has the ability or need to select an operating mode.
  • the steps implemented by the terminal device also include:
  • the terminal device sends third indication information to the core network device, where the third indication information is used to indicate that the terminal device has the ability or need to select an operating mode.
  • the terminal device sends third indication information to the core network device during the registration process or the PDU session establishment process to indicate that it has the ability or need to select the operating mode.
  • the sending path of the third indication information includes one of the following:
  • Path three sent by the terminal device to AMF and/or SMF;
  • Path 4 The terminal device sends the data to the PCF via AMF and/or SMF.
  • the third indication information is sent from the terminal device to the AMF and/or SMF, and the AMF or SMF determines whether to allow the terminal device to select an operating mode based on implementation.
  • the third indication information is sent by the terminal device to the AMF, and the AMF determines whether to allow the terminal device to select the operating mode based on implementation.
  • the third indication information is sent by the terminal device to the AMF, and is sent by the AMF to the SMF, and the SMF determines whether to allow the terminal device to select the operating mode based on implementation.
  • the third indication information is sent by the terminal device to the SMF, and the SMF determines whether to allow the terminal device to select the operating mode based on implementation.
  • the third indication information is sent from the terminal device to the AMF and/or SMF, and is sent by the AMF and/or SMF to the PCF, and the PCF determines whether to allow the terminal device to select the operating mode based on implementation.
  • the core network implementation steps further include:
  • the core network device sends response information for responding to the third indication information to the terminal device, where the response information is used to indicate whether the terminal device is allowed to select an operating mode.
  • the steps implemented by the terminal device further include: the core network device sends response information for responding to the third indication information to the terminal device, where the response information is used to indicate whether the terminal device is allowed to operate. Mode selection.
  • the response information is used to indicate that the terminal device is allowed to select an operating mode.
  • the response information is used to indicate that the terminal device is not allowed to select an operating mode.
  • the terminal device selects an operating mode, and the conditions for determining the target operating mode include one of the following:
  • Condition 1 The terminal device sends the third instruction information to the core network device
  • the terminal device sends third instruction information to the core network device, and receives response information sent by the core network device indicating that the terminal device is allowed to select an operating mode.
  • the terminal device indicates that the core network device itself has the ability or need to perform mode selection.
  • the sending of the third indication information is used to notify the core network device of its own ability or need, and does not require a response from the core network device.
  • the terminal device indicates that the core network device itself has the ability or need to select the mode, and the core network device indicates that the terminal device allows the terminal device to select the operating mode, thereby realizing the ability to select the operating mode between the terminal device and the core network device. or negotiation of needs.
  • the terminal device sends the third instruction information to the core network device, and receives the response message sent by the core network device indicating that the terminal device is not allowed to select the operating mode, then the terminal device cannot make the selection of the operating mode.
  • the response information when the response information indicates that the terminal device is allowed to select an operating mode, the response information includes at least one of the following:
  • Fourth indication information indicating that the terminal device is allowed to select an operating mode
  • At least one first operating mode is an operating mode allowed to be selected by the terminal device.
  • the sending path of the response information includes one of the following:
  • Path five sent to the terminal device by AMF and/or SMF;
  • Path six sent by the PCF to the terminal device via the AMF and/or the SMF.
  • the sending path of the third indication information is path three
  • the sending path of the response information is path five.
  • the sending path of the third indication information is path four
  • the sending path of the response information is path six.
  • the AMF or SMF determines whether to allow the terminal device to select an operating mode based on implementation, and sends the determination result to the terminal device through response information.
  • the AMF determines whether the terminal device is allowed to select the operating mode based on implementation, and response information indicating whether the terminal device is allowed to select the mode is sent by the AMF to the terminal device.
  • the SMF determines whether the terminal device is allowed to select the operating mode based on implementation, and response information indicating whether the terminal device is allowed to select the mode is sent by the SMF to the AMF, and is sent by the AMF to the terminal device.
  • the SMF determines whether the terminal device is allowed to select a running mode based on implementation, and response information indicating whether the terminal device is allowed to select a mode is sent by the SMF to the terminal device.
  • the PCF determines whether to allow the terminal device to select the operating mode based on the implementation, and sends the determination result to the terminal device via the SMF and/or AMF in response information.
  • the following takes the power mode as an example to further describe the wireless communication method provided by the embodiment of the present application.
  • the AMF/SMF sends an indication of allowing power negotiation to the UE.
  • the indication of allowing power negotiation can be allowed/not allowed, or it can be a list of modes that allow negotiation, such as sufficient power mode, power saving mode, adaptive mode, etc.
  • the PCF obtains the power mode selected by the UE, such as sufficient power mode, power saving mode, and adaptive mode, and considers the power mode selected by the UE when formulating QoS parameters.
  • the PCF can obtain the power mode selected by the UE by sending the AF to the PCF or the UE sending the power mode to the PCF through SMF.
  • the wireless communication method provided by the embodiment of the present application may include two stages: capability interaction and QoS parameter indication.
  • Capability interaction when the UE registers with the core network as shown in Figure 19, or when the UE initiates a session establishment as shown in Figure 20, the UE indicates that it has the ability/need (desire) to negotiate the power mode, and the core network Replying in the response message enables power negotiation.
  • the UE sends the power negotiation capability or requirement to the AMF.
  • the registration request sent by the UE to the AMF indicates the ability or requirement for power negotiation.
  • the UE sends a registration request to the AMF.
  • the ability or requirement for power negotiation can be understood as the ability or requirement for power mode negotiation with PCF.
  • the AMF sends an instruction to allow power negotiation to the UE.
  • the registration response message sent by the AMF to the UE carries an indication that power negotiation is allowed.
  • the AMF After receiving that it has the ability or need for power negotiation, the AMF determines whether the UE is allowed to perform power negotiation, and carries the power negotiation indication in the registration response message and sends it to the UE.
  • the AMF can be determined according to its own implementation, or it can ask the PCF whether to allow the UE to perform power negotiation through interaction with the PCF.
  • the AMF determines whether to allow the UE to perform power negotiation based on its own implementation, the AMF directly executes S1902.
  • the AMF asks the PCF whether to allow the UE to perform power negotiation through interaction with the PCF
  • 1903 and 1904 are also performed between the AMF and the PCF, and the registration response message carries the power negotiation indication sent by the PCF.
  • the AMF sends the power negotiation capability or requirement to the PCF.
  • the mobility policy connection establishment/modification request sent by the AMF to the PCF carries the power negotiation capability or requirement received from the UE.
  • the PCF returns an instruction to allow power negotiation to the AMF.
  • the PCF returns a mobility policy connection establishment/modification response message to the AMF carrying an indication that power negotiation is allowed.
  • the PCF After receiving the power negotiation capability or requirement from the UE, the PCF determines whether the UE is allowed to perform power negotiation, and carries the power negotiation indication in the mobility policy connection establishment/modification response message.
  • the power negotiation indication can be allowed/ Not allowed, it can also be a list of modes that are allowed to be negotiated, such as sufficient power mode, power saving mode, adaptive mode, etc.
  • the UE sends the ability/requirement for power negotiation to the SMF.
  • the session establishment/modification request message sent by the UE to the SMF indicates that it has the ability/need for power negotiation.
  • the session establishment/modification request message is forwarded to SMF through AMF transparent transmission, and AMF does not parse it. Therefore, AMF is no longer mentioned in the AMF transparent transmission message in the subsequent process, and is regarded as a direct interaction between the UE and SMF.
  • the SMF sends an instruction to allow power negotiation to the UE.
  • the session establishment/modification response message sent by the SMF to the UE carries an indication of power negotiation.
  • the SMF After the SMF receives that it has the ability or need for power negotiation, it determines whether the UE is allowed to perform power negotiation, and carries the power negotiation indication in the session establishment/modification response message and sends it to the UE.
  • the SMF can be determined according to its own implementation, or it can ask the PCF whether to allow the UE to perform power negotiation through interaction with the PCF.
  • the SMF determines whether to allow the UE to perform power negotiation based on its own implementation, the SMF directly executes S2002.
  • the interaction between the SMF and the PCF also includes: S2003 and S2004, and the session establishment/modification response message carries the power negotiation indication sent by the PCF.
  • the SMF sends the power negotiation capability or requirement to the PCF.
  • the session policy connection establishment/modification request sent by the SMF to the PCF carries the power negotiation capability or requirement received from the UE.
  • the PCF returns an instruction to allow power negotiation to the SMF.
  • the session policy connection establishment/modification response message returned by PCF to SMF carries an indication that power negotiation is allowed.
  • the PCF After receiving the power negotiation capability or requirement from the UE, the PCF determines whether the UE is allowed to perform power negotiation, and carries the power negotiation indication in the session policy connection establishment/modification response message.
  • the power negotiation indication can be allowed/disabled. Allowed, it can also be a list of modes that are allowed to be negotiated, such as sufficient power mode, power saving mode, adaptive mode, etc.
  • PCF can obtain the power mode selected by the UE, such as sufficient power mode, power saving mode, and adaptive power mode, and consider the power mode selected by the UE when formulating QoS parameters.
  • the UE can send the power mode it selects to the PCF during the PDU session establishment or the PDU session modification process initiated by the UE, as shown in Figure 21, including:
  • the UE sends the currently selected power mode to the SMF.
  • the UE sends a session establishment/modification request message to the SMF, and the session establishment/modification request message carries the power mode currently selected by the UE.
  • the SMF sends the power mode currently selected by the UE to the PCF.
  • the SMF receives the session establishment/modification request message and sends a session policy connection establishment/modification request to the PCF.
  • the session policy establishment/modification request message sent by the SMF carries the power mode received from the UE.
  • the PCF sends the QoS parameters formulated based on the power mode currently selected by the UE to the SMF.
  • the PCF formulates PCC rules, which include the QoS parameters used by the current service.
  • the PCF takes into account the power mode selected by the UE when formulating the QoS parameters. For example, when the UE selects the sufficient power mode, because the UE does not care about power consumption, it can set QoS parameters with low latency, high bit rate, and low bit error rate as much as possible to improve user service experience. For another example, when the UE selects the power saving mode, when meeting the business requirements, try to set a high delay, low code rate, and high bit error rate, thereby reducing the power consumption of the UE. For another example, when the UE selects automatic When adapting to the power mode, PCF determines multiple sets of QoS parameters.
  • PCF indicates the set of QoS parameters to be used by default among multiple sets of QoS parameters.
  • the PCF sends the determined PCC rules to the SMF through the session policy response message.
  • the PCC rules include the QoS parameters specified by the PCF.
  • the SMF sends the QoS parameters received from the PCF to the access network device.
  • the SMF determines the QoS parameters of the QoS flow based on the PCC rules received from the PCF, and sends them to the access network device for use in the access network device's control of wireless resources.
  • the PCF determines multiple sets of QoS parameters, and the QoS parameters of the QoS flow determined by the SMF are also multiple sets.
  • the PCF indicates the set to be used by default, and the access network device determines the set according to the SMF indication or Use a default set of QoS parameters to control wireless resources according to the access network device's own implementation method.
  • the SMF sends the QoS parameters received from the PCF to the UE.
  • the SMF can also carry the QoS parameters of the QoS flow in the session connection/modification response message and send it to the UE.
  • the QoS parameters sent to the UE can be only part of the QoS parameters sent to the base station, and do not need to be exactly the same. For example, it includes 5QI but does not include arp.
  • the UE sends the power mode it selects to the AF through application layer interaction, and the AF provides it to the PCF, as shown in Figure 22, including:
  • the AF sends the power mode selected by the UE to the PCF.
  • the UE determines its currently selected power mode and sends it to the AF through application layer interaction.
  • the AF When the AF sends the power mode selected by the UE to the PCF, it can also provide the service requirements to the PCF.
  • the PCF sends the QoS parameters formulated based on the power mode currently selected by the UE to the SMF.
  • the PCF formulates PCC rules, which include the QoS parameters used by the current service.
  • the PCF takes into account the power mode selected by the UE when formulating the QoS parameters. For example, when the UE selects the sufficient power mode, because the UE does not care about power consumption, it can set QoS parameters with low latency, high bit rate, and low bit error rate as much as possible to improve user service experience. For another example, when the UE selects the power saving mode, when meeting the business requirements, try to set a high delay, low code rate, and high bit error rate, thereby reducing the power consumption of the UE. For another example, when the UE selects automatic When adapting to the power mode, PCF determines multiple sets of QoS parameters.
  • PCF indicates the set of QoS parameters to be used by default among multiple sets of QoS parameters.
  • the PCF sends the determined PCC rules to the SMF through the session policy update message.
  • the PCC rules include the QoS parameters specified by the PCF.
  • the SMF sends the QoS parameters received from the PCF to the access network device.
  • the SMF determines the QoS parameters of the QoS flow based on the PCC rules received from the PCF, and sends them to the access network device for use in the access network device's control of wireless resources.
  • the PCF determines multiple sets of QoS parameters, and the QoS parameters of the QoS flow determined by the SMF are also multiple sets.
  • the PCF indicates the set to be used by default, and the access network device determines the set according to the SMF indication or Use a default set of QoS parameters to control wireless resources according to the access network device's own implementation method.
  • the SMF sends the QoS parameters received from the PCF to the UE.
  • the SMF can also carry the QoS parameters of the QoS flow in the session modification indication message and send it to the UE.
  • the QoS parameters sent to the UE can be only part of the QoS parameters sent to the base station, and do not need to be exactly the same. For example, it includes 5QI but does not include ARP.
  • the UE can determine the currently used QoS parameters by itself, for example, change from the first set of QoS parameters to the second set of QoS parameters, the UE instructs the base access network device to change to the second set of QoS parameters.
  • the access network device uses the second set of QoS parameters for radio resource control and notifies the SMF that the second set of QoS parameters is currently used.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in this application.
  • the implementation of the examples does not constitute any limitations.
  • the terms “downlink”, “uplink” and “sidelink” are used to indicate the transmission direction of signals or data, where “downlink” is used to indicate that the transmission direction of signals or data is from the station.
  • uplink is used to indicate that the transmission direction of the signal or data is the second direction from the user equipment of the cell to the site
  • sidelink is used to indicate that the transmission direction of the signal or data is A third direction sent from User Device 1 to User Device 2.
  • downlink signal indicates that the transmission direction of the signal is the first direction.
  • the term “and/or” is only an association relationship describing associated objects, indicating that three relationships can exist. Specifically, A and/or B can represent three situations: A exists alone, A and B exist simultaneously, and B exists alone. In addition, the character "/" in this article generally indicates that the related objects are an "or" relationship.
  • Figure 23 is a schematic structural diagram of a wireless communication device provided by an embodiment of the present application. It is applied to core network equipment. As shown in Figure 23, the wireless communication device 2300 includes:
  • the first communication unit 2301 is configured to receive first indication information sent by the terminal device.
  • the first indication information is used to indicate the target operating mode selected by the terminal device.
  • the target operating mode is used to determine the operation mode of the terminal device. Quality of Service QoS parameters.
  • the target operating mode includes at least one of the following:
  • the adaptive mode includes at least one of the following:
  • the target operating mode includes at least one operating mode selected from at least one first operating mode, and the first operating mode is an operating mode that is allowed to be selected by the terminal device.
  • the QoS parameters of the terminal device include at least two sets of QoS parameters selectable by the terminal device.
  • the core network device includes one of the following: policy control function PCF, session management function SMF, and mobility management function AMF.
  • the sending path of the first indication information includes one of the following:
  • the first communication unit 2301 is further configured to send the QoS parameters of the terminal device to the access network device and/or the terminal device.
  • the sending path of the QoS parameters of the terminal device includes: sending by the PCF to the access network device and/or the terminal device via the AMF and/or SMF.
  • the first communication unit 2301 is also configured to:
  • the target operating mode is an adaptive mode
  • receive second indication information sent by the access network device where the second indication information is used to instruct the terminal device to select at least two sets of QoS from the terminal device. Select the QoS parameters to use in the parameters.
  • the first communication unit 2301 is further configured to: receive third indication information sent by the terminal device, where the third indication information is used to indicate that the terminal device has the capability or need for operating mode selection.
  • the sending path of the third indication information includes one of the following:
  • the first communication unit 2301 is further configured to:
  • the response information when the response information indicates that the terminal device is allowed to select an operating mode, the response information includes at least one of the following:
  • Fourth indication information indicating that the terminal device is allowed to select an operating mode
  • At least one first operating mode is an operating mode allowed to be selected by the terminal device.
  • the sending path of the response information includes one of the following:
  • FIG 24 is a schematic diagram 2 of the structure of a wireless communication device provided by an embodiment of the present application. It is applied to terminal equipment. As shown in Figure 24, the wireless communication device 2400 includes:
  • the second communication unit 2401 is configured to send first indication information to the core network device.
  • the first indication information is used to indicate the target operating mode selected by the terminal device.
  • the target operating mode is used to determine the operation mode of the terminal device. Quality of Service QoS parameters.
  • the target operating mode includes at least one of the following:
  • the adaptive mode includes at least one of the following:
  • the target operating mode includes at least one operating mode selected from at least one first operating mode, and the first operating mode is an operating mode that is allowed to be selected by the terminal device.
  • the QoS parameters of the terminal device include at least two sets of QoS parameters selectable by the terminal device.
  • the core network device includes one of the following: policy control function PCF, session management function SMF, and mobility management function AMF.
  • the sending path of the first indication information includes one of the following:
  • the second communication unit 2401 is further configured to receive the QoS parameters of the terminal device sent by the core network device.
  • the sending path of the QoS parameters of the terminal device includes: sending by the PCF to the access network device and/or the terminal device via the AMF and/or SMF.
  • the second communication unit 2401 is also configured to:
  • the target operating mode is the adaptive mode
  • the second communication unit 2401 is further configured to send third indication information to the core network device, where the third indication information is used to indicate that the terminal device has the ability or need to select an operating mode.
  • the sending path of the third indication information includes one of the following:
  • the second communication unit 2401 is further configured to:
  • the response information when the response information indicates that the terminal device is allowed to select an operating mode, the response information includes at least one of the following:
  • Fourth indication information indicating that the terminal device is allowed to select an operating mode
  • At least one first operating mode is an operating mode allowed to be selected by the terminal device.
  • the sending path of the response information includes one of the following:
  • Figure 25 is a schematic structural diagram of a communication device 2500 provided by an embodiment of the present application.
  • the communication device may be a terminal device or a network device, where the network device may include a core network device and an access network device.
  • the communication device 2500 shown in Figure 25 includes a processor 2510.
  • the processor 2510 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the communication device 2500 may further include a memory 2520.
  • the processor 2510 can call and run the computer program from the memory 2520 to implement the method in the embodiment of the present application.
  • the memory 2520 may be a separate device independent of the processor 2510, or may be integrated into the processor 2510.
  • the communication device 2500 can also include a transceiver 2530.
  • the processor 2510 can control the transceiver 2530 to communicate with other devices. Specifically, it can send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 2530 may include a transmitter and a receiver.
  • the transceiver 2530 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 2500 can be specifically a network device according to the embodiment of the present application, and the communication device 2500 can implement the corresponding processes implemented by the network device in the various methods of the embodiment of the present application. For the sake of brevity, they will not be described again here. .
  • the communication device 2500 can be a mobile terminal/terminal device according to the embodiment of the present application, and the communication device 2500 can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the communication device 2500 can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the communication device 2500 can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the communication device 2500 can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the communication device 2500 can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • Figure 26 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 2600 shown in Figure 26 includes a processor 2610.
  • the processor 2610 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 2600 may also include a memory 2620.
  • the processor 2610 can call and run the computer program from the memory 2620 to implement the method in the embodiment of the present application.
  • the memory 2620 may be a separate device independent of the processor 2610, or may be integrated into the processor 2610.
  • the chip 2600 may also include an input interface 2630.
  • the processor 2610 can control the input interface 2630 to communicate with other devices or chips. Specifically, it can obtain information or data sent by other devices or chips.
  • the chip 2600 may also include an output interface 2640.
  • the processor 2610 can control the output interface 2640 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in the various methods of the embodiment of the present application.
  • the details will not be described again.
  • the chip can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiment of the present application. For the sake of simplicity, here No longer.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Figure 27 is a schematic block diagram of a communication system 2700 provided by an embodiment of the present application. As shown in Figure 27, the communication system 2700 includes a terminal device 2710 and a network device 2720.
  • the terminal device 2710 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 2720 can be used to implement the corresponding functions implemented by the network device in the above method.
  • no details will be described here. .
  • the processor in the embodiment of the present application may be an integrated circuit chip and has signal processing capabilities.
  • each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available processors.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Random Access Memory
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application can also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, memories in embodiments of the present application are intended to include, but are not limited to, these and any other suitable types of memories.
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiment of the present application. For the sake of simplicity, here No longer.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiment of the present application. , for the sake of brevity, will not be repeated here.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiment of the present application. For the sake of brevity, they are not included here. Again.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, For the sake of brevity, no further details will be given here.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the network device in each method of the embodiment of the present application.
  • the computer program For the sake of simplicity , which will not be described in detail here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiments of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the various methods implemented by the mobile terminal/terminal device in the embodiments of the present application. The corresponding process, for the sake of brevity, will not be repeated here.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种无线通信方法及装置、设备、存储介质,该方法包括:核心网设备接收终端设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备选择的目标运行模式,所述目标运行模式用于确定所述终端设备的服务质量QoS参数。

Description

一种无线通信方法及装置、设备、存储介质 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种无线通信方法及装置、设备、存储介质。
背景技术
用户设备(User Equipment,UE)通过Uu口接入第5代(5th generation,5G)网络后,在会话管理功能(Session Management Function,SMF)的控制下建立服务质量(quality of service,QoS)流进行数据传输,SMF向基站提供每个QoS流的QoS参数,QoS参数用于对QoS流所使用的无线资源进行控制,但是存在QoS参数与UE的电量、存储资源等设备运行参数不匹配的情况存在。
发明内容
本申请实施例提供一种无线通信方法及装置、设备、存储介质。
本申请实施例提供一种无线通信方法,包括:
核心网设备接收终端设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备选择的目标运行模式,所述目标运行模式用于确定所述终端设备的服务质量QoS参数。
本申请实施例提供一种无线通信方法,包括:
终端设备核心网设备接收发送的第一指示信息,所述第一指示信息用于指示所述终端设备选择的目标运行模式,所述目标运行模式用于确定所述终端设备的服务质量QoS参数。
本申请实施例提供一种无线通信装置,包括:
第一通信单元,配置为接收终端设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备选择的目标运行模式,所述目标运行模式用于确定所述终端设备的服务质量QoS参数。
本申请实施例提供一种无线通信装置,包括:
第二通信单元,配置为向核心网设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备选择的目标运行模式,所述目标运行模式用于确定所述终端设备的服务质量QoS参数。
本申请实施例提供的通信设备,可以是上述方案中的核心网设备或者是上述方案中的终端设备,该通信设备包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的无线通信方法。
本申请实施例提供的芯片,用于实现上述的无线通信方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的无线通信方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的无线通信方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的无线通信方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的无线通信方法。
通过上述技术方案,核心网设备基于网络设备选择的运行模式确定终端设备的QoS参数,使得终端设备的QoS参数与终端设备选择的运行模式适应,满足终端设备的运行需求。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例的一个应用场景的示意图;
图2是本申请实施例的一个无线通信系统的可选地结构示意图;
图3是本申请实施例的一个无线通信系统的可选地结构示意图;
图4是本申请实施例的一个无线通信方法的可选地流程示意图;
图5是本申请实施例的一个无线通信方法的可选地流程示意图;
图6是本申请实施例的一个无线通信方法的可选地流程示意图;
图7是本申请实施例的一个无线通信方法的可选地流程示意图;
图8是本申请实施例的一个无线通信方法的可选地流程示意图;
图9是本申请实施例的一个无线通信方法的可选地流程示意图;
图10是本申请实施例的一个无线通信方法的可选地流程示意图;
图11是本申请实施例的一个无线通信方法的可选地流程示意图;
图12是本申请实施例的一个无线通信方法的可选地流程示意图;
图13是本申请实施例的一个无线通信方法的可选地流程示意图;
图14是本申请实施例的一个无线通信方法的可选地流程示意图;
图15是本申请实施例的一个无线通信方法的可选地流程示意图;
图16是本申请实施例的一个无线通信方法的可选地流程示意图;
图17是本申请实施例的一个无线通信方法的可选地流程示意图;
图18是本申请实施例的一个无线通信方法的可选地流程示意图;
图19是本申请实施例的一个无线通信方法的可选地流程示意图;
图20是本申请实施例的一个无线通信方法的可选地流程示意图;
图21是本申请实施例的一个无线通信方法的可选地流程示意图;
图22是本申请实施例的一个无线通信方法的可选地流程示意图;
图23是本申请实施例的一个无线通信装置的可选地结构示意图;
图24是本申请实施例的一个无线通信装置的可选地结构示意图;
图25是本申请实施例提供的一种通信设备示意性结构图;
图26是本申请实施例的芯片的示意性结构图;
图27是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1是本申请实施例的一个应用场景的示意图。
如图1所示,通信系统100可以包括终端设备110和网络设备120。网络设备120可以通过空口与终端设备110通信。终端设备110和网络设备120之间支持多业务传输。
应理解,本申请实施例仅以通信系统100进行示例性说明,但本申请实施例不限定于此。也就是说,本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、物联网(Internet of Things,IoT)系统、窄带物联网(Narrow Band Internet of Things,NB-IoT)系统、增强的机器类型通信(enhanced Machine-Type Communications,eMTC)系统、5G通信系统(也称为新无线(New Radio,NR)通信系统),或未来的通信系统等。
在图1所示的通信系统100中,网络设备120可以是与终端设备110通信的接入网设备。接入网设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备110(例如UE)进行通信。
网络设备120可以是长期演进(Long Term Evolution,LTE)系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是下一代无线接入网(Next Generation Radio Access Network,NG RAN)设备,或者是NR系统中的基站(gNB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备120可以为中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
终端设备110可以是任意终端设备,其包括但不限于与网络设备120或其它终端设备采用有线或者无线连接的终端设备。
例如,所述终端设备110可以指接入终端、UE、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、IoT设备、卫星手持终端、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进网络中的终端设备等。
终端设备110可以用于设备到设备(Device to Device,D2D)的通信。
无线通信系统100还可以包括与基站进行通信的核心网设备130,该核心网设备130可以是5G核心网(5G Core,5GC)设备,例如,接入与移动性管理功能(Access and Mobility Management Function,AMF),又例如,认证服务器功能(Authentication Server Function,AUSF),又例如,用户面功能(User Plane Function,UPF),又例如,SMF。可选地,核心网络设备130也可以是LTE网络的分组核心演进(Evolved Packet Core,EPC)设备,例如,会话管理功能+核心网络的数据网关(Session Management Function+Core Packet Gateway,SMF+PGW-C)设备。应理解,SMF+PGW-C可以同时实现SMF和PGW-C所能实现的功能。在网络演进过程中,上述核心网设备也有可能叫其它名字,或者通过对核心网的功能进行划分形成新的网络实体,对此本申请实施例不做限制。
通信系统100中的各个功能单元之间还可以通过下一代网络(next generation,NG)接口建立连接实现通信。
图1示例性地示出了一个基站、一个核心网设备和两个终端设备,可选地,该无线通信系统100可以包括多个基站设备并且每个基站的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
需要说明的是,图1只是以示例的形式示意本申请所适用的系统,当然,本申请实施例所示的方法还可以适用于其它系统。此外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。还应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。还应理解,在本申请的实施例中提到的“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。还应理解,在本申请的实施例中提到的“预定义”或“预定义规则”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。还应理解,本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
图2和图3所示,5G系统包括:AMF、SMF、策略控制功能(Policy Control Function,PCF)、UPF和应用层功能(Application Function,AF)。
如图2和图3所示,5G系统还包括接入网设备((Radio)Access Network(R)AN)、UE和数据网络(data network,DN)。UE可与AMF连接,(R)AN也可与AMF连接,(R)AN还可与UPF连接,UPF可分别与SMF、DN连接,AMF可分别与SMF、PCF连接,SMF与PCF连接。PCF与AF连接。AMF和SMF均可从PCF获取策略数据。AMF和SMF将策略数据下发到(R)AN、UE和UPF等。
图2为基于网元之间通过约定的接口即参考点的网络系统架构,UE通过Uu接口与接入网设备建立空口连接,用于传输用户面数据和控制面信令;终端设备可以通过NG接口1(简称N1)与AMF建立控制面信令连接;接入网设备可以通过NG接口2(简称N2)与AMF建立控制面信令连接;(R)AN通过NG接口3(简称N3)与UPF建立用户面数据连接;UPF可以通过NG接口4(简称N4)与SMF建立控制面信令连接;N5为PCF与AF之间的接口;UPF可以通过NG接口6(简称N6)与数据网络交互用户面数据;SMF可以通过NG接口7(简称N7)与PCF建立控制面 信令连接;NG接口9(简称N9)为UPF间接口;AMF可以通过NG接口11(简称N11)与SMF建立控制面信令连接;NG接口14(简称N14)为AMF间接口;N15为AMF和PCF之间的接口。
图3为基于服务化接口的系统架构图,PCF提供服务化接口Npcf,AF提供服务化接口Naf,AMF提供服务化接口Namf,SMF提供服务化接口Nsmf。
在图2和图3中,UE通过Uu口与(R)AN进行接入层连接,交互接入层消息及无线数据传输;UE通过N1口与AMF进行非接入层(NAS)连接,交互NAS消息。AMF是核心网中的移动性管理功能,SMF是核心网中的会话管理功能,AMF在对UE进行移动性管理之外,还负责将从会话管理相关消息在UE和SMF之间的转发。PCF是核心网中的策略管理功能,负责制定对UE的移动性管理、会话管理、计费等相关的策略。UPF是核心网中的用户面功能,通过N6接口与外部数据网络进行数据传输,通过N3接口与AN进行数据传输。
UE通过Uu口接入5G网络后,在SMF的控制下建立服务质量(quality of service,QoS)流进行数据传输,SMF向基站提供每个QoS流的QoS流配置信息,QoS流配置信息包括:5G QoS标识(5G QoS Identifier,5QI)、分配保留优先级(Allocation/Retention Priority,ARP),还可以包括码率要求等信息。其中,5QI是一个可以对应到例如时延要求、误码率要求等QoS特征的索引值。在一示例中,如表1所示,5QI的值为66,表征以下QoS特征:延时为100ms,误码率为10 -2。ARP为基站为QoS流分配或者保持资源的优先级。对于每个QoS流,基站根据从SMF收到的QoS流配置信息调度无线资源以对QoS流的QoS要求进行保证。在核心网部署了PCF的情况下,5QI、ARP等QoS参数由PCF确定并发送给SMF。
表1 5QI示例
5QI 时延 误码率
66 100ms 10 -2
UE上运行的一些应用,例如音视频编解码,在对误码率要求苛刻时候,对UE电量消耗也会比较大,另外,在对码率(吞吐量)要求高,或者对时延要求低时,也会对UE电量消耗比较大。相关技术中,核心网不了解UE在电量消耗方面的需求,因此可能设定的QoS参数并不符合UE电量消耗的需求。例如,在UE有充足电量保证时(例如一直连接电源的情况下),设置高时延、低码率、高误码率,虽然电量消耗低,但是降低了用户业务体验,而且UE当前并不在乎电量消耗;或者在UE电量紧张时,设置低时延、高码率、低误码率,导致UE电量消耗更加迅速。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以上相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
本申请实施例提供的无线通信方法,如图4所示,应用于核心网设备,包括:
S401、核心网设备接收终端设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备选择的目标运行模式,所述目标运行模式用于确定所述终端设备的服务质量QoS参数。
本申请实施例提供的无线通信方法,如图5所示,应用于终端设备,包括:
S501、终端设备向核心网设备发送第一指示信息,所述第一指示信息用于指示所述终端设备选择的目标运行模式,所述目标运行模式用于确定所述终端设备的服务质量QoS参数。
本申请实施例提供的无线通信方法,如图6所示,应用于包括终端设备和核心网设备的无线通信系统,包括:
S601、终端设备向核心网设备发送第一指示信息,所述第一指示信息用于指示所述终端设备选择的目标运行模式。
S602、核心网设备接收终端设备发送的第一指示信息,所述目标运行模式用于确定所述终端设备的服务质量QoS参数。
下面,对本申请实施例提供的图4、图5或图6所示的无线通信方法进行说明。
目标运行模式为终端设备选择的运行模式,表征终端设备当前的运行模式,其中,运行模式用于指示终端设备的电量、存储或内存等设备运行参数的运行状态。
终端设备选择目标运行模式后,将指示目标运行模式的第一指示信息发送至核心网设备。核心网接收到第一指示信息,基于第一指示信息确定目标运行模式对应的QoS参数为终端设备的QoS参数。其中,不同的目标运行模式对应不同的QoS参数。
可选地,所述核心网设备包括以下之一:策略控制功能PCF、会话管理功能SMF、移动管理功能AMF。
可选地,终端设备在PDU会话建立/修改过程中,将第一指示信息发送至核心网设备。
本申请实施例提供的无线通信方法,终端设备将自身选择的运行方式上报给核心网设备,核心网设备基于终端设备选择的运行模式为终端设备配置QoS参数,使得核心网设备配置的QoS参数与终端设备实际的运行模式适应,满足终端设备的运行需求。
在一些实施例中,所述目标运行模式包括以下至少之一:电量充足模式;电量节约模式;存储充足模式;存储节约模式;自适应模式。
在一示例中,目标运行模式包括以下之一:电量充足模式、电量节约模式、自适应模式。
在一示例中,目标运行模式包括以下之一:存储充足模式、存储节约模式、自适应模式。
在一示例中,目标运行模式包括以下之一:
电量充足模式或电量节约模式,存储充足模式或存储节约模式,自适应模式。
可选地,电量充足模式和电量节约模式为针对电量的不同运行模式,终端设备支持的针对电量的运行模式包括但不限于电量充足模式和电量节约模式。
可选地,存储充足模式和存储节约模式为针对存储的不同运行模式,终端设备支持的针对存储的运行模式包括但不限于存储充足模式和电存储节约模式。
在一些实施例中,目标运行模式包括从至少一个第一运行模式中选择的至少一个运行模式,所述第一运行模式为允许所述终端设备选择的运行模式。
目标运行模式为终端设备从至少一个第一运行模式中选择的至少一个运行模式。
可选地,至少一个第一运行模式为预设的。
可选地,至少一个第一运行模式为核心网设备配置给终端设备。
在一些实施例中,所述至少一个第一运行模式包括以下至少之一:电量充足模式;电量节约模式;存储充足模式;存储节约模式;自适应模式。
电量充足模式下,终端设备的电量大于第一电量阈值,电量充足模式对应的QoS参数可为低时延、高码率、低误码率,终端设备提供高业务质量但电量消耗高。
电量节约模式下,终端设备的电量小于或等于第一电量阈值,电量节约模式对应的QoS参数可为高时延、低码率、高误码率,终端设备提供低业务质量但电量消耗低。
存储充足模式下,终端设备的存储大于第一存储阈值,存储充足模式对应的QoS参数可为低时延、高码率、低误码率,终端设备提供高业务质量但存储消耗高。
存储节约模式下,终端设备的存储小于或等于第一存储阈值,存储节约模式对应的QoS参数可为高时延、低码率、高误码率,终端设备提供高业务质量但存储消耗低。
自适应模式为终端设备可基于实现在各个运行模式之间切换。
可选地,自适应模式包括以下至少之一:
电量自适应模式和存储自适应模式。
电量自适应模式为终端设备可基于实现在电量充足模式和电量节约模式之间进行切换。存储自适应模式为终端设备可基于实现正在存储充足模式和存储节约模式之间进行切换。
本申请实施例中,目标运行模式可包括一个或多个运行模式,在目标运行模式包括多个运行模式的情况下,所包括的不同运行模式表征不同设备运行参数的运行状态。
目标运行模式为自适应模式以外的运行模式的情况下,终端设备的QoS参数包括一套QoS参数。目标运行模式为自适应模式的情况下,终端设备的QoS参数包括多套QoS参数。
以目标运行模式为自适应模式以外的运行模式为例,在目标运行模式包括一个运行模式的情况下,终端设备的QoS参数为该目标运行模式对应的QoS参数;在目标运行模式包括多个运行模式的情况下,终端设备的QoS参数基于多个运行模式中各运行模式对应的QoS参数确定。
在一示例中,目标运行模式为电量充足模式,目标运行模式对应的QoS参数为电量充足模式对应的QoS参数。
在一示例中,目标运行模式为电量充足模式和存储节约模式,目标运行模式对应的QoS参数基于电量充足模式对应的QoS参数和存储节约模式对应的QoS参数确定。
以目标运行模式为自适应模式为例,若所述目标运行模式为所述自适应模式,所述终端设备的QoS参数包括所述终端设备可选择的至少两套QoS参数。
本申请实施例中,终端设备可选择的多套QoS参数包括自适应模式对应的多个运行模式中各运行模式对应的QoS参数。
以自适应模式为终端设备基于实现在电量充足模式和电量节约模式之间切换为例,则终端设备的QoS参数包括:电量充足模式对应的QoS参数,和电量节约模式对应的QoS参数。
以自适应模式为终端设备基于实现在电量充足模式和电量节约模式之间切换为例,则终端设备的QoS参数包括:存储充足模式对应的QoS参数,和存储节约模式对应的QoS参数。
在一些实施例中,所述第一指示信息的发送路径包括以下之一:
路径一、由所述终端设备通过应用层发送至应用功能AF,由所述AF发送至PCF;
路径二、由所述终端设备经由AMF和/或SMF发送至所述PCF。
对于路径一,如图7所示,终端设备通过应用层将第一指示信息发送至AF,AF将第一指示信息发送至PCF。
如图7所示,PCF接收AF发送的终端设备发送的第一指示信息。
对于路径二,如图8所示,终端设备将第一指示信息发送至AMF和/SMF,AMF和/SMF将第一指示信息发送至PCF。
在一示例中,第一指示信息的发送路径为:由终端设备发送至AMF,由AMF发送至PCF。
在一示例中,第一指示信息的发送路径为:由终端设备发送至SMF,由SMF发送至PCF。
在一示例中,第一指示信息的发送路径为:由终端设备发送至AMF,由AMF发送至SMF,由SMF发送至PCF。
在路径二中,对于PCF,PCF从AMF或SMF接收终端设备发送的第一指示信息;对于AMF,AMF从终端设备接收第一指示信息,并将第一指示信息发送至SMF或PCF;对于SMF,SMF从终端设备或AMF接收第一指示信息,并将第一指示信息发送至AMF或PCF。
可选地,终端设备通过会话建立/修改请求消息将第一指示信息发送至AMF和/或SMF,SMF通过会话策略连接建立/修改请求消息将第一指示信息发送至PCF。
在一些实施例中如图9所示,核心网设备实施的步骤还包括:
S402、所述核心网设备发送所述终端设备的QoS参数至接入网设备和/或所述终端设备。
接入网设备接收到终端设备的QoS参数,基于终端设备的QoS参数控制终端设备的QoS流的无线资源。
可选地,核心网设备发送至接入网设备的终端设备的QoS参数与核心网设备发送至终端设备的终端设备的QoS参数相同或不同。
若核心网设备发送至接入网设备的终端设备的QoS参数与核心网设备发送至终端设备的终端设备的QoS参数不同,发送至接入网设备的终端设备的QoS参数中包括5QI和ARP,发送至终端设备的终端设备的QoS参数中包括5QI但不包括ARP。
在一些实施例中,如图10所示,终端设备实施的步骤还包括:
S502、所述终端设备接收核心网设备发送所述终端设备的QoS参数。
在一些实施例中,如图11所示,接入网设备实施的步骤还包括:
S1101、接入网设备接收核心网设备发送的终端设备的QoS参数。
在终端设备的QoS参数包括多套QoS参数的情况下,接入网设备可使用多套QoS参数中默认的QoS参数进行无线资源的控制。默认的QoS参数可由SMF指示或者基于接入网设备的实现确定。
在一些实施例中,所述终端设备的QoS参数的发送路径包括:由PCF经由AMF和/或SMF发送至所述接入网设备和/或所述终端设备。
如图12所述,包括:
S1201、PCF将终端设备的QoS参数发送至SMF和/或AMF;
S1202、SMF和/或AMF将终端设备的QoS参数发送至接入网设备;
S1203、SMF和/或AMF将终端设备的QoS参数发送至终端设备。
在图12中,可实施S1202和S1203中一个步骤,也可S1202和S1203两个步骤都实施。
对于PCF,PCF将终端设备的QoS参数发送至SMF和/或AMF;对于SMF,SMF从PCF接收终端设备的QoS参数,并将终端设备的QoS参数发送至AMF、接入网设备和终端设备中至少一个;对于AMF,AMF从PCF或SMF接收终端设备的QoS参数,将终端设备的QoS参数发送至接入网设备和终端设备中至少一个。
在一些实施例中,如13所示,若所述目标运行模式为自适应模式,核心网设备实施的步骤还包括:
S403、所述核心网设备接收所述接入网设备发送的第二指示信息,所述第二指示信息用于指示所述终端设备从所述终端设备可选择的至少两套QoS参数中选择使用的QoS参数。
此时,如图14所示,终端设备实施的步骤还包括:
S503、终端设备向接入网设备发送第二指示信息,所述第二指示信息用于指示所述终端设备从所述终端设备可选择的至少两套QoS参数中选择使用的QoS参数。
终端设备在确定目标选择模式为自适应模式的情况下,确定第二指示信息,第二指示信息指示终端设备选择自适应模式下自适应的运行模式对应的QoS参数。
在一示例中,终端设备选择的运行模式为自适应模式,当电量充足时,自适应的运行在电量充足模式,则将电量充足模式对应的QoS参数发送至接入网设备;在接收当电量低时,自适应的运行在电量节约模式,则将电量节约模式对应的QoS参数发送至接入网设备。
如图15所示,接入网设备实施的步骤包括:
S1501、所述接入网设备接收所述终端设备发送的第二指示信息,所述第二指示信息用于指示所述终端设备从所述终端设备可选择的至少两套QoS参数中选择使用的QoS参数。
S1502、所述接入网设备向所述核心网设备发送第二指示信息。
若接入网设备未接收到终端设备可选择的多套QoS参数或者未接收到终端设备可选择的多套QoS参数但未使用默认的QoS参数控制无线资源的情况下,则直接使用第二指示信息指示的QoS参数控制无线资源。
若接入网设备使用多套QoS参数中默认的QoS参数控制无线资源的情况下,接入网设备使用第二指示信息指示的QoS参数覆盖默认的QoS参数。
在一些实施例中,第二指示信息的发送路径为:由终端设备发送至接入网设备、由接入网设备经由AMF和/或SMF发送至PCF。
如图16所示,包括:
S1601、终端设备发送第二指示信息至接入网设备;
S1602、接入网设备发送第二指示信息至PCF。
可选地,接入网发送第二指示信息至PCF的路径为:由接入网设备经由AMF和/或SMF发送至PCF。
对于PCF,PCF接收AMF或SMF发送的第二指示信息;对于SMF,接收接入网设备或AMF发送的第二指示信息,并将第二指示信息发送至PCF;对于AMF,接收接入网设备发送的第二指示信息,并将第二指示信息发送至SMF或PCF。
在一些实施例中,如图17所示,核心网设备实施的步骤还包括:
S404、所述核心网设备接收所述终端设备发送的第三指示信息,所述第三指示信息用于指示所述终端设备具有运行模式选择的能力或需求。
此时,如图18所示,终端设备实施的步骤还包括:
S504、所述终端设备向所述核心网设备发送第三指示信息,所述第三指示信息用于指示所述终端设备具有运行模式选择的能力或需求。
可选地,终端设备在注册过程或PDU会话建立过程中向核心网设备发送第三指示信息,以指示自身具有运行模式选择的能力或需求。
在一些实施例中,所述第三指示信息的发送路径包括以下之一:
路径三、由所述终端设备发送至AMF和/或SMF;
路径四、由所述终端设备经由AMF和/或SMF发送至PCF。
对于路径三,第三指示信息由终端设备至AMF和/或SMF,由AMF或SMF基于实现确定是否允许终端设备进行运行模式的选择。
在一示例中,第三指示信息由终端设备发送至AMF,由AMF基于实现确定是否允许终端设备进行运行模式的选择。
在一示例中,第三指示信息由终端设备发送至AMF,由AMF发送至SMF,由SMF基于实现确定是否允许终端设备进行运行模式的选择。
在一示例中,第三指示信息由终端设备发送至至SMF,由SMF基于实现确定是否允许终端设备进行运行模式的选择。
对于路径四,第三指示信息由终端设备至AMF和/或SMF,由AMF和/或SMF发送至PCF,由PCF基于实现确定是否允许终端设备进行运行模式的选择。
在一些实施例中,核心网实施的步骤还包括:
所述核心网设备发送用于响应所述第三指示信息的响应信息至所述终端设备,所述响应信息用于指示是否允许所述终端设备进行运行模式的选择。
此时,终端设备实施的步骤还包括:所述核心网设备发送用于响应所述第三指示信息的响应 信息至所述终端设备,所述响应信息用于指示是否允许所述终端设备进行运行模式的选择。
可选地,响应信息用于指示允许所述终端设备进行运行模式的选择。
可选地,响应信息用于指示不允许所述终端设备进行运行模式的选择。
本申请实施例提供的无线通信方法中,终端设备进行运行模式的选择,确定目标运行模式的条件包括以下之一:
条件一、终端设备向核心网设备发送第三指示信息;
条件二、终端设备向核心网设备发送第三指示信息,且接收到核心网设备发送的指示允许终端设备进行运行模式的选择的响应信息。
在条件一中,终端设备指示核心网设备自身具备进行模式选择的能力或需求,此时,第三指示信息的发送用于通知核心网设备自身的能力或需求,不需要核心网设备的响应。
在条件二下,终端设备指示核心网设备自身具备进行模式选择的能力或需求,且核心网设备指示允许终端设备进行运行模式的选择,从而在终端设备和核心网设备之间实现运行模式选择能力或需求的协商。
在条件三、终端设备向核心网设备发送第三指示信息,且接收到核心网设备发送的指示不允许终端设备进行运行模式的选择的响应信息,则终端设备无法进行运行是的选择。
可选地,所述响应信息指示允许所述终端设备进行运行模式的选择的情况下,所述响应信息包括以下至少之一:
指示允许所述终端设备进行运行模式的选择的第四指示信息;
至少一个第一运行模式,所述第一运行模式为允许所述终端设备选择的运行模式。
在一些实施例中,所述响应信息的发送路径包括以下之一:
路径五、由AMF和/或SMF发送至所述终端设备;
路径六、由PCF经由所述AMF和/或所述SMF发送至所述终端设备。
可选地,在第三指示信息的发送路径为路径三的情况下,响应信息的发送路径为路径五。
可选地,在第三指示信息的发送路径为路径四的情况下,响应信息的发送路径为路径六。
对于路径五,由AMF或SMF基于实现确定是否允许终端设备进行运行模式的选择,且将确定结果通过响应信息发送至终端设备。
在一示例中,由AMF基于实现确定是否允许终端设备进行运行模式的选择,指示是否允许终端设备进行模式选择的响应信息由AMF发送至终端设备。
在一示例中,由SMF基于实现确定是否允许终端设备进行运行模式的选择,指示是否允许终端设备进行模式选择的响应信息由SMF发送至AMF,且由AMF发送至终端设备。
在一示例中,由SMF基于实现确定是否允许终端设备进行运行模式的选择,指示是否允许终端设备进行模式选择的响应信息由SMF发送至终端设备。
对于路径六,由PCF基于实现确定是否允许终端设备进行运行模式的选择,且将确定结果通过响应信息经由SMF和/或AMF发送至终端设备。
下面以电量模式为例,对本申请实施例提供的无线通信方法进行进一步说明。
本申请实施例提供的无线通信方法中,AMF/SMF将允许电量协商的指示发送给UE。允许电量协商的指示可以是允许/不允许,也可以是允许协商的模式列表,例如充足电量模式、节约电量模式、自适应模式等。
PCF获得UE选择的电量模式,例如充足电量模式、电量节约模式、自适应模式,在制定QoS参数时考虑UE选择的电量模式。PCF获得UE选择的电量模式的获得方式可以是AF发送给PCF或者UE通过SMF发给PCF。
本申请实施例提供的无线通信方法,可包括能力交互和QoS参数指示两个阶段。
能力交互,如图19所示的UE向核心网注册过程中,或者如图20所示的UE发起会话建立的过程中,UE指示自己具有电量模式的协商的能力/需求(愿望),核心网在回应消息中回复可以进行电量协商。
在一示例中,如图19所示,包括:
S1901、UE向AMF发送电量协商的能力或需求。
UE向AMF发送的注册请求中指示具备电量协商的能力或需求。
这里,UE在向核心网注册过程中,向AMF发送注册请求。
电量协商的能力或需求可理解为与PCF进行电量模式协商的能力或需求。
S1902、AMF向UE发送允许电量协商的指示。
AMF向UE发送的注册回应消息中携带允许电量协商的指示。
AMF接收到自己具备电量协商的能力或需求后,确定是否允许该UE进行电量协商,并将电量协商的指示携带在注册回应消息中发送给UE。
AMF可根据自身的实现确定,也可通过与PCF的交互询问PCF是否允许该UE进行电量协商。
如果AMF根据自身的实现确定是否允许该UE进行电量协商,则AMF直接执行S1902。
如果AMF通过与PCF的交互询问PCF是否允许该UE进行电量协商,则AMF与PCF之间还执行1903和1904,并在注册回应消息中携带PCF发送的电量协商的指示。
S1903、AMF向PCF发送电量协商的能力或需求。
AMF向PCF发送的移动性策略连接建立/修改请求中携带从UE接收到的电量协商的能力或需求。
S1904、PCF向AMF返回允许电量协商的指示。
PCF向AMF返回移动性策略连接建立/修改回应消息中携带允许电量协商的指示。
PCF接收到从UE接收到的电量协商的能力或需求后,确定是否允许该UE进行电量协商,在移动性策略连接建立/修改回应消息中携带电量协商的指示,电量协商的指示可以是允许/不允许,也可以是允许协商的模式列表,例如充足电量模式、节约电量模式、自适应模式等。
在一示例中,如图20所示,包括:
S2001、UE向SMF发送电量协商的能力/需求
UE向SMF发送的会话建立/修改请求消息中指示自己具有电量协商的能力/需求。
会话建立/修改请求消息通过AMF透传转发给SMF,AMF不进行解析,因此在后续流程中对这种AM F透传的消息不再提及AMF,视为UE与SMF之间的直接交互。
S2002、SMF向UE发送允许电量协商的指示。
SMF向UE发送的会话建立/修改回应消息中携带电量协商的指示。
SMF接收到自己具备电量协商的能力或需求后,确定是否允许该UE进行电量协商,并将电量协商的指示携带在会话建立/修改回应消息中发送给UE。
SMF可根据自身的实现确定,也可通过与PCF的交互询问PCF是否允许该UE进行电量协商。
如果SMF根据自身的实现确定是否允许该UE进行电量协商,则SMF直接执行S2002。
如果SMF通过与PCF的交互询问PCF是否允许该UE进行电量协商,则SMF与PCF之间的交互还包括:S2003和S2004,并在会话建立/修改回应消息中携带PCF发送的电量协商的指示。
S2003、SMF向PCF发送电量协商的能力或需求。
SMF向PCF发送的会话策略连接建立/修改请求中携带从UE接收到的电量协商的能力或需求。
S2004、PCF向SMF返回允许电量协商的指示。
PCF向SMF返回的会话策略连接建立/修改回应消息中携带允许电量协商的指示。
PCF接收到从UE接收到的电量协商的能力或需求后,确定是否允许该UE进行电量协商,在会话策略连接建立/修改回应消息中携带电量协商的指示,电量协商的指示可以是允许/不允许,也可以是允许协商的模式列表,例如充足电量模式、节约电量模式、自适应模式等。
QoS参数指示
在PDU会话建立/修改流程中,PCF可以获得UE选择的电量模式,例如充足电量模式、电量节约模式、自适应电量模式,在制定QoS参数时考虑UE选择的电量模式。
本申请实施例中,UE可在PDU会话建立或者UE发起的PDU会话修改过程中,将自己选择的电量模式发送给PCF,如图21所示,包括:
S2101、UE向SMF发送当前选择的电量模式。
UE向SMF发送会话建立/修改请求消息,会话建立/修改请求消息中携带UE当前选择的电量模式。
S2102、SMF向PCF发送UE当前选择的电量模式。
SMF收到会话建立/修改请求消息,向PCF发送会话策略连接建立/修改请求,其中,SMF发送的会话策略建立/修改请求消息携带从UE收到的电量模式。
S2103、PCF向SMF发送基于UE当前选择的电量模式所制定的QoS参数。
PCF制定PCC规则,PCC规则中包括当前业务所使用的QoS参数,PCF制定QoS参数时考虑UE选择的电量模式。例如,在UE选择充足电量模式的情况下,因为UE不在乎电量消耗,则可以尽量设置低时延、高码率、低误码率的QoS参数,从而提升用户业务体验。再例如,在UE选择电 量节约模式的情况下,则在满足业务需求的情况下,尽量设置高时延、低码率、高误码率,从而降低UE的电量消耗再例如,在UE选择自适应电量模式的情况下,PCF确定多套QoS参数,可选的,PCF在多套QoS参数中指示默认使用的一套。PCF通过会话策略回应消息将确定的PCC规则发送给SMF,PCC规则中包括PCF制定的QoS参数。
S2104、SMF向接入网设备发送从PCF接收的QoS参数。
SMF根据从PCF收到的PCC规则,确定QoS流的QoS参数,发送给接入网设备,用于接入网设备对无线资源的控制。在UE选择自适应电量模式的情况下,PCF确定多套QoS参数,SMF确定的QoS流的QoS参数也是多套,可选的,PCF指示默认使用的一套,接入网设备根据SMF指示或者根据接入网设备自身实现方式使用默认的一套QoS参数进行无线资源的控制。
S2105、SMF向UE发送从PCF接收的QoS参数。
SMF还可以将QoS流的QoS参数携带在会话连接/修改回应消息中发送给UE,发给UE的QoS参数可以只是发给基站的QoS参数的一部分,不需要完全相同,例如包括5QI但是不包括ARP。
本申请实施例中,UE将自己选择的电量模式通过应用层交互发送给AF,由AF提供给PCF,如图22所示,包括:
S2201、AF将UE选择的电量模式发送给PCF。
UE确定自己当前选择的电量模式,通过应用层交互发给AF。
AF向PCF发送UE选择的电量模式时,还可以提供业务需求给PCF。
S2202、PCF向SMF发送基于UE当前选择的电量模式所制定的QoS参数。
PCF制定PCC规则,PCC规则中包括当前业务所使用的QoS参数,PCF制定QoS参数时考虑UE选择的电量模式。例如,在UE选择充足电量模式的情况下,因为UE不在乎电量消耗,则可以尽量设置低时延、高码率、低误码率的QoS参数,从而提升用户业务体验。再例如,在UE选择电量节约模式的情况下,则在满足业务需求的情况下,尽量设置高时延、低码率、高误码率,从而降低UE的电量消耗再例如,在UE选择自适应电量模式的情况下,PCF确定多套QoS参数,可选的,PCF在多套QoS参数中指示默认使用的一套。PCF通过会话策略更新消息将确定的PCC规则发送给SMF,PCC规则中包括PCF制定的QoS参数。
S2203、SMF向接入网设备发送从PCF接收的QoS参数。
SMF根据从PCF收到的PCC规则,确定QoS流的QoS参数,发送给接入网设备,用于接入网设备对无线资源的控制。在UE选择自适应电量模式的情况下,PCF确定多套QoS参数,SMF确定的QoS流的QoS参数也是多套,可选的,PCF指示默认使用的一套,接入网设备根据SMF指示或者根据接入网设备自身实现方式使用默认的一套QoS参数进行无线资源的控制。
S2204、SMF向UE发送从PCF接收的QoS参数。
SMF还可以将QoS流的QoS参数携带在会话修改指示消息中发送给UE,发给UE的QoS参数可以只是发给基站的QoS参数的一部分,不需要完全相同,例如包括5QI但是不包括ARP。
可选地,对于图21的S2105或图22的S2204之后,在UE选择自适应电量模式的情况下,UE可自行确定当前使用的QoS参数,例如从第一套QoS参数改为第二套QoS参数,则UE指示基接入网设备需要改为第二套QoS参数,接入网设备使用第二套QoS参数进行无线资源控制,并向SMF通知当前使用第二套QoS参数。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。又例如,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以和现有技术任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。此外,在本申请实施例中,术语“下行”、“上行”和“侧行”用于表示信号或数据的传输方向,其中,“下行”用于表示信号或数据的传输方向为从站点发送至小区的用户设备的第一方向,“上行” 用于表示信号或数据的传输方向为从小区的用户设备发送至站点的第二方向,“侧行”用于表示信号或数据的传输方向为从用户设备1发送至用户设备2的第三方向。例如,“下行信号”表示该信号的传输方向为第一方向。另外,本申请实施例中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。具体地,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
图23是本申请实施例提供的无线通信装置的结构组成示意图一,应用于核心网设备,如图23所示,无线通信装置2300包括:
第一通信单元2301,配置为接收终端设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备选择的目标运行模式,所述目标运行模式用于确定所述终端设备的服务质量QoS参数。
在一些实施例中,所述目标运行模式包括以下至少之一:
电量充足模式;
电量节约模式;
存储充足模式;
存储节约模式;
自适应模式。
在一些实施例中,所述自适应模式包括以下至少之一:
电量自适应模式和存储自适应模式。
在一些实施例中,所述目标运行模式包括从至少一个第一运行模式中选择的至少一个运行模式,所述第一运行模式为允许所述终端设备选择的运行模式。
在一些实施例中,若所述目标运行模式为所述自适应模式,所述终端设备的QoS参数包括所述终端设备可选择的至少两套QoS参数。
在一些实施例中,所述核心网设备包括以下之一:策略控制功能PCF、会话管理功能SMF、移动管理功能AMF。
在一些实施例中,所述第一指示信息的发送路径包括以下之一:
由所述终端设备通过应用层发送至应用功能AF,由所述AF发送至PCF;
由所述终端设备经由AMF和/或SMF发送至所述PCF。
在一些实施例中,第一通信单元2301还配置为发送所述终端设备的QoS参数至接入网设备和/或所述终端设备。
在一些实施例中,所述终端设备的QoS参数的发送路径包括:由PCF经由AMF和/或SMF发送至所述接入网设备和/或所述终端设备。
在一些实施例中,第一通信单元2301,还配置为:
若所述目标运行模式为自适应模式,接收所述接入网设备发送的第二指示信息,所述第二指示信息用于指示所述终端设备从所述终端设备可选择的至少两套QoS参数中选择使用的QoS参数。
在一些实施例中,第一通信单元2301还配置为:接收所述终端设备发送的第三指示信息,所述第三指示信息用于指示所述终端设备具有运行模式选择的能力或需求。
在一些实施例中,所述第三指示信息的发送路径包括以下之一:
由所述终端设备发送至AMF和/或SMF;
由所述终端设备经由AMF和/或SMF发送至PCF。
在一些实施例中,第一通信单元2301还配置为:
发送用于响应所述第三指示信息的响应信息至所述终端设备,所述响应信息用于指示是否允许所述终端设备进行运行模式的选择。
在一些实施例中,所述响应信息指示允许所述终端设备进行运行模式的选择的情况下,所述响应信息包括以下至少之一:
指示允许所述终端设备进行运行模式的选择的第四指示信息;
至少一个第一运行模式,所述第一运行模式为允许所述终端设备选择的运行模式。
在一些实施例中,所述响应信息的发送路径包括以下之一:
由AMF和/或SMF发送至所述终端设备;
由PCF经由所述AMF和/或所述SMF发送至所述终端设备。
图24是本申请实施例提供的无线通信装置的结构组成示意图二,应用于终端设备,如图24所示,无线通信装置2400包括:
第二通信单元2401,配置为发送第一指示信息至核心网设备,所述第一指示信息用于指示所述终端设备选择的目标运行模式,所述目标运行模式用于确定所述终端设备的服务质量QoS参数。
在一些实施例中,所述目标运行模式包括以下至少之一:
电量充足模式;
电量节约模式;
存储充足模式;
存储节约模式;
自适应模式。
在一些实施例中,所述自适应模式包括以下至少之一:
电量自适应模式和存储自适应模式。
在一些实施例中,所述目标运行模式包括从至少一个第一运行模式中选择的至少一个运行模式,所述第一运行模式为允许所述终端设备选择的运行模式。
在一些实施例中,若所述目标运行模式为所述自适应模式,所述终端设备的QoS参数包括所述终端设备可选择的至少两套QoS参数。
在一些实施例中,所述核心网设备包括以下之一:策略控制功能PCF、会话管理功能SMF、移动管理功能AMF。
在一些实施例中,所述第一指示信息的发送路径包括以下之一:
由所述终端设备通过应用层发送至应用功能AF,由所述AF发送至PCF;
由所述终端设备经由AMF和/或SMF发送至所述PCF。
在一些实施例中,第二通信单元2401还配置为接收所述核心网设备发送的所述终端设备的QoS参数。
在一些实施例中,所述终端设备的QoS参数的发送路径包括:由PCF经由AMF和/或SMF发送至所述接入网设备和/或所述终端设备。
在一些实施例中,第二通信单元2401,还配置为:
若所述目标运行模式为自适应模式,向接入网设备发送第二指示信息,所述第二指示信息用于指示所述终端设备从所述终端设备可选择的至少两套QoS参数中选择使用的QoS参数。
在一些实施例中,第二通信单元2401还配置为:向所述核心网设备发送第三指示信息,所述第三指示信息用于指示所述终端设备具有运行模式选择的能力或需求。
在一些实施例中,所述第三指示信息的发送路径包括以下之一:
由所述终端设备发送至AMF和/或SMF;
由所述终端设备经由AMF和/或SMF发送至PCF。
在一些实施例中,第二通信单元2401还配置为:
接收所述核心网设备发送的用于响应所述第三指示信息的响应信息,所述响应信息用于指示是否允许所述终端设备进行运行模式的选择。
在一些实施例中,所述响应信息指示允许所述终端设备进行运行模式的选择的情况下,所述响应信息包括以下至少之一:
指示允许所述终端设备进行运行模式的选择的第四指示信息;
至少一个第一运行模式,所述第一运行模式为允许所述终端设备选择的运行模式。
在一些实施例中,所述响应信息的发送路径包括以下之一:
由AMF和/或SMF发送至所述终端设备;
由PCF经由所述AMF和/或所述SMF发送至所述终端设备
本领域技术人员应当理解,本申请实施例的上述无线通信装置的相关描述可以参照本申请实施例的无线通信方法的相关描述进行理解。
图25是本申请实施例提供的一种通信设备2500示意性结构图。该通信设备可以终端设备,也可以是网络设备,其中,网络设备可包括核心网设备和接入网设备。图25所示的通信设备2500包括处理器2510,处理器2510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图25所示,通信设备2500还可以包括存储器2520。其中,处理器2510可以从存储器2520中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器2520可以是独立于处理器2510的一个单独的器件,也可以集成在处理器2510中。
可选地,如图25所示,通信设备2500还可以包括收发器2530,处理器2510可以控制该收发器2530与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器2530可以包括发射机和接收机。收发器2530还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备2500具体可为本申请实施例的网络设备,并且该通信设备2500可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备2500具体可为本申请实施例的移动终端/终端设备,并且该通信设备2500可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图26是本申请实施例的芯片的示意性结构图。图26所示的芯片2600包括处理器2610,处理器2610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图26所示,芯片2600还可以包括存储器2620。其中,处理器2610可以从存储器2620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器2620可以是独立于处理器2610的一个单独的器件,也可以集成在处理器2610中。
可选地,该芯片2600还可以包括输入接口2630。其中,处理器2610可以控制该输入接口2630与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片2600还可以包括输出接口2640。其中,处理器2610可以控制该输出接口2640与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图27是本申请实施例提供的一种通信系统2700的示意性框图。如图27所示,该通信系统2700包括终端设备2710和网络设备2720。
其中,该终端设备2710可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备2720可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术 领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (37)

  1. 一种无线通信方法,所述方法包括:
    核心网设备接收终端设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备选择的目标运行模式,所述目标运行模式用于确定所述终端设备的服务质量QoS参数。
  2. 根据权利要求1所述的方法,其中,所述目标运行模式包括以下至少之一:
    电量充足模式;
    电量节约模式;
    存储充足模式;
    存储节约模式;
    自适应模式。
  3. 根据权利要求2所述的方法,其中,所述自适应模式包括以下至少之一:
    电量自适应模式和存储自适应模式。
  4. 根据权利要求1至3中任一项所述的方法,其中,所述目标运行模式包括从至少一个第一运行模式中选择的至少一个运行模式,所述第一运行模式为允许所述终端设备选择的运行模式。
  5. 根据权利要求2或3所述的方法,其中,若所述目标运行模式为所述自适应模式,所述终端设备的QoS参数包括所述终端设备可选择的至少两套QoS参数。
  6. 根据权利要求1至5中任一项所述的方法,其中,所述核心网设备包括以下之一:策略控制功能PCF、会话管理功能SMF、移动管理功能AMF。
  7. 根据权利要求1至6中任一项所述的方法,其中,所述第一指示信息的发送路径包括以下之一:
    由所述终端设备通过应用层发送至应用功能AF,由所述AF发送至PCF;
    由所述终端设备经由AMF和/或SMF发送至所述PCF。
  8. 根据权利要求1至7中任一项所述的方法,其中,所述方法还包括:
    所述核心网设备发送所述终端设备的QoS参数至接入网设备和/或所述终端设备。
  9. 根据权利要求1至8中任一项所述的方法,其中,所述终端设备的QoS参数的发送路径包括:由PCF经由AMF和/或SMF发送至所述接入网设备和/或所述终端设备。
  10. 根据权利要求8或9所述的方法,其中,若所述目标运行模式为自适应模式,所述方法还包括:
    所述核心网设备接收所述接入网设备发送的第二指示信息,所述第二指示信息用于指示所述终端设备从所述终端设备可选择的至少两套QoS参数中选择使用的QoS参数。
  11. 根据权利要求1至10中任一项所述的方法,其中,所述方法还包括:
    所述核心网设备接收所述终端设备发送的第三指示信息,所述第三指示信息用于指示所述终端设备具有运行模式选择的能力或需求。
  12. 根据权利要求11所述的方法,其中,所述第三指示信息的发送路径包括以下之一:
    由所述终端设备发送至AMF和/或SMF;
    由所述终端设备经由AMF和/或SMF发送至PCF。
  13. 根据权利要求11或12所述的方法,其中,所述方法还包括:
    所述核心网设备发送用于响应所述第三指示信息的响应信息至所述终端设备,所述响应信息用于指示是否允许所述终端设备进行运行模式的选择。
  14. 根据权利要求13所述的方法,其中,所述响应信息指示允许所述终端设备进行运行模式的选择的情况下,所述响应信息包括以下至少之一:
    指示允许所述终端设备进行运行模式的选择的第四指示信息;
    至少一个第一运行模式,所述第一运行模式为允许所述终端设备选择的运行模式。
  15. 根据权利要求13或14所述的方法,其中,所述响应信息的发送路径包括以下之一:
    由AMF和/或SMF发送至所述终端设备;
    由PCF经由所述AMF和/或所述SMF发送至所述终端设备。
  16. 一种无线通信方法,所述方法包括:
    终端设备发送第一指示信息至核心网设备,所述第一指示信息用于指示所述终端设备选择的 目标运行模式,所述目标运行模式用于确定所述终端设备的服务质量QoS参数。
  17. 根据权利要求16所述的方法,其中,所述目标运行模式包括以下至少之一:
    电量充足模式;
    电量节约模式;
    存储充足模式;
    存储节约模式;
    自适应模式。
  18. 根据权利要求17所述的方法,其中,所述自适应模式包括以下至少之一:
    电量自适应模式和存储自适应模式。
  19. 根据权利要求16至18中任一项所述的方法,其中,所述目标运行模式包括从至少一个第一运行模式中选择的至少一个运行模式,所述第一运行模式为允许所述终端设备选择的运行模式。
  20. 根据权利要求17或18所述的方法,其中,若所述目标运行模式为所述自适应模式,所述终端设备的QoS参数包括所述终端设备可选择的至少两套QoS参数。
  21. 根据权利要求16至20中任一项所述的方法,其中,所述核心网设备包括以下之一:策略控制功能PCF、会话管理功能SMF、移动管理功能AMF。
  22. 根据权利要求16至21中任一项所述的方法,其中,所述第一指示信息的发送路径包括以下之一:
    由所述终端设备通过应用层发送至应用功能AF,由所述AF发送至PCF;
    由所述终端设备经由AMF和/或SMF发送至所述PCF。
  23. 根据权利要求16至22中任一项所述的方法,其中,所述方法还包括:
    所述终端设备接收所述核心网设备发送的所述终端设备的QoS参数。
  24. 根据权利要求16至23中任一项所述的方法,其中,所述终端设备的QoS参数的发送路径包括:由PCF经由AMF和/或SMF发送至所述接入网设备和/或所述终端设备。
  25. 根据权利要求23或24所述的方法,其中,若所述目标运行模式为自适应模式,所述方法还包括:
    所述终端设备向接入网设备发送第二指示信息,所述第二指示信息用于指示所述终端设备从所述终端设备可选择的至少两套QoS参数中选择使用的QoS参数。
  26. 根据权利要求16至25中任一项所述的方法,其中,所述方法还包括:
    所述终端设备向所述核心网设备发送第三指示信息,所述第三指示信息用于指示所述终端设备具有运行模式选择的能力或需求。
  27. 根据权利要求26所述的方法,其中,所述第三指示信息的发送路径包括以下之一:
    由所述终端设备发送至AMF和/或SMF;
    由所述终端设备经由AMF和/或SMF发送至PCF。
  28. 根据权利要求26或27所述的方法,其中,所述方法还包括:
    所述终端设备接收所述核心网设备发送的用于响应所述第三指示信息的响应信息,所述响应信息用于指示是否允许所述终端设备进行运行模式的选择。
  29. 根据权利要求28所述的方法,其中,所述响应信息指示允许所述终端设备进行运行模式的选择的情况下,所述响应信息包括以下至少之一:
    指示允许所述终端设备进行运行模式的选择的第四指示信息;
    至少一个第一运行模式,所述第一运行模式为允许所述终端设备选择的运行模式。
  30. 根据权利要求28或29所述的方法,其中,所述响应信息的发送路径包括以下之一:
    由AMF和/或SMF发送至所述终端设备;
    由PCF经由所述AMF和/或所述SMF发送至所述终端设备。
  31. 一种无线通信装置,包括:
    第一通信单元,配置为接收终端设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备选择的目标运行模式,所述目标运行模式用于确定所述终端设备的服务质量QoS参数。
  32. 一种无线通信装置,包括:
    第二通信单元,配置为向核心网设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备选择的目标运行模式,所述目标运行模式用于确定所述终端设备的服务质量QoS参数。
  33. 一种通信设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用 于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至15中任一项所述的方法,或执行权利要求16至30中任一项所述的方法。
  34. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备,执行如权利要求1至15中任一项所述的方法,或执行权利要求16至30中任一项所述的方法。
  35. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机,执行如权利要求1至15中任一项所述的方法,或执行权利要求16至30中任一项所述的方法。
  36. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机,执行如权利要求1至15中任一项所述的方法,或执行权利要求16至30中任一项所述的方法。
  37. 一种计算机程序,所述计算机程序使得计算机,执行如权利要求1至15中任一项所述的方法,或执行权利要求16至30中任一项所述的方法。
PCT/CN2022/106336 2022-07-18 2022-07-18 一种无线通信方法及装置、设备、存储介质 WO2024016134A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/106336 WO2024016134A1 (zh) 2022-07-18 2022-07-18 一种无线通信方法及装置、设备、存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/106336 WO2024016134A1 (zh) 2022-07-18 2022-07-18 一种无线通信方法及装置、设备、存储介质

Publications (1)

Publication Number Publication Date
WO2024016134A1 true WO2024016134A1 (zh) 2024-01-25

Family

ID=89616716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106336 WO2024016134A1 (zh) 2022-07-18 2022-07-18 一种无线通信方法及装置、设备、存储介质

Country Status (1)

Country Link
WO (1) WO2024016134A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103988543A (zh) * 2013-12-11 2014-08-13 华为技术有限公司 无线局域网中的控制设备、网络系统及业务处理方法
CN109756938A (zh) * 2017-11-03 2019-05-14 华为技术有限公司 通信方法、网元、终端装置和系统
CN110662277A (zh) * 2018-06-28 2020-01-07 华为技术有限公司 省电管理方法、图形用户界面以及终端
CN111770537A (zh) * 2019-01-11 2020-10-13 Oppo广东移动通信有限公司 用于资源建立的方法及设备
CN113301518A (zh) * 2018-04-09 2021-08-24 华为技术有限公司 通信方法及装置
CN114731723A (zh) * 2019-11-22 2022-07-08 华为技术有限公司 一种通信方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103988543A (zh) * 2013-12-11 2014-08-13 华为技术有限公司 无线局域网中的控制设备、网络系统及业务处理方法
CN109756938A (zh) * 2017-11-03 2019-05-14 华为技术有限公司 通信方法、网元、终端装置和系统
CN113301518A (zh) * 2018-04-09 2021-08-24 华为技术有限公司 通信方法及装置
CN110662277A (zh) * 2018-06-28 2020-01-07 华为技术有限公司 省电管理方法、图形用户界面以及终端
CN111770537A (zh) * 2019-01-11 2020-10-13 Oppo广东移动通信有限公司 用于资源建立的方法及设备
CN114731723A (zh) * 2019-11-22 2022-07-08 华为技术有限公司 一种通信方法及装置

Similar Documents

Publication Publication Date Title
EP3783984B1 (en) Resource allocation method and communications device
EP3509371B1 (en) Method and device for transmitting message
WO2012107004A1 (zh) 一种基于服务质量的调度方法、设备及系统
US11399307B2 (en) Service authorization method, terminal device and network device
WO2020150876A1 (zh) 会话建立方法、终端设备和网络设备
WO2021184263A1 (zh) 一种数据传输方法及装置、通信设备
WO2020252710A1 (zh) 无线通信方法和设备
WO2021077303A1 (zh) 无线通信方法和终端设备
US20220053580A1 (en) Information processing method, and first and second terminal devices
WO2020243931A1 (zh) 调整pdcch监听周期的方法和设备
WO2020029303A1 (zh) 一种通信方法、装置和通信系统
WO2022061872A1 (zh) 一种小数据传输方法及装置、终端设备
WO2021142707A1 (zh) 一种信息配置方法及装置、通信设备
WO2024016134A1 (zh) 一种无线通信方法及装置、设备、存储介质
WO2020061851A1 (zh) 无线通信方法和基站
JP2024511608A (ja) サイドリンク不連続受信命令のトリガー方法、装置及びシステム
WO2020164054A1 (zh) 业务处理方法、装置、芯片及计算机程序
WO2024021028A1 (zh) 一种无线通信方法及装置、设备、存储介质
WO2023102754A1 (zh) 一种通信方法及装置、通信设备
WO2023130393A1 (zh) 一种无线通信方法及装置、终端设备、网络设备
WO2023216048A1 (zh) 一种无线通信方法及装置、通信设备
WO2023000232A1 (zh) 无线通信方法、终端设备和网络设备
WO2024055242A1 (zh) 一种通信方法及装置、通信设备、融合组网架构
WO2023133706A1 (zh) 一种数据传输方法及装置、终端设备、网络设备
WO2023206234A1 (zh) 一种测量参考信号的配置方法及装置、终端设备、网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951413

Country of ref document: EP

Kind code of ref document: A1